xref: /linux-6.15/include/linux/netdevice.h (revision 5d4a2e29)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <[email protected]>
12  *		Corey Minyard <[email protected]>
13  *		Donald J. Becker, <[email protected]>
14  *		Alan Cox, <[email protected]>
15  *		Bjorn Ekwall. <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/if.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_link.h>
32 
33 #ifdef __KERNEL__
34 #include <linux/pm_qos_params.h>
35 #include <linux/timer.h>
36 #include <linux/delay.h>
37 #include <linux/mm.h>
38 #include <asm/atomic.h>
39 #include <asm/cache.h>
40 #include <asm/byteorder.h>
41 
42 #include <linux/device.h>
43 #include <linux/percpu.h>
44 #include <linux/rculist.h>
45 #include <linux/dmaengine.h>
46 #include <linux/workqueue.h>
47 
48 #include <linux/ethtool.h>
49 #include <net/net_namespace.h>
50 #include <net/dsa.h>
51 #ifdef CONFIG_DCB
52 #include <net/dcbnl.h>
53 #endif
54 
55 struct vlan_group;
56 struct netpoll_info;
57 /* 802.11 specific */
58 struct wireless_dev;
59 					/* source back-compat hooks */
60 #define SET_ETHTOOL_OPS(netdev,ops) \
61 	( (netdev)->ethtool_ops = (ops) )
62 
63 #define HAVE_ALLOC_NETDEV		/* feature macro: alloc_xxxdev
64 					   functions are available. */
65 #define HAVE_FREE_NETDEV		/* free_netdev() */
66 #define HAVE_NETDEV_PRIV		/* netdev_priv() */
67 
68 /* Backlog congestion levels */
69 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
70 #define NET_RX_DROP		1	/* packet dropped */
71 
72 /*
73  * Transmit return codes: transmit return codes originate from three different
74  * namespaces:
75  *
76  * - qdisc return codes
77  * - driver transmit return codes
78  * - errno values
79  *
80  * Drivers are allowed to return any one of those in their hard_start_xmit()
81  * function. Real network devices commonly used with qdiscs should only return
82  * the driver transmit return codes though - when qdiscs are used, the actual
83  * transmission happens asynchronously, so the value is not propagated to
84  * higher layers. Virtual network devices transmit synchronously, in this case
85  * the driver transmit return codes are consumed by dev_queue_xmit(), all
86  * others are propagated to higher layers.
87  */
88 
89 /* qdisc ->enqueue() return codes. */
90 #define NET_XMIT_SUCCESS	0x00
91 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
92 #define NET_XMIT_CN		0x02	/* congestion notification	*/
93 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
94 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
95 
96 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
97  * indicates that the device will soon be dropping packets, or already drops
98  * some packets of the same priority; prompting us to send less aggressively. */
99 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
100 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
101 
102 /* Driver transmit return codes */
103 #define NETDEV_TX_MASK		0xf0
104 
105 enum netdev_tx {
106 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
107 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
108 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
109 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
110 };
111 typedef enum netdev_tx netdev_tx_t;
112 
113 /*
114  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
115  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
116  */
117 static inline bool dev_xmit_complete(int rc)
118 {
119 	/*
120 	 * Positive cases with an skb consumed by a driver:
121 	 * - successful transmission (rc == NETDEV_TX_OK)
122 	 * - error while transmitting (rc < 0)
123 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
124 	 */
125 	if (likely(rc < NET_XMIT_MASK))
126 		return true;
127 
128 	return false;
129 }
130 
131 #endif
132 
133 #define MAX_ADDR_LEN	32		/* Largest hardware address length */
134 
135 #ifdef  __KERNEL__
136 /*
137  *	Compute the worst case header length according to the protocols
138  *	used.
139  */
140 
141 #if defined(CONFIG_WLAN) || defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
142 # if defined(CONFIG_MAC80211_MESH)
143 #  define LL_MAX_HEADER 128
144 # else
145 #  define LL_MAX_HEADER 96
146 # endif
147 #elif defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
148 # define LL_MAX_HEADER 48
149 #else
150 # define LL_MAX_HEADER 32
151 #endif
152 
153 #if !defined(CONFIG_NET_IPIP) && !defined(CONFIG_NET_IPIP_MODULE) && \
154     !defined(CONFIG_NET_IPGRE) &&  !defined(CONFIG_NET_IPGRE_MODULE) && \
155     !defined(CONFIG_IPV6_SIT) && !defined(CONFIG_IPV6_SIT_MODULE) && \
156     !defined(CONFIG_IPV6_TUNNEL) && !defined(CONFIG_IPV6_TUNNEL_MODULE)
157 #define MAX_HEADER LL_MAX_HEADER
158 #else
159 #define MAX_HEADER (LL_MAX_HEADER + 48)
160 #endif
161 
162 #endif  /*  __KERNEL__  */
163 
164 /*
165  *	Network device statistics. Akin to the 2.0 ether stats but
166  *	with byte counters.
167  */
168 
169 struct net_device_stats {
170 	unsigned long	rx_packets;		/* total packets received	*/
171 	unsigned long	tx_packets;		/* total packets transmitted	*/
172 	unsigned long	rx_bytes;		/* total bytes received 	*/
173 	unsigned long	tx_bytes;		/* total bytes transmitted	*/
174 	unsigned long	rx_errors;		/* bad packets received		*/
175 	unsigned long	tx_errors;		/* packet transmit problems	*/
176 	unsigned long	rx_dropped;		/* no space in linux buffers	*/
177 	unsigned long	tx_dropped;		/* no space available in linux	*/
178 	unsigned long	multicast;		/* multicast packets received	*/
179 	unsigned long	collisions;
180 
181 	/* detailed rx_errors: */
182 	unsigned long	rx_length_errors;
183 	unsigned long	rx_over_errors;		/* receiver ring buff overflow	*/
184 	unsigned long	rx_crc_errors;		/* recved pkt with crc error	*/
185 	unsigned long	rx_frame_errors;	/* recv'd frame alignment error */
186 	unsigned long	rx_fifo_errors;		/* recv'r fifo overrun		*/
187 	unsigned long	rx_missed_errors;	/* receiver missed packet	*/
188 
189 	/* detailed tx_errors */
190 	unsigned long	tx_aborted_errors;
191 	unsigned long	tx_carrier_errors;
192 	unsigned long	tx_fifo_errors;
193 	unsigned long	tx_heartbeat_errors;
194 	unsigned long	tx_window_errors;
195 
196 	/* for cslip etc */
197 	unsigned long	rx_compressed;
198 	unsigned long	tx_compressed;
199 };
200 
201 
202 /* Media selection options. */
203 enum {
204         IF_PORT_UNKNOWN = 0,
205         IF_PORT_10BASE2,
206         IF_PORT_10BASET,
207         IF_PORT_AUI,
208         IF_PORT_100BASET,
209         IF_PORT_100BASETX,
210         IF_PORT_100BASEFX
211 };
212 
213 #ifdef __KERNEL__
214 
215 #include <linux/cache.h>
216 #include <linux/skbuff.h>
217 
218 struct neighbour;
219 struct neigh_parms;
220 struct sk_buff;
221 
222 struct netdev_hw_addr {
223 	struct list_head	list;
224 	unsigned char		addr[MAX_ADDR_LEN];
225 	unsigned char		type;
226 #define NETDEV_HW_ADDR_T_LAN		1
227 #define NETDEV_HW_ADDR_T_SAN		2
228 #define NETDEV_HW_ADDR_T_SLAVE		3
229 #define NETDEV_HW_ADDR_T_UNICAST	4
230 #define NETDEV_HW_ADDR_T_MULTICAST	5
231 	int			refcount;
232 	bool			synced;
233 	bool			global_use;
234 	struct rcu_head		rcu_head;
235 };
236 
237 struct netdev_hw_addr_list {
238 	struct list_head	list;
239 	int			count;
240 };
241 
242 #define netdev_hw_addr_list_count(l) ((l)->count)
243 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
244 #define netdev_hw_addr_list_for_each(ha, l) \
245 	list_for_each_entry(ha, &(l)->list, list)
246 
247 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
248 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
249 #define netdev_for_each_uc_addr(ha, dev) \
250 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
251 
252 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
253 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
254 #define netdev_for_each_mc_addr(ha, dev) \
255 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
256 
257 struct hh_cache {
258 	struct hh_cache *hh_next;	/* Next entry			     */
259 	atomic_t	hh_refcnt;	/* number of users                   */
260 /*
261  * We want hh_output, hh_len, hh_lock and hh_data be a in a separate
262  * cache line on SMP.
263  * They are mostly read, but hh_refcnt may be changed quite frequently,
264  * incurring cache line ping pongs.
265  */
266 	__be16		hh_type ____cacheline_aligned_in_smp;
267 					/* protocol identifier, f.e ETH_P_IP
268                                          *  NOTE:  For VLANs, this will be the
269                                          *  encapuslated type. --BLG
270                                          */
271 	u16		hh_len;		/* length of header */
272 	int		(*hh_output)(struct sk_buff *skb);
273 	seqlock_t	hh_lock;
274 
275 	/* cached hardware header; allow for machine alignment needs.        */
276 #define HH_DATA_MOD	16
277 #define HH_DATA_OFF(__len) \
278 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
279 #define HH_DATA_ALIGN(__len) \
280 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
281 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
282 };
283 
284 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
285  * Alternative is:
286  *   dev->hard_header_len ? (dev->hard_header_len +
287  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
288  *
289  * We could use other alignment values, but we must maintain the
290  * relationship HH alignment <= LL alignment.
291  *
292  * LL_ALLOCATED_SPACE also takes into account the tailroom the device
293  * may need.
294  */
295 #define LL_RESERVED_SPACE(dev) \
296 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
297 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
298 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
299 #define LL_ALLOCATED_SPACE(dev) \
300 	((((dev)->hard_header_len+(dev)->needed_headroom+(dev)->needed_tailroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
301 
302 struct header_ops {
303 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
304 			   unsigned short type, const void *daddr,
305 			   const void *saddr, unsigned len);
306 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
307 	int	(*rebuild)(struct sk_buff *skb);
308 #define HAVE_HEADER_CACHE
309 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh);
310 	void	(*cache_update)(struct hh_cache *hh,
311 				const struct net_device *dev,
312 				const unsigned char *haddr);
313 };
314 
315 /* These flag bits are private to the generic network queueing
316  * layer, they may not be explicitly referenced by any other
317  * code.
