1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <[email protected]> 12 * Corey Minyard <[email protected]> 13 * Donald J. Becker, <[email protected]> 14 * Alan Cox, <[email protected]> 15 * Bjorn Ekwall. <[email protected]> 16 * Pekka Riikonen <[email protected]> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/timer.h> 29 #include <linux/bug.h> 30 #include <linux/delay.h> 31 #include <linux/atomic.h> 32 #include <linux/prefetch.h> 33 #include <asm/cache.h> 34 #include <asm/byteorder.h> 35 36 #include <linux/percpu.h> 37 #include <linux/rculist.h> 38 #include <linux/dmaengine.h> 39 #include <linux/workqueue.h> 40 #include <linux/dynamic_queue_limits.h> 41 42 #include <linux/ethtool.h> 43 #include <net/net_namespace.h> 44 #include <net/dsa.h> 45 #ifdef CONFIG_DCB 46 #include <net/dcbnl.h> 47 #endif 48 #include <net/netprio_cgroup.h> 49 50 #include <linux/netdev_features.h> 51 #include <linux/neighbour.h> 52 #include <uapi/linux/netdevice.h> 53 #include <uapi/linux/if_bonding.h> 54 #include <uapi/linux/pkt_cls.h> 55 56 struct netpoll_info; 57 struct device; 58 struct phy_device; 59 /* 802.11 specific */ 60 struct wireless_dev; 61 /* 802.15.4 specific */ 62 struct wpan_dev; 63 struct mpls_dev; 64 65 void netdev_set_default_ethtool_ops(struct net_device *dev, 66 const struct ethtool_ops *ops); 67 68 /* Backlog congestion levels */ 69 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 70 #define NET_RX_DROP 1 /* packet dropped */ 71 72 /* 73 * Transmit return codes: transmit return codes originate from three different 74 * namespaces: 75 * 76 * - qdisc return codes 77 * - driver transmit return codes 78 * - errno values 79 * 80 * Drivers are allowed to return any one of those in their hard_start_xmit() 81 * function. Real network devices commonly used with qdiscs should only return 82 * the driver transmit return codes though - when qdiscs are used, the actual 83 * transmission happens asynchronously, so the value is not propagated to 84 * higher layers. Virtual network devices transmit synchronously, in this case 85 * the driver transmit return codes are consumed by dev_queue_xmit(), all 86 * others are propagated to higher layers. 87 */ 88 89 /* qdisc ->enqueue() return codes. */ 90 #define NET_XMIT_SUCCESS 0x00 91 #define NET_XMIT_DROP 0x01 /* skb dropped */ 92 #define NET_XMIT_CN 0x02 /* congestion notification */ 93 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */ 94 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 95 96 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 97 * indicates that the device will soon be dropping packets, or already drops 98 * some packets of the same priority; prompting us to send less aggressively. */ 99 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 100 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 101 102 /* Driver transmit return codes */ 103 #define NETDEV_TX_MASK 0xf0 104 105 enum netdev_tx { 106 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 107 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 108 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 109 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ 110 }; 111 typedef enum netdev_tx netdev_tx_t; 112 113 /* 114 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 115 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 116 */ 117 static inline bool dev_xmit_complete(int rc) 118 { 119 /* 120 * Positive cases with an skb consumed by a driver: 121 * - successful transmission (rc == NETDEV_TX_OK) 122 * - error while transmitting (rc < 0) 123 * - error while queueing to a different device (rc & NET_XMIT_MASK) 124 */ 125 if (likely(rc < NET_XMIT_MASK)) 126 return true; 127 128 return false; 129 } 130 131 /* 132 * Compute the worst case header length according to the protocols 133 * used. 134 */ 135 136 #if defined(CONFIG_HYPERV_NET) 137 # define LL_MAX_HEADER 128 138 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 139 # if defined(CONFIG_MAC80211_MESH) 140 # define LL_MAX_HEADER 128 141 # else 142 # define LL_MAX_HEADER 96 143 # endif 144 #else 145 # define LL_MAX_HEADER 32 146 #endif 147 148 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 149 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 150 #define MAX_HEADER LL_MAX_HEADER 151 #else 152 #define MAX_HEADER (LL_MAX_HEADER + 48) 153 #endif 154 155 /* 156 * Old network device statistics. Fields are native words 157 * (unsigned long) so they can be read and written atomically. 158 */ 159 160 struct net_device_stats { 161 unsigned long rx_packets; 162 unsigned long tx_packets; 163 unsigned long rx_bytes; 164 unsigned long tx_bytes; 165 unsigned long rx_errors; 166 unsigned long tx_errors; 167 unsigned long rx_dropped; 168 unsigned long tx_dropped; 169 unsigned long multicast; 170 unsigned long collisions; 171 unsigned long rx_length_errors; 172 unsigned long rx_over_errors; 173 unsigned long rx_crc_errors; 174 unsigned long rx_frame_errors; 175 unsigned long rx_fifo_errors; 176 unsigned long rx_missed_errors; 177 unsigned long tx_aborted_errors; 178 unsigned long tx_carrier_errors; 179 unsigned long tx_fifo_errors; 180 unsigned long tx_heartbeat_errors; 181 unsigned long tx_window_errors; 182 unsigned long rx_compressed; 183 unsigned long tx_compressed; 184 }; 185 186 187 #include <linux/cache.h> 188 #include <linux/skbuff.h> 189 190 #ifdef CONFIG_RPS 191 #include <linux/static_key.h> 192 extern struct static_key rps_needed; 193 #endif 194 195 struct neighbour; 196 struct neigh_parms; 197 struct sk_buff; 198 199 struct netdev_hw_addr { 200 struct list_head list; 201 unsigned char addr[MAX_ADDR_LEN]; 202 unsigned char type; 203 #define NETDEV_HW_ADDR_T_LAN 1 204 #define NETDEV_HW_ADDR_T_SAN 2 205 #define NETDEV_HW_ADDR_T_SLAVE 3 206 #define NETDEV_HW_ADDR_T_UNICAST 4 207 #define NETDEV_HW_ADDR_T_MULTICAST 5 208 bool global_use; 209 int sync_cnt; 210 int refcount; 211 int synced; 212 struct rcu_head rcu_head; 213 }; 214 215 struct netdev_hw_addr_list { 216 struct list_head list; 217 int count; 218 }; 219 220 #define netdev_hw_addr_list_count(l) ((l)->count) 221 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 222 #define netdev_hw_addr_list_for_each(ha, l) \ 223 list_for_each_entry(ha, &(l)->list, list) 224 225 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 226 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 227 #define netdev_for_each_uc_addr(ha, dev) \ 228 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 229 230 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 231 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 232 #define netdev_for_each_mc_addr(ha, dev) \ 233 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 234 235 struct hh_cache { 236 u16 hh_len; 237 u16 __pad; 238 seqlock_t hh_lock; 239 240 /* cached hardware header; allow for machine alignment needs. */ 241 #define HH_DATA_MOD 16 242 #define HH_DATA_OFF(__len) \ 243 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 244 #define HH_DATA_ALIGN(__len) \ 245 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 246 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 247 }; 248 249 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much. 250 * Alternative is: 251 * dev->hard_header_len ? (dev->hard_header_len + 252 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 253 * 254 * We could use other alignment values, but we must maintain the 255 * relationship HH alignment <= LL alignment. 256 */ 257 #define LL_RESERVED_SPACE(dev) \ 258 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 259 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 260 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 261 262 struct header_ops { 263 int (*create) (struct sk_buff *skb, struct net_device *dev, 264 unsigned short type, const void *daddr, 265 const void *saddr, unsigned int len); 266 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 267 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 268 void (*cache_update)(struct hh_cache *hh, 269 const struct net_device *dev, 270 const unsigned char *haddr); 271 }; 272 273 /* These flag bits are private to the generic network queueing 274 * layer, they may not be explicitly referenced by any other 275 * code. 276 */ 277 278 enum netdev_state_t { 279 __LINK_STATE_START, 280 __LINK_STATE_PRESENT, 281 __LINK_STATE_NOCARRIER, 282 __LINK_STATE_LINKWATCH_PENDING, 283 __LINK_STATE_DORMANT, 284 }; 285 286 287 /* 288 * This structure holds at boot time configured netdevice settings. They 289 * are then used in the device probing. 290 */ 291 struct netdev_boot_setup { 292 char name[IFNAMSIZ]; 293 struct ifmap map; 294 }; 295 #define NETDEV_BOOT_SETUP_MAX 8 296 297 int __init netdev_boot_setup(char *str); 298 299 /* 300 * Structure for NAPI scheduling similar to tasklet but with weighting 301 */ 302 struct napi_struct { 303 /* The poll_list must only be managed by the entity which 304 * changes the state of the NAPI_STATE_SCHED bit. This means 305 * whoever atomically sets that bit can add this napi_struct 306 * to the per-cpu poll_list, and whoever clears that bit 307 * can remove from the list right before clearing the bit. 308 */ 309 struct list_head poll_list; 310 311 unsigned long state; 312 int weight; 313 unsigned int gro_count; 314 int (*poll)(struct napi_struct *, int); 315 #ifdef CONFIG_NETPOLL 316 spinlock_t poll_lock; 317 int poll_owner; 318 #endif 319 struct net_device *dev; 320 struct sk_buff *gro_list; 321 struct sk_buff *skb; 322 struct hrtimer timer; 323 struct list_head dev_list; 324 struct hlist_node napi_hash_node; 325 unsigned int napi_id; 326 }; 327 328 enum { 329 NAPI_STATE_SCHED, /* Poll is scheduled */ 330 NAPI_STATE_DISABLE, /* Disable pending */ 331 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 332 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 333 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 334 }; 335 336 enum gro_result { 337 GRO_MERGED, 338 GRO_MERGED_FREE, 339 GRO_HELD, 340 GRO_NORMAL, 341 GRO_DROP, 342 }; 343 typedef enum gro_result gro_result_t; 344 345 /* 346 * enum rx_handler_result - Possible return values for rx_handlers. 347 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 348 * further. 349 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 350 * case skb->dev was changed by rx_handler. 351 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 352 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called. 353 * 354 * rx_handlers are functions called from inside __netif_receive_skb(), to do 355 * special processing of the skb, prior to delivery to protocol handlers. 356 * 357 * Currently, a net_device can only have a single rx_handler registered. Trying 358 * to register a second rx_handler will return -EBUSY. 359 * 360 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 361 * To unregister a rx_handler on a net_device, use 362 * netdev_rx_handler_unregister(). 363 * 364 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 365 * do with the skb. 366 * 367 * If the rx_handler consumed to skb in some way, it should return 368 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 369 * the skb to be delivered in some other ways. 370 * 371 * If the rx_handler changed skb->dev, to divert the skb to another 372 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 373 * new device will be called if it exists. 374 * 375 * If the rx_handler consider the skb should be ignored, it should return 376 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 377 * are registered on exact device (ptype->dev == skb->dev). 378 * 379 * If the rx_handler didn't changed skb->dev, but want the skb to be normally 380 * delivered, it should return RX_HANDLER_PASS. 381 * 382 * A device without a registered rx_handler will behave as if rx_handler 383 * returned RX_HANDLER_PASS. 384 */ 385 386 enum rx_handler_result { 387 RX_HANDLER_CONSUMED, 388 RX_HANDLER_ANOTHER, 389 RX_HANDLER_EXACT, 390 RX_HANDLER_PASS, 391 }; 392 typedef enum rx_handler_result rx_handler_result_t; 393 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 394 395 void __napi_schedule(struct napi_struct *n); 396 void __napi_schedule_irqoff(struct napi_struct *n); 397 398 static inline bool napi_disable_pending(struct napi_struct *n) 399 { 400 return test_bit(NAPI_STATE_DISABLE, &n->state); 401 } 402 403 /** 404 * napi_schedule_prep - check if napi can be scheduled 405 * @n: napi context 406 * 407 * Test if NAPI routine is already running, and if not mark 408 * it as running. This is used as a condition variable 409 * insure only one NAPI poll instance runs. We also make 410 * sure there is no pending NAPI disable. 411 */ 412 static inline bool napi_schedule_prep(struct napi_struct *n) 413 { 414 return !napi_disable_pending(n) && 415 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 416 } 417 418 /** 419 * napi_schedule - schedule NAPI poll 420 * @n: napi context 421 * 422 * Schedule NAPI poll routine to be called if it is not already 423 * running. 424 */ 425 static inline void napi_schedule(struct napi_struct *n) 426 { 427 if (napi_schedule_prep(n)) 428 __napi_schedule(n); 429 } 430 431 /** 432 * napi_schedule_irqoff - schedule NAPI poll 433 * @n: napi context 434 * 435 * Variant of napi_schedule(), assuming hard irqs are masked. 436 */ 437 static inline void napi_schedule_irqoff(struct napi_struct *n) 438 { 439 if (napi_schedule_prep(n)) 440 __napi_schedule_irqoff(n); 441 } 442 443 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 444 static inline bool napi_reschedule(struct napi_struct *napi) 445 { 446 if (napi_schedule_prep(napi)) { 447 __napi_schedule(napi); 448 return true; 449 } 450 return false; 451 } 452 453 void __napi_complete(struct napi_struct *n); 454 void napi_complete_done(struct napi_struct *n, int work_done); 455 /** 456 * napi_complete - NAPI processing complete 457 * @n: napi context 458 * 459 * Mark NAPI processing as complete. 460 * Consider using napi_complete_done() instead. 461 */ 462 static inline void napi_complete(struct napi_struct *n) 463 { 464 return napi_complete_done(n, 0); 465 } 466 467 /** 468 * napi_hash_add - add a NAPI to global hashtable 469 * @napi: napi context 470 * 471 * generate a new napi_id and store a @napi under it in napi_hash 472 * Used for busy polling (CONFIG_NET_RX_BUSY_POLL) 473 * Note: This is normally automatically done from netif_napi_add(), 474 * so might disappear in a future linux version. 475 */ 476 void napi_hash_add(struct napi_struct *napi); 477 478 /** 479 * napi_hash_del - remove a NAPI from global table 480 * @napi: napi context 481 * 482 * Warning: caller must observe rcu grace period 483 * before freeing memory containing @napi, if 484 * this function returns true. 485 * Note: core networking stack automatically calls it 486 * from netif_napi_del() 487 * Drivers might want to call this helper to combine all 488 * the needed rcu grace periods into a single one. 489 */ 490 bool napi_hash_del(struct napi_struct *napi); 491 492 /** 493 * napi_disable - prevent NAPI from scheduling 494 * @n: napi context 495 * 496 * Stop NAPI from being scheduled on this context. 497 * Waits till any outstanding processing completes. 498 */ 499 void napi_disable(struct napi_struct *n); 500 501 /** 502 * napi_enable - enable NAPI scheduling 503 * @n: napi context 504 * 505 * Resume NAPI from being scheduled on this context. 506 * Must be paired with napi_disable. 507 */ 508 static inline void napi_enable(struct napi_struct *n) 509 { 510 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 511 smp_mb__before_atomic(); 512 clear_bit(NAPI_STATE_SCHED, &n->state); 513 clear_bit(NAPI_STATE_NPSVC, &n->state); 514 } 515 516 /** 517 * napi_synchronize - wait until NAPI is not running 518 * @n: napi context 519 * 520 * Wait until NAPI is done being scheduled on this context. 521 * Waits till any outstanding processing completes but 522 * does not disable future activations. 523 */ 524 static inline void napi_synchronize(const struct napi_struct *n) 525 { 526 if (IS_ENABLED(CONFIG_SMP)) 527 while (test_bit(NAPI_STATE_SCHED, &n->state)) 528 msleep(1); 529 else 530 barrier(); 531 } 532 533 enum netdev_queue_state_t { 534 __QUEUE_STATE_DRV_XOFF, 535 __QUEUE_STATE_STACK_XOFF, 536 __QUEUE_STATE_FROZEN, 537 }; 538 539 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 540 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 541 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 542 543 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 544 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 545 QUEUE_STATE_FROZEN) 546 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 547 QUEUE_STATE_FROZEN) 548 549 /* 550 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 551 * netif_tx_* functions below are used to manipulate this flag. The 552 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 553 * queue independently. The netif_xmit_*stopped functions below are called 554 * to check if the queue has been stopped by the driver or stack (either 555 * of the XOFF bits are set in the state). Drivers should not need to call 556 * netif_xmit*stopped functions, they should only be using netif_tx_*. 