xref: /linux-6.15/include/linux/netdevice.h (revision 548ec114)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <[email protected]>
12  *		Corey Minyard <[email protected]>
13  *		Donald J. Becker, <[email protected]>
14  *		Alan Cox, <[email protected]>
15  *		Bjorn Ekwall. <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/workqueue.h>
39 #include <linux/dynamic_queue_limits.h>
40 
41 #include <linux/ethtool.h>
42 #include <net/net_namespace.h>
43 #ifdef CONFIG_DCB
44 #include <net/dcbnl.h>
45 #endif
46 #include <net/netprio_cgroup.h>
47 
48 #include <linux/netdev_features.h>
49 #include <linux/neighbour.h>
50 #include <uapi/linux/netdevice.h>
51 #include <uapi/linux/if_bonding.h>
52 #include <uapi/linux/pkt_cls.h>
53 #include <linux/hashtable.h>
54 
55 struct netpoll_info;
56 struct device;
57 struct phy_device;
58 struct dsa_port;
59 
60 /* 802.11 specific */
61 struct wireless_dev;
62 /* 802.15.4 specific */
63 struct wpan_dev;
64 struct mpls_dev;
65 /* UDP Tunnel offloads */
66 struct udp_tunnel_info;
67 struct bpf_prog;
68 struct xdp_buff;
69 
70 void netdev_set_default_ethtool_ops(struct net_device *dev,
71 				    const struct ethtool_ops *ops);
72 
73 /* Backlog congestion levels */
74 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
75 #define NET_RX_DROP		1	/* packet dropped */
76 
77 /*
78  * Transmit return codes: transmit return codes originate from three different
79  * namespaces:
80  *
81  * - qdisc return codes
82  * - driver transmit return codes
83  * - errno values
84  *
85  * Drivers are allowed to return any one of those in their hard_start_xmit()
86  * function. Real network devices commonly used with qdiscs should only return
87  * the driver transmit return codes though - when qdiscs are used, the actual
88  * transmission happens asynchronously, so the value is not propagated to
89  * higher layers. Virtual network devices transmit synchronously; in this case
90  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
91  * others are propagated to higher layers.
92  */
93 
94 /* qdisc ->enqueue() return codes. */
95 #define NET_XMIT_SUCCESS	0x00
96 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
97 #define NET_XMIT_CN		0x02	/* congestion notification	*/
98 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
99 
100 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
101  * indicates that the device will soon be dropping packets, or already drops
102  * some packets of the same priority; prompting us to send less aggressively. */
103 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
104 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
105 
106 /* Driver transmit return codes */
107 #define NETDEV_TX_MASK		0xf0
108 
109 enum netdev_tx {
110 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
111 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
112 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
113 };
114 typedef enum netdev_tx netdev_tx_t;
115 
116 /*
117  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
118  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
119  */
120 static inline bool dev_xmit_complete(int rc)
121 {
122 	/*
123 	 * Positive cases with an skb consumed by a driver:
124 	 * - successful transmission (rc == NETDEV_TX_OK)
125 	 * - error while transmitting (rc < 0)
126 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
127 	 */
128 	if (likely(rc < NET_XMIT_MASK))
129 		return true;
130 
131 	return false;
132 }
133 
134 /*
135  *	Compute the worst-case header length according to the protocols
136  *	used.
137  */
138 
139 #if defined(CONFIG_HYPERV_NET)
140 # define LL_MAX_HEADER 128
141 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
142 # if defined(CONFIG_MAC80211_MESH)
143 #  define LL_MAX_HEADER 128
144 # else
145 #  define LL_MAX_HEADER 96
146 # endif
147 #else
148 # define LL_MAX_HEADER 32
149 #endif
150 
151 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
152     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
153 #define MAX_HEADER LL_MAX_HEADER
154 #else
155 #define MAX_HEADER (LL_MAX_HEADER + 48)
156 #endif
157 
158 /*
159  *	Old network device statistics. Fields are native words
160  *	(unsigned long) so they can be read and written atomically.
161  */
162 
163 struct net_device_stats {
164 	unsigned long	rx_packets;
165 	unsigned long	tx_packets;
166 	unsigned long	rx_bytes;
167 	unsigned long	tx_bytes;
168 	unsigned long	rx_errors;
169 	unsigned long	tx_errors;
170 	unsigned long	rx_dropped;
171 	unsigned long	tx_dropped;
172 	unsigned long	multicast;
173 	unsigned long	collisions;
174 	unsigned long	rx_length_errors;
175 	unsigned long	rx_over_errors;
176 	unsigned long	rx_crc_errors;
177 	unsigned long	rx_frame_errors;
178 	unsigned long	rx_fifo_errors;
179 	unsigned long	rx_missed_errors;
180 	unsigned long	tx_aborted_errors;
181 	unsigned long	tx_carrier_errors;
182 	unsigned long	tx_fifo_errors;
183 	unsigned long	tx_heartbeat_errors;
184 	unsigned long	tx_window_errors;
185 	unsigned long	rx_compressed;
186 	unsigned long	tx_compressed;
187 };
188 
189 
190 #include <linux/cache.h>
191 #include <linux/skbuff.h>
192 
193 #ifdef CONFIG_RPS
194 #include <linux/static_key.h>
195 extern struct static_key rps_needed;
196 extern struct static_key rfs_needed;
197 #endif
198 
199 struct neighbour;
200 struct neigh_parms;
201 struct sk_buff;
202 
203 struct netdev_hw_addr {
204 	struct list_head	list;
205 	unsigned char		addr[MAX_ADDR_LEN];
206 	unsigned char		type;
207 #define NETDEV_HW_ADDR_T_LAN		1
208 #define NETDEV_HW_ADDR_T_SAN		2
209 #define NETDEV_HW_ADDR_T_SLAVE		3
210 #define NETDEV_HW_ADDR_T_UNICAST	4
211 #define NETDEV_HW_ADDR_T_MULTICAST	5
212 	bool			global_use;
213 	int			sync_cnt;
214 	int			refcount;
215 	int			synced;
216 	struct rcu_head		rcu_head;
217 };
218 
219 struct netdev_hw_addr_list {
220 	struct list_head	list;
221 	int			count;
222 };
223 
224 #define netdev_hw_addr_list_count(l) ((l)->count)
225 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
226 #define netdev_hw_addr_list_for_each(ha, l) \
227 	list_for_each_entry(ha, &(l)->list, list)
228 
229 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
230 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
231 #define netdev_for_each_uc_addr(ha, dev) \
232 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
233 
234 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
235 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
236 #define netdev_for_each_mc_addr(ha, dev) \
237 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
238 
239 struct hh_cache {
240 	unsigned int	hh_len;
241 	seqlock_t	hh_lock;
242 
243 	/* cached hardware header; allow for machine alignment needs.        */
244 #define HH_DATA_MOD	16
245 #define HH_DATA_OFF(__len) \
246 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247 #define HH_DATA_ALIGN(__len) \
248 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250 };
251 
252 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
253  * Alternative is:
254  *   dev->hard_header_len ? (dev->hard_header_len +
255  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256  *
257  * We could use other alignment values, but we must maintain the
258  * relationship HH alignment <= LL alignment.
259  */
260 #define LL_RESERVED_SPACE(dev) \
261 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 
265 struct header_ops {
266 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
267 			   unsigned short type, const void *daddr,
268 			   const void *saddr, unsigned int len);
269 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
270 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
271 	void	(*cache_update)(struct hh_cache *hh,
272 				const struct net_device *dev,
273 				const unsigned char *haddr);
274 	bool	(*validate)(const char *ll_header, unsigned int len);
275 };
276 
277 /* These flag bits are private to the generic network queueing
278  * layer; they may not be explicitly referenced by any other
279  * code.
280  */
281 
282 enum netdev_state_t {
283 	__LINK_STATE_START,
284 	__LINK_STATE_PRESENT,
285 	__LINK_STATE_NOCARRIER,
286 	__LINK_STATE_LINKWATCH_PENDING,
287 	__LINK_STATE_DORMANT,
288 };
289 
290 
291 /*
292  * This structure holds boot-time configured netdevice settings. They
293  * are then used in the device probing.
294  */
295 struct netdev_boot_setup {
296 	char name[IFNAMSIZ];
297 	struct ifmap map;
298 };
299 #define NETDEV_BOOT_SETUP_MAX 8
300 
301 int __init netdev_boot_setup(char *str);
302 
303 /*
304  * Structure for NAPI scheduling similar to tasklet but with weighting
305  */
306 struct napi_struct {
307 	/* The poll_list must only be managed by the entity which
308 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
309 	 * whoever atomically sets that bit can add this napi_struct
310 	 * to the per-CPU poll_list, and whoever clears that bit
311 	 * can remove from the list right before clearing the bit.
312 	 */
313 	struct list_head	poll_list;
314 
315 	unsigned long		state;
316 	int			weight;
317 	unsigned int		gro_count;
318 	int			(*poll)(struct napi_struct *, int);
319 #ifdef CONFIG_NETPOLL
320 	int			poll_owner;
321 #endif
322 	struct net_device	*dev;
323 	struct sk_buff		*gro_list;
324 	struct sk_buff		*skb;
325 	struct hrtimer		timer;
326 	struct list_head	dev_list;
327 	struct hlist_node	napi_hash_node;
328 	unsigned int		napi_id;
329 };
330 
331 enum {
332 	NAPI_STATE_SCHED,	/* Poll is scheduled */
333 	NAPI_STATE_MISSED,	/* reschedule a napi */
334 	NAPI_STATE_DISABLE,	/* Disable pending */
335 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
336 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
337 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
338 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
339 };
340 
341 enum {
342 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
343 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
344 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
345 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
346 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
347 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
348 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
349 };
350 
351 enum gro_result {
352 	GRO_MERGED,
353 	GRO_MERGED_FREE,
354 	GRO_HELD,
355 	GRO_NORMAL,
356 	GRO_DROP,
357 	GRO_CONSUMED,
358 };
359 typedef enum gro_result gro_result_t;
360 
361 /*
362  * enum rx_handler_result - Possible return values for rx_handlers.
363  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
364  * further.
365  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
366  * case skb->dev was changed by rx_handler.
367  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
368  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
369  *
370  * rx_handlers are functions called from inside __netif_receive_skb(), to do
371  * special processing of the skb, prior to delivery to protocol handlers.
372  *
373  * Currently, a net_device can only have a single rx_handler registered. Trying
374  * to register a second rx_handler will return -EBUSY.
375  *
376  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
377  * To unregister a rx_handler on a net_device, use
378  * netdev_rx_handler_unregister().
379  *
380  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
381  * do with the skb.
382  *
383  * If the rx_handler consumed the skb in some way, it should return
384  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
385  * the skb to be delivered in some other way.
386  *
387  * If the rx_handler changed skb->dev, to divert the skb to another
388  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
389  * new device will be called if it exists.
390  *
391  * If the rx_handler decides the skb should be ignored, it should return
392  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
393  * are registered on exact device (ptype->dev == skb->dev).
394  *
395  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
396  * delivered, it should return RX_HANDLER_PASS.
397  *
398  * A device without a registered rx_handler will behave as if rx_handler
399  * returned RX_HANDLER_PASS.
400  */
401 
402 enum rx_handler_result {
403 	RX_HANDLER_CONSUMED,
404 	RX_HANDLER_ANOTHER,
405 	RX_HANDLER_EXACT,
406 	RX_HANDLER_PASS,
407 };
408 typedef enum rx_handler_result rx_handler_result_t;
409 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
410 
411 void __napi_schedule(struct napi_struct *n);
412 void __napi_schedule_irqoff(struct napi_struct *n);
413 
414 static inline bool napi_disable_pending(struct napi_struct *n)
415 {
416 	return test_bit(NAPI_STATE_DISABLE, &n->state);
417 }
418 
419 bool napi_schedule_prep(struct napi_struct *n);
420 
421 /**
422  *	napi_schedule - schedule NAPI poll
423  *	@n: NAPI context
424  *
425  * Schedule NAPI poll routine to be called if it is not already
426  * running.
427  */
428 static inline void napi_schedule(struct napi_struct *n)
429 {
430 	if (napi_schedule_prep(n))
431 		__napi_schedule(n);
432 }
433 
434 /**
435  *	napi_schedule_irqoff - schedule NAPI poll
436  *	@n: NAPI context
437  *
438  * Variant of napi_schedule(), assuming hard irqs are masked.