318  */
319 
320 enum netdev_state_t {
321 	__LINK_STATE_START,
322 	__LINK_STATE_PRESENT,
323 	__LINK_STATE_NOCARRIER,
324 	__LINK_STATE_LINKWATCH_PENDING,
325 	__LINK_STATE_DORMANT,
326 };
327 
328 
329 /*
330  * This structure holds at boot time configured netdevice settings. They
331  * are then used in the device probing.
332  */
333 struct netdev_boot_setup {
334 	char name[IFNAMSIZ];
335 	struct ifmap map;
336 };
337 #define NETDEV_BOOT_SETUP_MAX 8
338 
339 extern int __init netdev_boot_setup(char *str);
340 
341 /*
342  * Structure for NAPI scheduling similar to tasklet but with weighting
343  */
344 struct napi_struct {
345 	/* The poll_list must only be managed by the entity which
346 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
347 	 * whoever atomically sets that bit can add this napi_struct
348 	 * to the per-cpu poll_list, and whoever clears that bit
349 	 * can remove from the list right before clearing the bit.
350 	 */
351 	struct list_head	poll_list;
352 
353 	unsigned long		state;
354 	int			weight;
355 	int			(*poll)(struct napi_struct *, int);
356 #ifdef CONFIG_NETPOLL
357 	spinlock_t		poll_lock;
358 	int			poll_owner;
359 #endif
360 
361 	unsigned int		gro_count;
362 
363 	struct net_device	*dev;
364 	struct list_head	dev_list;
365 	struct sk_buff		*gro_list;
366 	struct sk_buff		*skb;
367 };
368 
369 enum {
370 	NAPI_STATE_SCHED,	/* Poll is scheduled */
371 	NAPI_STATE_DISABLE,	/* Disable pending */
372 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
373 };
374 
375 enum gro_result {
376 	GRO_MERGED,
377 	GRO_MERGED_FREE,
378 	GRO_HELD,
379 	GRO_NORMAL,
380 	GRO_DROP,
381 };
382 typedef enum gro_result gro_result_t;
383 
384 extern void __napi_schedule(struct napi_struct *n);
385 
386 static inline int napi_disable_pending(struct napi_struct *n)
387 {
388 	return test_bit(NAPI_STATE_DISABLE, &n->state);
389 }
390 
391 /**
392  *	napi_schedule_prep - check if napi can be scheduled
393  *	@n: napi context
394  *
395  * Test if NAPI routine is already running, and if not mark
396  * it as running.  This is used as a condition variable
397  * insure only one NAPI poll instance runs.  We also make
398  * sure there is no pending NAPI disable.
399  */
400 static inline int napi_schedule_prep(struct napi_struct *n)
401 {
402 	return !napi_disable_pending(n) &&
403 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
404 }
405 
406 /**
407  *	napi_schedule - schedule NAPI poll
408  *	@n: napi context
409  *
410  * Schedule NAPI poll routine to be called if it is not already
411  * running.
412  */
413 static inline void napi_schedule(struct napi_struct *n)
414 {
415 	if (napi_schedule_prep(n))
416 		__napi_schedule(n);
417 }
418 
419 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
420 static inline int napi_reschedule(struct napi_struct *napi)
421 {
422 	if (napi_schedule_prep(napi)) {
423 		__napi_schedule(napi);
424 		return 1;
425 	}
426 	return 0;
427 }
428 
429 /**
430  *	napi_complete - NAPI processing complete
431  *	@n: napi context
432  *
433  * Mark NAPI processing as complete.
434  */
435 extern void __napi_complete(struct napi_struct *n);
436 extern void napi_complete(struct napi_struct *n);
437 
438 /**
439  *	napi_disable - prevent NAPI from scheduling
440  *	@n: napi context
441  *
442  * Stop NAPI from being scheduled on this context.
443  * Waits till any outstanding processing completes.
444  */
445 static inline void napi_disable(struct napi_struct *n)
446 {
447 	set_bit(NAPI_STATE_DISABLE, &n->state);
448 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
449 		msleep(1);
450 	clear_bit(NAPI_STATE_DISABLE, &n->state);
451 }
452 
453 /**
454  *	napi_enable - enable NAPI scheduling
455  *	@n: napi context
456  *
457  * Resume NAPI from being scheduled on this context.
458  * Must be paired with napi_disable.
459  */
460 static inline void napi_enable(struct napi_struct *n)
461 {
462 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
463 	smp_mb__before_clear_bit();
464 	clear_bit(NAPI_STATE_SCHED, &n->state);
465 }
466 
467 #ifdef CONFIG_SMP
468 /**
469  *	napi_synchronize - wait until NAPI is not running
470  *	@n: napi context
471  *
472  * Wait until NAPI is done being scheduled on this context.
473  * Waits till any outstanding processing completes but
474  * does not disable future activations.
475  */
476 static inline void napi_synchronize(const struct napi_struct *n)
477 {
478 	while (test_bit(NAPI_STATE_SCHED, &n->state))
479 		msleep(1);
480 }
481 #else
482 # define napi_synchronize(n)	barrier()
483 #endif
484 
485 enum netdev_queue_state_t {
486 	__QUEUE_STATE_XOFF,
487 	__QUEUE_STATE_FROZEN,
488 };
489 
490 struct netdev_queue {
491 /*
492  * read mostly part
493  */
494 	struct net_device	*dev;
495 	struct Qdisc		*qdisc;
496 	unsigned long		state;
497 	struct Qdisc		*qdisc_sleeping;
498 /*
499  * write mostly part
500  */
501 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
502 	int			xmit_lock_owner;
503 	/*
504 	 * please use this field instead of dev->trans_start
505 	 */
506 	unsigned long		trans_start;
507 	unsigned long		tx_bytes;
508 	unsigned long		tx_packets;
509 	unsigned long		tx_dropped;
510 } ____cacheline_aligned_in_smp;
511 
512 #ifdef CONFIG_RPS
513 /*
514  * This structure holds an RPS map which can be of variable length.  The
515  * map is an array of CPUs.
516  */
517 struct rps_map {
518 	unsigned int len;
519 	struct rcu_head rcu;
520 	u16 cpus[0];
521 };
522 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + (_num * sizeof(u16)))
523 
524 /*
525  * The rps_dev_flow structure contains the mapping of a flow to a CPU and the
526  * tail pointer for that CPU's input queue at the time of last enqueue.
527  */
528 struct rps_dev_flow {
529 	u16 cpu;
530 	u16 fill;
531 	unsigned int last_qtail;
532 };
533 
534 /*
535  * The rps_dev_flow_table structure contains a table of flow mappings.
536  */
537 struct rps_dev_flow_table {
538 	unsigned int mask;
539 	struct rcu_head rcu;
540 	struct work_struct free_work;
541 	struct rps_dev_flow flows[0];
542 };
543 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
544     (_num * sizeof(struct rps_dev_flow)))
545 
546 /*
547  * The rps_sock_flow_table contains mappings of flows to the last CPU
548  * on which they were processed by the application (set in recvmsg).
549  */
550 struct rps_sock_flow_table {
551 	unsigned int mask;
552 	u16 ents[0];
553 };
554 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
555     (_num * sizeof(u16)))
556 
557 #define RPS_NO_CPU 0xffff
558 
559 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
560 					u32 hash)
561 {
562 	if (table && hash) {
563 		unsigned int cpu, index = hash & table->mask;
564 
565 		/* We only give a hint, preemption can change cpu under us */
566 		cpu = raw_smp_processor_id();
567 
568 		if (table->ents[index] != cpu)
569 			table->ents[index] = cpu;
570 	}
571 }
572 
573 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
574 				       u32 hash)
575 {
576 	if (table && hash)
577 		table->ents[hash & table->mask] = RPS_NO_CPU;
578 }
579 
580 extern struct rps_sock_flow_table *rps_sock_flow_table;
581 
582 /* This structure contains an instance of an RX queue. */
583 struct netdev_rx_queue {
584 	struct rps_map *rps_map;
585 	struct rps_dev_flow_table *rps_flow_table;
586 	struct kobject kobj;
587 	struct netdev_rx_queue *first;
588 	atomic_t count;
589 } ____cacheline_aligned_in_smp;
590 #endif /* CONFIG_RPS */
591 
592 /*
593  * This structure defines the management hooks for network devices.
594  * The following hooks can be defined; unless noted otherwise, they are
595  * optional and can be filled with a null pointer.
596  *
597  * int (*ndo_init)(struct net_device *dev);
598  *     This function is called once when network device is registered.
599  *     The network device can use this to any late stage initializaton
600  *     or semantic validattion. It can fail with an error code which will
601  *     be propogated back to register_netdev
602  *
603  * void (*ndo_uninit)(struct net_device *dev);
604  *     This function is called when device is unregistered or when registration
605  *     fails. It is not called if init fails.
606  *
607  * int (*ndo_open)(struct net_device *dev);
608  *     This function is called when network device transistions to the up
609  *     state.
610  *
611  * int (*ndo_stop)(struct net_device *dev);
612  *     This function is called when network device transistions to the down
613  *     state.
614  *
615  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
616  *                               struct net_device *dev);
617  *	Called when a packet needs to be transmitted.
618  *	Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
619  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
620  *	Required can not be NULL.
621  *
622  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
623  *	Called to decide which queue to when device supports multiple
624  *	transmit queues.
625  *
626  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
627  *	This function is called to allow device receiver to make
628  *	changes to configuration when multicast or promiscious is enabled.
629  *
630  * void (*ndo_set_rx_mode)(struct net_device *dev);
631  *	This function is called device changes address list filtering.
632  *
633  * void (*ndo_set_multicast_list)(struct net_device *dev);
634  *	This function is called when the multicast address list changes.
635  *
636  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
637  *	This function  is called when the Media Access Control address
638  *	needs to be changed. If this interface is not defined, the
639  *	mac address can not be changed.
640  *
641  * int (*ndo_validate_addr)(struct net_device *dev);
642  *	Test if Media Access Control address is valid for the device.
643  *
644  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
645  *	Called when a user request an ioctl which can't be handled by
646  *	the generic interface code. If not defined ioctl's return
647  *	not supported error code.