557 */ 558 559 struct netdev_queue { 560 /* 561 * read mostly part 562 */ 563 struct net_device *dev; 564 struct Qdisc __rcu *qdisc; 565 struct Qdisc *qdisc_sleeping; 566 #ifdef CONFIG_SYSFS 567 struct kobject kobj; 568 #endif 569 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 570 int numa_node; 571 #endif 572 /* 573 * write mostly part 574 */ 575 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 576 int xmit_lock_owner; 577 /* 578 * please use this field instead of dev->trans_start 579 */ 580 unsigned long trans_start; 581 582 /* 583 * Number of TX timeouts for this queue 584 * (/sys/class/net/DEV/Q/trans_timeout) 585 */ 586 unsigned long trans_timeout; 587 588 unsigned long state; 589 590 #ifdef CONFIG_BQL 591 struct dql dql; 592 #endif 593 unsigned long tx_maxrate; 594 } ____cacheline_aligned_in_smp; 595 596 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 597 { 598 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 599 return q->numa_node; 600 #else 601 return NUMA_NO_NODE; 602 #endif 603 } 604 605 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 606 { 607 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 608 q->numa_node = node; 609 #endif 610 } 611 612 #ifdef CONFIG_RPS 613 /* 614 * This structure holds an RPS map which can be of variable length. The 615 * map is an array of CPUs. 616 */ 617 struct rps_map { 618 unsigned int len; 619 struct rcu_head rcu; 620 u16 cpus[0]; 621 }; 622 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 623 624 /* 625 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 626 * tail pointer for that CPU's input queue at the time of last enqueue, and 627 * a hardware filter index. 628 */ 629 struct rps_dev_flow { 630 u16 cpu; 631 u16 filter; 632 unsigned int last_qtail; 633 }; 634 #define RPS_NO_FILTER 0xffff 635 636 /* 637 * The rps_dev_flow_table structure contains a table of flow mappings. 638 */ 639 struct rps_dev_flow_table { 640 unsigned int mask; 641 struct rcu_head rcu; 642 struct rps_dev_flow flows[0]; 643 }; 644 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 645 ((_num) * sizeof(struct rps_dev_flow))) 646 647 /* 648 * The rps_sock_flow_table contains mappings of flows to the last CPU 649 * on which they were processed by the application (set in recvmsg). 650 * Each entry is a 32bit value. Upper part is the high order bits 651 * of flow hash, lower part is cpu number. 652 * rps_cpu_mask is used to partition the space, depending on number of 653 * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 654 * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f, 655 * meaning we use 32-6=26 bits for the hash. 656 */ 657 struct rps_sock_flow_table { 658 u32 mask; 659 660 u32 ents[0] ____cacheline_aligned_in_smp; 661 }; 662 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 663 664 #define RPS_NO_CPU 0xffff 665 666 extern u32 rps_cpu_mask; 667 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 668 669 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 670 u32 hash) 671 { 672 if (table && hash) { 673 unsigned int index = hash & table->mask; 674 u32 val = hash & ~rps_cpu_mask; 675 676 /* We only give a hint, preemption can change cpu under us */ 677 val |= raw_smp_processor_id(); 678 679 if (table->ents[index] != val) 680 table->ents[index] = val; 681 } 682 } 683 684 #ifdef CONFIG_RFS_ACCEL 685 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 686 u16 filter_id); 687 #endif 688 #endif /* CONFIG_RPS */ 689 690 /* This structure contains an instance of an RX queue. */ 691 struct netdev_rx_queue { 692 #ifdef CONFIG_RPS 693 struct rps_map __rcu *rps_map; 694 struct rps_dev_flow_table __rcu *rps_flow_table; 695 #endif 696 struct kobject kobj; 697 struct net_device *dev; 698 } ____cacheline_aligned_in_smp; 699 700 /* 701 * RX queue sysfs structures and functions. 702 */ 703 struct rx_queue_attribute { 704 struct attribute attr; 705 ssize_t (*show)(struct netdev_rx_queue *queue, 706 struct rx_queue_attribute *attr, char *buf); 707 ssize_t (*store)(struct netdev_rx_queue *queue, 708 struct rx_queue_attribute *attr, const char *buf, size_t len); 709 }; 710 711 #ifdef CONFIG_XPS 712 /* 713 * This structure holds an XPS map which can be of variable length. The 714 * map is an array of queues. 715 */ 716 struct xps_map { 717 unsigned int len; 718 unsigned int alloc_len; 719 struct rcu_head rcu; 720 u16 queues[0]; 721 }; 722 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 723 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 724 - sizeof(struct xps_map)) / sizeof(u16)) 725 726 /* 727 * This structure holds all XPS maps for device. Maps are indexed by CPU. 728 */ 729 struct xps_dev_maps { 730 struct rcu_head rcu; 731 struct xps_map __rcu *cpu_map[0]; 732 }; 733 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 734 (nr_cpu_ids * sizeof(struct xps_map *))) 735 #endif /* CONFIG_XPS */ 736 737 #define TC_MAX_QUEUE 16 738 #define TC_BITMASK 15 739 /* HW offloaded queuing disciplines txq count and offset maps */ 740 struct netdev_tc_txq { 741 u16 count; 742 u16 offset; 743 }; 744 745 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 746 /* 747 * This structure is to hold information about the device 748 * configured to run FCoE protocol stack. 749 */ 750 struct netdev_fcoe_hbainfo { 751 char manufacturer[64]; 752 char serial_number[64]; 753 char hardware_version[64]; 754 char driver_version[64]; 755 char optionrom_version[64]; 756 char firmware_version[64]; 757 char model[256]; 758 char model_description[256]; 759 }; 760 #endif 761 762 #define MAX_PHYS_ITEM_ID_LEN 32 763 764 /* This structure holds a unique identifier to identify some 765 * physical item (port for example) used by a netdevice. 766 */ 767 struct netdev_phys_item_id { 768 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 769 unsigned char id_len; 770 }; 771 772 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 773 struct netdev_phys_item_id *b) 774 { 775 return a->id_len == b->id_len && 776 memcmp(a->id, b->id, a->id_len) == 0; 777 } 778 779 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 780 struct sk_buff *skb); 781 782 /* These structures hold the attributes of qdisc and classifiers 783 * that are being passed to the netdevice through the setup_tc op. 784 */ 785 enum { 786 TC_SETUP_MQPRIO, 787 TC_SETUP_CLSU32, 788 }; 789 790 struct tc_cls_u32_offload; 791 792 struct tc_to_netdev { 793 unsigned int type; 794 union { 795 u8 tc; 796 struct tc_cls_u32_offload *cls_u32; 797 }; 798 }; 799 800 801 /* 802 * This structure defines the management hooks for network devices. 803 * The following hooks can be defined; unless noted otherwise, they are 804 * optional and can be filled with a null pointer. 805 * 806 * int (*ndo_init)(struct net_device *dev); 807 * This function is called once when network device is registered. 808 * The network device can use this to any late stage initializaton 809 * or semantic validattion. It can fail with an error code which will 810 * be propogated back to register_netdev 811 * 812 * void (*ndo_uninit)(struct net_device *dev); 813 * This function is called when device is unregistered or when registration 814 * fails. It is not called if init fails. 815 * 816 * int (*ndo_open)(struct net_device *dev); 817 * This function is called when network device transistions to the up 818 * state. 819 * 820 * int (*ndo_stop)(struct net_device *dev); 821 * This function is called when network device transistions to the down 822 * state. 823 * 824 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 825 * struct net_device *dev); 826 * Called when a packet needs to be transmitted. 827 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 828 * the queue before that can happen; it's for obsolete devices and weird 829 * corner cases, but the stack really does a non-trivial amount 830 * of useless work if you return NETDEV_TX_BUSY. 831 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) 832 * Required can not be NULL. 833 * 834 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 835 * netdev_features_t features); 836 * Adjusts the requested feature flags according to device-specific 837 * constraints, and returns the resulting flags. Must not modify 838 * the device state. 839 * 840 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 841 * void *accel_priv, select_queue_fallback_t fallback); 842 * Called to decide which queue to when device supports multiple 843 * transmit queues. 844 * 845 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 846 * This function is called to allow device receiver to make 847 * changes to configuration when multicast or promiscious is enabled. 848 * 849 * void (*ndo_set_rx_mode)(struct net_device *dev); 850 * This function is called device changes address list filtering. 851 * If driver handles unicast address filtering, it should set 852 * IFF_UNICAST_FLT to its priv_flags. 853 * 854 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 855 * This function is called when the Media Access Control address 856 * needs to be changed. If this interface is not defined, the 857 * mac address can not be changed. 858 * 859 * int (*ndo_validate_addr)(struct net_device *dev); 860 * Test if Media Access Control address is valid for the device. 861 * 862 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 863 * Called when a user request an ioctl which can't be handled by 864 * the generic interface code. If not defined ioctl's return 865 * not supported error code. 866 * 867 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 868 * Used to set network devices bus interface parameters. This interface 869 * is retained for legacy reason, new devices should use the bus 870 * interface (PCI) for low level management. 871 * 872 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 873 * Called when a user wants to change the Maximum Transfer Unit 874 * of a device. If not defined, any request to change MTU will 875 * will return an error. 876 * 877 * void (*ndo_tx_timeout)(struct net_device *dev); 878 * Callback uses when the transmitter has not made any progress 879 * for dev->watchdog ticks. 880 * 881 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 882 * struct rtnl_link_stats64 *storage); 883 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 884 * Called when a user wants to get the network device usage 885 * statistics. Drivers must do one of the following: 886 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 887 * rtnl_link_stats64 structure passed by the caller. 888 * 2. Define @ndo_get_stats to update a net_device_stats structure 889 * (which should normally be dev->stats) and return a pointer to 890 * it. The structure may be changed asynchronously only if each 891 * field is written atomically. 892 * 3. Update dev->stats asynchronously and atomically, and define 893 * neither operation. 894 * 895 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 896 * If device support VLAN filtering this function is called when a 897 * VLAN id is registered. 898 * 899 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 900 * If device support VLAN filtering this function is called when a 901 * VLAN id is unregistered. 902 * 903 * void (*ndo_poll_controller)(struct net_device *dev); 904 * 905 * SR-IOV management functions. 906 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 907 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 908 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 909 * int max_tx_rate); 910 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 911 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 912 * int (*ndo_get_vf_config)(struct net_device *dev, 913 * int vf, struct ifla_vf_info *ivf); 914 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 915 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 916 * struct nlattr *port[]); 917 * 918 * Enable or disable the VF ability to query its RSS Redirection Table and 919 * Hash Key. This is needed since on some devices VF share this information 920 * with PF and querying it may adduce a theoretical security risk. 921 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 922 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 923 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 924 * Called to setup 'tc' number of traffic classes in the net device. This 925 * is always called from the stack with the rtnl lock held and netif tx 926 * queues stopped. This allows the netdevice to perform queue management 927 * safely. 928 * 929 * Fiber Channel over Ethernet (FCoE) offload functions. 930 * int (*ndo_fcoe_enable)(struct net_device *dev); 931 * Called when the FCoE protocol stack wants to start using LLD for FCoE 932 * so the underlying device can perform whatever needed configuration or 933 * initialization to support acceleration of FCoE traffic. 934 * 935 * int (*ndo_fcoe_disable)(struct net_device *dev); 936 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 937 * so the underlying device can perform whatever needed clean-ups to 938 * stop supporting acceleration of FCoE traffic. 939 * 940 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 941 * struct scatterlist *sgl, unsigned int sgc); 942 * Called when the FCoE Initiator wants to initialize an I/O that 943 * is a possible candidate for Direct Data Placement (DDP). The LLD can 944 * perform necessary setup and returns 1 to indicate the device is set up 945 * successfully to perform DDP on this I/O, otherwise this returns 0. 946 * 947 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 948 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 949 * indicated by the FC exchange id 'xid', so the underlying device can 950 * clean up and reuse resources for later DDP requests. 951 * 952 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 953 * struct scatterlist *sgl, unsigned int sgc); 954 * Called when the FCoE Target wants to initialize an I/O that 955 * is a possible candidate for Direct Data Placement (DDP). The LLD can 956 * perform necessary setup and returns 1 to indicate the device is set up 957 * successfully to perform DDP on this I/O, otherwise this returns 0. 958 * 959 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 960 * struct netdev_fcoe_hbainfo *hbainfo); 961 * Called when the FCoE Protocol stack wants information on the underlying 962 * device. This information is utilized by the FCoE protocol stack to 963 * register attributes with Fiber Channel management service as per the 964 * FC-GS Fabric Device Management Information(FDMI) specification. 965 * 966 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 967 * Called when the underlying device wants to override default World Wide 968 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 969 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 970 * protocol stack to use. 971 * 972 * RFS acceleration. 973 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 974 * u16 rxq_index, u32 flow_id); 975 * Set hardware filter for RFS. rxq_index is the target queue index; 976 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 977 * Return the filter ID on success, or a negative error code. 978 * 979 * Slave management functions (for bridge, bonding, etc). 980 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 981 * Called to make another netdev an underling. 982 * 983 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 984 * Called to release previously enslaved netdev. 985 * 986 * Feature/offload setting functions. 987 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 988 * Called to update device configuration to new features. Passed 989 * feature set might be less than what was returned by ndo_fix_features()). 990 * Must return >0 or -errno if it changed dev->features itself. 991 * 992 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 993 * struct net_device *dev, 994 * const unsigned char *addr, u16 vid, u16 flags) 995 * Adds an FDB entry to dev for addr. 996 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 997 * struct net_device *dev, 998 * const unsigned char *addr, u16 vid) 999 * Deletes the FDB entry from dev coresponding to addr. 1000 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1001 * struct net_device *dev, struct net_device *filter_dev, 1002 * int idx) 1003 * Used to add FDB entries to dump requests. Implementers should add 1004 * entries to skb and update idx with the number of entries. 1005 * 1006 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1007 * u16 flags) 1008 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1009 * struct net_device *dev, u32 filter_mask, 1010 * int nlflags) 1011 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1012 * u16 flags); 1013 * 1014 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1015 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1016 * which do not represent real hardware may define this to allow their 1017 * userspace components to manage their virtual carrier state. Devices 1018 * that determine carrier state from physical hardware properties (eg 1019 * network cables) or protocol-dependent mechanisms (eg 1020 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1021 * 1022 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1023 * struct netdev_phys_item_id *ppid); 1024 * Called to get ID of physical port of this device. If driver does 1025 * not implement this, it is assumed that the hw is not able to have 1026 * multiple net devices on single physical port. 1027 * 1028 * void (*ndo_add_vxlan_port)(struct net_device *dev, 1029 * sa_family_t sa_family, __be16 port); 1030 * Called by vxlan to notiy a driver about the UDP port and socket 1031 * address family that vxlan is listnening to. It is called only when 1032 * a new port starts listening. The operation is protected by the 1033 * vxlan_net->sock_lock. 1034 * 1035 * void (*ndo_add_geneve_port)(struct net_device *dev, 1036 * sa_family_t sa_family, __be16 port); 1037 * Called by geneve to notify a driver about the UDP port and socket 1038 * address family that geneve is listnening to. It is called only when 1039 * a new port starts listening. The operation is protected by the 1040 * geneve_net->sock_lock. 1041 * 1042 * void (*ndo_del_geneve_port)(struct net_device *dev, 1043 * sa_family_t sa_family, __be16 port); 1044 * Called by geneve to notify the driver about a UDP port and socket 1045 * address family that geneve is not listening to anymore. The operation 1046 * is protected by the geneve_net->sock_lock. 1047 * 1048 * void (*ndo_del_vxlan_port)(struct net_device *dev, 1049 * sa_family_t sa_family, __be16 port); 1050 * Called by vxlan to notify the driver about a UDP port and socket 1051 * address family that vxlan is not listening to anymore. The operation 1052 * is protected by the vxlan_net->sock_lock. 1053 * 1054 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1055 * struct net_device *dev) 1056 * Called by upper layer devices to accelerate switching or other 1057 * station functionality into hardware. 