xref: /linux-6.15/include/linux/netdevice.h (revision 5fd003f5)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <[email protected]>
12  *		Corey Minyard <[email protected]>
13  *		Donald J. Becker, <[email protected]>
14  *		Alan Cox, <[email protected]>
15  *		Bjorn Ekwall. <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49 
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54 #include <uapi/linux/pkt_cls.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 /* 802.11 specific */
60 struct wireless_dev;
61 /* 802.15.4 specific */
62 struct wpan_dev;
63 struct mpls_dev;
64 
65 void netdev_set_default_ethtool_ops(struct net_device *dev,
66 				    const struct ethtool_ops *ops);
67 
68 /* Backlog congestion levels */
69 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
70 #define NET_RX_DROP		1	/* packet dropped */
71 
72 /*
73  * Transmit return codes: transmit return codes originate from three different
74  * namespaces:
75  *
76  * - qdisc return codes
77  * - driver transmit return codes
78  * - errno values
79  *
80  * Drivers are allowed to return any one of those in their hard_start_xmit()
81  * function. Real network devices commonly used with qdiscs should only return
82  * the driver transmit return codes though - when qdiscs are used, the actual
83  * transmission happens asynchronously, so the value is not propagated to
84  * higher layers. Virtual network devices transmit synchronously, in this case
85  * the driver transmit return codes are consumed by dev_queue_xmit(), all
86  * others are propagated to higher layers.
87  */
88 
89 /* qdisc ->enqueue() return codes. */
90 #define NET_XMIT_SUCCESS	0x00
91 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
92 #define NET_XMIT_CN		0x02	/* congestion notification	*/
93 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
94 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
95 
96 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
97  * indicates that the device will soon be dropping packets, or already drops
98  * some packets of the same priority; prompting us to send less aggressively. */
99 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
100 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
101 
102 /* Driver transmit return codes */
103 #define NETDEV_TX_MASK		0xf0
104 
105 enum netdev_tx {
106 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
107 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
108 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
109 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
110 };
111 typedef enum netdev_tx netdev_tx_t;
112 
113 /*
114  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
115  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
116  */
117 static inline bool dev_xmit_complete(int rc)
118 {
119 	/*
120 	 * Positive cases with an skb consumed by a driver:
121 	 * - successful transmission (rc == NETDEV_TX_OK)
122 	 * - error while transmitting (rc < 0)
123 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
124 	 */
125 	if (likely(rc < NET_XMIT_MASK))
126 		return true;
127 
128 	return false;
129 }
130 
131 /*
132  *	Compute the worst case header length according to the protocols
133  *	used.
134  */
135 
136 #if defined(CONFIG_HYPERV_NET)
137 # define LL_MAX_HEADER 128
138 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
139 # if defined(CONFIG_MAC80211_MESH)
140 #  define LL_MAX_HEADER 128
141 # else
142 #  define LL_MAX_HEADER 96
143 # endif
144 #else
145 # define LL_MAX_HEADER 32
146 #endif
147 
148 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
149     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
150 #define MAX_HEADER LL_MAX_HEADER
151 #else
152 #define MAX_HEADER (LL_MAX_HEADER + 48)
153 #endif
154 
155 /*
156  *	Old network device statistics. Fields are native words
157  *	(unsigned long) so they can be read and written atomically.
158  */
159 
160 struct net_device_stats {
161 	unsigned long	rx_packets;
162 	unsigned long	tx_packets;
163 	unsigned long	rx_bytes;
164 	unsigned long	tx_bytes;
165 	unsigned long	rx_errors;
166 	unsigned long	tx_errors;
167 	unsigned long	rx_dropped;
168 	unsigned long	tx_dropped;
169 	unsigned long	multicast;
170 	unsigned long	collisions;
171 	unsigned long	rx_length_errors;
172 	unsigned long	rx_over_errors;
173 	unsigned long	rx_crc_errors;
174 	unsigned long	rx_frame_errors;
175 	unsigned long	rx_fifo_errors;
176 	unsigned long	rx_missed_errors;
177 	unsigned long	tx_aborted_errors;
178 	unsigned long	tx_carrier_errors;
179 	unsigned long	tx_fifo_errors;
180 	unsigned long	tx_heartbeat_errors;
181 	unsigned long	tx_window_errors;
182 	unsigned long	rx_compressed;
183 	unsigned long	tx_compressed;
184 };
185 
186 
187 #include <linux/cache.h>
188 #include <linux/skbuff.h>
189 
190 #ifdef CONFIG_RPS
191 #include <linux/static_key.h>
192 extern struct static_key rps_needed;
193 #endif
194 
195 struct neighbour;
196 struct neigh_parms;
197 struct sk_buff;
198 
199 struct netdev_hw_addr {
200 	struct list_head	list;
201 	unsigned char		addr[MAX_ADDR_LEN];
202 	unsigned char		type;
203 #define NETDEV_HW_ADDR_T_LAN		1
204 #define NETDEV_HW_ADDR_T_SAN		2
205 #define NETDEV_HW_ADDR_T_SLAVE		3
206 #define NETDEV_HW_ADDR_T_UNICAST	4
207 #define NETDEV_HW_ADDR_T_MULTICAST	5
208 	bool			global_use;
209 	int			sync_cnt;
210 	int			refcount;
211 	int			synced;
212 	struct rcu_head		rcu_head;
213 };
214 
215 struct netdev_hw_addr_list {
216 	struct list_head	list;
217 	int			count;
218 };
219 
220 #define netdev_hw_addr_list_count(l) ((l)->count)
221 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
222 #define netdev_hw_addr_list_for_each(ha, l) \
223 	list_for_each_entry(ha, &(l)->list, list)
224 
225 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
226 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
227 #define netdev_for_each_uc_addr(ha, dev) \
228 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
229 
230 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
231 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
232 #define netdev_for_each_mc_addr(ha, dev) \
233 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
234 
235 struct hh_cache {
236 	u16		hh_len;
237 	u16		__pad;
238 	seqlock_t	hh_lock;
239 
240 	/* cached hardware header; allow for machine alignment needs.        */
241 #define HH_DATA_MOD	16
242 #define HH_DATA_OFF(__len) \
243 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
244 #define HH_DATA_ALIGN(__len) \
245 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
246 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
247 };
248 
249 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
250  * Alternative is:
251  *   dev->hard_header_len ? (dev->hard_header_len +
252  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
253  *
254  * We could use other alignment values, but we must maintain the
255  * relationship HH alignment <= LL alignment.
256  */
257 #define LL_RESERVED_SPACE(dev) \
258 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
259 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
260 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
261 
262 struct header_ops {
263 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
264 			   unsigned short type, const void *daddr,
265 			   const void *saddr, unsigned int len);
266 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
267 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
268 	void	(*cache_update)(struct hh_cache *hh,
269 				const struct net_device *dev,
270 				const unsigned char *haddr);
271 };
272 
273 /* These flag bits are private to the generic network queueing
274  * layer, they may not be explicitly referenced by any other
275  * code.
276  */
277 
278 enum netdev_state_t {
279 	__LINK_STATE_START,
280 	__LINK_STATE_PRESENT,
281 	__LINK_STATE_NOCARRIER,
282 	__LINK_STATE_LINKWATCH_PENDING,
283 	__LINK_STATE_DORMANT,
284 };
285 
286 
287 /*
288  * This structure holds at boot time configured netdevice settings. They
289  * are then used in the device probing.
290  */
291 struct netdev_boot_setup {
292 	char name[IFNAMSIZ];
293 	struct ifmap map;
294 };
295 #define NETDEV_BOOT_SETUP_MAX 8
296 
297 int __init netdev_boot_setup(char *str);
298 
299 /*
300  * Structure for NAPI scheduling similar to tasklet but with weighting
301  */
302 struct napi_struct {
303 	/* The poll_list must only be managed by the entity which
304 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
305 	 * whoever atomically sets that bit can add this napi_struct
306 	 * to the per-cpu poll_list, and whoever clears that bit
307 	 * can remove from the list right before clearing the bit.
308 	 */
309 	struct list_head	poll_list;
310 
311 	unsigned long		state;
312 	int			weight;
313 	unsigned int		gro_count;
314 	int			(*poll)(struct napi_struct *, int);
315 #ifdef CONFIG_NETPOLL
316 	spinlock_t		poll_lock;
317 	int			poll_owner;
318 #endif
319 	struct net_device	*dev;
320 	struct sk_buff		*gro_list;
321 	struct sk_buff		*skb;
322 	struct hrtimer		timer;
323 	struct list_head	dev_list;
324 	struct hlist_node	napi_hash_node;
325 	unsigned int		napi_id;
326 };
327 
328 enum {
329 	NAPI_STATE_SCHED,	/* Poll is scheduled */
330 	NAPI_STATE_DISABLE,	/* Disable pending */
331 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
332 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
333 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
334 };
335 
336 enum gro_result {
337 	GRO_MERGED,
338 	GRO_MERGED_FREE,
339 	GRO_HELD,
340 	GRO_NORMAL,
341 	GRO_DROP,
342 };
343 typedef enum gro_result gro_result_t;
344 
345 /*
346  * enum rx_handler_result - Possible return values for rx_handlers.
347  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
348  * further.
349  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
350  * case skb->dev was changed by rx_handler.
351  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
352  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
353  *
354  * rx_handlers are functions called from inside __netif_receive_skb(), to do
355  * special processing of the skb, prior to delivery to protocol handlers.
356  *
357  * Currently, a net_device can only have a single rx_handler registered. Trying
358  * to register a second rx_handler will return -EBUSY.
359  *
360  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
361  * To unregister a rx_handler on a net_device, use
362  * netdev_rx_handler_unregister().
363  *
364  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
365  * do with the skb.
366  *
367  * If the rx_handler consumed to skb in some way, it should return
368  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
369  * the skb to be delivered in some other ways.
370  *
371  * If the rx_handler changed skb->dev, to divert the skb to another
372  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
373  * new device will be called if it exists.
374  *
375  * If the rx_handler consider the skb should be ignored, it should return
376  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
377  * are registered on exact device (ptype->dev == skb->dev).
378  *
379  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
380  * delivered, it should return RX_HANDLER_PASS.
381  *
382  * A device without a registered rx_handler will behave as if rx_handler
383  * returned RX_HANDLER_PASS.
384  */
385 
386 enum rx_handler_result {
387 	RX_HANDLER_CONSUMED,
388 	RX_HANDLER_ANOTHER,
389 	RX_HANDLER_EXACT,
390 	RX_HANDLER_PASS,
391 };
392 typedef enum rx_handler_result rx_handler_result_t;
393 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
394 
395 void __napi_schedule(struct napi_struct *n);
396 void __napi_schedule_irqoff(struct napi_struct *n);
397 
398 static inline bool napi_disable_pending(struct napi_struct *n)
399 {
400 	return test_bit(NAPI_STATE_DISABLE, &n->state);
401 }
402 
403 /**
404  *	napi_schedule_prep - check if napi can be scheduled
405  *	@n: napi context
406  *
407  * Test if NAPI routine is already running, and if not mark
408  * it as running.  This is used as a condition variable
409  * insure only one NAPI poll instance runs.  We also make
410  * sure there is no pending NAPI disable.
411  */
412 static inline bool napi_schedule_prep(struct napi_struct *n)
413 {
414 	return !napi_disable_pending(n) &&
415 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
416 }
417 
418 /**
419  *	napi_schedule - schedule NAPI poll
420  *	@n: napi context
421  *
422  * Schedule NAPI poll routine to be called if it is not already
423  * running.
424  */
425 static inline void napi_schedule(struct napi_struct *n)
426 {
427 	if (napi_schedule_prep(n))
428 		__napi_schedule(n);
429 }
430 
431 /**
432  *	napi_schedule_irqoff - schedule NAPI poll
433  *	@n: napi context
434  *
435  * Variant of napi_schedule(), assuming hard irqs are masked.
436  */
437 static inline void napi_schedule_irqoff(struct napi_struct *n)
438 {
439 	if (napi_schedule_prep(n))
440 		__napi_schedule_irqoff(n);
441 }
442 
443 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
444 static inline bool napi_reschedule(struct napi_struct *napi)
445 {
446 	if (napi_schedule_prep(napi)) {
447 		__napi_schedule(napi);
448 		return true;
449 	}
450 	return false;
451 }
452 
453 void __napi_complete(struct napi_struct *n);
454 void napi_complete_done(struct napi_struct *n, int work_done);
455 /**
456  *	napi_complete - NAPI processing complete
457  *	@n: napi context
458  *
459  * Mark NAPI processing as complete.
460  * Consider using napi_complete_done() instead.
461  */
462 static inline void napi_complete(struct napi_struct *n)
463 {
464 	return napi_complete_done(n, 0);
465 }
466 
467 /**
468  *	napi_hash_add - add a NAPI to global hashtable
469  *	@napi: napi context
470  *
471  * generate a new napi_id and store a @napi under it in napi_hash
472  * Used for busy polling (CONFIG_NET_RX_BUSY_POLL)
473  * Note: This is normally automatically done from netif_napi_add(),
474  * so might disappear in a future linux version.
475  */
476 void napi_hash_add(struct napi_struct *napi);
477 
478 /**
479  *	napi_hash_del - remove a NAPI from global table
480  *	@napi: napi context
481  *
482  * Warning: caller must observe rcu grace period
483  * before freeing memory containing @napi, if
484  * this function returns true.
485  * Note: core networking stack automatically calls it
486  * from netif_napi_del()
487  * Drivers might want to call this helper to combine all
488  * the needed rcu grace periods into a single one.
489  */
490 bool napi_hash_del(struct napi_struct *napi);
491 
492 /**
493  *	napi_disable - prevent NAPI from scheduling
494  *	@n: napi context
495  *
496  * Stop NAPI from being scheduled on this context.
497  * Waits till any outstanding processing completes.
498  */
499 void napi_disable(struct napi_struct *n);
500 
501 /**
502  *	napi_enable - enable NAPI scheduling
503  *	@n: napi context
504  *
505  * Resume NAPI from being scheduled on this context.
506  * Must be paired with napi_disable.
507  */
508 static inline void napi_enable(struct napi_struct *n)
509 {
510 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
511 	smp_mb__before_atomic();
512 	clear_bit(NAPI_STATE_SCHED, &n->state);
513 	clear_bit(NAPI_STATE_NPSVC, &n->state);
514 }
515 
516 /**
517  *	napi_synchronize - wait until NAPI is not running
518  *	@n: napi context
519  *
520  * Wait until NAPI is done being scheduled on this context.
521  * Waits till any outstanding processing completes but
522  * does not disable future activations.
523  */
524 static inline void napi_synchronize(const struct napi_struct *n)
525 {
526 	if (IS_ENABLED(CONFIG_SMP))
527 		while (test_bit(NAPI_STATE_SCHED, &n->state))
528 			msleep(1);
529 	else
530 		barrier();
531 }
532 
533 enum netdev_queue_state_t {
534 	__QUEUE_STATE_DRV_XOFF,
535 	__QUEUE_STATE_STACK_XOFF,
536 	__QUEUE_STATE_FROZEN,
537 };
538 
539 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
540 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
541 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
542 
543 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
544 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
545 					QUEUE_STATE_FROZEN)
546 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
547 					QUEUE_STATE_FROZEN)
548 
549 /*
550  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
551  * netif_tx_* functions below are used to manipulate this flag.  The
552  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
553  * queue independently.  The netif_xmit_*stopped functions below are called
554  * to check if the queue has been stopped by the driver or stack (either
555  * of the XOFF bits are set in the state).  Drivers should not need to call
556  * netif_xmit*stopped functions, they should only be using netif_tx_*.
557  */
558 
559 struct netdev_queue {
560 /*
561  * read mostly part
562  */
563 	struct net_device	*dev;
564 	struct Qdisc __rcu	*qdisc;
565 	struct Qdisc		*qdisc_sleeping;
566 #ifdef CONFIG_SYSFS
567 	struct kobject		kobj;
568 #endif
569 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
570 	int			numa_node;
571 #endif
572 /*
573  * write mostly part
574  */
575 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
576 	int			xmit_lock_owner;
577 	/*
578 	 * please use this field instead of dev->trans_start
579 	 */
580 	unsigned long		trans_start;
581 
582 	/*
583 	 * Number of TX timeouts for this queue
584 	 * (/sys/class/net/DEV/Q/trans_timeout)
585 	 */
586 	unsigned long		trans_timeout;
587 
588 	unsigned long		state;
589 
590 #ifdef CONFIG_BQL
591 	struct dql		dql;
592 #endif
593 	unsigned long		tx_maxrate;
594 } ____cacheline_aligned_in_smp;
595 
596 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
597 {
598 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
599 	return q->numa_node;
600 #else
601 	return NUMA_NO_NODE;
602 #endif
603 }
604 
605 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
606 {
607 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
608 	q->numa_node = node;
609 #endif
610 }
611 
612 #ifdef CONFIG_RPS
613 /*
614  * This structure holds an RPS map which can be of variable length.  The
615  * map is an array of CPUs.