648  *
649  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
650  *	Used to set network devices bus interface parameters. This interface
651  *	is retained for legacy reason, new devices should use the bus
652  *	interface (PCI) for low level management.
653  *
654  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
655  *	Called when a user wants to change the Maximum Transfer Unit
656  *	of a device. If not defined, any request to change MTU will
657  *	will return an error.
658  *
659  * void (*ndo_tx_timeout)(struct net_device *dev);
660  *	Callback uses when the transmitter has not made any progress
661  *	for dev->watchdog ticks.
662  *
663  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
664  *	Called when a user wants to get the network device usage
665  *	statistics. If not defined, the counters in dev->stats will
666  *	be used.
667  *
668  * void (*ndo_vlan_rx_register)(struct net_device *dev, struct vlan_group *grp);
669  *	If device support VLAN receive accleration
670  *	(ie. dev->features & NETIF_F_HW_VLAN_RX), then this function is called
671  *	when vlan groups for the device changes.  Note: grp is NULL
672  *	if no vlan's groups are being used.
673  *
674  * void (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
675  *	If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
676  *	this function is called when a VLAN id is registered.
677  *
678  * void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
679  *	If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
680  *	this function is called when a VLAN id is unregistered.
681  *
682  * void (*ndo_poll_controller)(struct net_device *dev);
683  *
684  *	SR-IOV management functions.
685  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
686  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
687  * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
688  * int (*ndo_get_vf_config)(struct net_device *dev,
689  *			    int vf, struct ifla_vf_info *ivf);
690  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
691  *			  struct nlattr *port[]);
692  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
693  */
694 #define HAVE_NET_DEVICE_OPS
695 struct net_device_ops {
696 	int			(*ndo_init)(struct net_device *dev);
697 	void			(*ndo_uninit)(struct net_device *dev);
698 	int			(*ndo_open)(struct net_device *dev);
699 	int			(*ndo_stop)(struct net_device *dev);
700 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
701 						   struct net_device *dev);
702 	u16			(*ndo_select_queue)(struct net_device *dev,
703 						    struct sk_buff *skb);
704 	void			(*ndo_change_rx_flags)(struct net_device *dev,
705 						       int flags);
706 	void			(*ndo_set_rx_mode)(struct net_device *dev);
707 	void			(*ndo_set_multicast_list)(struct net_device *dev);
708 	int			(*ndo_set_mac_address)(struct net_device *dev,
709 						       void *addr);
710 	int			(*ndo_validate_addr)(struct net_device *dev);
711 	int			(*ndo_do_ioctl)(struct net_device *dev,
712 					        struct ifreq *ifr, int cmd);
713 	int			(*ndo_set_config)(struct net_device *dev,
714 					          struct ifmap *map);
715 	int			(*ndo_change_mtu)(struct net_device *dev,
716 						  int new_mtu);
717 	int			(*ndo_neigh_setup)(struct net_device *dev,
718 						   struct neigh_parms *);
719 	void			(*ndo_tx_timeout) (struct net_device *dev);
720 
721 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
722 
723 	void			(*ndo_vlan_rx_register)(struct net_device *dev,
724 						        struct vlan_group *grp);
725 	void			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
726 						       unsigned short vid);
727 	void			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
728 						        unsigned short vid);
729 #ifdef CONFIG_NET_POLL_CONTROLLER
730 	void                    (*ndo_poll_controller)(struct net_device *dev);
731 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
732 #endif
733 	int			(*ndo_set_vf_mac)(struct net_device *dev,
734 						  int queue, u8 *mac);
735 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
736 						   int queue, u16 vlan, u8 qos);
737 	int			(*ndo_set_vf_tx_rate)(struct net_device *dev,
738 						      int vf, int rate);
739 	int			(*ndo_get_vf_config)(struct net_device *dev,
740 						     int vf,
741 						     struct ifla_vf_info *ivf);
742 	int			(*ndo_set_vf_port)(struct net_device *dev,
743 						   int vf,
744 						   struct nlattr *port[]);
745 	int			(*ndo_get_vf_port)(struct net_device *dev,
746 						   int vf, struct sk_buff *skb);
747 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
748 	int			(*ndo_fcoe_enable)(struct net_device *dev);
749 	int			(*ndo_fcoe_disable)(struct net_device *dev);
750 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
751 						      u16 xid,
752 						      struct scatterlist *sgl,
753 						      unsigned int sgc);
754 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
755 						     u16 xid);
756 #define NETDEV_FCOE_WWNN 0
757 #define NETDEV_FCOE_WWPN 1
758 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
759 						    u64 *wwn, int type);
760 #endif
761 };
762 
763 /*
764  *	The DEVICE structure.
765  *	Actually, this whole structure is a big mistake.  It mixes I/O
766  *	data with strictly "high-level" data, and it has to know about
767  *	almost every data structure used in the INET module.
768  *
769  *	FIXME: cleanup struct net_device such that network protocol info
770  *	moves out.
771  */
772 
773 struct net_device {
774 
775 	/*
776 	 * This is the first field of the "visible" part of this structure
777 	 * (i.e. as seen by users in the "Space.c" file).  It is the name
778 	 * the interface.
779 	 */
780 	char			name[IFNAMSIZ];
781 
782 	struct pm_qos_request_list *pm_qos_req;
783 
784 	/* device name hash chain */
785 	struct hlist_node	name_hlist;
786 	/* snmp alias */
787 	char 			*ifalias;
788 
789 	/*
790 	 *	I/O specific fields
791 	 *	FIXME: Merge these and struct ifmap into one
792 	 */
793 	unsigned long		mem_end;	/* shared mem end	*/
794 	unsigned long		mem_start;	/* shared mem start	*/
795 	unsigned long		base_addr;	/* device I/O address	*/
796 	unsigned int		irq;		/* device IRQ number	*/
797 
798 	/*
799 	 *	Some hardware also needs these fields, but they are not
800 	 *	part of the usual set specified in Space.c.
801 	 */
802 
803 	unsigned char		if_port;	/* Selectable AUI, TP,..*/
804 	unsigned char		dma;		/* DMA channel		*/
805 
806 	unsigned long		state;
807 
808 	struct list_head	dev_list;
809 	struct list_head	napi_list;
810 	struct list_head	unreg_list;
811 
812 	/* Net device features */
813 	unsigned long		features;
814 #define NETIF_F_SG		1	/* Scatter/gather IO. */
815 #define NETIF_F_IP_CSUM		2	/* Can checksum TCP/UDP over IPv4. */
816 #define NETIF_F_NO_CSUM		4	/* Does not require checksum. F.e. loopack. */
817 #define NETIF_F_HW_CSUM		8	/* Can checksum all the packets. */
818 #define NETIF_F_IPV6_CSUM	16	/* Can checksum TCP/UDP over IPV6 */
819 #define NETIF_F_HIGHDMA		32	/* Can DMA to high memory. */
820 #define NETIF_F_FRAGLIST	64	/* Scatter/gather IO. */
821 #define NETIF_F_HW_VLAN_TX	128	/* Transmit VLAN hw acceleration */
822 #define NETIF_F_HW_VLAN_RX	256	/* Receive VLAN hw acceleration */
823 #define NETIF_F_HW_VLAN_FILTER	512	/* Receive filtering on VLAN */
824 #define NETIF_F_VLAN_CHALLENGED	1024	/* Device cannot handle VLAN packets */
825 #define NETIF_F_GSO		2048	/* Enable software GSO. */
826 #define NETIF_F_LLTX		4096	/* LockLess TX - deprecated. Please */
827 					/* do not use LLTX in new drivers */
828 #define NETIF_F_NETNS_LOCAL	8192	/* Does not change network namespaces */
829 #define NETIF_F_GRO		16384	/* Generic receive offload */
830 #define NETIF_F_LRO		32768	/* large receive offload */
831 
832 /* the GSO_MASK reserves bits 16 through 23 */
833 #define NETIF_F_FCOE_CRC	(1 << 24) /* FCoE CRC32 */
834 #define NETIF_F_SCTP_CSUM	(1 << 25) /* SCTP checksum offload */
835 #define NETIF_F_FCOE_MTU	(1 << 26) /* Supports max FCoE MTU, 2158 bytes*/
836 #define NETIF_F_NTUPLE		(1 << 27) /* N-tuple filters supported */
837 #define NETIF_F_RXHASH		(1 << 28) /* Receive hashing offload */
838 
839 	/* Segmentation offload features */
840 #define NETIF_F_GSO_SHIFT	16
841 #define NETIF_F_GSO_MASK	0x00ff0000
842 #define NETIF_F_TSO		(SKB_GSO_TCPV4 << NETIF_F_GSO_SHIFT)
843 #define NETIF_F_UFO		(SKB_GSO_UDP << NETIF_F_GSO_SHIFT)
844 #define NETIF_F_GSO_ROBUST	(SKB_GSO_DODGY << NETIF_F_GSO_SHIFT)
845 #define NETIF_F_TSO_ECN		(SKB_GSO_TCP_ECN << NETIF_F_GSO_SHIFT)
846 #define NETIF_F_TSO6		(SKB_GSO_TCPV6 << NETIF_F_GSO_SHIFT)
847 #define NETIF_F_FSO		(SKB_GSO_FCOE << NETIF_F_GSO_SHIFT)
848 
849 	/* List of features with software fallbacks. */
850 #define NETIF_F_GSO_SOFTWARE	(NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6)
851 
852 
853 #define NETIF_F_GEN_CSUM	(NETIF_F_NO_CSUM | NETIF_F_HW_CSUM)
854 #define NETIF_F_V4_CSUM		(NETIF_F_GEN_CSUM | NETIF_F_IP_CSUM)
855 #define NETIF_F_V6_CSUM		(NETIF_F_GEN_CSUM | NETIF_F_IPV6_CSUM)
856 #define NETIF_F_ALL_CSUM	(NETIF_F_V4_CSUM | NETIF_F_V6_CSUM)
857 
858 	/*
859 	 * If one device supports one of these features, then enable them
860 	 * for all in netdev_increment_features.