'pdev is the lowerdev 1058 * to use for the offload and 'dev' is the net device that will 1059 * back the offload. Returns a pointer to the private structure 1060 * the upper layer will maintain. 1061 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1062 * Called by upper layer device to delete the station created 1063 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1064 * the station and priv is the structure returned by the add 1065 * operation. 1066 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb, 1067 * struct net_device *dev, 1068 * void *priv); 1069 * Callback to use for xmit over the accelerated station. This 1070 * is used in place of ndo_start_xmit on accelerated net 1071 * devices. 1072 * netdev_features_t (*ndo_features_check) (struct sk_buff *skb, 1073 * struct net_device *dev 1074 * netdev_features_t features); 1075 * Called by core transmit path to determine if device is capable of 1076 * performing offload operations on a given packet. This is to give 1077 * the device an opportunity to implement any restrictions that cannot 1078 * be otherwise expressed by feature flags. The check is called with 1079 * the set of features that the stack has calculated and it returns 1080 * those the driver believes to be appropriate. 1081 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1082 * int queue_index, u32 maxrate); 1083 * Called when a user wants to set a max-rate limitation of specific 1084 * TX queue. 1085 * int (*ndo_get_iflink)(const struct net_device *dev); 1086 * Called to get the iflink value of this device. 1087 * void (*ndo_change_proto_down)(struct net_device *dev, 1088 * bool proto_down); 1089 * This function is used to pass protocol port error state information 1090 * to the switch driver. The switch driver can react to the proto_down 1091 * by doing a phys down on the associated switch port. 1092 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1093 * This function is used to get egress tunnel information for given skb. 1094 * This is useful for retrieving outer tunnel header parameters while 1095 * sampling packet. 1096 * 1097 */ 1098 struct net_device_ops { 1099 int (*ndo_init)(struct net_device *dev); 1100 void (*ndo_uninit)(struct net_device *dev); 1101 int (*ndo_open)(struct net_device *dev); 1102 int (*ndo_stop)(struct net_device *dev); 1103 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1104 struct net_device *dev); 1105 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1106 struct net_device *dev, 1107 netdev_features_t features); 1108 u16 (*ndo_select_queue)(struct net_device *dev, 1109 struct sk_buff *skb, 1110 void *accel_priv, 1111 select_queue_fallback_t fallback); 1112 void (*ndo_change_rx_flags)(struct net_device *dev, 1113 int flags); 1114 void (*ndo_set_rx_mode)(struct net_device *dev); 1115 int (*ndo_set_mac_address)(struct net_device *dev, 1116 void *addr); 1117 int (*ndo_validate_addr)(struct net_device *dev); 1118 int (*ndo_do_ioctl)(struct net_device *dev, 1119 struct ifreq *ifr, int cmd); 1120 int (*ndo_set_config)(struct net_device *dev, 1121 struct ifmap *map); 1122 int (*ndo_change_mtu)(struct net_device *dev, 1123 int new_mtu); 1124 int (*ndo_neigh_setup)(struct net_device *dev, 1125 struct neigh_parms *); 1126 void (*ndo_tx_timeout) (struct net_device *dev); 1127 1128 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 1129 struct rtnl_link_stats64 *storage); 1130 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1131 1132 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1133 __be16 proto, u16 vid); 1134 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1135 __be16 proto, u16 vid); 1136 #ifdef CONFIG_NET_POLL_CONTROLLER 1137 void (*ndo_poll_controller)(struct net_device *dev); 1138 int (*ndo_netpoll_setup)(struct net_device *dev, 1139 struct netpoll_info *info); 1140 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1141 #endif 1142 #ifdef CONFIG_NET_RX_BUSY_POLL 1143 int (*ndo_busy_poll)(struct napi_struct *dev); 1144 #endif 1145 int (*ndo_set_vf_mac)(struct net_device *dev, 1146 int queue, u8 *mac); 1147 int (*ndo_set_vf_vlan)(struct net_device *dev, 1148 int queue, u16 vlan, u8 qos); 1149 int (*ndo_set_vf_rate)(struct net_device *dev, 1150 int vf, int min_tx_rate, 1151 int max_tx_rate); 1152 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1153 int vf, bool setting); 1154 int (*ndo_set_vf_trust)(struct net_device *dev, 1155 int vf, bool setting); 1156 int (*ndo_get_vf_config)(struct net_device *dev, 1157 int vf, 1158 struct ifla_vf_info *ivf); 1159 int (*ndo_set_vf_link_state)(struct net_device *dev, 1160 int vf, int link_state); 1161 int (*ndo_get_vf_stats)(struct net_device *dev, 1162 int vf, 1163 struct ifla_vf_stats 1164 *vf_stats); 1165 int (*ndo_set_vf_port)(struct net_device *dev, 1166 int vf, 1167 struct nlattr *port[]); 1168 int (*ndo_get_vf_port)(struct net_device *dev, 1169 int vf, struct sk_buff *skb); 1170 int (*ndo_set_vf_rss_query_en)( 1171 struct net_device *dev, 1172 int vf, bool setting); 1173 int (*ndo_setup_tc)(struct net_device *dev, 1174 u32 handle, 1175 __be16 protocol, 1176 struct tc_to_netdev *tc); 1177 #if IS_ENABLED(CONFIG_FCOE) 1178 int (*ndo_fcoe_enable)(struct net_device *dev); 1179 int (*ndo_fcoe_disable)(struct net_device *dev); 1180 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1181 u16 xid, 1182 struct scatterlist *sgl, 1183 unsigned int sgc); 1184 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1185 u16 xid); 1186 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1187 u16 xid, 1188 struct scatterlist *sgl, 1189 unsigned int sgc); 1190 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1191 struct netdev_fcoe_hbainfo *hbainfo); 1192 #endif 1193 1194 #if IS_ENABLED(CONFIG_LIBFCOE) 1195 #define NETDEV_FCOE_WWNN 0 1196 #define NETDEV_FCOE_WWPN 1 1197 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1198 u64 *wwn, int type); 1199 #endif 1200 1201 #ifdef CONFIG_RFS_ACCEL 1202 int (*ndo_rx_flow_steer)(struct net_device *dev, 1203 const struct sk_buff *skb, 1204 u16 rxq_index, 1205 u32 flow_id); 1206 #endif 1207 int (*ndo_add_slave)(struct net_device *dev, 1208 struct net_device *slave_dev); 1209 int (*ndo_del_slave)(struct net_device *dev, 1210 struct net_device *slave_dev); 1211 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1212 netdev_features_t features); 1213 int (*ndo_set_features)(struct net_device *dev, 1214 netdev_features_t features); 1215 int (*ndo_neigh_construct)(struct neighbour *n); 1216 void (*ndo_neigh_destroy)(struct neighbour *n); 1217 1218 int (*ndo_fdb_add)(struct ndmsg *ndm, 1219 struct nlattr *tb[], 1220 struct net_device *dev, 1221 const unsigned char *addr, 1222 u16 vid, 1223 u16 flags); 1224 int (*ndo_fdb_del)(struct ndmsg *ndm, 1225 struct nlattr *tb[], 1226 struct net_device *dev, 1227 const unsigned char *addr, 1228 u16 vid); 1229 int (*ndo_fdb_dump)(struct sk_buff *skb, 1230 struct netlink_callback *cb, 1231 struct net_device *dev, 1232 struct net_device *filter_dev, 1233 int idx); 1234 1235 int (*ndo_bridge_setlink)(struct net_device *dev, 1236 struct nlmsghdr *nlh, 1237 u16 flags); 1238 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1239 u32 pid, u32 seq, 1240 struct net_device *dev, 1241 u32 filter_mask, 1242 int nlflags); 1243 int (*ndo_bridge_dellink)(struct net_device *dev, 1244 struct nlmsghdr *nlh, 1245 u16 flags); 1246 int (*ndo_change_carrier)(struct net_device *dev, 1247 bool new_carrier); 1248 int (*ndo_get_phys_port_id)(struct net_device *dev, 1249 struct netdev_phys_item_id *ppid); 1250 int (*ndo_get_phys_port_name)(struct net_device *dev, 1251 char *name, size_t len); 1252 void (*ndo_add_vxlan_port)(struct net_device *dev, 1253 sa_family_t sa_family, 1254 __be16 port); 1255 void (*ndo_del_vxlan_port)(struct net_device *dev, 1256 sa_family_t sa_family, 1257 __be16 port); 1258 void (*ndo_add_geneve_port)(struct net_device *dev, 1259 sa_family_t sa_family, 1260 __be16 port); 1261 void (*ndo_del_geneve_port)(struct net_device *dev, 1262 sa_family_t sa_family, 1263 __be16 port); 1264 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1265 struct net_device *dev); 1266 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1267 void *priv); 1268 1269 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb, 1270 struct net_device *dev, 1271 void *priv); 1272 int (*ndo_get_lock_subclass)(struct net_device *dev); 1273 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1274 int queue_index, 1275 u32 maxrate); 1276 int (*ndo_get_iflink)(const struct net_device *dev); 1277 int (*ndo_change_proto_down)(struct net_device *dev, 1278 bool proto_down); 1279 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1280 struct sk_buff *skb); 1281 }; 1282 1283 /** 1284 * enum net_device_priv_flags - &struct net_device priv_flags 1285 * 1286 * These are the &struct net_device, they are only set internally 1287 * by drivers and used in the kernel. These flags are invisible to 1288 * userspace, this means that the order of these flags can change 1289 * during any kernel release. 1290 * 1291 * You should have a pretty good reason to be extending these flags. 1292 * 1293 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1294 * @IFF_EBRIDGE: Ethernet bridging device 1295 * @IFF_BONDING: bonding master or slave 1296 * @IFF_ISATAP: ISATAP interface (RFC4214) 1297 * @IFF_WAN_HDLC: WAN HDLC device 1298 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1299 * release skb->dst 1300 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1301 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1302 * @IFF_MACVLAN_PORT: device used as macvlan port 1303 * @IFF_BRIDGE_PORT: device used as bridge port 1304 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1305 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1306 * @IFF_UNICAST_FLT: Supports unicast filtering 1307 * @IFF_TEAM_PORT: device used as team port 1308 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1309 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1310 * change when it's running 1311 * @IFF_MACVLAN: Macvlan device 1312 * @IFF_L3MDEV_MASTER: device is an L3 master device 1313 * @IFF_NO_QUEUE: device can run without qdisc attached 1314 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1315 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1316 * @IFF_TEAM: device is a team device 1317 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1318 */ 1319 enum netdev_priv_flags { 1320 IFF_802_1Q_VLAN = 1<<0, 1321 IFF_EBRIDGE = 1<<1, 1322 IFF_BONDING = 1<<2, 1323 IFF_ISATAP = 1<<3, 1324 IFF_WAN_HDLC = 1<<4, 1325 IFF_XMIT_DST_RELEASE = 1<<5, 1326 IFF_DONT_BRIDGE = 1<<6, 1327 IFF_DISABLE_NETPOLL = 1<<7, 1328 IFF_MACVLAN_PORT = 1<<8, 1329 IFF_BRIDGE_PORT = 1<<9, 1330 IFF_OVS_DATAPATH = 1<<10, 1331 IFF_TX_SKB_SHARING = 1<<11, 1332 IFF_UNICAST_FLT = 1<<12, 1333 IFF_TEAM_PORT = 1<<13, 1334 IFF_SUPP_NOFCS = 1<<14, 1335 IFF_LIVE_ADDR_CHANGE = 1<<15, 1336 IFF_MACVLAN = 1<<16, 1337 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1338 IFF_IPVLAN_MASTER = 1<<18, 1339 IFF_IPVLAN_SLAVE = 1<<19, 1340 IFF_L3MDEV_MASTER = 1<<20, 1341 IFF_NO_QUEUE = 1<<21, 1342 IFF_OPENVSWITCH = 1<<22, 1343 IFF_L3MDEV_SLAVE = 1<<23, 1344 IFF_TEAM = 1<<24, 1345 IFF_RXFH_CONFIGURED = 1<<25, 1346 }; 1347 1348 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1349 #define IFF_EBRIDGE IFF_EBRIDGE 1350 #define IFF_BONDING IFF_BONDING 1351 #define IFF_ISATAP IFF_ISATAP 1352 #define IFF_WAN_HDLC IFF_WAN_HDLC 1353 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1354 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1355 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1356 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1357 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1358 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1359 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1360 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1361 #define IFF_TEAM_PORT IFF_TEAM_PORT 1362 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1363 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1364 #define IFF_MACVLAN IFF_MACVLAN 1365 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1366 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER 1367 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE 1368 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1369 #define IFF_NO_QUEUE IFF_NO_QUEUE 1370 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1371 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1372 #define IFF_TEAM IFF_TEAM 1373 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1374 1375 /** 1376 * struct net_device - The DEVICE structure. 1377 * Actually, this whole structure is a big mistake. It mixes I/O 1378 * data with strictly "high-level" data, and it has to know about 1379 * almost every data structure used in the INET module. 1380 * 1381 * @name: This is the first field of the "visible" part of this structure 1382 * (i.e. as seen by users in the "Space.c" file). It is the name 1383 * of the interface. 1384 * 1385 * @name_hlist: Device name hash chain, please keep it close to name[] 1386 * @ifalias: SNMP alias 1387 * @mem_end: Shared memory end 1388 * @mem_start: Shared memory start 1389 * @base_addr: Device I/O address 1390 * @irq: Device IRQ number 1391 * 1392 * @carrier_changes: Stats to monitor carrier on<->off transitions 1393 * 1394 * @state: Generic network queuing layer state, see netdev_state_t 1395 * @dev_list: The global list of network devices 1396 * @napi_list: List entry, that is used for polling napi devices 1397 * @unreg_list: List entry, that is used, when we are unregistering the 1398 * device, see the function unregister_netdev 1399 * @close_list: List entry, that is used, when we are closing the device 1400 * 1401 * @adj_list: Directly linked devices, like slaves for bonding 1402 * @all_adj_list: All linked devices, *including* neighbours 1403 * @features: Currently active device features 1404 * @hw_features: User-changeable features 1405 * 1406 * @wanted_features: User-requested features 1407 * @vlan_features: Mask of features inheritable by VLAN devices 1408 * 1409 * @hw_enc_features: Mask of features inherited by encapsulating devices 1410 * This field indicates what encapsulation 1411 * offloads the hardware is capable of doing, 1412 * and drivers will need to set them appropriately. 1413 * 1414 * @mpls_features: Mask of features inheritable by MPLS 1415 * 1416 * @ifindex: interface index 1417 * @group: The group, that the device belongs to 1418 * 1419 * @stats: Statistics struct, which was left as a legacy, use 1420 * rtnl_link_stats64 instead 1421 * 1422 * @rx_dropped: Dropped packets by core network, 1423 * do not use this in drivers 1424 * @tx_dropped: Dropped packets by core network, 1425 * do not use this in drivers 1426 * @rx_nohandler: nohandler dropped packets by core network on 1427 * inactive devices, do not use this in drivers 1428 * 1429 * @wireless_handlers: List of functions to handle Wireless Extensions, 1430 * instead of ioctl, 1431 * see <net/iw_handler.h> for details. 1432 * @wireless_data: Instance data managed by the core of wireless extensions 1433 * 1434 * @netdev_ops: Includes several pointers to callbacks, 1435 * if one wants to override the ndo_*() functions 1436 * @ethtool_ops: Management operations 1437 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1438 * of Layer 2 headers. 1439 * 1440 * @flags: Interface flags (a la BSD) 1441 * @priv_flags: Like 'flags' but invisible to userspace, 1442 * see if.h for the definitions 1443 * @gflags: Global flags ( kept as legacy ) 1444 * @padded: How much padding added by alloc_netdev() 1445 * @operstate: RFC2863 operstate 1446 * @link_mode: Mapping policy to operstate 1447 * @if_port: Selectable AUI, TP, ... 1448 * @dma: DMA channel 1449 * @mtu: Interface MTU value 1450 * @type: Interface hardware type 1451 * @hard_header_len: Hardware header length, which means that this is the 1452 * minimum size of a packet. 