xref: /linux-6.15/include/linux/netdevice.h (revision 5a995900)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <[email protected]>
13  *		Corey Minyard <[email protected]>
14  *		Donald J. Becker, <[email protected]>
15  *		Alan Cox, <[email protected]>
16  *		Bjorn Ekwall. <[email protected]>
17  *              Pekka Riikonen <[email protected]>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <net/net_namespace.h>
38 #ifdef CONFIG_DCB
39 #include <net/dcbnl.h>
40 #endif
41 #include <net/netprio_cgroup.h>
42 #include <net/xdp.h>
43 
44 #include <linux/netdev_features.h>
45 #include <linux/neighbour.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <linux/hashtable.h>
50 #include <linux/rbtree.h>
51 #include <net/net_trackers.h>
52 
53 struct netpoll_info;
54 struct device;
55 struct ethtool_ops;
56 struct phy_device;
57 struct dsa_port;
58 struct ip_tunnel_parm;
59 struct macsec_context;
60 struct macsec_ops;
61 
62 struct sfp_bus;
63 /* 802.11 specific */
64 struct wireless_dev;
65 /* 802.15.4 specific */
66 struct wpan_dev;
67 struct mpls_dev;
68 /* UDP Tunnel offloads */
69 struct udp_tunnel_info;
70 struct udp_tunnel_nic_info;
71 struct udp_tunnel_nic;
72 struct bpf_prog;
73 struct xdp_buff;
74 
75 void synchronize_net(void);
76 void netdev_set_default_ethtool_ops(struct net_device *dev,
77 				    const struct ethtool_ops *ops);
78 
79 /* Backlog congestion levels */
80 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
81 #define NET_RX_DROP		1	/* packet dropped */
82 
83 #define MAX_NEST_DEV 8
84 
85 /*
86  * Transmit return codes: transmit return codes originate from three different
87  * namespaces:
88  *
89  * - qdisc return codes
90  * - driver transmit return codes
91  * - errno values
92  *
93  * Drivers are allowed to return any one of those in their hard_start_xmit()
94  * function. Real network devices commonly used with qdiscs should only return
95  * the driver transmit return codes though - when qdiscs are used, the actual
96  * transmission happens asynchronously, so the value is not propagated to
97  * higher layers. Virtual network devices transmit synchronously; in this case
98  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
99  * others are propagated to higher layers.
100  */
101 
102 /* qdisc ->enqueue() return codes. */
103 #define NET_XMIT_SUCCESS	0x00
104 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
105 #define NET_XMIT_CN		0x02	/* congestion notification	*/
106 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
107 
108 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
109  * indicates that the device will soon be dropping packets, or already drops
110  * some packets of the same priority; prompting us to send less aggressively. */
111 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
112 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
113 
114 /* Driver transmit return codes */
115 #define NETDEV_TX_MASK		0xf0
116 
117 enum netdev_tx {
118 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
119 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
120 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
121 };
122 typedef enum netdev_tx netdev_tx_t;
123 
124 /*
125  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
126  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
127  */
128 static inline bool dev_xmit_complete(int rc)
129 {
130 	/*
131 	 * Positive cases with an skb consumed by a driver:
132 	 * - successful transmission (rc == NETDEV_TX_OK)
133 	 * - error while transmitting (rc < 0)
134 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
135 	 */
136 	if (likely(rc < NET_XMIT_MASK))
137 		return true;
138 
139 	return false;
140 }
141 
142 /*
143  *	Compute the worst-case header length according to the protocols
144  *	used.
145  */
146 
147 #if defined(CONFIG_HYPERV_NET)
148 # define LL_MAX_HEADER 128
149 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
150 # if defined(CONFIG_MAC80211_MESH)
151 #  define LL_MAX_HEADER 128
152 # else
153 #  define LL_MAX_HEADER 96
154 # endif
155 #else
156 # define LL_MAX_HEADER 32
157 #endif
158 
159 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
160     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
161 #define MAX_HEADER LL_MAX_HEADER
162 #else
163 #define MAX_HEADER (LL_MAX_HEADER + 48)
164 #endif
165 
166 /*
167  *	Old network device statistics. Fields are native words
168  *	(unsigned long) so they can be read and written atomically.
169  */
170 
171 struct net_device_stats {
172 	unsigned long	rx_packets;
173 	unsigned long	tx_packets;
174 	unsigned long	rx_bytes;
175 	unsigned long	tx_bytes;
176 	unsigned long	rx_errors;
177 	unsigned long	tx_errors;
178 	unsigned long	rx_dropped;
179 	unsigned long	tx_dropped;
180 	unsigned long	multicast;
181 	unsigned long	collisions;
182 	unsigned long	rx_length_errors;
183 	unsigned long	rx_over_errors;
184 	unsigned long	rx_crc_errors;
185 	unsigned long	rx_frame_errors;
186 	unsigned long	rx_fifo_errors;
187 	unsigned long	rx_missed_errors;
188 	unsigned long	tx_aborted_errors;
189 	unsigned long	tx_carrier_errors;
190 	unsigned long	tx_fifo_errors;
191 	unsigned long	tx_heartbeat_errors;
192 	unsigned long	tx_window_errors;
193 	unsigned long	rx_compressed;
194 	unsigned long	tx_compressed;
195 };
196 
197 
198 #include <linux/cache.h>
199 #include <linux/skbuff.h>
200 
201 #ifdef CONFIG_RPS
202 #include <linux/static_key.h>
203 extern struct static_key_false rps_needed;
204 extern struct static_key_false rfs_needed;
205 #endif
206 
207 struct neighbour;
208 struct neigh_parms;
209 struct sk_buff;
210 
211 struct netdev_hw_addr {
212 	struct list_head	list;
213 	struct rb_node		node;
214 	unsigned char		addr[MAX_ADDR_LEN];
215 	unsigned char		type;
216 #define NETDEV_HW_ADDR_T_LAN		1
217 #define NETDEV_HW_ADDR_T_SAN		2
218 #define NETDEV_HW_ADDR_T_UNICAST	3
219 #define NETDEV_HW_ADDR_T_MULTICAST	4
220 	bool			global_use;
221 	int			sync_cnt;
222 	int			refcount;
223 	int			synced;
224 	struct rcu_head		rcu_head;
225 };
226 
227 struct netdev_hw_addr_list {
228 	struct list_head	list;
229 	int			count;
230 
231 	/* Auxiliary tree for faster lookup on addition and deletion */
232 	struct rb_root		tree;
233 };
234 
235 #define netdev_hw_addr_list_count(l) ((l)->count)
236 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
237 #define netdev_hw_addr_list_for_each(ha, l) \
238 	list_for_each_entry(ha, &(l)->list, list)
239 
240 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
241 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
242 #define netdev_for_each_uc_addr(ha, dev) \
243 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
244 
245 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
246 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
247 #define netdev_for_each_mc_addr(ha, dev) \
248 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
249 
250 struct hh_cache {
251 	unsigned int	hh_len;
252 	seqlock_t	hh_lock;
253 
254 	/* cached hardware header; allow for machine alignment needs.        */
255 #define HH_DATA_MOD	16
256 #define HH_DATA_OFF(__len) \
257 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
258 #define HH_DATA_ALIGN(__len) \
259 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
260 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
261 };
262 
263 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
264  * Alternative is:
265  *   dev->hard_header_len ? (dev->hard_header_len +
266  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
267  *
268  * We could use other alignment values, but we must maintain the
269  * relationship HH alignment <= LL alignment.
270  */
271 #define LL_RESERVED_SPACE(dev) \
272 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
273 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
274 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
275 
276 struct header_ops {
277 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
278 			   unsigned short type, const void *daddr,
279 			   const void *saddr, unsigned int len);
280 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
281 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
282 	void	(*cache_update)(struct hh_cache *hh,
283 				const struct net_device *dev,
284 				const unsigned char *haddr);
285 	bool	(*validate)(const char *ll_header, unsigned int len);
286 	__be16	(*parse_protocol)(const struct sk_buff *skb);
287 };
288 
289 /* These flag bits are private to the generic network queueing
290  * layer; they may not be explicitly referenced by any other
291  * code.
292  */
293 
294 enum netdev_state_t {
295 	__LINK_STATE_START,
296 	__LINK_STATE_PRESENT,
297 	__LINK_STATE_NOCARRIER,
298 	__LINK_STATE_LINKWATCH_PENDING,
299 	__LINK_STATE_DORMANT,
300 	__LINK_STATE_TESTING,
301 };
302 
303 struct gro_list {
304 	struct list_head	list;
305 	int			count;
306 };
307 
308 /*
309  * size of gro hash buckets, must less than bit number of
310  * napi_struct::gro_bitmask
311  */
312 #define GRO_HASH_BUCKETS	8
313 
314 /*
315  * Structure for NAPI scheduling similar to tasklet but with weighting
316  */
317 struct napi_struct {
318 	/* The poll_list must only be managed by the entity which
319 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
320 	 * whoever atomically sets that bit can add this napi_struct
321 	 * to the per-CPU poll_list, and whoever clears that bit
322 	 * can remove from the list right before clearing the bit.
323 	 */
324 	struct list_head	poll_list;
325 
326 	unsigned long		state;
327 	int			weight;
328 	int			defer_hard_irqs_count;
329 	unsigned long		gro_bitmask;
330 	int			(*poll)(struct napi_struct *, int);
331 #ifdef CONFIG_NETPOLL
332 	int			poll_owner;
333 #endif
334 	struct net_device	*dev;
335 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
336 	struct sk_buff		*skb;
337 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
338 	int			rx_count; /* length of rx_list */
339 	struct hrtimer		timer;
340 	struct list_head	dev_list;
341 	struct hlist_node	napi_hash_node;
342 	unsigned int		napi_id;
343 	struct task_struct	*thread;
344 };
345 
346 enum {
347 	NAPI_STATE_SCHED,		/* Poll is scheduled */
348 	NAPI_STATE_MISSED,		/* reschedule a napi */
349 	NAPI_STATE_DISABLE,		/* Disable pending */
350 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
351 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
352 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
353 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
354 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
355 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
356 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
357 };
358 
359 enum {
360 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
361 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
362 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
363 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
364 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
365 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
366 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
367 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
368 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
369 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
370 };
371 
372 enum gro_result {
373 	GRO_MERGED,
374 	GRO_MERGED_FREE,
375 	GRO_HELD,
376 	GRO_NORMAL,
377 	GRO_CONSUMED,
378 };
379 typedef enum gro_result gro_result_t;
380 
381 /*
382  * enum rx_handler_result - Possible return values for rx_handlers.
383  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
384  * further.
385  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
386  * case skb->dev was changed by rx_handler.
387  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
388  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
389  *
390  * rx_handlers are functions called from inside __netif_receive_skb(), to do
391  * special processing of the skb, prior to delivery to protocol handlers.
392  *
393  * Currently, a net_device can only have a single rx_handler registered. Trying
394  * to register a second rx_handler will return -EBUSY.
395  *
396  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
397  * To unregister a rx_handler on a net_device, use
398  * netdev_rx_handler_unregister().
399  *
400  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
401  * do with the skb.
402  *
403  * If the rx_handler consumed the skb in some way, it should return
404  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
405  * the skb to be delivered in some other way.
406  *
407  * If the rx_handler changed skb->dev, to divert the skb to another
408  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
409  * new device will be called if it exists.
410  *
411  * If the rx_handler decides the skb should be ignored, it should return
412  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
413  * are registered on exact device (ptype->dev == skb->dev).
414  *
415  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
416  * delivered, it should return RX_HANDLER_PASS.
417  *
418  * A device without a registered rx_handler will behave as if rx_handler
419  * returned RX_HANDLER_PASS.
420  */
421 
422 enum rx_handler_result {
423 	RX_HANDLER_CONSUMED,
424 	RX_HANDLER_ANOTHER,
425 	RX_HANDLER_EXACT,
426 	RX_HANDLER_PASS,
427 };
428 typedef enum rx_handler_result rx_handler_result_t;
429 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
430 
431 void __napi_schedule(struct napi_struct *n);
432 void __napi_schedule_irqoff(struct napi_struct *n);
433 
434 static inline bool napi_disable_pending(struct napi_struct *n)
435 {
436 	return test_bit(NAPI_STATE_DISABLE, &n->state);
437 }
438 
439 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
440 {
441 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
442 }
443 
444 bool napi_schedule_prep(struct napi_struct *n);
445 
446 /**
447  *	napi_schedule - schedule NAPI poll
448  *	@n: NAPI context
449  *
450  * Schedule NAPI poll routine to be called if it is not already
451  * running.
452  */
453 static inline void napi_schedule(struct napi_struct *n)
454 {
455 	if (napi_schedule_prep(n))
456 		__napi_schedule(n);
457 }
458 
459 /**
460  *	napi_schedule_irqoff - schedule NAPI poll
461  *	@n: NAPI context
462  *
463  * Variant of napi_schedule(), assuming hard irqs are masked.
464  */
465 static inline void napi_schedule_irqoff(struct napi_struct *n)
466 {
467 	if (napi_schedule_prep(n))
468 		__napi_schedule_irqoff(n);
469 }
470 
471 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
472 static inline bool napi_reschedule(struct napi_struct *napi)
473 {
474 	if (napi_schedule_prep(napi)) {
475 		__napi_schedule(napi);
476 		return true;
477 	}
478 	return false;
479 }
480 
481 bool napi_complete_done(struct napi_struct *n, int work_done);
482 /**
483  *	napi_complete - NAPI processing complete
484  *	@n: NAPI context
485  *
486  * Mark NAPI processing as complete.
487  * Consider using napi_complete_done() instead.
488  * Return false if device should avoid rearming interrupts.
489  */
490 static inline bool napi_complete(struct napi_struct *n)
491 {
492 	return napi_complete_done(n, 0);
493 }
494 
495 int dev_set_threaded(struct net_device *dev, bool threaded);
496 
497 /**
498  *	napi_disable - prevent NAPI from scheduling
499  *	@n: NAPI context
500  *
501  * Stop NAPI from being scheduled on this context.
502  * Waits till any outstanding processing completes.
503  */
504 void napi_disable(struct napi_struct *n);
505 
506 void napi_enable(struct napi_struct *n);
507 
508 /**
509  *	napi_synchronize - wait until NAPI is not running
510  *	@n: NAPI context
511  *
512  * Wait until NAPI is done being scheduled on this context.
513  * Waits till any outstanding processing completes but
514  * does not disable future activations.
515  */
516 static inline void napi_synchronize(const struct napi_struct *n)
517 {
518 	if (IS_ENABLED(CONFIG_SMP))
519 		while (test_bit(NAPI_STATE_SCHED, &n->state))
520 			msleep(1);
521 	else
522 		barrier();
523 }
524 
525 /**
526  *	napi_if_scheduled_mark_missed - if napi is running, set the
527  *	NAPIF_STATE_MISSED
528  *	@n: NAPI context
529  *
530  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
531  * NAPI is scheduled.
532  **/
533 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
534 {
535 	unsigned long val, new;
536 
537 	do {
538 		val = READ_ONCE(n->state);
539 		if (val & NAPIF_STATE_DISABLE)
540 			return true;
541 
542 		if (!(val & NAPIF_STATE_SCHED))
543 			return false;
544 
545 		new = val | NAPIF_STATE_MISSED;
546 	} while (cmpxchg(&n->state, val, new) != val);
547 
548 	return true;
549 }
550 
551 enum netdev_queue_state_t {
552 	__QUEUE_STATE_DRV_XOFF,
553 	__QUEUE_STATE_STACK_XOFF,
554 	__QUEUE_STATE_FROZEN,
555 };
556 
557 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
558 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
559 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
560 
561 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
562 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
563 					QUEUE_STATE_FROZEN)
564 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
565 					QUEUE_STATE_FROZEN)
566 
567 /*
568  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
569  * netif_tx_* functions below are used to manipulate this flag.  The
570  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
571  * queue independently.  The netif_xmit_*stopped functions below are called
572  * to check if the queue has been stopped by the driver or stack (either
573  * of the XOFF bits are set in the state).  Drivers should not need to call
574  * netif_xmit*stopped functions, they should only be using netif_tx_*.
575  */
576 
577 struct netdev_queue {
578 /*
579  * read-mostly part
580  */
581 	struct net_device	*dev;
582 	netdevice_tracker	dev_tracker;
583 
584 	struct Qdisc __rcu	*qdisc;
585 	struct Qdisc		*qdisc_sleeping;
586 #ifdef CONFIG_SYSFS
587 	struct kobject		kobj;
588 #endif
589 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
590 	int			numa_node;
591 #endif
592 	unsigned long		tx_maxrate;
593 	/*
594 	 * Number of TX timeouts for this queue
595 	 * (/sys/class/net/DEV/Q/trans_timeout)
596 	 */
597 	atomic_long_t		trans_timeout;
598 
599 	/* Subordinate device that the queue has been assigned to */
600 	struct net_device	*sb_dev;
601 #ifdef CONFIG_XDP_SOCKETS
602 	struct xsk_buff_pool    *pool;
603 #endif
604 /*
605  * write-mostly part
606  */
607 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
608 	int			xmit_lock_owner;
609 	/*
610 	 * Time (in jiffies) of last Tx
611 	 */
612 	unsigned long		trans_start;
613 
614 	unsigned long		state;
615 
616 #ifdef CONFIG_BQL
617 	struct dql		dql;
618 #endif
619 } ____cacheline_aligned_in_smp;
620 
621 extern int sysctl_fb_tunnels_only_for_init_net;
622 extern int sysctl_devconf_inherit_init_net;
623 
624 /*
625  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
626  *                                     == 1 : For initns only
627  *                                     == 2 : For none.
628  */
629 static inline bool net_has_fallback_tunnels(const struct net *net)
630 {
631 	return !IS_ENABLED(CONFIG_SYSCTL) ||
632 	       !sysctl_fb_tunnels_only_for_init_net ||
633 	       (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1);
634 }
635 
636 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
637 {
638 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
639 	return q->numa_node;
640 #else
641 	return NUMA_NO_NODE;
642 #endif
643 }
644 
645 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
646 {
647 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
648 	q->numa_node = node;
649 #endif
650 }
651 
652 #ifdef CONFIG_RPS
653 /*
654  * This structure holds an RPS map which can be of variable length.  The
655  * map is an array of CPUs.
656  */
657 struct rps_map {
658 	unsigned int len;
659 	struct rcu_head rcu;
660 	u16 cpus[];
661 };
662 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
663 
664 /*
665  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
666  * tail pointer for that CPU's input queue at the time of last enqueue, and
667  * a hardware filter index.
668  */
669 struct rps_dev_flow {
670 	u16 cpu;
671 	u16 filter;
672 	unsigned int last_qtail;
673 };
674 #define RPS_NO_FILTER 0xffff
675 
676 /*
677  * The rps_dev_flow_table structure contains a table of flow mappings.
678  */
679 struct rps_dev_flow_table {
680 	unsigned int mask;
681 	struct rcu_head rcu;
682 	struct rps_dev_flow flows[];
683 };
684 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
685     ((_num) * sizeof(struct rps_dev_flow)))
686 
687 /*
688  * The rps_sock_flow_table contains mappings of flows to the last CPU
689  * on which they were processed by the application (set in recvmsg).
690  * Each entry is a 32bit value. Upper part is the high-order bits
691  * of flow hash, lower part is CPU number.
692  * rps_cpu_mask is used to partition the space, depending on number of
693  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
694  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
695  * meaning we use 32-6=26 bits for the hash.