861 	 */
862 #define NETIF_F_ONE_FOR_ALL	(NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ROBUST | \
863 				 NETIF_F_SG | NETIF_F_HIGHDMA |		\
864 				 NETIF_F_FRAGLIST)
865 
866 	/* Interface index. Unique device identifier	*/
867 	int			ifindex;
868 	int			iflink;
869 
870 	struct net_device_stats	stats;
871 
872 #ifdef CONFIG_WIRELESS_EXT
873 	/* List of functions to handle Wireless Extensions (instead of ioctl).
874 	 * See <net/iw_handler.h> for details. Jean II */
875 	const struct iw_handler_def *	wireless_handlers;
876 	/* Instance data managed by the core of Wireless Extensions. */
877 	struct iw_public_data *	wireless_data;
878 #endif
879 	/* Management operations */
880 	const struct net_device_ops *netdev_ops;
881 	const struct ethtool_ops *ethtool_ops;
882 
883 	/* Hardware header description */
884 	const struct header_ops *header_ops;
885 
886 	unsigned int		flags;	/* interface flags (a la BSD)	*/
887 	unsigned short		gflags;
888         unsigned short          priv_flags; /* Like 'flags' but invisible to userspace. */
889 	unsigned short		padded;	/* How much padding added by alloc_netdev() */
890 
891 	unsigned char		operstate; /* RFC2863 operstate */
892 	unsigned char		link_mode; /* mapping policy to operstate */
893 
894 	unsigned int		mtu;	/* interface MTU value		*/
895 	unsigned short		type;	/* interface hardware type	*/
896 	unsigned short		hard_header_len;	/* hardware hdr length	*/
897 
898 	/* extra head- and tailroom the hardware may need, but not in all cases
899 	 * can this be guaranteed, especially tailroom. Some cases also use
900 	 * LL_MAX_HEADER instead to allocate the skb.
901 	 */
902 	unsigned short		needed_headroom;
903 	unsigned short		needed_tailroom;
904 
905 	struct net_device	*master; /* Pointer to master device of a group,
906 					  * which this device is member of.
907 					  */
908 
909 	/* Interface address info. */
910 	unsigned char		perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
911 	unsigned char		addr_len;	/* hardware address length	*/
912 	unsigned short          dev_id;		/* for shared network cards */
913 
914 	spinlock_t		addr_list_lock;
915 	struct netdev_hw_addr_list	uc;	/* Unicast mac addresses */
916 	struct netdev_hw_addr_list	mc;	/* Multicast mac addresses */
917 	int			uc_promisc;
918 	unsigned int		promiscuity;
919 	unsigned int		allmulti;
920 
921 
922 	/* Protocol specific pointers */
923 
924 #ifdef CONFIG_NET_DSA
925 	void			*dsa_ptr;	/* dsa specific data */
926 #endif
927 	void 			*atalk_ptr;	/* AppleTalk link 	*/
928 	void			*ip_ptr;	/* IPv4 specific data	*/
929 	void                    *dn_ptr;        /* DECnet specific data */
930 	void                    *ip6_ptr;       /* IPv6 specific data */
931 	void			*ec_ptr;	/* Econet specific data	*/
932 	void			*ax25_ptr;	/* AX.25 specific data */
933 	struct wireless_dev	*ieee80211_ptr;	/* IEEE 802.11 specific data,
934 						   assign before registering */
935 
936 /*
937  * Cache line mostly used on receive path (including eth_type_trans())
938  */
939 	unsigned long		last_rx;	/* Time of last Rx	*/
940 	/* Interface address info used in eth_type_trans() */
941 	unsigned char		*dev_addr;	/* hw address, (before bcast
942 						   because most packets are
943 						   unicast) */
944 
945 	struct netdev_hw_addr_list	dev_addrs; /* list of device
946 						      hw addresses */
947 
948 	unsigned char		broadcast[MAX_ADDR_LEN];	/* hw bcast add	*/
949 
950 #ifdef CONFIG_RPS
951 	struct kset		*queues_kset;
952 
953 	struct netdev_rx_queue	*_rx;
954 
955 	/* Number of RX queues allocated at alloc_netdev_mq() time  */
956 	unsigned int		num_rx_queues;
957 #endif
958 
959 	struct netdev_queue	rx_queue;
960 
961 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
962 
963 	/* Number of TX queues allocated at alloc_netdev_mq() time  */
964 	unsigned int		num_tx_queues;
965 
966 	/* Number of TX queues currently active in device  */
967 	unsigned int		real_num_tx_queues;
968 
969 	/* root qdisc from userspace point of view */
970 	struct Qdisc		*qdisc;
971 
972 	unsigned long		tx_queue_len;	/* Max frames per queue allowed */
973 	spinlock_t		tx_global_lock;
974 /*
975  * One part is mostly used on xmit path (device)
976  */
977 	/* These may be needed for future network-power-down code. */
978 
979 	/*
980 	 * trans_start here is expensive for high speed devices on SMP,
981 	 * please use netdev_queue->trans_start instead.
982 	 */
983 	unsigned long		trans_start;	/* Time (in jiffies) of last Tx	*/
984 
985 	int			watchdog_timeo; /* used by dev_watchdog() */
986 	struct timer_list	watchdog_timer;
987 
988 	/* Number of references to this device */
989 	atomic_t		refcnt ____cacheline_aligned_in_smp;
990 
991 	/* delayed register/unregister */
992 	struct list_head	todo_list;
993 	/* device index hash chain */
994 	struct hlist_node	index_hlist;
995 
996 	struct list_head	link_watch_list;
997 
998 	/* register/unregister state machine */
999 	enum { NETREG_UNINITIALIZED=0,
1000 	       NETREG_REGISTERED,	/* completed register_netdevice */
1001 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1002 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1003 	       NETREG_RELEASED,		/* called free_netdev */
1004 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1005 	} reg_state:16;
1006 
1007 	enum {
1008 		RTNL_LINK_INITIALIZED,
1009 		RTNL_LINK_INITIALIZING,
1010 	} rtnl_link_state:16;
1011 
1012 	/* Called from unregister, can be used to call free_netdev */
1013 	void (*destructor)(struct net_device *dev);
1014 
1015 #ifdef CONFIG_NETPOLL
1016 	struct netpoll_info	*npinfo;
1017 #endif
1018 
1019 #ifdef CONFIG_NET_NS
1020 	/* Network namespace this network device is inside */
1021 	struct net		*nd_net;
1022 #endif
1023 
1024 	/* mid-layer private */
1025 	void			*ml_priv;
1026 
1027 	/* bridge stuff */
1028 	struct net_bridge_port	*br_port;
1029 	/* macvlan */
1030 	struct macvlan_port	*macvlan_port;
1031 	/* GARP */
1032 	struct garp_port	*garp_port;
1033 
1034 	/* class/net/name entry */
1035 	struct device		dev;
1036 	/* space for optional device, statistics, and wireless sysfs groups */
1037 	const struct attribute_group *sysfs_groups[4];
1038 
1039 	/* rtnetlink link ops */
1040 	const struct rtnl_link_ops *rtnl_link_ops;
1041 
1042 	/* VLAN feature mask */
1043 	unsigned long vlan_features;
1044 
1045 	/* for setting kernel sock attribute on TCP connection setup */
1046 #define GSO_MAX_SIZE		65536
1047 	unsigned int		gso_max_size;
1048 
1049 #ifdef CONFIG_DCB
1050 	/* Data Center Bridging netlink ops */
1051 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1052 #endif
1053 
1054 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
1055 	/* max exchange id for FCoE LRO by ddp */
1056 	unsigned int		fcoe_ddp_xid;
1057 #endif
1058 	/* n-tuple filter list attached to this device */
1059 	struct ethtool_rx_ntuple_list ethtool_ntuple_list;
1060 };
1061 #define to_net_dev(d) container_of(d, struct net_device, dev)
1062 
1063 #define	NETDEV_ALIGN		32
1064 
1065 static inline
1066 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1067 					 unsigned int index)
1068 {
1069 	return &dev->_tx[index];
1070 }
1071 
1072 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1073 					    void (*f)(struct net_device *,
1074 						      struct netdev_queue *,
1075 						      void *),
1076 					    void *arg)
1077 {
1078 	unsigned int i;
1079 
1080 	for (i = 0; i < dev->num_tx_queues; i++)
1081 		f(dev, &dev->_tx[i], arg);
1082 }
1083 
1084 /*
1085  * Net namespace inlines
1086  */
1087 static inline
1088 struct net *dev_net(const struct net_device *dev)
1089 {
1090 #ifdef CONFIG_NET_NS
1091 	return dev->nd_net;
1092 #else
1093 	return &init_net;
1094 #endif
1095 }
1096 
1097 static inline
1098 void dev_net_set(struct net_device *dev, struct net *net)
1099 {
1100 #ifdef CONFIG_NET_NS
1101 	release_net(dev->nd_net);
1102 	dev->nd_net = hold_net(net);
1103 #endif
1104 }
1105 
1106 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1107 {
1108 #ifdef CONFIG_NET_DSA_TAG_DSA
1109 	if (dev->dsa_ptr != NULL)
1110 		return dsa_uses_dsa_tags(dev->dsa_ptr);
1111 #endif
1112 
1113 	return 0;
1114 }
1115 
1116 #ifndef CONFIG_NET_NS
1117 static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1118 {
1119 	skb->dev = dev;
1120 }
1121 #else /* CONFIG_NET_NS */
1122 void skb_set_dev(struct sk_buff *skb, struct net_device *dev);
1123 #endif
1124 
1125 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1126 {
1127 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1128 	if (dev->dsa_ptr != NULL)
1129 		return dsa_uses_trailer_tags(dev->dsa_ptr);
1130 #endif
1131 
1132 	return 0;
1133 }
1134 
1135 /**
1136  *	netdev_priv - access network device private data
1137  *	@dev: network device
1138  *
1139  * Get network device private data
1140  */
1141 static inline void *netdev_priv(const struct net_device *dev)
1142 {
1143 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1144 }
1145 
1146 /* Set the sysfs physical device reference for the network logical device
1147  * if set prior to registration will cause a symlink during initialization.
1148  */
1149 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1150 
1151 /* Set the sysfs device type for the network logical device to allow
1152  * fin grained indentification of different network device types. For
1153  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1154  */
1155 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1156 
1157 /**
1158  *	netif_napi_add - initialize a napi context
1159  *	@dev:  network device
1160  *	@napi: napi context
1161  *	@poll: polling function
1162  *	@weight: default weight
1163  *
1164  * netif_napi_add() must be used to initialize a napi context prior to calling
1165  * *any* of the other napi related functions.