439  */
440 static inline void napi_schedule_irqoff(struct napi_struct *n)
441 {
442 	if (napi_schedule_prep(n))
443 		__napi_schedule_irqoff(n);
444 }
445 
446 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
447 static inline bool napi_reschedule(struct napi_struct *napi)
448 {
449 	if (napi_schedule_prep(napi)) {
450 		__napi_schedule(napi);
451 		return true;
452 	}
453 	return false;
454 }
455 
456 bool napi_complete_done(struct napi_struct *n, int work_done);
457 /**
458  *	napi_complete - NAPI processing complete
459  *	@n: NAPI context
460  *
461  * Mark NAPI processing as complete.
462  * Consider using napi_complete_done() instead.
463  * Return false if device should avoid rearming interrupts.
464  */
465 static inline bool napi_complete(struct napi_struct *n)
466 {
467 	return napi_complete_done(n, 0);
468 }
469 
470 /**
471  *	napi_hash_del - remove a NAPI from global table
472  *	@napi: NAPI context
473  *
474  * Warning: caller must observe RCU grace period
475  * before freeing memory containing @napi, if
476  * this function returns true.
477  * Note: core networking stack automatically calls it
478  * from netif_napi_del().
479  * Drivers might want to call this helper to combine all
480  * the needed RCU grace periods into a single one.
481  */
482 bool napi_hash_del(struct napi_struct *napi);
483 
484 /**
485  *	napi_disable - prevent NAPI from scheduling
486  *	@n: NAPI context
487  *
488  * Stop NAPI from being scheduled on this context.
489  * Waits till any outstanding processing completes.
490  */
491 void napi_disable(struct napi_struct *n);
492 
493 /**
494  *	napi_enable - enable NAPI scheduling
495  *	@n: NAPI context
496  *
497  * Resume NAPI from being scheduled on this context.
498  * Must be paired with napi_disable.
499  */
500 static inline void napi_enable(struct napi_struct *n)
501 {
502 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
503 	smp_mb__before_atomic();
504 	clear_bit(NAPI_STATE_SCHED, &n->state);
505 	clear_bit(NAPI_STATE_NPSVC, &n->state);
506 }
507 
508 /**
509  *	napi_synchronize - wait until NAPI is not running
510  *	@n: NAPI context
511  *
512  * Wait until NAPI is done being scheduled on this context.
513  * Waits till any outstanding processing completes but
514  * does not disable future activations.
515  */
516 static inline void napi_synchronize(const struct napi_struct *n)
517 {
518 	if (IS_ENABLED(CONFIG_SMP))
519 		while (test_bit(NAPI_STATE_SCHED, &n->state))
520 			msleep(1);
521 	else
522 		barrier();
523 }
524 
525 enum netdev_queue_state_t {
526 	__QUEUE_STATE_DRV_XOFF,
527 	__QUEUE_STATE_STACK_XOFF,
528 	__QUEUE_STATE_FROZEN,
529 };
530 
531 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
532 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
533 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
534 
535 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
536 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
537 					QUEUE_STATE_FROZEN)
538 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
539 					QUEUE_STATE_FROZEN)
540 
541 /*
542  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
543  * netif_tx_* functions below are used to manipulate this flag.  The
544  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
545  * queue independently.  The netif_xmit_*stopped functions below are called
546  * to check if the queue has been stopped by the driver or stack (either
547  * of the XOFF bits are set in the state).  Drivers should not need to call
548  * netif_xmit*stopped functions, they should only be using netif_tx_*.
549  */
550 
551 struct netdev_queue {
552 /*
553  * read-mostly part
554  */
555 	struct net_device	*dev;
556 	struct Qdisc __rcu	*qdisc;
557 	struct Qdisc		*qdisc_sleeping;
558 #ifdef CONFIG_SYSFS
559 	struct kobject		kobj;
560 #endif
561 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
562 	int			numa_node;
563 #endif
564 	unsigned long		tx_maxrate;
565 	/*
566 	 * Number of TX timeouts for this queue
567 	 * (/sys/class/net/DEV/Q/trans_timeout)
568 	 */
569 	unsigned long		trans_timeout;
570 /*
571  * write-mostly part
572  */
573 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
574 	int			xmit_lock_owner;
575 	/*
576 	 * Time (in jiffies) of last Tx
577 	 */
578 	unsigned long		trans_start;
579 
580 	unsigned long		state;
581 
582 #ifdef CONFIG_BQL
583 	struct dql		dql;
584 #endif
585 } ____cacheline_aligned_in_smp;
586 
587 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
588 {
589 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
590 	return q->numa_node;
591 #else
592 	return NUMA_NO_NODE;
593 #endif
594 }
595 
596 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
597 {
598 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
599 	q->numa_node = node;
600 #endif
601 }
602 
603 #ifdef CONFIG_RPS
604 /*
605  * This structure holds an RPS map which can be of variable length.  The
606  * map is an array of CPUs.
607  */
608 struct rps_map {
609 	unsigned int len;
610 	struct rcu_head rcu;
611 	u16 cpus[0];
612 };
613 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
614 
615 /*
616  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
617  * tail pointer for that CPU's input queue at the time of last enqueue, and
618  * a hardware filter index.
619  */
620 struct rps_dev_flow {
621 	u16 cpu;
622 	u16 filter;
623 	unsigned int last_qtail;
624 };
625 #define RPS_NO_FILTER 0xffff
626 
627 /*
628  * The rps_dev_flow_table structure contains a table of flow mappings.
629  */
630 struct rps_dev_flow_table {
631 	unsigned int mask;
632 	struct rcu_head rcu;
633 	struct rps_dev_flow flows[0];
634 };
635 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
636     ((_num) * sizeof(struct rps_dev_flow)))
637 
638 /*
639  * The rps_sock_flow_table contains mappings of flows to the last CPU
640  * on which they were processed by the application (set in recvmsg).
641  * Each entry is a 32bit value. Upper part is the high-order bits
642  * of flow hash, lower part is CPU number.
643  * rps_cpu_mask is used to partition the space, depending on number of
644  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
645  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
646  * meaning we use 32-6=26 bits for the hash.
647  */
648 struct rps_sock_flow_table {
649 	u32	mask;
650 
651 	u32	ents[0] ____cacheline_aligned_in_smp;
652 };
653 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
654 
655 #define RPS_NO_CPU 0xffff
656 
657 extern u32 rps_cpu_mask;
658 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
659 
660 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
661 					u32 hash)
662 {
663 	if (table && hash) {
664 		unsigned int index = hash & table->mask;
665 		u32 val = hash & ~rps_cpu_mask;
666 
667 		/* We only give a hint, preemption can change CPU under us */
668 		val |= raw_smp_processor_id();
669 
670 		if (table->ents[index] != val)
671 			table->ents[index] = val;
672 	}
673 }
674 
675 #ifdef CONFIG_RFS_ACCEL
676 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
677 			 u16 filter_id);
678 #endif
679 #endif /* CONFIG_RPS */
680 
681 /* This structure contains an instance of an RX queue. */
682 struct netdev_rx_queue {
683 #ifdef CONFIG_RPS
684 	struct rps_map __rcu		*rps_map;
685 	struct rps_dev_flow_table __rcu	*rps_flow_table;
686 #endif
687 	struct kobject			kobj;
688 	struct net_device		*dev;
689 } ____cacheline_aligned_in_smp;
690 
691 /*
692  * RX queue sysfs structures and functions.
693  */
694 struct rx_queue_attribute {
695 	struct attribute attr;
696 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
697 	ssize_t (*store)(struct netdev_rx_queue *queue,
698 			 const char *buf, size_t len);
699 };
700 
701 #ifdef CONFIG_XPS
702 /*
703  * This structure holds an XPS map which can be of variable length.  The
704  * map is an array of queues.
705  */
706 struct xps_map {
707 	unsigned int len;
708 	unsigned int alloc_len;
709 	struct rcu_head rcu;
710 	u16 queues[0];
711 };
712 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
713 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
714        - sizeof(struct xps_map)) / sizeof(u16))
715 
716 /*
717  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
718  */
719 struct xps_dev_maps {
720 	struct rcu_head rcu;
721 	struct xps_map __rcu *cpu_map[0];
722 };
723 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +		\
724 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
725 #endif /* CONFIG_XPS */
726 
727 #define TC_MAX_QUEUE	16
728 #define TC_BITMASK	15
729 /* HW offloaded queuing disciplines txq count and offset maps */
730 struct netdev_tc_txq {
731 	u16 count;
732 	u16 offset;
733 };
734 
735 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
736 /*
737  * This structure is to hold information about the device
738  * configured to run FCoE protocol stack.
739  */
740 struct netdev_fcoe_hbainfo {
741 	char	manufacturer[64];
742 	char	serial_number[64];
743 	char	hardware_version[64];
744 	char	driver_version[64];
745 	char	optionrom_version[64];
746 	char	firmware_version[64];
747 	char	model[256];
748 	char	model_description[256];
749 };
750 #endif
751 
752 #define MAX_PHYS_ITEM_ID_LEN 32
753 
754 /* This structure holds a unique identifier to identify some
755  * physical item (port for example) used by a netdevice.
756  */
757 struct netdev_phys_item_id {
758 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
759 	unsigned char id_len;
760 };
761 
762 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
763 					    struct netdev_phys_item_id *b)
764 {
765 	return a->id_len == b->id_len &&
766 	       memcmp(a->id, b->id, a->id_len) == 0;
767 }
768 
769 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
770 				       struct sk_buff *skb);
771 
772 enum tc_setup_type {
773 	TC_SETUP_MQPRIO,
774 	TC_SETUP_CLSU32,
775 	TC_SETUP_CLSFLOWER,
776 	TC_SETUP_CLSMATCHALL,
777 	TC_SETUP_CLSBPF,
778 };
779 
780 /* These structures hold the attributes of xdp state that are being passed
781  * to the netdevice through the xdp op.
782  */
783 enum xdp_netdev_command {
784 	/* Set or clear a bpf program used in the earliest stages of packet
785 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
786 	 * is responsible for calling bpf_prog_put on any old progs that are
787 	 * stored. In case of error, the callee need not release the new prog
788 	 * reference, but on success it takes ownership and must bpf_prog_put
789 	 * when it is no longer used.
790 	 */
791 	XDP_SETUP_PROG,
792 	XDP_SETUP_PROG_HW,
793 	/* Check if a bpf program is set on the device.  The callee should
794 	 * set @prog_attached to one of XDP_ATTACHED_* values, note that "true"
795 	 * is equivalent to XDP_ATTACHED_DRV.
796 	 */
797 	XDP_QUERY_PROG,
798 };
799 
800 struct netlink_ext_ack;
801 
802 struct netdev_xdp {
803 	enum xdp_netdev_command command;
804 	union {
805 		/* XDP_SETUP_PROG */
806 		struct {
807 			u32 flags;
808 			struct bpf_prog *prog;
809 			struct netlink_ext_ack *extack;
810 		};
811 		/* XDP_QUERY_PROG */
812 		struct {
813 			u8 prog_attached;
814 			u32 prog_id;
815 		};
816 	};
817 };
818 
819 #ifdef CONFIG_XFRM_OFFLOAD
820 struct xfrmdev_ops {
821 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
822 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
823 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
824 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
825 				       struct xfrm_state *x);
826 };
827 #endif
828 
829 struct dev_ifalias {
830 	struct rcu_head rcuhead;
831 	char ifalias[];
832 };
833 
834 /*
835  * This structure defines the management hooks for network devices.
836  * The following hooks can be defined; unless noted otherwise, they are
837  * optional and can be filled with a null pointer.
838  *
839  * int (*ndo_init)(struct net_device *dev);
840  *     This function is called once when a network device is registered.
841  *     The network device can use this for any late stage initialization
842  *     or semantic validation. It can fail with an error code which will
843  *     be propagated back to register_netdev.
844  *
845  * void (*ndo_uninit)(struct net_device *dev);
846  *     This function is called when device is unregistered or when registration
847  *     fails. It is not called if init fails.
848  *
849  * int (*ndo_open)(struct net_device *dev);
850  *     This function is called when a network device transitions to the up
851  *     state.
852  *
853  * int (*ndo_stop)(struct net_device *dev);
854  *     This function is called when a network device transitions to the down
855  *     state.
856  *
857  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
858  *                               struct net_device *dev);
859  *	Called when a packet needs to be transmitted.