616  */
617 struct rps_map {
618 	unsigned int len;
619 	struct rcu_head rcu;
620 	u16 cpus[0];
621 };
622 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
623 
624 /*
625  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
626  * tail pointer for that CPU's input queue at the time of last enqueue, and
627  * a hardware filter index.
628  */
629 struct rps_dev_flow {
630 	u16 cpu;
631 	u16 filter;
632 	unsigned int last_qtail;
633 };
634 #define RPS_NO_FILTER 0xffff
635 
636 /*
637  * The rps_dev_flow_table structure contains a table of flow mappings.
638  */
639 struct rps_dev_flow_table {
640 	unsigned int mask;
641 	struct rcu_head rcu;
642 	struct rps_dev_flow flows[0];
643 };
644 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
645     ((_num) * sizeof(struct rps_dev_flow)))
646 
647 /*
648  * The rps_sock_flow_table contains mappings of flows to the last CPU
649  * on which they were processed by the application (set in recvmsg).
650  * Each entry is a 32bit value. Upper part is the high order bits
651  * of flow hash, lower part is cpu number.
652  * rps_cpu_mask is used to partition the space, depending on number of
653  * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
654  * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
655  * meaning we use 32-6=26 bits for the hash.
656  */
657 struct rps_sock_flow_table {
658 	u32	mask;
659 
660 	u32	ents[0] ____cacheline_aligned_in_smp;
661 };
662 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
663 
664 #define RPS_NO_CPU 0xffff
665 
666 extern u32 rps_cpu_mask;
667 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
668 
669 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
670 					u32 hash)
671 {
672 	if (table && hash) {
673 		unsigned int index = hash & table->mask;
674 		u32 val = hash & ~rps_cpu_mask;
675 
676 		/* We only give a hint, preemption can change cpu under us */
677 		val |= raw_smp_processor_id();
678 
679 		if (table->ents[index] != val)
680 			table->ents[index] = val;
681 	}
682 }
683 
684 #ifdef CONFIG_RFS_ACCEL
685 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
686 			 u16 filter_id);
687 #endif
688 #endif /* CONFIG_RPS */
689 
690 /* This structure contains an instance of an RX queue. */
691 struct netdev_rx_queue {
692 #ifdef CONFIG_RPS
693 	struct rps_map __rcu		*rps_map;
694 	struct rps_dev_flow_table __rcu	*rps_flow_table;
695 #endif
696 	struct kobject			kobj;
697 	struct net_device		*dev;
698 } ____cacheline_aligned_in_smp;
699 
700 /*
701  * RX queue sysfs structures and functions.
702  */
703 struct rx_queue_attribute {
704 	struct attribute attr;
705 	ssize_t (*show)(struct netdev_rx_queue *queue,
706 	    struct rx_queue_attribute *attr, char *buf);
707 	ssize_t (*store)(struct netdev_rx_queue *queue,
708 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
709 };
710 
711 #ifdef CONFIG_XPS
712 /*
713  * This structure holds an XPS map which can be of variable length.  The
714  * map is an array of queues.
715  */
716 struct xps_map {
717 	unsigned int len;
718 	unsigned int alloc_len;
719 	struct rcu_head rcu;
720 	u16 queues[0];
721 };
722 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
723 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
724        - sizeof(struct xps_map)) / sizeof(u16))
725 
726 /*
727  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
728  */
729 struct xps_dev_maps {
730 	struct rcu_head rcu;
731 	struct xps_map __rcu *cpu_map[0];
732 };
733 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
734     (nr_cpu_ids * sizeof(struct xps_map *)))
735 #endif /* CONFIG_XPS */
736 
737 #define TC_MAX_QUEUE	16
738 #define TC_BITMASK	15
739 /* HW offloaded queuing disciplines txq count and offset maps */
740 struct netdev_tc_txq {
741 	u16 count;
742 	u16 offset;
743 };
744 
745 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
746 /*
747  * This structure is to hold information about the device
748  * configured to run FCoE protocol stack.
749  */
750 struct netdev_fcoe_hbainfo {
751 	char	manufacturer[64];
752 	char	serial_number[64];
753 	char	hardware_version[64];
754 	char	driver_version[64];
755 	char	optionrom_version[64];
756 	char	firmware_version[64];
757 	char	model[256];
758 	char	model_description[256];
759 };
760 #endif
761 
762 #define MAX_PHYS_ITEM_ID_LEN 32
763 
764 /* This structure holds a unique identifier to identify some
765  * physical item (port for example) used by a netdevice.
766  */
767 struct netdev_phys_item_id {
768 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
769 	unsigned char id_len;
770 };
771 
772 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
773 					    struct netdev_phys_item_id *b)
774 {
775 	return a->id_len == b->id_len &&
776 	       memcmp(a->id, b->id, a->id_len) == 0;
777 }
778 
779 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
780 				       struct sk_buff *skb);
781 
782 /* These structures hold the attributes of qdisc and classifiers
783  * that are being passed to the netdevice through the setup_tc op.
784  */
785 enum {
786 	TC_SETUP_MQPRIO,
787 	TC_SETUP_CLSU32,
788 };
789 
790 struct tc_cls_u32_offload;
791 
792 struct tc_to_netdev {
793 	unsigned int type;
794 	union {
795 		u8 tc;
796 		struct tc_cls_u32_offload *cls_u32;
797 	};
798 };
799 
800 
801 /*
802  * This structure defines the management hooks for network devices.
803  * The following hooks can be defined; unless noted otherwise, they are
804  * optional and can be filled with a null pointer.
805  *
806  * int (*ndo_init)(struct net_device *dev);
807  *     This function is called once when network device is registered.
808  *     The network device can use this to any late stage initializaton
809  *     or semantic validattion. It can fail with an error code which will
810  *     be propogated back to register_netdev
811  *
812  * void (*ndo_uninit)(struct net_device *dev);
813  *     This function is called when device is unregistered or when registration
814  *     fails. It is not called if init fails.
815  *
816  * int (*ndo_open)(struct net_device *dev);
817  *     This function is called when network device transistions to the up
818  *     state.
819  *
820  * int (*ndo_stop)(struct net_device *dev);
821  *     This function is called when network device transistions to the down
822  *     state.
823  *
824  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
825  *                               struct net_device *dev);
826  *	Called when a packet needs to be transmitted.
827  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
828  *	the queue before that can happen; it's for obsolete devices and weird
829  *	corner cases, but the stack really does a non-trivial amount
830  *	of useless work if you return NETDEV_TX_BUSY.
831  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
832  *	Required can not be NULL.
833  *
834  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
835  *		netdev_features_t features);
836  *	Adjusts the requested feature flags according to device-specific
837  *	constraints, and returns the resulting flags. Must not modify
838  *	the device state.
839  *
840  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
841  *                         void *accel_priv, select_queue_fallback_t fallback);
842  *	Called to decide which queue to when device supports multiple
843  *	transmit queues.
844  *
845  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
846  *	This function is called to allow device receiver to make
847  *	changes to configuration when multicast or promiscious is enabled.
848  *
849  * void (*ndo_set_rx_mode)(struct net_device *dev);
850  *	This function is called device changes address list filtering.
851  *	If driver handles unicast address filtering, it should set
852  *	IFF_UNICAST_FLT to its priv_flags.
853  *
854  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
855  *	This function  is called when the Media Access Control address
856  *	needs to be changed. If this interface is not defined, the
857  *	mac address can not be changed.
858  *
859  * int (*ndo_validate_addr)(struct net_device *dev);
860  *	Test if Media Access Control address is valid for the device.
861  *
862  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
863  *	Called when a user request an ioctl which can't be handled by
864  *	the generic interface code. If not defined ioctl's return
865  *	not supported error code.
866  *
867  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
868  *	Used to set network devices bus interface parameters. This interface
869  *	is retained for legacy reason, new devices should use the bus
870  *	interface (PCI) for low level management.
871  *
872  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
873  *	Called when a user wants to change the Maximum Transfer Unit
874  *	of a device. If not defined, any request to change MTU will
875  *	will return an error.
876  *
877  * void (*ndo_tx_timeout)(struct net_device *dev);
878  *	Callback uses when the transmitter has not made any progress
879  *	for dev->watchdog ticks.
880  *
881  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
882  *                      struct rtnl_link_stats64 *storage);
883  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
884  *	Called when a user wants to get the network device usage
885  *	statistics. Drivers must do one of the following:
886  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
887  *	   rtnl_link_stats64 structure passed by the caller.
888  *	2. Define @ndo_get_stats to update a net_device_stats structure
889  *	   (which should normally be dev->stats) and return a pointer to
890  *	   it. The structure may be changed asynchronously only if each
891  *	   field is written atomically.
892  *	3. Update dev->stats asynchronously and atomically, and define
893  *	   neither operation.
894  *
895  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
896  *	If device support VLAN filtering this function is called when a
897  *	VLAN id is registered.
898  *
899  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
900  *	If device support VLAN filtering this function is called when a
901  *	VLAN id is unregistered.
902  *
903  * void (*ndo_poll_controller)(struct net_device *dev);
904  *
905  *	SR-IOV management functions.
906  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
907  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
908  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
909  *			  int max_tx_rate);
910  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
911  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
912  * int (*ndo_get_vf_config)(struct net_device *dev,
913  *			    int vf, struct ifla_vf_info *ivf);
914  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
915  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
916  *			  struct nlattr *port[]);
917  *
918  *      Enable or disable the VF ability to query its RSS Redirection Table and
919  *      Hash Key. This is needed since on some devices VF share this information
920  *      with PF and querying it may adduce a theoretical security risk.
921  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
922  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
923  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
924  * 	Called to setup 'tc' number of traffic classes in the net device. This
925  * 	is always called from the stack with the rtnl lock held and netif tx
926  * 	queues stopped. This allows the netdevice to perform queue management
927  * 	safely.
928  *
929  *	Fiber Channel over Ethernet (FCoE) offload functions.
930  * int (*ndo_fcoe_enable)(struct net_device *dev);
931  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
932  *	so the underlying device can perform whatever needed configuration or
933  *	initialization to support acceleration of FCoE traffic.
934  *
935  * int (*ndo_fcoe_disable)(struct net_device *dev);
936  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
937  *	so the underlying device can perform whatever needed clean-ups to
938  *	stop supporting acceleration of FCoE traffic.
939  *
940  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
941  *			     struct scatterlist *sgl, unsigned int sgc);
942  *	Called when the FCoE Initiator wants to initialize an I/O that
943  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
944  *	perform necessary setup and returns 1 to indicate the device is set up
945  *	successfully to perform DDP on this I/O, otherwise this returns 0.
946  *
947  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
948  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
949  *	indicated by the FC exchange id 'xid', so the underlying device can
950  *	clean up and reuse resources for later DDP requests.
951  *
952  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
953  *			      struct scatterlist *sgl, unsigned int sgc);
954  *	Called when the FCoE Target wants to initialize an I/O that
955  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
956  *	perform necessary setup and returns 1 to indicate the device is set up
957  *	successfully to perform DDP on this I/O, otherwise this returns 0.
958  *
959  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
960  *			       struct netdev_fcoe_hbainfo *hbainfo);
961  *	Called when the FCoE Protocol stack wants information on the underlying
962  *	device. This information is utilized by the FCoE protocol stack to
963  *	register attributes with Fiber Channel management service as per the
964  *	FC-GS Fabric Device Management Information(FDMI) specification.
965  *
966  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
967  *	Called when the underlying device wants to override default World Wide
968  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
969  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
970  *	protocol stack to use.
971  *
972  *	RFS acceleration.
973  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
974  *			    u16 rxq_index, u32 flow_id);
975  *	Set hardware filter for RFS.  rxq_index is the target queue index;
976  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
977  *	Return the filter ID on success, or a negative error code.
978  *
979  *	Slave management functions (for bridge, bonding, etc).
980  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
981  *	Called to make another netdev an underling.
982  *
983  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
984  *	Called to release previously enslaved netdev.
985  *
986  *      Feature/offload setting functions.
987  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
988  *	Called to update device configuration to new features. Passed
989  *	feature set might be less than what was returned by ndo_fix_features()).
990  *	Must return >0 or -errno if it changed dev->features itself.
991  *
992  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
993  *		      struct net_device *dev,
994  *		      const unsigned char *addr, u16 vid, u16 flags)
995  *	Adds an FDB entry to dev for addr.
996  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
997  *		      struct net_device *dev,
998  *		      const unsigned char *addr, u16 vid)
999  *	Deletes the FDB entry from dev coresponding to addr.
1000  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1001  *		       struct net_device *dev, struct net_device *filter_dev,
1002  *		       int idx)
1003  *	Used to add FDB entries to dump requests. Implementers should add
1004  *	entries to skb and update idx with the number of entries.
1005  *
1006  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1007  *			     u16 flags)
1008  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1009  *			     struct net_device *dev, u32 filter_mask,
1010  *			     int nlflags)
1011  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1012  *			     u16 flags);
1013  *
1014  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1015  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1016  *	which do not represent real hardware may define this to allow their
1017  *	userspace components to manage their virtual carrier state. Devices
1018  *	that determine carrier state from physical hardware properties (eg
1019  *	network cables) or protocol-dependent mechanisms (eg
1020  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1021  *
1022  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1023  *			       struct netdev_phys_item_id *ppid);
1024  *	Called to get ID of physical port of this device. If driver does
1025  *	not implement this, it is assumed that the hw is not able to have
1026  *	multiple net devices on single physical port.
1027  *
1028  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
1029  *			      sa_family_t sa_family, __be16 port);
1030  *	Called by vxlan to notiy a driver about the UDP port and socket
1031  *	address family that vxlan is listnening to. It is called only when
1032  *	a new port starts listening. The operation is protected by the
1033  *	vxlan_net->sock_lock.
1034  *
1035  * void (*ndo_add_geneve_port)(struct net_device *dev,
1036  *			      sa_family_t sa_family, __be16 port);
1037  *	Called by geneve to notify a driver about the UDP port and socket
1038  *	address family that geneve is listnening to. It is called only when
1039  *	a new port starts listening. The operation is protected by the
1040  *	geneve_net->sock_lock.
1041  *
1042  * void (*ndo_del_geneve_port)(struct net_device *dev,
1043  *			      sa_family_t sa_family, __be16 port);
1044  *	Called by geneve to notify the driver about a UDP port and socket
1045  *	address family that geneve is not listening to anymore. The operation
1046  *	is protected by the geneve_net->sock_lock.
1047  *
1048  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
1049  *			      sa_family_t sa_family, __be16 port);
1050  *	Called by vxlan to notify the driver about a UDP port and socket
1051  *	address family that vxlan is not listening to anymore. The operation
1052  *	is protected by the vxlan_net->sock_lock.
1053  *
1054  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1055  *				 struct net_device *dev)
1056  *	Called by upper layer devices to accelerate switching or other
1057  *	station functionality into hardware. 'pdev is the lowerdev
1058  *	to use for the offload and 'dev' is the net device that will
1059  *	back the offload. Returns a pointer to the private structure
1060  *	the upper layer will maintain.
1061  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1062  *	Called by upper layer device to delete the station created
1063  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1064  *	the station and priv is the structure returned by the add
1065  *	operation.
1066  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1067  *				      struct net_device *dev,
1068  *				      void *priv);
1069  *	Callback to use for xmit over the accelerated station. This
1070  *	is used in place of ndo_start_xmit on accelerated net
1071  *	devices.
1072  * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1073  *					    struct net_device *dev
1074  *					    netdev_features_t features);
1075  *	Called by core transmit path to determine if device is capable of
1076  *	performing offload operations on a given packet. This is to give
1077  *	the device an opportunity to implement any restrictions that cannot
1078  *	be otherwise expressed by feature flags. The check is called with
1079  *	the set of features that the stack has calculated and it returns
1080  *	those the driver believes to be appropriate.
1081  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1082  *			     int queue_index, u32 maxrate);
1083  *	Called when a user wants to set a max-rate limitation of specific
1084  *	TX queue.
1085  * int (*ndo_get_iflink)(const struct net_device *dev);
1086  *	Called to get the iflink value of this device.
1087  * void (*ndo_change_proto_down)(struct net_device *dev,
1088  *				  bool proto_down);
1089  *	This function is used to pass protocol port error state information
1090  *	to the switch driver. The switch driver can react to the proto_down
1091  *      by doing a phys down on the associated switch port.
1092  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1093  *	This function is used to get egress tunnel information for given skb.
1094  *	This is useful for retrieving outer tunnel header parameters while
1095  *	sampling packet.