1166  */
1167 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1168 		    int (*poll)(struct napi_struct *, int), int weight);
1169 
1170 /**
1171  *  netif_napi_del - remove a napi context
1172  *  @napi: napi context
1173  *
1174  *  netif_napi_del() removes a napi context from the network device napi list
1175  */
1176 void netif_napi_del(struct napi_struct *napi);
1177 
1178 struct napi_gro_cb {
1179 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1180 	void *frag0;
1181 
1182 	/* Length of frag0. */
1183 	unsigned int frag0_len;
1184 
1185 	/* This indicates where we are processing relative to skb->data. */
1186 	int data_offset;
1187 
1188 	/* This is non-zero if the packet may be of the same flow. */
1189 	int same_flow;
1190 
1191 	/* This is non-zero if the packet cannot be merged with the new skb. */
1192 	int flush;
1193 
1194 	/* Number of segments aggregated. */
1195 	int count;
1196 
1197 	/* Free the skb? */
1198 	int free;
1199 };
1200 
1201 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1202 
1203 struct packet_type {
1204 	__be16			type;	/* This is really htons(ether_type). */
1205 	struct net_device	*dev;	/* NULL is wildcarded here	     */
1206 	int			(*func) (struct sk_buff *,
1207 					 struct net_device *,
1208 					 struct packet_type *,
1209 					 struct net_device *);
1210 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
1211 						int features);
1212 	int			(*gso_send_check)(struct sk_buff *skb);
1213 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
1214 					       struct sk_buff *skb);
1215 	int			(*gro_complete)(struct sk_buff *skb);
1216 	void			*af_packet_priv;
1217 	struct list_head	list;
1218 };
1219 
1220 #include <linux/interrupt.h>
1221 #include <linux/notifier.h>
1222 
1223 extern rwlock_t				dev_base_lock;		/* Device list lock */
1224 
1225 
1226 #define for_each_netdev(net, d)		\
1227 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1228 #define for_each_netdev_reverse(net, d)	\
1229 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1230 #define for_each_netdev_rcu(net, d)		\
1231 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1232 #define for_each_netdev_safe(net, d, n)	\
1233 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1234 #define for_each_netdev_continue(net, d)		\
1235 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1236 #define for_each_netdev_continue_rcu(net, d)		\
1237 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1238 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
1239 
1240 static inline struct net_device *next_net_device(struct net_device *dev)
1241 {
1242 	struct list_head *lh;
1243 	struct net *net;
1244 
1245 	net = dev_net(dev);
1246 	lh = dev->dev_list.next;
1247 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1248 }
1249 
1250 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1251 {
1252 	struct list_head *lh;
1253 	struct net *net;
1254 
1255 	net = dev_net(dev);
1256 	lh = rcu_dereference(dev->dev_list.next);
1257 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1258 }
1259 
1260 static inline struct net_device *first_net_device(struct net *net)
1261 {
1262 	return list_empty(&net->dev_base_head) ? NULL :
1263 		net_device_entry(net->dev_base_head.next);
1264 }
1265 
1266 extern int 			netdev_boot_setup_check(struct net_device *dev);
1267 extern unsigned long		netdev_boot_base(const char *prefix, int unit);
1268 extern struct net_device    *dev_getbyhwaddr(struct net *net, unsigned short type, char *hwaddr);
1269 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1270 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1271 extern void		dev_add_pack(struct packet_type *pt);
1272 extern void		dev_remove_pack(struct packet_type *pt);
1273 extern void		__dev_remove_pack(struct packet_type *pt);
1274 
1275 extern struct net_device	*dev_get_by_flags(struct net *net, unsigned short flags,
1276 						  unsigned short mask);
1277 extern struct net_device	*dev_get_by_name(struct net *net, const char *name);
1278 extern struct net_device	*dev_get_by_name_rcu(struct net *net, const char *name);
1279 extern struct net_device	*__dev_get_by_name(struct net *net, const char *name);
1280 extern int		dev_alloc_name(struct net_device *dev, const char *name);
1281 extern int		dev_open(struct net_device *dev);
1282 extern int		dev_close(struct net_device *dev);
1283 extern void		dev_disable_lro(struct net_device *dev);
1284 extern int		dev_queue_xmit(struct sk_buff *skb);
1285 extern int		register_netdevice(struct net_device *dev);
1286 extern void		unregister_netdevice_queue(struct net_device *dev,
1287 						   struct list_head *head);
1288 extern void		unregister_netdevice_many(struct list_head *head);
1289 static inline void unregister_netdevice(struct net_device *dev)
1290 {
1291 	unregister_netdevice_queue(dev, NULL);
1292 }
1293 
1294 extern void		free_netdev(struct net_device *dev);
1295 extern void		synchronize_net(void);
1296 extern int 		register_netdevice_notifier(struct notifier_block *nb);
1297 extern int		unregister_netdevice_notifier(struct notifier_block *nb);
1298 extern int		init_dummy_netdev(struct net_device *dev);
1299 extern void		netdev_resync_ops(struct net_device *dev);
1300 
1301 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1302 extern struct net_device	*dev_get_by_index(struct net *net, int ifindex);
1303 extern struct net_device	*__dev_get_by_index(struct net *net, int ifindex);
1304 extern struct net_device	*dev_get_by_index_rcu(struct net *net, int ifindex);
1305 extern int		dev_restart(struct net_device *dev);
1306 #ifdef CONFIG_NETPOLL_TRAP
1307 extern int		netpoll_trap(void);
1308 #endif
1309 extern int	       skb_gro_receive(struct sk_buff **head,
1310 				       struct sk_buff *skb);
1311 extern void	       skb_gro_reset_offset(struct sk_buff *skb);
1312 
1313 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1314 {
1315 	return NAPI_GRO_CB(skb)->data_offset;
1316 }
1317 
1318 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1319 {
1320 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
1321 }
1322 
1323 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1324 {
1325 	NAPI_GRO_CB(skb)->data_offset += len;
1326 }
1327 
1328 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1329 					unsigned int offset)
1330 {
1331 	return NAPI_GRO_CB(skb)->frag0 + offset;
1332 }
1333 
1334 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1335 {
1336 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
1337 }
1338 
1339 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1340 					unsigned int offset)
1341 {
1342 	NAPI_GRO_CB(skb)->frag0 = NULL;
1343 	NAPI_GRO_CB(skb)->frag0_len = 0;
1344 	return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL;
1345 }
1346 
1347 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1348 {
1349 	return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1350 }
1351 
1352 static inline void *skb_gro_network_header(struct sk_buff *skb)
1353 {
1354 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1355 	       skb_network_offset(skb);
1356 }
1357 
1358 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1359 				  unsigned short type,
1360 				  const void *daddr, const void *saddr,
1361 				  unsigned len)
1362 {
1363 	if (!dev->header_ops || !dev->header_ops->create)
1364 		return 0;
1365 
1366 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1367 }
1368 
1369 static inline int dev_parse_header(const struct sk_buff *skb,
1370 				   unsigned char *haddr)
1371 {
1372 	const struct net_device *dev = skb->dev;
1373 
1374 	if (!dev->header_ops || !dev->header_ops->parse)
1375 		return 0;
1376 	return dev->header_ops->parse(skb, haddr);
1377 }
1378 
1379 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1380 extern int		register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1381 static inline int unregister_gifconf(unsigned int family)
1382 {
1383 	return register_gifconf(family, NULL);
1384 }
1385 
1386 /*
1387  * Incoming packets are placed on per-cpu queues
1388  */
1389 struct softnet_data {
1390 	struct Qdisc		*output_queue;
1391 	struct Qdisc		**output_queue_tailp;
1392 	struct list_head	poll_list;
1393 	struct sk_buff		*completion_queue;
1394 	struct sk_buff_head	process_queue;
1395 
1396 	/* stats */
1397 	unsigned int		processed;
1398 	unsigned int		time_squeeze;
1399 	unsigned int		cpu_collision;
1400 	unsigned int		received_rps;
1401 
1402 #ifdef CONFIG_RPS
1403 	struct softnet_data	*rps_ipi_list;
1404 
1405 	/* Elements below can be accessed between CPUs for RPS */
1406 	struct call_single_data	csd ____cacheline_aligned_in_smp;
1407 	struct softnet_data	*rps_ipi_next;
1408 	unsigned int		cpu;
1409 	unsigned int		input_queue_head;
1410 	unsigned int		input_queue_tail;
1411 #endif
1412 	unsigned		dropped;
1413 	struct sk_buff_head	input_pkt_queue;
1414 	struct napi_struct	backlog;
1415 };
1416 
1417 static inline void input_queue_head_incr(struct softnet_data *sd)
1418 {
1419 #ifdef CONFIG_RPS
1420 	sd->input_queue_head++;
1421 #endif
1422 }
1423 
1424 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1425 					      unsigned int *qtail)
1426 {
1427 #ifdef CONFIG_RPS
1428 	*qtail = ++sd->input_queue_tail;
1429 #endif
1430 }
1431 
1432 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1433 
1434 #define HAVE_NETIF_QUEUE
1435 
1436 extern void __netif_schedule(struct Qdisc *q);
1437 
1438 static inline void netif_schedule_queue(struct netdev_queue *txq)
1439 {
1440 	if (!test_bit(__QUEUE_STATE_XOFF, &txq->state))
1441 		__netif_schedule(txq->qdisc);
1442 }
1443 
1444 static inline void netif_tx_schedule_all(struct net_device *dev)
1445 {
1446 	unsigned int i;
1447 
1448 	for (i = 0; i < dev->num_tx_queues; i++)
1449 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
1450 }
1451 
1452 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1453 {
1454 	clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1455 }
1456 
1457 /**
1458  *	netif_start_queue - allow transmit
1459  *	@dev: network device
1460  *
1461  *	Allow upper layers to call the device hard_start_xmit routine.