696  */
697 struct rps_sock_flow_table {
698 	u32	mask;
699 
700 	u32	ents[] ____cacheline_aligned_in_smp;
701 };
702 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
703 
704 #define RPS_NO_CPU 0xffff
705 
706 extern u32 rps_cpu_mask;
707 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
708 
709 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
710 					u32 hash)
711 {
712 	if (table && hash) {
713 		unsigned int index = hash & table->mask;
714 		u32 val = hash & ~rps_cpu_mask;
715 
716 		/* We only give a hint, preemption can change CPU under us */
717 		val |= raw_smp_processor_id();
718 
719 		if (table->ents[index] != val)
720 			table->ents[index] = val;
721 	}
722 }
723 
724 #ifdef CONFIG_RFS_ACCEL
725 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
726 			 u16 filter_id);
727 #endif
728 #endif /* CONFIG_RPS */
729 
730 /* This structure contains an instance of an RX queue. */
731 struct netdev_rx_queue {
732 	struct xdp_rxq_info		xdp_rxq;
733 #ifdef CONFIG_RPS
734 	struct rps_map __rcu		*rps_map;
735 	struct rps_dev_flow_table __rcu	*rps_flow_table;
736 #endif
737 	struct kobject			kobj;
738 	struct net_device		*dev;
739 	netdevice_tracker		dev_tracker;
740 
741 #ifdef CONFIG_XDP_SOCKETS
742 	struct xsk_buff_pool            *pool;
743 #endif
744 } ____cacheline_aligned_in_smp;
745 
746 /*
747  * RX queue sysfs structures and functions.
748  */
749 struct rx_queue_attribute {
750 	struct attribute attr;
751 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
752 	ssize_t (*store)(struct netdev_rx_queue *queue,
753 			 const char *buf, size_t len);
754 };
755 
756 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
757 enum xps_map_type {
758 	XPS_CPUS = 0,
759 	XPS_RXQS,
760 	XPS_MAPS_MAX,
761 };
762 
763 #ifdef CONFIG_XPS
764 /*
765  * This structure holds an XPS map which can be of variable length.  The
766  * map is an array of queues.
767  */
768 struct xps_map {
769 	unsigned int len;
770 	unsigned int alloc_len;
771 	struct rcu_head rcu;
772 	u16 queues[];
773 };
774 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
775 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
776        - sizeof(struct xps_map)) / sizeof(u16))
777 
778 /*
779  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
780  *
781  * We keep track of the number of cpus/rxqs used when the struct is allocated,
782  * in nr_ids. This will help not accessing out-of-bound memory.
783  *
784  * We keep track of the number of traffic classes used when the struct is
785  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
786  * not crossing its upper bound, as the original dev->num_tc can be updated in
787  * the meantime.
788  */
789 struct xps_dev_maps {
790 	struct rcu_head rcu;
791 	unsigned int nr_ids;
792 	s16 num_tc;
793 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
794 };
795 
796 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
797 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
798 
799 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
800 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
801 
802 #endif /* CONFIG_XPS */
803 
804 #define TC_MAX_QUEUE	16
805 #define TC_BITMASK	15
806 /* HW offloaded queuing disciplines txq count and offset maps */
807 struct netdev_tc_txq {
808 	u16 count;
809 	u16 offset;
810 };
811 
812 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
813 /*
814  * This structure is to hold information about the device
815  * configured to run FCoE protocol stack.
816  */
817 struct netdev_fcoe_hbainfo {
818 	char	manufacturer[64];
819 	char	serial_number[64];
820 	char	hardware_version[64];
821 	char	driver_version[64];
822 	char	optionrom_version[64];
823 	char	firmware_version[64];
824 	char	model[256];
825 	char	model_description[256];
826 };
827 #endif
828 
829 #define MAX_PHYS_ITEM_ID_LEN 32
830 
831 /* This structure holds a unique identifier to identify some
832  * physical item (port for example) used by a netdevice.
833  */
834 struct netdev_phys_item_id {
835 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
836 	unsigned char id_len;
837 };
838 
839 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
840 					    struct netdev_phys_item_id *b)
841 {
842 	return a->id_len == b->id_len &&
843 	       memcmp(a->id, b->id, a->id_len) == 0;
844 }
845 
846 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
847 				       struct sk_buff *skb,
848 				       struct net_device *sb_dev);
849 
850 enum net_device_path_type {
851 	DEV_PATH_ETHERNET = 0,
852 	DEV_PATH_VLAN,
853 	DEV_PATH_BRIDGE,
854 	DEV_PATH_PPPOE,
855 	DEV_PATH_DSA,
856 };
857 
858 struct net_device_path {
859 	enum net_device_path_type	type;
860 	const struct net_device		*dev;
861 	union {
862 		struct {
863 			u16		id;
864 			__be16		proto;
865 			u8		h_dest[ETH_ALEN];
866 		} encap;
867 		struct {
868 			enum {
869 				DEV_PATH_BR_VLAN_KEEP,
870 				DEV_PATH_BR_VLAN_TAG,
871 				DEV_PATH_BR_VLAN_UNTAG,
872 				DEV_PATH_BR_VLAN_UNTAG_HW,
873 			}		vlan_mode;
874 			u16		vlan_id;
875 			__be16		vlan_proto;
876 		} bridge;
877 		struct {
878 			int port;
879 			u16 proto;
880 		} dsa;
881 	};
882 };
883 
884 #define NET_DEVICE_PATH_STACK_MAX	5
885 #define NET_DEVICE_PATH_VLAN_MAX	2
886 
887 struct net_device_path_stack {
888 	int			num_paths;
889 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
890 };
891 
892 struct net_device_path_ctx {
893 	const struct net_device *dev;
894 	const u8		*daddr;
895 
896 	int			num_vlans;
897 	struct {
898 		u16		id;
899 		__be16		proto;
900 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
901 };
902 
903 enum tc_setup_type {
904 	TC_SETUP_QDISC_MQPRIO,
905 	TC_SETUP_CLSU32,
906 	TC_SETUP_CLSFLOWER,
907 	TC_SETUP_CLSMATCHALL,
908 	TC_SETUP_CLSBPF,
909 	TC_SETUP_BLOCK,
910 	TC_SETUP_QDISC_CBS,
911 	TC_SETUP_QDISC_RED,
912 	TC_SETUP_QDISC_PRIO,
913 	TC_SETUP_QDISC_MQ,
914 	TC_SETUP_QDISC_ETF,
915 	TC_SETUP_ROOT_QDISC,
916 	TC_SETUP_QDISC_GRED,
917 	TC_SETUP_QDISC_TAPRIO,
918 	TC_SETUP_FT,
919 	TC_SETUP_QDISC_ETS,
920 	TC_SETUP_QDISC_TBF,
921 	TC_SETUP_QDISC_FIFO,
922 	TC_SETUP_QDISC_HTB,
923 };
924 
925 /* These structures hold the attributes of bpf state that are being passed
926  * to the netdevice through the bpf op.
927  */
928 enum bpf_netdev_command {
929 	/* Set or clear a bpf program used in the earliest stages of packet
930 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
931 	 * is responsible for calling bpf_prog_put on any old progs that are
932 	 * stored. In case of error, the callee need not release the new prog
933 	 * reference, but on success it takes ownership and must bpf_prog_put
934 	 * when it is no longer used.
935 	 */
936 	XDP_SETUP_PROG,
937 	XDP_SETUP_PROG_HW,
938 	/* BPF program for offload callbacks, invoked at program load time. */
939 	BPF_OFFLOAD_MAP_ALLOC,
940 	BPF_OFFLOAD_MAP_FREE,
941 	XDP_SETUP_XSK_POOL,
942 };
943 
944 struct bpf_prog_offload_ops;
945 struct netlink_ext_ack;
946 struct xdp_umem;
947 struct xdp_dev_bulk_queue;
948 struct bpf_xdp_link;
949 
950 enum bpf_xdp_mode {
951 	XDP_MODE_SKB = 0,
952 	XDP_MODE_DRV = 1,
953 	XDP_MODE_HW = 2,
954 	__MAX_XDP_MODE
955 };
956 
957 struct bpf_xdp_entity {
958 	struct bpf_prog *prog;
959 	struct bpf_xdp_link *link;
960 };
961 
962 struct netdev_bpf {
963 	enum bpf_netdev_command command;
964 	union {
965 		/* XDP_SETUP_PROG */
966 		struct {
967 			u32 flags;
968 			struct bpf_prog *prog;
969 			struct netlink_ext_ack *extack;
970 		};
971 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
972 		struct {
973 			struct bpf_offloaded_map *offmap;
974 		};
975 		/* XDP_SETUP_XSK_POOL */
976 		struct {
977 			struct xsk_buff_pool *pool;
978 			u16 queue_id;
979 		} xsk;
980 	};
981 };
982 
983 /* Flags for ndo_xsk_wakeup. */
984 #define XDP_WAKEUP_RX (1 << 0)
985 #define XDP_WAKEUP_TX (1 << 1)
986 
987 #ifdef CONFIG_XFRM_OFFLOAD
988 struct xfrmdev_ops {
989 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
990 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
991 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
992 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
993 				       struct xfrm_state *x);
994 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
995 };
996 #endif
997 
998 struct dev_ifalias {
999 	struct rcu_head rcuhead;
1000 	char ifalias[];
1001 };
1002 
1003 struct devlink;
1004 struct tlsdev_ops;
1005 
1006 struct netdev_name_node {
1007 	struct hlist_node hlist;
1008 	struct list_head list;
1009 	struct net_device *dev;
1010 	const char *name;
1011 };
1012 
1013 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
1014 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
1015 
1016 struct netdev_net_notifier {
1017 	struct list_head list;
1018 	struct notifier_block *nb;
1019 };
1020 
1021 /*
1022  * This structure defines the management hooks for network devices.
1023  * The following hooks can be defined; unless noted otherwise, they are
1024  * optional and can be filled with a null pointer.
1025  *
1026  * int (*ndo_init)(struct net_device *dev);
1027  *     This function is called once when a network device is registered.
1028  *     The network device can use this for any late stage initialization
1029  *     or semantic validation. It can fail with an error code which will
1030  *     be propagated back to register_netdev.
1031  *
1032  * void (*ndo_uninit)(struct net_device *dev);
1033  *     This function is called when device is unregistered or when registration
1034  *     fails. It is not called if init fails.
1035  *
1036  * int (*ndo_open)(struct net_device *dev);
1037  *     This function is called when a network device transitions to the up
1038  *     state.
1039  *
1040  * int (*ndo_stop)(struct net_device *dev);
1041  *     This function is called when a network device transitions to the down
1042  *     state.
1043  *
1044  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1045  *                               struct net_device *dev);
1046  *	Called when a packet needs to be transmitted.
1047  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1048  *	the queue before that can happen; it's for obsolete devices and weird
1049  *	corner cases, but the stack really does a non-trivial amount
1050  *	of useless work if you return NETDEV_TX_BUSY.
1051  *	Required; cannot be NULL.
1052  *
1053  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1054  *					   struct net_device *dev
1055  *					   netdev_features_t features);
1056  *	Called by core transmit path to determine if device is capable of
1057  *	performing offload operations on a given packet. This is to give
1058  *	the device an opportunity to implement any restrictions that cannot
1059  *	be otherwise expressed by feature flags. The check is called with
1060  *	the set of features that the stack has calculated and it returns
1061  *	those the driver believes to be appropriate.
1062  *
1063  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1064  *                         struct net_device *sb_dev);
1065  *	Called to decide which queue to use when device supports multiple
1066  *	transmit queues.
1067  *
1068  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1069  *	This function is called to allow device receiver to make
1070  *	changes to configuration when multicast or promiscuous is enabled.
1071  *
1072  * void (*ndo_set_rx_mode)(struct net_device *dev);
1073  *	This function is called device changes address list filtering.
1074  *	If driver handles unicast address filtering, it should set
1075  *	IFF_UNICAST_FLT in its priv_flags.
1076  *
1077  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1078  *	This function  is called when the Media Access Control address
1079  *	needs to be changed. If this interface is not defined, the
1080  *	MAC address can not be changed.
1081  *
1082  * int (*ndo_validate_addr)(struct net_device *dev);
1083  *	Test if Media Access Control address is valid for the device.
1084  *
1085  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1086  *	Old-style ioctl entry point. This is used internally by the
1087  *	appletalk and ieee802154 subsystems but is no longer called by
1088  *	the device ioctl handler.
1089  *
1090  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1091  *	Used by the bonding driver for its device specific ioctls:
1092  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1093  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1094  *
1095  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1096  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1097  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1098  *
1099  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1100  *	Used to set network devices bus interface parameters. This interface
1101  *	is retained for legacy reasons; new devices should use the bus
1102  *	interface (PCI) for low level management.
1103  *
1104  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1105  *	Called when a user wants to change the Maximum Transfer Unit
1106  *	of a device.
1107  *
1108  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1109  *	Callback used when the transmitter has not made any progress
1110  *	for dev->watchdog ticks.
1111  *
1112  * void (*ndo_get_stats64)(struct net_device *dev,
1113  *                         struct rtnl_link_stats64 *storage);
1114  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1115  *	Called when a user wants to get the network device usage
1116  *	statistics. Drivers must do one of the following:
1117  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1118  *	   rtnl_link_stats64 structure passed by the caller.
1119  *	2. Define @ndo_get_stats to update a net_device_stats structure
1120  *	   (which should normally be dev->stats) and return a pointer to
1121  *	   it. The structure may be changed asynchronously only if each
1122  *	   field is written atomically.
1123  *	3. Update dev->stats asynchronously and atomically, and define
1124  *	   neither operation.
1125  *
1126  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1127  *	Return true if this device supports offload stats of this attr_id.
1128  *
1129  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1130  *	void *attr_data)
1131  *	Get statistics for offload operations by attr_id. Write it into the
1132  *	attr_data pointer.
1133  *
1134  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1135  *	If device supports VLAN filtering this function is called when a
1136  *	VLAN id is registered.
1137  *
1138  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1139  *	If device supports VLAN filtering this function is called when a
1140  *	VLAN id is unregistered.
1141  *
1142  * void (*ndo_poll_controller)(struct net_device *dev);
1143  *
1144  *	SR-IOV management functions.
1145  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1146  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1147  *			  u8 qos, __be16 proto);
1148  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1149  *			  int max_tx_rate);
1150  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1151  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1152  * int (*ndo_get_vf_config)(struct net_device *dev,
1153  *			    int vf, struct ifla_vf_info *ivf);
1154  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1155  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1156  *			  struct nlattr *port[]);
1157  *
1158  *      Enable or disable the VF ability to query its RSS Redirection Table and
1159  *      Hash Key. This is needed since on some devices VF share this information
1160  *      with PF and querying it may introduce a theoretical security risk.
1161  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1162  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1163  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1164  *		       void *type_data);
1165  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1166  *	This is always called from the stack with the rtnl lock held and netif
1167  *	tx queues stopped. This allows the netdevice to perform queue
1168  *	management safely.
1169  *
1170  *	Fiber Channel over Ethernet (FCoE) offload functions.
1171  * int (*ndo_fcoe_enable)(struct net_device *dev);
1172  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1173  *	so the underlying device can perform whatever needed configuration or
1174  *	initialization to support acceleration of FCoE traffic.
1175  *
1176  * int (*ndo_fcoe_disable)(struct net_device *dev);
1177  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1178  *	so the underlying device can perform whatever needed clean-ups to
1179  *	stop supporting acceleration of FCoE traffic.
1180  *
1181  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1182  *			     struct scatterlist *sgl, unsigned int sgc);
1183  *	Called when the FCoE Initiator wants to initialize an I/O that
1184  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1185  *	perform necessary setup and returns 1 to indicate the device is set up
1186  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1187  *
1188  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1189  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1190  *	indicated by the FC exchange id 'xid', so the underlying device can
1191  *	clean up and reuse resources for later DDP requests.
1192  *
1193  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1194  *			      struct scatterlist *sgl, unsigned int sgc);
1195  *	Called when the FCoE Target wants to initialize an I/O that
1196  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1197  *	perform necessary setup and returns 1 to indicate the device is set up
1198  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1199  *
1200  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1201  *			       struct netdev_fcoe_hbainfo *hbainfo);
1202  *	Called when the FCoE Protocol stack wants information on the underlying
1203  *	device. This information is utilized by the FCoE protocol stack to
1204  *	register attributes with Fiber Channel management service as per the
1205  *	FC-GS Fabric Device Management Information(FDMI) specification.
1206  *
1207  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1208  *	Called when the underlying device wants to override default World Wide
1209  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1210  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1211  *	protocol stack to use.
1212  *
1213  *	RFS acceleration.
1214  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1215  *			    u16 rxq_index, u32 flow_id);
1216  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1217  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1218  *	Return the filter ID on success, or a negative error code.
1219  *
1220  *	Slave management functions (for bridge, bonding, etc).
1221  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1222  *	Called to make another netdev an underling.
1223  *
1224  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1225  *	Called to release previously enslaved netdev.
1226  *
1227  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1228  *					    struct sk_buff *skb,
1229  *					    bool all_slaves);
1230  *	Get the xmit slave of master device. If all_slaves is true, function
1231  *	assume all the slaves can transmit.
1232  *
1233  *      Feature/offload setting functions.
1234  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1235  *		netdev_features_t features);
1236  *	Adjusts the requested feature flags according to device-specific
1237  *	constraints, and returns the resulting flags. Must not modify
1238  *	the device state.
1239  *
1240  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1241  *	Called to update device configuration to new features. Passed
1242  *	feature set might be less than what was returned by ndo_fix_features()).
1243  *	Must return >0 or -errno if it changed dev->features itself.
1244  *
1245  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1246  *		      struct net_device *dev,
1247  *		      const unsigned char *addr, u16 vid, u16 flags,
1248  *		      struct netlink_ext_ack *extack);
1249  *	Adds an FDB entry to dev for addr.
1250  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1251  *		      struct net_device *dev,
1252  *		      const unsigned char *addr, u16 vid)
1253  *	Deletes the FDB entry from dev coresponding to addr.
1254  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1255  *		       struct net_device *dev, struct net_device *filter_dev,
1256  *		       int *idx)
1257  *	Used to add FDB entries to dump requests. Implementers should add
1258  *	entries to skb and update idx with the number of entries.
1259  *
1260  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1261  *			     u16 flags, struct netlink_ext_ack *extack)
1262  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1263  *			     struct net_device *dev, u32 filter_mask,
1264  *			     int nlflags)
1265  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1266  *			     u16 flags);
1267  *
1268  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1269  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1270  *	which do not represent real hardware may define this to allow their
1271  *	userspace components to manage their virtual carrier state. Devices
1272  *	that determine carrier state from physical hardware properties (eg
1273  *	network cables) or protocol-dependent mechanisms (eg
1274  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1275  *
1276  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1277  *			       struct netdev_phys_item_id *ppid);
1278  *	Called to get ID of physical port of this device. If driver does
1279  *	not implement this, it is assumed that the hw is not able to have
1280  *	multiple net devices on single physical port.
1281  *
1282  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1283  *				 struct netdev_phys_item_id *ppid)
1284  *	Called to get the parent ID of the physical port of this device.
1285  *
1286  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1287  *				 struct net_device *dev)
1288  *	Called by upper layer devices to accelerate switching or other
1289  *	station functionality into hardware. 'pdev is the lowerdev
1290  *	to use for the offload and 'dev' is the net device that will
1291  *	back the offload. Returns a pointer to the private structure
1292  *	the upper layer will maintain.
1293  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1294  *	Called by upper layer device to delete the station created
1295  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1296  *	the station and priv is the structure returned by the add
1297  *	operation.
1298  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1299  *			     int queue_index, u32 maxrate);
1300  *	Called when a user wants to set a max-rate limitation of specific
1301  *	TX queue.
1302  * int (*ndo_get_iflink)(const struct net_device *dev);
1303  *	Called to get the iflink value of this device.
1304  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1305  *	This function is used to get egress tunnel information for given skb.
1306  *	This is useful for retrieving outer tunnel header parameters while
1307  *	sampling packet.
1308  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1309  *	This function is used to specify the headroom that the skb must
1310  *	consider when allocation skb during packet reception. Setting
1311  *	appropriate rx headroom value allows avoiding skb head copy on
1312  *	forward. Setting a negative value resets the rx headroom to the
1313  *	default value.
1314  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1315  *	This function is used to set or query state related to XDP on the
1316  *	netdevice and manage BPF offload. See definition of
1317  *	enum bpf_netdev_command for details.
1318  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1319  *			u32 flags);
1320  *	This function is used to submit @n XDP packets for transmit on a
1321  *	netdevice. Returns number of frames successfully transmitted, frames
1322  *	that got dropped are freed/returned via xdp_return_frame().
1323  *	Returns negative number, means general error invoking ndo, meaning
1324  *	no frames were xmit'ed and core-caller will free all frames.
1325  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1326  *					        struct xdp_buff *xdp);
1327  *      Get the xmit slave of master device based on the xdp_buff.