1096  *
1097  */
1098 struct net_device_ops {
1099 	int			(*ndo_init)(struct net_device *dev);
1100 	void			(*ndo_uninit)(struct net_device *dev);
1101 	int			(*ndo_open)(struct net_device *dev);
1102 	int			(*ndo_stop)(struct net_device *dev);
1103 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1104 						  struct net_device *dev);
1105 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1106 						      struct net_device *dev,
1107 						      netdev_features_t features);
1108 	u16			(*ndo_select_queue)(struct net_device *dev,
1109 						    struct sk_buff *skb,
1110 						    void *accel_priv,
1111 						    select_queue_fallback_t fallback);
1112 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1113 						       int flags);
1114 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1115 	int			(*ndo_set_mac_address)(struct net_device *dev,
1116 						       void *addr);
1117 	int			(*ndo_validate_addr)(struct net_device *dev);
1118 	int			(*ndo_do_ioctl)(struct net_device *dev,
1119 					        struct ifreq *ifr, int cmd);
1120 	int			(*ndo_set_config)(struct net_device *dev,
1121 					          struct ifmap *map);
1122 	int			(*ndo_change_mtu)(struct net_device *dev,
1123 						  int new_mtu);
1124 	int			(*ndo_neigh_setup)(struct net_device *dev,
1125 						   struct neigh_parms *);
1126 	void			(*ndo_tx_timeout) (struct net_device *dev);
1127 
1128 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1129 						     struct rtnl_link_stats64 *storage);
1130 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1131 
1132 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1133 						       __be16 proto, u16 vid);
1134 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1135 						        __be16 proto, u16 vid);
1136 #ifdef CONFIG_NET_POLL_CONTROLLER
1137 	void                    (*ndo_poll_controller)(struct net_device *dev);
1138 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1139 						     struct netpoll_info *info);
1140 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1141 #endif
1142 #ifdef CONFIG_NET_RX_BUSY_POLL
1143 	int			(*ndo_busy_poll)(struct napi_struct *dev);
1144 #endif
1145 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1146 						  int queue, u8 *mac);
1147 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1148 						   int queue, u16 vlan, u8 qos);
1149 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1150 						   int vf, int min_tx_rate,
1151 						   int max_tx_rate);
1152 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1153 						       int vf, bool setting);
1154 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1155 						    int vf, bool setting);
1156 	int			(*ndo_get_vf_config)(struct net_device *dev,
1157 						     int vf,
1158 						     struct ifla_vf_info *ivf);
1159 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1160 							 int vf, int link_state);
1161 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1162 						    int vf,
1163 						    struct ifla_vf_stats
1164 						    *vf_stats);
1165 	int			(*ndo_set_vf_port)(struct net_device *dev,
1166 						   int vf,
1167 						   struct nlattr *port[]);
1168 	int			(*ndo_get_vf_port)(struct net_device *dev,
1169 						   int vf, struct sk_buff *skb);
1170 	int			(*ndo_set_vf_rss_query_en)(
1171 						   struct net_device *dev,
1172 						   int vf, bool setting);
1173 	int			(*ndo_setup_tc)(struct net_device *dev,
1174 						u32 handle,
1175 						__be16 protocol,
1176 						struct tc_to_netdev *tc);
1177 #if IS_ENABLED(CONFIG_FCOE)
1178 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1179 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1180 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1181 						      u16 xid,
1182 						      struct scatterlist *sgl,
1183 						      unsigned int sgc);
1184 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1185 						     u16 xid);
1186 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1187 						       u16 xid,
1188 						       struct scatterlist *sgl,
1189 						       unsigned int sgc);
1190 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1191 							struct netdev_fcoe_hbainfo *hbainfo);
1192 #endif
1193 
1194 #if IS_ENABLED(CONFIG_LIBFCOE)
1195 #define NETDEV_FCOE_WWNN 0
1196 #define NETDEV_FCOE_WWPN 1
1197 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1198 						    u64 *wwn, int type);
1199 #endif
1200 
1201 #ifdef CONFIG_RFS_ACCEL
1202 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1203 						     const struct sk_buff *skb,
1204 						     u16 rxq_index,
1205 						     u32 flow_id);
1206 #endif
1207 	int			(*ndo_add_slave)(struct net_device *dev,
1208 						 struct net_device *slave_dev);
1209 	int			(*ndo_del_slave)(struct net_device *dev,
1210 						 struct net_device *slave_dev);
1211 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1212 						    netdev_features_t features);
1213 	int			(*ndo_set_features)(struct net_device *dev,
1214 						    netdev_features_t features);
1215 	int			(*ndo_neigh_construct)(struct neighbour *n);
1216 	void			(*ndo_neigh_destroy)(struct neighbour *n);
1217 
1218 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1219 					       struct nlattr *tb[],
1220 					       struct net_device *dev,
1221 					       const unsigned char *addr,
1222 					       u16 vid,
1223 					       u16 flags);
1224 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1225 					       struct nlattr *tb[],
1226 					       struct net_device *dev,
1227 					       const unsigned char *addr,
1228 					       u16 vid);
1229 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1230 						struct netlink_callback *cb,
1231 						struct net_device *dev,
1232 						struct net_device *filter_dev,
1233 						int idx);
1234 
1235 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1236 						      struct nlmsghdr *nlh,
1237 						      u16 flags);
1238 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1239 						      u32 pid, u32 seq,
1240 						      struct net_device *dev,
1241 						      u32 filter_mask,
1242 						      int nlflags);
1243 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1244 						      struct nlmsghdr *nlh,
1245 						      u16 flags);
1246 	int			(*ndo_change_carrier)(struct net_device *dev,
1247 						      bool new_carrier);
1248 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1249 							struct netdev_phys_item_id *ppid);
1250 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1251 							  char *name, size_t len);
1252 	void			(*ndo_add_vxlan_port)(struct  net_device *dev,
1253 						      sa_family_t sa_family,
1254 						      __be16 port);
1255 	void			(*ndo_del_vxlan_port)(struct  net_device *dev,
1256 						      sa_family_t sa_family,
1257 						      __be16 port);
1258 	void			(*ndo_add_geneve_port)(struct  net_device *dev,
1259 						       sa_family_t sa_family,
1260 						       __be16 port);
1261 	void			(*ndo_del_geneve_port)(struct  net_device *dev,
1262 						       sa_family_t sa_family,
1263 						       __be16 port);
1264 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1265 							struct net_device *dev);
1266 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1267 							void *priv);
1268 
1269 	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1270 							struct net_device *dev,
1271 							void *priv);
1272 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1273 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1274 						      int queue_index,
1275 						      u32 maxrate);
1276 	int			(*ndo_get_iflink)(const struct net_device *dev);
1277 	int			(*ndo_change_proto_down)(struct net_device *dev,
1278 							 bool proto_down);
1279 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1280 						       struct sk_buff *skb);
1281 };
1282 
1283 /**
1284  * enum net_device_priv_flags - &struct net_device priv_flags
1285  *
1286  * These are the &struct net_device, they are only set internally
1287  * by drivers and used in the kernel. These flags are invisible to
1288  * userspace, this means that the order of these flags can change
1289  * during any kernel release.
1290  *
1291  * You should have a pretty good reason to be extending these flags.
1292  *
1293  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1294  * @IFF_EBRIDGE: Ethernet bridging device
1295  * @IFF_BONDING: bonding master or slave
1296  * @IFF_ISATAP: ISATAP interface (RFC4214)
1297  * @IFF_WAN_HDLC: WAN HDLC device
1298  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1299  *	release skb->dst
1300  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1301  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1302  * @IFF_MACVLAN_PORT: device used as macvlan port
1303  * @IFF_BRIDGE_PORT: device used as bridge port
1304  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1305  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1306  * @IFF_UNICAST_FLT: Supports unicast filtering
1307  * @IFF_TEAM_PORT: device used as team port
1308  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1309  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1310  *	change when it's running
1311  * @IFF_MACVLAN: Macvlan device
1312  * @IFF_L3MDEV_MASTER: device is an L3 master device
1313  * @IFF_NO_QUEUE: device can run without qdisc attached
1314  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1315  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1316  * @IFF_TEAM: device is a team device
1317  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1318  */
1319 enum netdev_priv_flags {
1320 	IFF_802_1Q_VLAN			= 1<<0,
1321 	IFF_EBRIDGE			= 1<<1,
1322 	IFF_BONDING			= 1<<2,
1323 	IFF_ISATAP			= 1<<3,
1324 	IFF_WAN_HDLC			= 1<<4,
1325 	IFF_XMIT_DST_RELEASE		= 1<<5,
1326 	IFF_DONT_BRIDGE			= 1<<6,
1327 	IFF_DISABLE_NETPOLL		= 1<<7,
1328 	IFF_MACVLAN_PORT		= 1<<8,
1329 	IFF_BRIDGE_PORT			= 1<<9,
1330 	IFF_OVS_DATAPATH		= 1<<10,
1331 	IFF_TX_SKB_SHARING		= 1<<11,
1332 	IFF_UNICAST_FLT			= 1<<12,
1333 	IFF_TEAM_PORT			= 1<<13,
1334 	IFF_SUPP_NOFCS			= 1<<14,
1335 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1336 	IFF_MACVLAN			= 1<<16,
1337 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1338 	IFF_IPVLAN_MASTER		= 1<<18,
1339 	IFF_IPVLAN_SLAVE		= 1<<19,
1340 	IFF_L3MDEV_MASTER		= 1<<20,
1341 	IFF_NO_QUEUE			= 1<<21,
1342 	IFF_OPENVSWITCH			= 1<<22,
1343 	IFF_L3MDEV_SLAVE		= 1<<23,
1344 	IFF_TEAM			= 1<<24,
1345 	IFF_RXFH_CONFIGURED		= 1<<25,
1346 };
1347 
1348 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1349 #define IFF_EBRIDGE			IFF_EBRIDGE
1350 #define IFF_BONDING			IFF_BONDING
1351 #define IFF_ISATAP			IFF_ISATAP
1352 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1353 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1354 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1355 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1356 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1357 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1358 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1359 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1360 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1361 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1362 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1363 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1364 #define IFF_MACVLAN			IFF_MACVLAN
1365 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1366 #define IFF_IPVLAN_MASTER		IFF_IPVLAN_MASTER
1367 #define IFF_IPVLAN_SLAVE		IFF_IPVLAN_SLAVE
1368 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1369 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1370 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1371 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1372 #define IFF_TEAM			IFF_TEAM
1373 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1374 
1375 /**
1376  *	struct net_device - The DEVICE structure.
1377  *		Actually, this whole structure is a big mistake.  It mixes I/O
1378  *		data with strictly "high-level" data, and it has to know about
1379  *		almost every data structure used in the INET module.
1380  *
1381  *	@name:	This is the first field of the "visible" part of this structure
1382  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1383  *	 	of the interface.
1384  *
1385  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1386  *	@ifalias:	SNMP alias
1387  *	@mem_end:	Shared memory end
1388  *	@mem_start:	Shared memory start
1389  *	@base_addr:	Device I/O address
1390  *	@irq:		Device IRQ number
1391  *
1392  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1393  *
1394  *	@state:		Generic network queuing layer state, see netdev_state_t
1395  *	@dev_list:	The global list of network devices
1396  *	@napi_list:	List entry, that is used for polling napi devices
1397  *	@unreg_list:	List entry, that is used, when we are unregistering the
1398  *			device, see the function unregister_netdev
1399  *	@close_list:	List entry, that is used, when we are closing the device
1400  *
1401  *	@adj_list:	Directly linked devices, like slaves for bonding
1402  *	@all_adj_list:	All linked devices, *including* neighbours
1403  *	@features:	Currently active device features
1404  *	@hw_features:	User-changeable features
1405  *
1406  *	@wanted_features:	User-requested features
1407  *	@vlan_features:		Mask of features inheritable by VLAN devices
1408  *
1409  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1410  *				This field indicates what encapsulation
1411  *				offloads the hardware is capable of doing,
1412  *				and drivers will need to set them appropriately.
1413  *
1414  *	@mpls_features:	Mask of features inheritable by MPLS
1415  *
1416  *	@ifindex:	interface index
1417  *	@group:		The group, that the device belongs to
1418  *
1419  *	@stats:		Statistics struct, which was left as a legacy, use
1420  *			rtnl_link_stats64 instead
1421  *
1422  *	@rx_dropped:	Dropped packets by core network,
1423  *			do not use this in drivers
1424  *	@tx_dropped:	Dropped packets by core network,
1425  *			do not use this in drivers
1426  *	@rx_nohandler:	nohandler dropped packets by core network on
1427  *			inactive devices, do not use this in drivers
1428  *
1429  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1430  *				instead of ioctl,
1431  *				see <net/iw_handler.h> for details.
1432  *	@wireless_data:	Instance data managed by the core of wireless extensions
1433  *
1434  *	@netdev_ops:	Includes several pointers to callbacks,
1435  *			if one wants to override the ndo_*() functions
1436  *	@ethtool_ops:	Management operations
1437  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1438  *			of Layer 2 headers.
1439  *
1440  *	@flags:		Interface flags (a la BSD)
1441  *	@priv_flags:	Like 'flags' but invisible to userspace,
1442  *			see if.h for the definitions
1443  *	@gflags:	Global flags ( kept as legacy )
1444  *	@padded:	How much padding added by alloc_netdev()
1445  *	@operstate:	RFC2863 operstate
1446  *	@link_mode:	Mapping policy to operstate
1447  *	@if_port:	Selectable AUI, TP, ...
1448  *	@dma:		DMA channel
1449  *	@mtu:		Interface MTU value
1450  *	@type:		Interface hardware type
1451  *	@hard_header_len: Hardware header length, which means that this is the
1452  *			  minimum size of a packet.
1453  *
1454  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1455  *			  cases can this be guaranteed
1456  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1457  *			  cases can this be guaranteed. Some cases also use
1458  *			  LL_MAX_HEADER instead to allocate the skb
1459  *
1460  *	interface address info:
1461  *
1462  * 	@perm_addr:		Permanent hw address
1463  * 	@addr_assign_type:	Hw address assignment type
1464  * 	@addr_len:		Hardware address length
1465  * 	@neigh_priv_len;	Used in neigh_alloc(),
1466  * 				initialized only in atm/clip.c
1467  * 	@dev_id:		Used to differentiate devices that share
1468  * 				the same link layer address
1469  * 	@dev_port:		Used to differentiate devices that share
1470  * 				the same function
1471  *	@addr_list_lock:	XXX: need comments on this one
1472  *	@uc_promisc:		Counter, that indicates, that promiscuous mode
1473  *				has been enabled due to the need to listen to
1474  *				additional unicast addresses in a device that
1475  *				does not implement ndo_set_rx_mode()
1476  *	@uc:			unicast mac addresses
1477  *	@mc:			multicast mac addresses
1478  *	@dev_addrs:		list of device hw addresses
1479  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1480  *	@promiscuity:		Number of times, the NIC is told to work in
1481  *				Promiscuous mode, if it becomes 0 the NIC will
1482  *				exit from working in Promiscuous mode
1483  *	@allmulti:		Counter, enables or disables allmulticast mode
1484  *
1485  *	@vlan_info:	VLAN info
1486  *	@dsa_ptr:	dsa specific data
1487  *	@tipc_ptr:	TIPC specific data
1488  *	@atalk_ptr:	AppleTalk link
1489  *	@ip_ptr:	IPv4 specific data
1490  *	@dn_ptr:	DECnet specific data
1491  *	@ip6_ptr:	IPv6 specific data
1492  *	@ax25_ptr:	AX.25 specific data
1493  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1494  *
1495  *	@last_rx:	Time of last Rx
1496  *	@dev_addr:	Hw address (before bcast,
1497  *			because most packets are unicast)
1498  *
1499  *	@_rx:			Array of RX queues
1500  *	@num_rx_queues:		Number of RX queues
1501  *				allocated at register_netdev() time
1502  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1503  *
1504  *	@rx_handler:		handler for received packets
1505  *	@rx_handler_data: 	XXX: need comments on this one
1506  *	@ingress_queue:		XXX: need comments on this one
1507  *	@broadcast:		hw bcast address
1508  *
1509  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1510  *			indexed by RX queue number. Assigned by driver.