1462  */
1463 static inline void netif_start_queue(struct net_device *dev)
1464 {
1465 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1466 }
1467 
1468 static inline void netif_tx_start_all_queues(struct net_device *dev)
1469 {
1470 	unsigned int i;
1471 
1472 	for (i = 0; i < dev->num_tx_queues; i++) {
1473 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1474 		netif_tx_start_queue(txq);
1475 	}
1476 }
1477 
1478 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1479 {
1480 #ifdef CONFIG_NETPOLL_TRAP
1481 	if (netpoll_trap()) {
1482 		netif_tx_start_queue(dev_queue);
1483 		return;
1484 	}
1485 #endif
1486 	if (test_and_clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state))
1487 		__netif_schedule(dev_queue->qdisc);
1488 }
1489 
1490 /**
1491  *	netif_wake_queue - restart transmit
1492  *	@dev: network device
1493  *
1494  *	Allow upper layers to call the device hard_start_xmit routine.
1495  *	Used for flow control when transmit resources are available.
1496  */
1497 static inline void netif_wake_queue(struct net_device *dev)
1498 {
1499 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1500 }
1501 
1502 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1503 {
1504 	unsigned int i;
1505 
1506 	for (i = 0; i < dev->num_tx_queues; i++) {
1507 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1508 		netif_tx_wake_queue(txq);
1509 	}
1510 }
1511 
1512 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1513 {
1514 	set_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1515 }
1516 
1517 /**
1518  *	netif_stop_queue - stop transmitted packets
1519  *	@dev: network device
1520  *
1521  *	Stop upper layers calling the device hard_start_xmit routine.
1522  *	Used for flow control when transmit resources are unavailable.
1523  */
1524 static inline void netif_stop_queue(struct net_device *dev)
1525 {
1526 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1527 }
1528 
1529 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1530 {
1531 	unsigned int i;
1532 
1533 	for (i = 0; i < dev->num_tx_queues; i++) {
1534 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1535 		netif_tx_stop_queue(txq);
1536 	}
1537 }
1538 
1539 static inline int netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1540 {
1541 	return test_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1542 }
1543 
1544 /**
1545  *	netif_queue_stopped - test if transmit queue is flowblocked
1546  *	@dev: network device
1547  *
1548  *	Test if transmit queue on device is currently unable to send.
1549  */
1550 static inline int netif_queue_stopped(const struct net_device *dev)
1551 {
1552 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1553 }
1554 
1555 static inline int netif_tx_queue_frozen(const struct netdev_queue *dev_queue)
1556 {
1557 	return test_bit(__QUEUE_STATE_FROZEN, &dev_queue->state);
1558 }
1559 
1560 /**
1561  *	netif_running - test if up
1562  *	@dev: network device
1563  *
1564  *	Test if the device has been brought up.
1565  */
1566 static inline int netif_running(const struct net_device *dev)
1567 {
1568 	return test_bit(__LINK_STATE_START, &dev->state);
1569 }
1570 
1571 /*
1572  * Routines to manage the subqueues on a device.  We only need start
1573  * stop, and a check if it's stopped.  All other device management is
1574  * done at the overall netdevice level.
1575  * Also test the device if we're multiqueue.
1576  */
1577 
1578 /**
1579  *	netif_start_subqueue - allow sending packets on subqueue
1580  *	@dev: network device
1581  *	@queue_index: sub queue index
1582  *
1583  * Start individual transmit queue of a device with multiple transmit queues.
1584  */
1585 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
1586 {
1587 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1588 
1589 	netif_tx_start_queue(txq);
1590 }
1591 
1592 /**
1593  *	netif_stop_subqueue - stop sending packets on subqueue
1594  *	@dev: network device
1595  *	@queue_index: sub queue index
1596  *
1597  * Stop individual transmit queue of a device with multiple transmit queues.
1598  */
1599 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
1600 {
1601 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1602 #ifdef CONFIG_NETPOLL_TRAP
1603 	if (netpoll_trap())
1604 		return;
1605 #endif
1606 	netif_tx_stop_queue(txq);
1607 }
1608 
1609 /**
1610  *	netif_subqueue_stopped - test status of subqueue
1611  *	@dev: network device
1612  *	@queue_index: sub queue index
1613  *
1614  * Check individual transmit queue of a device with multiple transmit queues.
1615  */
1616 static inline int __netif_subqueue_stopped(const struct net_device *dev,
1617 					 u16 queue_index)
1618 {
1619 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1620 
1621 	return netif_tx_queue_stopped(txq);
1622 }
1623 
1624 static inline int netif_subqueue_stopped(const struct net_device *dev,
1625 					 struct sk_buff *skb)
1626 {
1627 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
1628 }
1629 
1630 /**
1631  *	netif_wake_subqueue - allow sending packets on subqueue
1632  *	@dev: network device
1633  *	@queue_index: sub queue index
1634  *
1635  * Resume individual transmit queue of a device with multiple transmit queues.
1636  */
1637 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
1638 {
1639 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1640 #ifdef CONFIG_NETPOLL_TRAP
1641 	if (netpoll_trap())
1642 		return;
1643 #endif
1644 	if (test_and_clear_bit(__QUEUE_STATE_XOFF, &txq->state))
1645 		__netif_schedule(txq->qdisc);
1646 }
1647 
1648 /**
1649  *	netif_is_multiqueue - test if device has multiple transmit queues
1650  *	@dev: network device
1651  *
1652  * Check if device has multiple transmit queues
1653  */
1654 static inline int netif_is_multiqueue(const struct net_device *dev)
1655 {
1656 	return (dev->num_tx_queues > 1);
1657 }
1658 
1659 /* Use this variant when it is known for sure that it
1660  * is executing from hardware interrupt context or with hardware interrupts
1661  * disabled.
1662  */
1663 extern void dev_kfree_skb_irq(struct sk_buff *skb);
1664 
1665 /* Use this variant in places where it could be invoked
1666  * from either hardware interrupt or other context, with hardware interrupts
1667  * either disabled or enabled.
1668  */
1669 extern void dev_kfree_skb_any(struct sk_buff *skb);
1670 
1671 #define HAVE_NETIF_RX 1
1672 extern int		netif_rx(struct sk_buff *skb);
1673 extern int		netif_rx_ni(struct sk_buff *skb);
1674 #define HAVE_NETIF_RECEIVE_SKB 1
1675 extern int		netif_receive_skb(struct sk_buff *skb);
1676 extern gro_result_t	dev_gro_receive(struct napi_struct *napi,
1677 					struct sk_buff *skb);
1678 extern gro_result_t	napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
1679 extern gro_result_t	napi_gro_receive(struct napi_struct *napi,
1680 					 struct sk_buff *skb);
1681 extern void		napi_reuse_skb(struct napi_struct *napi,
1682 				       struct sk_buff *skb);
1683 extern struct sk_buff *	napi_get_frags(struct napi_struct *napi);
1684 extern gro_result_t	napi_frags_finish(struct napi_struct *napi,
1685 					  struct sk_buff *skb,
1686 					  gro_result_t ret);
1687 extern struct sk_buff *	napi_frags_skb(struct napi_struct *napi);
1688 extern gro_result_t	napi_gro_frags(struct napi_struct *napi);
1689 
1690 static inline void napi_free_frags(struct napi_struct *napi)
1691 {
1692 	kfree_skb(napi->skb);
1693 	napi->skb = NULL;
1694 }
1695 
1696 extern void		netif_nit_deliver(struct sk_buff *skb);
1697 extern int		dev_valid_name(const char *name);
1698 extern int		dev_ioctl(struct net *net, unsigned int cmd, void __user *);
1699 extern int		dev_ethtool(struct net *net, struct ifreq *);
1700 extern unsigned		dev_get_flags(const struct net_device *);
1701 extern int		__dev_change_flags(struct net_device *, unsigned int flags);
1702 extern int		dev_change_flags(struct net_device *, unsigned);
1703 extern void		__dev_notify_flags(struct net_device *, unsigned int old_flags);
1704 extern int		dev_change_name(struct net_device *, const char *);
1705 extern int		dev_set_alias(struct net_device *, const char *, size_t);
1706 extern int		dev_change_net_namespace(struct net_device *,
1707 						 struct net *, const char *);
1708 extern int		dev_set_mtu(struct net_device *, int);
1709 extern int		dev_set_mac_address(struct net_device *,
1710 					    struct sockaddr *);
1711 extern int		dev_hard_start_xmit(struct sk_buff *skb,
1712 					    struct net_device *dev,
1713 					    struct netdev_queue *txq);
1714 extern int		dev_forward_skb(struct net_device *dev,
1715 					struct sk_buff *skb);
1716 
1717 extern int		netdev_budget;
1718 
1719 /* Called by rtnetlink.c:rtnl_unlock() */
1720 extern void netdev_run_todo(void);
1721 
1722 /**
1723  *	dev_put - release reference to device
1724  *	@dev: network device
1725  *
1726  * Release reference to device to allow it to be freed.
1727  */
1728 static inline void dev_put(struct net_device *dev)
1729 {
1730 	atomic_dec(&dev->refcnt);
1731 }
1732 
1733 /**
1734  *	dev_hold - get reference to device
1735  *	@dev: network device
1736  *
1737  * Hold reference to device to keep it from being freed.
1738  */
1739 static inline void dev_hold(struct net_device *dev)
1740 {
1741 	atomic_inc(&dev->refcnt);
1742 }
1743 
1744 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
1745  * and _off may be called from IRQ context, but it is caller
1746  * who is responsible for serialization of these calls.
1747  *
1748  * The name carrier is inappropriate, these functions should really be
1749  * called netif_lowerlayer_*() because they represent the state of any
1750  * kind of lower layer not just hardware media.
1751  */
1752 
1753 extern void linkwatch_fire_event(struct net_device *dev);
1754 extern void linkwatch_forget_dev(struct net_device *dev);
1755 
1756 /**
1757  *	netif_carrier_ok - test if carrier present
1758  *	@dev: network device
1759  *
1760  * Check if carrier is present on device
1761  */
1762 static inline int netif_carrier_ok(const struct net_device *dev)
1763 {
1764 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
1765 }
1766 
1767 extern unsigned long dev_trans_start(struct net_device *dev);
1768 
1769 extern void __netdev_watchdog_up(struct net_device *dev);
1770 
1771 extern void netif_carrier_on(struct net_device *dev);
1772 
1773 extern void netif_carrier_off(struct net_device *dev);
1774 
1775 /**
1776  *	netif_dormant_on - mark device as dormant.
1777  *	@dev: network device
1778  *
1779  * Mark device as dormant (as per RFC2863).