860  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
861  *	the queue before that can happen; it's for obsolete devices and weird
862  *	corner cases, but the stack really does a non-trivial amount
863  *	of useless work if you return NETDEV_TX_BUSY.
864  *	Required; cannot be NULL.
865  *
866  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
867  *					   struct net_device *dev
868  *					   netdev_features_t features);
869  *	Called by core transmit path to determine if device is capable of
870  *	performing offload operations on a given packet. This is to give
871  *	the device an opportunity to implement any restrictions that cannot
872  *	be otherwise expressed by feature flags. The check is called with
873  *	the set of features that the stack has calculated and it returns
874  *	those the driver believes to be appropriate.
875  *
876  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
877  *                         void *accel_priv, select_queue_fallback_t fallback);
878  *	Called to decide which queue to use when device supports multiple
879  *	transmit queues.
880  *
881  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
882  *	This function is called to allow device receiver to make
883  *	changes to configuration when multicast or promiscuous is enabled.
884  *
885  * void (*ndo_set_rx_mode)(struct net_device *dev);
886  *	This function is called device changes address list filtering.
887  *	If driver handles unicast address filtering, it should set
888  *	IFF_UNICAST_FLT in its priv_flags.
889  *
890  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
891  *	This function  is called when the Media Access Control address
892  *	needs to be changed. If this interface is not defined, the
893  *	MAC address can not be changed.
894  *
895  * int (*ndo_validate_addr)(struct net_device *dev);
896  *	Test if Media Access Control address is valid for the device.
897  *
898  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
899  *	Called when a user requests an ioctl which can't be handled by
900  *	the generic interface code. If not defined ioctls return
901  *	not supported error code.
902  *
903  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
904  *	Used to set network devices bus interface parameters. This interface
905  *	is retained for legacy reasons; new devices should use the bus
906  *	interface (PCI) for low level management.
907  *
908  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
909  *	Called when a user wants to change the Maximum Transfer Unit
910  *	of a device.
911  *
912  * void (*ndo_tx_timeout)(struct net_device *dev);
913  *	Callback used when the transmitter has not made any progress
914  *	for dev->watchdog ticks.
915  *
916  * void (*ndo_get_stats64)(struct net_device *dev,
917  *                         struct rtnl_link_stats64 *storage);
918  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
919  *	Called when a user wants to get the network device usage
920  *	statistics. Drivers must do one of the following:
921  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
922  *	   rtnl_link_stats64 structure passed by the caller.
923  *	2. Define @ndo_get_stats to update a net_device_stats structure
924  *	   (which should normally be dev->stats) and return a pointer to
925  *	   it. The structure may be changed asynchronously only if each
926  *	   field is written atomically.
927  *	3. Update dev->stats asynchronously and atomically, and define
928  *	   neither operation.
929  *
930  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
931  *	Return true if this device supports offload stats of this attr_id.
932  *
933  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
934  *	void *attr_data)
935  *	Get statistics for offload operations by attr_id. Write it into the
936  *	attr_data pointer.
937  *
938  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
939  *	If device supports VLAN filtering this function is called when a
940  *	VLAN id is registered.
941  *
942  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
943  *	If device supports VLAN filtering this function is called when a
944  *	VLAN id is unregistered.
945  *
946  * void (*ndo_poll_controller)(struct net_device *dev);
947  *
948  *	SR-IOV management functions.
949  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
950  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
951  *			  u8 qos, __be16 proto);
952  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
953  *			  int max_tx_rate);
954  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
955  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
956  * int (*ndo_get_vf_config)(struct net_device *dev,
957  *			    int vf, struct ifla_vf_info *ivf);
958  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
959  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
960  *			  struct nlattr *port[]);
961  *
962  *      Enable or disable the VF ability to query its RSS Redirection Table and
963  *      Hash Key. This is needed since on some devices VF share this information
964  *      with PF and querying it may introduce a theoretical security risk.
965  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
966  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
967  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
968  *		       void *type_data);
969  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
970  *	This is always called from the stack with the rtnl lock held and netif
971  *	tx queues stopped. This allows the netdevice to perform queue
972  *	management safely.
973  *
974  *	Fiber Channel over Ethernet (FCoE) offload functions.
975  * int (*ndo_fcoe_enable)(struct net_device *dev);
976  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
977  *	so the underlying device can perform whatever needed configuration or
978  *	initialization to support acceleration of FCoE traffic.
979  *
980  * int (*ndo_fcoe_disable)(struct net_device *dev);
981  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
982  *	so the underlying device can perform whatever needed clean-ups to
983  *	stop supporting acceleration of FCoE traffic.
984  *
985  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
986  *			     struct scatterlist *sgl, unsigned int sgc);
987  *	Called when the FCoE Initiator wants to initialize an I/O that
988  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
989  *	perform necessary setup and returns 1 to indicate the device is set up
990  *	successfully to perform DDP on this I/O, otherwise this returns 0.
991  *
992  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
993  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
994  *	indicated by the FC exchange id 'xid', so the underlying device can
995  *	clean up and reuse resources for later DDP requests.
996  *
997  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
998  *			      struct scatterlist *sgl, unsigned int sgc);
999  *	Called when the FCoE Target wants to initialize an I/O that
1000  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1001  *	perform necessary setup and returns 1 to indicate the device is set up
1002  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1003  *
1004  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1005  *			       struct netdev_fcoe_hbainfo *hbainfo);
1006  *	Called when the FCoE Protocol stack wants information on the underlying
1007  *	device. This information is utilized by the FCoE protocol stack to
1008  *	register attributes with Fiber Channel management service as per the
1009  *	FC-GS Fabric Device Management Information(FDMI) specification.
1010  *
1011  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1012  *	Called when the underlying device wants to override default World Wide
1013  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1014  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1015  *	protocol stack to use.
1016  *
1017  *	RFS acceleration.
1018  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1019  *			    u16 rxq_index, u32 flow_id);
1020  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1021  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1022  *	Return the filter ID on success, or a negative error code.
1023  *
1024  *	Slave management functions (for bridge, bonding, etc).
1025  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1026  *	Called to make another netdev an underling.
1027  *
1028  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1029  *	Called to release previously enslaved netdev.
1030  *
1031  *      Feature/offload setting functions.
1032  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1033  *		netdev_features_t features);
1034  *	Adjusts the requested feature flags according to device-specific
1035  *	constraints, and returns the resulting flags. Must not modify
1036  *	the device state.
1037  *
1038  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1039  *	Called to update device configuration to new features. Passed
1040  *	feature set might be less than what was returned by ndo_fix_features()).
1041  *	Must return >0 or -errno if it changed dev->features itself.
1042  *
1043  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1044  *		      struct net_device *dev,
1045  *		      const unsigned char *addr, u16 vid, u16 flags)
1046  *	Adds an FDB entry to dev for addr.
1047  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1048  *		      struct net_device *dev,
1049  *		      const unsigned char *addr, u16 vid)
1050  *	Deletes the FDB entry from dev coresponding to addr.
1051  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1052  *		       struct net_device *dev, struct net_device *filter_dev,
1053  *		       int *idx)
1054  *	Used to add FDB entries to dump requests. Implementers should add
1055  *	entries to skb and update idx with the number of entries.
1056  *
1057  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1058  *			     u16 flags)
1059  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1060  *			     struct net_device *dev, u32 filter_mask,
1061  *			     int nlflags)
1062  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1063  *			     u16 flags);
1064  *
1065  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1066  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1067  *	which do not represent real hardware may define this to allow their
1068  *	userspace components to manage their virtual carrier state. Devices
1069  *	that determine carrier state from physical hardware properties (eg
1070  *	network cables) or protocol-dependent mechanisms (eg
1071  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1072  *
1073  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1074  *			       struct netdev_phys_item_id *ppid);
1075  *	Called to get ID of physical port of this device. If driver does
1076  *	not implement this, it is assumed that the hw is not able to have
1077  *	multiple net devices on single physical port.
1078  *
1079  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1080  *			      struct udp_tunnel_info *ti);
1081  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1082  *	address family that a UDP tunnel is listnening to. It is called only
1083  *	when a new port starts listening. The operation is protected by the
1084  *	RTNL.
1085  *
1086  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1087  *			      struct udp_tunnel_info *ti);
1088  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1089  *	address family that the UDP tunnel is not listening to anymore. The
1090  *	operation is protected by the RTNL.
1091  *
1092  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1093  *				 struct net_device *dev)
1094  *	Called by upper layer devices to accelerate switching or other
1095  *	station functionality into hardware. 'pdev is the lowerdev
1096  *	to use for the offload and 'dev' is the net device that will
1097  *	back the offload. Returns a pointer to the private structure
1098  *	the upper layer will maintain.
1099  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1100  *	Called by upper layer device to delete the station created
1101  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1102  *	the station and priv is the structure returned by the add
1103  *	operation.
1104  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1105  *			     int queue_index, u32 maxrate);
1106  *	Called when a user wants to set a max-rate limitation of specific
1107  *	TX queue.
1108  * int (*ndo_get_iflink)(const struct net_device *dev);
1109  *	Called to get the iflink value of this device.
1110  * void (*ndo_change_proto_down)(struct net_device *dev,
1111  *				 bool proto_down);
1112  *	This function is used to pass protocol port error state information
1113  *	to the switch driver. The switch driver can react to the proto_down
1114  *      by doing a phys down on the associated switch port.
1115  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1116  *	This function is used to get egress tunnel information for given skb.
1117  *	This is useful for retrieving outer tunnel header parameters while
1118  *	sampling packet.
1119  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1120  *	This function is used to specify the headroom that the skb must
1121  *	consider when allocation skb during packet reception. Setting
1122  *	appropriate rx headroom value allows avoiding skb head copy on
1123  *	forward. Setting a negative value resets the rx headroom to the
1124  *	default value.
1125  * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp);
1126  *	This function is used to set or query state related to XDP on the
1127  *	netdevice. See definition of enum xdp_netdev_command for details.
1128  * int (*ndo_xdp_xmit)(struct net_device *dev, struct xdp_buff *xdp);
1129  *	This function is used to submit a XDP packet for transmit on a
1130  *	netdevice.
1131  * void (*ndo_xdp_flush)(struct net_device *dev);
1132  *	This function is used to inform the driver to flush a particular
1133  *	xdp tx queue. Must be called on same CPU as xdp_xmit.