1453 * 1454 * @needed_headroom: Extra headroom the hardware may need, but not in all 1455 * cases can this be guaranteed 1456 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1457 * cases can this be guaranteed. Some cases also use 1458 * LL_MAX_HEADER instead to allocate the skb 1459 * 1460 * interface address info: 1461 * 1462 * @perm_addr: Permanent hw address 1463 * @addr_assign_type: Hw address assignment type 1464 * @addr_len: Hardware address length 1465 * @neigh_priv_len; Used in neigh_alloc(), 1466 * initialized only in atm/clip.c 1467 * @dev_id: Used to differentiate devices that share 1468 * the same link layer address 1469 * @dev_port: Used to differentiate devices that share 1470 * the same function 1471 * @addr_list_lock: XXX: need comments on this one 1472 * @uc_promisc: Counter, that indicates, that promiscuous mode 1473 * has been enabled due to the need to listen to 1474 * additional unicast addresses in a device that 1475 * does not implement ndo_set_rx_mode() 1476 * @uc: unicast mac addresses 1477 * @mc: multicast mac addresses 1478 * @dev_addrs: list of device hw addresses 1479 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1480 * @promiscuity: Number of times, the NIC is told to work in 1481 * Promiscuous mode, if it becomes 0 the NIC will 1482 * exit from working in Promiscuous mode 1483 * @allmulti: Counter, enables or disables allmulticast mode 1484 * 1485 * @vlan_info: VLAN info 1486 * @dsa_ptr: dsa specific data 1487 * @tipc_ptr: TIPC specific data 1488 * @atalk_ptr: AppleTalk link 1489 * @ip_ptr: IPv4 specific data 1490 * @dn_ptr: DECnet specific data 1491 * @ip6_ptr: IPv6 specific data 1492 * @ax25_ptr: AX.25 specific data 1493 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1494 * 1495 * @last_rx: Time of last Rx 1496 * @dev_addr: Hw address (before bcast, 1497 * because most packets are unicast) 1498 * 1499 * @_rx: Array of RX queues 1500 * @num_rx_queues: Number of RX queues 1501 * allocated at register_netdev() time 1502 * @real_num_rx_queues: Number of RX queues currently active in device 1503 * 1504 * @rx_handler: handler for received packets 1505 * @rx_handler_data: XXX: need comments on this one 1506 * @ingress_queue: XXX: need comments on this one 1507 * @broadcast: hw bcast address 1508 * 1509 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1510 * indexed by RX queue number. Assigned by driver. 1511 * This must only be set if the ndo_rx_flow_steer 1512 * operation is defined 1513 * @index_hlist: Device index hash chain 1514 * 1515 * @_tx: Array of TX queues 1516 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1517 * @real_num_tx_queues: Number of TX queues currently active in device 1518 * @qdisc: Root qdisc from userspace point of view 1519 * @tx_queue_len: Max frames per queue allowed 1520 * @tx_global_lock: XXX: need comments on this one 1521 * 1522 * @xps_maps: XXX: need comments on this one 1523 * 1524 * @offload_fwd_mark: Offload device fwding mark 1525 * 1526 * @trans_start: Time (in jiffies) of last Tx 1527 * @watchdog_timeo: Represents the timeout that is used by 1528 * the watchdog ( see dev_watchdog() ) 1529 * @watchdog_timer: List of timers 1530 * 1531 * @pcpu_refcnt: Number of references to this device 1532 * @todo_list: Delayed register/unregister 1533 * @link_watch_list: XXX: need comments on this one 1534 * 1535 * @reg_state: Register/unregister state machine 1536 * @dismantle: Device is going to be freed 1537 * @rtnl_link_state: This enum represents the phases of creating 1538 * a new link 1539 * 1540 * @destructor: Called from unregister, 1541 * can be used to call free_netdev 1542 * @npinfo: XXX: need comments on this one 1543 * @nd_net: Network namespace this network device is inside 1544 * 1545 * @ml_priv: Mid-layer private 1546 * @lstats: Loopback statistics 1547 * @tstats: Tunnel statistics 1548 * @dstats: Dummy statistics 1549 * @vstats: Virtual ethernet statistics 1550 * 1551 * @garp_port: GARP 1552 * @mrp_port: MRP 1553 * 1554 * @dev: Class/net/name entry 1555 * @sysfs_groups: Space for optional device, statistics and wireless 1556 * sysfs groups 1557 * 1558 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1559 * @rtnl_link_ops: Rtnl_link_ops 1560 * 1561 * @gso_max_size: Maximum size of generic segmentation offload 1562 * @gso_max_segs: Maximum number of segments that can be passed to the 1563 * NIC for GSO 1564 * @gso_min_segs: Minimum number of segments that can be passed to the 1565 * NIC for GSO 1566 * 1567 * @dcbnl_ops: Data Center Bridging netlink ops 1568 * @num_tc: Number of traffic classes in the net device 1569 * @tc_to_txq: XXX: need comments on this one 1570 * @prio_tc_map XXX: need comments on this one 1571 * 1572 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1573 * 1574 * @priomap: XXX: need comments on this one 1575 * @phydev: Physical device may attach itself 1576 * for hardware timestamping 1577 * 1578 * @qdisc_tx_busylock: XXX: need comments on this one 1579 * 1580 * @proto_down: protocol port state information can be sent to the 1581 * switch driver and used to set the phys state of the 1582 * switch port. 1583 * 1584 * FIXME: cleanup struct net_device such that network protocol info 1585 * moves out. 1586 */ 1587 1588 struct net_device { 1589 char name[IFNAMSIZ]; 1590 struct hlist_node name_hlist; 1591 char *ifalias; 1592 /* 1593 * I/O specific fields 1594 * FIXME: Merge these and struct ifmap into one 1595 */ 1596 unsigned long mem_end; 1597 unsigned long mem_start; 1598 unsigned long base_addr; 1599 int irq; 1600 1601 atomic_t carrier_changes; 1602 1603 /* 1604 * Some hardware also needs these fields (state,dev_list, 1605 * napi_list,unreg_list,close_list) but they are not 1606 * part of the usual set specified in Space.c. 1607 */ 1608 1609 unsigned long state; 1610 1611 struct list_head dev_list; 1612 struct list_head napi_list; 1613 struct list_head unreg_list; 1614 struct list_head close_list; 1615 struct list_head ptype_all; 1616 struct list_head ptype_specific; 1617 1618 struct { 1619 struct list_head upper; 1620 struct list_head lower; 1621 } adj_list; 1622 1623 struct { 1624 struct list_head upper; 1625 struct list_head lower; 1626 } all_adj_list; 1627 1628 netdev_features_t features; 1629 netdev_features_t hw_features; 1630 netdev_features_t wanted_features; 1631 netdev_features_t vlan_features; 1632 netdev_features_t hw_enc_features; 1633 netdev_features_t mpls_features; 1634 1635 int ifindex; 1636 int group; 1637 1638 struct net_device_stats stats; 1639 1640 atomic_long_t rx_dropped; 1641 atomic_long_t tx_dropped; 1642 atomic_long_t rx_nohandler; 1643 1644 #ifdef CONFIG_WIRELESS_EXT 1645 const struct iw_handler_def * wireless_handlers; 1646 struct iw_public_data * wireless_data; 1647 #endif 1648 const struct net_device_ops *netdev_ops; 1649 const struct ethtool_ops *ethtool_ops; 1650 #ifdef CONFIG_NET_SWITCHDEV 1651 const struct switchdev_ops *switchdev_ops; 1652 #endif 1653 #ifdef CONFIG_NET_L3_MASTER_DEV 1654 const struct l3mdev_ops *l3mdev_ops; 1655 #endif 1656 1657 const struct header_ops *header_ops; 1658 1659 unsigned int flags; 1660 unsigned int priv_flags; 1661 1662 unsigned short gflags; 1663 unsigned short padded; 1664 1665 unsigned char operstate; 1666 unsigned char link_mode; 1667 1668 unsigned char if_port; 1669 unsigned char dma; 1670 1671 unsigned int mtu; 1672 unsigned short type; 1673 unsigned short hard_header_len; 1674 1675 unsigned short needed_headroom; 1676 unsigned short needed_tailroom; 1677 1678 /* Interface address info. */ 1679 unsigned char perm_addr[MAX_ADDR_LEN]; 1680 unsigned char addr_assign_type; 1681 unsigned char addr_len; 1682 unsigned short neigh_priv_len; 1683 unsigned short dev_id; 1684 unsigned short dev_port; 1685 spinlock_t addr_list_lock; 1686 unsigned char name_assign_type; 1687 bool uc_promisc; 1688 struct netdev_hw_addr_list uc; 1689 struct netdev_hw_addr_list mc; 1690 struct netdev_hw_addr_list dev_addrs; 1691 1692 #ifdef CONFIG_SYSFS 1693 struct kset *queues_kset; 1694 #endif 1695 unsigned int promiscuity; 1696 unsigned int allmulti; 1697 1698 1699 /* Protocol specific pointers */ 1700 1701 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1702 struct vlan_info __rcu *vlan_info; 1703 #endif 1704 #if IS_ENABLED(CONFIG_NET_DSA) 1705 struct dsa_switch_tree *dsa_ptr; 1706 #endif 1707 #if IS_ENABLED(CONFIG_TIPC) 1708 struct tipc_bearer __rcu *tipc_ptr; 1709 #endif 1710 void *atalk_ptr; 1711 struct in_device __rcu *ip_ptr; 1712 struct dn_dev __rcu *dn_ptr; 1713 struct inet6_dev __rcu *ip6_ptr; 1714 void *ax25_ptr; 1715 struct wireless_dev *ieee80211_ptr; 1716 struct wpan_dev *ieee802154_ptr; 1717 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 1718 struct mpls_dev __rcu *mpls_ptr; 1719 #endif 1720 1721 /* 1722 * Cache lines mostly used on receive path (including eth_type_trans()) 1723 */ 1724 unsigned long last_rx; 1725 1726 /* Interface address info used in eth_type_trans() */ 1727 unsigned char *dev_addr; 1728 1729 1730 #ifdef CONFIG_SYSFS 1731 struct netdev_rx_queue *_rx; 1732 1733 unsigned int num_rx_queues; 1734 unsigned int real_num_rx_queues; 1735 1736 #endif 1737 1738 unsigned long gro_flush_timeout; 1739 rx_handler_func_t __rcu *rx_handler; 1740 void __rcu *rx_handler_data; 1741 1742 #ifdef CONFIG_NET_CLS_ACT 1743 struct tcf_proto __rcu *ingress_cl_list; 1744 #endif 1745 struct netdev_queue __rcu *ingress_queue; 1746 #ifdef CONFIG_NETFILTER_INGRESS 1747 struct list_head nf_hooks_ingress; 1748 #endif 1749 1750 unsigned char broadcast[MAX_ADDR_LEN]; 1751 #ifdef CONFIG_RFS_ACCEL 1752 struct cpu_rmap *rx_cpu_rmap; 1753 #endif 1754 struct hlist_node index_hlist; 1755 1756 /* 1757 * Cache lines mostly used on transmit path 1758 */ 1759 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1760 unsigned int num_tx_queues; 1761 unsigned int real_num_tx_queues; 1762 struct Qdisc *qdisc; 1763 unsigned long tx_queue_len; 1764 spinlock_t tx_global_lock; 1765 int watchdog_timeo; 1766 1767 #ifdef CONFIG_XPS 1768 struct xps_dev_maps __rcu *xps_maps; 1769 #endif 1770 #ifdef CONFIG_NET_CLS_ACT 1771 struct tcf_proto __rcu *egress_cl_list; 1772 #endif 1773 #ifdef CONFIG_NET_SWITCHDEV 1774 u32 offload_fwd_mark; 1775 #endif 1776 1777 /* These may be needed for future network-power-down code. */ 1778 1779 /* 1780 * trans_start here is expensive for high speed devices on SMP, 1781 * please use netdev_queue->trans_start instead. 1782 */ 1783 unsigned long trans_start; 1784 1785 struct timer_list watchdog_timer; 1786 1787 int __percpu *pcpu_refcnt; 1788 struct list_head todo_list; 1789 1790 struct list_head link_watch_list; 1791 1792 enum { NETREG_UNINITIALIZED=0, 1793 NETREG_REGISTERED, /* completed register_netdevice */ 1794 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1795 NETREG_UNREGISTERED, /* completed unregister todo */ 1796 NETREG_RELEASED, /* called free_netdev */ 1797 NETREG_DUMMY, /* dummy device for NAPI poll */ 1798 } reg_state:8; 1799 1800 bool dismantle; 1801 1802 enum { 1803 RTNL_LINK_INITIALIZED, 1804 RTNL_LINK_INITIALIZING, 1805 } rtnl_link_state:16; 1806 1807 void (*destructor)(struct net_device *dev); 1808 1809 #ifdef CONFIG_NETPOLL 1810 struct netpoll_info __rcu *npinfo; 1811 #endif 1812 1813 possible_net_t nd_net; 1814 1815 /* mid-layer private */ 1816 union { 1817 void *ml_priv; 1818 struct pcpu_lstats __percpu *lstats; 1819 struct pcpu_sw_netstats __percpu *tstats; 1820 struct pcpu_dstats __percpu *dstats; 1821 struct pcpu_vstats __percpu *vstats; 1822 }; 1823 1824 struct garp_port __rcu *garp_port; 1825 struct mrp_port __rcu *mrp_port; 1826 1827 struct device dev; 1828 const struct attribute_group *sysfs_groups[4]; 1829 const struct attribute_group *sysfs_rx_queue_group; 1830 1831 const struct rtnl_link_ops *rtnl_link_ops; 1832 1833 /* for setting kernel sock attribute on TCP connection setup */ 1834 #define GSO_MAX_SIZE 65536 1835 unsigned int gso_max_size; 1836 #define GSO_MAX_SEGS 65535 1837 u16 gso_max_segs; 1838 u16 gso_min_segs; 1839 #ifdef CONFIG_DCB 1840 const struct dcbnl_rtnl_ops *dcbnl_ops; 1841 #endif 1842 u8 num_tc; 1843 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1844 u8 prio_tc_map[TC_BITMASK + 1]; 1845 1846 #if IS_ENABLED(CONFIG_FCOE) 1847 unsigned int fcoe_ddp_xid; 1848 #endif 1849 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1850 struct netprio_map __rcu *priomap; 1851 #endif 1852 struct phy_device *phydev; 1853 struct lock_class_key *qdisc_tx_busylock; 1854 bool proto_down; 1855 }; 1856 #define to_net_dev(d) container_of(d, struct net_device, dev) 1857 1858 #define NETDEV_ALIGN 32 1859 1860 static inline 1861 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1862 { 1863 return dev->prio_tc_map[prio & TC_BITMASK]; 1864 } 1865 1866 static inline 1867 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1868 { 1869 if (tc >= dev->num_tc) 1870 return -EINVAL; 1871 1872 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1873 return 0; 1874 } 1875 1876 static inline 1877 void netdev_reset_tc(struct net_device *dev) 1878 { 1879 dev->num_tc = 0; 1880 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 1881 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 1882 } 1883 1884 static inline 1885 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 1886 { 1887 if (tc >= dev->num_tc) 1888 return -EINVAL; 1889 1890 dev->tc_to_txq[tc].count = count; 1891 dev->tc_to_txq[tc].offset = offset; 1892 return 0; 1893 } 1894 1895 static inline 1896 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 1897 { 1898 if (num_tc > TC_MAX_QUEUE) 1899 return -EINVAL; 1900 1901 dev->num_tc = num_tc; 1902 return 0; 1903 } 1904 1905 static inline 1906 int netdev_get_num_tc(struct net_device *dev) 1907 { 1908 return dev->num_tc; 1909 } 1910 1911 static inline 1912 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1913 unsigned int index) 1914 { 1915 return &dev->_tx[index]; 1916 } 1917 1918 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 1919 const struct sk_buff *skb) 1920 { 1921 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 1922 } 1923 1924 static inline void netdev_for_each_tx_queue(struct net_device *dev, 1925 void (*f)(struct net_device *, 1926 struct netdev_queue *, 1927 void *), 1928 void *arg) 1929 { 1930 unsigned int i; 1931 1932 for (i = 0; i < dev->num_tx_queues; i++) 1933 f(dev, &dev->_tx[i], arg); 1934 } 1935 1936 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 1937 struct sk_buff *skb, 1938 void *accel_priv); 1939 1940 /* 1941 * Net namespace inlines 1942 */ 1943 static inline 1944 struct net *dev_net(const struct net_device *dev) 1945 { 1946 return read_pnet(&dev->nd_net); 1947 } 1948 1949 static inline 1950 void dev_net_set(struct net_device *dev, struct net *net) 1951 { 1952 write_pnet(&dev->nd_net, net); 1953 } 1954 1955 static inline bool netdev_uses_dsa(struct net_device *dev) 1956 { 1957 #if IS_ENABLED(CONFIG_NET_DSA) 1958 if (dev->dsa_ptr != NULL) 1959 return dsa_uses_tagged_protocol(dev->dsa_ptr); 1960 #endif 1961 return false; 1962 } 1963 1964 /** 1965 * netdev_priv - access network device private data 1966 * @dev: network device 1967 * 1968 * Get network device private data 1969 */ 1970 static inline void *netdev_priv(const struct net_device *dev) 1971 { 1972 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 1973 } 1974 1975 /* Set the sysfs physical device reference for the network logical device 1976 * if set prior to registration will cause a symlink during initialization. 1977 */ 1978 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 1979 1980 /* Set the sysfs device type for the network logical device to allow 1981 * fine-grained identification of different network device types. For 1982 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc. 1983 */ 1984 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 1985 1986 /* Default NAPI poll() weight 1987 * Device drivers are strongly advised to not use bigger value 1988 */ 1989 #define NAPI_POLL_WEIGHT 64 1990 1991 /** 1992 * netif_napi_add - initialize a napi context 1993 * @dev: network device 1994 * @napi: napi context 1995 * @poll: polling function 1996 * @weight: default weight 1997 * 1998 * netif_napi_add() must be used to initialize a napi context prior to calling 1999 * *any* of the other napi related functions. 2000 */ 2001 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2002 int (*poll)(struct napi_struct *, int), int weight); 2003 2004 /** 2005 * netif_tx_napi_add - initialize a napi context 2006 * @dev: network device 2007 * @napi: napi context 2008 * @poll: polling function 2009 * @weight: default weight 2010 * 2011 * This variant of netif_napi_add() should be used from drivers using NAPI 2012 * to exclusively poll a TX queue. 