1328  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1329  *      This function is used to wake up the softirq, ksoftirqd or kthread
1330  *	responsible for sending and/or receiving packets on a specific
1331  *	queue id bound to an AF_XDP socket. The flags field specifies if
1332  *	only RX, only Tx, or both should be woken up using the flags
1333  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1334  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1335  *	Get devlink port instance associated with a given netdev.
1336  *	Called with a reference on the netdevice and devlink locks only,
1337  *	rtnl_lock is not held.
1338  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1339  *			 int cmd);
1340  *	Add, change, delete or get information on an IPv4 tunnel.
1341  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1342  *	If a device is paired with a peer device, return the peer instance.
1343  *	The caller must be under RCU read context.
1344  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1345  *     Get the forwarding path to reach the real device from the HW destination address
1346  */
1347 struct net_device_ops {
1348 	int			(*ndo_init)(struct net_device *dev);
1349 	void			(*ndo_uninit)(struct net_device *dev);
1350 	int			(*ndo_open)(struct net_device *dev);
1351 	int			(*ndo_stop)(struct net_device *dev);
1352 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1353 						  struct net_device *dev);
1354 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1355 						      struct net_device *dev,
1356 						      netdev_features_t features);
1357 	u16			(*ndo_select_queue)(struct net_device *dev,
1358 						    struct sk_buff *skb,
1359 						    struct net_device *sb_dev);
1360 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1361 						       int flags);
1362 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1363 	int			(*ndo_set_mac_address)(struct net_device *dev,
1364 						       void *addr);
1365 	int			(*ndo_validate_addr)(struct net_device *dev);
1366 	int			(*ndo_do_ioctl)(struct net_device *dev,
1367 					        struct ifreq *ifr, int cmd);
1368 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1369 						 struct ifreq *ifr, int cmd);
1370 	int			(*ndo_siocbond)(struct net_device *dev,
1371 						struct ifreq *ifr, int cmd);
1372 	int			(*ndo_siocwandev)(struct net_device *dev,
1373 						  struct if_settings *ifs);
1374 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1375 						      struct ifreq *ifr,
1376 						      void __user *data, int cmd);
1377 	int			(*ndo_set_config)(struct net_device *dev,
1378 					          struct ifmap *map);
1379 	int			(*ndo_change_mtu)(struct net_device *dev,
1380 						  int new_mtu);
1381 	int			(*ndo_neigh_setup)(struct net_device *dev,
1382 						   struct neigh_parms *);
1383 	void			(*ndo_tx_timeout) (struct net_device *dev,
1384 						   unsigned int txqueue);
1385 
1386 	void			(*ndo_get_stats64)(struct net_device *dev,
1387 						   struct rtnl_link_stats64 *storage);
1388 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1389 	int			(*ndo_get_offload_stats)(int attr_id,
1390 							 const struct net_device *dev,
1391 							 void *attr_data);
1392 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1393 
1394 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1395 						       __be16 proto, u16 vid);
1396 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1397 						        __be16 proto, u16 vid);
1398 #ifdef CONFIG_NET_POLL_CONTROLLER
1399 	void                    (*ndo_poll_controller)(struct net_device *dev);
1400 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1401 						     struct netpoll_info *info);
1402 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1403 #endif
1404 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1405 						  int queue, u8 *mac);
1406 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1407 						   int queue, u16 vlan,
1408 						   u8 qos, __be16 proto);
1409 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1410 						   int vf, int min_tx_rate,
1411 						   int max_tx_rate);
1412 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1413 						       int vf, bool setting);
1414 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1415 						    int vf, bool setting);
1416 	int			(*ndo_get_vf_config)(struct net_device *dev,
1417 						     int vf,
1418 						     struct ifla_vf_info *ivf);
1419 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1420 							 int vf, int link_state);
1421 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1422 						    int vf,
1423 						    struct ifla_vf_stats
1424 						    *vf_stats);
1425 	int			(*ndo_set_vf_port)(struct net_device *dev,
1426 						   int vf,
1427 						   struct nlattr *port[]);
1428 	int			(*ndo_get_vf_port)(struct net_device *dev,
1429 						   int vf, struct sk_buff *skb);
1430 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1431 						   int vf,
1432 						   struct ifla_vf_guid *node_guid,
1433 						   struct ifla_vf_guid *port_guid);
1434 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1435 						   int vf, u64 guid,
1436 						   int guid_type);
1437 	int			(*ndo_set_vf_rss_query_en)(
1438 						   struct net_device *dev,
1439 						   int vf, bool setting);
1440 	int			(*ndo_setup_tc)(struct net_device *dev,
1441 						enum tc_setup_type type,
1442 						void *type_data);
1443 #if IS_ENABLED(CONFIG_FCOE)
1444 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1445 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1446 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1447 						      u16 xid,
1448 						      struct scatterlist *sgl,
1449 						      unsigned int sgc);
1450 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1451 						     u16 xid);
1452 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1453 						       u16 xid,
1454 						       struct scatterlist *sgl,
1455 						       unsigned int sgc);
1456 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1457 							struct netdev_fcoe_hbainfo *hbainfo);
1458 #endif
1459 
1460 #if IS_ENABLED(CONFIG_LIBFCOE)
1461 #define NETDEV_FCOE_WWNN 0
1462 #define NETDEV_FCOE_WWPN 1
1463 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1464 						    u64 *wwn, int type);
1465 #endif
1466 
1467 #ifdef CONFIG_RFS_ACCEL
1468 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1469 						     const struct sk_buff *skb,
1470 						     u16 rxq_index,
1471 						     u32 flow_id);
1472 #endif
1473 	int			(*ndo_add_slave)(struct net_device *dev,
1474 						 struct net_device *slave_dev,
1475 						 struct netlink_ext_ack *extack);
1476 	int			(*ndo_del_slave)(struct net_device *dev,
1477 						 struct net_device *slave_dev);
1478 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1479 						      struct sk_buff *skb,
1480 						      bool all_slaves);
1481 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1482 							struct sock *sk);
1483 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1484 						    netdev_features_t features);
1485 	int			(*ndo_set_features)(struct net_device *dev,
1486 						    netdev_features_t features);
1487 	int			(*ndo_neigh_construct)(struct net_device *dev,
1488 						       struct neighbour *n);
1489 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1490 						     struct neighbour *n);
1491 
1492 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1493 					       struct nlattr *tb[],
1494 					       struct net_device *dev,
1495 					       const unsigned char *addr,
1496 					       u16 vid,
1497 					       u16 flags,
1498 					       struct netlink_ext_ack *extack);
1499 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1500 					       struct nlattr *tb[],
1501 					       struct net_device *dev,
1502 					       const unsigned char *addr,
1503 					       u16 vid);
1504 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1505 						struct netlink_callback *cb,
1506 						struct net_device *dev,
1507 						struct net_device *filter_dev,
1508 						int *idx);
1509 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1510 					       struct nlattr *tb[],
1511 					       struct net_device *dev,
1512 					       const unsigned char *addr,
1513 					       u16 vid, u32 portid, u32 seq,
1514 					       struct netlink_ext_ack *extack);
1515 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1516 						      struct nlmsghdr *nlh,
1517 						      u16 flags,
1518 						      struct netlink_ext_ack *extack);
1519 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1520 						      u32 pid, u32 seq,
1521 						      struct net_device *dev,
1522 						      u32 filter_mask,
1523 						      int nlflags);
1524 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1525 						      struct nlmsghdr *nlh,
1526 						      u16 flags);
1527 	int			(*ndo_change_carrier)(struct net_device *dev,
1528 						      bool new_carrier);
1529 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1530 							struct netdev_phys_item_id *ppid);
1531 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1532 							  struct netdev_phys_item_id *ppid);
1533 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1534 							  char *name, size_t len);
1535 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1536 							struct net_device *dev);
1537 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1538 							void *priv);
1539 
1540 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1541 						      int queue_index,
1542 						      u32 maxrate);
1543 	int			(*ndo_get_iflink)(const struct net_device *dev);
1544 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1545 						       struct sk_buff *skb);
1546 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1547 						       int needed_headroom);
1548 	int			(*ndo_bpf)(struct net_device *dev,
1549 					   struct netdev_bpf *bpf);
1550 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1551 						struct xdp_frame **xdp,
1552 						u32 flags);
1553 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1554 							  struct xdp_buff *xdp);
1555 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1556 						  u32 queue_id, u32 flags);
1557 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1558 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1559 						  struct ip_tunnel_parm *p, int cmd);
1560 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1561 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1562                                                          struct net_device_path *path);
1563 };
1564 
1565 /**
1566  * enum netdev_priv_flags - &struct net_device priv_flags
1567  *
1568  * These are the &struct net_device, they are only set internally
1569  * by drivers and used in the kernel. These flags are invisible to
1570  * userspace; this means that the order of these flags can change
1571  * during any kernel release.
1572  *
1573  * You should have a pretty good reason to be extending these flags.
1574  *
1575  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1576  * @IFF_EBRIDGE: Ethernet bridging device
1577  * @IFF_BONDING: bonding master or slave
1578  * @IFF_ISATAP: ISATAP interface (RFC4214)
1579  * @IFF_WAN_HDLC: WAN HDLC device
1580  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1581  *	release skb->dst
1582  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1583  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1584  * @IFF_MACVLAN_PORT: device used as macvlan port
1585  * @IFF_BRIDGE_PORT: device used as bridge port
1586  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1587  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1588  * @IFF_UNICAST_FLT: Supports unicast filtering
1589  * @IFF_TEAM_PORT: device used as team port
1590  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1591  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1592  *	change when it's running
1593  * @IFF_MACVLAN: Macvlan device
1594  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1595  *	underlying stacked devices
1596  * @IFF_L3MDEV_MASTER: device is an L3 master device
1597  * @IFF_NO_QUEUE: device can run without qdisc attached
1598  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1599  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1600  * @IFF_TEAM: device is a team device
1601  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1602  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1603  *	entity (i.e. the master device for bridged veth)
1604  * @IFF_MACSEC: device is a MACsec device
1605  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1606  * @IFF_FAILOVER: device is a failover master device
1607  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1608  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1609  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1610  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1611  *	skb_headlen(skb) == 0 (data starts from frag0)
1612  * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1613  */
1614 enum netdev_priv_flags {
1615 	IFF_802_1Q_VLAN			= 1<<0,
1616 	IFF_EBRIDGE			= 1<<1,
1617 	IFF_BONDING			= 1<<2,
1618 	IFF_ISATAP			= 1<<3,
1619 	IFF_WAN_HDLC			= 1<<4,
1620 	IFF_XMIT_DST_RELEASE		= 1<<5,
1621 	IFF_DONT_BRIDGE			= 1<<6,
1622 	IFF_DISABLE_NETPOLL		= 1<<7,
1623 	IFF_MACVLAN_PORT		= 1<<8,
1624 	IFF_BRIDGE_PORT			= 1<<9,
1625 	IFF_OVS_DATAPATH		= 1<<10,
1626 	IFF_TX_SKB_SHARING		= 1<<11,
1627 	IFF_UNICAST_FLT			= 1<<12,
1628 	IFF_TEAM_PORT			= 1<<13,
1629 	IFF_SUPP_NOFCS			= 1<<14,
1630 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1631 	IFF_MACVLAN			= 1<<16,
1632 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1633 	IFF_L3MDEV_MASTER		= 1<<18,
1634 	IFF_NO_QUEUE			= 1<<19,
1635 	IFF_OPENVSWITCH			= 1<<20,
1636 	IFF_L3MDEV_SLAVE		= 1<<21,
1637 	IFF_TEAM			= 1<<22,
1638 	IFF_RXFH_CONFIGURED		= 1<<23,
1639 	IFF_PHONY_HEADROOM		= 1<<24,
1640 	IFF_MACSEC			= 1<<25,
1641 	IFF_NO_RX_HANDLER		= 1<<26,
1642 	IFF_FAILOVER			= 1<<27,
1643 	IFF_FAILOVER_SLAVE		= 1<<28,
1644 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1645 	IFF_LIVE_RENAME_OK		= 1<<30,
1646 	IFF_TX_SKB_NO_LINEAR		= 1<<31,
1647 	IFF_CHANGE_PROTO_DOWN		= BIT_ULL(32),
1648 };
1649 
1650 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1651 #define IFF_EBRIDGE			IFF_EBRIDGE
1652 #define IFF_BONDING			IFF_BONDING
1653 #define IFF_ISATAP			IFF_ISATAP
1654 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1655 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1656 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1657 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1658 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1659 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1660 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1661 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1662 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1663 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1664 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1665 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1666 #define IFF_MACVLAN			IFF_MACVLAN
1667 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1668 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1669 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1670 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1671 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1672 #define IFF_TEAM			IFF_TEAM
1673 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1674 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1675 #define IFF_MACSEC			IFF_MACSEC
1676 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1677 #define IFF_FAILOVER			IFF_FAILOVER
1678 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1679 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1680 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1681 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1682 
1683 /* Specifies the type of the struct net_device::ml_priv pointer */
1684 enum netdev_ml_priv_type {
1685 	ML_PRIV_NONE,
1686 	ML_PRIV_CAN,
1687 };
1688 
1689 /**
1690  *	struct net_device - The DEVICE structure.
1691  *
1692  *	Actually, this whole structure is a big mistake.  It mixes I/O
1693  *	data with strictly "high-level" data, and it has to know about
1694  *	almost every data structure used in the INET module.
1695  *
1696  *	@name:	This is the first field of the "visible" part of this structure
1697  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1698  *		of the interface.
1699  *
1700  *	@name_node:	Name hashlist node
1701  *	@ifalias:	SNMP alias
1702  *	@mem_end:	Shared memory end
1703  *	@mem_start:	Shared memory start
1704  *	@base_addr:	Device I/O address
1705  *	@irq:		Device IRQ number
1706  *
1707  *	@state:		Generic network queuing layer state, see netdev_state_t
1708  *	@dev_list:	The global list of network devices
1709  *	@napi_list:	List entry used for polling NAPI devices
1710  *	@unreg_list:	List entry  when we are unregistering the
1711  *			device; see the function unregister_netdev
1712  *	@close_list:	List entry used when we are closing the device
1713  *	@ptype_all:     Device-specific packet handlers for all protocols
1714  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1715  *
1716  *	@adj_list:	Directly linked devices, like slaves for bonding
1717  *	@features:	Currently active device features
1718  *	@hw_features:	User-changeable features
1719  *
1720  *	@wanted_features:	User-requested features
1721  *	@vlan_features:		Mask of features inheritable by VLAN devices
1722  *
1723  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1724  *				This field indicates what encapsulation
1725  *				offloads the hardware is capable of doing,
1726  *				and drivers will need to set them appropriately.
1727  *
1728  *	@mpls_features:	Mask of features inheritable by MPLS
1729  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1730  *
1731  *	@ifindex:	interface index
1732  *	@group:		The group the device belongs to
1733  *
1734  *	@stats:		Statistics struct, which was left as a legacy, use
1735  *			rtnl_link_stats64 instead
1736  *
1737  *	@rx_dropped:	Dropped packets by core network,
1738  *			do not use this in drivers
1739  *	@tx_dropped:	Dropped packets by core network,
1740  *			do not use this in drivers
1741  *	@rx_nohandler:	nohandler dropped packets by core network on
1742  *			inactive devices, do not use this in drivers
1743  *	@carrier_up_count:	Number of times the carrier has been up
1744  *	@carrier_down_count:	Number of times the carrier has been down
1745  *
1746  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1747  *				instead of ioctl,
1748  *				see <net/iw_handler.h> for details.
1749  *	@wireless_data:	Instance data managed by the core of wireless extensions
1750  *
1751  *	@netdev_ops:	Includes several pointers to callbacks,
1752  *			if one wants to override the ndo_*() functions
1753  *	@ethtool_ops:	Management operations
1754  *	@l3mdev_ops:	Layer 3 master device operations
1755  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1756  *			discovery handling. Necessary for e.g. 6LoWPAN.
1757  *	@xfrmdev_ops:	Transformation offload operations
1758  *	@tlsdev_ops:	Transport Layer Security offload operations
1759  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1760  *			of Layer 2 headers.
1761  *
1762  *	@flags:		Interface flags (a la BSD)
1763  *	@priv_flags:	Like 'flags' but invisible to userspace,
1764  *			see if.h for the definitions
1765  *	@gflags:	Global flags ( kept as legacy )
1766  *	@padded:	How much padding added by alloc_netdev()
1767  *	@operstate:	RFC2863 operstate
1768  *	@link_mode:	Mapping policy to operstate
1769  *	@if_port:	Selectable AUI, TP, ...
1770  *	@dma:		DMA channel
1771  *	@mtu:		Interface MTU value
1772  *	@min_mtu:	Interface Minimum MTU value
1773  *	@max_mtu:	Interface Maximum MTU value
1774  *	@type:		Interface hardware type
1775  *	@hard_header_len: Maximum hardware header length.
1776  *	@min_header_len:  Minimum hardware header length
1777  *
1778  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1779  *			  cases can this be guaranteed
1780  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1781  *			  cases can this be guaranteed. Some cases also use
1782  *			  LL_MAX_HEADER instead to allocate the skb
1783  *
1784  *	interface address info:
1785  *
1786  * 	@perm_addr:		Permanent hw address
1787  * 	@addr_assign_type:	Hw address assignment type
1788  * 	@addr_len:		Hardware address length
1789  *	@upper_level:		Maximum depth level of upper devices.
1790  *	@lower_level:		Maximum depth level of lower devices.
1791  *	@neigh_priv_len:	Used in neigh_alloc()
1792  * 	@dev_id:		Used to differentiate devices that share
1793  * 				the same link layer address
1794  * 	@dev_port:		Used to differentiate devices that share
1795  * 				the same function
1796  *	@addr_list_lock:	XXX: need comments on this one
1797  *	@name_assign_type:	network interface name assignment type
1798  *	@uc_promisc:		Counter that indicates promiscuous mode
1799  *				has been enabled due to the need to listen to
1800  *				additional unicast addresses in a device that
1801  *				does not implement ndo_set_rx_mode()
1802  *	@uc:			unicast mac addresses
1803  *	@mc:			multicast mac addresses
1804  *	@dev_addrs:		list of device hw addresses
1805  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1806  *	@promiscuity:		Number of times the NIC is told to work in
1807  *				promiscuous mode; if it becomes 0 the NIC will
1808  *				exit promiscuous mode
1809  *	@allmulti:		Counter, enables or disables allmulticast mode
1810  *
1811  *	@vlan_info:	VLAN info
1812  *	@dsa_ptr:	dsa specific data
1813  *	@tipc_ptr:	TIPC specific data
1814  *	@atalk_ptr:	AppleTalk link
1815  *	@ip_ptr:	IPv4 specific data
1816  *	@dn_ptr:	DECnet specific data
1817  *	@ip6_ptr:	IPv6 specific data
1818  *	@ax25_ptr:	AX.25 specific data
1819  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1820  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1821  *			 device struct
1822  *	@mpls_ptr:	mpls_dev struct pointer
1823  *	@mctp_ptr:	MCTP specific data
1824  *
1825  *	@dev_addr:	Hw address (before bcast,
1826  *			because most packets are unicast)
1827  *
1828  *	@_rx:			Array of RX queues
1829  *	@num_rx_queues:		Number of RX queues
1830  *				allocated at register_netdev() time
1831  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1832  *	@xdp_prog:		XDP sockets filter program pointer
1833  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1834  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1835  *				allow to avoid NIC hard IRQ, on busy queues.
1836  *
1837  *	@rx_handler:		handler for received packets
1838  *	@rx_handler_data: 	XXX: need comments on this one
1839  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1840  *				ingress processing
1841  *	@ingress_queue:		XXX: need comments on this one
1842  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1843  *	@broadcast:		hw bcast address
1844  *
1845  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1846  *			indexed by RX queue number. Assigned by driver.