1134  */
1135 struct net_device_ops {
1136 	int			(*ndo_init)(struct net_device *dev);
1137 	void			(*ndo_uninit)(struct net_device *dev);
1138 	int			(*ndo_open)(struct net_device *dev);
1139 	int			(*ndo_stop)(struct net_device *dev);
1140 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1141 						  struct net_device *dev);
1142 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1143 						      struct net_device *dev,
1144 						      netdev_features_t features);
1145 	u16			(*ndo_select_queue)(struct net_device *dev,
1146 						    struct sk_buff *skb,
1147 						    void *accel_priv,
1148 						    select_queue_fallback_t fallback);
1149 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1150 						       int flags);
1151 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1152 	int			(*ndo_set_mac_address)(struct net_device *dev,
1153 						       void *addr);
1154 	int			(*ndo_validate_addr)(struct net_device *dev);
1155 	int			(*ndo_do_ioctl)(struct net_device *dev,
1156 					        struct ifreq *ifr, int cmd);
1157 	int			(*ndo_set_config)(struct net_device *dev,
1158 					          struct ifmap *map);
1159 	int			(*ndo_change_mtu)(struct net_device *dev,
1160 						  int new_mtu);
1161 	int			(*ndo_neigh_setup)(struct net_device *dev,
1162 						   struct neigh_parms *);
1163 	void			(*ndo_tx_timeout) (struct net_device *dev);
1164 
1165 	void			(*ndo_get_stats64)(struct net_device *dev,
1166 						   struct rtnl_link_stats64 *storage);
1167 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1168 	int			(*ndo_get_offload_stats)(int attr_id,
1169 							 const struct net_device *dev,
1170 							 void *attr_data);
1171 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1172 
1173 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1174 						       __be16 proto, u16 vid);
1175 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1176 						        __be16 proto, u16 vid);
1177 #ifdef CONFIG_NET_POLL_CONTROLLER
1178 	void                    (*ndo_poll_controller)(struct net_device *dev);
1179 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1180 						     struct netpoll_info *info);
1181 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1182 #endif
1183 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1184 						  int queue, u8 *mac);
1185 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1186 						   int queue, u16 vlan,
1187 						   u8 qos, __be16 proto);
1188 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1189 						   int vf, int min_tx_rate,
1190 						   int max_tx_rate);
1191 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1192 						       int vf, bool setting);
1193 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1194 						    int vf, bool setting);
1195 	int			(*ndo_get_vf_config)(struct net_device *dev,
1196 						     int vf,
1197 						     struct ifla_vf_info *ivf);
1198 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1199 							 int vf, int link_state);
1200 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1201 						    int vf,
1202 						    struct ifla_vf_stats
1203 						    *vf_stats);
1204 	int			(*ndo_set_vf_port)(struct net_device *dev,
1205 						   int vf,
1206 						   struct nlattr *port[]);
1207 	int			(*ndo_get_vf_port)(struct net_device *dev,
1208 						   int vf, struct sk_buff *skb);
1209 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1210 						   int vf, u64 guid,
1211 						   int guid_type);
1212 	int			(*ndo_set_vf_rss_query_en)(
1213 						   struct net_device *dev,
1214 						   int vf, bool setting);
1215 	int			(*ndo_setup_tc)(struct net_device *dev,
1216 						enum tc_setup_type type,
1217 						void *type_data);
1218 #if IS_ENABLED(CONFIG_FCOE)
1219 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1220 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1221 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1222 						      u16 xid,
1223 						      struct scatterlist *sgl,
1224 						      unsigned int sgc);
1225 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1226 						     u16 xid);
1227 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1228 						       u16 xid,
1229 						       struct scatterlist *sgl,
1230 						       unsigned int sgc);
1231 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1232 							struct netdev_fcoe_hbainfo *hbainfo);
1233 #endif
1234 
1235 #if IS_ENABLED(CONFIG_LIBFCOE)
1236 #define NETDEV_FCOE_WWNN 0
1237 #define NETDEV_FCOE_WWPN 1
1238 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1239 						    u64 *wwn, int type);
1240 #endif
1241 
1242 #ifdef CONFIG_RFS_ACCEL
1243 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1244 						     const struct sk_buff *skb,
1245 						     u16 rxq_index,
1246 						     u32 flow_id);
1247 #endif
1248 	int			(*ndo_add_slave)(struct net_device *dev,
1249 						 struct net_device *slave_dev,
1250 						 struct netlink_ext_ack *extack);
1251 	int			(*ndo_del_slave)(struct net_device *dev,
1252 						 struct net_device *slave_dev);
1253 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1254 						    netdev_features_t features);
1255 	int			(*ndo_set_features)(struct net_device *dev,
1256 						    netdev_features_t features);
1257 	int			(*ndo_neigh_construct)(struct net_device *dev,
1258 						       struct neighbour *n);
1259 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1260 						     struct neighbour *n);
1261 
1262 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1263 					       struct nlattr *tb[],
1264 					       struct net_device *dev,
1265 					       const unsigned char *addr,
1266 					       u16 vid,
1267 					       u16 flags);
1268 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1269 					       struct nlattr *tb[],
1270 					       struct net_device *dev,
1271 					       const unsigned char *addr,
1272 					       u16 vid);
1273 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1274 						struct netlink_callback *cb,
1275 						struct net_device *dev,
1276 						struct net_device *filter_dev,
1277 						int *idx);
1278 
1279 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1280 						      struct nlmsghdr *nlh,
1281 						      u16 flags);
1282 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1283 						      u32 pid, u32 seq,
1284 						      struct net_device *dev,
1285 						      u32 filter_mask,
1286 						      int nlflags);
1287 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1288 						      struct nlmsghdr *nlh,
1289 						      u16 flags);
1290 	int			(*ndo_change_carrier)(struct net_device *dev,
1291 						      bool new_carrier);
1292 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1293 							struct netdev_phys_item_id *ppid);
1294 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1295 							  char *name, size_t len);
1296 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1297 						      struct udp_tunnel_info *ti);
1298 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1299 						      struct udp_tunnel_info *ti);
1300 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1301 							struct net_device *dev);
1302 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1303 							void *priv);
1304 
1305 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1306 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1307 						      int queue_index,
1308 						      u32 maxrate);
1309 	int			(*ndo_get_iflink)(const struct net_device *dev);
1310 	int			(*ndo_change_proto_down)(struct net_device *dev,
1311 							 bool proto_down);
1312 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1313 						       struct sk_buff *skb);
1314 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1315 						       int needed_headroom);
1316 	int			(*ndo_xdp)(struct net_device *dev,
1317 					   struct netdev_xdp *xdp);
1318 	int			(*ndo_xdp_xmit)(struct net_device *dev,
1319 						struct xdp_buff *xdp);
1320 	void			(*ndo_xdp_flush)(struct net_device *dev);
1321 };
1322 
1323 /**
1324  * enum net_device_priv_flags - &struct net_device priv_flags
1325  *
1326  * These are the &struct net_device, they are only set internally
1327  * by drivers and used in the kernel. These flags are invisible to
1328  * userspace; this means that the order of these flags can change
1329  * during any kernel release.
1330  *
1331  * You should have a pretty good reason to be extending these flags.
1332  *
1333  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1334  * @IFF_EBRIDGE: Ethernet bridging device
1335  * @IFF_BONDING: bonding master or slave
1336  * @IFF_ISATAP: ISATAP interface (RFC4214)
1337  * @IFF_WAN_HDLC: WAN HDLC device
1338  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1339  *	release skb->dst
1340  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1341  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1342  * @IFF_MACVLAN_PORT: device used as macvlan port
1343  * @IFF_BRIDGE_PORT: device used as bridge port
1344  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1345  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1346  * @IFF_UNICAST_FLT: Supports unicast filtering
1347  * @IFF_TEAM_PORT: device used as team port
1348  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1349  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1350  *	change when it's running
1351  * @IFF_MACVLAN: Macvlan device
1352  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1353  *	underlying stacked devices
1354  * @IFF_IPVLAN_MASTER: IPvlan master device
1355  * @IFF_IPVLAN_SLAVE: IPvlan slave device
1356  * @IFF_L3MDEV_MASTER: device is an L3 master device
1357  * @IFF_NO_QUEUE: device can run without qdisc attached
1358  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1359  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1360  * @IFF_TEAM: device is a team device
1361  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1362  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1363  *	entity (i.e. the master device for bridged veth)
1364  * @IFF_MACSEC: device is a MACsec device
1365  */
1366 enum netdev_priv_flags {
1367 	IFF_802_1Q_VLAN			= 1<<0,
1368 	IFF_EBRIDGE			= 1<<1,
1369 	IFF_BONDING			= 1<<2,
1370 	IFF_ISATAP			= 1<<3,
1371 	IFF_WAN_HDLC			= 1<<4,
1372 	IFF_XMIT_DST_RELEASE		= 1<<5,
1373 	IFF_DONT_BRIDGE			= 1<<6,
1374 	IFF_DISABLE_NETPOLL		= 1<<7,
1375 	IFF_MACVLAN_PORT		= 1<<8,
1376 	IFF_BRIDGE_PORT			= 1<<9,
1377 	IFF_OVS_DATAPATH		= 1<<10,
1378 	IFF_TX_SKB_SHARING		= 1<<11,
1379 	IFF_UNICAST_FLT			= 1<<12,
1380 	IFF_TEAM_PORT			= 1<<13,
1381 	IFF_SUPP_NOFCS			= 1<<14,
1382 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1383 	IFF_MACVLAN			= 1<<16,
1384 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1385 	IFF_IPVLAN_MASTER		= 1<<18,
1386 	IFF_IPVLAN_SLAVE		= 1<<19,
1387 	IFF_L3MDEV_MASTER		= 1<<20,
1388 	IFF_NO_QUEUE			= 1<<21,
1389 	IFF_OPENVSWITCH			= 1<<22,
1390 	IFF_L3MDEV_SLAVE		= 1<<23,
1391 	IFF_TEAM			= 1<<24,
1392 	IFF_RXFH_CONFIGURED		= 1<<25,
1393 	IFF_PHONY_HEADROOM		= 1<<26,
1394 	IFF_MACSEC			= 1<<27,
1395 };
1396 
1397 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1398 #define IFF_EBRIDGE			IFF_EBRIDGE
1399 #define IFF_BONDING			IFF_BONDING
1400 #define IFF_ISATAP			IFF_ISATAP
1401 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1402 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1403 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1404 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1405 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1406 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1407 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1408 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1409 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1410 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1411 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1412 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1413 #define IFF_MACVLAN			IFF_MACVLAN
1414 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1415 #define IFF_IPVLAN_MASTER		IFF_IPVLAN_MASTER
1416 #define IFF_IPVLAN_SLAVE		IFF_IPVLAN_SLAVE
1417 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1418 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1419 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1420 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1421 #define IFF_TEAM			IFF_TEAM
1422 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1423 #define IFF_MACSEC			IFF_MACSEC
1424 
1425 /**
1426  *	struct net_device - The DEVICE structure.
1427  *
1428  *	Actually, this whole structure is a big mistake.  It mixes I/O
1429  *	data with strictly "high-level" data, and it has to know about
1430  *	almost every data structure used in the INET module.
1431  *
1432  *	@name:	This is the first field of the "visible" part of this structure
1433  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1434  *		of the interface.
1435  *
1436  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1437  *	@ifalias:	SNMP alias
1438  *	@mem_end:	Shared memory end
1439  *	@mem_start:	Shared memory start
1440  *	@base_addr:	Device I/O address
1441  *	@irq:		Device IRQ number
1442  *
1443  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1444  *
1445  *	@state:		Generic network queuing layer state, see netdev_state_t
1446  *	@dev_list:	The global list of network devices
1447  *	@napi_list:	List entry used for polling NAPI devices
1448  *	@unreg_list:	List entry  when we are unregistering the
1449  *			device; see the function unregister_netdev
1450  *	@close_list:	List entry used when we are closing the device
1451  *	@ptype_all:     Device-specific packet handlers for all protocols
1452  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1453  *
1454  *	@adj_list:	Directly linked devices, like slaves for bonding
1455  *	@features:	Currently active device features
1456  *	@hw_features:	User-changeable features
1457  *
1458  *	@wanted_features:	User-requested features
1459  *	@vlan_features:		Mask of features inheritable by VLAN devices
1460  *
1461  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1462  *				This field indicates what encapsulation
1463  *				offloads the hardware is capable of doing,
1464  *				and drivers will need to set them appropriately.
1465  *
1466  *	@mpls_features:	Mask of features inheritable by MPLS
1467  *
1468  *	@ifindex:	interface index
1469  *	@group:		The group the device belongs to
1470  *
1471  *	@stats:		Statistics struct, which was left as a legacy, use
1472  *			rtnl_link_stats64 instead
1473  *
1474  *	@rx_dropped:	Dropped packets by core network,
1475  *			do not use this in drivers
1476  *	@tx_dropped:	Dropped packets by core network,
1477  *			do not use this in drivers
1478  *	@rx_nohandler:	nohandler dropped packets by core network on
1479  *			inactive devices, do not use this in drivers
1480  *
1481  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1482  *				instead of ioctl,
1483  *				see <net/iw_handler.h> for details.
1484  *	@wireless_data:	Instance data managed by the core of wireless extensions
1485  *
1486  *	@netdev_ops:	Includes several pointers to callbacks,
1487  *			if one wants to override the ndo_*() functions
1488  *	@ethtool_ops:	Management operations
1489  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1490  *			discovery handling. Necessary for e.g. 6LoWPAN.
1491  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1492  *			of Layer 2 headers.
1493  *
1494  *	@flags:		Interface flags (a la BSD)
1495  *	@priv_flags:	Like 'flags' but invisible to userspace,
1496  *			see if.h for the definitions
1497  *	@gflags:	Global flags ( kept as legacy )
1498  *	@padded:	How much padding added by alloc_netdev()
1499  *	@operstate:	RFC2863 operstate
1500  *	@link_mode:	Mapping policy to operstate
1501  *	@if_port:	Selectable AUI, TP, ...
1502  *	@dma:		DMA channel
1503  *	@mtu:		Interface MTU value
1504  *	@min_mtu:	Interface Minimum MTU value
1505  *	@max_mtu:	Interface Maximum MTU value
1506  *	@type:		Interface hardware type
1507  *	@hard_header_len: Maximum hardware header length.