1780  *
1781  * The dormant state indicates that the relevant interface is not
1782  * actually in a condition to pass packets (i.e., it is not 'up') but is
1783  * in a "pending" state, waiting for some external event.  For "on-
1784  * demand" interfaces, this new state identifies the situation where the
1785  * interface is waiting for events to place it in the up state.
1786  *
1787  */
1788 static inline void netif_dormant_on(struct net_device *dev)
1789 {
1790 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
1791 		linkwatch_fire_event(dev);
1792 }
1793 
1794 /**
1795  *	netif_dormant_off - set device as not dormant.
1796  *	@dev: network device
1797  *
1798  * Device is not in dormant state.
1799  */
1800 static inline void netif_dormant_off(struct net_device *dev)
1801 {
1802 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
1803 		linkwatch_fire_event(dev);
1804 }
1805 
1806 /**
1807  *	netif_dormant - test if carrier present
1808  *	@dev: network device
1809  *
1810  * Check if carrier is present on device
1811  */
1812 static inline int netif_dormant(const struct net_device *dev)
1813 {
1814 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
1815 }
1816 
1817 
1818 /**
1819  *	netif_oper_up - test if device is operational
1820  *	@dev: network device
1821  *
1822  * Check if carrier is operational
1823  */
1824 static inline int netif_oper_up(const struct net_device *dev)
1825 {
1826 	return (dev->operstate == IF_OPER_UP ||
1827 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
1828 }
1829 
1830 /**
1831  *	netif_device_present - is device available or removed
1832  *	@dev: network device
1833  *
1834  * Check if device has not been removed from system.
1835  */
1836 static inline int netif_device_present(struct net_device *dev)
1837 {
1838 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
1839 }
1840 
1841 extern void netif_device_detach(struct net_device *dev);
1842 
1843 extern void netif_device_attach(struct net_device *dev);
1844 
1845 /*
1846  * Network interface message level settings
1847  */
1848 #define HAVE_NETIF_MSG 1
1849 
1850 enum {
1851 	NETIF_MSG_DRV		= 0x0001,
1852 	NETIF_MSG_PROBE		= 0x0002,
1853 	NETIF_MSG_LINK		= 0x0004,
1854 	NETIF_MSG_TIMER		= 0x0008,
1855 	NETIF_MSG_IFDOWN	= 0x0010,
1856 	NETIF_MSG_IFUP		= 0x0020,
1857 	NETIF_MSG_RX_ERR	= 0x0040,
1858 	NETIF_MSG_TX_ERR	= 0x0080,
1859 	NETIF_MSG_TX_QUEUED	= 0x0100,
1860 	NETIF_MSG_INTR		= 0x0200,
1861 	NETIF_MSG_TX_DONE	= 0x0400,
1862 	NETIF_MSG_RX_STATUS	= 0x0800,
1863 	NETIF_MSG_PKTDATA	= 0x1000,
1864 	NETIF_MSG_HW		= 0x2000,
1865 	NETIF_MSG_WOL		= 0x4000,
1866 };
1867 
1868 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
1869 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
1870 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
1871 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
1872 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
1873 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
1874 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
1875 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
1876 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
1877 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
1878 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
1879 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
1880 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
1881 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
1882 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
1883 
1884 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
1885 {
1886 	/* use default */
1887 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
1888 		return default_msg_enable_bits;
1889 	if (debug_value == 0)	/* no output */
1890 		return 0;
1891 	/* set low N bits */
1892 	return (1 << debug_value) - 1;
1893 }
1894 
1895 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
1896 {
1897 	spin_lock(&txq->_xmit_lock);
1898 	txq->xmit_lock_owner = cpu;
1899 }
1900 
1901 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
1902 {
1903 	spin_lock_bh(&txq->_xmit_lock);
1904 	txq->xmit_lock_owner = smp_processor_id();
1905 }
1906 
1907 static inline int __netif_tx_trylock(struct netdev_queue *txq)
1908 {
1909 	int ok = spin_trylock(&txq->_xmit_lock);
1910 	if (likely(ok))
1911 		txq->xmit_lock_owner = smp_processor_id();
1912 	return ok;
1913 }
1914 
1915 static inline void __netif_tx_unlock(struct netdev_queue *txq)
1916 {
1917 	txq->xmit_lock_owner = -1;
1918 	spin_unlock(&txq->_xmit_lock);
1919 }
1920 
1921 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
1922 {
1923 	txq->xmit_lock_owner = -1;
1924 	spin_unlock_bh(&txq->_xmit_lock);
1925 }
1926 
1927 static inline void txq_trans_update(struct netdev_queue *txq)
1928 {
1929 	if (txq->xmit_lock_owner != -1)
1930 		txq->trans_start = jiffies;
1931 }
1932 
1933 /**
1934  *	netif_tx_lock - grab network device transmit lock
1935  *	@dev: network device
1936  *
1937  * Get network device transmit lock
1938  */
1939 static inline void netif_tx_lock(struct net_device *dev)
1940 {
1941 	unsigned int i;
1942 	int cpu;
1943 
1944 	spin_lock(&dev->tx_global_lock);
1945 	cpu = smp_processor_id();
1946 	for (i = 0; i < dev->num_tx_queues; i++) {
1947 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1948 
1949 		/* We are the only thread of execution doing a
1950 		 * freeze, but we have to grab the _xmit_lock in
1951 		 * order to synchronize with threads which are in
1952 		 * the ->hard_start_xmit() handler and already
1953 		 * checked the frozen bit.
1954 		 */
1955 		__netif_tx_lock(txq, cpu);
1956 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
1957 		__netif_tx_unlock(txq);
1958 	}
1959 }
1960 
1961 static inline void netif_tx_lock_bh(struct net_device *dev)
1962 {
1963 	local_bh_disable();
1964 	netif_tx_lock(dev);
1965 }
1966 
1967 static inline void netif_tx_unlock(struct net_device *dev)
1968 {
1969 	unsigned int i;
1970 
1971 	for (i = 0; i < dev->num_tx_queues; i++) {
1972 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1973 
1974 		/* No need to grab the _xmit_lock here.  If the
1975 		 * queue is not stopped for another reason, we
1976 		 * force a schedule.
1977 		 */
1978 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
1979 		netif_schedule_queue(txq);
1980 	}
1981 	spin_unlock(&dev->tx_global_lock);
1982 }
1983 
1984 static inline void netif_tx_unlock_bh(struct net_device *dev)
1985 {
1986 	netif_tx_unlock(dev);
1987 	local_bh_enable();
1988 }
1989 
1990 #define HARD_TX_LOCK(dev, txq, cpu) {			\
1991 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
1992 		__netif_tx_lock(txq, cpu);		\
1993 	}						\
1994 }
1995 
1996 #define HARD_TX_UNLOCK(dev, txq) {			\
1997 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
1998 		__netif_tx_unlock(txq);			\
1999 	}						\
2000 }
2001 
2002 static inline void netif_tx_disable(struct net_device *dev)
2003 {
2004 	unsigned int i;
2005 	int cpu;
2006 
2007 	local_bh_disable();
2008 	cpu = smp_processor_id();
2009 	for (i = 0; i < dev->num_tx_queues; i++) {
2010 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2011 
2012 		__netif_tx_lock(txq, cpu);
2013 		netif_tx_stop_queue(txq);
2014 		__netif_tx_unlock(txq);
2015 	}
2016 	local_bh_enable();
2017 }
2018 
2019 static inline void netif_addr_lock(struct net_device *dev)
2020 {
2021 	spin_lock(&dev->addr_list_lock);
2022 }
2023 
2024 static inline void netif_addr_lock_bh(struct net_device *dev)
2025 {
2026 	spin_lock_bh(&dev->addr_list_lock);
2027 }
2028 
2029 static inline void netif_addr_unlock(struct net_device *dev)
2030 {
2031 	spin_unlock(&dev->addr_list_lock);
2032 }
2033 
2034 static inline void netif_addr_unlock_bh(struct net_device *dev)
2035 {
2036 	spin_unlock_bh(&dev->addr_list_lock);
2037 }
2038 
2039 /*
2040  * dev_addrs walker. Should be used only for read access. Call with
2041  * rcu_read_lock held.