1847  *			This must only be set if the ndo_rx_flow_steer
1848  *			operation is defined
1849  *	@index_hlist:		Device index hash chain
1850  *
1851  *	@_tx:			Array of TX queues
1852  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1853  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1854  *	@qdisc:			Root qdisc from userspace point of view
1855  *	@tx_queue_len:		Max frames per queue allowed
1856  *	@tx_global_lock: 	XXX: need comments on this one
1857  *	@xdp_bulkq:		XDP device bulk queue
1858  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1859  *
1860  *	@xps_maps:	XXX: need comments on this one
1861  *	@miniq_egress:		clsact qdisc specific data for
1862  *				egress processing
1863  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1864  *	@qdisc_hash:		qdisc hash table
1865  *	@watchdog_timeo:	Represents the timeout that is used by
1866  *				the watchdog (see dev_watchdog())
1867  *	@watchdog_timer:	List of timers
1868  *
1869  *	@proto_down_reason:	reason a netdev interface is held down
1870  *	@pcpu_refcnt:		Number of references to this device
1871  *	@dev_refcnt:		Number of references to this device
1872  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1873  *	@todo_list:		Delayed register/unregister
1874  *	@link_watch_list:	XXX: need comments on this one
1875  *
1876  *	@reg_state:		Register/unregister state machine
1877  *	@dismantle:		Device is going to be freed
1878  *	@rtnl_link_state:	This enum represents the phases of creating
1879  *				a new link
1880  *
1881  *	@needs_free_netdev:	Should unregister perform free_netdev?
1882  *	@priv_destructor:	Called from unregister
1883  *	@npinfo:		XXX: need comments on this one
1884  * 	@nd_net:		Network namespace this network device is inside
1885  *
1886  * 	@ml_priv:	Mid-layer private
1887  *	@ml_priv_type:  Mid-layer private type
1888  * 	@lstats:	Loopback statistics
1889  * 	@tstats:	Tunnel statistics
1890  * 	@dstats:	Dummy statistics
1891  * 	@vstats:	Virtual ethernet statistics
1892  *
1893  *	@garp_port:	GARP
1894  *	@mrp_port:	MRP
1895  *
1896  *	@dev:		Class/net/name entry
1897  *	@sysfs_groups:	Space for optional device, statistics and wireless
1898  *			sysfs groups
1899  *
1900  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1901  *	@rtnl_link_ops:	Rtnl_link_ops
1902  *
1903  *	@gso_max_size:	Maximum size of generic segmentation offload
1904  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1905  *			NIC for GSO
1906  *
1907  *	@dcbnl_ops:	Data Center Bridging netlink ops
1908  *	@num_tc:	Number of traffic classes in the net device
1909  *	@tc_to_txq:	XXX: need comments on this one
1910  *	@prio_tc_map:	XXX: need comments on this one
1911  *
1912  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1913  *
1914  *	@priomap:	XXX: need comments on this one
1915  *	@phydev:	Physical device may attach itself
1916  *			for hardware timestamping
1917  *	@sfp_bus:	attached &struct sfp_bus structure.
1918  *
1919  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1920  *
1921  *	@proto_down:	protocol port state information can be sent to the
1922  *			switch driver and used to set the phys state of the
1923  *			switch port.
1924  *
1925  *	@wol_enabled:	Wake-on-LAN is enabled
1926  *
1927  *	@threaded:	napi threaded mode is enabled
1928  *
1929  *	@net_notifier_list:	List of per-net netdev notifier block
1930  *				that follow this device when it is moved
1931  *				to another network namespace.
1932  *
1933  *	@macsec_ops:    MACsec offloading ops
1934  *
1935  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1936  *				offload capabilities of the device
1937  *	@udp_tunnel_nic:	UDP tunnel offload state
1938  *	@xdp_state:		stores info on attached XDP BPF programs
1939  *
1940  *	@nested_level:	Used as as a parameter of spin_lock_nested() of
1941  *			dev->addr_list_lock.
1942  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1943  *			keep a list of interfaces to be deleted.
1944  *
1945  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
1946  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
1947  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
1948  *
1949  *	FIXME: cleanup struct net_device such that network protocol info
1950  *	moves out.
1951  */
1952 
1953 struct net_device {
1954 	char			name[IFNAMSIZ];
1955 	struct netdev_name_node	*name_node;
1956 	struct dev_ifalias	__rcu *ifalias;
1957 	/*
1958 	 *	I/O specific fields
1959 	 *	FIXME: Merge these and struct ifmap into one
1960 	 */
1961 	unsigned long		mem_end;
1962 	unsigned long		mem_start;
1963 	unsigned long		base_addr;
1964 
1965 	/*
1966 	 *	Some hardware also needs these fields (state,dev_list,
1967 	 *	napi_list,unreg_list,close_list) but they are not
1968 	 *	part of the usual set specified in Space.c.
1969 	 */
1970 
1971 	unsigned long		state;
1972 
1973 	struct list_head	dev_list;
1974 	struct list_head	napi_list;
1975 	struct list_head	unreg_list;
1976 	struct list_head	close_list;
1977 	struct list_head	ptype_all;
1978 	struct list_head	ptype_specific;
1979 
1980 	struct {
1981 		struct list_head upper;
1982 		struct list_head lower;
1983 	} adj_list;
1984 
1985 	/* Read-mostly cache-line for fast-path access */
1986 	unsigned int		flags;
1987 	unsigned long long	priv_flags;
1988 	const struct net_device_ops *netdev_ops;
1989 	int			ifindex;
1990 	unsigned short		gflags;
1991 	unsigned short		hard_header_len;
1992 
1993 	/* Note : dev->mtu is often read without holding a lock.
1994 	 * Writers usually hold RTNL.
1995 	 * It is recommended to use READ_ONCE() to annotate the reads,
1996 	 * and to use WRITE_ONCE() to annotate the writes.
1997 	 */
1998 	unsigned int		mtu;
1999 	unsigned short		needed_headroom;
2000 	unsigned short		needed_tailroom;
2001 
2002 	netdev_features_t	features;
2003 	netdev_features_t	hw_features;
2004 	netdev_features_t	wanted_features;
2005 	netdev_features_t	vlan_features;
2006 	netdev_features_t	hw_enc_features;
2007 	netdev_features_t	mpls_features;
2008 	netdev_features_t	gso_partial_features;
2009 
2010 	unsigned int		min_mtu;
2011 	unsigned int		max_mtu;
2012 	unsigned short		type;
2013 	unsigned char		min_header_len;
2014 	unsigned char		name_assign_type;
2015 
2016 	int			group;
2017 
2018 	struct net_device_stats	stats; /* not used by modern drivers */
2019 
2020 	atomic_long_t		rx_dropped;
2021 	atomic_long_t		tx_dropped;
2022 	atomic_long_t		rx_nohandler;
2023 
2024 	/* Stats to monitor link on/off, flapping */
2025 	atomic_t		carrier_up_count;
2026 	atomic_t		carrier_down_count;
2027 
2028 #ifdef CONFIG_WIRELESS_EXT
2029 	const struct iw_handler_def *wireless_handlers;
2030 	struct iw_public_data	*wireless_data;
2031 #endif
2032 	const struct ethtool_ops *ethtool_ops;
2033 #ifdef CONFIG_NET_L3_MASTER_DEV
2034 	const struct l3mdev_ops	*l3mdev_ops;
2035 #endif
2036 #if IS_ENABLED(CONFIG_IPV6)
2037 	const struct ndisc_ops *ndisc_ops;
2038 #endif
2039 
2040 #ifdef CONFIG_XFRM_OFFLOAD
2041 	const struct xfrmdev_ops *xfrmdev_ops;
2042 #endif
2043 
2044 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2045 	const struct tlsdev_ops *tlsdev_ops;
2046 #endif
2047 
2048 	const struct header_ops *header_ops;
2049 
2050 	unsigned char		operstate;
2051 	unsigned char		link_mode;
2052 
2053 	unsigned char		if_port;
2054 	unsigned char		dma;
2055 
2056 	/* Interface address info. */
2057 	unsigned char		perm_addr[MAX_ADDR_LEN];
2058 	unsigned char		addr_assign_type;
2059 	unsigned char		addr_len;
2060 	unsigned char		upper_level;
2061 	unsigned char		lower_level;
2062 
2063 	unsigned short		neigh_priv_len;
2064 	unsigned short          dev_id;
2065 	unsigned short          dev_port;
2066 	unsigned short		padded;
2067 
2068 	spinlock_t		addr_list_lock;
2069 	int			irq;
2070 
2071 	struct netdev_hw_addr_list	uc;
2072 	struct netdev_hw_addr_list	mc;
2073 	struct netdev_hw_addr_list	dev_addrs;
2074 
2075 #ifdef CONFIG_SYSFS
2076 	struct kset		*queues_kset;
2077 #endif
2078 #ifdef CONFIG_LOCKDEP
2079 	struct list_head	unlink_list;
2080 #endif
2081 	unsigned int		promiscuity;
2082 	unsigned int		allmulti;
2083 	bool			uc_promisc;
2084 #ifdef CONFIG_LOCKDEP
2085 	unsigned char		nested_level;
2086 #endif
2087 
2088 
2089 	/* Protocol-specific pointers */
2090 
2091 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2092 	struct vlan_info __rcu	*vlan_info;
2093 #endif
2094 #if IS_ENABLED(CONFIG_NET_DSA)
2095 	struct dsa_port		*dsa_ptr;
2096 #endif
2097 #if IS_ENABLED(CONFIG_TIPC)
2098 	struct tipc_bearer __rcu *tipc_ptr;
2099 #endif
2100 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
2101 	void 			*atalk_ptr;
2102 #endif
2103 	struct in_device __rcu	*ip_ptr;
2104 #if IS_ENABLED(CONFIG_DECNET)
2105 	struct dn_dev __rcu     *dn_ptr;
2106 #endif
2107 	struct inet6_dev __rcu	*ip6_ptr;
2108 #if IS_ENABLED(CONFIG_AX25)
2109 	void			*ax25_ptr;
2110 #endif
2111 	struct wireless_dev	*ieee80211_ptr;
2112 	struct wpan_dev		*ieee802154_ptr;
2113 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2114 	struct mpls_dev __rcu	*mpls_ptr;
2115 #endif
2116 #if IS_ENABLED(CONFIG_MCTP)
2117 	struct mctp_dev __rcu	*mctp_ptr;
2118 #endif
2119 
2120 /*
2121  * Cache lines mostly used on receive path (including eth_type_trans())
2122  */
2123 	/* Interface address info used in eth_type_trans() */
2124 	const unsigned char	*dev_addr;
2125 
2126 	struct netdev_rx_queue	*_rx;
2127 	unsigned int		num_rx_queues;
2128 	unsigned int		real_num_rx_queues;
2129 
2130 	struct bpf_prog __rcu	*xdp_prog;
2131 	unsigned long		gro_flush_timeout;
2132 	int			napi_defer_hard_irqs;
2133 	rx_handler_func_t __rcu	*rx_handler;
2134 	void __rcu		*rx_handler_data;
2135 
2136 #ifdef CONFIG_NET_CLS_ACT
2137 	struct mini_Qdisc __rcu	*miniq_ingress;
2138 #endif
2139 	struct netdev_queue __rcu *ingress_queue;
2140 #ifdef CONFIG_NETFILTER_INGRESS
2141 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2142 #endif
2143 
2144 	unsigned char		broadcast[MAX_ADDR_LEN];
2145 #ifdef CONFIG_RFS_ACCEL
2146 	struct cpu_rmap		*rx_cpu_rmap;
2147 #endif
2148 	struct hlist_node	index_hlist;
2149 
2150 /*
2151  * Cache lines mostly used on transmit path
2152  */
2153 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2154 	unsigned int		num_tx_queues;
2155 	unsigned int		real_num_tx_queues;
2156 	struct Qdisc		*qdisc;
2157 	unsigned int		tx_queue_len;
2158 	spinlock_t		tx_global_lock;
2159 
2160 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2161 
2162 #ifdef CONFIG_XPS
2163 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2164 #endif
2165 #ifdef CONFIG_NET_CLS_ACT
2166 	struct mini_Qdisc __rcu	*miniq_egress;
2167 #endif
2168 #ifdef CONFIG_NETFILTER_EGRESS
2169 	struct nf_hook_entries __rcu *nf_hooks_egress;
2170 #endif
2171 
2172 #ifdef CONFIG_NET_SCHED
2173 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2174 #endif
2175 	/* These may be needed for future network-power-down code. */
2176 	struct timer_list	watchdog_timer;
2177 	int			watchdog_timeo;
2178 
2179 	u32                     proto_down_reason;
2180 
2181 	struct list_head	todo_list;
2182 
2183 #ifdef CONFIG_PCPU_DEV_REFCNT
2184 	int __percpu		*pcpu_refcnt;
2185 #else
2186 	refcount_t		dev_refcnt;
2187 #endif
2188 	struct ref_tracker_dir	refcnt_tracker;
2189 
2190 	struct list_head	link_watch_list;
2191 
2192 	enum { NETREG_UNINITIALIZED=0,
2193 	       NETREG_REGISTERED,	/* completed register_netdevice */
2194 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2195 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2196 	       NETREG_RELEASED,		/* called free_netdev */
2197 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2198 	} reg_state:8;
2199 
2200 	bool dismantle;
2201 
2202 	enum {
2203 		RTNL_LINK_INITIALIZED,
2204 		RTNL_LINK_INITIALIZING,
2205 	} rtnl_link_state:16;
2206 
2207 	bool needs_free_netdev;
2208 	void (*priv_destructor)(struct net_device *dev);
2209 
2210 #ifdef CONFIG_NETPOLL
2211 	struct netpoll_info __rcu	*npinfo;
2212 #endif
2213 
2214 	possible_net_t			nd_net;
2215 
2216 	/* mid-layer private */
2217 	void				*ml_priv;
2218 	enum netdev_ml_priv_type	ml_priv_type;
2219 
2220 	union {
2221 		struct pcpu_lstats __percpu		*lstats;
2222 		struct pcpu_sw_netstats __percpu	*tstats;
2223 		struct pcpu_dstats __percpu		*dstats;
2224 	};
2225 
2226 #if IS_ENABLED(CONFIG_GARP)
2227 	struct garp_port __rcu	*garp_port;
2228 #endif
2229 #if IS_ENABLED(CONFIG_MRP)
2230 	struct mrp_port __rcu	*mrp_port;
2231 #endif
2232 
2233 	struct device		dev;
2234 	const struct attribute_group *sysfs_groups[4];
2235 	const struct attribute_group *sysfs_rx_queue_group;
2236 
2237 	const struct rtnl_link_ops *rtnl_link_ops;
2238 
2239 	/* for setting kernel sock attribute on TCP connection setup */
2240 #define GSO_MAX_SIZE		65536
2241 	unsigned int		gso_max_size;
2242 #define GSO_MAX_SEGS		65535
2243 	u16			gso_max_segs;
2244 
2245 #ifdef CONFIG_DCB
2246 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2247 #endif
2248 	s16			num_tc;
2249 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2250 	u8			prio_tc_map[TC_BITMASK + 1];
2251 
2252 #if IS_ENABLED(CONFIG_FCOE)
2253 	unsigned int		fcoe_ddp_xid;
2254 #endif
2255 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2256 	struct netprio_map __rcu *priomap;
2257 #endif
2258 	struct phy_device	*phydev;
2259 	struct sfp_bus		*sfp_bus;
2260 	struct lock_class_key	*qdisc_tx_busylock;
2261 	bool			proto_down;
2262 	unsigned		wol_enabled:1;
2263 	unsigned		threaded:1;
2264 
2265 	struct list_head	net_notifier_list;
2266 
2267 #if IS_ENABLED(CONFIG_MACSEC)
2268 	/* MACsec management functions */
2269 	const struct macsec_ops *macsec_ops;
2270 #endif
2271 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2272 	struct udp_tunnel_nic	*udp_tunnel_nic;
2273 
2274 	/* protected by rtnl_lock */
2275 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2276 
2277 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2278 	netdevice_tracker	linkwatch_dev_tracker;
2279 	netdevice_tracker	watchdog_dev_tracker;
2280 };
2281 #define to_net_dev(d) container_of(d, struct net_device, dev)
2282 
2283 static inline bool netif_elide_gro(const struct net_device *dev)
2284 {
2285 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2286 		return true;
2287 	return false;
2288 }
2289 
2290 #define	NETDEV_ALIGN		32
2291 
2292 static inline
2293 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2294 {
2295 	return dev->prio_tc_map[prio & TC_BITMASK];
2296 }
2297 
2298 static inline
2299 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2300 {
2301 	if (tc >= dev->num_tc)
2302 		return -EINVAL;
2303 
2304 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2305 	return 0;
2306 }
2307 
2308 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2309 void netdev_reset_tc(struct net_device *dev);
2310 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2311 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2312 
2313 static inline
2314 int netdev_get_num_tc(struct net_device *dev)
2315 {
2316 	return dev->num_tc;
2317 }
2318 
2319 static inline void net_prefetch(void *p)
2320 {
2321 	prefetch(p);
2322 #if L1_CACHE_BYTES < 128
2323 	prefetch((u8 *)p + L1_CACHE_BYTES);
2324 #endif
2325 }
2326 
2327 static inline void net_prefetchw(void *p)
2328 {
2329 	prefetchw(p);
2330 #if L1_CACHE_BYTES < 128
2331 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2332 #endif
2333 }
2334 
2335 void netdev_unbind_sb_channel(struct net_device *dev,
2336 			      struct net_device *sb_dev);
2337 int netdev_bind_sb_channel_queue(struct net_device *dev,
2338 				 struct net_device *sb_dev,
2339 				 u8 tc, u16 count, u16 offset);
2340 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2341 static inline int netdev_get_sb_channel(struct net_device *dev)
2342 {
2343 	return max_t(int, -dev->num_tc, 0);
2344 }
2345 
2346 static inline
2347 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2348 					 unsigned int index)
2349 {
2350 	return &dev->_tx[index];
2351 }
2352 
2353 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2354 						    const struct sk_buff *skb)
2355 {
2356 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2357 }
2358 
2359 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2360 					    void (*f)(struct net_device *,
2361 						      struct netdev_queue *,
2362 						      void *),
2363 					    void *arg)
2364 {
2365 	unsigned int i;
2366 
2367 	for (i = 0; i < dev->num_tx_queues; i++)
2368 		f(dev, &dev->_tx[i], arg);
2369 }
2370 
2371 #define netdev_lockdep_set_classes(dev)				\
2372 {								\
2373 	static struct lock_class_key qdisc_tx_busylock_key;	\
2374 	static struct lock_class_key qdisc_xmit_lock_key;	\
2375 	static struct lock_class_key dev_addr_list_lock_key;	\
2376 	unsigned int i;						\
2377 								\
2378 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2379 	lockdep_set_class(&(dev)->addr_list_lock,		\
2380 			  &dev_addr_list_lock_key);		\
2381 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2382 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2383 				  &qdisc_xmit_lock_key);	\
2384 }
2385 
2386 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2387 		     struct net_device *sb_dev);
2388 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2389 					 struct sk_buff *skb,
2390 					 struct net_device *sb_dev);
2391 
2392 /* returns the headroom that the master device needs to take in account
2393  * when forwarding to this dev
2394  */
2395 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2396 {
2397 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2398 }
2399 
2400 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2401 {
2402 	if (dev->netdev_ops->ndo_set_rx_headroom)
2403 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2404 }
2405 
2406 /* set the device rx headroom to the dev's default */
2407 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2408 {
2409 	netdev_set_rx_headroom(dev, -1);
2410 }
2411 
2412 static inline void *netdev_get_ml_priv(struct net_device *dev,
2413 				       enum netdev_ml_priv_type type)
2414 {
2415 	if (dev->ml_priv_type != type)
2416 		return NULL;
2417 
2418 	return dev->ml_priv;
2419 }
2420 
2421 static inline void netdev_set_ml_priv(struct net_device *dev,
2422 				      void *ml_priv,
2423 				      enum netdev_ml_priv_type type)
2424 {
2425 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2426 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2427 	     dev->ml_priv_type, type);
2428 	WARN(!dev->ml_priv_type && dev->ml_priv,
2429 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2430 
2431 	dev->ml_priv = ml_priv;
2432 	dev->ml_priv_type = type;
2433 }
2434 
2435 /*
2436  * Net namespace inlines
2437  */
2438 static inline
2439 struct net *dev_net(const struct net_device *dev)
2440 {
2441 	return read_pnet(&dev->nd_net);
2442 }
2443 
2444 static inline
2445 void dev_net_set(struct net_device *dev, struct net *net)
2446 {
2447 	write_pnet(&dev->nd_net, net);
2448 }
2449 
2450 /**
2451  *	netdev_priv - access network device private data
2452  *	@dev: network device
2453  *
2454  * Get network device private data
2455  */
2456 static inline void *netdev_priv(const struct net_device *dev)
2457 {
2458 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2459 }
2460 
2461 /* Set the sysfs physical device reference for the network logical device
2462  * if set prior to registration will cause a symlink during initialization.