1508  *	@min_header_len:  Minimum hardware header length
1509  *
1510  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1511  *			  cases can this be guaranteed
1512  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1513  *			  cases can this be guaranteed. Some cases also use
1514  *			  LL_MAX_HEADER instead to allocate the skb
1515  *
1516  *	interface address info:
1517  *
1518  * 	@perm_addr:		Permanent hw address
1519  * 	@addr_assign_type:	Hw address assignment type
1520  * 	@addr_len:		Hardware address length
1521  *	@neigh_priv_len:	Used in neigh_alloc()
1522  * 	@dev_id:		Used to differentiate devices that share
1523  * 				the same link layer address
1524  * 	@dev_port:		Used to differentiate devices that share
1525  * 				the same function
1526  *	@addr_list_lock:	XXX: need comments on this one
1527  *	@uc_promisc:		Counter that indicates promiscuous mode
1528  *				has been enabled due to the need to listen to
1529  *				additional unicast addresses in a device that
1530  *				does not implement ndo_set_rx_mode()
1531  *	@uc:			unicast mac addresses
1532  *	@mc:			multicast mac addresses
1533  *	@dev_addrs:		list of device hw addresses
1534  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1535  *	@promiscuity:		Number of times the NIC is told to work in
1536  *				promiscuous mode; if it becomes 0 the NIC will
1537  *				exit promiscuous mode
1538  *	@allmulti:		Counter, enables or disables allmulticast mode
1539  *
1540  *	@vlan_info:	VLAN info
1541  *	@dsa_ptr:	dsa specific data
1542  *	@tipc_ptr:	TIPC specific data
1543  *	@atalk_ptr:	AppleTalk link
1544  *	@ip_ptr:	IPv4 specific data
1545  *	@dn_ptr:	DECnet specific data
1546  *	@ip6_ptr:	IPv6 specific data
1547  *	@ax25_ptr:	AX.25 specific data
1548  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1549  *
1550  *	@dev_addr:	Hw address (before bcast,
1551  *			because most packets are unicast)
1552  *
1553  *	@_rx:			Array of RX queues
1554  *	@num_rx_queues:		Number of RX queues
1555  *				allocated at register_netdev() time
1556  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1557  *
1558  *	@rx_handler:		handler for received packets
1559  *	@rx_handler_data: 	XXX: need comments on this one
1560  *	@ingress_queue:		XXX: need comments on this one
1561  *	@broadcast:		hw bcast address
1562  *
1563  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1564  *			indexed by RX queue number. Assigned by driver.
1565  *			This must only be set if the ndo_rx_flow_steer
1566  *			operation is defined
1567  *	@index_hlist:		Device index hash chain
1568  *
1569  *	@_tx:			Array of TX queues
1570  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1571  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1572  *	@qdisc:			Root qdisc from userspace point of view
1573  *	@tx_queue_len:		Max frames per queue allowed
1574  *	@tx_global_lock: 	XXX: need comments on this one
1575  *
1576  *	@xps_maps:	XXX: need comments on this one
1577  *
1578  *	@watchdog_timeo:	Represents the timeout that is used by
1579  *				the watchdog (see dev_watchdog())
1580  *	@watchdog_timer:	List of timers
1581  *
1582  *	@pcpu_refcnt:		Number of references to this device
1583  *	@todo_list:		Delayed register/unregister
1584  *	@link_watch_list:	XXX: need comments on this one
1585  *
1586  *	@reg_state:		Register/unregister state machine
1587  *	@dismantle:		Device is going to be freed
1588  *	@rtnl_link_state:	This enum represents the phases of creating
1589  *				a new link
1590  *
1591  *	@needs_free_netdev:	Should unregister perform free_netdev?
1592  *	@priv_destructor:	Called from unregister
1593  *	@npinfo:		XXX: need comments on this one
1594  * 	@nd_net:		Network namespace this network device is inside
1595  *
1596  * 	@ml_priv:	Mid-layer private
1597  * 	@lstats:	Loopback statistics
1598  * 	@tstats:	Tunnel statistics
1599  * 	@dstats:	Dummy statistics
1600  * 	@vstats:	Virtual ethernet statistics
1601  *
1602  *	@garp_port:	GARP
1603  *	@mrp_port:	MRP
1604  *
1605  *	@dev:		Class/net/name entry
1606  *	@sysfs_groups:	Space for optional device, statistics and wireless
1607  *			sysfs groups
1608  *
1609  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1610  *	@rtnl_link_ops:	Rtnl_link_ops
1611  *
1612  *	@gso_max_size:	Maximum size of generic segmentation offload
1613  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1614  *			NIC for GSO
1615  *
1616  *	@dcbnl_ops:	Data Center Bridging netlink ops
1617  *	@num_tc:	Number of traffic classes in the net device
1618  *	@tc_to_txq:	XXX: need comments on this one
1619  *	@prio_tc_map:	XXX: need comments on this one
1620  *
1621  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1622  *
1623  *	@priomap:	XXX: need comments on this one
1624  *	@phydev:	Physical device may attach itself
1625  *			for hardware timestamping
1626  *
1627  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1628  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1629  *
1630  *	@proto_down:	protocol port state information can be sent to the
1631  *			switch driver and used to set the phys state of the
1632  *			switch port.
1633  *
1634  *	FIXME: cleanup struct net_device such that network protocol info
1635  *	moves out.
1636  */
1637 
1638 struct net_device {
1639 	char			name[IFNAMSIZ];
1640 	struct hlist_node	name_hlist;
1641 	struct dev_ifalias	__rcu *ifalias;
1642 	/*
1643 	 *	I/O specific fields
1644 	 *	FIXME: Merge these and struct ifmap into one
1645 	 */
1646 	unsigned long		mem_end;
1647 	unsigned long		mem_start;
1648 	unsigned long		base_addr;
1649 	int			irq;
1650 
1651 	atomic_t		carrier_changes;
1652 
1653 	/*
1654 	 *	Some hardware also needs these fields (state,dev_list,
1655 	 *	napi_list,unreg_list,close_list) but they are not
1656 	 *	part of the usual set specified in Space.c.
1657 	 */
1658 
1659 	unsigned long		state;
1660 
1661 	struct list_head	dev_list;
1662 	struct list_head	napi_list;
1663 	struct list_head	unreg_list;
1664 	struct list_head	close_list;
1665 	struct list_head	ptype_all;
1666 	struct list_head	ptype_specific;
1667 
1668 	struct {
1669 		struct list_head upper;
1670 		struct list_head lower;
1671 	} adj_list;
1672 
1673 	netdev_features_t	features;
1674 	netdev_features_t	hw_features;
1675 	netdev_features_t	wanted_features;
1676 	netdev_features_t	vlan_features;
1677 	netdev_features_t	hw_enc_features;
1678 	netdev_features_t	mpls_features;
1679 	netdev_features_t	gso_partial_features;
1680 
1681 	int			ifindex;
1682 	int			group;
1683 
1684 	struct net_device_stats	stats;
1685 
1686 	atomic_long_t		rx_dropped;
1687 	atomic_long_t		tx_dropped;
1688 	atomic_long_t		rx_nohandler;
1689 
1690 #ifdef CONFIG_WIRELESS_EXT
1691 	const struct iw_handler_def *wireless_handlers;
1692 	struct iw_public_data	*wireless_data;
1693 #endif
1694 	const struct net_device_ops *netdev_ops;
1695 	const struct ethtool_ops *ethtool_ops;
1696 #ifdef CONFIG_NET_SWITCHDEV
1697 	const struct switchdev_ops *switchdev_ops;
1698 #endif
1699 #ifdef CONFIG_NET_L3_MASTER_DEV
1700 	const struct l3mdev_ops	*l3mdev_ops;
1701 #endif
1702 #if IS_ENABLED(CONFIG_IPV6)
1703 	const struct ndisc_ops *ndisc_ops;
1704 #endif
1705 
1706 #ifdef CONFIG_XFRM
1707 	const struct xfrmdev_ops *xfrmdev_ops;
1708 #endif
1709 
1710 	const struct header_ops *header_ops;
1711 
1712 	unsigned int		flags;
1713 	unsigned int		priv_flags;
1714 
1715 	unsigned short		gflags;
1716 	unsigned short		padded;
1717 
1718 	unsigned char		operstate;
1719 	unsigned char		link_mode;
1720 
1721 	unsigned char		if_port;
1722 	unsigned char		dma;
1723 
1724 	unsigned int		mtu;
1725 	unsigned int		min_mtu;
1726 	unsigned int		max_mtu;
1727 	unsigned short		type;
1728 	unsigned short		hard_header_len;
1729 	unsigned char		min_header_len;
1730 
1731 	unsigned short		needed_headroom;
1732 	unsigned short		needed_tailroom;
1733 
1734 	/* Interface address info. */
1735 	unsigned char		perm_addr[MAX_ADDR_LEN];
1736 	unsigned char		addr_assign_type;
1737 	unsigned char		addr_len;
1738 	unsigned short		neigh_priv_len;
1739 	unsigned short          dev_id;
1740 	unsigned short          dev_port;
1741 	spinlock_t		addr_list_lock;
1742 	unsigned char		name_assign_type;
1743 	bool			uc_promisc;
1744 	struct netdev_hw_addr_list	uc;
1745 	struct netdev_hw_addr_list	mc;
1746 	struct netdev_hw_addr_list	dev_addrs;
1747 
1748 #ifdef CONFIG_SYSFS
1749 	struct kset		*queues_kset;
1750 #endif
1751 	unsigned int		promiscuity;
1752 	unsigned int		allmulti;
1753 
1754 
1755 	/* Protocol-specific pointers */
1756 
1757 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1758 	struct vlan_info __rcu	*vlan_info;
1759 #endif
1760 #if IS_ENABLED(CONFIG_NET_DSA)
1761 	struct dsa_port		*dsa_ptr;
1762 #endif
1763 #if IS_ENABLED(CONFIG_TIPC)
1764 	struct tipc_bearer __rcu *tipc_ptr;
1765 #endif
1766 	void 			*atalk_ptr;
1767 	struct in_device __rcu	*ip_ptr;
1768 	struct dn_dev __rcu     *dn_ptr;
1769 	struct inet6_dev __rcu	*ip6_ptr;
1770 	void			*ax25_ptr;
1771 	struct wireless_dev	*ieee80211_ptr;
1772 	struct wpan_dev		*ieee802154_ptr;
1773 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1774 	struct mpls_dev __rcu	*mpls_ptr;
1775 #endif
1776 
1777 /*
1778  * Cache lines mostly used on receive path (including eth_type_trans())
1779  */
1780 	/* Interface address info used in eth_type_trans() */
1781 	unsigned char		*dev_addr;
1782 
1783 #ifdef CONFIG_SYSFS
1784 	struct netdev_rx_queue	*_rx;
1785 
1786 	unsigned int		num_rx_queues;
1787 	unsigned int		real_num_rx_queues;
1788 #endif
1789 
1790 	struct bpf_prog __rcu	*xdp_prog;
1791 	unsigned long		gro_flush_timeout;
1792 	rx_handler_func_t __rcu	*rx_handler;
1793 	void __rcu		*rx_handler_data;
1794 
1795 #ifdef CONFIG_NET_CLS_ACT
1796 	struct tcf_proto __rcu  *ingress_cl_list;
1797 #endif
1798 	struct netdev_queue __rcu *ingress_queue;
1799 #ifdef CONFIG_NETFILTER_INGRESS
1800 	struct nf_hook_entries __rcu *nf_hooks_ingress;
1801 #endif
1802 
1803 	unsigned char		broadcast[MAX_ADDR_LEN];
1804 #ifdef CONFIG_RFS_ACCEL
1805 	struct cpu_rmap		*rx_cpu_rmap;
1806 #endif
1807 	struct hlist_node	index_hlist;
1808 
1809 /*
1810  * Cache lines mostly used on transmit path
1811  */
1812 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1813 	unsigned int		num_tx_queues;
1814 	unsigned int		real_num_tx_queues;
1815 	struct Qdisc		*qdisc;
1816 #ifdef CONFIG_NET_SCHED
1817 	DECLARE_HASHTABLE	(qdisc_hash, 4);
1818 #endif
1819 	unsigned int		tx_queue_len;
1820 	spinlock_t		tx_global_lock;
1821 	int			watchdog_timeo;
1822 
1823 #ifdef CONFIG_XPS
1824 	struct xps_dev_maps __rcu *xps_maps;
1825 #endif
1826 #ifdef CONFIG_NET_CLS_ACT
1827 	struct tcf_proto __rcu  *egress_cl_list;
1828 #endif
1829 
1830 	/* These may be needed for future network-power-down code. */
1831 	struct timer_list	watchdog_timer;
1832 
1833 	int __percpu		*pcpu_refcnt;
1834 	struct list_head	todo_list;
1835 
1836 	struct list_head	link_watch_list;
1837 
1838 	enum { NETREG_UNINITIALIZED=0,
1839 	       NETREG_REGISTERED,	/* completed register_netdevice */
1840 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1841 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1842 	       NETREG_RELEASED,		/* called free_netdev */
1843 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1844 	} reg_state:8;
1845 
1846 	bool dismantle;
1847 
1848 	enum {
1849 		RTNL_LINK_INITIALIZED,
1850 		RTNL_LINK_INITIALIZING,
1851 	} rtnl_link_state:16;
1852 
1853 	bool needs_free_netdev;
1854 	void (*priv_destructor)(struct net_device *dev);
1855 
1856 #ifdef CONFIG_NETPOLL
1857 	struct netpoll_info __rcu	*npinfo;
1858 #endif
1859 
1860 	possible_net_t			nd_net;
1861 
1862 	/* mid-layer private */
1863 	union {
1864 		void					*ml_priv;
1865 		struct pcpu_lstats __percpu		*lstats;
1866 		struct pcpu_sw_netstats __percpu	*tstats;
1867 		struct pcpu_dstats __percpu		*dstats;
1868 		struct pcpu_vstats __percpu		*vstats;
1869 	};
1870 
1871 #if IS_ENABLED(CONFIG_GARP)
1872 	struct garp_port __rcu	*garp_port;
1873 #endif
1874 #if IS_ENABLED(CONFIG_MRP)
1875 	struct mrp_port __rcu	*mrp_port;