2013 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2014 */ 2015 static inline void netif_tx_napi_add(struct net_device *dev, 2016 struct napi_struct *napi, 2017 int (*poll)(struct napi_struct *, int), 2018 int weight) 2019 { 2020 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2021 netif_napi_add(dev, napi, poll, weight); 2022 } 2023 2024 /** 2025 * netif_napi_del - remove a napi context 2026 * @napi: napi context 2027 * 2028 * netif_napi_del() removes a napi context from the network device napi list 2029 */ 2030 void netif_napi_del(struct napi_struct *napi); 2031 2032 struct napi_gro_cb { 2033 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2034 void *frag0; 2035 2036 /* Length of frag0. */ 2037 unsigned int frag0_len; 2038 2039 /* This indicates where we are processing relative to skb->data. */ 2040 int data_offset; 2041 2042 /* This is non-zero if the packet cannot be merged with the new skb. */ 2043 u16 flush; 2044 2045 /* Save the IP ID here and check when we get to the transport layer */ 2046 u16 flush_id; 2047 2048 /* Number of segments aggregated. */ 2049 u16 count; 2050 2051 /* Start offset for remote checksum offload */ 2052 u16 gro_remcsum_start; 2053 2054 /* jiffies when first packet was created/queued */ 2055 unsigned long age; 2056 2057 /* Used in ipv6_gro_receive() and foo-over-udp */ 2058 u16 proto; 2059 2060 /* This is non-zero if the packet may be of the same flow. */ 2061 u8 same_flow:1; 2062 2063 /* Used in udp_gro_receive */ 2064 u8 udp_mark:1; 2065 2066 /* GRO checksum is valid */ 2067 u8 csum_valid:1; 2068 2069 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2070 u8 csum_cnt:3; 2071 2072 /* Free the skb? */ 2073 u8 free:2; 2074 #define NAPI_GRO_FREE 1 2075 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2076 2077 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2078 u8 is_ipv6:1; 2079 2080 /* 7 bit hole */ 2081 2082 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2083 __wsum csum; 2084 2085 /* used in skb_gro_receive() slow path */ 2086 struct sk_buff *last; 2087 }; 2088 2089 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2090 2091 struct packet_type { 2092 __be16 type; /* This is really htons(ether_type). */ 2093 struct net_device *dev; /* NULL is wildcarded here */ 2094 int (*func) (struct sk_buff *, 2095 struct net_device *, 2096 struct packet_type *, 2097 struct net_device *); 2098 bool (*id_match)(struct packet_type *ptype, 2099 struct sock *sk); 2100 void *af_packet_priv; 2101 struct list_head list; 2102 }; 2103 2104 struct offload_callbacks { 2105 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2106 netdev_features_t features); 2107 struct sk_buff **(*gro_receive)(struct sk_buff **head, 2108 struct sk_buff *skb); 2109 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2110 }; 2111 2112 struct packet_offload { 2113 __be16 type; /* This is really htons(ether_type). */ 2114 u16 priority; 2115 struct offload_callbacks callbacks; 2116 struct list_head list; 2117 }; 2118 2119 struct udp_offload; 2120 2121 struct udp_offload_callbacks { 2122 struct sk_buff **(*gro_receive)(struct sk_buff **head, 2123 struct sk_buff *skb, 2124 struct udp_offload *uoff); 2125 int (*gro_complete)(struct sk_buff *skb, 2126 int nhoff, 2127 struct udp_offload *uoff); 2128 }; 2129 2130 struct udp_offload { 2131 __be16 port; 2132 u8 ipproto; 2133 struct udp_offload_callbacks callbacks; 2134 }; 2135 2136 /* often modified stats are per cpu, other are shared (netdev->stats) */ 2137 struct pcpu_sw_netstats { 2138 u64 rx_packets; 2139 u64 rx_bytes; 2140 u64 tx_packets; 2141 u64 tx_bytes; 2142 struct u64_stats_sync syncp; 2143 }; 2144 2145 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2146 ({ \ 2147 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2148 if (pcpu_stats) { \ 2149 int __cpu; \ 2150 for_each_possible_cpu(__cpu) { \ 2151 typeof(type) *stat; \ 2152 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2153 u64_stats_init(&stat->syncp); \ 2154 } \ 2155 } \ 2156 pcpu_stats; \ 2157 }) 2158 2159 #define netdev_alloc_pcpu_stats(type) \ 2160 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2161 2162 enum netdev_lag_tx_type { 2163 NETDEV_LAG_TX_TYPE_UNKNOWN, 2164 NETDEV_LAG_TX_TYPE_RANDOM, 2165 NETDEV_LAG_TX_TYPE_BROADCAST, 2166 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2167 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2168 NETDEV_LAG_TX_TYPE_HASH, 2169 }; 2170 2171 struct netdev_lag_upper_info { 2172 enum netdev_lag_tx_type tx_type; 2173 }; 2174 2175 struct netdev_lag_lower_state_info { 2176 u8 link_up : 1, 2177 tx_enabled : 1; 2178 }; 2179 2180 #include <linux/notifier.h> 2181 2182 /* netdevice notifier chain. Please remember to update the rtnetlink 2183 * notification exclusion list in rtnetlink_event() when adding new 2184 * types. 2185 */ 2186 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 2187 #define NETDEV_DOWN 0x0002 2188 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 2189 detected a hardware crash and restarted 2190 - we can use this eg to kick tcp sessions 2191 once done */ 2192 #define NETDEV_CHANGE 0x0004 /* Notify device state change */ 2193 #define NETDEV_REGISTER 0x0005 2194 #define NETDEV_UNREGISTER 0x0006 2195 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */ 2196 #define NETDEV_CHANGEADDR 0x0008 2197 #define NETDEV_GOING_DOWN 0x0009 2198 #define NETDEV_CHANGENAME 0x000A 2199 #define NETDEV_FEAT_CHANGE 0x000B 2200 #define NETDEV_BONDING_FAILOVER 0x000C 2201 #define NETDEV_PRE_UP 0x000D 2202 #define NETDEV_PRE_TYPE_CHANGE 0x000E 2203 #define NETDEV_POST_TYPE_CHANGE 0x000F 2204 #define NETDEV_POST_INIT 0x0010 2205 #define NETDEV_UNREGISTER_FINAL 0x0011 2206 #define NETDEV_RELEASE 0x0012 2207 #define NETDEV_NOTIFY_PEERS 0x0013 2208 #define NETDEV_JOIN 0x0014 2209 #define NETDEV_CHANGEUPPER 0x0015 2210 #define NETDEV_RESEND_IGMP 0x0016 2211 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */ 2212 #define NETDEV_CHANGEINFODATA 0x0018 2213 #define NETDEV_BONDING_INFO 0x0019 2214 #define NETDEV_PRECHANGEUPPER 0x001A 2215 #define NETDEV_CHANGELOWERSTATE 0x001B 2216 2217 int register_netdevice_notifier(struct notifier_block *nb); 2218 int unregister_netdevice_notifier(struct notifier_block *nb); 2219 2220 struct netdev_notifier_info { 2221 struct net_device *dev; 2222 }; 2223 2224 struct netdev_notifier_change_info { 2225 struct netdev_notifier_info info; /* must be first */ 2226 unsigned int flags_changed; 2227 }; 2228 2229 struct netdev_notifier_changeupper_info { 2230 struct netdev_notifier_info info; /* must be first */ 2231 struct net_device *upper_dev; /* new upper dev */ 2232 bool master; /* is upper dev master */ 2233 bool linking; /* is the nofication for link or unlink */ 2234 void *upper_info; /* upper dev info */ 2235 }; 2236 2237 struct netdev_notifier_changelowerstate_info { 2238 struct netdev_notifier_info info; /* must be first */ 2239 void *lower_state_info; /* is lower dev state */ 2240 }; 2241 2242 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2243 struct net_device *dev) 2244 { 2245 info->dev = dev; 2246 } 2247 2248 static inline struct net_device * 2249 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2250 { 2251 return info->dev; 2252 } 2253 2254 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2255 2256 2257 extern rwlock_t dev_base_lock; /* Device list lock */ 2258 2259 #define for_each_netdev(net, d) \ 2260 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2261 #define for_each_netdev_reverse(net, d) \ 2262 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2263 #define for_each_netdev_rcu(net, d) \ 2264 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2265 #define for_each_netdev_safe(net, d, n) \ 2266 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2267 #define for_each_netdev_continue(net, d) \ 2268 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2269 #define for_each_netdev_continue_rcu(net, d) \ 2270 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2271 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2272 for_each_netdev_rcu(&init_net, slave) \ 2273 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2274 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2275 2276 static inline struct net_device *next_net_device(struct net_device *dev) 2277 { 2278 struct list_head *lh; 2279 struct net *net; 2280 2281 net = dev_net(dev); 2282 lh = dev->dev_list.next; 2283 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2284 } 2285 2286 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2287 { 2288 struct list_head *lh; 2289 struct net *net; 2290 2291 net = dev_net(dev); 2292 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2293 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2294 } 2295 2296 static inline struct net_device *first_net_device(struct net *net) 2297 { 2298 return list_empty(&net->dev_base_head) ? NULL : 2299 net_device_entry(net->dev_base_head.next); 2300 } 2301 2302 static inline struct net_device *first_net_device_rcu(struct net *net) 2303 { 2304 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2305 2306 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2307 } 2308 2309 int netdev_boot_setup_check(struct net_device *dev); 2310 unsigned long netdev_boot_base(const char *prefix, int unit); 2311 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2312 const char *hwaddr); 2313 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2314 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2315 void dev_add_pack(struct packet_type *pt); 2316 void dev_remove_pack(struct packet_type *pt); 2317 void __dev_remove_pack(struct packet_type *pt); 2318 void dev_add_offload(struct packet_offload *po); 2319 void dev_remove_offload(struct packet_offload *po); 2320 2321 int dev_get_iflink(const struct net_device *dev); 2322 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2323 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2324 unsigned short mask); 2325 struct net_device *dev_get_by_name(struct net *net, const char *name); 2326 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2327 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2328 int dev_alloc_name(struct net_device *dev, const char *name); 2329 int dev_open(struct net_device *dev); 2330 int dev_close(struct net_device *dev); 2331 int dev_close_many(struct list_head *head, bool unlink); 2332 void dev_disable_lro(struct net_device *dev); 2333 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2334 int dev_queue_xmit(struct sk_buff *skb); 2335 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv); 2336 int register_netdevice(struct net_device *dev); 2337 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2338 void unregister_netdevice_many(struct list_head *head); 2339 static inline void unregister_netdevice(struct net_device *dev) 2340 { 2341 unregister_netdevice_queue(dev, NULL); 2342 } 2343 2344 int netdev_refcnt_read(const struct net_device *dev); 2345 void free_netdev(struct net_device *dev); 2346 void netdev_freemem(struct net_device *dev); 2347 void synchronize_net(void); 2348 int init_dummy_netdev(struct net_device *dev); 2349 2350 DECLARE_PER_CPU(int, xmit_recursion); 2351 static inline int dev_recursion_level(void) 2352 { 2353 return this_cpu_read(xmit_recursion); 2354 } 2355 2356 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2357 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2358 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2359 int netdev_get_name(struct net *net, char *name, int ifindex); 2360 int dev_restart(struct net_device *dev); 2361 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); 2362 2363 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2364 { 2365 return NAPI_GRO_CB(skb)->data_offset; 2366 } 2367 2368 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2369 { 2370 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2371 } 2372 2373 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2374 { 2375 NAPI_GRO_CB(skb)->data_offset += len; 2376 } 2377 2378 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2379 unsigned int offset) 2380 { 2381 return NAPI_GRO_CB(skb)->frag0 + offset; 2382 } 2383 2384 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2385 { 2386 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2387 } 2388 2389 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2390 unsigned int offset) 2391 { 2392 if (!pskb_may_pull(skb, hlen)) 2393 return NULL; 2394 2395 NAPI_GRO_CB(skb)->frag0 = NULL; 2396 NAPI_GRO_CB(skb)->frag0_len = 0; 2397 return skb->data + offset; 2398 } 2399 2400 static inline void *skb_gro_network_header(struct sk_buff *skb) 2401 { 2402 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2403 skb_network_offset(skb); 2404 } 2405 2406 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2407 const void *start, unsigned int len) 2408 { 2409 if (NAPI_GRO_CB(skb)->csum_valid) 2410 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2411 csum_partial(start, len, 0)); 2412 } 2413 2414 /* GRO checksum functions. These are logical equivalents of the normal 2415 * checksum functions (in skbuff.h) except that they operate on the GRO 2416 * offsets and fields in sk_buff. 2417 */ 2418 2419 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2420 2421 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2422 { 2423 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2424 } 2425 2426 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2427 bool zero_okay, 2428 __sum16 check) 2429 { 2430 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2431 skb_checksum_start_offset(skb) < 2432 skb_gro_offset(skb)) && 2433 !skb_at_gro_remcsum_start(skb) && 2434 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2435 (!zero_okay || check)); 2436 } 2437 2438 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2439 __wsum psum) 2440 { 2441 if (NAPI_GRO_CB(skb)->csum_valid && 2442 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2443 return 0; 2444 2445 NAPI_GRO_CB(skb)->csum = psum; 2446 2447 return __skb_gro_checksum_complete(skb); 2448 } 2449 2450 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2451 { 2452 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2453 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2454 NAPI_GRO_CB(skb)->csum_cnt--; 2455 } else { 2456 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2457 * verified a new top level checksum or an encapsulated one 2458 * during GRO. This saves work if we fallback to normal path. 2459 */ 2460 __skb_incr_checksum_unnecessary(skb); 2461 } 2462 } 2463 2464 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2465 compute_pseudo) \ 2466 ({ \ 2467 __sum16 __ret = 0; \ 2468 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2469 __ret = __skb_gro_checksum_validate_complete(skb, \ 2470 compute_pseudo(skb, proto)); \ 2471 if (__ret) \ 2472 __skb_mark_checksum_bad(skb); \ 2473 else \ 2474 skb_gro_incr_csum_unnecessary(skb); \ 2475 __ret; \ 2476 }) 2477 2478 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2479 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2480 2481 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2482 compute_pseudo) \ 2483 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2484 2485 #define skb_gro_checksum_simple_validate(skb) \ 2486 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2487 2488 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2489 { 2490 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2491 !NAPI_GRO_CB(skb)->csum_valid); 2492 } 2493 2494 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2495 __sum16 check, __wsum pseudo) 2496 { 2497 NAPI_GRO_CB(skb)->csum = ~pseudo; 2498 NAPI_GRO_CB(skb)->csum_valid = 1; 2499 } 2500 2501 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2502 do { \ 2503 if (__skb_gro_checksum_convert_check(skb)) \ 2504 __skb_gro_checksum_convert(skb, check, \ 2505 compute_pseudo(skb, proto)); \ 2506 } while (0) 2507 2508 struct gro_remcsum { 2509 int offset; 2510 __wsum delta; 2511 }; 2512 2513 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2514 { 2515 grc->offset = 0; 2516 grc->delta = 0; 2517 } 2518 2519 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2520 unsigned int off, size_t hdrlen, 2521 int start, int offset, 2522 struct gro_remcsum *grc, 2523 bool nopartial) 2524 { 2525 __wsum delta; 2526 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2527 2528 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2529 2530 if (!nopartial) { 2531 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2532 return ptr; 2533 } 2534 2535 ptr = skb_gro_header_fast(skb, off); 2536 if (skb_gro_header_hard(skb, off + plen)) { 2537 ptr = skb_gro_header_slow(skb, off + plen, off); 2538 if (!ptr) 2539 return NULL; 2540 } 2541 2542 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2543 start, offset); 2544 2545 /* Adjust skb->csum since we changed the packet */ 2546 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2547 2548 grc->offset = off + hdrlen + offset; 2549 grc->delta = delta; 2550 2551 return ptr; 2552 } 2553 2554 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2555 struct gro_remcsum *grc) 2556 { 2557 void *ptr; 2558 size_t plen = grc->offset + sizeof(u16); 2559 2560 if (!grc->delta) 2561 return; 2562 2563 ptr = skb_gro_header_fast(skb, grc->offset); 2564 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2565 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2566 if (!ptr) 2567 return; 2568 } 2569 2570 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2571 } 2572 2573 struct skb_csum_offl_spec { 2574 __u16 ipv4_okay:1, 2575 ipv6_okay:1, 2576 encap_okay:1, 2577 ip_options_okay:1, 2578 ext_hdrs_okay:1, 2579 tcp_okay:1, 2580 udp_okay:1, 2581 sctp_okay:1, 2582 vlan_okay:1, 2583 no_encapped_ipv6:1, 2584 no_not_encapped:1; 2585 }; 2586 2587 bool __skb_csum_offload_chk(struct sk_buff *skb, 2588 const struct skb_csum_offl_spec *spec, 2589 bool *csum_encapped, 2590 bool csum_help); 2591 2592 static inline bool skb_csum_offload_chk(struct sk_buff *skb, 2593 const struct skb_csum_offl_spec *spec, 2594 bool *csum_encapped, 2595 bool csum_help) 2596 { 2597 if (skb->ip_summed != CHECKSUM_PARTIAL) 2598 return false; 2599 2600 return __skb_csum_offload_chk(skb, spec, csum_encapped, csum_help); 2601 } 2602 2603 static inline bool skb_csum_offload_chk_help(struct sk_buff *skb, 2604 const struct skb_csum_offl_spec *spec) 2605 { 2606 bool csum_encapped; 2607 2608 return skb_csum_offload_chk(skb, spec, &csum_encapped, true); 2609 } 2610 2611 static inline bool skb_csum_off_chk_help_cmn(struct sk_buff *skb) 2612 { 2613 static const struct skb_csum_offl_spec csum_offl_spec = { 2614 .ipv4_okay = 1, 2615 .ip_options_okay = 1, 2616 .ipv6_okay = 1, 2617 .vlan_okay = 1, 2618 .tcp_okay = 1, 2619 .udp_okay = 1, 2620 }; 2621 2622 return skb_csum_offload_chk_help(skb, &csum_offl_spec); 2623 } 2624 2625 static inline bool skb_csum_off_chk_help_cmn_v4_only(struct