2463  */
2464 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2465 
2466 /* Set the sysfs device type for the network logical device to allow
2467  * fine-grained identification of different network device types. For
2468  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2469  */
2470 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2471 
2472 /* Default NAPI poll() weight
2473  * Device drivers are strongly advised to not use bigger value
2474  */
2475 #define NAPI_POLL_WEIGHT 64
2476 
2477 /**
2478  *	netif_napi_add - initialize a NAPI context
2479  *	@dev:  network device
2480  *	@napi: NAPI context
2481  *	@poll: polling function
2482  *	@weight: default weight
2483  *
2484  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2485  * *any* of the other NAPI-related functions.
2486  */
2487 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2488 		    int (*poll)(struct napi_struct *, int), int weight);
2489 
2490 /**
2491  *	netif_tx_napi_add - initialize a NAPI context
2492  *	@dev:  network device
2493  *	@napi: NAPI context
2494  *	@poll: polling function
2495  *	@weight: default weight
2496  *
2497  * This variant of netif_napi_add() should be used from drivers using NAPI
2498  * to exclusively poll a TX queue.
2499  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2500  */
2501 static inline void netif_tx_napi_add(struct net_device *dev,
2502 				     struct napi_struct *napi,
2503 				     int (*poll)(struct napi_struct *, int),
2504 				     int weight)
2505 {
2506 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2507 	netif_napi_add(dev, napi, poll, weight);
2508 }
2509 
2510 /**
2511  *  __netif_napi_del - remove a NAPI context
2512  *  @napi: NAPI context
2513  *
2514  * Warning: caller must observe RCU grace period before freeing memory
2515  * containing @napi. Drivers might want to call this helper to combine
2516  * all the needed RCU grace periods into a single one.
2517  */
2518 void __netif_napi_del(struct napi_struct *napi);
2519 
2520 /**
2521  *  netif_napi_del - remove a NAPI context
2522  *  @napi: NAPI context
2523  *
2524  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2525  */
2526 static inline void netif_napi_del(struct napi_struct *napi)
2527 {
2528 	__netif_napi_del(napi);
2529 	synchronize_net();
2530 }
2531 
2532 struct packet_type {
2533 	__be16			type;	/* This is really htons(ether_type). */
2534 	bool			ignore_outgoing;
2535 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2536 	netdevice_tracker	dev_tracker;
2537 	int			(*func) (struct sk_buff *,
2538 					 struct net_device *,
2539 					 struct packet_type *,
2540 					 struct net_device *);
2541 	void			(*list_func) (struct list_head *,
2542 					      struct packet_type *,
2543 					      struct net_device *);
2544 	bool			(*id_match)(struct packet_type *ptype,
2545 					    struct sock *sk);
2546 	void			*af_packet_priv;
2547 	struct list_head	list;
2548 };
2549 
2550 struct offload_callbacks {
2551 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2552 						netdev_features_t features);
2553 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2554 						struct sk_buff *skb);
2555 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2556 };
2557 
2558 struct packet_offload {
2559 	__be16			 type;	/* This is really htons(ether_type). */
2560 	u16			 priority;
2561 	struct offload_callbacks callbacks;
2562 	struct list_head	 list;
2563 };
2564 
2565 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2566 struct pcpu_sw_netstats {
2567 	u64     rx_packets;
2568 	u64     rx_bytes;
2569 	u64     tx_packets;
2570 	u64     tx_bytes;
2571 	struct u64_stats_sync   syncp;
2572 } __aligned(4 * sizeof(u64));
2573 
2574 struct pcpu_lstats {
2575 	u64_stats_t packets;
2576 	u64_stats_t bytes;
2577 	struct u64_stats_sync syncp;
2578 } __aligned(2 * sizeof(u64));
2579 
2580 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2581 
2582 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2583 {
2584 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2585 
2586 	u64_stats_update_begin(&tstats->syncp);
2587 	tstats->rx_bytes += len;
2588 	tstats->rx_packets++;
2589 	u64_stats_update_end(&tstats->syncp);
2590 }
2591 
2592 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2593 					  unsigned int packets,
2594 					  unsigned int len)
2595 {
2596 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2597 
2598 	u64_stats_update_begin(&tstats->syncp);
2599 	tstats->tx_bytes += len;
2600 	tstats->tx_packets += packets;
2601 	u64_stats_update_end(&tstats->syncp);
2602 }
2603 
2604 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2605 {
2606 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2607 
2608 	u64_stats_update_begin(&lstats->syncp);
2609 	u64_stats_add(&lstats->bytes, len);
2610 	u64_stats_inc(&lstats->packets);
2611 	u64_stats_update_end(&lstats->syncp);
2612 }
2613 
2614 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2615 ({									\
2616 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2617 	if (pcpu_stats)	{						\
2618 		int __cpu;						\
2619 		for_each_possible_cpu(__cpu) {				\
2620 			typeof(type) *stat;				\
2621 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2622 			u64_stats_init(&stat->syncp);			\
2623 		}							\
2624 	}								\
2625 	pcpu_stats;							\
2626 })
2627 
2628 #define netdev_alloc_pcpu_stats(type)					\
2629 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2630 
2631 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2632 ({									\
2633 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2634 	if (pcpu_stats) {						\
2635 		int __cpu;						\
2636 		for_each_possible_cpu(__cpu) {				\
2637 			typeof(type) *stat;				\
2638 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2639 			u64_stats_init(&stat->syncp);			\
2640 		}							\
2641 	}								\
2642 	pcpu_stats;							\
2643 })
2644 
2645 enum netdev_lag_tx_type {
2646 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2647 	NETDEV_LAG_TX_TYPE_RANDOM,
2648 	NETDEV_LAG_TX_TYPE_BROADCAST,
2649 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2650 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2651 	NETDEV_LAG_TX_TYPE_HASH,
2652 };
2653 
2654 enum netdev_lag_hash {
2655 	NETDEV_LAG_HASH_NONE,
2656 	NETDEV_LAG_HASH_L2,
2657 	NETDEV_LAG_HASH_L34,
2658 	NETDEV_LAG_HASH_L23,
2659 	NETDEV_LAG_HASH_E23,
2660 	NETDEV_LAG_HASH_E34,
2661 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2662 	NETDEV_LAG_HASH_UNKNOWN,
2663 };
2664 
2665 struct netdev_lag_upper_info {
2666 	enum netdev_lag_tx_type tx_type;
2667 	enum netdev_lag_hash hash_type;
2668 };
2669 
2670 struct netdev_lag_lower_state_info {
2671 	u8 link_up : 1,
2672 	   tx_enabled : 1;
2673 };
2674 
2675 #include <linux/notifier.h>
2676 
2677 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2678  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2679  * adding new types.
2680  */
2681 enum netdev_cmd {
2682 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2683 	NETDEV_DOWN,
2684 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2685 				   detected a hardware crash and restarted
2686 				   - we can use this eg to kick tcp sessions
2687 				   once done */
2688 	NETDEV_CHANGE,		/* Notify device state change */
2689 	NETDEV_REGISTER,
2690 	NETDEV_UNREGISTER,
2691 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2692 	NETDEV_CHANGEADDR,	/* notify after the address change */
2693 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2694 	NETDEV_GOING_DOWN,
2695 	NETDEV_CHANGENAME,
2696 	NETDEV_FEAT_CHANGE,
2697 	NETDEV_BONDING_FAILOVER,
2698 	NETDEV_PRE_UP,
2699 	NETDEV_PRE_TYPE_CHANGE,
2700 	NETDEV_POST_TYPE_CHANGE,
2701 	NETDEV_POST_INIT,
2702 	NETDEV_RELEASE,
2703 	NETDEV_NOTIFY_PEERS,
2704 	NETDEV_JOIN,
2705 	NETDEV_CHANGEUPPER,
2706 	NETDEV_RESEND_IGMP,
2707 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2708 	NETDEV_CHANGEINFODATA,
2709 	NETDEV_BONDING_INFO,
2710 	NETDEV_PRECHANGEUPPER,
2711 	NETDEV_CHANGELOWERSTATE,
2712 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2713 	NETDEV_UDP_TUNNEL_DROP_INFO,
2714 	NETDEV_CHANGE_TX_QUEUE_LEN,
2715 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2716 	NETDEV_CVLAN_FILTER_DROP_INFO,
2717 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2718 	NETDEV_SVLAN_FILTER_DROP_INFO,
2719 };
2720 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2721 
2722 int register_netdevice_notifier(struct notifier_block *nb);
2723 int unregister_netdevice_notifier(struct notifier_block *nb);
2724 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2725 int unregister_netdevice_notifier_net(struct net *net,
2726 				      struct notifier_block *nb);
2727 int register_netdevice_notifier_dev_net(struct net_device *dev,
2728 					struct notifier_block *nb,
2729 					struct netdev_net_notifier *nn);
2730 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2731 					  struct notifier_block *nb,
2732 					  struct netdev_net_notifier *nn);
2733 
2734 struct netdev_notifier_info {
2735 	struct net_device	*dev;
2736 	struct netlink_ext_ack	*extack;
2737 };
2738 
2739 struct netdev_notifier_info_ext {
2740 	struct netdev_notifier_info info; /* must be first */
2741 	union {
2742 		u32 mtu;
2743 	} ext;
2744 };
2745 
2746 struct netdev_notifier_change_info {
2747 	struct netdev_notifier_info info; /* must be first */
2748 	unsigned int flags_changed;
2749 };
2750 
2751 struct netdev_notifier_changeupper_info {
2752 	struct netdev_notifier_info info; /* must be first */
2753 	struct net_device *upper_dev; /* new upper dev */
2754 	bool master; /* is upper dev master */
2755 	bool linking; /* is the notification for link or unlink */
2756 	void *upper_info; /* upper dev info */
2757 };
2758 
2759 struct netdev_notifier_changelowerstate_info {
2760 	struct netdev_notifier_info info; /* must be first */
2761 	void *lower_state_info; /* is lower dev state */
2762 };
2763 
2764 struct netdev_notifier_pre_changeaddr_info {
2765 	struct netdev_notifier_info info; /* must be first */
2766 	const unsigned char *dev_addr;
2767 };
2768 
2769 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2770 					     struct net_device *dev)
2771 {
2772 	info->dev = dev;
2773 	info->extack = NULL;
2774 }
2775 
2776 static inline struct net_device *
2777 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2778 {
2779 	return info->dev;
2780 }
2781 
2782 static inline struct netlink_ext_ack *
2783 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2784 {
2785 	return info->extack;
2786 }
2787 
2788 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2789 
2790 
2791 extern rwlock_t				dev_base_lock;		/* Device list lock */
2792 
2793 #define for_each_netdev(net, d)		\
2794 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2795 #define for_each_netdev_reverse(net, d)	\
2796 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2797 #define for_each_netdev_rcu(net, d)		\
2798 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2799 #define for_each_netdev_safe(net, d, n)	\
2800 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2801 #define for_each_netdev_continue(net, d)		\
2802 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2803 #define for_each_netdev_continue_reverse(net, d)		\
2804 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2805 						     dev_list)
2806 #define for_each_netdev_continue_rcu(net, d)		\
2807 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2808 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2809 		for_each_netdev_rcu(&init_net, slave)	\
2810 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2811 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2812 
2813 static inline struct net_device *next_net_device(struct net_device *dev)
2814 {
2815 	struct list_head *lh;
2816 	struct net *net;
2817 
2818 	net = dev_net(dev);
2819 	lh = dev->dev_list.next;
2820 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2821 }
2822 
2823 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2824 {
2825 	struct list_head *lh;
2826 	struct net *net;
2827 
2828 	net = dev_net(dev);
2829 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2830 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2831 }
2832 
2833 static inline struct net_device *first_net_device(struct net *net)
2834 {
2835 	return list_empty(&net->dev_base_head) ? NULL :
2836 		net_device_entry(net->dev_base_head.next);
2837 }
2838 
2839 static inline struct net_device *first_net_device_rcu(struct net *net)
2840 {
2841 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2842 
2843 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2844 }
2845 
2846 int netdev_boot_setup_check(struct net_device *dev);
2847 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2848 				       const char *hwaddr);
2849 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2850 void dev_add_pack(struct packet_type *pt);
2851 void dev_remove_pack(struct packet_type *pt);
2852 void __dev_remove_pack(struct packet_type *pt);
2853 void dev_add_offload(struct packet_offload *po);
2854 void dev_remove_offload(struct packet_offload *po);
2855 
2856 int dev_get_iflink(const struct net_device *dev);
2857 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2858 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
2859 			  struct net_device_path_stack *stack);
2860 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2861 				      unsigned short mask);
2862 struct net_device *dev_get_by_name(struct net *net, const char *name);
2863 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2864 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2865 bool netdev_name_in_use(struct net *net, const char *name);
2866 int dev_alloc_name(struct net_device *dev, const char *name);
2867 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2868 void dev_close(struct net_device *dev);
2869 void dev_close_many(struct list_head *head, bool unlink);
2870 void dev_disable_lro(struct net_device *dev);
2871 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2872 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2873 		     struct net_device *sb_dev);
2874 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2875 		       struct net_device *sb_dev);
2876 
2877 int dev_queue_xmit(struct sk_buff *skb);
2878 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2879 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2880 
2881 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
2882 {
2883 	int ret;
2884 
2885 	ret = __dev_direct_xmit(skb, queue_id);
2886 	if (!dev_xmit_complete(ret))
2887 		kfree_skb(skb);
2888 	return ret;
2889 }
2890 
2891 int register_netdevice(struct net_device *dev);
2892 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2893 void unregister_netdevice_many(struct list_head *head);
2894 static inline void unregister_netdevice(struct net_device *dev)
2895 {
2896 	unregister_netdevice_queue(dev, NULL);
2897 }
2898 
2899 int netdev_refcnt_read(const struct net_device *dev);
2900 void free_netdev(struct net_device *dev);
2901 void netdev_freemem(struct net_device *dev);
2902 int init_dummy_netdev(struct net_device *dev);
2903 
2904 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2905 					 struct sk_buff *skb,
2906 					 bool all_slaves);
2907 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
2908 					    struct sock *sk);
2909 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2910 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2911 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2912 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2913 int netdev_get_name(struct net *net, char *name, int ifindex);
2914 int dev_restart(struct net_device *dev);
2915 
2916 
2917 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2918 				  unsigned short type,
2919 				  const void *daddr, const void *saddr,
2920 				  unsigned int len)
2921 {
2922 	if (!dev->header_ops || !dev->header_ops->create)
2923 		return 0;
2924 
2925 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2926 }
2927 
2928 static inline int dev_parse_header(const struct sk_buff *skb,
2929 				   unsigned char *haddr)
2930 {
2931 	const struct net_device *dev = skb->dev;
2932 
2933 	if (!dev->header_ops || !dev->header_ops->parse)
2934 		return 0;
2935 	return dev->header_ops->parse(skb, haddr);
2936 }
2937 
2938 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
2939 {
2940 	const struct net_device *dev = skb->dev;
2941 
2942 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
2943 		return 0;
2944 	return dev->header_ops->parse_protocol(skb);
2945 }
2946 
2947 /* ll_header must have at least hard_header_len allocated */
2948 static inline bool dev_validate_header(const struct net_device *dev,
2949 				       char *ll_header, int len)
2950 {
2951 	if (likely(len >= dev->hard_header_len))
2952 		return true;
2953 	if (len < dev->min_header_len)
2954 		return false;
2955 
2956 	if (capable(CAP_SYS_RAWIO)) {
2957 		memset(ll_header + len, 0, dev->hard_header_len - len);
2958 		return true;
2959 	}
2960 
2961 	if (dev->header_ops && dev->header_ops->validate)
2962 		return dev->header_ops->validate(ll_header, len);
2963 
2964 	return false;
2965 }
2966 
2967 static inline bool dev_has_header(const struct net_device *dev)
2968 {
2969 	return dev->header_ops && dev->header_ops->create;
2970 }
2971 
2972 #ifdef CONFIG_NET_FLOW_LIMIT
2973 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2974 struct sd_flow_limit {
2975 	u64			count;
2976 	unsigned int		num_buckets;
2977 	unsigned int		history_head;
2978 	u16			history[FLOW_LIMIT_HISTORY];
2979 	u8			buckets[];
2980 };
2981 
2982 extern int netdev_flow_limit_table_len;
2983 #endif /* CONFIG_NET_FLOW_LIMIT */
2984 
2985 /*
2986  * Incoming packets are placed on per-CPU queues
2987  */
2988 struct softnet_data {
2989 	struct list_head	poll_list;
2990 	struct sk_buff_head	process_queue;
2991 
2992 	/* stats */
2993 	unsigned int		processed;
2994 	unsigned int		time_squeeze;
2995 	unsigned int		received_rps;
2996 #ifdef CONFIG_RPS
2997 	struct softnet_data	*rps_ipi_list;
2998 #endif
2999 #ifdef CONFIG_NET_FLOW_LIMIT
3000 	struct sd_flow_limit __rcu *flow_limit;
3001 #endif
3002 	struct Qdisc		*output_queue;
3003 	struct Qdisc		**output_queue_tailp;
3004 	struct sk_buff		*completion_queue;
3005 #ifdef CONFIG_XFRM_OFFLOAD
3006 	struct sk_buff_head	xfrm_backlog;
3007 #endif
3008 	/* written and read only by owning cpu: */
3009 	struct {
3010 		u16 recursion;
3011 		u8  more;
3012 	} xmit;
3013 #ifdef CONFIG_RPS
3014 	/* input_queue_head should be written by cpu owning this struct,
3015 	 * and only read by other cpus. Worth using a cache line.
3016 	 */
3017 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3018 
3019 	/* Elements below can be accessed between CPUs for RPS/RFS */
3020 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3021 	struct softnet_data	*rps_ipi_next;
3022 	unsigned int		cpu;
3023 	unsigned int		input_queue_tail;
3024 #endif
3025 	unsigned int		dropped;
3026 	struct sk_buff_head	input_pkt_queue;
3027 	struct napi_struct	backlog;
3028 
3029 };
3030 
3031 static inline void input_queue_head_incr(struct softnet_data *sd)
3032 {
3033 #ifdef CONFIG_RPS
3034 	sd->input_queue_head++;
3035 #endif
3036 }
3037 
3038 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3039 					      unsigned int *qtail)
3040 {
3041 #ifdef CONFIG_RPS
3042 	*qtail = ++sd->input_queue_tail;
3043 #endif
3044 }
3045 
3046 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3047 
3048 static inline int dev_recursion_level(void)
3049 {
3050 	return this_cpu_read(softnet_data.xmit.recursion);
3051 }
3052 
3053 #define XMIT_RECURSION_LIMIT	8
3054 static inline bool dev_xmit_recursion(void)
3055 {
3056 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3057 			XMIT_RECURSION_LIMIT);
3058 }
3059 
3060 static inline void dev_xmit_recursion_inc(void)
3061 {
3062 	__this_cpu_inc(softnet_data.xmit.recursion);
3063 }
3064 
3065 static inline void dev_xmit_recursion_dec(void)
3066 {
3067 	__this_cpu_dec(softnet_data.xmit.recursion);
3068 }
3069 
3070 void __netif_schedule(struct Qdisc *q);
3071 void netif_schedule_queue(struct netdev_queue *txq);
3072 
3073 static inline void netif_tx_schedule_all(struct net_device *dev)
3074 {
3075 	unsigned int i;
3076 
3077 	for (i = 0; i < dev->num_tx_queues; i++)
3078 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3079 }
3080 
3081 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3082 {
3083 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3084 }
3085 
3086 /**
3087  *	netif_start_queue - allow transmit
3088  *	@dev: network device
3089  *
3090  *	Allow upper layers to call the device hard_start_xmit routine.