1876 #endif
1877 
1878 	struct device		dev;
1879 	const struct attribute_group *sysfs_groups[4];
1880 	const struct attribute_group *sysfs_rx_queue_group;
1881 
1882 	const struct rtnl_link_ops *rtnl_link_ops;
1883 
1884 	/* for setting kernel sock attribute on TCP connection setup */
1885 #define GSO_MAX_SIZE		65536
1886 	unsigned int		gso_max_size;
1887 #define GSO_MAX_SEGS		65535
1888 	u16			gso_max_segs;
1889 
1890 #ifdef CONFIG_DCB
1891 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1892 #endif
1893 	u8			num_tc;
1894 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
1895 	u8			prio_tc_map[TC_BITMASK + 1];
1896 
1897 #if IS_ENABLED(CONFIG_FCOE)
1898 	unsigned int		fcoe_ddp_xid;
1899 #endif
1900 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1901 	struct netprio_map __rcu *priomap;
1902 #endif
1903 	struct phy_device	*phydev;
1904 	struct lock_class_key	*qdisc_tx_busylock;
1905 	struct lock_class_key	*qdisc_running_key;
1906 	bool			proto_down;
1907 };
1908 #define to_net_dev(d) container_of(d, struct net_device, dev)
1909 
1910 static inline bool netif_elide_gro(const struct net_device *dev)
1911 {
1912 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
1913 		return true;
1914 	return false;
1915 }
1916 
1917 #define	NETDEV_ALIGN		32
1918 
1919 static inline
1920 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1921 {
1922 	return dev->prio_tc_map[prio & TC_BITMASK];
1923 }
1924 
1925 static inline
1926 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1927 {
1928 	if (tc >= dev->num_tc)
1929 		return -EINVAL;
1930 
1931 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1932 	return 0;
1933 }
1934 
1935 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
1936 void netdev_reset_tc(struct net_device *dev);
1937 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
1938 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
1939 
1940 static inline
1941 int netdev_get_num_tc(struct net_device *dev)
1942 {
1943 	return dev->num_tc;
1944 }
1945 
1946 static inline
1947 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1948 					 unsigned int index)
1949 {
1950 	return &dev->_tx[index];
1951 }
1952 
1953 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1954 						    const struct sk_buff *skb)
1955 {
1956 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1957 }
1958 
1959 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1960 					    void (*f)(struct net_device *,
1961 						      struct netdev_queue *,
1962 						      void *),
1963 					    void *arg)
1964 {
1965 	unsigned int i;
1966 
1967 	for (i = 0; i < dev->num_tx_queues; i++)
1968 		f(dev, &dev->_tx[i], arg);
1969 }
1970 
1971 #define netdev_lockdep_set_classes(dev)				\
1972 {								\
1973 	static struct lock_class_key qdisc_tx_busylock_key;	\
1974 	static struct lock_class_key qdisc_running_key;		\
1975 	static struct lock_class_key qdisc_xmit_lock_key;	\
1976 	static struct lock_class_key dev_addr_list_lock_key;	\
1977 	unsigned int i;						\
1978 								\
1979 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
1980 	(dev)->qdisc_running_key = &qdisc_running_key;		\
1981 	lockdep_set_class(&(dev)->addr_list_lock,		\
1982 			  &dev_addr_list_lock_key); 		\
1983 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
1984 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
1985 				  &qdisc_xmit_lock_key);	\
1986 }
1987 
1988 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1989 				    struct sk_buff *skb,
1990 				    void *accel_priv);
1991 
1992 /* returns the headroom that the master device needs to take in account
1993  * when forwarding to this dev
1994  */
1995 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
1996 {
1997 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
1998 }
1999 
2000 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2001 {
2002 	if (dev->netdev_ops->ndo_set_rx_headroom)
2003 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2004 }
2005 
2006 /* set the device rx headroom to the dev's default */
2007 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2008 {
2009 	netdev_set_rx_headroom(dev, -1);
2010 }
2011 
2012 /*
2013  * Net namespace inlines
2014  */
2015 static inline
2016 struct net *dev_net(const struct net_device *dev)
2017 {
2018 	return read_pnet(&dev->nd_net);
2019 }
2020 
2021 static inline
2022 void dev_net_set(struct net_device *dev, struct net *net)
2023 {
2024 	write_pnet(&dev->nd_net, net);
2025 }
2026 
2027 /**
2028  *	netdev_priv - access network device private data
2029  *	@dev: network device
2030  *
2031  * Get network device private data
2032  */
2033 static inline void *netdev_priv(const struct net_device *dev)
2034 {
2035 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2036 }
2037 
2038 /* Set the sysfs physical device reference for the network logical device
2039  * if set prior to registration will cause a symlink during initialization.
2040  */
2041 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2042 
2043 /* Set the sysfs device type for the network logical device to allow
2044  * fine-grained identification of different network device types. For
2045  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2046  */
2047 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2048 
2049 /* Default NAPI poll() weight
2050  * Device drivers are strongly advised to not use bigger value
2051  */
2052 #define NAPI_POLL_WEIGHT 64
2053 
2054 /**
2055  *	netif_napi_add - initialize a NAPI context
2056  *	@dev:  network device
2057  *	@napi: NAPI context
2058  *	@poll: polling function
2059  *	@weight: default weight
2060  *
2061  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2062  * *any* of the other NAPI-related functions.
2063  */
2064 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2065 		    int (*poll)(struct napi_struct *, int), int weight);
2066 
2067 /**
2068  *	netif_tx_napi_add - initialize a NAPI context
2069  *	@dev:  network device
2070  *	@napi: NAPI context
2071  *	@poll: polling function
2072  *	@weight: default weight
2073  *
2074  * This variant of netif_napi_add() should be used from drivers using NAPI
2075  * to exclusively poll a TX queue.
2076  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2077  */
2078 static inline void netif_tx_napi_add(struct net_device *dev,
2079 				     struct napi_struct *napi,
2080 				     int (*poll)(struct napi_struct *, int),
2081 				     int weight)
2082 {
2083 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2084 	netif_napi_add(dev, napi, poll, weight);
2085 }
2086 
2087 /**
2088  *  netif_napi_del - remove a NAPI context
2089  *  @napi: NAPI context
2090  *
2091  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2092  */
2093 void netif_napi_del(struct napi_struct *napi);
2094 
2095 struct napi_gro_cb {
2096 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2097 	void	*frag0;
2098 
2099 	/* Length of frag0. */
2100 	unsigned int frag0_len;
2101 
2102 	/* This indicates where we are processing relative to skb->data. */
2103 	int	data_offset;
2104 
2105 	/* This is non-zero if the packet cannot be merged with the new skb. */
2106 	u16	flush;
2107 
2108 	/* Save the IP ID here and check when we get to the transport layer */
2109 	u16	flush_id;
2110 
2111 	/* Number of segments aggregated. */
2112 	u16	count;
2113 
2114 	/* Start offset for remote checksum offload */
2115 	u16	gro_remcsum_start;
2116 
2117 	/* jiffies when first packet was created/queued */
2118 	unsigned long age;
2119 
2120 	/* Used in ipv6_gro_receive() and foo-over-udp */
2121 	u16	proto;
2122 
2123 	/* This is non-zero if the packet may be of the same flow. */
2124 	u8	same_flow:1;
2125 
2126 	/* Used in tunnel GRO receive */
2127 	u8	encap_mark:1;
2128 
2129 	/* GRO checksum is valid */
2130 	u8	csum_valid:1;
2131 
2132 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2133 	u8	csum_cnt:3;
2134 
2135 	/* Free the skb? */
2136 	u8	free:2;
2137 #define NAPI_GRO_FREE		  1
2138 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2139 
2140 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2141 	u8	is_ipv6:1;
2142 
2143 	/* Used in GRE, set in fou/gue_gro_receive */
2144 	u8	is_fou:1;
2145 
2146 	/* Used to determine if flush_id can be ignored */
2147 	u8	is_atomic:1;
2148 
2149 	/* Number of gro_receive callbacks this packet already went through */
2150 	u8 recursion_counter:4;
2151 
2152 	/* 1 bit hole */
2153 
2154 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2155 	__wsum	csum;
2156 
2157 	/* used in skb_gro_receive() slow path */
2158 	struct sk_buff *last;
2159 };
2160 
2161 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2162 
2163 #define GRO_RECURSION_LIMIT 15
2164 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2165 {
2166 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2167 }
2168 
2169 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *);
2170 static inline struct sk_buff **call_gro_receive(gro_receive_t cb,
2171 						struct sk_buff **head,
2172 						struct sk_buff *skb)
2173 {
2174 	if (unlikely(gro_recursion_inc_test(skb))) {
2175 		NAPI_GRO_CB(skb)->flush |= 1;
2176 		return NULL;
2177 	}
2178 
2179 	return cb(head, skb);
2180 }
2181 
2182 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **,
2183 					     struct sk_buff *);
2184 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb,
2185 						   struct sock *sk,
2186 						   struct sk_buff **head,
2187 						   struct sk_buff *skb)
2188 {
2189 	if (unlikely(gro_recursion_inc_test(skb))) {
2190 		NAPI_GRO_CB(skb)->flush |= 1;
2191 		return NULL;
2192 	}
2193 
2194 	return cb(sk, head, skb);
2195 }
2196 
2197 struct packet_type {
2198 	__be16			type;	/* This is really htons(ether_type). */
2199 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2200 	int			(*func) (struct sk_buff *,
2201 					 struct net_device *,
2202 					 struct packet_type *,
2203 					 struct net_device *);
2204 	bool			(*id_match)(struct packet_type *ptype,
2205 					    struct sock *sk);
2206 	void			*af_packet_priv;
2207 	struct list_head	list;
2208 };
2209 
2210 struct offload_callbacks {
2211 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2212 						netdev_features_t features);
2213 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2214 						 struct sk_buff *skb);
2215 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2216 };
2217 
2218 struct packet_offload {
2219 	__be16			 type;	/* This is really htons(ether_type). */
2220 	u16			 priority;
2221 	struct offload_callbacks callbacks;
2222 	struct list_head	 list;
2223 };
2224 
2225 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2226 struct pcpu_sw_netstats {
2227 	u64     rx_packets;
2228 	u64     rx_bytes;
2229 	u64     tx_packets;
2230 	u64     tx_bytes;
2231 	struct u64_stats_sync   syncp;
2232 };
2233 
2234 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2235 ({									\
2236 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2237 	if (pcpu_stats)	{						\
2238 		int __cpu;						\
2239 		for_each_possible_cpu(__cpu) {				\
2240 			typeof(type) *stat;				\
2241 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2242 			u64_stats_init(&stat->syncp);			\
2243 		}							\
2244 	}								\
2245 	pcpu_stats;							\
2246 })
2247 
2248 #define netdev_alloc_pcpu_stats(type)					\
2249 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2250 
2251 enum netdev_lag_tx_type {
2252 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2253 	NETDEV_LAG_TX_TYPE_RANDOM,
2254 	NETDEV_LAG_TX_TYPE_BROADCAST,
2255 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2256 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2257 	NETDEV_LAG_TX_TYPE_HASH,
2258 };
2259 
2260 struct netdev_lag_upper_info {
2261 	enum netdev_lag_tx_type tx_type;
2262 };
2263 
2264 struct netdev_lag_lower_state_info {
2265 	u8 link_up : 1,
2266 	   tx_enabled : 1;
2267 };
2268 
2269 #include <linux/notifier.h>
2270 
2271 /* netdevice notifier chain. Please remember to update the rtnetlink
2272  * notification exclusion list in rtnetlink_event() when adding new
2273  * types.