1511  *			This must only be set if the ndo_rx_flow_steer
1512  *			operation is defined
1513  *	@index_hlist:		Device index hash chain
1514  *
1515  *	@_tx:			Array of TX queues
1516  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1517  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1518  *	@qdisc:			Root qdisc from userspace point of view
1519  *	@tx_queue_len:		Max frames per queue allowed
1520  *	@tx_global_lock: 	XXX: need comments on this one
1521  *
1522  *	@xps_maps:	XXX: need comments on this one
1523  *
1524  *	@offload_fwd_mark:	Offload device fwding mark
1525  *
1526  *	@trans_start:		Time (in jiffies) of last Tx
1527  *	@watchdog_timeo:	Represents the timeout that is used by
1528  *				the watchdog ( see dev_watchdog() )
1529  *	@watchdog_timer:	List of timers
1530  *
1531  *	@pcpu_refcnt:		Number of references to this device
1532  *	@todo_list:		Delayed register/unregister
1533  *	@link_watch_list:	XXX: need comments on this one
1534  *
1535  *	@reg_state:		Register/unregister state machine
1536  *	@dismantle:		Device is going to be freed
1537  *	@rtnl_link_state:	This enum represents the phases of creating
1538  *				a new link
1539  *
1540  *	@destructor:		Called from unregister,
1541  *				can be used to call free_netdev
1542  *	@npinfo:		XXX: need comments on this one
1543  * 	@nd_net:		Network namespace this network device is inside
1544  *
1545  * 	@ml_priv:	Mid-layer private
1546  * 	@lstats:	Loopback statistics
1547  * 	@tstats:	Tunnel statistics
1548  * 	@dstats:	Dummy statistics
1549  * 	@vstats:	Virtual ethernet statistics
1550  *
1551  *	@garp_port:	GARP
1552  *	@mrp_port:	MRP
1553  *
1554  *	@dev:		Class/net/name entry
1555  *	@sysfs_groups:	Space for optional device, statistics and wireless
1556  *			sysfs groups
1557  *
1558  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1559  *	@rtnl_link_ops:	Rtnl_link_ops
1560  *
1561  *	@gso_max_size:	Maximum size of generic segmentation offload
1562  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1563  *			NIC for GSO
1564  *	@gso_min_segs:	Minimum number of segments that can be passed to the
1565  *			NIC for GSO
1566  *
1567  *	@dcbnl_ops:	Data Center Bridging netlink ops
1568  *	@num_tc:	Number of traffic classes in the net device
1569  *	@tc_to_txq:	XXX: need comments on this one
1570  *	@prio_tc_map	XXX: need comments on this one
1571  *
1572  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1573  *
1574  *	@priomap:	XXX: need comments on this one
1575  *	@phydev:	Physical device may attach itself
1576  *			for hardware timestamping
1577  *
1578  *	@qdisc_tx_busylock:	XXX: need comments on this one
1579  *
1580  *	@proto_down:	protocol port state information can be sent to the
1581  *			switch driver and used to set the phys state of the
1582  *			switch port.
1583  *
1584  *	FIXME: cleanup struct net_device such that network protocol info
1585  *	moves out.
1586  */
1587 
1588 struct net_device {
1589 	char			name[IFNAMSIZ];
1590 	struct hlist_node	name_hlist;
1591 	char 			*ifalias;
1592 	/*
1593 	 *	I/O specific fields
1594 	 *	FIXME: Merge these and struct ifmap into one
1595 	 */
1596 	unsigned long		mem_end;
1597 	unsigned long		mem_start;
1598 	unsigned long		base_addr;
1599 	int			irq;
1600 
1601 	atomic_t		carrier_changes;
1602 
1603 	/*
1604 	 *	Some hardware also needs these fields (state,dev_list,
1605 	 *	napi_list,unreg_list,close_list) but they are not
1606 	 *	part of the usual set specified in Space.c.
1607 	 */
1608 
1609 	unsigned long		state;
1610 
1611 	struct list_head	dev_list;
1612 	struct list_head	napi_list;
1613 	struct list_head	unreg_list;
1614 	struct list_head	close_list;
1615 	struct list_head	ptype_all;
1616 	struct list_head	ptype_specific;
1617 
1618 	struct {
1619 		struct list_head upper;
1620 		struct list_head lower;
1621 	} adj_list;
1622 
1623 	struct {
1624 		struct list_head upper;
1625 		struct list_head lower;
1626 	} all_adj_list;
1627 
1628 	netdev_features_t	features;
1629 	netdev_features_t	hw_features;
1630 	netdev_features_t	wanted_features;
1631 	netdev_features_t	vlan_features;
1632 	netdev_features_t	hw_enc_features;
1633 	netdev_features_t	mpls_features;
1634 
1635 	int			ifindex;
1636 	int			group;
1637 
1638 	struct net_device_stats	stats;
1639 
1640 	atomic_long_t		rx_dropped;
1641 	atomic_long_t		tx_dropped;
1642 	atomic_long_t		rx_nohandler;
1643 
1644 #ifdef CONFIG_WIRELESS_EXT
1645 	const struct iw_handler_def *	wireless_handlers;
1646 	struct iw_public_data *	wireless_data;
1647 #endif
1648 	const struct net_device_ops *netdev_ops;
1649 	const struct ethtool_ops *ethtool_ops;
1650 #ifdef CONFIG_NET_SWITCHDEV
1651 	const struct switchdev_ops *switchdev_ops;
1652 #endif
1653 #ifdef CONFIG_NET_L3_MASTER_DEV
1654 	const struct l3mdev_ops	*l3mdev_ops;
1655 #endif
1656 
1657 	const struct header_ops *header_ops;
1658 
1659 	unsigned int		flags;
1660 	unsigned int		priv_flags;
1661 
1662 	unsigned short		gflags;
1663 	unsigned short		padded;
1664 
1665 	unsigned char		operstate;
1666 	unsigned char		link_mode;
1667 
1668 	unsigned char		if_port;
1669 	unsigned char		dma;
1670 
1671 	unsigned int		mtu;
1672 	unsigned short		type;
1673 	unsigned short		hard_header_len;
1674 
1675 	unsigned short		needed_headroom;
1676 	unsigned short		needed_tailroom;
1677 
1678 	/* Interface address info. */
1679 	unsigned char		perm_addr[MAX_ADDR_LEN];
1680 	unsigned char		addr_assign_type;
1681 	unsigned char		addr_len;
1682 	unsigned short		neigh_priv_len;
1683 	unsigned short          dev_id;
1684 	unsigned short          dev_port;
1685 	spinlock_t		addr_list_lock;
1686 	unsigned char		name_assign_type;
1687 	bool			uc_promisc;
1688 	struct netdev_hw_addr_list	uc;
1689 	struct netdev_hw_addr_list	mc;
1690 	struct netdev_hw_addr_list	dev_addrs;
1691 
1692 #ifdef CONFIG_SYSFS
1693 	struct kset		*queues_kset;
1694 #endif
1695 	unsigned int		promiscuity;
1696 	unsigned int		allmulti;
1697 
1698 
1699 	/* Protocol specific pointers */
1700 
1701 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1702 	struct vlan_info __rcu	*vlan_info;
1703 #endif
1704 #if IS_ENABLED(CONFIG_NET_DSA)
1705 	struct dsa_switch_tree	*dsa_ptr;
1706 #endif
1707 #if IS_ENABLED(CONFIG_TIPC)
1708 	struct tipc_bearer __rcu *tipc_ptr;
1709 #endif
1710 	void 			*atalk_ptr;
1711 	struct in_device __rcu	*ip_ptr;
1712 	struct dn_dev __rcu     *dn_ptr;
1713 	struct inet6_dev __rcu	*ip6_ptr;
1714 	void			*ax25_ptr;
1715 	struct wireless_dev	*ieee80211_ptr;
1716 	struct wpan_dev		*ieee802154_ptr;
1717 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1718 	struct mpls_dev __rcu	*mpls_ptr;
1719 #endif
1720 
1721 /*
1722  * Cache lines mostly used on receive path (including eth_type_trans())
1723  */
1724 	unsigned long		last_rx;
1725 
1726 	/* Interface address info used in eth_type_trans() */
1727 	unsigned char		*dev_addr;
1728 
1729 
1730 #ifdef CONFIG_SYSFS
1731 	struct netdev_rx_queue	*_rx;
1732 
1733 	unsigned int		num_rx_queues;
1734 	unsigned int		real_num_rx_queues;
1735 
1736 #endif
1737 
1738 	unsigned long		gro_flush_timeout;
1739 	rx_handler_func_t __rcu	*rx_handler;
1740 	void __rcu		*rx_handler_data;
1741 
1742 #ifdef CONFIG_NET_CLS_ACT
1743 	struct tcf_proto __rcu  *ingress_cl_list;
1744 #endif
1745 	struct netdev_queue __rcu *ingress_queue;
1746 #ifdef CONFIG_NETFILTER_INGRESS
1747 	struct list_head	nf_hooks_ingress;
1748 #endif
1749 
1750 	unsigned char		broadcast[MAX_ADDR_LEN];
1751 #ifdef CONFIG_RFS_ACCEL
1752 	struct cpu_rmap		*rx_cpu_rmap;
1753 #endif
1754 	struct hlist_node	index_hlist;
1755 
1756 /*
1757  * Cache lines mostly used on transmit path
1758  */
1759 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1760 	unsigned int		num_tx_queues;
1761 	unsigned int		real_num_tx_queues;
1762 	struct Qdisc		*qdisc;
1763 	unsigned long		tx_queue_len;
1764 	spinlock_t		tx_global_lock;
1765 	int			watchdog_timeo;
1766 
1767 #ifdef CONFIG_XPS
1768 	struct xps_dev_maps __rcu *xps_maps;
1769 #endif
1770 #ifdef CONFIG_NET_CLS_ACT
1771 	struct tcf_proto __rcu  *egress_cl_list;
1772 #endif
1773 #ifdef CONFIG_NET_SWITCHDEV
1774 	u32			offload_fwd_mark;
1775 #endif
1776 
1777 	/* These may be needed for future network-power-down code. */
1778 
1779 	/*
1780 	 * trans_start here is expensive for high speed devices on SMP,
1781 	 * please use netdev_queue->trans_start instead.
1782 	 */
1783 	unsigned long		trans_start;
1784 
1785 	struct timer_list	watchdog_timer;
1786 
1787 	int __percpu		*pcpu_refcnt;
1788 	struct list_head	todo_list;
1789 
1790 	struct list_head	link_watch_list;
1791 
1792 	enum { NETREG_UNINITIALIZED=0,
1793 	       NETREG_REGISTERED,	/* completed register_netdevice */
1794 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1795 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1796 	       NETREG_RELEASED,		/* called free_netdev */
1797 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1798 	} reg_state:8;
1799 
1800 	bool dismantle;
1801 
1802 	enum {
1803 		RTNL_LINK_INITIALIZED,
1804 		RTNL_LINK_INITIALIZING,
1805 	} rtnl_link_state:16;
1806 
1807 	void (*destructor)(struct net_device *dev);
1808 
1809 #ifdef CONFIG_NETPOLL
1810 	struct netpoll_info __rcu	*npinfo;
1811 #endif
1812 
1813 	possible_net_t			nd_net;
1814 
1815 	/* mid-layer private */
1816 	union {
1817 		void					*ml_priv;
1818 		struct pcpu_lstats __percpu		*lstats;
1819 		struct pcpu_sw_netstats __percpu	*tstats;
1820 		struct pcpu_dstats __percpu		*dstats;
1821 		struct pcpu_vstats __percpu		*vstats;
1822 	};
1823 
1824 	struct garp_port __rcu	*garp_port;
1825 	struct mrp_port __rcu	*mrp_port;
1826 
1827 	struct device	dev;
1828 	const struct attribute_group *sysfs_groups[4];
1829 	const struct attribute_group *sysfs_rx_queue_group;
1830 
1831 	const struct rtnl_link_ops *rtnl_link_ops;
1832 
1833 	/* for setting kernel sock attribute on TCP connection setup */
1834 #define GSO_MAX_SIZE		65536
1835 	unsigned int		gso_max_size;
1836 #define GSO_MAX_SEGS		65535
1837 	u16			gso_max_segs;
1838 	u16			gso_min_segs;
1839 #ifdef CONFIG_DCB
1840 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1841 #endif
1842 	u8 num_tc;
1843 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1844 	u8 prio_tc_map[TC_BITMASK + 1];
1845 
1846 #if IS_ENABLED(CONFIG_FCOE)
1847 	unsigned int		fcoe_ddp_xid;
1848 #endif
1849 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1850 	struct netprio_map __rcu *priomap;
1851 #endif
1852 	struct phy_device *phydev;
1853 	struct lock_class_key *qdisc_tx_busylock;
1854 	bool proto_down;
1855 };
1856 #define to_net_dev(d) container_of(d, struct net_device, dev)
1857 
1858 #define	NETDEV_ALIGN		32
1859 
1860 static inline
1861 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1862 {
1863 	return dev->prio_tc_map[prio & TC_BITMASK];
1864 }
1865 
1866 static inline
1867 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1868 {
1869 	if (tc >= dev->num_tc)
1870 		return -EINVAL;
1871 
1872 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1873 	return 0;
1874 }
1875 
1876 static inline
1877 void netdev_reset_tc(struct net_device *dev)
1878 {
1879 	dev->num_tc = 0;
1880 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1881 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1882 }
1883 
1884 static inline
1885 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1886 {
1887 	if (tc >= dev->num_tc)
1888 		return -EINVAL;
1889 
1890 	dev->tc_to_txq[tc].count = count;
1891 	dev->tc_to_txq[tc].offset = offset;
1892 	return 0;
1893 }
1894 
1895 static inline
1896 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1897 {
1898 	if (num_tc > TC_MAX_QUEUE)
1899 		return -EINVAL;
1900 
1901 	dev->num_tc = num_tc;
1902 	return 0;
1903 }
1904 
1905 static inline
1906 int netdev_get_num_tc(struct net_device *dev)
1907 {
1908 	return dev->num_tc;
1909 }
1910 
1911 static inline
1912 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1913 					 unsigned int index)
1914 {
1915 	return &dev->_tx[index];
1916 }
1917 
1918 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1919 						    const struct sk_buff *skb)
1920 {
1921 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1922 }
1923 
1924 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1925 					    void (*f)(struct net_device *,
1926 						      struct netdev_queue *,
1927 						      void *),
1928 					    void *arg)
1929 {
1930 	unsigned int i;
1931 
1932 	for (i = 0; i < dev->num_tx_queues; i++)
1933 		f(dev, &dev->_tx[i], arg);
1934 }
1935 
1936 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1937 				    struct sk_buff *skb,
1938 				    void *accel_priv);
1939 
1940 /*
1941  * Net namespace inlines
1942  */
1943 static inline
1944 struct net *dev_net(const struct net_device *dev)
1945 {
1946 	return read_pnet(&dev->nd_net);
1947 }
1948 
1949 static inline
1950 void dev_net_set(struct net_device *dev, struct net *net)
1951 {
1952 	write_pnet(&dev->nd_net, net);
1953 }
1954 
1955 static inline bool netdev_uses_dsa(struct net_device *dev)
1956 {
1957 #if IS_ENABLED(CONFIG_NET_DSA)
1958 	if (dev->dsa_ptr != NULL)
1959 		return dsa_uses_tagged_protocol(dev->dsa_ptr);
1960 #endif
1961 	return false;
1962 }
1963 
1964 /**
1965  *	netdev_priv - access network device private data
1966  *	@dev: network device
1967  *
1968  * Get network device private data
1969  */
1970 static inline void *netdev_priv(const struct net_device *dev)
1971 {
1972 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1973 }
1974 
1975 /* Set the sysfs physical device reference for the network logical device
1976  * if set prior to registration will cause a symlink during initialization.
1977  */
1978 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1979 
1980 /* Set the sysfs device type for the network logical device to allow
1981  * fine-grained identification of different network device types. For
1982  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1983  */
1984 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1985 
1986 /* Default NAPI poll() weight
1987  * Device drivers are strongly advised to not use bigger value
1988  */
1989 #define NAPI_POLL_WEIGHT 64
1990 
1991 /**
1992  *	netif_napi_add - initialize a napi context
1993  *	@dev:  network device
1994  *	@napi: napi context
1995  *	@poll: polling function
1996  *	@weight: default weight
1997  *
1998  * netif_napi_add() must be used to initialize a napi context prior to calling
1999  * *any* of the other napi related functions.
2000  */
2001 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2002 		    int (*poll)(struct napi_struct *, int), int weight);
2003 
2004 /**
2005  *	netif_tx_napi_add - initialize a napi context
2006  *	@dev:  network device
2007  *	@napi: napi context
2008  *	@poll: polling function
2009  *	@weight: default weight
2010  *
2011  * This variant of netif_napi_add() should be used from drivers using NAPI
2012  * to exclusively poll a TX queue.