sk_buff *skb) 2626 { 2627 static const struct skb_csum_offl_spec csum_offl_spec = { 2628 .ipv4_okay = 1, 2629 .ip_options_okay = 1, 2630 .tcp_okay = 1, 2631 .udp_okay = 1, 2632 .vlan_okay = 1, 2633 }; 2634 2635 return skb_csum_offload_chk_help(skb, &csum_offl_spec); 2636 } 2637 2638 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2639 unsigned short type, 2640 const void *daddr, const void *saddr, 2641 unsigned int len) 2642 { 2643 if (!dev->header_ops || !dev->header_ops->create) 2644 return 0; 2645 2646 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2647 } 2648 2649 static inline int dev_parse_header(const struct sk_buff *skb, 2650 unsigned char *haddr) 2651 { 2652 const struct net_device *dev = skb->dev; 2653 2654 if (!dev->header_ops || !dev->header_ops->parse) 2655 return 0; 2656 return dev->header_ops->parse(skb, haddr); 2657 } 2658 2659 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 2660 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2661 static inline int unregister_gifconf(unsigned int family) 2662 { 2663 return register_gifconf(family, NULL); 2664 } 2665 2666 #ifdef CONFIG_NET_FLOW_LIMIT 2667 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2668 struct sd_flow_limit { 2669 u64 count; 2670 unsigned int num_buckets; 2671 unsigned int history_head; 2672 u16 history[FLOW_LIMIT_HISTORY]; 2673 u8 buckets[]; 2674 }; 2675 2676 extern int netdev_flow_limit_table_len; 2677 #endif /* CONFIG_NET_FLOW_LIMIT */ 2678 2679 /* 2680 * Incoming packets are placed on per-cpu queues 2681 */ 2682 struct softnet_data { 2683 struct list_head poll_list; 2684 struct sk_buff_head process_queue; 2685 2686 /* stats */ 2687 unsigned int processed; 2688 unsigned int time_squeeze; 2689 unsigned int cpu_collision; 2690 unsigned int received_rps; 2691 #ifdef CONFIG_RPS 2692 struct softnet_data *rps_ipi_list; 2693 #endif 2694 #ifdef CONFIG_NET_FLOW_LIMIT 2695 struct sd_flow_limit __rcu *flow_limit; 2696 #endif 2697 struct Qdisc *output_queue; 2698 struct Qdisc **output_queue_tailp; 2699 struct sk_buff *completion_queue; 2700 2701 #ifdef CONFIG_RPS 2702 /* Elements below can be accessed between CPUs for RPS */ 2703 struct call_single_data csd ____cacheline_aligned_in_smp; 2704 struct softnet_data *rps_ipi_next; 2705 unsigned int cpu; 2706 unsigned int input_queue_head; 2707 unsigned int input_queue_tail; 2708 #endif 2709 unsigned int dropped; 2710 struct sk_buff_head input_pkt_queue; 2711 struct napi_struct backlog; 2712 2713 }; 2714 2715 static inline void input_queue_head_incr(struct softnet_data *sd) 2716 { 2717 #ifdef CONFIG_RPS 2718 sd->input_queue_head++; 2719 #endif 2720 } 2721 2722 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 2723 unsigned int *qtail) 2724 { 2725 #ifdef CONFIG_RPS 2726 *qtail = ++sd->input_queue_tail; 2727 #endif 2728 } 2729 2730 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 2731 2732 void __netif_schedule(struct Qdisc *q); 2733 void netif_schedule_queue(struct netdev_queue *txq); 2734 2735 static inline void netif_tx_schedule_all(struct net_device *dev) 2736 { 2737 unsigned int i; 2738 2739 for (i = 0; i < dev->num_tx_queues; i++) 2740 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 2741 } 2742 2743 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 2744 { 2745 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2746 } 2747 2748 /** 2749 * netif_start_queue - allow transmit 2750 * @dev: network device 2751 * 2752 * Allow upper layers to call the device hard_start_xmit routine. 2753 */ 2754 static inline void netif_start_queue(struct net_device *dev) 2755 { 2756 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 2757 } 2758 2759 static inline void netif_tx_start_all_queues(struct net_device *dev) 2760 { 2761 unsigned int i; 2762 2763 for (i = 0; i < dev->num_tx_queues; i++) { 2764 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2765 netif_tx_start_queue(txq); 2766 } 2767 } 2768 2769 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 2770 2771 /** 2772 * netif_wake_queue - restart transmit 2773 * @dev: network device 2774 * 2775 * Allow upper layers to call the device hard_start_xmit routine. 2776 * Used for flow control when transmit resources are available. 2777 */ 2778 static inline void netif_wake_queue(struct net_device *dev) 2779 { 2780 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 2781 } 2782 2783 static inline void netif_tx_wake_all_queues(struct net_device *dev) 2784 { 2785 unsigned int i; 2786 2787 for (i = 0; i < dev->num_tx_queues; i++) { 2788 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2789 netif_tx_wake_queue(txq); 2790 } 2791 } 2792 2793 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 2794 { 2795 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2796 } 2797 2798 /** 2799 * netif_stop_queue - stop transmitted packets 2800 * @dev: network device 2801 * 2802 * Stop upper layers calling the device hard_start_xmit routine. 2803 * Used for flow control when transmit resources are unavailable. 2804 */ 2805 static inline void netif_stop_queue(struct net_device *dev) 2806 { 2807 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 2808 } 2809 2810 void netif_tx_stop_all_queues(struct net_device *dev); 2811 2812 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 2813 { 2814 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2815 } 2816 2817 /** 2818 * netif_queue_stopped - test if transmit queue is flowblocked 2819 * @dev: network device 2820 * 2821 * Test if transmit queue on device is currently unable to send. 2822 */ 2823 static inline bool netif_queue_stopped(const struct net_device *dev) 2824 { 2825 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 2826 } 2827 2828 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 2829 { 2830 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 2831 } 2832 2833 static inline bool 2834 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 2835 { 2836 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 2837 } 2838 2839 static inline bool 2840 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 2841 { 2842 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 2843 } 2844 2845 /** 2846 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 2847 * @dev_queue: pointer to transmit queue 2848 * 2849 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 2850 * to give appropriate hint to the cpu. 2851 */ 2852 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 2853 { 2854 #ifdef CONFIG_BQL 2855 prefetchw(&dev_queue->dql.num_queued); 2856 #endif 2857 } 2858 2859 /** 2860 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 2861 * @dev_queue: pointer to transmit queue 2862 * 2863 * BQL enabled drivers might use this helper in their TX completion path, 2864 * to give appropriate hint to the cpu. 2865 */ 2866 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 2867 { 2868 #ifdef CONFIG_BQL 2869 prefetchw(&dev_queue->dql.limit); 2870 #endif 2871 } 2872 2873 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 2874 unsigned int bytes) 2875 { 2876 #ifdef CONFIG_BQL 2877 dql_queued(&dev_queue->dql, bytes); 2878 2879 if (likely(dql_avail(&dev_queue->dql) >= 0)) 2880 return; 2881 2882 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2883 2884 /* 2885 * The XOFF flag must be set before checking the dql_avail below, 2886 * because in netdev_tx_completed_queue we update the dql_completed 2887 * before checking the XOFF flag. 2888 */ 2889 smp_mb(); 2890 2891 /* check again in case another CPU has just made room avail */ 2892 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 2893 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2894 #endif 2895 } 2896 2897 /** 2898 * netdev_sent_queue - report the number of bytes queued to hardware 2899 * @dev: network device 2900 * @bytes: number of bytes queued to the hardware device queue 2901 * 2902 * Report the number of bytes queued for sending/completion to the network 2903 * device hardware queue. @bytes should be a good approximation and should 2904 * exactly match netdev_completed_queue() @bytes 2905 */ 2906 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 2907 { 2908 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 2909 } 2910 2911 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 2912 unsigned int pkts, unsigned int bytes) 2913 { 2914 #ifdef CONFIG_BQL 2915 if (unlikely(!bytes)) 2916 return; 2917 2918 dql_completed(&dev_queue->dql, bytes); 2919 2920 /* 2921 * Without the memory barrier there is a small possiblity that 2922 * netdev_tx_sent_queue will miss the update and cause the queue to 2923 * be stopped forever 2924 */ 2925 smp_mb(); 2926 2927 if (dql_avail(&dev_queue->dql) < 0) 2928 return; 2929 2930 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 2931 netif_schedule_queue(dev_queue); 2932 #endif 2933 } 2934 2935 /** 2936 * netdev_completed_queue - report bytes and packets completed by device 2937 * @dev: network device 2938 * @pkts: actual number of packets sent over the medium 2939 * @bytes: actual number of bytes sent over the medium 2940 * 2941 * Report the number of bytes and packets transmitted by the network device 2942 * hardware queue over the physical medium, @bytes must exactly match the 2943 * @bytes amount passed to netdev_sent_queue() 2944 */ 2945 static inline void netdev_completed_queue(struct net_device *dev, 2946 unsigned int pkts, unsigned int bytes) 2947 { 2948 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 2949 } 2950 2951 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 2952 { 2953 #ifdef CONFIG_BQL 2954 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 2955 dql_reset(&q->dql); 2956 #endif 2957 } 2958 2959 /** 2960 * netdev_reset_queue - reset the packets and bytes count of a network device 2961 * @dev_queue: network device 2962 * 2963 * Reset the bytes and packet count of a network device and clear the 2964 * software flow control OFF bit for this network device 2965 */ 2966 static inline void netdev_reset_queue(struct net_device *dev_queue) 2967 { 2968 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 2969 } 2970 2971 /** 2972 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 2973 * @dev: network device 2974 * @queue_index: given tx queue index 2975 * 2976 * Returns 0 if given tx queue index >= number of device tx queues, 2977 * otherwise returns the originally passed tx queue index. 2978 */ 2979 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 2980 { 2981 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2982 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 2983 dev->name, queue_index, 2984 dev->real_num_tx_queues); 2985 return 0; 2986 } 2987 2988 return queue_index; 2989 } 2990 2991 /** 2992 * netif_running - test if up 2993 * @dev: network device 2994 * 2995 * Test if the device has been brought up. 2996 */ 2997 static inline bool netif_running(const struct net_device *dev) 2998 { 2999 return test_bit(__LINK_STATE_START, &dev->state); 3000 } 3001 3002 /* 3003 * Routines to manage the subqueues on a device. We only need start 3004 * stop, and a check if it's stopped. All other device management is 3005 * done at the overall netdevice level. 3006 * Also test the device if we're multiqueue. 3007 */ 3008 3009 /** 3010 * netif_start_subqueue - allow sending packets on subqueue 3011 * @dev: network device 3012 * @queue_index: sub queue index 3013 * 3014 * Start individual transmit queue of a device with multiple transmit queues. 3015 */ 3016 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3017 { 3018 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3019 3020 netif_tx_start_queue(txq); 3021 } 3022 3023 /** 3024 * netif_stop_subqueue - stop sending packets on subqueue 3025 * @dev: network device 3026 * @queue_index: sub queue index 3027 * 3028 * Stop individual transmit queue of a device with multiple transmit queues. 3029 */ 3030 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3031 { 3032 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3033 netif_tx_stop_queue(txq); 3034 } 3035 3036 /** 3037 * netif_subqueue_stopped - test status of subqueue 3038 * @dev: network device 3039 * @queue_index: sub queue index 3040 * 3041 * Check individual transmit queue of a device with multiple transmit queues. 3042 */ 3043 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3044 u16 queue_index) 3045 { 3046 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3047 3048 return netif_tx_queue_stopped(txq); 3049 } 3050 3051 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3052 struct sk_buff *skb) 3053 { 3054 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3055 } 3056 3057 void netif_wake_subqueue(struct net_device *dev, u16 queue_index); 3058 3059 #ifdef CONFIG_XPS 3060 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3061 u16 index); 3062 #else 3063 static inline int netif_set_xps_queue(struct net_device *dev, 3064 const struct cpumask *mask, 3065 u16 index) 3066 { 3067 return 0; 3068 } 3069 #endif 3070 3071 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 3072 unsigned int num_tx_queues); 3073 3074 /* 3075 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 3076 * as a distribution range limit for the returned value. 3077 */ 3078 static inline u16 skb_tx_hash(const struct net_device *dev, 3079 struct sk_buff *skb) 3080 { 3081 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 3082 } 3083 3084 /** 3085 * netif_is_multiqueue - test if device has multiple transmit queues 3086 * @dev: network device 3087 * 3088 * Check if device has multiple transmit queues 3089 */ 3090 static inline bool netif_is_multiqueue(const struct net_device *dev) 3091 { 3092 return dev->num_tx_queues > 1; 3093 } 3094 3095 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3096 3097 #ifdef CONFIG_SYSFS 3098 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3099 #else 3100 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3101 unsigned int rxq) 3102 { 3103 return 0; 3104 } 3105 #endif 3106 3107 #ifdef CONFIG_SYSFS 3108 static inline unsigned int get_netdev_rx_queue_index( 3109 struct netdev_rx_queue *queue) 3110 { 3111 struct net_device *dev = queue->dev; 3112 int index = queue - dev->_rx; 3113 3114 BUG_ON(index >= dev->num_rx_queues); 3115 return index; 3116 } 3117 #endif 3118 3119 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3120 int netif_get_num_default_rss_queues(void); 3121 3122 enum skb_free_reason { 3123 SKB_REASON_CONSUMED, 3124 SKB_REASON_DROPPED, 3125 }; 3126 3127 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3128 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3129 3130 /* 3131 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3132 * interrupt context or with hardware interrupts being disabled. 3133 * (in_irq() || irqs_disabled()) 3134 * 3135 * We provide four helpers that can be used in following contexts : 3136 * 3137 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3138 * replacing kfree_skb(skb) 3139 * 3140 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3141 * Typically used in place of consume_skb(skb) in TX completion path 3142 * 3143 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3144 * replacing kfree_skb(skb) 3145 * 3146 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3147 * and consumed a packet. Used in place of consume_skb(skb) 3148 */ 3149 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3150 { 3151 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3152 } 3153 3154 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3155 { 3156 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3157 } 3158 3159 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3160 { 3161 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3162 } 3163 3164 static inline void dev_consume_skb_any(struct sk_buff *skb) 3165 { 3166 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3167 } 3168 3169 int netif_rx(struct sk_buff *skb); 3170 int netif_rx_ni(struct sk_buff *skb); 3171 int netif_receive_skb(struct sk_buff *skb); 3172 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3173 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3174 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3175 gro_result_t napi_gro_frags(struct napi_struct *napi); 3176 struct packet_offload *gro_find_receive_by_type(__be16 type); 3177 struct packet_offload *gro_find_complete_by_type(__be16 type); 3178 3179 static inline void napi_free_frags(struct napi_struct *napi) 3180 { 3181 kfree_skb(napi->skb); 3182 napi->skb = NULL; 3183 } 3184 3185 int netdev_rx_handler_register(struct net_device *dev, 3186 rx_handler_func_t *rx_handler, 3187 void *rx_handler_data); 3188 void netdev_rx_handler_unregister(struct net_device *dev); 3189 3190 bool dev_valid_name(const char *name); 3191 int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 3192 int dev_ethtool(struct net *net, struct ifreq *); 3193 unsigned int dev_get_flags(const struct net_device *); 3194 int __dev_change_flags(struct net_device *, unsigned int flags); 3195 int dev_change_flags(struct net_device *, unsigned int); 3196 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3197 unsigned int gchanges); 3198 int dev_change_name(struct net_device *, const char *); 3199 int dev_set_alias(struct net_device *, const char *, size_t); 3200 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3201 int dev_set_mtu(struct net_device *, int); 3202 void dev_set_group(struct net_device *, int); 3203 int dev_set_mac_address(struct net_device *, struct sockaddr *); 3204 int dev_change_carrier(struct net_device *, bool new_carrier); 3205 int dev_get_phys_port_id(struct net_device *dev, 3206 struct netdev_phys_item_id *ppid); 3207 int dev_get_phys_port_name(struct net_device *dev, 3208 char *name, size_t len); 3209 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3210 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev); 3211 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3212 struct netdev_queue *txq, int *ret); 3213 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3214 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3215 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb); 3216 3217 extern int netdev_budget; 3218 3219 /* Called by rtnetlink.c:rtnl_unlock() */ 3220 void netdev_run_todo(void); 3221 3222 /** 3223 * dev_put - release reference to device 3224 * @dev: network device 3225 * 3226 * Release reference to device to allow it to be freed. 