2042  */
2043 #define for_each_dev_addr(dev, ha) \
2044 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2045 
2046 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2047 
2048 extern void		ether_setup(struct net_device *dev);
2049 
2050 /* Support for loadable net-drivers */
2051 extern struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
2052 				       void (*setup)(struct net_device *),
2053 				       unsigned int queue_count);
2054 #define alloc_netdev(sizeof_priv, name, setup) \
2055 	alloc_netdev_mq(sizeof_priv, name, setup, 1)
2056 extern int		register_netdev(struct net_device *dev);
2057 extern void		unregister_netdev(struct net_device *dev);
2058 
2059 /* General hardware address lists handling functions */
2060 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2061 				  struct netdev_hw_addr_list *from_list,
2062 				  int addr_len, unsigned char addr_type);
2063 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2064 				   struct netdev_hw_addr_list *from_list,
2065 				   int addr_len, unsigned char addr_type);
2066 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2067 			  struct netdev_hw_addr_list *from_list,
2068 			  int addr_len);
2069 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2070 			     struct netdev_hw_addr_list *from_list,
2071 			     int addr_len);
2072 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2073 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2074 
2075 /* Functions used for device addresses handling */
2076 extern int dev_addr_add(struct net_device *dev, unsigned char *addr,
2077 			unsigned char addr_type);
2078 extern int dev_addr_del(struct net_device *dev, unsigned char *addr,
2079 			unsigned char addr_type);
2080 extern int dev_addr_add_multiple(struct net_device *to_dev,
2081 				 struct net_device *from_dev,
2082 				 unsigned char addr_type);
2083 extern int dev_addr_del_multiple(struct net_device *to_dev,
2084 				 struct net_device *from_dev,
2085 				 unsigned char addr_type);
2086 extern void dev_addr_flush(struct net_device *dev);
2087 extern int dev_addr_init(struct net_device *dev);
2088 
2089 /* Functions used for unicast addresses handling */
2090 extern int dev_uc_add(struct net_device *dev, unsigned char *addr);
2091 extern int dev_uc_del(struct net_device *dev, unsigned char *addr);
2092 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2093 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2094 extern void dev_uc_flush(struct net_device *dev);
2095 extern void dev_uc_init(struct net_device *dev);
2096 
2097 /* Functions used for multicast addresses handling */
2098 extern int dev_mc_add(struct net_device *dev, unsigned char *addr);
2099 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr);
2100 extern int dev_mc_del(struct net_device *dev, unsigned char *addr);
2101 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr);
2102 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2103 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2104 extern void dev_mc_flush(struct net_device *dev);
2105 extern void dev_mc_init(struct net_device *dev);
2106 
2107 /* Functions used for secondary unicast and multicast support */
2108 extern void		dev_set_rx_mode(struct net_device *dev);
2109 extern void		__dev_set_rx_mode(struct net_device *dev);
2110 extern int		dev_set_promiscuity(struct net_device *dev, int inc);
2111 extern int		dev_set_allmulti(struct net_device *dev, int inc);
2112 extern void		netdev_state_change(struct net_device *dev);
2113 extern int		netdev_bonding_change(struct net_device *dev,
2114 					      unsigned long event);
2115 extern void		netdev_features_change(struct net_device *dev);
2116 /* Load a device via the kmod */
2117 extern void		dev_load(struct net *net, const char *name);
2118 extern void		dev_mcast_init(void);
2119 extern const struct net_device_stats *dev_get_stats(struct net_device *dev);
2120 extern void		dev_txq_stats_fold(const struct net_device *dev, struct net_device_stats *stats);
2121 
2122 extern int		netdev_max_backlog;
2123 extern int		netdev_tstamp_prequeue;
2124 extern int		weight_p;
2125 extern int		netdev_set_master(struct net_device *dev, struct net_device *master);
2126 extern int skb_checksum_help(struct sk_buff *skb);
2127 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features);
2128 #ifdef CONFIG_BUG
2129 extern void netdev_rx_csum_fault(struct net_device *dev);
2130 #else
2131 static inline void netdev_rx_csum_fault(struct net_device *dev)
2132 {
2133 }
2134 #endif
2135 /* rx skb timestamps */
2136 extern void		net_enable_timestamp(void);
2137 extern void		net_disable_timestamp(void);
2138 
2139 #ifdef CONFIG_PROC_FS
2140 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2141 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2142 extern void dev_seq_stop(struct seq_file *seq, void *v);
2143 #endif
2144 
2145 extern int netdev_class_create_file(struct class_attribute *class_attr);
2146 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2147 
2148 extern char *netdev_drivername(const struct net_device *dev, char *buffer, int len);
2149 
2150 extern void linkwatch_run_queue(void);
2151 
2152 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
2153 					unsigned long mask);
2154 unsigned long netdev_fix_features(unsigned long features, const char *name);
2155 
2156 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2157 					struct net_device *dev);
2158 
2159 static inline int net_gso_ok(int features, int gso_type)
2160 {
2161 	int feature = gso_type << NETIF_F_GSO_SHIFT;
2162 	return (features & feature) == feature;
2163 }
2164 
2165 static inline int skb_gso_ok(struct sk_buff *skb, int features)
2166 {
2167 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2168 	       (!skb_has_frags(skb) || (features & NETIF_F_FRAGLIST));
2169 }
2170 
2171 static inline int netif_needs_gso(struct net_device *dev, struct sk_buff *skb)
2172 {
2173 	return skb_is_gso(skb) &&
2174 	       (!skb_gso_ok(skb, dev->features) ||
2175 		unlikely(skb->ip_summed != CHECKSUM_PARTIAL));
2176 }
2177 
2178 static inline void netif_set_gso_max_size(struct net_device *dev,
2179 					  unsigned int size)
2180 {
2181 	dev->gso_max_size = size;
2182 }
2183 
2184 extern int __skb_bond_should_drop(struct sk_buff *skb,
2185 				  struct net_device *master);
2186 
2187 static inline int skb_bond_should_drop(struct sk_buff *skb,
2188 				       struct net_device *master)
2189 {
2190 	if (master)
2191 		return __skb_bond_should_drop(skb, master);
2192 	return 0;
2193 }
2194 
2195 extern struct pernet_operations __net_initdata loopback_net_ops;
2196 
2197 static inline int dev_ethtool_get_settings(struct net_device *dev,
2198 					   struct ethtool_cmd *cmd)
2199 {
2200 	if (!dev->ethtool_ops || !dev->ethtool_ops->get_settings)
2201 		return -EOPNOTSUPP;
2202 	return dev->ethtool_ops->get_settings(dev, cmd);
2203 }
2204 
2205 static inline u32 dev_ethtool_get_rx_csum(struct net_device *dev)
2206 {
2207 	if (!dev->ethtool_ops || !dev->ethtool_ops->get_rx_csum)
2208 		return 0;
2209 	return dev->ethtool_ops->get_rx_csum(dev);
2210 }
2211 
2212 static inline u32 dev_ethtool_get_flags(struct net_device *dev)
2213 {
2214 	if (!dev->ethtool_ops || !dev->ethtool_ops->get_flags)
2215 		return 0;
2216 	return dev->ethtool_ops->get_flags(dev);
2217 }
2218 
2219 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2220 
2221 /* netdev_printk helpers, similar to dev_printk */
2222 
2223 static inline const char *netdev_name(const struct net_device *dev)
2224 {
2225 	if (dev->reg_state != NETREG_REGISTERED)
2226 		return "(unregistered net_device)";
2227 	return dev->name;
2228 }
2229 
2230 #define netdev_printk(level, netdev, format, args...)		\
2231 	dev_printk(level, (netdev)->dev.parent,			\
2232 		   "%s: " format,				\
2233 		   netdev_name(netdev), ##args)
2234 
2235 #define netdev_emerg(dev, format, args...)			\
2236 	netdev_printk(KERN_EMERG, dev, format, ##args)
2237 #define netdev_alert(dev, format, args...)			\
2238 	netdev_printk(KERN_ALERT, dev, format, ##args)
2239 #define netdev_crit(dev, format, args...)			\
2240 	netdev_printk(KERN_CRIT, dev, format, ##args)
2241 #define netdev_err(dev, format, args...)			\
2242 	netdev_printk(KERN_ERR, dev, format, ##args)
2243 #define netdev_warn(dev, format, args...)			\
2244 	netdev_printk(KERN_WARNING, dev, format, ##args)
2245 #define netdev_notice(dev, format, args...)			\
2246 	netdev_printk(KERN_NOTICE, dev, format, ##args)
2247 #define netdev_info(dev, format, args...)			\
2248 	netdev_printk(KERN_INFO, dev, format, ##args)
2249 
2250 #if defined(DEBUG)
2251 #define netdev_dbg(__dev, format, args...)			\
2252 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
2253 #elif defined(CONFIG_DYNAMIC_DEBUG)
2254 #define netdev_dbg(__dev, format, args...)			\
2255 do {								\
2256 	dynamic_dev_dbg((__dev)->dev.parent, "%s: " format,	\
2257 			netdev_name(__dev), ##args);		\
2258 } while (0)
2259 #else
2260 #define netdev_dbg(__dev, format, args...)			\
2261 ({								\
2262 	if (0)							\
2263 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2264 	0;							\
2265 })
2266 #endif
2267 
2268 #if defined(VERBOSE_DEBUG)
2269 #define netdev_vdbg	netdev_dbg
2270 #else
2271 
2272 #define netdev_vdbg(dev, format, args...)			\
2273 ({								\
2274 	if (0)							\
2275 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
2276 	0;							\
2277 })
2278 #endif
2279 
2280 /*
2281  * netdev_WARN() acts like dev_printk(), but with the key difference
2282  * of using a WARN/WARN_ON to get the message out, including the
2283  * file/line information and a backtrace.
2284  */
2285 #define netdev_WARN(dev, format, args...)			\
2286 	WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2287 
2288 /* netif printk helpers, similar to netdev_printk */
2289 
2290 #define netif_printk(priv, type, level, dev, fmt, args...)	\
2291 do {					  			\
2292 	if (netif_msg_##type(priv))				\
2293 		netdev_printk(level, (dev), fmt, ##args);	\
2294 } while (0)
2295 
2296 #define netif_emerg(priv, type, dev, fmt, args...)		\
2297 	netif_printk(priv, type, KERN_EMERG, dev, fmt, ##args)
2298 #define netif_alert(priv, type, dev, fmt, args...)		\
2299 	netif_printk(priv, type, KERN_ALERT, dev, fmt, ##args)
2300 #define netif_crit(priv, type, dev, fmt, args...)		\
2301 	netif_printk(priv, type, KERN_CRIT, dev, fmt, ##args)
2302 #define netif_err(priv, type, dev, fmt, args...)		\
2303 	netif_printk(priv, type, KERN_ERR, dev, fmt, ##args)
2304 #define netif_warn(priv, type, dev, fmt, args...)		\
2305 	netif_printk(priv, type, KERN_WARNING, dev, fmt, ##args)
2306 #define netif_notice(priv, type, dev, fmt, args...)		\
2307 	netif_printk(priv, type, KERN_NOTICE, dev, fmt, ##args)
2308 #define netif_info(priv, type, dev, fmt, args...)		\
2309 	netif_printk(priv, type, KERN_INFO, (dev), fmt, ##args)
2310 
2311 #if defined(DEBUG)
2312 #define netif_dbg(priv, type, dev, format, args...)		\
2313 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2314 #elif defined(CONFIG_DYNAMIC_DEBUG)
2315 #define netif_dbg(priv, type, netdev, format, args...)		\
2316 do {								\
2317 	if (netif_msg_##type(priv))				\
2318 		dynamic_dev_dbg((netdev)->dev.parent,		\
2319 				"%s: " format,			\
2320 				netdev_name(netdev), ##args);	\
2321 } while (0)
2322 #else
2323 #define netif_dbg(priv, type, dev, format, args...)			\
2324 ({									\
2325 	if (0)								\
2326 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2327 	0;								\
2328 })
2329 #endif
2330 
2331 #if defined(VERBOSE_DEBUG)
2332 #define netif_vdbg	netdev_dbg
2333 #else
2334 #define netif_vdbg(priv, type, dev, format, args...)		\
2335 ({								\
2336 	if (0)							\
2337 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2338 	0;							\
2339 })
2340 #endif
2341 
2342 #endif /* __KERNEL__ */
2343 
2344 #endif	/* _LINUX_NETDEVICE_H */
2345