2013  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2014  */
2015 static inline void netif_tx_napi_add(struct net_device *dev,
2016 				     struct napi_struct *napi,
2017 				     int (*poll)(struct napi_struct *, int),
2018 				     int weight)
2019 {
2020 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2021 	netif_napi_add(dev, napi, poll, weight);
2022 }
2023 
2024 /**
2025  *  netif_napi_del - remove a napi context
2026  *  @napi: napi context
2027  *
2028  *  netif_napi_del() removes a napi context from the network device napi list
2029  */
2030 void netif_napi_del(struct napi_struct *napi);
2031 
2032 struct napi_gro_cb {
2033 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2034 	void *frag0;
2035 
2036 	/* Length of frag0. */
2037 	unsigned int frag0_len;
2038 
2039 	/* This indicates where we are processing relative to skb->data. */
2040 	int data_offset;
2041 
2042 	/* This is non-zero if the packet cannot be merged with the new skb. */
2043 	u16	flush;
2044 
2045 	/* Save the IP ID here and check when we get to the transport layer */
2046 	u16	flush_id;
2047 
2048 	/* Number of segments aggregated. */
2049 	u16	count;
2050 
2051 	/* Start offset for remote checksum offload */
2052 	u16	gro_remcsum_start;
2053 
2054 	/* jiffies when first packet was created/queued */
2055 	unsigned long age;
2056 
2057 	/* Used in ipv6_gro_receive() and foo-over-udp */
2058 	u16	proto;
2059 
2060 	/* This is non-zero if the packet may be of the same flow. */
2061 	u8	same_flow:1;
2062 
2063 	/* Used in udp_gro_receive */
2064 	u8	udp_mark:1;
2065 
2066 	/* GRO checksum is valid */
2067 	u8	csum_valid:1;
2068 
2069 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2070 	u8	csum_cnt:3;
2071 
2072 	/* Free the skb? */
2073 	u8	free:2;
2074 #define NAPI_GRO_FREE		  1
2075 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2076 
2077 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2078 	u8	is_ipv6:1;
2079 
2080 	/* 7 bit hole */
2081 
2082 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2083 	__wsum	csum;
2084 
2085 	/* used in skb_gro_receive() slow path */
2086 	struct sk_buff *last;
2087 };
2088 
2089 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2090 
2091 struct packet_type {
2092 	__be16			type;	/* This is really htons(ether_type). */
2093 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2094 	int			(*func) (struct sk_buff *,
2095 					 struct net_device *,
2096 					 struct packet_type *,
2097 					 struct net_device *);
2098 	bool			(*id_match)(struct packet_type *ptype,
2099 					    struct sock *sk);
2100 	void			*af_packet_priv;
2101 	struct list_head	list;
2102 };
2103 
2104 struct offload_callbacks {
2105 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2106 						netdev_features_t features);
2107 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2108 						 struct sk_buff *skb);
2109 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2110 };
2111 
2112 struct packet_offload {
2113 	__be16			 type;	/* This is really htons(ether_type). */
2114 	u16			 priority;
2115 	struct offload_callbacks callbacks;
2116 	struct list_head	 list;
2117 };
2118 
2119 struct udp_offload;
2120 
2121 struct udp_offload_callbacks {
2122 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2123 						 struct sk_buff *skb,
2124 						 struct udp_offload *uoff);
2125 	int			(*gro_complete)(struct sk_buff *skb,
2126 						int nhoff,
2127 						struct udp_offload *uoff);
2128 };
2129 
2130 struct udp_offload {
2131 	__be16			 port;
2132 	u8			 ipproto;
2133 	struct udp_offload_callbacks callbacks;
2134 };
2135 
2136 /* often modified stats are per cpu, other are shared (netdev->stats) */
2137 struct pcpu_sw_netstats {
2138 	u64     rx_packets;
2139 	u64     rx_bytes;
2140 	u64     tx_packets;
2141 	u64     tx_bytes;
2142 	struct u64_stats_sync   syncp;
2143 };
2144 
2145 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2146 ({									\
2147 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2148 	if (pcpu_stats)	{						\
2149 		int __cpu;						\
2150 		for_each_possible_cpu(__cpu) {				\
2151 			typeof(type) *stat;				\
2152 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2153 			u64_stats_init(&stat->syncp);			\
2154 		}							\
2155 	}								\
2156 	pcpu_stats;							\
2157 })
2158 
2159 #define netdev_alloc_pcpu_stats(type)					\
2160 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2161 
2162 enum netdev_lag_tx_type {
2163 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2164 	NETDEV_LAG_TX_TYPE_RANDOM,
2165 	NETDEV_LAG_TX_TYPE_BROADCAST,
2166 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2167 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2168 	NETDEV_LAG_TX_TYPE_HASH,
2169 };
2170 
2171 struct netdev_lag_upper_info {
2172 	enum netdev_lag_tx_type tx_type;
2173 };
2174 
2175 struct netdev_lag_lower_state_info {
2176 	u8 link_up : 1,
2177 	   tx_enabled : 1;
2178 };
2179 
2180 #include <linux/notifier.h>
2181 
2182 /* netdevice notifier chain. Please remember to update the rtnetlink
2183  * notification exclusion list in rtnetlink_event() when adding new
2184  * types.
2185  */
2186 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
2187 #define NETDEV_DOWN	0x0002
2188 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
2189 				   detected a hardware crash and restarted
2190 				   - we can use this eg to kick tcp sessions
2191 				   once done */
2192 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
2193 #define NETDEV_REGISTER 0x0005
2194 #define NETDEV_UNREGISTER	0x0006
2195 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2196 #define NETDEV_CHANGEADDR	0x0008
2197 #define NETDEV_GOING_DOWN	0x0009
2198 #define NETDEV_CHANGENAME	0x000A
2199 #define NETDEV_FEAT_CHANGE	0x000B
2200 #define NETDEV_BONDING_FAILOVER 0x000C
2201 #define NETDEV_PRE_UP		0x000D
2202 #define NETDEV_PRE_TYPE_CHANGE	0x000E
2203 #define NETDEV_POST_TYPE_CHANGE	0x000F
2204 #define NETDEV_POST_INIT	0x0010
2205 #define NETDEV_UNREGISTER_FINAL 0x0011
2206 #define NETDEV_RELEASE		0x0012
2207 #define NETDEV_NOTIFY_PEERS	0x0013
2208 #define NETDEV_JOIN		0x0014
2209 #define NETDEV_CHANGEUPPER	0x0015
2210 #define NETDEV_RESEND_IGMP	0x0016
2211 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2212 #define NETDEV_CHANGEINFODATA	0x0018
2213 #define NETDEV_BONDING_INFO	0x0019
2214 #define NETDEV_PRECHANGEUPPER	0x001A
2215 #define NETDEV_CHANGELOWERSTATE	0x001B
2216 
2217 int register_netdevice_notifier(struct notifier_block *nb);
2218 int unregister_netdevice_notifier(struct notifier_block *nb);
2219 
2220 struct netdev_notifier_info {
2221 	struct net_device *dev;
2222 };
2223 
2224 struct netdev_notifier_change_info {
2225 	struct netdev_notifier_info info; /* must be first */
2226 	unsigned int flags_changed;
2227 };
2228 
2229 struct netdev_notifier_changeupper_info {
2230 	struct netdev_notifier_info info; /* must be first */
2231 	struct net_device *upper_dev; /* new upper dev */
2232 	bool master; /* is upper dev master */
2233 	bool linking; /* is the nofication for link or unlink */
2234 	void *upper_info; /* upper dev info */
2235 };
2236 
2237 struct netdev_notifier_changelowerstate_info {
2238 	struct netdev_notifier_info info; /* must be first */
2239 	void *lower_state_info; /* is lower dev state */
2240 };
2241 
2242 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2243 					     struct net_device *dev)
2244 {
2245 	info->dev = dev;
2246 }
2247 
2248 static inline struct net_device *
2249 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2250 {
2251 	return info->dev;
2252 }
2253 
2254 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2255 
2256 
2257 extern rwlock_t				dev_base_lock;		/* Device list lock */
2258 
2259 #define for_each_netdev(net, d)		\
2260 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2261 #define for_each_netdev_reverse(net, d)	\
2262 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2263 #define for_each_netdev_rcu(net, d)		\
2264 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2265 #define for_each_netdev_safe(net, d, n)	\
2266 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2267 #define for_each_netdev_continue(net, d)		\
2268 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2269 #define for_each_netdev_continue_rcu(net, d)		\
2270 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2271 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2272 		for_each_netdev_rcu(&init_net, slave)	\
2273 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2274 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2275 
2276 static inline struct net_device *next_net_device(struct net_device *dev)
2277 {
2278 	struct list_head *lh;
2279 	struct net *net;
2280 
2281 	net = dev_net(dev);
2282 	lh = dev->dev_list.next;
2283 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2284 }
2285 
2286 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2287 {
2288 	struct list_head *lh;
2289 	struct net *net;
2290 
2291 	net = dev_net(dev);
2292 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2293 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2294 }
2295 
2296 static inline struct net_device *first_net_device(struct net *net)
2297 {
2298 	return list_empty(&net->dev_base_head) ? NULL :
2299 		net_device_entry(net->dev_base_head.next);
2300 }
2301 
2302 static inline struct net_device *first_net_device_rcu(struct net *net)
2303 {
2304 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2305 
2306 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2307 }
2308 
2309 int netdev_boot_setup_check(struct net_device *dev);
2310 unsigned long netdev_boot_base(const char *prefix, int unit);
2311 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2312 				       const char *hwaddr);
2313 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2314 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2315 void dev_add_pack(struct packet_type *pt);
2316 void dev_remove_pack(struct packet_type *pt);
2317 void __dev_remove_pack(struct packet_type *pt);
2318 void dev_add_offload(struct packet_offload *po);
2319 void dev_remove_offload(struct packet_offload *po);
2320 
2321 int dev_get_iflink(const struct net_device *dev);
2322 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2323 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2324 				      unsigned short mask);
2325 struct net_device *dev_get_by_name(struct net *net, const char *name);
2326 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2327 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2328 int dev_alloc_name(struct net_device *dev, const char *name);
2329 int dev_open(struct net_device *dev);
2330 int dev_close(struct net_device *dev);
2331 int dev_close_many(struct list_head *head, bool unlink);
2332 void dev_disable_lro(struct net_device *dev);
2333 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2334 int dev_queue_xmit(struct sk_buff *skb);
2335 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2336 int register_netdevice(struct net_device *dev);
2337 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2338 void unregister_netdevice_many(struct list_head *head);
2339 static inline void unregister_netdevice(struct net_device *dev)
2340 {
2341 	unregister_netdevice_queue(dev, NULL);
2342 }
2343 
2344 int netdev_refcnt_read(const struct net_device *dev);
2345 void free_netdev(struct net_device *dev);
2346 void netdev_freemem(struct net_device *dev);
2347 void synchronize_net(void);
2348 int init_dummy_netdev(struct net_device *dev);
2349 
2350 DECLARE_PER_CPU(int, xmit_recursion);
2351 static inline int dev_recursion_level(void)
2352 {
2353 	return this_cpu_read(xmit_recursion);
2354 }
2355 
2356 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2357 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2358 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2359 int netdev_get_name(struct net *net, char *name, int ifindex);
2360 int dev_restart(struct net_device *dev);
2361 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2362 
2363 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2364 {
2365 	return NAPI_GRO_CB(skb)->data_offset;
2366 }
2367 
2368 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2369 {
2370 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2371 }
2372 
2373 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2374 {
2375 	NAPI_GRO_CB(skb)->data_offset += len;
2376 }
2377 
2378 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2379 					unsigned int offset)
2380 {
2381 	return NAPI_GRO_CB(skb)->frag0 + offset;
2382 }
2383 
2384 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2385 {
2386 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2387 }
2388 
2389 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2390 					unsigned int offset)
2391 {
2392 	if (!pskb_may_pull(skb, hlen))
2393 		return NULL;
2394 
2395 	NAPI_GRO_CB(skb)->frag0 = NULL;
2396 	NAPI_GRO_CB(skb)->frag0_len = 0;
2397 	return skb->data + offset;
2398 }
2399 
2400 static inline void *skb_gro_network_header(struct sk_buff *skb)
2401 {
2402 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2403 	       skb_network_offset(skb);
2404 }
2405 
2406 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2407 					const void *start, unsigned int len)
2408 {
2409 	if (NAPI_GRO_CB(skb)->csum_valid)
2410 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2411 						  csum_partial(start, len, 0));
2412 }
2413 
2414 /* GRO checksum functions. These are logical equivalents of the normal
2415  * checksum functions (in skbuff.h) except that they operate on the GRO
2416  * offsets and fields in sk_buff.
2417  */
2418 
2419 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2420 
2421 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2422 {
2423 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2424 }
2425 
2426 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2427 						      bool zero_okay,
2428 						      __sum16 check)
2429 {
2430 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2431 		skb_checksum_start_offset(skb) <
2432 		 skb_gro_offset(skb)) &&
2433 		!skb_at_gro_remcsum_start(skb) &&
2434 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2435 		(!zero_okay || check));
2436 }
2437 
2438 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2439 							   __wsum psum)
2440 {
2441 	if (NAPI_GRO_CB(skb)->csum_valid &&
2442 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2443 		return 0;
2444 
2445 	NAPI_GRO_CB(skb)->csum = psum;
2446 
2447 	return __skb_gro_checksum_complete(skb);
2448 }
2449 
2450 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2451 {
2452 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2453 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2454 		NAPI_GRO_CB(skb)->csum_cnt--;
2455 	} else {
2456 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2457 		 * verified a new top level checksum or an encapsulated one
2458 		 * during GRO. This saves work if we fallback to normal path.