3227 */ 3228 static inline void dev_put(struct net_device *dev) 3229 { 3230 this_cpu_dec(*dev->pcpu_refcnt); 3231 } 3232 3233 /** 3234 * dev_hold - get reference to device 3235 * @dev: network device 3236 * 3237 * Hold reference to device to keep it from being freed. 3238 */ 3239 static inline void dev_hold(struct net_device *dev) 3240 { 3241 this_cpu_inc(*dev->pcpu_refcnt); 3242 } 3243 3244 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3245 * and _off may be called from IRQ context, but it is caller 3246 * who is responsible for serialization of these calls. 3247 * 3248 * The name carrier is inappropriate, these functions should really be 3249 * called netif_lowerlayer_*() because they represent the state of any 3250 * kind of lower layer not just hardware media. 3251 */ 3252 3253 void linkwatch_init_dev(struct net_device *dev); 3254 void linkwatch_fire_event(struct net_device *dev); 3255 void linkwatch_forget_dev(struct net_device *dev); 3256 3257 /** 3258 * netif_carrier_ok - test if carrier present 3259 * @dev: network device 3260 * 3261 * Check if carrier is present on device 3262 */ 3263 static inline bool netif_carrier_ok(const struct net_device *dev) 3264 { 3265 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3266 } 3267 3268 unsigned long dev_trans_start(struct net_device *dev); 3269 3270 void __netdev_watchdog_up(struct net_device *dev); 3271 3272 void netif_carrier_on(struct net_device *dev); 3273 3274 void netif_carrier_off(struct net_device *dev); 3275 3276 /** 3277 * netif_dormant_on - mark device as dormant. 3278 * @dev: network device 3279 * 3280 * Mark device as dormant (as per RFC2863). 3281 * 3282 * The dormant state indicates that the relevant interface is not 3283 * actually in a condition to pass packets (i.e., it is not 'up') but is 3284 * in a "pending" state, waiting for some external event. For "on- 3285 * demand" interfaces, this new state identifies the situation where the 3286 * interface is waiting for events to place it in the up state. 3287 * 3288 */ 3289 static inline void netif_dormant_on(struct net_device *dev) 3290 { 3291 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3292 linkwatch_fire_event(dev); 3293 } 3294 3295 /** 3296 * netif_dormant_off - set device as not dormant. 3297 * @dev: network device 3298 * 3299 * Device is not in dormant state. 3300 */ 3301 static inline void netif_dormant_off(struct net_device *dev) 3302 { 3303 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3304 linkwatch_fire_event(dev); 3305 } 3306 3307 /** 3308 * netif_dormant - test if carrier present 3309 * @dev: network device 3310 * 3311 * Check if carrier is present on device 3312 */ 3313 static inline bool netif_dormant(const struct net_device *dev) 3314 { 3315 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3316 } 3317 3318 3319 /** 3320 * netif_oper_up - test if device is operational 3321 * @dev: network device 3322 * 3323 * Check if carrier is operational 3324 */ 3325 static inline bool netif_oper_up(const struct net_device *dev) 3326 { 3327 return (dev->operstate == IF_OPER_UP || 3328 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3329 } 3330 3331 /** 3332 * netif_device_present - is device available or removed 3333 * @dev: network device 3334 * 3335 * Check if device has not been removed from system. 3336 */ 3337 static inline bool netif_device_present(struct net_device *dev) 3338 { 3339 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3340 } 3341 3342 void netif_device_detach(struct net_device *dev); 3343 3344 void netif_device_attach(struct net_device *dev); 3345 3346 /* 3347 * Network interface message level settings 3348 */ 3349 3350 enum { 3351 NETIF_MSG_DRV = 0x0001, 3352 NETIF_MSG_PROBE = 0x0002, 3353 NETIF_MSG_LINK = 0x0004, 3354 NETIF_MSG_TIMER = 0x0008, 3355 NETIF_MSG_IFDOWN = 0x0010, 3356 NETIF_MSG_IFUP = 0x0020, 3357 NETIF_MSG_RX_ERR = 0x0040, 3358 NETIF_MSG_TX_ERR = 0x0080, 3359 NETIF_MSG_TX_QUEUED = 0x0100, 3360 NETIF_MSG_INTR = 0x0200, 3361 NETIF_MSG_TX_DONE = 0x0400, 3362 NETIF_MSG_RX_STATUS = 0x0800, 3363 NETIF_MSG_PKTDATA = 0x1000, 3364 NETIF_MSG_HW = 0x2000, 3365 NETIF_MSG_WOL = 0x4000, 3366 }; 3367 3368 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3369 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3370 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3371 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3372 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3373 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3374 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3375 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3376 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3377 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3378 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3379 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3380 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3381 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3382 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3383 3384 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3385 { 3386 /* use default */ 3387 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3388 return default_msg_enable_bits; 3389 if (debug_value == 0) /* no output */ 3390 return 0; 3391 /* set low N bits */ 3392 return (1 << debug_value) - 1; 3393 } 3394 3395 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3396 { 3397 spin_lock(&txq->_xmit_lock); 3398 txq->xmit_lock_owner = cpu; 3399 } 3400 3401 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3402 { 3403 spin_lock_bh(&txq->_xmit_lock); 3404 txq->xmit_lock_owner = smp_processor_id(); 3405 } 3406 3407 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3408 { 3409 bool ok = spin_trylock(&txq->_xmit_lock); 3410 if (likely(ok)) 3411 txq->xmit_lock_owner = smp_processor_id(); 3412 return ok; 3413 } 3414 3415 static inline void __netif_tx_unlock(struct netdev_queue *txq) 3416 { 3417 txq->xmit_lock_owner = -1; 3418 spin_unlock(&txq->_xmit_lock); 3419 } 3420 3421 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3422 { 3423 txq->xmit_lock_owner = -1; 3424 spin_unlock_bh(&txq->_xmit_lock); 3425 } 3426 3427 static inline void txq_trans_update(struct netdev_queue *txq) 3428 { 3429 if (txq->xmit_lock_owner != -1) 3430 txq->trans_start = jiffies; 3431 } 3432 3433 /** 3434 * netif_tx_lock - grab network device transmit lock 3435 * @dev: network device 3436 * 3437 * Get network device transmit lock 3438 */ 3439 static inline void netif_tx_lock(struct net_device *dev) 3440 { 3441 unsigned int i; 3442 int cpu; 3443 3444 spin_lock(&dev->tx_global_lock); 3445 cpu = smp_processor_id(); 3446 for (i = 0; i < dev->num_tx_queues; i++) { 3447 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3448 3449 /* We are the only thread of execution doing a 3450 * freeze, but we have to grab the _xmit_lock in 3451 * order to synchronize with threads which are in 3452 * the ->hard_start_xmit() handler and already 3453 * checked the frozen bit. 3454 */ 3455 __netif_tx_lock(txq, cpu); 3456 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3457 __netif_tx_unlock(txq); 3458 } 3459 } 3460 3461 static inline void netif_tx_lock_bh(struct net_device *dev) 3462 { 3463 local_bh_disable(); 3464 netif_tx_lock(dev); 3465 } 3466 3467 static inline void netif_tx_unlock(struct net_device *dev) 3468 { 3469 unsigned int i; 3470 3471 for (i = 0; i < dev->num_tx_queues; i++) { 3472 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3473 3474 /* No need to grab the _xmit_lock here. If the 3475 * queue is not stopped for another reason, we 3476 * force a schedule. 3477 */ 3478 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3479 netif_schedule_queue(txq); 3480 } 3481 spin_unlock(&dev->tx_global_lock); 3482 } 3483 3484 static inline void netif_tx_unlock_bh(struct net_device *dev) 3485 { 3486 netif_tx_unlock(dev); 3487 local_bh_enable(); 3488 } 3489 3490 #define HARD_TX_LOCK(dev, txq, cpu) { \ 3491 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3492 __netif_tx_lock(txq, cpu); \ 3493 } \ 3494 } 3495 3496 #define HARD_TX_TRYLOCK(dev, txq) \ 3497 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3498 __netif_tx_trylock(txq) : \ 3499 true ) 3500 3501 #define HARD_TX_UNLOCK(dev, txq) { \ 3502 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3503 __netif_tx_unlock(txq); \ 3504 } \ 3505 } 3506 3507 static inline void netif_tx_disable(struct net_device *dev) 3508 { 3509 unsigned int i; 3510 int cpu; 3511 3512 local_bh_disable(); 3513 cpu = smp_processor_id(); 3514 for (i = 0; i < dev->num_tx_queues; i++) { 3515 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3516 3517 __netif_tx_lock(txq, cpu); 3518 netif_tx_stop_queue(txq); 3519 __netif_tx_unlock(txq); 3520 } 3521 local_bh_enable(); 3522 } 3523 3524 static inline void netif_addr_lock(struct net_device *dev) 3525 { 3526 spin_lock(&dev->addr_list_lock); 3527 } 3528 3529 static inline void netif_addr_lock_nested(struct net_device *dev) 3530 { 3531 int subclass = SINGLE_DEPTH_NESTING; 3532 3533 if (dev->netdev_ops->ndo_get_lock_subclass) 3534 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 3535 3536 spin_lock_nested(&dev->addr_list_lock, subclass); 3537 } 3538 3539 static inline void netif_addr_lock_bh(struct net_device *dev) 3540 { 3541 spin_lock_bh(&dev->addr_list_lock); 3542 } 3543 3544 static inline void netif_addr_unlock(struct net_device *dev) 3545 { 3546 spin_unlock(&dev->addr_list_lock); 3547 } 3548 3549 static inline void netif_addr_unlock_bh(struct net_device *dev) 3550 { 3551 spin_unlock_bh(&dev->addr_list_lock); 3552 } 3553 3554 /* 3555 * dev_addrs walker. Should be used only for read access. Call with 3556 * rcu_read_lock held. 3557 */ 3558 #define for_each_dev_addr(dev, ha) \ 3559 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 3560 3561 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 3562 3563 void ether_setup(struct net_device *dev); 3564 3565 /* Support for loadable net-drivers */ 3566 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 3567 unsigned char name_assign_type, 3568 void (*setup)(struct net_device *), 3569 unsigned int txqs, unsigned int rxqs); 3570 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 3571 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 3572 3573 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 3574 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 3575 count) 3576 3577 int register_netdev(struct net_device *dev); 3578 void unregister_netdev(struct net_device *dev); 3579 3580 /* General hardware address lists handling functions */ 3581 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3582 struct netdev_hw_addr_list *from_list, int addr_len); 3583 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3584 struct netdev_hw_addr_list *from_list, int addr_len); 3585 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 3586 struct net_device *dev, 3587 int (*sync)(struct net_device *, const unsigned char *), 3588 int (*unsync)(struct net_device *, 3589 const unsigned char *)); 3590 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 3591 struct net_device *dev, 3592 int (*unsync)(struct net_device *, 3593 const unsigned char *)); 3594 void __hw_addr_init(struct netdev_hw_addr_list *list); 3595 3596 /* Functions used for device addresses handling */ 3597 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 3598 unsigned char addr_type); 3599 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 3600 unsigned char addr_type); 3601 void dev_addr_flush(struct net_device *dev); 3602 int dev_addr_init(struct net_device *dev); 3603 3604 /* Functions used for unicast addresses handling */ 3605 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 3606 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 3607 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 3608 int dev_uc_sync(struct net_device *to, struct net_device *from); 3609 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 3610 void dev_uc_unsync(struct net_device *to, struct net_device *from); 3611 void dev_uc_flush(struct net_device *dev); 3612 void dev_uc_init(struct net_device *dev); 3613 3614 /** 3615 * __dev_uc_sync - Synchonize device's unicast list 3616 * @dev: device to sync 3617 * @sync: function to call if address should be added 3618 * @unsync: function to call if address should be removed 3619 * 3620 * Add newly added addresses to the interface, and release 3621 * addresses that have been deleted. 3622 **/ 3623 static inline int __dev_uc_sync(struct net_device *dev, 3624 int (*sync)(struct net_device *, 3625 const unsigned char *), 3626 int (*unsync)(struct net_device *, 3627 const unsigned char *)) 3628 { 3629 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 3630 } 3631 3632 /** 3633 * __dev_uc_unsync - Remove synchronized addresses from device 3634 * @dev: device to sync 3635 * @unsync: function to call if address should be removed 3636 * 3637 * Remove all addresses that were added to the device by dev_uc_sync(). 3638 **/ 3639 static inline void __dev_uc_unsync(struct net_device *dev, 3640 int (*unsync)(struct net_device *, 3641 const unsigned char *)) 3642 { 3643 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 3644 } 3645 3646 /* Functions used for multicast addresses handling */ 3647 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 3648 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 3649 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 3650 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 3651 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 3652 int dev_mc_sync(struct net_device *to, struct net_device *from); 3653 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 3654 void dev_mc_unsync(struct net_device *to, struct net_device *from); 3655 void dev_mc_flush(struct net_device *dev); 3656 void dev_mc_init(struct net_device *dev); 3657 3658 /** 3659 * __dev_mc_sync - Synchonize device's multicast list 3660 * @dev: device to sync 3661 * @sync: function to call if address should be added 3662 * @unsync: function to call if address should be removed 3663 * 3664 * Add newly added addresses to the interface, and release 3665 * addresses that have been deleted. 3666 **/ 3667 static inline int __dev_mc_sync(struct net_device *dev, 3668 int (*sync)(struct net_device *, 3669 const unsigned char *), 3670 int (*unsync)(struct net_device *, 3671 const unsigned char *)) 3672 { 3673 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 3674 } 3675 3676 /** 3677 * __dev_mc_unsync - Remove synchronized addresses from device 3678 * @dev: device to sync 3679 * @unsync: function to call if address should be removed 3680 * 3681 * Remove all addresses that were added to the device by dev_mc_sync(). 