3091  */
3092 static inline void netif_start_queue(struct net_device *dev)
3093 {
3094 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3095 }
3096 
3097 static inline void netif_tx_start_all_queues(struct net_device *dev)
3098 {
3099 	unsigned int i;
3100 
3101 	for (i = 0; i < dev->num_tx_queues; i++) {
3102 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3103 		netif_tx_start_queue(txq);
3104 	}
3105 }
3106 
3107 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3108 
3109 /**
3110  *	netif_wake_queue - restart transmit
3111  *	@dev: network device
3112  *
3113  *	Allow upper layers to call the device hard_start_xmit routine.
3114  *	Used for flow control when transmit resources are available.
3115  */
3116 static inline void netif_wake_queue(struct net_device *dev)
3117 {
3118 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3119 }
3120 
3121 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3122 {
3123 	unsigned int i;
3124 
3125 	for (i = 0; i < dev->num_tx_queues; i++) {
3126 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3127 		netif_tx_wake_queue(txq);
3128 	}
3129 }
3130 
3131 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3132 {
3133 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3134 }
3135 
3136 /**
3137  *	netif_stop_queue - stop transmitted packets
3138  *	@dev: network device
3139  *
3140  *	Stop upper layers calling the device hard_start_xmit routine.
3141  *	Used for flow control when transmit resources are unavailable.
3142  */
3143 static inline void netif_stop_queue(struct net_device *dev)
3144 {
3145 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3146 }
3147 
3148 void netif_tx_stop_all_queues(struct net_device *dev);
3149 
3150 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3151 {
3152 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3153 }
3154 
3155 /**
3156  *	netif_queue_stopped - test if transmit queue is flowblocked
3157  *	@dev: network device
3158  *
3159  *	Test if transmit queue on device is currently unable to send.
3160  */
3161 static inline bool netif_queue_stopped(const struct net_device *dev)
3162 {
3163 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3164 }
3165 
3166 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3167 {
3168 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3169 }
3170 
3171 static inline bool
3172 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3173 {
3174 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3175 }
3176 
3177 static inline bool
3178 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3179 {
3180 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3181 }
3182 
3183 /**
3184  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3185  *	@dev_queue: pointer to transmit queue
3186  *	@min_limit: dql minimum limit
3187  *
3188  * Forces xmit_more() to return true until the minimum threshold
3189  * defined by @min_limit is reached (or until the tx queue is
3190  * empty). Warning: to be use with care, misuse will impact the
3191  * latency.
3192  */
3193 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3194 						  unsigned int min_limit)
3195 {
3196 #ifdef CONFIG_BQL
3197 	dev_queue->dql.min_limit = min_limit;
3198 #endif
3199 }
3200 
3201 /**
3202  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3203  *	@dev_queue: pointer to transmit queue
3204  *
3205  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3206  * to give appropriate hint to the CPU.
3207  */
3208 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3209 {
3210 #ifdef CONFIG_BQL
3211 	prefetchw(&dev_queue->dql.num_queued);
3212 #endif
3213 }
3214 
3215 /**
3216  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3217  *	@dev_queue: pointer to transmit queue
3218  *
3219  * BQL enabled drivers might use this helper in their TX completion path,
3220  * to give appropriate hint to the CPU.
3221  */
3222 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3223 {
3224 #ifdef CONFIG_BQL
3225 	prefetchw(&dev_queue->dql.limit);
3226 #endif
3227 }
3228 
3229 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3230 					unsigned int bytes)
3231 {
3232 #ifdef CONFIG_BQL
3233 	dql_queued(&dev_queue->dql, bytes);
3234 
3235 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3236 		return;
3237 
3238 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3239 
3240 	/*
3241 	 * The XOFF flag must be set before checking the dql_avail below,
3242 	 * because in netdev_tx_completed_queue we update the dql_completed
3243 	 * before checking the XOFF flag.
3244 	 */
3245 	smp_mb();
3246 
3247 	/* check again in case another CPU has just made room avail */
3248 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3249 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3250 #endif
3251 }
3252 
3253 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3254  * that they should not test BQL status themselves.
3255  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3256  * skb of a batch.
3257  * Returns true if the doorbell must be used to kick the NIC.
3258  */
3259 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3260 					  unsigned int bytes,
3261 					  bool xmit_more)
3262 {
3263 	if (xmit_more) {
3264 #ifdef CONFIG_BQL
3265 		dql_queued(&dev_queue->dql, bytes);
3266 #endif
3267 		return netif_tx_queue_stopped(dev_queue);
3268 	}
3269 	netdev_tx_sent_queue(dev_queue, bytes);
3270 	return true;
3271 }
3272 
3273 /**
3274  * 	netdev_sent_queue - report the number of bytes queued to hardware
3275  * 	@dev: network device
3276  * 	@bytes: number of bytes queued to the hardware device queue
3277  *
3278  * 	Report the number of bytes queued for sending/completion to the network
3279  * 	device hardware queue. @bytes should be a good approximation and should
3280  * 	exactly match netdev_completed_queue() @bytes
3281  */
3282 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3283 {
3284 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3285 }
3286 
3287 static inline bool __netdev_sent_queue(struct net_device *dev,
3288 				       unsigned int bytes,
3289 				       bool xmit_more)
3290 {
3291 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3292 				      xmit_more);
3293 }
3294 
3295 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3296 					     unsigned int pkts, unsigned int bytes)
3297 {
3298 #ifdef CONFIG_BQL
3299 	if (unlikely(!bytes))
3300 		return;
3301 
3302 	dql_completed(&dev_queue->dql, bytes);
3303 
3304 	/*
3305 	 * Without the memory barrier there is a small possiblity that
3306 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3307 	 * be stopped forever
3308 	 */
3309 	smp_mb();
3310 
3311 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3312 		return;
3313 
3314 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3315 		netif_schedule_queue(dev_queue);
3316 #endif
3317 }
3318 
3319 /**
3320  * 	netdev_completed_queue - report bytes and packets completed by device
3321  * 	@dev: network device
3322  * 	@pkts: actual number of packets sent over the medium
3323  * 	@bytes: actual number of bytes sent over the medium
3324  *
3325  * 	Report the number of bytes and packets transmitted by the network device
3326  * 	hardware queue over the physical medium, @bytes must exactly match the
3327  * 	@bytes amount passed to netdev_sent_queue()
3328  */
3329 static inline void netdev_completed_queue(struct net_device *dev,
3330 					  unsigned int pkts, unsigned int bytes)
3331 {
3332 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3333 }
3334 
3335 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3336 {
3337 #ifdef CONFIG_BQL
3338 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3339 	dql_reset(&q->dql);
3340 #endif
3341 }
3342 
3343 /**
3344  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3345  * 	@dev_queue: network device
3346  *
3347  * 	Reset the bytes and packet count of a network device and clear the
3348  * 	software flow control OFF bit for this network device
3349  */
3350 static inline void netdev_reset_queue(struct net_device *dev_queue)
3351 {
3352 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3353 }
3354 
3355 /**
3356  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3357  * 	@dev: network device
3358  * 	@queue_index: given tx queue index
3359  *
3360  * 	Returns 0 if given tx queue index >= number of device tx queues,
3361  * 	otherwise returns the originally passed tx queue index.
3362  */
3363 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3364 {
3365 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3366 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3367 				     dev->name, queue_index,
3368 				     dev->real_num_tx_queues);
3369 		return 0;
3370 	}
3371 
3372 	return queue_index;
3373 }
3374 
3375 /**
3376  *	netif_running - test if up
3377  *	@dev: network device
3378  *
3379  *	Test if the device has been brought up.
3380  */
3381 static inline bool netif_running(const struct net_device *dev)
3382 {
3383 	return test_bit(__LINK_STATE_START, &dev->state);
3384 }
3385 
3386 /*
3387  * Routines to manage the subqueues on a device.  We only need start,
3388  * stop, and a check if it's stopped.  All other device management is
3389  * done at the overall netdevice level.
3390  * Also test the device if we're multiqueue.
3391  */
3392 
3393 /**
3394  *	netif_start_subqueue - allow sending packets on subqueue
3395  *	@dev: network device
3396  *	@queue_index: sub queue index
3397  *
3398  * Start individual transmit queue of a device with multiple transmit queues.
3399  */
3400 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3401 {
3402 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3403 
3404 	netif_tx_start_queue(txq);
3405 }
3406 
3407 /**
3408  *	netif_stop_subqueue - stop sending packets on subqueue
3409  *	@dev: network device
3410  *	@queue_index: sub queue index
3411  *
3412  * Stop individual transmit queue of a device with multiple transmit queues.
3413  */
3414 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3415 {
3416 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3417 	netif_tx_stop_queue(txq);
3418 }
3419 
3420 /**
3421  *	__netif_subqueue_stopped - test status of subqueue
3422  *	@dev: network device
3423  *	@queue_index: sub queue index
3424  *
3425  * Check individual transmit queue of a device with multiple transmit queues.
3426  */
3427 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3428 					    u16 queue_index)
3429 {
3430 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3431 
3432 	return netif_tx_queue_stopped(txq);
3433 }
3434 
3435 /**
3436  *	netif_subqueue_stopped - test status of subqueue
3437  *	@dev: network device
3438  *	@skb: sub queue buffer pointer
3439  *
3440  * Check individual transmit queue of a device with multiple transmit queues.
3441  */
3442 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3443 					  struct sk_buff *skb)
3444 {
3445 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3446 }
3447 
3448 /**
3449  *	netif_wake_subqueue - allow sending packets on subqueue
3450  *	@dev: network device
3451  *	@queue_index: sub queue index
3452  *
3453  * Resume individual transmit queue of a device with multiple transmit queues.
3454  */
3455 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3456 {
3457 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3458 
3459 	netif_tx_wake_queue(txq);
3460 }
3461 
3462 #ifdef CONFIG_XPS
3463 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3464 			u16 index);
3465 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3466 			  u16 index, enum xps_map_type type);
3467 
3468 /**
3469  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3470  *	@j: CPU/Rx queue index
3471  *	@mask: bitmask of all cpus/rx queues
3472  *	@nr_bits: number of bits in the bitmask
3473  *
3474  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3475  */
3476 static inline bool netif_attr_test_mask(unsigned long j,
3477 					const unsigned long *mask,
3478 					unsigned int nr_bits)
3479 {
3480 	cpu_max_bits_warn(j, nr_bits);
3481 	return test_bit(j, mask);
3482 }
3483 
3484 /**
3485  *	netif_attr_test_online - Test for online CPU/Rx queue
3486  *	@j: CPU/Rx queue index
3487  *	@online_mask: bitmask for CPUs/Rx queues that are online
3488  *	@nr_bits: number of bits in the bitmask
3489  *
3490  * Returns true if a CPU/Rx queue is online.
3491  */
3492 static inline bool netif_attr_test_online(unsigned long j,
3493 					  const unsigned long *online_mask,
3494 					  unsigned int nr_bits)
3495 {
3496 	cpu_max_bits_warn(j, nr_bits);
3497 
3498 	if (online_mask)
3499 		return test_bit(j, online_mask);
3500 
3501 	return (j < nr_bits);
3502 }
3503 
3504 /**
3505  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3506  *	@n: CPU/Rx queue index
3507  *	@srcp: the cpumask/Rx queue mask pointer
3508  *	@nr_bits: number of bits in the bitmask
3509  *
3510  * Returns >= nr_bits if no further CPUs/Rx queues set.
3511  */
3512 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3513 					       unsigned int nr_bits)
3514 {
3515 	/* -1 is a legal arg here. */
3516 	if (n != -1)
3517 		cpu_max_bits_warn(n, nr_bits);
3518 
3519 	if (srcp)
3520 		return find_next_bit(srcp, nr_bits, n + 1);
3521 
3522 	return n + 1;
3523 }
3524 
3525 /**
3526  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3527  *	@n: CPU/Rx queue index
3528  *	@src1p: the first CPUs/Rx queues mask pointer
3529  *	@src2p: the second CPUs/Rx queues mask pointer
3530  *	@nr_bits: number of bits in the bitmask
3531  *
3532  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3533  */
3534 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3535 					  const unsigned long *src2p,
3536 					  unsigned int nr_bits)
3537 {
3538 	/* -1 is a legal arg here. */
3539 	if (n != -1)
3540 		cpu_max_bits_warn(n, nr_bits);
3541 
3542 	if (src1p && src2p)
3543 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3544 	else if (src1p)
3545 		return find_next_bit(src1p, nr_bits, n + 1);
3546 	else if (src2p)
3547 		return find_next_bit(src2p, nr_bits, n + 1);
3548 
3549 	return n + 1;
3550 }
3551 #else
3552 static inline int netif_set_xps_queue(struct net_device *dev,
3553 				      const struct cpumask *mask,
3554 				      u16 index)
3555 {
3556 	return 0;
3557 }
3558 
3559 static inline int __netif_set_xps_queue(struct net_device *dev,
3560 					const unsigned long *mask,
3561 					u16 index, enum xps_map_type type)
3562 {
3563 	return 0;
3564 }
3565 #endif
3566 
3567 /**
3568  *	netif_is_multiqueue - test if device has multiple transmit queues
3569  *	@dev: network device
3570  *
3571  * Check if device has multiple transmit queues
3572  */
3573 static inline bool netif_is_multiqueue(const struct net_device *dev)
3574 {
3575 	return dev->num_tx_queues > 1;
3576 }
3577 
3578 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3579 
3580 #ifdef CONFIG_SYSFS
3581 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3582 #else
3583 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3584 						unsigned int rxqs)
3585 {
3586 	dev->real_num_rx_queues = rxqs;
3587 	return 0;
3588 }
3589 #endif
3590 int netif_set_real_num_queues(struct net_device *dev,
3591 			      unsigned int txq, unsigned int rxq);
3592 
3593 static inline struct netdev_rx_queue *
3594 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3595 {
3596 	return dev->_rx + rxq;
3597 }
3598 
3599 #ifdef CONFIG_SYSFS
3600 static inline unsigned int get_netdev_rx_queue_index(
3601 		struct netdev_rx_queue *queue)
3602 {
3603 	struct net_device *dev = queue->dev;
3604 	int index = queue - dev->_rx;
3605 
3606 	BUG_ON(index >= dev->num_rx_queues);
3607 	return index;
3608 }
3609 #endif
3610 
3611 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3612 int netif_get_num_default_rss_queues(void);
3613 
3614 enum skb_free_reason {
3615 	SKB_REASON_CONSUMED,
3616 	SKB_REASON_DROPPED,
3617 };
3618 
3619 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3620 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3621 
3622 /*
3623  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3624  * interrupt context or with hardware interrupts being disabled.
3625  * (in_hardirq() || irqs_disabled())
3626  *
3627  * We provide four helpers that can be used in following contexts :
3628  *
3629  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3630  *  replacing kfree_skb(skb)
3631  *
3632  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3633  *  Typically used in place of consume_skb(skb) in TX completion path
3634  *
3635  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3636  *  replacing kfree_skb(skb)
3637  *
3638  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3639  *  and consumed a packet. Used in place of consume_skb(skb)
3640  */
3641 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3642 {
3643 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3644 }
3645 
3646 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3647 {
3648 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3649 }
3650 
3651 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3652 {
3653 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3654 }
3655 
3656 static inline void dev_consume_skb_any(struct sk_buff *skb)
3657 {
3658 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3659 }
3660 
3661 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3662 			     struct bpf_prog *xdp_prog);
3663 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3664 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3665 int netif_rx(struct sk_buff *skb);
3666 int netif_rx_ni(struct sk_buff *skb);
3667 int netif_rx_any_context(struct sk_buff *skb);
3668 int netif_receive_skb(struct sk_buff *skb);
3669 int netif_receive_skb_core(struct sk_buff *skb);
3670 void netif_receive_skb_list_internal(struct list_head *head);
3671 void netif_receive_skb_list(struct list_head *head);
3672 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3673 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3674 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3675 gro_result_t napi_gro_frags(struct napi_struct *napi);
3676 struct packet_offload *gro_find_receive_by_type(__be16 type);
3677 struct packet_offload *gro_find_complete_by_type(__be16 type);
3678 
3679 static inline void napi_free_frags(struct napi_struct *napi)
3680 {
3681 	kfree_skb(napi->skb);
3682 	napi->skb = NULL;
3683 }
3684 
3685 bool netdev_is_rx_handler_busy(struct net_device *dev);
3686 int netdev_rx_handler_register(struct net_device *dev,
3687 			       rx_handler_func_t *rx_handler,
3688 			       void *rx_handler_data);
3689 void netdev_rx_handler_unregister(struct net_device *dev);
3690 
3691 bool dev_valid_name(const char *name);
3692 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3693 {
3694 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3695 }
3696 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3697 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3698 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3699 		void __user *data, bool *need_copyout);
3700 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3701 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3702 unsigned int dev_get_flags(const struct net_device *);
3703 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3704 		       struct netlink_ext_ack *extack);
3705 int dev_change_flags(struct net_device *dev, unsigned int flags,
3706 		     struct netlink_ext_ack *extack);
3707 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3708 			unsigned int gchanges);
3709 int dev_change_name(struct net_device *, const char *);
3710 int dev_set_alias(struct net_device *, const char *, size_t);
3711 int dev_get_alias(const struct net_device *, char *, size_t);
3712 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3713 			       const char *pat, int new_ifindex);
3714 static inline
3715 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3716 			     const char *pat)
3717 {
3718 	return __dev_change_net_namespace(dev, net, pat, 0);
3719 }
3720 int __dev_set_mtu(struct net_device *, int);
3721 int dev_validate_mtu(struct net_device *dev, int mtu,
3722 		     struct netlink_ext_ack *extack);
3723 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3724 		    struct netlink_ext_ack *extack);
3725 int dev_set_mtu(struct net_device *, int);
3726 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3727 void dev_set_group(struct net_device *, int);
3728 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3729 			      struct netlink_ext_ack *extack);
3730 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3731 			struct netlink_ext_ack *extack);
3732 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3733 			     struct netlink_ext_ack *extack);
3734 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3735 int dev_change_carrier(struct net_device *, bool new_carrier);
3736 int dev_get_phys_port_id(struct net_device *dev,
3737 			 struct netdev_phys_item_id *ppid);
3738 int dev_get_phys_port_name(struct net_device *dev,
3739 			   char *name, size_t len);
3740 int dev_get_port_parent_id(struct net_device *dev,
3741 			   struct netdev_phys_item_id *ppid, bool recurse);
3742 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3743 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3744 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3745 				  u32 value);
3746 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3747 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3748 				    struct netdev_queue *txq, int *ret);
3749 
3750 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3751 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3752 		      int fd, int expected_fd, u32 flags);
3753 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3754 u8 dev_xdp_prog_count(struct net_device *dev);
3755 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3756 
3757 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3758 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3759 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3760 bool is_skb_forwardable(const struct net_device *dev,
3761 			const struct sk_buff *skb);
3762 
3763 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3764 						 const struct sk_buff *skb,
3765 						 const bool check_mtu)
3766 {
3767 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3768 	unsigned int len;
3769 
3770 	if (!(dev->flags & IFF_UP))
3771 		return false;
3772 
3773 	if (!check_mtu)
3774 		return true;
3775 
3776 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3777 	if (skb->len <= len)
3778 		return true;
3779 
3780 	/* if TSO is enabled, we don't care about the length as the packet
3781 	 * could be forwarded without being segmented before
3782 	 */
3783 	if (skb_is_gso(skb))
3784 		return true;
3785 
3786 	return false;
3787 }
3788 
3789 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3790 					       struct sk_buff *skb,
3791 					       const bool check_mtu)
3792 {
3793 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3794 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
3795 		atomic_long_inc(&dev->rx_dropped);
3796 		kfree_skb(skb);
3797 		return NET_RX_DROP;
3798 	}
3799 
3800 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
3801 	skb->priority = 0;
3802 	return 0;
3803 }
3804 
3805 bool dev_nit_active(struct net_device *dev);
3806 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3807 
3808 extern int		netdev_budget;
3809 extern unsigned int	netdev_budget_usecs;
3810 
3811 /* Called by rtnetlink.c:rtnl_unlock() */
3812 void netdev_run_todo(void);
3813 
3814 /**
3815  *	dev_put - release reference to device
3816  *	@dev: network device
3817  *
3818  * Release reference to device to allow it to be freed.