2459 		 */
2460 		__skb_incr_checksum_unnecessary(skb);
2461 	}
2462 }
2463 
2464 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2465 				    compute_pseudo)			\
2466 ({									\
2467 	__sum16 __ret = 0;						\
2468 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2469 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2470 				compute_pseudo(skb, proto));		\
2471 	if (__ret)							\
2472 		__skb_mark_checksum_bad(skb);				\
2473 	else								\
2474 		skb_gro_incr_csum_unnecessary(skb);			\
2475 	__ret;								\
2476 })
2477 
2478 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2479 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2480 
2481 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2482 					     compute_pseudo)		\
2483 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2484 
2485 #define skb_gro_checksum_simple_validate(skb)				\
2486 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2487 
2488 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2489 {
2490 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2491 		!NAPI_GRO_CB(skb)->csum_valid);
2492 }
2493 
2494 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2495 					      __sum16 check, __wsum pseudo)
2496 {
2497 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2498 	NAPI_GRO_CB(skb)->csum_valid = 1;
2499 }
2500 
2501 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2502 do {									\
2503 	if (__skb_gro_checksum_convert_check(skb))			\
2504 		__skb_gro_checksum_convert(skb, check,			\
2505 					   compute_pseudo(skb, proto));	\
2506 } while (0)
2507 
2508 struct gro_remcsum {
2509 	int offset;
2510 	__wsum delta;
2511 };
2512 
2513 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2514 {
2515 	grc->offset = 0;
2516 	grc->delta = 0;
2517 }
2518 
2519 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2520 					    unsigned int off, size_t hdrlen,
2521 					    int start, int offset,
2522 					    struct gro_remcsum *grc,
2523 					    bool nopartial)
2524 {
2525 	__wsum delta;
2526 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2527 
2528 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2529 
2530 	if (!nopartial) {
2531 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2532 		return ptr;
2533 	}
2534 
2535 	ptr = skb_gro_header_fast(skb, off);
2536 	if (skb_gro_header_hard(skb, off + plen)) {
2537 		ptr = skb_gro_header_slow(skb, off + plen, off);
2538 		if (!ptr)
2539 			return NULL;
2540 	}
2541 
2542 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2543 			       start, offset);
2544 
2545 	/* Adjust skb->csum since we changed the packet */
2546 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2547 
2548 	grc->offset = off + hdrlen + offset;
2549 	grc->delta = delta;
2550 
2551 	return ptr;
2552 }
2553 
2554 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2555 					   struct gro_remcsum *grc)
2556 {
2557 	void *ptr;
2558 	size_t plen = grc->offset + sizeof(u16);
2559 
2560 	if (!grc->delta)
2561 		return;
2562 
2563 	ptr = skb_gro_header_fast(skb, grc->offset);
2564 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2565 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2566 		if (!ptr)
2567 			return;
2568 	}
2569 
2570 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2571 }
2572 
2573 struct skb_csum_offl_spec {
2574 	__u16		ipv4_okay:1,
2575 			ipv6_okay:1,
2576 			encap_okay:1,
2577 			ip_options_okay:1,
2578 			ext_hdrs_okay:1,
2579 			tcp_okay:1,
2580 			udp_okay:1,
2581 			sctp_okay:1,
2582 			vlan_okay:1,
2583 			no_encapped_ipv6:1,
2584 			no_not_encapped:1;
2585 };
2586 
2587 bool __skb_csum_offload_chk(struct sk_buff *skb,
2588 			    const struct skb_csum_offl_spec *spec,
2589 			    bool *csum_encapped,
2590 			    bool csum_help);
2591 
2592 static inline bool skb_csum_offload_chk(struct sk_buff *skb,
2593 					const struct skb_csum_offl_spec *spec,
2594 					bool *csum_encapped,
2595 					bool csum_help)
2596 {
2597 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2598 		return false;
2599 
2600 	return __skb_csum_offload_chk(skb, spec, csum_encapped, csum_help);
2601 }
2602 
2603 static inline bool skb_csum_offload_chk_help(struct sk_buff *skb,
2604 					     const struct skb_csum_offl_spec *spec)
2605 {
2606 	bool csum_encapped;
2607 
2608 	return skb_csum_offload_chk(skb, spec, &csum_encapped, true);
2609 }
2610 
2611 static inline bool skb_csum_off_chk_help_cmn(struct sk_buff *skb)
2612 {
2613 	static const struct skb_csum_offl_spec csum_offl_spec = {
2614 		.ipv4_okay = 1,
2615 		.ip_options_okay = 1,
2616 		.ipv6_okay = 1,
2617 		.vlan_okay = 1,
2618 		.tcp_okay = 1,
2619 		.udp_okay = 1,
2620 	};
2621 
2622 	return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2623 }
2624 
2625 static inline bool skb_csum_off_chk_help_cmn_v4_only(struct sk_buff *skb)
2626 {
2627 	static const struct skb_csum_offl_spec csum_offl_spec = {
2628 		.ipv4_okay = 1,
2629 		.ip_options_okay = 1,
2630 		.tcp_okay = 1,
2631 		.udp_okay = 1,
2632 		.vlan_okay = 1,
2633 	};
2634 
2635 	return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2636 }
2637 
2638 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2639 				  unsigned short type,
2640 				  const void *daddr, const void *saddr,
2641 				  unsigned int len)
2642 {
2643 	if (!dev->header_ops || !dev->header_ops->create)
2644 		return 0;
2645 
2646 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2647 }
2648 
2649 static inline int dev_parse_header(const struct sk_buff *skb,
2650 				   unsigned char *haddr)
2651 {
2652 	const struct net_device *dev = skb->dev;
2653 
2654 	if (!dev->header_ops || !dev->header_ops->parse)
2655 		return 0;
2656 	return dev->header_ops->parse(skb, haddr);
2657 }
2658 
2659 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2660 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2661 static inline int unregister_gifconf(unsigned int family)
2662 {
2663 	return register_gifconf(family, NULL);
2664 }
2665 
2666 #ifdef CONFIG_NET_FLOW_LIMIT
2667 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2668 struct sd_flow_limit {
2669 	u64			count;
2670 	unsigned int		num_buckets;
2671 	unsigned int		history_head;
2672 	u16			history[FLOW_LIMIT_HISTORY];
2673 	u8			buckets[];
2674 };
2675 
2676 extern int netdev_flow_limit_table_len;
2677 #endif /* CONFIG_NET_FLOW_LIMIT */
2678 
2679 /*
2680  * Incoming packets are placed on per-cpu queues
2681  */
2682 struct softnet_data {
2683 	struct list_head	poll_list;
2684 	struct sk_buff_head	process_queue;
2685 
2686 	/* stats */
2687 	unsigned int		processed;
2688 	unsigned int		time_squeeze;
2689 	unsigned int		cpu_collision;
2690 	unsigned int		received_rps;
2691 #ifdef CONFIG_RPS
2692 	struct softnet_data	*rps_ipi_list;
2693 #endif
2694 #ifdef CONFIG_NET_FLOW_LIMIT
2695 	struct sd_flow_limit __rcu *flow_limit;
2696 #endif
2697 	struct Qdisc		*output_queue;
2698 	struct Qdisc		**output_queue_tailp;
2699 	struct sk_buff		*completion_queue;
2700 
2701 #ifdef CONFIG_RPS
2702 	/* Elements below can be accessed between CPUs for RPS */
2703 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2704 	struct softnet_data	*rps_ipi_next;
2705 	unsigned int		cpu;
2706 	unsigned int		input_queue_head;
2707 	unsigned int		input_queue_tail;
2708 #endif
2709 	unsigned int		dropped;
2710 	struct sk_buff_head	input_pkt_queue;
2711 	struct napi_struct	backlog;
2712 
2713 };
2714 
2715 static inline void input_queue_head_incr(struct softnet_data *sd)
2716 {
2717 #ifdef CONFIG_RPS
2718 	sd->input_queue_head++;
2719 #endif
2720 }
2721 
2722 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2723 					      unsigned int *qtail)
2724 {
2725 #ifdef CONFIG_RPS
2726 	*qtail = ++sd->input_queue_tail;
2727 #endif
2728 }
2729 
2730 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2731 
2732 void __netif_schedule(struct Qdisc *q);
2733 void netif_schedule_queue(struct netdev_queue *txq);
2734 
2735 static inline void netif_tx_schedule_all(struct net_device *dev)
2736 {
2737 	unsigned int i;
2738 
2739 	for (i = 0; i < dev->num_tx_queues; i++)
2740 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2741 }
2742 
2743 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2744 {
2745 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2746 }
2747 
2748 /**
2749  *	netif_start_queue - allow transmit
2750  *	@dev: network device
2751  *
2752  *	Allow upper layers to call the device hard_start_xmit routine.
2753  */
2754 static inline void netif_start_queue(struct net_device *dev)
2755 {
2756 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2757 }
2758 
2759 static inline void netif_tx_start_all_queues(struct net_device *dev)
2760 {
2761 	unsigned int i;
2762 
2763 	for (i = 0; i < dev->num_tx_queues; i++) {
2764 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2765 		netif_tx_start_queue(txq);
2766 	}
2767 }
2768 
2769 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2770 
2771 /**
2772  *	netif_wake_queue - restart transmit
2773  *	@dev: network device
2774  *
2775  *	Allow upper layers to call the device hard_start_xmit routine.
2776  *	Used for flow control when transmit resources are available.
2777  */
2778 static inline void netif_wake_queue(struct net_device *dev)
2779 {
2780 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2781 }
2782 
2783 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2784 {
2785 	unsigned int i;
2786 
2787 	for (i = 0; i < dev->num_tx_queues; i++) {
2788 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2789 		netif_tx_wake_queue(txq);
2790 	}
2791 }
2792 
2793 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2794 {
2795 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2796 }
2797 
2798 /**
2799  *	netif_stop_queue - stop transmitted packets
2800  *	@dev: network device
2801  *
2802  *	Stop upper layers calling the device hard_start_xmit routine.
2803  *	Used for flow control when transmit resources are unavailable.
2804  */
2805 static inline void netif_stop_queue(struct net_device *dev)
2806 {
2807 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2808 }
2809 
2810 void netif_tx_stop_all_queues(struct net_device *dev);
2811 
2812 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2813 {
2814 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2815 }
2816 
2817 /**
2818  *	netif_queue_stopped - test if transmit queue is flowblocked
2819  *	@dev: network device
2820  *
2821  *	Test if transmit queue on device is currently unable to send.
2822  */
2823 static inline bool netif_queue_stopped(const struct net_device *dev)
2824 {
2825 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2826 }
2827 
2828 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2829 {
2830 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2831 }
2832 
2833 static inline bool
2834 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2835 {
2836 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2837 }
2838 
2839 static inline bool
2840 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2841 {
2842 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2843 }
2844 
2845 /**
2846  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2847  *	@dev_queue: pointer to transmit queue
2848  *
2849  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2850  * to give appropriate hint to the cpu.
2851  */
2852 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2853 {
2854 #ifdef CONFIG_BQL
2855 	prefetchw(&dev_queue->dql.num_queued);
2856 #endif
2857 }
2858 
2859 /**
2860  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2861  *	@dev_queue: pointer to transmit queue
2862  *
2863  * BQL enabled drivers might use this helper in their TX completion path,
2864  * to give appropriate hint to the cpu.
2865  */
2866 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2867 {
2868 #ifdef CONFIG_BQL
2869 	prefetchw(&dev_queue->dql.limit);
2870 #endif
2871 }
2872 
2873 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2874 					unsigned int bytes)
2875 {
2876 #ifdef CONFIG_BQL
2877 	dql_queued(&dev_queue->dql, bytes);
2878 
2879 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2880 		return;
2881 
2882 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2883 
2884 	/*
2885 	 * The XOFF flag must be set before checking the dql_avail below,
2886 	 * because in netdev_tx_completed_queue we update the dql_completed
2887 	 * before checking the XOFF flag.
2888 	 */
2889 	smp_mb();
2890 
2891 	/* check again in case another CPU has just made room avail */
2892 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2893 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2894 #endif
2895 }
2896 
2897 /**
2898  * 	netdev_sent_queue - report the number of bytes queued to hardware
2899  * 	@dev: network device
2900  * 	@bytes: number of bytes queued to the hardware device queue
2901  *
2902  * 	Report the number of bytes queued for sending/completion to the network
2903  * 	device hardware queue. @bytes should be a good approximation and should
2904  * 	exactly match netdev_completed_queue() @bytes
2905  */
2906 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2907 {
2908 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2909 }
2910 
2911 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2912 					     unsigned int pkts, unsigned int bytes)
2913 {
2914 #ifdef CONFIG_BQL
2915 	if (unlikely(!bytes))
2916 		return;
2917 
2918 	dql_completed(&dev_queue->dql, bytes);
2919 
2920 	/*
2921 	 * Without the memory barrier there is a small possiblity that
2922 	 * netdev_tx_sent_queue will miss the update and cause the queue to
2923 	 * be stopped forever
2924 	 */
2925 	smp_mb();
2926 
2927 	if (dql_avail(&dev_queue->dql) < 0)
2928 		return;
2929 
2930 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2931 		netif_schedule_queue(dev_queue);
2932 #endif
2933 }
2934 
2935 /**
2936  * 	netdev_completed_queue - report bytes and packets completed by device
2937  * 	@dev: network device
2938  * 	@pkts: actual number of packets sent over the medium
2939  * 	@bytes: actual number of bytes sent over the medium
2940  *
2941  * 	Report the number of bytes and packets transmitted by the network device
2942  * 	hardware queue over the physical medium, @bytes must exactly match the
2943  * 	@bytes amount passed to netdev_sent_queue()
2944  */
2945 static inline void netdev_completed_queue(struct net_device *dev,
2946 					  unsigned int pkts, unsigned int bytes)
2947 {
2948 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2949 }
2950 
2951 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2952 {
2953 #ifdef CONFIG_BQL
2954 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2955 	dql_reset(&q->dql);
2956 #endif
2957 }
2958 
2959 /**
2960  * 	netdev_reset_queue - reset the packets and bytes count of a network device
2961  * 	@dev_queue: network device
2962  *
2963  * 	Reset the bytes and packet count of a network device and clear the
2964  * 	software flow control OFF bit for this network device
2965  */
2966 static inline void netdev_reset_queue(struct net_device *dev_queue)
2967 {
2968 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2969 }
2970 
2971 /**
2972  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
2973  * 	@dev: network device
2974  * 	@queue_index: given tx queue index
2975  *
2976  * 	Returns 0 if given tx queue index >= number of device tx queues,
2977  * 	otherwise returns the originally passed tx queue index.
2978  */
2979 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2980 {
2981 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2982 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2983 				     dev->name, queue_index,
2984 				     dev->real_num_tx_queues);
2985 		return 0;
2986 	}
2987 
2988 	return queue_index;
2989 }
2990 
2991 /**
2992  *	netif_running - test if up
2993  *	@dev: network device
2994  *
2995  *	Test if the device has been brought up.
2996  */
2997 static inline bool netif_running(const struct net_device *dev)
2998 {
2999 	return test_bit(__LINK_STATE_START, &dev->state);
3000 }
3001 
3002 /*
3003  * Routines to manage the subqueues on a device.  We only need start
3004  * stop, and a check if it's stopped.  All other device management is
3005  * done at the overall netdevice level.
3006  * Also test the device if we're multiqueue.
3007  */
3008 
3009 /**
3010  *	netif_start_subqueue - allow sending packets on subqueue
3011  *	@dev: network device
3012  *	@queue_index: sub queue index
3013  *
3014  * Start individual transmit queue of a device with multiple transmit queues.
3015  */
3016 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3017 {
3018 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3019 
3020 	netif_tx_start_queue(txq);
3021 }
3022 
3023 /**
3024  *	netif_stop_subqueue - stop sending packets on subqueue
3025  *	@dev: network device
3026  *	@queue_index: sub queue index
3027  *
3028  * Stop individual transmit queue of a device with multiple transmit queues.
3029  */
3030 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3031 {
3032 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3033 	netif_tx_stop_queue(txq);
3034 }
3035 
3036 /**
3037  *	netif_subqueue_stopped - test status of subqueue
3038  *	@dev: network device
3039  *	@queue_index: sub queue index
3040  *
3041  * Check individual transmit queue of a device with multiple transmit queues.
3042  */
3043 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3044 					    u16 queue_index)
3045 {
3046 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3047 
3048 	return netif_tx_queue_stopped(txq);
3049 }
3050 
3051 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3052 					  struct sk_buff *skb)
3053 {
3054 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3055 }
3056 
3057 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
3058 
3059 #ifdef CONFIG_XPS
3060 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3061 			u16 index);
3062 #else
3063 static inline int netif_set_xps_queue(struct net_device *dev,
3064 				      const struct cpumask *mask,
3065 				      u16 index)
3066 {
3067 	return 0;
3068 }
3069 #endif
3070 
3071 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3072 		  unsigned int num_tx_queues);
3073 
3074 /*
3075  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3076  * as a distribution range limit for the returned value.
3077  */
3078 static inline u16 skb_tx_hash(const struct net_device *dev,
3079 			      struct sk_buff *skb)
3080 {
3081 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3082 }
3083 
3084 /**
3085  *	netif_is_multiqueue - test if device has multiple transmit queues
3086  *	@dev: network device
3087  *
3088  * Check if device has multiple transmit queues
3089  */
3090 static inline bool netif_is_multiqueue(const struct net_device *dev)
3091 {
3092 	return dev->num_tx_queues > 1;
3093 }
3094 
3095 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3096 
3097 #ifdef CONFIG_SYSFS
3098 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3099 #else
3100 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3101 						unsigned int rxq)
3102 {
3103 	return 0;
3104 }
3105 #endif
3106 
3107 #ifdef CONFIG_SYSFS
3108 static inline unsigned int get_netdev_rx_queue_index(
3109 		struct netdev_rx_queue *queue)
3110 {
3111 	struct net_device *dev = queue->dev;
3112 	int index = queue - dev->_rx;
3113 
3114 	BUG_ON(index >= dev->num_rx_queues);
3115 	return index;
3116 }
3117 #endif
3118 
3119 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3120 int netif_get_num_default_rss_queues(void);
3121 
3122 enum skb_free_reason {
3123 	SKB_REASON_CONSUMED,
3124 	SKB_REASON_DROPPED,
3125 };
3126 
3127 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3128 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3129 
3130 /*
3131  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3132  * interrupt context or with hardware interrupts being disabled.
3133  * (in_irq() || irqs_disabled())
3134  *
3135  * We provide four helpers that can be used in following contexts :
3136  *
3137  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3138  *  replacing kfree_skb(skb)
3139  *
3140  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3141  *  Typically used in place of consume_skb(skb) in TX completion path
3142  *
3143  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3144  *  replacing kfree_skb(skb)
3145  *
3146  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3147  *  and consumed a packet. Used in place of consume_skb(skb)
3148  */
3149 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3150 {
3151 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3152 }
3153 
3154 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3155 {
3156 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3157 }
3158 
3159 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3160 {
3161 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3162 }
3163 
3164 static inline void dev_consume_skb_any(struct sk_buff *skb)
3165 {
3166 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3167 }
3168 
3169 int netif_rx(struct sk_buff *skb);
3170 int netif_rx_ni(struct sk_buff *skb);
3171 int netif_receive_skb(struct sk_buff *skb);
3172 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3173 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3174 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3175 gro_result_t napi_gro_frags(struct napi_struct *napi);
3176 struct packet_offload *gro_find_receive_by_type(__be16 type);
3177 struct packet_offload *gro_find_complete_by_type(__be16 type);
3178 
3179 static inline void napi_free_frags(struct napi_struct *napi)
3180 {
3181 	kfree_skb(napi->skb);
3182 	napi->skb = NULL;
3183 }
3184 
3185 int netdev_rx_handler_register(struct net_device *dev,
3186 			       rx_handler_func_t *rx_handler,
3187 			       void *rx_handler_data);
3188 void netdev_rx_handler_unregister(struct net_device *dev);
3189 
3190 bool dev_valid_name(const char *name);
3191 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3192 int dev_ethtool(struct net *net, struct ifreq *);
3193 unsigned int dev_get_flags(const struct net_device *);
3194 int __dev_change_flags(struct net_device *, unsigned int flags);
3195 int dev_change_flags(struct net_device *, unsigned int);
3196 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3197 			unsigned int gchanges);
3198 int dev_change_name(struct net_device *, const char *);
3199 int dev_set_alias(struct net_device *, const char *, size_t);
3200 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3201 int dev_set_mtu(struct net_device *, int);
3202 void dev_set_group(struct net_device *, int);
3203 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3204 int dev_change_carrier(struct net_device *, bool new_carrier);
3205 int dev_get_phys_port_id(struct net_device *dev,
3206 			 struct netdev_phys_item_id *ppid);
3207 int dev_get_phys_port_name(struct net_device *dev,
3208 			   char *name, size_t len);
3209 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3210 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3211 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3212 				    struct netdev_queue *txq, int *ret);
3213 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3214 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3215 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
3216 
3217 extern int		netdev_budget;
3218 
3219 /* Called by rtnetlink.c:rtnl_unlock() */
3220 void netdev_run_todo(void);
3221 
3222 /**
3223  *	dev_put - release reference to device
3224  *	@dev: network device
3225  *
3226  * Release reference to device to allow it to be freed.