3682 **/ 3683 static inline void __dev_mc_unsync(struct net_device *dev, 3684 int (*unsync)(struct net_device *, 3685 const unsigned char *)) 3686 { 3687 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 3688 } 3689 3690 /* Functions used for secondary unicast and multicast support */ 3691 void dev_set_rx_mode(struct net_device *dev); 3692 void __dev_set_rx_mode(struct net_device *dev); 3693 int dev_set_promiscuity(struct net_device *dev, int inc); 3694 int dev_set_allmulti(struct net_device *dev, int inc); 3695 void netdev_state_change(struct net_device *dev); 3696 void netdev_notify_peers(struct net_device *dev); 3697 void netdev_features_change(struct net_device *dev); 3698 /* Load a device via the kmod */ 3699 void dev_load(struct net *net, const char *name); 3700 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 3701 struct rtnl_link_stats64 *storage); 3702 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 3703 const struct net_device_stats *netdev_stats); 3704 3705 extern int netdev_max_backlog; 3706 extern int netdev_tstamp_prequeue; 3707 extern int weight_p; 3708 extern int bpf_jit_enable; 3709 3710 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 3711 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 3712 struct list_head **iter); 3713 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 3714 struct list_head **iter); 3715 3716 /* iterate through upper list, must be called under RCU read lock */ 3717 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 3718 for (iter = &(dev)->adj_list.upper, \ 3719 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 3720 updev; \ 3721 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 3722 3723 /* iterate through upper list, must be called under RCU read lock */ 3724 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \ 3725 for (iter = &(dev)->all_adj_list.upper, \ 3726 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \ 3727 updev; \ 3728 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter))) 3729 3730 void *netdev_lower_get_next_private(struct net_device *dev, 3731 struct list_head **iter); 3732 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 3733 struct list_head **iter); 3734 3735 #define netdev_for_each_lower_private(dev, priv, iter) \ 3736 for (iter = (dev)->adj_list.lower.next, \ 3737 priv = netdev_lower_get_next_private(dev, &(iter)); \ 3738 priv; \ 3739 priv = netdev_lower_get_next_private(dev, &(iter))) 3740 3741 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 3742 for (iter = &(dev)->adj_list.lower, \ 3743 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 3744 priv; \ 3745 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 3746 3747 void *netdev_lower_get_next(struct net_device *dev, 3748 struct list_head **iter); 3749 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 3750 for (iter = &(dev)->adj_list.lower, \ 3751 ldev = netdev_lower_get_next(dev, &(iter)); \ 3752 ldev; \ 3753 ldev = netdev_lower_get_next(dev, &(iter))) 3754 3755 void *netdev_adjacent_get_private(struct list_head *adj_list); 3756 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 3757 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 3758 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 3759 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev); 3760 int netdev_master_upper_dev_link(struct net_device *dev, 3761 struct net_device *upper_dev, 3762 void *upper_priv, void *upper_info); 3763 void netdev_upper_dev_unlink(struct net_device *dev, 3764 struct net_device *upper_dev); 3765 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 3766 void *netdev_lower_dev_get_private(struct net_device *dev, 3767 struct net_device *lower_dev); 3768 void netdev_lower_state_changed(struct net_device *lower_dev, 3769 void *lower_state_info); 3770 3771 /* RSS keys are 40 or 52 bytes long */ 3772 #define NETDEV_RSS_KEY_LEN 52 3773 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 3774 void netdev_rss_key_fill(void *buffer, size_t len); 3775 3776 int dev_get_nest_level(struct net_device *dev, 3777 bool (*type_check)(const struct net_device *dev)); 3778 int skb_checksum_help(struct sk_buff *skb); 3779 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3780 netdev_features_t features, bool tx_path); 3781 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3782 netdev_features_t features); 3783 3784 struct netdev_bonding_info { 3785 ifslave slave; 3786 ifbond master; 3787 }; 3788 3789 struct netdev_notifier_bonding_info { 3790 struct netdev_notifier_info info; /* must be first */ 3791 struct netdev_bonding_info bonding_info; 3792 }; 3793 3794 void netdev_bonding_info_change(struct net_device *dev, 3795 struct netdev_bonding_info *bonding_info); 3796 3797 static inline 3798 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 3799 { 3800 return __skb_gso_segment(skb, features, true); 3801 } 3802 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 3803 3804 static inline bool can_checksum_protocol(netdev_features_t features, 3805 __be16 protocol) 3806 { 3807 if (protocol == htons(ETH_P_FCOE)) 3808 return !!(features & NETIF_F_FCOE_CRC); 3809 3810 /* Assume this is an IP checksum (not SCTP CRC) */ 3811 3812 if (features & NETIF_F_HW_CSUM) { 3813 /* Can checksum everything */ 3814 return true; 3815 } 3816 3817 switch (protocol) { 3818 case htons(ETH_P_IP): 3819 return !!(features & NETIF_F_IP_CSUM); 3820 case htons(ETH_P_IPV6): 3821 return !!(features & NETIF_F_IPV6_CSUM); 3822 default: 3823 return false; 3824 } 3825 } 3826 3827 /* Map an ethertype into IP protocol if possible */ 3828 static inline int eproto_to_ipproto(int eproto) 3829 { 3830 switch (eproto) { 3831 case htons(ETH_P_IP): 3832 return IPPROTO_IP; 3833 case htons(ETH_P_IPV6): 3834 return IPPROTO_IPV6; 3835 default: 3836 return -1; 3837 } 3838 } 3839 3840 #ifdef CONFIG_BUG 3841 void netdev_rx_csum_fault(struct net_device *dev); 3842 #else 3843 static inline void netdev_rx_csum_fault(struct net_device *dev) 3844 { 3845 } 3846 #endif 3847 /* rx skb timestamps */ 3848 void net_enable_timestamp(void); 3849 void net_disable_timestamp(void); 3850 3851 #ifdef CONFIG_PROC_FS 3852 int __init dev_proc_init(void); 3853 #else 3854 #define dev_proc_init() 0 3855 #endif 3856 3857 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 3858 struct sk_buff *skb, struct net_device *dev, 3859 bool more) 3860 { 3861 skb->xmit_more = more ? 1 : 0; 3862 return ops->ndo_start_xmit(skb, dev); 3863 } 3864 3865 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 3866 struct netdev_queue *txq, bool more) 3867 { 3868 const struct net_device_ops *ops = dev->netdev_ops; 3869 int rc; 3870 3871 rc = __netdev_start_xmit(ops, skb, dev, more); 3872 if (rc == NETDEV_TX_OK) 3873 txq_trans_update(txq); 3874 3875 return rc; 3876 } 3877 3878 int netdev_class_create_file_ns(struct class_attribute *class_attr, 3879 const void *ns); 3880 void netdev_class_remove_file_ns(struct class_attribute *class_attr, 3881 const void *ns); 3882 3883 static inline int netdev_class_create_file(struct class_attribute *class_attr) 3884 { 3885 return netdev_class_create_file_ns(class_attr, NULL); 3886 } 3887 3888 static inline void netdev_class_remove_file(struct class_attribute *class_attr) 3889 { 3890 netdev_class_remove_file_ns(class_attr, NULL); 3891 } 3892 3893 extern struct kobj_ns_type_operations net_ns_type_operations; 3894 3895 const char *netdev_drivername(const struct net_device *dev); 3896 3897 void linkwatch_run_queue(void); 3898 3899 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 3900 netdev_features_t f2) 3901 { 3902 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 3903 if (f1 & NETIF_F_HW_CSUM) 3904 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 3905 else 3906 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 3907 } 3908 3909 return f1 & f2; 3910 } 3911 3912 static inline netdev_features_t netdev_get_wanted_features( 3913 struct net_device *dev) 3914 { 3915 return (dev->features & ~dev->hw_features) | dev->wanted_features; 3916 } 3917 netdev_features_t netdev_increment_features(netdev_features_t all, 3918 netdev_features_t one, netdev_features_t mask); 3919 3920 /* Allow TSO being used on stacked device : 3921 * Performing the GSO segmentation before last device 3922 * is a performance improvement. 3923 */ 3924 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 3925 netdev_features_t mask) 3926 { 3927 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 3928 } 3929 3930 int __netdev_update_features(struct net_device *dev); 3931 void netdev_update_features(struct net_device *dev); 3932 void netdev_change_features(struct net_device *dev); 3933 3934 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 3935 struct net_device *dev); 3936 3937 netdev_features_t passthru_features_check(struct sk_buff *skb, 3938 struct net_device *dev, 3939 netdev_features_t features); 3940 netdev_features_t netif_skb_features(struct sk_buff *skb); 3941 3942 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 3943 { 3944 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT; 3945 3946 /* check flags correspondence */ 3947 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 3948 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 3949 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 3950 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 3951 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 3952 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 3953 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 3954 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 3955 BUILD_BUG_ON(SKB_GSO_IPIP != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT)); 3956 BUILD_BUG_ON(SKB_GSO_SIT != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT)); 3957 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 3958 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 3959 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 3960 3961 return (features & feature) == feature; 3962 } 3963 3964 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 3965 { 3966 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 3967 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 3968 } 3969 3970 static inline bool netif_needs_gso(struct sk_buff *skb, 3971 netdev_features_t features) 3972 { 3973 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 3974 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 3975 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 3976 } 3977 3978 static inline void netif_set_gso_max_size(struct net_device *dev, 3979 unsigned int size) 3980 { 3981 dev->gso_max_size = size; 3982 } 3983 3984 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 3985 int pulled_hlen, u16 mac_offset, 3986 int mac_len) 3987 { 3988 skb->protocol = protocol; 3989 skb->encapsulation = 1; 3990 skb_push(skb, pulled_hlen); 3991 skb_reset_transport_header(skb); 3992 skb->mac_header = mac_offset; 3993 skb->network_header = skb->mac_header + mac_len; 3994 skb->mac_len = mac_len; 3995 } 3996 3997 static inline bool netif_is_macvlan(const struct net_device *dev) 3998 { 3999 return dev->priv_flags & IFF_MACVLAN; 4000 } 4001 4002 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4003 { 4004 return dev->priv_flags & IFF_MACVLAN_PORT; 4005 } 4006 4007 static inline bool netif_is_ipvlan(const struct net_device *dev) 4008 { 4009 return dev->priv_flags & IFF_IPVLAN_SLAVE; 4010 } 4011 4012 static inline bool netif_is_ipvlan_port(const struct net_device *dev) 4013 { 4014 return dev->priv_flags & IFF_IPVLAN_MASTER; 4015 } 4016 4017 static inline bool netif_is_bond_master(const struct net_device *dev) 4018 { 4019 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4020 } 4021 4022 static inline bool netif_is_bond_slave(const struct net_device *dev) 4023 { 4024 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4025 } 4026 4027 static inline bool netif_supports_nofcs(struct net_device *dev) 4028 { 4029 return dev->priv_flags & IFF_SUPP_NOFCS; 4030 } 4031 4032 static inline bool netif_is_l3_master(const struct net_device *dev) 4033 { 4034 return dev->priv_flags & IFF_L3MDEV_MASTER; 4035 } 4036 4037 static inline bool netif_is_l3_slave(const struct net_device *dev) 4038 { 4039 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4040 } 4041 4042 static inline bool netif_is_bridge_master(const struct net_device *dev) 4043 { 4044 return dev->priv_flags & IFF_EBRIDGE; 4045 } 4046 4047 static inline bool netif_is_bridge_port(const struct net_device *dev) 4048 { 4049 return dev->priv_flags & IFF_BRIDGE_PORT; 4050 } 4051 4052 static inline bool netif_is_ovs_master(const struct net_device *dev) 4053 { 4054 return dev->priv_flags & IFF_OPENVSWITCH; 4055 } 4056 4057 static inline bool netif_is_team_master(const struct net_device *dev) 4058 { 4059 return dev->priv_flags & IFF_TEAM; 4060 } 4061 4062 static inline bool netif_is_team_port(const struct net_device *dev) 4063 { 4064 return dev->priv_flags & IFF_TEAM_PORT; 4065 } 4066 4067 static inline bool netif_is_lag_master(const struct net_device *dev) 4068 { 4069 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4070 } 4071 4072 static inline bool netif_is_lag_port(const struct net_device *dev) 4073 { 4074 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4075 } 4076 4077 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4078 { 4079 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4080 } 4081 4082 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4083 static inline void netif_keep_dst(struct net_device *dev) 4084 { 4085 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4086 } 4087 4088 extern struct pernet_operations __net_initdata loopback_net_ops; 4089 4090 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 4091 4092 /* netdev_printk helpers, similar to dev_printk */ 4093 4094 static inline const char *netdev_name(const struct net_device *dev) 4095 { 4096 if (!dev->name[0] || strchr(dev->name, '%')) 4097 return "(unnamed net_device)"; 4098 return dev->name; 4099 } 4100 4101 static inline const char *netdev_reg_state(const struct net_device *dev) 4102 { 4103 switch (dev->reg_state) { 4104 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4105 case NETREG_REGISTERED: return ""; 4106 case NETREG_UNREGISTERING: return " (unregistering)"; 4107 case NETREG_UNREGISTERED: return " (unregistered)"; 4108 case NETREG_RELEASED: return " (released)"; 4109 case NETREG_DUMMY: return " (dummy)"; 4110 } 4111 4112 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4113 return " (unknown)"; 4114 } 4115 4116 __printf(3, 4) 4117 void netdev_printk(const char *level, const struct net_device *dev, 4118 const char *format, ...); 4119 __printf(2, 3) 4120 void netdev_emerg(const struct net_device *dev, const char *format, ...); 4121 __printf(2, 3) 4122 void netdev_alert(const struct net_device *dev, const char *format, ...); 4123 __printf(2, 3) 4124 void netdev_crit(const struct net_device *dev, const char *format, ...); 4125 __printf(2, 3) 4126 void netdev_err(const struct net_device *dev, const char *format, ...); 4127 __printf(2, 3) 4128 void netdev_warn(const struct net_device *dev, const char *format, ...); 4129 __printf(2, 3) 4130 void netdev_notice(const struct net_device *dev, const char *format, ...); 4131 __printf(2, 3) 4132 void netdev_info(const struct net_device *dev, const char *format, ...); 4133 4134 #define MODULE_ALIAS_NETDEV(device) \ 4135 MODULE_ALIAS("netdev-" device) 4136 4137 #if defined(CONFIG_DYNAMIC_DEBUG) 4138 #define netdev_dbg(__dev, format, args...) \ 4139 do { \ 4140 dynamic_netdev_dbg(__dev, format, ##args); \ 4141 } while (0) 4142 #elif defined(DEBUG) 4143 #define netdev_dbg(__dev, format, args...) \ 4144 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4145 #else 4146 #define netdev_dbg(__dev, format, args...) \ 4147 ({ \ 4148 if (0) \ 4149 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4150 }) 4151 #endif 4152 4153 #if defined(VERBOSE_DEBUG) 4154 #define netdev_vdbg netdev_dbg 4155 #else 4156 4157 #define netdev_vdbg(dev, format, args...) \ 4158 ({ \ 4159 if (0) \ 4160 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4161 0; \ 4162 }) 4163 #endif 4164 4165 /* 4166 * netdev_WARN() acts like dev_printk(), but with the key difference 4167 * of using a WARN/WARN_ON to get the message out, including the 4168 * file/line information and a backtrace. 4169 */ 4170 #define netdev_WARN(dev, format, args...) \ 4171 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \ 4172 netdev_reg_state(dev), ##args) 4173 4174 /* netif printk helpers, similar to netdev_printk */ 4175 4176 #define netif_printk(priv, type, level, dev, fmt, args...) \ 4177 do { \ 4178 if (netif_msg_##type(priv)) \ 4179 netdev_printk(level, (dev), fmt, ##args); \ 4180 } while (0) 4181 4182 #define netif_level(level, priv, type, dev, fmt, args...) \ 4183 do { \ 4184 if (netif_msg_##type(priv)) \ 4185 netdev_##level(dev, fmt, ##args); \ 4186 } while (0) 4187 4188 #define netif_emerg(priv, type, dev, fmt, args...) \ 4189 netif_level(emerg, priv, type, dev, fmt, ##args) 4190 #define netif_alert(priv, type, dev, fmt, args...) \ 4191 netif_level(alert, priv, type, dev, fmt, ##args) 4192 #define netif_crit(priv, type, dev, fmt, args...) \ 4193 netif_level(crit, priv, type, dev, fmt, ##args) 4194 #define netif_err(priv, type, dev, fmt, args...) \ 4195 netif_level(err, priv, type, dev, fmt, ##args) 4196 #define netif_warn(priv, type, dev, fmt, args...) \ 4197 netif_level(warn, priv, type, dev, fmt, ##args) 4198 #define netif_notice(priv, type, dev, fmt, args...) \ 4199 netif_level(notice, priv, type, dev, fmt, ##args) 4200 #define netif_info(priv, type, dev, fmt, args...) \ 4201 netif_level(info, priv, type, dev, fmt, ##args) 4202 4203 #if defined(CONFIG_DYNAMIC_DEBUG) 4204 #define netif_dbg(priv, type, netdev, format, args...) \ 4205 do { \ 4206 if (netif_msg_##type(priv)) \ 4207 dynamic_netdev_dbg(netdev, format, ##args); \ 4208 } while (0) 4209 #elif defined(DEBUG) 4210 #define netif_dbg(priv, type, dev, format, args...) \ 4211 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4212 #else 4213 #define netif_dbg(priv, type, dev, format, args...) \ 4214 ({ \ 4215 if (0) \ 4216 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4217 0; \ 4218 }) 4219 #endif 4220 4221 #if defined(VERBOSE_DEBUG) 4222 #define netif_vdbg netif_dbg 4223 #else 4224 #define netif_vdbg(priv, type, dev, format, args...) \ 4225 ({ \ 4226 if (0) \ 4227 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4228 0; \ 4229 }) 4230 #endif 4231 4232 /* 4233 * The list of packet types we will receive (as opposed to discard) 4234 * and the routines to invoke. 4235 * 4236 * Why 16. Because with 16 the only overlap we get on a hash of the 4237 * low nibble of the protocol value is RARP/SNAP/X.25. 4238 * 4239 * NOTE: That is no longer true with the addition of VLAN tags. Not 4240 * sure which should go first, but I bet it won't make much 4241 * difference if we are running VLANs. The good news is that 4242 * this protocol won't be in the list unless compiled in, so 4243 * the average user (w/out VLANs) will not be adversely affected. 4244 * --BLG 4245 * 4246 * 0800 IP 4247 * 8100 802.1Q VLAN 4248 * 0001 802.3 4249 * 0002 AX.25 4250 * 0004 802.2 4251 * 8035 RARP 4252 * 0005 SNAP 4253 * 0805 X.25 4254 * 0806 ARP 4255 * 8137 IPX 4256 * 0009 Localtalk 4257 * 86DD IPv6 4258 */ 4259 #define PTYPE_HASH_SIZE (16) 4260 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4261 4262 #endif /* _LINUX_NETDEVICE_H */ 4263