3819  * Try using dev_put_track() instead.
3820  */
3821 static inline void dev_put(struct net_device *dev)
3822 {
3823 	if (dev) {
3824 #ifdef CONFIG_PCPU_DEV_REFCNT
3825 		this_cpu_dec(*dev->pcpu_refcnt);
3826 #else
3827 		refcount_dec(&dev->dev_refcnt);
3828 #endif
3829 	}
3830 }
3831 
3832 /**
3833  *	dev_hold - get reference to device
3834  *	@dev: network device
3835  *
3836  * Hold reference to device to keep it from being freed.
3837  * Try using dev_hold_track() instead.
3838  */
3839 static inline void dev_hold(struct net_device *dev)
3840 {
3841 	if (dev) {
3842 #ifdef CONFIG_PCPU_DEV_REFCNT
3843 		this_cpu_inc(*dev->pcpu_refcnt);
3844 #else
3845 		refcount_inc(&dev->dev_refcnt);
3846 #endif
3847 	}
3848 }
3849 
3850 static inline void netdev_tracker_alloc(struct net_device *dev,
3851 					netdevice_tracker *tracker, gfp_t gfp)
3852 {
3853 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
3854 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
3855 #endif
3856 }
3857 
3858 static inline void netdev_tracker_free(struct net_device *dev,
3859 				       netdevice_tracker *tracker)
3860 {
3861 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
3862 	ref_tracker_free(&dev->refcnt_tracker, tracker);
3863 #endif
3864 }
3865 
3866 static inline void dev_hold_track(struct net_device *dev,
3867 				  netdevice_tracker *tracker, gfp_t gfp)
3868 {
3869 	if (dev) {
3870 		dev_hold(dev);
3871 		netdev_tracker_alloc(dev, tracker, gfp);
3872 	}
3873 }
3874 
3875 static inline void dev_put_track(struct net_device *dev,
3876 				 netdevice_tracker *tracker)
3877 {
3878 	if (dev) {
3879 		netdev_tracker_free(dev, tracker);
3880 		dev_put(dev);
3881 	}
3882 }
3883 
3884 static inline void dev_replace_track(struct net_device *odev,
3885 				     struct net_device *ndev,
3886 				     netdevice_tracker *tracker,
3887 				     gfp_t gfp)
3888 {
3889 	if (odev)
3890 		netdev_tracker_free(odev, tracker);
3891 
3892 	dev_hold(ndev);
3893 	dev_put(odev);
3894 
3895 	if (ndev)
3896 		netdev_tracker_alloc(ndev, tracker, gfp);
3897 }
3898 
3899 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3900  * and _off may be called from IRQ context, but it is caller
3901  * who is responsible for serialization of these calls.
3902  *
3903  * The name carrier is inappropriate, these functions should really be
3904  * called netif_lowerlayer_*() because they represent the state of any
3905  * kind of lower layer not just hardware media.
3906  */
3907 
3908 void linkwatch_init_dev(struct net_device *dev);
3909 void linkwatch_fire_event(struct net_device *dev);
3910 void linkwatch_forget_dev(struct net_device *dev);
3911 
3912 /**
3913  *	netif_carrier_ok - test if carrier present
3914  *	@dev: network device
3915  *
3916  * Check if carrier is present on device
3917  */
3918 static inline bool netif_carrier_ok(const struct net_device *dev)
3919 {
3920 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3921 }
3922 
3923 unsigned long dev_trans_start(struct net_device *dev);
3924 
3925 void __netdev_watchdog_up(struct net_device *dev);
3926 
3927 void netif_carrier_on(struct net_device *dev);
3928 void netif_carrier_off(struct net_device *dev);
3929 void netif_carrier_event(struct net_device *dev);
3930 
3931 /**
3932  *	netif_dormant_on - mark device as dormant.
3933  *	@dev: network device
3934  *
3935  * Mark device as dormant (as per RFC2863).
3936  *
3937  * The dormant state indicates that the relevant interface is not
3938  * actually in a condition to pass packets (i.e., it is not 'up') but is
3939  * in a "pending" state, waiting for some external event.  For "on-
3940  * demand" interfaces, this new state identifies the situation where the
3941  * interface is waiting for events to place it in the up state.
3942  */
3943 static inline void netif_dormant_on(struct net_device *dev)
3944 {
3945 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3946 		linkwatch_fire_event(dev);
3947 }
3948 
3949 /**
3950  *	netif_dormant_off - set device as not dormant.
3951  *	@dev: network device
3952  *
3953  * Device is not in dormant state.
3954  */
3955 static inline void netif_dormant_off(struct net_device *dev)
3956 {
3957 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3958 		linkwatch_fire_event(dev);
3959 }
3960 
3961 /**
3962  *	netif_dormant - test if device is dormant
3963  *	@dev: network device
3964  *
3965  * Check if device is dormant.
3966  */
3967 static inline bool netif_dormant(const struct net_device *dev)
3968 {
3969 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3970 }
3971 
3972 
3973 /**
3974  *	netif_testing_on - mark device as under test.
3975  *	@dev: network device
3976  *
3977  * Mark device as under test (as per RFC2863).
3978  *
3979  * The testing state indicates that some test(s) must be performed on
3980  * the interface. After completion, of the test, the interface state
3981  * will change to up, dormant, or down, as appropriate.
3982  */
3983 static inline void netif_testing_on(struct net_device *dev)
3984 {
3985 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
3986 		linkwatch_fire_event(dev);
3987 }
3988 
3989 /**
3990  *	netif_testing_off - set device as not under test.
3991  *	@dev: network device
3992  *
3993  * Device is not in testing state.
3994  */
3995 static inline void netif_testing_off(struct net_device *dev)
3996 {
3997 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
3998 		linkwatch_fire_event(dev);
3999 }
4000 
4001 /**
4002  *	netif_testing - test if device is under test
4003  *	@dev: network device
4004  *
4005  * Check if device is under test
4006  */
4007 static inline bool netif_testing(const struct net_device *dev)
4008 {
4009 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4010 }
4011 
4012 
4013 /**
4014  *	netif_oper_up - test if device is operational
4015  *	@dev: network device
4016  *
4017  * Check if carrier is operational
4018  */
4019 static inline bool netif_oper_up(const struct net_device *dev)
4020 {
4021 	return (dev->operstate == IF_OPER_UP ||
4022 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4023 }
4024 
4025 /**
4026  *	netif_device_present - is device available or removed
4027  *	@dev: network device
4028  *
4029  * Check if device has not been removed from system.
4030  */
4031 static inline bool netif_device_present(const struct net_device *dev)
4032 {
4033 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4034 }
4035 
4036 void netif_device_detach(struct net_device *dev);
4037 
4038 void netif_device_attach(struct net_device *dev);
4039 
4040 /*
4041  * Network interface message level settings
4042  */
4043 
4044 enum {
4045 	NETIF_MSG_DRV_BIT,
4046 	NETIF_MSG_PROBE_BIT,
4047 	NETIF_MSG_LINK_BIT,
4048 	NETIF_MSG_TIMER_BIT,
4049 	NETIF_MSG_IFDOWN_BIT,
4050 	NETIF_MSG_IFUP_BIT,
4051 	NETIF_MSG_RX_ERR_BIT,
4052 	NETIF_MSG_TX_ERR_BIT,
4053 	NETIF_MSG_TX_QUEUED_BIT,
4054 	NETIF_MSG_INTR_BIT,
4055 	NETIF_MSG_TX_DONE_BIT,
4056 	NETIF_MSG_RX_STATUS_BIT,
4057 	NETIF_MSG_PKTDATA_BIT,
4058 	NETIF_MSG_HW_BIT,
4059 	NETIF_MSG_WOL_BIT,
4060 
4061 	/* When you add a new bit above, update netif_msg_class_names array
4062 	 * in net/ethtool/common.c
4063 	 */
4064 	NETIF_MSG_CLASS_COUNT,
4065 };
4066 /* Both ethtool_ops interface and internal driver implementation use u32 */
4067 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4068 
4069 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4070 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4071 
4072 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4073 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4074 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4075 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4076 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4077 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4078 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4079 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4080 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4081 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4082 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4083 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4084 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4085 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4086 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4087 
4088 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4089 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4090 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4091 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4092 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4093 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4094 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4095 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4096 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4097 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4098 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4099 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4100 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4101 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4102 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4103 
4104 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4105 {
4106 	/* use default */
4107 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4108 		return default_msg_enable_bits;
4109 	if (debug_value == 0)	/* no output */
4110 		return 0;
4111 	/* set low N bits */
4112 	return (1U << debug_value) - 1;
4113 }
4114 
4115 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4116 {
4117 	spin_lock(&txq->_xmit_lock);
4118 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4119 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4120 }
4121 
4122 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4123 {
4124 	__acquire(&txq->_xmit_lock);
4125 	return true;
4126 }
4127 
4128 static inline void __netif_tx_release(struct netdev_queue *txq)
4129 {
4130 	__release(&txq->_xmit_lock);
4131 }
4132 
4133 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4134 {
4135 	spin_lock_bh(&txq->_xmit_lock);
4136 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4137 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4138 }
4139 
4140 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4141 {
4142 	bool ok = spin_trylock(&txq->_xmit_lock);
4143 
4144 	if (likely(ok)) {
4145 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4146 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4147 	}
4148 	return ok;
4149 }
4150 
4151 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4152 {
4153 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4154 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4155 	spin_unlock(&txq->_xmit_lock);
4156 }
4157 
4158 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4159 {
4160 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4161 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4162 	spin_unlock_bh(&txq->_xmit_lock);
4163 }
4164 
4165 /*
4166  * txq->trans_start can be read locklessly from dev_watchdog()
4167  */
4168 static inline void txq_trans_update(struct netdev_queue *txq)
4169 {
4170 	if (txq->xmit_lock_owner != -1)
4171 		WRITE_ONCE(txq->trans_start, jiffies);
4172 }
4173 
4174 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4175 {
4176 	unsigned long now = jiffies;
4177 
4178 	if (READ_ONCE(txq->trans_start) != now)
4179 		WRITE_ONCE(txq->trans_start, now);
4180 }
4181 
4182 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4183 static inline void netif_trans_update(struct net_device *dev)
4184 {
4185 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4186 
4187 	txq_trans_cond_update(txq);
4188 }
4189 
4190 /**
4191  *	netif_tx_lock - grab network device transmit lock
4192  *	@dev: network device
4193  *
4194  * Get network device transmit lock
4195  */
4196 void netif_tx_lock(struct net_device *dev);
4197 
4198 static inline void netif_tx_lock_bh(struct net_device *dev)
4199 {
4200 	local_bh_disable();
4201 	netif_tx_lock(dev);
4202 }
4203 
4204 void netif_tx_unlock(struct net_device *dev);
4205 
4206 static inline void netif_tx_unlock_bh(struct net_device *dev)
4207 {
4208 	netif_tx_unlock(dev);
4209 	local_bh_enable();
4210 }
4211 
4212 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4213 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4214 		__netif_tx_lock(txq, cpu);		\
4215 	} else {					\
4216 		__netif_tx_acquire(txq);		\
4217 	}						\
4218 }
4219 
4220 #define HARD_TX_TRYLOCK(dev, txq)			\
4221 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4222 		__netif_tx_trylock(txq) :		\
4223 		__netif_tx_acquire(txq))
4224 
4225 #define HARD_TX_UNLOCK(dev, txq) {			\
4226 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4227 		__netif_tx_unlock(txq);			\
4228 	} else {					\
4229 		__netif_tx_release(txq);		\
4230 	}						\
4231 }
4232 
4233 static inline void netif_tx_disable(struct net_device *dev)
4234 {
4235 	unsigned int i;
4236 	int cpu;
4237 
4238 	local_bh_disable();
4239 	cpu = smp_processor_id();
4240 	spin_lock(&dev->tx_global_lock);
4241 	for (i = 0; i < dev->num_tx_queues; i++) {
4242 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4243 
4244 		__netif_tx_lock(txq, cpu);
4245 		netif_tx_stop_queue(txq);
4246 		__netif_tx_unlock(txq);
4247 	}
4248 	spin_unlock(&dev->tx_global_lock);
4249 	local_bh_enable();
4250 }
4251 
4252 static inline void netif_addr_lock(struct net_device *dev)
4253 {
4254 	unsigned char nest_level = 0;
4255 
4256 #ifdef CONFIG_LOCKDEP
4257 	nest_level = dev->nested_level;
4258 #endif
4259 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4260 }
4261 
4262 static inline void netif_addr_lock_bh(struct net_device *dev)
4263 {
4264 	unsigned char nest_level = 0;
4265 
4266 #ifdef CONFIG_LOCKDEP
4267 	nest_level = dev->nested_level;
4268 #endif
4269 	local_bh_disable();
4270 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4271 }
4272 
4273 static inline void netif_addr_unlock(struct net_device *dev)
4274 {
4275 	spin_unlock(&dev->addr_list_lock);
4276 }
4277 
4278 static inline void netif_addr_unlock_bh(struct net_device *dev)
4279 {
4280 	spin_unlock_bh(&dev->addr_list_lock);
4281 }
4282 
4283 /*
4284  * dev_addrs walker. Should be used only for read access. Call with
4285  * rcu_read_lock held.
4286  */
4287 #define for_each_dev_addr(dev, ha) \
4288 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4289 
4290 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4291 
4292 void ether_setup(struct net_device *dev);
4293 
4294 /* Support for loadable net-drivers */
4295 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4296 				    unsigned char name_assign_type,
4297 				    void (*setup)(struct net_device *),
4298 				    unsigned int txqs, unsigned int rxqs);
4299 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4300 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4301 
4302 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4303 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4304 			 count)
4305 
4306 int register_netdev(struct net_device *dev);
4307 void unregister_netdev(struct net_device *dev);
4308 
4309 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4310 
4311 /* General hardware address lists handling functions */
4312 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4313 		   struct netdev_hw_addr_list *from_list, int addr_len);
4314 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4315 		      struct netdev_hw_addr_list *from_list, int addr_len);
4316 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4317 		       struct net_device *dev,
4318 		       int (*sync)(struct net_device *, const unsigned char *),
4319 		       int (*unsync)(struct net_device *,
4320 				     const unsigned char *));
4321 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4322 			   struct net_device *dev,
4323 			   int (*sync)(struct net_device *,
4324 				       const unsigned char *, int),
4325 			   int (*unsync)(struct net_device *,
4326 					 const unsigned char *, int));
4327 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4328 			      struct net_device *dev,
4329 			      int (*unsync)(struct net_device *,
4330 					    const unsigned char *, int));
4331 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4332 			  struct net_device *dev,
4333 			  int (*unsync)(struct net_device *,
4334 					const unsigned char *));
4335 void __hw_addr_init(struct netdev_hw_addr_list *list);
4336 
4337 /* Functions used for device addresses handling */
4338 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4339 		  const void *addr, size_t len);
4340 
4341 static inline void
4342 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4343 {
4344 	dev_addr_mod(dev, 0, addr, len);
4345 }
4346 
4347 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4348 {
4349 	__dev_addr_set(dev, addr, dev->addr_len);
4350 }
4351 
4352 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4353 		 unsigned char addr_type);
4354 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4355 		 unsigned char addr_type);
4356 void dev_addr_flush(struct net_device *dev);
4357 int dev_addr_init(struct net_device *dev);
4358 void dev_addr_check(struct net_device *dev);
4359 
4360 /* Functions used for unicast addresses handling */
4361 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4362 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4363 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4364 int dev_uc_sync(struct net_device *to, struct net_device *from);
4365 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4366 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4367 void dev_uc_flush(struct net_device *dev);
4368 void dev_uc_init(struct net_device *dev);
4369 
4370 /**
4371  *  __dev_uc_sync - Synchonize device's unicast list
4372  *  @dev:  device to sync
4373  *  @sync: function to call if address should be added
4374  *  @unsync: function to call if address should be removed
4375  *
4376  *  Add newly added addresses to the interface, and release
4377  *  addresses that have been deleted.
4378  */
4379 static inline int __dev_uc_sync(struct net_device *dev,
4380 				int (*sync)(struct net_device *,
4381 					    const unsigned char *),
4382 				int (*unsync)(struct net_device *,
4383 					      const unsigned char *))
4384 {
4385 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4386 }
4387 
4388 /**
4389  *  __dev_uc_unsync - Remove synchronized addresses from device
4390  *  @dev:  device to sync
4391  *  @unsync: function to call if address should be removed
4392  *
4393  *  Remove all addresses that were added to the device by dev_uc_sync().
4394  */
4395 static inline void __dev_uc_unsync(struct net_device *dev,
4396 				   int (*unsync)(struct net_device *,
4397 						 const unsigned char *))
4398 {
4399 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4400 }
4401 
4402 /* Functions used for multicast addresses handling */
4403 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4404 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4405 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4406 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4407 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4408 int dev_mc_sync(struct net_device *to, struct net_device *from);
4409 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4410 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4411 void dev_mc_flush(struct net_device *dev);
4412 void dev_mc_init(struct net_device *dev);
4413 
4414 /**
4415  *  __dev_mc_sync - Synchonize device's multicast list
4416  *  @dev:  device to sync
4417  *  @sync: function to call if address should be added
4418  *  @unsync: function to call if address should be removed
4419  *
4420  *  Add newly added addresses to the interface, and release
4421  *  addresses that have been deleted.
4422  */
4423 static inline int __dev_mc_sync(struct net_device *dev,
4424 				int (*sync)(struct net_device *,
4425 					    const unsigned char *),
4426 				int (*unsync)(struct net_device *,
4427 					      const unsigned char *))
4428 {
4429 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4430 }
4431 
4432 /**
4433  *  __dev_mc_unsync - Remove synchronized addresses from device
4434  *  @dev:  device to sync
4435  *  @unsync: function to call if address should be removed
4436  *
4437  *  Remove all addresses that were added to the device by dev_mc_sync().