3227  */
3228 static inline void dev_put(struct net_device *dev)
3229 {
3230 	this_cpu_dec(*dev->pcpu_refcnt);
3231 }
3232 
3233 /**
3234  *	dev_hold - get reference to device
3235  *	@dev: network device
3236  *
3237  * Hold reference to device to keep it from being freed.
3238  */
3239 static inline void dev_hold(struct net_device *dev)
3240 {
3241 	this_cpu_inc(*dev->pcpu_refcnt);
3242 }
3243 
3244 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3245  * and _off may be called from IRQ context, but it is caller
3246  * who is responsible for serialization of these calls.
3247  *
3248  * The name carrier is inappropriate, these functions should really be
3249  * called netif_lowerlayer_*() because they represent the state of any
3250  * kind of lower layer not just hardware media.
3251  */
3252 
3253 void linkwatch_init_dev(struct net_device *dev);
3254 void linkwatch_fire_event(struct net_device *dev);
3255 void linkwatch_forget_dev(struct net_device *dev);
3256 
3257 /**
3258  *	netif_carrier_ok - test if carrier present
3259  *	@dev: network device
3260  *
3261  * Check if carrier is present on device
3262  */
3263 static inline bool netif_carrier_ok(const struct net_device *dev)
3264 {
3265 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3266 }
3267 
3268 unsigned long dev_trans_start(struct net_device *dev);
3269 
3270 void __netdev_watchdog_up(struct net_device *dev);
3271 
3272 void netif_carrier_on(struct net_device *dev);
3273 
3274 void netif_carrier_off(struct net_device *dev);
3275 
3276 /**
3277  *	netif_dormant_on - mark device as dormant.
3278  *	@dev: network device
3279  *
3280  * Mark device as dormant (as per RFC2863).
3281  *
3282  * The dormant state indicates that the relevant interface is not
3283  * actually in a condition to pass packets (i.e., it is not 'up') but is
3284  * in a "pending" state, waiting for some external event.  For "on-
3285  * demand" interfaces, this new state identifies the situation where the
3286  * interface is waiting for events to place it in the up state.
3287  *
3288  */
3289 static inline void netif_dormant_on(struct net_device *dev)
3290 {
3291 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3292 		linkwatch_fire_event(dev);
3293 }
3294 
3295 /**
3296  *	netif_dormant_off - set device as not dormant.
3297  *	@dev: network device
3298  *
3299  * Device is not in dormant state.
3300  */
3301 static inline void netif_dormant_off(struct net_device *dev)
3302 {
3303 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3304 		linkwatch_fire_event(dev);
3305 }
3306 
3307 /**
3308  *	netif_dormant - test if carrier present
3309  *	@dev: network device
3310  *
3311  * Check if carrier is present on device
3312  */
3313 static inline bool netif_dormant(const struct net_device *dev)
3314 {
3315 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3316 }
3317 
3318 
3319 /**
3320  *	netif_oper_up - test if device is operational
3321  *	@dev: network device
3322  *
3323  * Check if carrier is operational
3324  */
3325 static inline bool netif_oper_up(const struct net_device *dev)
3326 {
3327 	return (dev->operstate == IF_OPER_UP ||
3328 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3329 }
3330 
3331 /**
3332  *	netif_device_present - is device available or removed
3333  *	@dev: network device
3334  *
3335  * Check if device has not been removed from system.
3336  */
3337 static inline bool netif_device_present(struct net_device *dev)
3338 {
3339 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3340 }
3341 
3342 void netif_device_detach(struct net_device *dev);
3343 
3344 void netif_device_attach(struct net_device *dev);
3345 
3346 /*
3347  * Network interface message level settings
3348  */
3349 
3350 enum {
3351 	NETIF_MSG_DRV		= 0x0001,
3352 	NETIF_MSG_PROBE		= 0x0002,
3353 	NETIF_MSG_LINK		= 0x0004,
3354 	NETIF_MSG_TIMER		= 0x0008,
3355 	NETIF_MSG_IFDOWN	= 0x0010,
3356 	NETIF_MSG_IFUP		= 0x0020,
3357 	NETIF_MSG_RX_ERR	= 0x0040,
3358 	NETIF_MSG_TX_ERR	= 0x0080,
3359 	NETIF_MSG_TX_QUEUED	= 0x0100,
3360 	NETIF_MSG_INTR		= 0x0200,
3361 	NETIF_MSG_TX_DONE	= 0x0400,
3362 	NETIF_MSG_RX_STATUS	= 0x0800,
3363 	NETIF_MSG_PKTDATA	= 0x1000,
3364 	NETIF_MSG_HW		= 0x2000,
3365 	NETIF_MSG_WOL		= 0x4000,
3366 };
3367 
3368 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3369 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3370 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3371 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3372 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3373 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3374 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3375 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3376 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3377 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3378 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3379 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3380 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3381 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3382 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3383 
3384 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3385 {
3386 	/* use default */
3387 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3388 		return default_msg_enable_bits;
3389 	if (debug_value == 0)	/* no output */
3390 		return 0;
3391 	/* set low N bits */
3392 	return (1 << debug_value) - 1;
3393 }
3394 
3395 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3396 {
3397 	spin_lock(&txq->_xmit_lock);
3398 	txq->xmit_lock_owner = cpu;
3399 }
3400 
3401 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3402 {
3403 	spin_lock_bh(&txq->_xmit_lock);
3404 	txq->xmit_lock_owner = smp_processor_id();
3405 }
3406 
3407 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3408 {
3409 	bool ok = spin_trylock(&txq->_xmit_lock);
3410 	if (likely(ok))
3411 		txq->xmit_lock_owner = smp_processor_id();
3412 	return ok;
3413 }
3414 
3415 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3416 {
3417 	txq->xmit_lock_owner = -1;
3418 	spin_unlock(&txq->_xmit_lock);
3419 }
3420 
3421 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3422 {
3423 	txq->xmit_lock_owner = -1;
3424 	spin_unlock_bh(&txq->_xmit_lock);
3425 }
3426 
3427 static inline void txq_trans_update(struct netdev_queue *txq)
3428 {
3429 	if (txq->xmit_lock_owner != -1)
3430 		txq->trans_start = jiffies;
3431 }
3432 
3433 /**
3434  *	netif_tx_lock - grab network device transmit lock
3435  *	@dev: network device
3436  *
3437  * Get network device transmit lock
3438  */
3439 static inline void netif_tx_lock(struct net_device *dev)
3440 {
3441 	unsigned int i;
3442 	int cpu;
3443 
3444 	spin_lock(&dev->tx_global_lock);
3445 	cpu = smp_processor_id();
3446 	for (i = 0; i < dev->num_tx_queues; i++) {
3447 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3448 
3449 		/* We are the only thread of execution doing a
3450 		 * freeze, but we have to grab the _xmit_lock in
3451 		 * order to synchronize with threads which are in
3452 		 * the ->hard_start_xmit() handler and already
3453 		 * checked the frozen bit.
3454 		 */
3455 		__netif_tx_lock(txq, cpu);
3456 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3457 		__netif_tx_unlock(txq);
3458 	}
3459 }
3460 
3461 static inline void netif_tx_lock_bh(struct net_device *dev)
3462 {
3463 	local_bh_disable();
3464 	netif_tx_lock(dev);
3465 }
3466 
3467 static inline void netif_tx_unlock(struct net_device *dev)
3468 {
3469 	unsigned int i;
3470 
3471 	for (i = 0; i < dev->num_tx_queues; i++) {
3472 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3473 
3474 		/* No need to grab the _xmit_lock here.  If the
3475 		 * queue is not stopped for another reason, we
3476 		 * force a schedule.
3477 		 */
3478 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3479 		netif_schedule_queue(txq);
3480 	}
3481 	spin_unlock(&dev->tx_global_lock);
3482 }
3483 
3484 static inline void netif_tx_unlock_bh(struct net_device *dev)
3485 {
3486 	netif_tx_unlock(dev);
3487 	local_bh_enable();
3488 }
3489 
3490 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3491 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3492 		__netif_tx_lock(txq, cpu);		\
3493 	}						\
3494 }
3495 
3496 #define HARD_TX_TRYLOCK(dev, txq)			\
3497 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3498 		__netif_tx_trylock(txq) :		\
3499 		true )
3500 
3501 #define HARD_TX_UNLOCK(dev, txq) {			\
3502 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3503 		__netif_tx_unlock(txq);			\
3504 	}						\
3505 }
3506 
3507 static inline void netif_tx_disable(struct net_device *dev)
3508 {
3509 	unsigned int i;
3510 	int cpu;
3511 
3512 	local_bh_disable();
3513 	cpu = smp_processor_id();
3514 	for (i = 0; i < dev->num_tx_queues; i++) {
3515 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3516 
3517 		__netif_tx_lock(txq, cpu);
3518 		netif_tx_stop_queue(txq);
3519 		__netif_tx_unlock(txq);
3520 	}
3521 	local_bh_enable();
3522 }
3523 
3524 static inline void netif_addr_lock(struct net_device *dev)
3525 {
3526 	spin_lock(&dev->addr_list_lock);
3527 }
3528 
3529 static inline void netif_addr_lock_nested(struct net_device *dev)
3530 {
3531 	int subclass = SINGLE_DEPTH_NESTING;
3532 
3533 	if (dev->netdev_ops->ndo_get_lock_subclass)
3534 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3535 
3536 	spin_lock_nested(&dev->addr_list_lock, subclass);
3537 }
3538 
3539 static inline void netif_addr_lock_bh(struct net_device *dev)
3540 {
3541 	spin_lock_bh(&dev->addr_list_lock);
3542 }
3543 
3544 static inline void netif_addr_unlock(struct net_device *dev)
3545 {
3546 	spin_unlock(&dev->addr_list_lock);
3547 }
3548 
3549 static inline void netif_addr_unlock_bh(struct net_device *dev)
3550 {
3551 	spin_unlock_bh(&dev->addr_list_lock);
3552 }
3553 
3554 /*
3555  * dev_addrs walker. Should be used only for read access. Call with
3556  * rcu_read_lock held.
3557  */
3558 #define for_each_dev_addr(dev, ha) \
3559 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3560 
3561 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3562 
3563 void ether_setup(struct net_device *dev);
3564 
3565 /* Support for loadable net-drivers */
3566 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3567 				    unsigned char name_assign_type,
3568 				    void (*setup)(struct net_device *),
3569 				    unsigned int txqs, unsigned int rxqs);
3570 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3571 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3572 
3573 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3574 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3575 			 count)
3576 
3577 int register_netdev(struct net_device *dev);
3578 void unregister_netdev(struct net_device *dev);
3579 
3580 /* General hardware address lists handling functions */
3581 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3582 		   struct netdev_hw_addr_list *from_list, int addr_len);
3583 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3584 		      struct netdev_hw_addr_list *from_list, int addr_len);
3585 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3586 		       struct net_device *dev,
3587 		       int (*sync)(struct net_device *, const unsigned char *),
3588 		       int (*unsync)(struct net_device *,
3589 				     const unsigned char *));
3590 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3591 			  struct net_device *dev,
3592 			  int (*unsync)(struct net_device *,
3593 					const unsigned char *));
3594 void __hw_addr_init(struct netdev_hw_addr_list *list);
3595 
3596 /* Functions used for device addresses handling */
3597 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3598 		 unsigned char addr_type);
3599 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3600 		 unsigned char addr_type);
3601 void dev_addr_flush(struct net_device *dev);
3602 int dev_addr_init(struct net_device *dev);
3603 
3604 /* Functions used for unicast addresses handling */
3605 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3606 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3607 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3608 int dev_uc_sync(struct net_device *to, struct net_device *from);
3609 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3610 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3611 void dev_uc_flush(struct net_device *dev);
3612 void dev_uc_init(struct net_device *dev);
3613 
3614 /**
3615  *  __dev_uc_sync - Synchonize device's unicast list
3616  *  @dev:  device to sync
3617  *  @sync: function to call if address should be added
3618  *  @unsync: function to call if address should be removed
3619  *
3620  *  Add newly added addresses to the interface, and release
3621  *  addresses that have been deleted.
3622  **/
3623 static inline int __dev_uc_sync(struct net_device *dev,
3624 				int (*sync)(struct net_device *,
3625 					    const unsigned char *),
3626 				int (*unsync)(struct net_device *,
3627 					      const unsigned char *))
3628 {
3629 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3630 }
3631 
3632 /**
3633  *  __dev_uc_unsync - Remove synchronized addresses from device
3634  *  @dev:  device to sync
3635  *  @unsync: function to call if address should be removed
3636  *
3637  *  Remove all addresses that were added to the device by dev_uc_sync().
3638  **/
3639 static inline void __dev_uc_unsync(struct net_device *dev,
3640 				   int (*unsync)(struct net_device *,
3641 						 const unsigned char *))
3642 {
3643 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3644 }
3645 
3646 /* Functions used for multicast addresses handling */
3647 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3648 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3649 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3650 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3651 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3652 int dev_mc_sync(struct net_device *to, struct net_device *from);
3653 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3654 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3655 void dev_mc_flush(struct net_device *dev);
3656 void dev_mc_init(struct net_device *dev);
3657 
3658 /**
3659  *  __dev_mc_sync - Synchonize device's multicast list
3660  *  @dev:  device to sync
3661  *  @sync: function to call if address should be added
3662  *  @unsync: function to call if address should be removed
3663  *
3664  *  Add newly added addresses to the interface, and release
3665  *  addresses that have been deleted.
3666  **/
3667 static inline int __dev_mc_sync(struct net_device *dev,
3668 				int (*sync)(struct net_device *,
3669 					    const unsigned char *),
3670 				int (*unsync)(struct net_device *,
3671 					      const unsigned char *))
3672 {
3673 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3674 }
3675 
3676 /**
3677  *  __dev_mc_unsync - Remove synchronized addresses from device
3678  *  @dev:  device to sync
3679  *  @unsync: function to call if address should be removed
3680  *
3681  *  Remove all addresses that were added to the device by dev_mc_sync().