2274  */
2275 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
2276 #define NETDEV_DOWN	0x0002
2277 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
2278 				   detected a hardware crash and restarted
2279 				   - we can use this eg to kick tcp sessions
2280 				   once done */
2281 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
2282 #define NETDEV_REGISTER 0x0005
2283 #define NETDEV_UNREGISTER	0x0006
2284 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2285 #define NETDEV_CHANGEADDR	0x0008
2286 #define NETDEV_GOING_DOWN	0x0009
2287 #define NETDEV_CHANGENAME	0x000A
2288 #define NETDEV_FEAT_CHANGE	0x000B
2289 #define NETDEV_BONDING_FAILOVER 0x000C
2290 #define NETDEV_PRE_UP		0x000D
2291 #define NETDEV_PRE_TYPE_CHANGE	0x000E
2292 #define NETDEV_POST_TYPE_CHANGE	0x000F
2293 #define NETDEV_POST_INIT	0x0010
2294 #define NETDEV_UNREGISTER_FINAL 0x0011
2295 #define NETDEV_RELEASE		0x0012
2296 #define NETDEV_NOTIFY_PEERS	0x0013
2297 #define NETDEV_JOIN		0x0014
2298 #define NETDEV_CHANGEUPPER	0x0015
2299 #define NETDEV_RESEND_IGMP	0x0016
2300 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2301 #define NETDEV_CHANGEINFODATA	0x0018
2302 #define NETDEV_BONDING_INFO	0x0019
2303 #define NETDEV_PRECHANGEUPPER	0x001A
2304 #define NETDEV_CHANGELOWERSTATE	0x001B
2305 #define NETDEV_UDP_TUNNEL_PUSH_INFO	0x001C
2306 #define NETDEV_UDP_TUNNEL_DROP_INFO	0x001D
2307 #define NETDEV_CHANGE_TX_QUEUE_LEN	0x001E
2308 
2309 int register_netdevice_notifier(struct notifier_block *nb);
2310 int unregister_netdevice_notifier(struct notifier_block *nb);
2311 
2312 struct netdev_notifier_info {
2313 	struct net_device	*dev;
2314 	struct netlink_ext_ack	*extack;
2315 };
2316 
2317 struct netdev_notifier_change_info {
2318 	struct netdev_notifier_info info; /* must be first */
2319 	unsigned int flags_changed;
2320 };
2321 
2322 struct netdev_notifier_changeupper_info {
2323 	struct netdev_notifier_info info; /* must be first */
2324 	struct net_device *upper_dev; /* new upper dev */
2325 	bool master; /* is upper dev master */
2326 	bool linking; /* is the notification for link or unlink */
2327 	void *upper_info; /* upper dev info */
2328 };
2329 
2330 struct netdev_notifier_changelowerstate_info {
2331 	struct netdev_notifier_info info; /* must be first */
2332 	void *lower_state_info; /* is lower dev state */
2333 };
2334 
2335 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2336 					     struct net_device *dev)
2337 {
2338 	info->dev = dev;
2339 	info->extack = NULL;
2340 }
2341 
2342 static inline struct net_device *
2343 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2344 {
2345 	return info->dev;
2346 }
2347 
2348 static inline struct netlink_ext_ack *
2349 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2350 {
2351 	return info->extack;
2352 }
2353 
2354 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2355 
2356 
2357 extern rwlock_t				dev_base_lock;		/* Device list lock */
2358 
2359 #define for_each_netdev(net, d)		\
2360 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2361 #define for_each_netdev_reverse(net, d)	\
2362 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2363 #define for_each_netdev_rcu(net, d)		\
2364 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2365 #define for_each_netdev_safe(net, d, n)	\
2366 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2367 #define for_each_netdev_continue(net, d)		\
2368 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2369 #define for_each_netdev_continue_rcu(net, d)		\
2370 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2371 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2372 		for_each_netdev_rcu(&init_net, slave)	\
2373 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2374 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2375 
2376 static inline struct net_device *next_net_device(struct net_device *dev)
2377 {
2378 	struct list_head *lh;
2379 	struct net *net;
2380 
2381 	net = dev_net(dev);
2382 	lh = dev->dev_list.next;
2383 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2384 }
2385 
2386 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2387 {
2388 	struct list_head *lh;
2389 	struct net *net;
2390 
2391 	net = dev_net(dev);
2392 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2393 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2394 }
2395 
2396 static inline struct net_device *first_net_device(struct net *net)
2397 {
2398 	return list_empty(&net->dev_base_head) ? NULL :
2399 		net_device_entry(net->dev_base_head.next);
2400 }
2401 
2402 static inline struct net_device *first_net_device_rcu(struct net *net)
2403 {
2404 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2405 
2406 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2407 }
2408 
2409 int netdev_boot_setup_check(struct net_device *dev);
2410 unsigned long netdev_boot_base(const char *prefix, int unit);
2411 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2412 				       const char *hwaddr);
2413 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2414 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2415 void dev_add_pack(struct packet_type *pt);
2416 void dev_remove_pack(struct packet_type *pt);
2417 void __dev_remove_pack(struct packet_type *pt);
2418 void dev_add_offload(struct packet_offload *po);
2419 void dev_remove_offload(struct packet_offload *po);
2420 
2421 int dev_get_iflink(const struct net_device *dev);
2422 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2423 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2424 				      unsigned short mask);
2425 struct net_device *dev_get_by_name(struct net *net, const char *name);
2426 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2427 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2428 int dev_alloc_name(struct net_device *dev, const char *name);
2429 int dev_open(struct net_device *dev);
2430 void dev_close(struct net_device *dev);
2431 void dev_close_many(struct list_head *head, bool unlink);
2432 void dev_disable_lro(struct net_device *dev);
2433 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2434 int dev_queue_xmit(struct sk_buff *skb);
2435 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2436 int register_netdevice(struct net_device *dev);
2437 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2438 void unregister_netdevice_many(struct list_head *head);
2439 static inline void unregister_netdevice(struct net_device *dev)
2440 {
2441 	unregister_netdevice_queue(dev, NULL);
2442 }
2443 
2444 int netdev_refcnt_read(const struct net_device *dev);
2445 void free_netdev(struct net_device *dev);
2446 void netdev_freemem(struct net_device *dev);
2447 void synchronize_net(void);
2448 int init_dummy_netdev(struct net_device *dev);
2449 
2450 DECLARE_PER_CPU(int, xmit_recursion);
2451 #define XMIT_RECURSION_LIMIT	10
2452 
2453 static inline int dev_recursion_level(void)
2454 {
2455 	return this_cpu_read(xmit_recursion);
2456 }
2457 
2458 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2459 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2460 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2461 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2462 int netdev_get_name(struct net *net, char *name, int ifindex);
2463 int dev_restart(struct net_device *dev);
2464 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2465 
2466 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2467 {
2468 	return NAPI_GRO_CB(skb)->data_offset;
2469 }
2470 
2471 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2472 {
2473 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2474 }
2475 
2476 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2477 {
2478 	NAPI_GRO_CB(skb)->data_offset += len;
2479 }
2480 
2481 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2482 					unsigned int offset)
2483 {
2484 	return NAPI_GRO_CB(skb)->frag0 + offset;
2485 }
2486 
2487 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2488 {
2489 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2490 }
2491 
2492 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2493 {
2494 	NAPI_GRO_CB(skb)->frag0 = NULL;
2495 	NAPI_GRO_CB(skb)->frag0_len = 0;
2496 }
2497 
2498 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2499 					unsigned int offset)
2500 {
2501 	if (!pskb_may_pull(skb, hlen))
2502 		return NULL;
2503 
2504 	skb_gro_frag0_invalidate(skb);
2505 	return skb->data + offset;
2506 }
2507 
2508 static inline void *skb_gro_network_header(struct sk_buff *skb)
2509 {
2510 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2511 	       skb_network_offset(skb);
2512 }
2513 
2514 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2515 					const void *start, unsigned int len)
2516 {
2517 	if (NAPI_GRO_CB(skb)->csum_valid)
2518 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2519 						  csum_partial(start, len, 0));
2520 }
2521 
2522 /* GRO checksum functions. These are logical equivalents of the normal
2523  * checksum functions (in skbuff.h) except that they operate on the GRO
2524  * offsets and fields in sk_buff.
2525  */
2526 
2527 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2528 
2529 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2530 {
2531 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2532 }
2533 
2534 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2535 						      bool zero_okay,
2536 						      __sum16 check)
2537 {
2538 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2539 		skb_checksum_start_offset(skb) <
2540 		 skb_gro_offset(skb)) &&
2541 		!skb_at_gro_remcsum_start(skb) &&
2542 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2543 		(!zero_okay || check));
2544 }
2545 
2546 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2547 							   __wsum psum)
2548 {
2549 	if (NAPI_GRO_CB(skb)->csum_valid &&
2550 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2551 		return 0;
2552 
2553 	NAPI_GRO_CB(skb)->csum = psum;
2554 
2555 	return __skb_gro_checksum_complete(skb);
2556 }
2557 
2558 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2559 {
2560 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2561 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2562 		NAPI_GRO_CB(skb)->csum_cnt--;
2563 	} else {
2564 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2565 		 * verified a new top level checksum or an encapsulated one
2566 		 * during GRO. This saves work if we fallback to normal path.