4438  */
4439 static inline void __dev_mc_unsync(struct net_device *dev,
4440 				   int (*unsync)(struct net_device *,
4441 						 const unsigned char *))
4442 {
4443 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4444 }
4445 
4446 /* Functions used for secondary unicast and multicast support */
4447 void dev_set_rx_mode(struct net_device *dev);
4448 void __dev_set_rx_mode(struct net_device *dev);
4449 int dev_set_promiscuity(struct net_device *dev, int inc);
4450 int dev_set_allmulti(struct net_device *dev, int inc);
4451 void netdev_state_change(struct net_device *dev);
4452 void __netdev_notify_peers(struct net_device *dev);
4453 void netdev_notify_peers(struct net_device *dev);
4454 void netdev_features_change(struct net_device *dev);
4455 /* Load a device via the kmod */
4456 void dev_load(struct net *net, const char *name);
4457 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4458 					struct rtnl_link_stats64 *storage);
4459 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4460 			     const struct net_device_stats *netdev_stats);
4461 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4462 			   const struct pcpu_sw_netstats __percpu *netstats);
4463 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4464 
4465 extern int		netdev_max_backlog;
4466 extern int		netdev_tstamp_prequeue;
4467 extern int		netdev_unregister_timeout_secs;
4468 extern int		weight_p;
4469 extern int		dev_weight_rx_bias;
4470 extern int		dev_weight_tx_bias;
4471 extern int		dev_rx_weight;
4472 extern int		dev_tx_weight;
4473 extern int		gro_normal_batch;
4474 
4475 enum {
4476 	NESTED_SYNC_IMM_BIT,
4477 	NESTED_SYNC_TODO_BIT,
4478 };
4479 
4480 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4481 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4482 
4483 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4484 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4485 
4486 struct netdev_nested_priv {
4487 	unsigned char flags;
4488 	void *data;
4489 };
4490 
4491 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4492 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4493 						     struct list_head **iter);
4494 
4495 #ifdef CONFIG_LOCKDEP
4496 static LIST_HEAD(net_unlink_list);
4497 
4498 static inline void net_unlink_todo(struct net_device *dev)
4499 {
4500 	if (list_empty(&dev->unlink_list))
4501 		list_add_tail(&dev->unlink_list, &net_unlink_list);
4502 }
4503 #endif
4504 
4505 /* iterate through upper list, must be called under RCU read lock */
4506 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4507 	for (iter = &(dev)->adj_list.upper, \
4508 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4509 	     updev; \
4510 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4511 
4512 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4513 				  int (*fn)(struct net_device *upper_dev,
4514 					    struct netdev_nested_priv *priv),
4515 				  struct netdev_nested_priv *priv);
4516 
4517 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4518 				  struct net_device *upper_dev);
4519 
4520 bool netdev_has_any_upper_dev(struct net_device *dev);
4521 
4522 void *netdev_lower_get_next_private(struct net_device *dev,
4523 				    struct list_head **iter);
4524 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4525 					struct list_head **iter);
4526 
4527 #define netdev_for_each_lower_private(dev, priv, iter) \
4528 	for (iter = (dev)->adj_list.lower.next, \
4529 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4530 	     priv; \
4531 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4532 
4533 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4534 	for (iter = &(dev)->adj_list.lower, \
4535 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4536 	     priv; \
4537 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4538 
4539 void *netdev_lower_get_next(struct net_device *dev,
4540 				struct list_head **iter);
4541 
4542 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4543 	for (iter = (dev)->adj_list.lower.next, \
4544 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4545 	     ldev; \
4546 	     ldev = netdev_lower_get_next(dev, &(iter)))
4547 
4548 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4549 					     struct list_head **iter);
4550 int netdev_walk_all_lower_dev(struct net_device *dev,
4551 			      int (*fn)(struct net_device *lower_dev,
4552 					struct netdev_nested_priv *priv),
4553 			      struct netdev_nested_priv *priv);
4554 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4555 				  int (*fn)(struct net_device *lower_dev,
4556 					    struct netdev_nested_priv *priv),
4557 				  struct netdev_nested_priv *priv);
4558 
4559 void *netdev_adjacent_get_private(struct list_head *adj_list);
4560 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4561 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4562 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4563 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4564 			  struct netlink_ext_ack *extack);
4565 int netdev_master_upper_dev_link(struct net_device *dev,
4566 				 struct net_device *upper_dev,
4567 				 void *upper_priv, void *upper_info,
4568 				 struct netlink_ext_ack *extack);
4569 void netdev_upper_dev_unlink(struct net_device *dev,
4570 			     struct net_device *upper_dev);
4571 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4572 				   struct net_device *new_dev,
4573 				   struct net_device *dev,
4574 				   struct netlink_ext_ack *extack);
4575 void netdev_adjacent_change_commit(struct net_device *old_dev,
4576 				   struct net_device *new_dev,
4577 				   struct net_device *dev);
4578 void netdev_adjacent_change_abort(struct net_device *old_dev,
4579 				  struct net_device *new_dev,
4580 				  struct net_device *dev);
4581 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4582 void *netdev_lower_dev_get_private(struct net_device *dev,
4583 				   struct net_device *lower_dev);
4584 void netdev_lower_state_changed(struct net_device *lower_dev,
4585 				void *lower_state_info);
4586 
4587 /* RSS keys are 40 or 52 bytes long */
4588 #define NETDEV_RSS_KEY_LEN 52
4589 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4590 void netdev_rss_key_fill(void *buffer, size_t len);
4591 
4592 int skb_checksum_help(struct sk_buff *skb);
4593 int skb_crc32c_csum_help(struct sk_buff *skb);
4594 int skb_csum_hwoffload_help(struct sk_buff *skb,
4595 			    const netdev_features_t features);
4596 
4597 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4598 				  netdev_features_t features, bool tx_path);
4599 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4600 				    netdev_features_t features);
4601 
4602 struct netdev_bonding_info {
4603 	ifslave	slave;
4604 	ifbond	master;
4605 };
4606 
4607 struct netdev_notifier_bonding_info {
4608 	struct netdev_notifier_info info; /* must be first */
4609 	struct netdev_bonding_info  bonding_info;
4610 };
4611 
4612 void netdev_bonding_info_change(struct net_device *dev,
4613 				struct netdev_bonding_info *bonding_info);
4614 
4615 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4616 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4617 #else
4618 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4619 				  const void *data)
4620 {
4621 }
4622 #endif
4623 
4624 static inline
4625 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4626 {
4627 	return __skb_gso_segment(skb, features, true);
4628 }
4629 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4630 
4631 static inline bool can_checksum_protocol(netdev_features_t features,
4632 					 __be16 protocol)
4633 {
4634 	if (protocol == htons(ETH_P_FCOE))
4635 		return !!(features & NETIF_F_FCOE_CRC);
4636 
4637 	/* Assume this is an IP checksum (not SCTP CRC) */
4638 
4639 	if (features & NETIF_F_HW_CSUM) {
4640 		/* Can checksum everything */
4641 		return true;
4642 	}
4643 
4644 	switch (protocol) {
4645 	case htons(ETH_P_IP):
4646 		return !!(features & NETIF_F_IP_CSUM);
4647 	case htons(ETH_P_IPV6):
4648 		return !!(features & NETIF_F_IPV6_CSUM);
4649 	default:
4650 		return false;
4651 	}
4652 }
4653 
4654 #ifdef CONFIG_BUG
4655 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4656 #else
4657 static inline void netdev_rx_csum_fault(struct net_device *dev,
4658 					struct sk_buff *skb)
4659 {
4660 }
4661 #endif
4662 /* rx skb timestamps */
4663 void net_enable_timestamp(void);
4664 void net_disable_timestamp(void);
4665 
4666 #ifdef CONFIG_PROC_FS
4667 int __init dev_proc_init(void);
4668 #else
4669 #define dev_proc_init() 0
4670 #endif
4671 
4672 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4673 					      struct sk_buff *skb, struct net_device *dev,
4674 					      bool more)
4675 {
4676 	__this_cpu_write(softnet_data.xmit.more, more);
4677 	return ops->ndo_start_xmit(skb, dev);
4678 }
4679 
4680 static inline bool netdev_xmit_more(void)
4681 {
4682 	return __this_cpu_read(softnet_data.xmit.more);
4683 }
4684 
4685 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4686 					    struct netdev_queue *txq, bool more)
4687 {
4688 	const struct net_device_ops *ops = dev->netdev_ops;
4689 	netdev_tx_t rc;
4690 
4691 	rc = __netdev_start_xmit(ops, skb, dev, more);
4692 	if (rc == NETDEV_TX_OK)
4693 		txq_trans_update(txq);
4694 
4695 	return rc;
4696 }
4697 
4698 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4699 				const void *ns);
4700 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4701 				 const void *ns);
4702 
4703 extern const struct kobj_ns_type_operations net_ns_type_operations;
4704 
4705 const char *netdev_drivername(const struct net_device *dev);
4706 
4707 void linkwatch_run_queue(void);
4708 
4709 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4710 							  netdev_features_t f2)
4711 {
4712 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4713 		if (f1 & NETIF_F_HW_CSUM)
4714 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4715 		else
4716 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4717 	}
4718 
4719 	return f1 & f2;
4720 }
4721 
4722 static inline netdev_features_t netdev_get_wanted_features(
4723 	struct net_device *dev)
4724 {
4725 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4726 }
4727 netdev_features_t netdev_increment_features(netdev_features_t all,
4728 	netdev_features_t one, netdev_features_t mask);
4729 
4730 /* Allow TSO being used on stacked device :
4731  * Performing the GSO segmentation before last device
4732  * is a performance improvement.
4733  */
4734 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4735 							netdev_features_t mask)
4736 {
4737 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4738 }
4739 
4740 int __netdev_update_features(struct net_device *dev);
4741 void netdev_update_features(struct net_device *dev);
4742 void netdev_change_features(struct net_device *dev);
4743 
4744 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4745 					struct net_device *dev);
4746 
4747 netdev_features_t passthru_features_check(struct sk_buff *skb,
4748 					  struct net_device *dev,
4749 					  netdev_features_t features);
4750 netdev_features_t netif_skb_features(struct sk_buff *skb);
4751 
4752 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4753 {
4754 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4755 
4756 	/* check flags correspondence */
4757 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4758 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4759 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4760 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4761 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4762 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4763 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4764 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4765 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4766 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4767 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4768 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4769 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4770 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4771 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4772 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4773 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4774 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4775 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4776 
4777 	return (features & feature) == feature;
4778 }
4779 
4780 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4781 {
4782 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4783 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4784 }
4785 
4786 static inline bool netif_needs_gso(struct sk_buff *skb,
4787 				   netdev_features_t features)
4788 {
4789 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4790 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4791 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4792 }
4793 
4794 static inline void netif_set_gso_max_size(struct net_device *dev,
4795 					  unsigned int size)
4796 {
4797 	/* dev->gso_max_size is read locklessly from sk_setup_caps() */
4798 	WRITE_ONCE(dev->gso_max_size, size);
4799 }
4800 
4801 static inline void netif_set_gso_max_segs(struct net_device *dev,
4802 					  unsigned int segs)
4803 {
4804 	/* dev->gso_max_segs is read locklessly from sk_setup_caps() */
4805 	WRITE_ONCE(dev->gso_max_segs, segs);
4806 }
4807 
4808 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4809 					int pulled_hlen, u16 mac_offset,
4810 					int mac_len)
4811 {
4812 	skb->protocol = protocol;
4813 	skb->encapsulation = 1;
4814 	skb_push(skb, pulled_hlen);
4815 	skb_reset_transport_header(skb);
4816 	skb->mac_header = mac_offset;
4817 	skb->network_header = skb->mac_header + mac_len;
4818 	skb->mac_len = mac_len;
4819 }
4820 
4821 static inline bool netif_is_macsec(const struct net_device *dev)
4822 {
4823 	return dev->priv_flags & IFF_MACSEC;
4824 }
4825 
4826 static inline bool netif_is_macvlan(const struct net_device *dev)
4827 {
4828 	return dev->priv_flags & IFF_MACVLAN;
4829 }
4830 
4831 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4832 {
4833 	return dev->priv_flags & IFF_MACVLAN_PORT;
4834 }
4835 
4836 static inline bool netif_is_bond_master(const struct net_device *dev)
4837 {
4838 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4839 }
4840 
4841 static inline bool netif_is_bond_slave(const struct net_device *dev)
4842 {
4843 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4844 }
4845 
4846 static inline bool netif_supports_nofcs(struct net_device *dev)
4847 {
4848 	return dev->priv_flags & IFF_SUPP_NOFCS;
4849 }
4850 
4851 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4852 {
4853 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4854 }
4855 
4856 static inline bool netif_is_l3_master(const struct net_device *dev)
4857 {
4858 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4859 }
4860 
4861 static inline bool netif_is_l3_slave(const struct net_device *dev)
4862 {
4863 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4864 }
4865 
4866 static inline bool netif_is_bridge_master(const struct net_device *dev)
4867 {
4868 	return dev->priv_flags & IFF_EBRIDGE;
4869 }
4870 
4871 static inline bool netif_is_bridge_port(const struct net_device *dev)
4872 {
4873 	return dev->priv_flags & IFF_BRIDGE_PORT;
4874 }
4875 
4876 static inline bool netif_is_ovs_master(const struct net_device *dev)
4877 {
4878 	return dev->priv_flags & IFF_OPENVSWITCH;
4879 }
4880 
4881 static inline bool netif_is_ovs_port(const struct net_device *dev)
4882 {
4883 	return dev->priv_flags & IFF_OVS_DATAPATH;
4884 }
4885 
4886 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
4887 {
4888 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
4889 }
4890 
4891 static inline bool netif_is_team_master(const struct net_device *dev)
4892 {
4893 	return dev->priv_flags & IFF_TEAM;
4894 }
4895 
4896 static inline bool netif_is_team_port(const struct net_device *dev)
4897 {
4898 	return dev->priv_flags & IFF_TEAM_PORT;
4899 }
4900 
4901 static inline bool netif_is_lag_master(const struct net_device *dev)
4902 {
4903 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4904 }
4905 
4906 static inline bool netif_is_lag_port(const struct net_device *dev)
4907 {
4908 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4909 }
4910 
4911 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4912 {
4913 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4914 }
4915 
4916 static inline bool netif_is_failover(const struct net_device *dev)
4917 {
4918 	return dev->priv_flags & IFF_FAILOVER;
4919 }
4920 
4921 static inline bool netif_is_failover_slave(const struct net_device *dev)
4922 {
4923 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4924 }
4925 
4926 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4927 static inline void netif_keep_dst(struct net_device *dev)
4928 {
4929 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4930 }
4931 
4932 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4933 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4934 {
4935 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4936 	return netif_is_macsec(dev);
4937 }
4938 
4939 extern struct pernet_operations __net_initdata loopback_net_ops;
4940 
4941 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4942 
4943 /* netdev_printk helpers, similar to dev_printk */
4944 
4945 static inline const char *netdev_name(const struct net_device *dev)
4946 {
4947 	if (!dev->name[0] || strchr(dev->name, '%'))
4948 		return "(unnamed net_device)";
4949 	return dev->name;
4950 }
4951 
4952 static inline bool netdev_unregistering(const struct net_device *dev)
4953 {
4954 	return dev->reg_state == NETREG_UNREGISTERING;
4955 }
4956 
4957 static inline const char *netdev_reg_state(const struct net_device *dev)
4958 {
4959 	switch (dev->reg_state) {
4960 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4961 	case NETREG_REGISTERED: return "";
4962 	case NETREG_UNREGISTERING: return " (unregistering)";
4963 	case NETREG_UNREGISTERED: return " (unregistered)";
4964 	case NETREG_RELEASED: return " (released)";
4965 	case NETREG_DUMMY: return " (dummy)";
4966 	}
4967 
4968 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4969 	return " (unknown)";
4970 }
4971 
4972 __printf(3, 4) __cold
4973 void netdev_printk(const char *level, const struct net_device *dev,
4974 		   const char *format, ...);
4975 __printf(2, 3) __cold
4976 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4977 __printf(2, 3) __cold
4978 void netdev_alert(const struct net_device *dev, const char *format, ...);
4979 __printf(2, 3) __cold
4980 void netdev_crit(const struct net_device *dev, const char *format, ...);
4981 __printf(2, 3) __cold
4982 void netdev_err(const struct net_device *dev, const char *format, ...);
4983 __printf(2, 3) __cold
4984 void netdev_warn(const struct net_device *dev, const char *format, ...);
4985 __printf(2, 3) __cold
4986 void netdev_notice(const struct net_device *dev, const char *format, ...);
4987 __printf(2, 3) __cold
4988 void netdev_info(const struct net_device *dev, const char *format, ...);
4989 
4990 #define netdev_level_once(level, dev, fmt, ...)			\
4991 do {								\
4992 	static bool __section(".data.once") __print_once;	\
4993 								\
4994 	if (!__print_once) {					\
4995 		__print_once = true;				\
4996 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4997 	}							\
4998 } while (0)
4999 
5000 #define netdev_emerg_once(dev, fmt, ...) \
5001 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5002 #define netdev_alert_once(dev, fmt, ...) \
5003 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5004 #define netdev_crit_once(dev, fmt, ...) \
5005 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5006 #define netdev_err_once(dev, fmt, ...) \
5007 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5008 #define netdev_warn_once(dev, fmt, ...) \
5009 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5010 #define netdev_notice_once(dev, fmt, ...) \
5011 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5012 #define netdev_info_once(dev, fmt, ...) \
5013 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5014 
5015 #define MODULE_ALIAS_NETDEV(device) \
5016 	MODULE_ALIAS("netdev-" device)
5017 
5018 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5019 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5020 #define netdev_dbg(__dev, format, args...)			\
5021 do {								\
5022 	dynamic_netdev_dbg(__dev, format, ##args);		\
5023 } while (0)
5024 #elif defined(DEBUG)
5025 #define netdev_dbg(__dev, format, args...)			\
5026 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
5027 #else
5028 #define netdev_dbg(__dev, format, args...)			\
5029 ({								\
5030 	if (0)							\
5031 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5032 })
5033 #endif
5034 
5035 #if defined(VERBOSE_DEBUG)
5036 #define netdev_vdbg	netdev_dbg
5037 #else
5038 
5039 #define netdev_vdbg(dev, format, args...)			\
5040 ({								\
5041 	if (0)							\
5042 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
5043 	0;							\
5044 })
5045 #endif
5046 
5047 /*
5048  * netdev_WARN() acts like dev_printk(), but with the key difference
5049  * of using a WARN/WARN_ON to get the message out, including the
5050  * file/line information and a backtrace.
5051  */
5052 #define netdev_WARN(dev, format, args...)			\
5053 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5054 	     netdev_reg_state(dev), ##args)
5055 
5056 #define netdev_WARN_ONCE(dev, format, args...)				\
5057 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5058 		  netdev_reg_state(dev), ##args)
5059 
5060 /* netif printk helpers, similar to netdev_printk */
5061 
5062 #define netif_printk(priv, type, level, dev, fmt, args...)	\
5063 do {					  			\
5064 	if (netif_msg_##type(priv))				\
5065 		netdev_printk(level, (dev), fmt, ##args);	\
5066 } while (0)
5067 
5068 #define netif_level(level, priv, type, dev, fmt, args...)	\
5069 do {								\
5070 	if (netif_msg_##type(priv))				\
5071 		netdev_##level(dev, fmt, ##args);		\
5072 } while (0)
5073 
5074 #define netif_emerg(priv, type, dev, fmt, args...)		\
5075 	netif_level(emerg, priv, type, dev, fmt, ##args)
5076 #define netif_alert(priv, type, dev, fmt, args...)		\
5077 	netif_level(alert, priv, type, dev, fmt, ##args)
5078 #define netif_crit(priv, type, dev, fmt, args...)		\
5079 	netif_level(crit, priv, type, dev, fmt, ##args)
5080 #define netif_err(priv, type, dev, fmt, args...)		\
5081 	netif_level(err, priv, type, dev, fmt, ##args)
5082 #define netif_warn(priv, type, dev, fmt, args...)		\
5083 	netif_level(warn, priv, type, dev, fmt, ##args)
5084 #define netif_notice(priv, type, dev, fmt, args...)		\
5085 	netif_level(notice, priv, type, dev, fmt, ##args)
5086 #define netif_info(priv, type, dev, fmt, args...)		\
5087 	netif_level(info, priv, type, dev, fmt, ##args)
5088 
5089 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5090 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5091 #define netif_dbg(priv, type, netdev, format, args...)		\
5092 do {								\
5093 	if (netif_msg_##type(priv))				\
5094 		dynamic_netdev_dbg(netdev, format, ##args);	\
5095 } while (0)
5096 #elif defined(DEBUG)
5097 #define netif_dbg(priv, type, dev, format, args...)		\
5098 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5099 #else
5100 #define netif_dbg(priv, type, dev, format, args...)			\
5101 ({									\
5102 	if (0)								\
5103 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5104 	0;								\
5105 })
5106 #endif
5107 
5108 /* if @cond then downgrade to debug, else print at @level */
5109 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5110 	do {                                                              \
5111 		if (cond)                                                 \
5112 			netif_dbg(priv, type, netdev, fmt, ##args);       \
5113 		else                                                      \
5114 			netif_ ## level(priv, type, netdev, fmt, ##args); \
5115 	} while (0)
5116 
5117 #if defined(VERBOSE_DEBUG)
5118 #define netif_vdbg	netif_dbg
5119 #else
5120 #define netif_vdbg(priv, type, dev, format, args...)		\
5121 ({								\
5122 	if (0)							\
5123 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5124 	0;							\
5125 })
5126 #endif
5127 
5128 /*
5129  *	The list of packet types we will receive (as opposed to discard)
5130  *	and the routines to invoke.
5131  *
5132  *	Why 16. Because with 16 the only overlap we get on a hash of the
5133  *	low nibble of the protocol value is RARP/SNAP/X.25.
5134  *
5135  *		0800	IP
5136  *		0001	802.3
5137  *		0002	AX.25
5138  *		0004	802.2
5139  *		8035	RARP
5140  *		0005	SNAP
5141  *		0805	X.25
5142  *		0806	ARP
5143  *		8137	IPX
5144  *		0009	Localtalk
5145  *		86DD	IPv6
5146  */
5147 #define PTYPE_HASH_SIZE	(16)
5148 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5149 
5150 extern struct list_head ptype_all __read_mostly;
5151 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5152 
5153 extern struct net_device *blackhole_netdev;
5154 
5155 #endif	/* _LINUX_NETDEVICE_H */
5156