3682  **/
3683 static inline void __dev_mc_unsync(struct net_device *dev,
3684 				   int (*unsync)(struct net_device *,
3685 						 const unsigned char *))
3686 {
3687 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3688 }
3689 
3690 /* Functions used for secondary unicast and multicast support */
3691 void dev_set_rx_mode(struct net_device *dev);
3692 void __dev_set_rx_mode(struct net_device *dev);
3693 int dev_set_promiscuity(struct net_device *dev, int inc);
3694 int dev_set_allmulti(struct net_device *dev, int inc);
3695 void netdev_state_change(struct net_device *dev);
3696 void netdev_notify_peers(struct net_device *dev);
3697 void netdev_features_change(struct net_device *dev);
3698 /* Load a device via the kmod */
3699 void dev_load(struct net *net, const char *name);
3700 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3701 					struct rtnl_link_stats64 *storage);
3702 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3703 			     const struct net_device_stats *netdev_stats);
3704 
3705 extern int		netdev_max_backlog;
3706 extern int		netdev_tstamp_prequeue;
3707 extern int		weight_p;
3708 extern int		bpf_jit_enable;
3709 
3710 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3711 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3712 						     struct list_head **iter);
3713 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3714 						     struct list_head **iter);
3715 
3716 /* iterate through upper list, must be called under RCU read lock */
3717 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3718 	for (iter = &(dev)->adj_list.upper, \
3719 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3720 	     updev; \
3721 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3722 
3723 /* iterate through upper list, must be called under RCU read lock */
3724 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3725 	for (iter = &(dev)->all_adj_list.upper, \
3726 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3727 	     updev; \
3728 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3729 
3730 void *netdev_lower_get_next_private(struct net_device *dev,
3731 				    struct list_head **iter);
3732 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3733 					struct list_head **iter);
3734 
3735 #define netdev_for_each_lower_private(dev, priv, iter) \
3736 	for (iter = (dev)->adj_list.lower.next, \
3737 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3738 	     priv; \
3739 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3740 
3741 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3742 	for (iter = &(dev)->adj_list.lower, \
3743 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3744 	     priv; \
3745 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3746 
3747 void *netdev_lower_get_next(struct net_device *dev,
3748 				struct list_head **iter);
3749 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3750 	for (iter = &(dev)->adj_list.lower, \
3751 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3752 	     ldev; \
3753 	     ldev = netdev_lower_get_next(dev, &(iter)))
3754 
3755 void *netdev_adjacent_get_private(struct list_head *adj_list);
3756 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3757 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3758 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3759 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3760 int netdev_master_upper_dev_link(struct net_device *dev,
3761 				 struct net_device *upper_dev,
3762 				 void *upper_priv, void *upper_info);
3763 void netdev_upper_dev_unlink(struct net_device *dev,
3764 			     struct net_device *upper_dev);
3765 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3766 void *netdev_lower_dev_get_private(struct net_device *dev,
3767 				   struct net_device *lower_dev);
3768 void netdev_lower_state_changed(struct net_device *lower_dev,
3769 				void *lower_state_info);
3770 
3771 /* RSS keys are 40 or 52 bytes long */
3772 #define NETDEV_RSS_KEY_LEN 52
3773 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3774 void netdev_rss_key_fill(void *buffer, size_t len);
3775 
3776 int dev_get_nest_level(struct net_device *dev,
3777 		       bool (*type_check)(const struct net_device *dev));
3778 int skb_checksum_help(struct sk_buff *skb);
3779 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3780 				  netdev_features_t features, bool tx_path);
3781 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3782 				    netdev_features_t features);
3783 
3784 struct netdev_bonding_info {
3785 	ifslave	slave;
3786 	ifbond	master;
3787 };
3788 
3789 struct netdev_notifier_bonding_info {
3790 	struct netdev_notifier_info info; /* must be first */
3791 	struct netdev_bonding_info  bonding_info;
3792 };
3793 
3794 void netdev_bonding_info_change(struct net_device *dev,
3795 				struct netdev_bonding_info *bonding_info);
3796 
3797 static inline
3798 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3799 {
3800 	return __skb_gso_segment(skb, features, true);
3801 }
3802 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3803 
3804 static inline bool can_checksum_protocol(netdev_features_t features,
3805 					 __be16 protocol)
3806 {
3807 	if (protocol == htons(ETH_P_FCOE))
3808 		return !!(features & NETIF_F_FCOE_CRC);
3809 
3810 	/* Assume this is an IP checksum (not SCTP CRC) */
3811 
3812 	if (features & NETIF_F_HW_CSUM) {
3813 		/* Can checksum everything */
3814 		return true;
3815 	}
3816 
3817 	switch (protocol) {
3818 	case htons(ETH_P_IP):
3819 		return !!(features & NETIF_F_IP_CSUM);
3820 	case htons(ETH_P_IPV6):
3821 		return !!(features & NETIF_F_IPV6_CSUM);
3822 	default:
3823 		return false;
3824 	}
3825 }
3826 
3827 /* Map an ethertype into IP protocol if possible */
3828 static inline int eproto_to_ipproto(int eproto)
3829 {
3830 	switch (eproto) {
3831 	case htons(ETH_P_IP):
3832 		return IPPROTO_IP;
3833 	case htons(ETH_P_IPV6):
3834 		return IPPROTO_IPV6;
3835 	default:
3836 		return -1;
3837 	}
3838 }
3839 
3840 #ifdef CONFIG_BUG
3841 void netdev_rx_csum_fault(struct net_device *dev);
3842 #else
3843 static inline void netdev_rx_csum_fault(struct net_device *dev)
3844 {
3845 }
3846 #endif
3847 /* rx skb timestamps */
3848 void net_enable_timestamp(void);
3849 void net_disable_timestamp(void);
3850 
3851 #ifdef CONFIG_PROC_FS
3852 int __init dev_proc_init(void);
3853 #else
3854 #define dev_proc_init() 0
3855 #endif
3856 
3857 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3858 					      struct sk_buff *skb, struct net_device *dev,
3859 					      bool more)
3860 {
3861 	skb->xmit_more = more ? 1 : 0;
3862 	return ops->ndo_start_xmit(skb, dev);
3863 }
3864 
3865 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3866 					    struct netdev_queue *txq, bool more)
3867 {
3868 	const struct net_device_ops *ops = dev->netdev_ops;
3869 	int rc;
3870 
3871 	rc = __netdev_start_xmit(ops, skb, dev, more);
3872 	if (rc == NETDEV_TX_OK)
3873 		txq_trans_update(txq);
3874 
3875 	return rc;
3876 }
3877 
3878 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3879 				const void *ns);
3880 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3881 				 const void *ns);
3882 
3883 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3884 {
3885 	return netdev_class_create_file_ns(class_attr, NULL);
3886 }
3887 
3888 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3889 {
3890 	netdev_class_remove_file_ns(class_attr, NULL);
3891 }
3892 
3893 extern struct kobj_ns_type_operations net_ns_type_operations;
3894 
3895 const char *netdev_drivername(const struct net_device *dev);
3896 
3897 void linkwatch_run_queue(void);
3898 
3899 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3900 							  netdev_features_t f2)
3901 {
3902 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
3903 		if (f1 & NETIF_F_HW_CSUM)
3904 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3905 		else
3906 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3907 	}
3908 
3909 	return f1 & f2;
3910 }
3911 
3912 static inline netdev_features_t netdev_get_wanted_features(
3913 	struct net_device *dev)
3914 {
3915 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
3916 }
3917 netdev_features_t netdev_increment_features(netdev_features_t all,
3918 	netdev_features_t one, netdev_features_t mask);
3919 
3920 /* Allow TSO being used on stacked device :
3921  * Performing the GSO segmentation before last device
3922  * is a performance improvement.
3923  */
3924 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3925 							netdev_features_t mask)
3926 {
3927 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3928 }
3929 
3930 int __netdev_update_features(struct net_device *dev);
3931 void netdev_update_features(struct net_device *dev);
3932 void netdev_change_features(struct net_device *dev);
3933 
3934 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3935 					struct net_device *dev);
3936 
3937 netdev_features_t passthru_features_check(struct sk_buff *skb,
3938 					  struct net_device *dev,
3939 					  netdev_features_t features);
3940 netdev_features_t netif_skb_features(struct sk_buff *skb);
3941 
3942 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3943 {
3944 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3945 
3946 	/* check flags correspondence */
3947 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3948 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3949 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3950 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3951 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3952 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3953 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3954 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3955 	BUILD_BUG_ON(SKB_GSO_IPIP    != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3956 	BUILD_BUG_ON(SKB_GSO_SIT     != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3957 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3958 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3959 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3960 
3961 	return (features & feature) == feature;
3962 }
3963 
3964 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3965 {
3966 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3967 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3968 }
3969 
3970 static inline bool netif_needs_gso(struct sk_buff *skb,
3971 				   netdev_features_t features)
3972 {
3973 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3974 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3975 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3976 }
3977 
3978 static inline void netif_set_gso_max_size(struct net_device *dev,
3979 					  unsigned int size)
3980 {
3981 	dev->gso_max_size = size;
3982 }
3983 
3984 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3985 					int pulled_hlen, u16 mac_offset,
3986 					int mac_len)
3987 {
3988 	skb->protocol = protocol;
3989 	skb->encapsulation = 1;
3990 	skb_push(skb, pulled_hlen);
3991 	skb_reset_transport_header(skb);
3992 	skb->mac_header = mac_offset;
3993 	skb->network_header = skb->mac_header + mac_len;
3994 	skb->mac_len = mac_len;
3995 }
3996 
3997 static inline bool netif_is_macvlan(const struct net_device *dev)
3998 {
3999 	return dev->priv_flags & IFF_MACVLAN;
4000 }
4001 
4002 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4003 {
4004 	return dev->priv_flags & IFF_MACVLAN_PORT;
4005 }
4006 
4007 static inline bool netif_is_ipvlan(const struct net_device *dev)
4008 {
4009 	return dev->priv_flags & IFF_IPVLAN_SLAVE;
4010 }
4011 
4012 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4013 {
4014 	return dev->priv_flags & IFF_IPVLAN_MASTER;
4015 }
4016 
4017 static inline bool netif_is_bond_master(const struct net_device *dev)
4018 {
4019 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4020 }
4021 
4022 static inline bool netif_is_bond_slave(const struct net_device *dev)
4023 {
4024 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4025 }
4026 
4027 static inline bool netif_supports_nofcs(struct net_device *dev)
4028 {
4029 	return dev->priv_flags & IFF_SUPP_NOFCS;
4030 }
4031 
4032 static inline bool netif_is_l3_master(const struct net_device *dev)
4033 {
4034 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4035 }
4036 
4037 static inline bool netif_is_l3_slave(const struct net_device *dev)
4038 {
4039 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4040 }
4041 
4042 static inline bool netif_is_bridge_master(const struct net_device *dev)
4043 {
4044 	return dev->priv_flags & IFF_EBRIDGE;
4045 }
4046 
4047 static inline bool netif_is_bridge_port(const struct net_device *dev)
4048 {
4049 	return dev->priv_flags & IFF_BRIDGE_PORT;
4050 }
4051 
4052 static inline bool netif_is_ovs_master(const struct net_device *dev)
4053 {
4054 	return dev->priv_flags & IFF_OPENVSWITCH;
4055 }
4056 
4057 static inline bool netif_is_team_master(const struct net_device *dev)
4058 {
4059 	return dev->priv_flags & IFF_TEAM;
4060 }
4061 
4062 static inline bool netif_is_team_port(const struct net_device *dev)
4063 {
4064 	return dev->priv_flags & IFF_TEAM_PORT;
4065 }
4066 
4067 static inline bool netif_is_lag_master(const struct net_device *dev)
4068 {
4069 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4070 }
4071 
4072 static inline bool netif_is_lag_port(const struct net_device *dev)
4073 {
4074 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4075 }
4076 
4077 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4078 {
4079 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4080 }
4081 
4082 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4083 static inline void netif_keep_dst(struct net_device *dev)
4084 {
4085 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4086 }
4087 
4088 extern struct pernet_operations __net_initdata loopback_net_ops;
4089 
4090 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4091 
4092 /* netdev_printk helpers, similar to dev_printk */
4093 
4094 static inline const char *netdev_name(const struct net_device *dev)
4095 {
4096 	if (!dev->name[0] || strchr(dev->name, '%'))
4097 		return "(unnamed net_device)";
4098 	return dev->name;
4099 }
4100 
4101 static inline const char *netdev_reg_state(const struct net_device *dev)
4102 {
4103 	switch (dev->reg_state) {
4104 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4105 	case NETREG_REGISTERED: return "";
4106 	case NETREG_UNREGISTERING: return " (unregistering)";
4107 	case NETREG_UNREGISTERED: return " (unregistered)";
4108 	case NETREG_RELEASED: return " (released)";
4109 	case NETREG_DUMMY: return " (dummy)";
4110 	}
4111 
4112 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4113 	return " (unknown)";
4114 }
4115 
4116 __printf(3, 4)
4117 void netdev_printk(const char *level, const struct net_device *dev,
4118 		   const char *format, ...);
4119 __printf(2, 3)
4120 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4121 __printf(2, 3)
4122 void netdev_alert(const struct net_device *dev, const char *format, ...);
4123 __printf(2, 3)
4124 void netdev_crit(const struct net_device *dev, const char *format, ...);
4125 __printf(2, 3)
4126 void netdev_err(const struct net_device *dev, const char *format, ...);
4127 __printf(2, 3)
4128 void netdev_warn(const struct net_device *dev, const char *format, ...);
4129 __printf(2, 3)
4130 void netdev_notice(const struct net_device *dev, const char *format, ...);
4131 __printf(2, 3)
4132 void netdev_info(const struct net_device *dev, const char *format, ...);
4133 
4134 #define MODULE_ALIAS_NETDEV(device) \
4135 	MODULE_ALIAS("netdev-" device)
4136 
4137 #if defined(CONFIG_DYNAMIC_DEBUG)
4138 #define netdev_dbg(__dev, format, args...)			\
4139 do {								\
4140 	dynamic_netdev_dbg(__dev, format, ##args);		\
4141 } while (0)
4142 #elif defined(DEBUG)
4143 #define netdev_dbg(__dev, format, args...)			\
4144 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4145 #else
4146 #define netdev_dbg(__dev, format, args...)			\
4147 ({								\
4148 	if (0)							\
4149 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4150 })
4151 #endif
4152 
4153 #if defined(VERBOSE_DEBUG)
4154 #define netdev_vdbg	netdev_dbg
4155 #else
4156 
4157 #define netdev_vdbg(dev, format, args...)			\
4158 ({								\
4159 	if (0)							\
4160 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4161 	0;							\
4162 })
4163 #endif
4164 
4165 /*
4166  * netdev_WARN() acts like dev_printk(), but with the key difference
4167  * of using a WARN/WARN_ON to get the message out, including the
4168  * file/line information and a backtrace.
4169  */
4170 #define netdev_WARN(dev, format, args...)			\
4171 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
4172 	     netdev_reg_state(dev), ##args)
4173 
4174 /* netif printk helpers, similar to netdev_printk */
4175 
4176 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4177 do {					  			\
4178 	if (netif_msg_##type(priv))				\
4179 		netdev_printk(level, (dev), fmt, ##args);	\
4180 } while (0)
4181 
4182 #define netif_level(level, priv, type, dev, fmt, args...)	\
4183 do {								\
4184 	if (netif_msg_##type(priv))				\
4185 		netdev_##level(dev, fmt, ##args);		\
4186 } while (0)
4187 
4188 #define netif_emerg(priv, type, dev, fmt, args...)		\
4189 	netif_level(emerg, priv, type, dev, fmt, ##args)
4190 #define netif_alert(priv, type, dev, fmt, args...)		\
4191 	netif_level(alert, priv, type, dev, fmt, ##args)
4192 #define netif_crit(priv, type, dev, fmt, args...)		\
4193 	netif_level(crit, priv, type, dev, fmt, ##args)
4194 #define netif_err(priv, type, dev, fmt, args...)		\
4195 	netif_level(err, priv, type, dev, fmt, ##args)
4196 #define netif_warn(priv, type, dev, fmt, args...)		\
4197 	netif_level(warn, priv, type, dev, fmt, ##args)
4198 #define netif_notice(priv, type, dev, fmt, args...)		\
4199 	netif_level(notice, priv, type, dev, fmt, ##args)
4200 #define netif_info(priv, type, dev, fmt, args...)		\
4201 	netif_level(info, priv, type, dev, fmt, ##args)
4202 
4203 #if defined(CONFIG_DYNAMIC_DEBUG)
4204 #define netif_dbg(priv, type, netdev, format, args...)		\
4205 do {								\
4206 	if (netif_msg_##type(priv))				\
4207 		dynamic_netdev_dbg(netdev, format, ##args);	\
4208 } while (0)
4209 #elif defined(DEBUG)
4210 #define netif_dbg(priv, type, dev, format, args...)		\
4211 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4212 #else
4213 #define netif_dbg(priv, type, dev, format, args...)			\
4214 ({									\
4215 	if (0)								\
4216 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4217 	0;								\
4218 })
4219 #endif
4220 
4221 #if defined(VERBOSE_DEBUG)
4222 #define netif_vdbg	netif_dbg
4223 #else
4224 #define netif_vdbg(priv, type, dev, format, args...)		\
4225 ({								\
4226 	if (0)							\
4227 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4228 	0;							\
4229 })
4230 #endif
4231 
4232 /*
4233  *	The list of packet types we will receive (as opposed to discard)
4234  *	and the routines to invoke.
4235  *
4236  *	Why 16. Because with 16 the only overlap we get on a hash of the
4237  *	low nibble of the protocol value is RARP/SNAP/X.25.
4238  *
4239  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4240  *             sure which should go first, but I bet it won't make much
4241  *             difference if we are running VLANs.  The good news is that
4242  *             this protocol won't be in the list unless compiled in, so
4243  *             the average user (w/out VLANs) will not be adversely affected.
4244  *             --BLG
4245  *
4246  *		0800	IP
4247  *		8100    802.1Q VLAN
4248  *		0001	802.3
4249  *		0002	AX.25
4250  *		0004	802.2
4251  *		8035	RARP
4252  *		0005	SNAP
4253  *		0805	X.25
4254  *		0806	ARP
4255  *		8137	IPX
4256  *		0009	Localtalk
4257  *		86DD	IPv6
4258  */
4259 #define PTYPE_HASH_SIZE	(16)
4260 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4261 
4262 #endif	/* _LINUX_NETDEVICE_H */
4263