2567 		 */
2568 		__skb_incr_checksum_unnecessary(skb);
2569 	}
2570 }
2571 
2572 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2573 				    compute_pseudo)			\
2574 ({									\
2575 	__sum16 __ret = 0;						\
2576 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2577 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2578 				compute_pseudo(skb, proto));		\
2579 	if (!__ret)							\
2580 		skb_gro_incr_csum_unnecessary(skb);			\
2581 	__ret;								\
2582 })
2583 
2584 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2585 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2586 
2587 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2588 					     compute_pseudo)		\
2589 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2590 
2591 #define skb_gro_checksum_simple_validate(skb)				\
2592 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2593 
2594 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2595 {
2596 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2597 		!NAPI_GRO_CB(skb)->csum_valid);
2598 }
2599 
2600 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2601 					      __sum16 check, __wsum pseudo)
2602 {
2603 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2604 	NAPI_GRO_CB(skb)->csum_valid = 1;
2605 }
2606 
2607 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2608 do {									\
2609 	if (__skb_gro_checksum_convert_check(skb))			\
2610 		__skb_gro_checksum_convert(skb, check,			\
2611 					   compute_pseudo(skb, proto));	\
2612 } while (0)
2613 
2614 struct gro_remcsum {
2615 	int offset;
2616 	__wsum delta;
2617 };
2618 
2619 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2620 {
2621 	grc->offset = 0;
2622 	grc->delta = 0;
2623 }
2624 
2625 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2626 					    unsigned int off, size_t hdrlen,
2627 					    int start, int offset,
2628 					    struct gro_remcsum *grc,
2629 					    bool nopartial)
2630 {
2631 	__wsum delta;
2632 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2633 
2634 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2635 
2636 	if (!nopartial) {
2637 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2638 		return ptr;
2639 	}
2640 
2641 	ptr = skb_gro_header_fast(skb, off);
2642 	if (skb_gro_header_hard(skb, off + plen)) {
2643 		ptr = skb_gro_header_slow(skb, off + plen, off);
2644 		if (!ptr)
2645 			return NULL;
2646 	}
2647 
2648 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2649 			       start, offset);
2650 
2651 	/* Adjust skb->csum since we changed the packet */
2652 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2653 
2654 	grc->offset = off + hdrlen + offset;
2655 	grc->delta = delta;
2656 
2657 	return ptr;
2658 }
2659 
2660 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2661 					   struct gro_remcsum *grc)
2662 {
2663 	void *ptr;
2664 	size_t plen = grc->offset + sizeof(u16);
2665 
2666 	if (!grc->delta)
2667 		return;
2668 
2669 	ptr = skb_gro_header_fast(skb, grc->offset);
2670 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2671 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2672 		if (!ptr)
2673 			return;
2674 	}
2675 
2676 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2677 }
2678 
2679 #ifdef CONFIG_XFRM_OFFLOAD
2680 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2681 {
2682 	if (PTR_ERR(pp) != -EINPROGRESS)
2683 		NAPI_GRO_CB(skb)->flush |= flush;
2684 }
2685 #else
2686 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2687 {
2688 	NAPI_GRO_CB(skb)->flush |= flush;
2689 }
2690 #endif
2691 
2692 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2693 				  unsigned short type,
2694 				  const void *daddr, const void *saddr,
2695 				  unsigned int len)
2696 {
2697 	if (!dev->header_ops || !dev->header_ops->create)
2698 		return 0;
2699 
2700 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2701 }
2702 
2703 static inline int dev_parse_header(const struct sk_buff *skb,
2704 				   unsigned char *haddr)
2705 {
2706 	const struct net_device *dev = skb->dev;
2707 
2708 	if (!dev->header_ops || !dev->header_ops->parse)
2709 		return 0;
2710 	return dev->header_ops->parse(skb, haddr);
2711 }
2712 
2713 /* ll_header must have at least hard_header_len allocated */
2714 static inline bool dev_validate_header(const struct net_device *dev,
2715 				       char *ll_header, int len)
2716 {
2717 	if (likely(len >= dev->hard_header_len))
2718 		return true;
2719 	if (len < dev->min_header_len)
2720 		return false;
2721 
2722 	if (capable(CAP_SYS_RAWIO)) {
2723 		memset(ll_header + len, 0, dev->hard_header_len - len);
2724 		return true;
2725 	}
2726 
2727 	if (dev->header_ops && dev->header_ops->validate)
2728 		return dev->header_ops->validate(ll_header, len);
2729 
2730 	return false;
2731 }
2732 
2733 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2734 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2735 static inline int unregister_gifconf(unsigned int family)
2736 {
2737 	return register_gifconf(family, NULL);
2738 }
2739 
2740 #ifdef CONFIG_NET_FLOW_LIMIT
2741 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2742 struct sd_flow_limit {
2743 	u64			count;
2744 	unsigned int		num_buckets;
2745 	unsigned int		history_head;
2746 	u16			history[FLOW_LIMIT_HISTORY];
2747 	u8			buckets[];
2748 };
2749 
2750 extern int netdev_flow_limit_table_len;
2751 #endif /* CONFIG_NET_FLOW_LIMIT */
2752 
2753 /*
2754  * Incoming packets are placed on per-CPU queues
2755  */
2756 struct softnet_data {
2757 	struct list_head	poll_list;
2758 	struct sk_buff_head	process_queue;
2759 
2760 	/* stats */
2761 	unsigned int		processed;
2762 	unsigned int		time_squeeze;
2763 	unsigned int		received_rps;
2764 #ifdef CONFIG_RPS
2765 	struct softnet_data	*rps_ipi_list;
2766 #endif
2767 #ifdef CONFIG_NET_FLOW_LIMIT
2768 	struct sd_flow_limit __rcu *flow_limit;
2769 #endif
2770 	struct Qdisc		*output_queue;
2771 	struct Qdisc		**output_queue_tailp;
2772 	struct sk_buff		*completion_queue;
2773 
2774 #ifdef CONFIG_RPS
2775 	/* input_queue_head should be written by cpu owning this struct,
2776 	 * and only read by other cpus. Worth using a cache line.
2777 	 */
2778 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
2779 
2780 	/* Elements below can be accessed between CPUs for RPS/RFS */
2781 	call_single_data_t	csd ____cacheline_aligned_in_smp;
2782 	struct softnet_data	*rps_ipi_next;
2783 	unsigned int		cpu;
2784 	unsigned int		input_queue_tail;
2785 #endif
2786 	unsigned int		dropped;
2787 	struct sk_buff_head	input_pkt_queue;
2788 	struct napi_struct	backlog;
2789 
2790 };
2791 
2792 static inline void input_queue_head_incr(struct softnet_data *sd)
2793 {
2794 #ifdef CONFIG_RPS
2795 	sd->input_queue_head++;
2796 #endif
2797 }
2798 
2799 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2800 					      unsigned int *qtail)
2801 {
2802 #ifdef CONFIG_RPS
2803 	*qtail = ++sd->input_queue_tail;
2804 #endif
2805 }
2806 
2807 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2808 
2809 void __netif_schedule(struct Qdisc *q);
2810 void netif_schedule_queue(struct netdev_queue *txq);
2811 
2812 static inline void netif_tx_schedule_all(struct net_device *dev)
2813 {
2814 	unsigned int i;
2815 
2816 	for (i = 0; i < dev->num_tx_queues; i++)
2817 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2818 }
2819 
2820 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2821 {
2822 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2823 }
2824 
2825 /**
2826  *	netif_start_queue - allow transmit
2827  *	@dev: network device
2828  *
2829  *	Allow upper layers to call the device hard_start_xmit routine.
2830  */
2831 static inline void netif_start_queue(struct net_device *dev)
2832 {
2833 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2834 }
2835 
2836 static inline void netif_tx_start_all_queues(struct net_device *dev)
2837 {
2838 	unsigned int i;
2839 
2840 	for (i = 0; i < dev->num_tx_queues; i++) {
2841 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2842 		netif_tx_start_queue(txq);
2843 	}
2844 }
2845 
2846 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2847 
2848 /**
2849  *	netif_wake_queue - restart transmit
2850  *	@dev: network device
2851  *
2852  *	Allow upper layers to call the device hard_start_xmit routine.
2853  *	Used for flow control when transmit resources are available.
2854  */
2855 static inline void netif_wake_queue(struct net_device *dev)
2856 {
2857 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2858 }
2859 
2860 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2861 {
2862 	unsigned int i;
2863 
2864 	for (i = 0; i < dev->num_tx_queues; i++) {
2865 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2866 		netif_tx_wake_queue(txq);
2867 	}
2868 }
2869 
2870 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2871 {
2872 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2873 }
2874 
2875 /**
2876  *	netif_stop_queue - stop transmitted packets
2877  *	@dev: network device
2878  *
2879  *	Stop upper layers calling the device hard_start_xmit routine.
2880  *	Used for flow control when transmit resources are unavailable.
2881  */
2882 static inline void netif_stop_queue(struct net_device *dev)
2883 {
2884 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2885 }
2886 
2887 void netif_tx_stop_all_queues(struct net_device *dev);
2888 
2889 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2890 {
2891 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2892 }
2893 
2894 /**
2895  *	netif_queue_stopped - test if transmit queue is flowblocked
2896  *	@dev: network device
2897  *
2898  *	Test if transmit queue on device is currently unable to send.
2899  */
2900 static inline bool netif_queue_stopped(const struct net_device *dev)
2901 {
2902 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2903 }
2904 
2905 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2906 {
2907 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2908 }
2909 
2910 static inline bool
2911 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2912 {
2913 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2914 }
2915 
2916 static inline bool
2917 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2918 {
2919 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2920 }
2921 
2922 /**
2923  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2924  *	@dev_queue: pointer to transmit queue
2925  *
2926  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2927  * to give appropriate hint to the CPU.
2928  */
2929 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2930 {
2931 #ifdef CONFIG_BQL
2932 	prefetchw(&dev_queue->dql.num_queued);
2933 #endif
2934 }
2935 
2936 /**
2937  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2938  *	@dev_queue: pointer to transmit queue
2939  *
2940  * BQL enabled drivers might use this helper in their TX completion path,
2941  * to give appropriate hint to the CPU.
2942  */
2943 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2944 {
2945 #ifdef CONFIG_BQL
2946 	prefetchw(&dev_queue->dql.limit);
2947 #endif
2948 }
2949 
2950 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2951 					unsigned int bytes)
2952 {
2953 #ifdef CONFIG_BQL
2954 	dql_queued(&dev_queue->dql, bytes);
2955 
2956 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2957 		return;
2958 
2959 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2960 
2961 	/*
2962 	 * The XOFF flag must be set before checking the dql_avail below,
2963 	 * because in netdev_tx_completed_queue we update the dql_completed
2964 	 * before checking the XOFF flag.
2965 	 */
2966 	smp_mb();
2967 
2968 	/* check again in case another CPU has just made room avail */
2969 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2970 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2971 #endif
2972 }
2973 
2974 /**
2975  * 	netdev_sent_queue - report the number of bytes queued to hardware
2976  * 	@dev: network device
2977  * 	@bytes: number of bytes queued to the hardware device queue
2978  *
2979  * 	Report the number of bytes queued for sending/completion to the network
2980  * 	device hardware queue. @bytes should be a good approximation and should
2981  * 	exactly match netdev_completed_queue() @bytes
2982  */
2983 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2984 {
2985 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2986 }
2987 
2988 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2989 					     unsigned int pkts, unsigned int bytes)
2990 {
2991 #ifdef CONFIG_BQL
2992 	if (unlikely(!bytes))
2993 		return;
2994 
2995 	dql_completed(&dev_queue->dql, bytes);
2996 
2997 	/*
2998 	 * Without the memory barrier there is a small possiblity that
2999 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3000 	 * be stopped forever
3001 	 */
3002 	smp_mb();
3003 
3004 	if (dql_avail(&dev_queue->dql) < 0)
3005 		return;
3006 
3007 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3008 		netif_schedule_queue(dev_queue);
3009 #endif
3010 }
3011 
3012 /**
3013  * 	netdev_completed_queue - report bytes and packets completed by device
3014  * 	@dev: network device
3015  * 	@pkts: actual number of packets sent over the medium
3016  * 	@bytes: actual number of bytes sent over the medium
3017  *
3018  * 	Report the number of bytes and packets transmitted by the network device
3019  * 	hardware queue over the physical medium, @bytes must exactly match the
3020  * 	@bytes amount passed to netdev_sent_queue()
3021  */
3022 static inline void netdev_completed_queue(struct net_device *dev,
3023 					  unsigned int pkts, unsigned int bytes)
3024 {
3025 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3026 }
3027 
3028 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3029 {
3030 #ifdef CONFIG_BQL
3031 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3032 	dql_reset(&q->dql);
3033 #endif
3034 }
3035 
3036 /**
3037  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3038  * 	@dev_queue: network device
3039  *
3040  * 	Reset the bytes and packet count of a network device and clear the
3041  * 	software flow control OFF bit for this network device
3042  */
3043 static inline void netdev_reset_queue(struct net_device *dev_queue)
3044 {
3045 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3046 }
3047 
3048 /**
3049  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3050  * 	@dev: network device
3051  * 	@queue_index: given tx queue index
3052  *
3053  * 	Returns 0 if given tx queue index >= number of device tx queues,
3054  * 	otherwise returns the originally passed tx queue index.
3055  */
3056 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3057 {
3058 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3059 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3060 				     dev->name, queue_index,
3061 				     dev->real_num_tx_queues);
3062 		return 0;
3063 	}
3064 
3065 	return queue_index;
3066 }
3067 
3068 /**
3069  *	netif_running - test if up
3070  *	@dev: network device
3071  *
3072  *	Test if the device has been brought up.
3073  */
3074 static inline bool netif_running(const struct net_device *dev)
3075 {
3076 	return test_bit(__LINK_STATE_START, &dev->state);
3077 }
3078 
3079 /*
3080  * Routines to manage the subqueues on a device.  We only need start,
3081  * stop, and a check if it's stopped.  All other device management is
3082  * done at the overall netdevice level.
3083  * Also test the device if we're multiqueue.
3084  */
3085 
3086 /**
3087  *	netif_start_subqueue - allow sending packets on subqueue
3088  *	@dev: network device
3089  *	@queue_index: sub queue index
3090  *
3091  * Start individual transmit queue of a device with multiple transmit queues.
3092  */
3093 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3094 {
3095 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3096 
3097 	netif_tx_start_queue(txq);
3098 }
3099 
3100 /**
3101  *	netif_stop_subqueue - stop sending packets on subqueue
3102  *	@dev: network device
3103  *	@queue_index: sub queue index
3104  *
3105  * Stop individual transmit queue of a device with multiple transmit queues.
3106  */
3107 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3108 {
3109 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3110 	netif_tx_stop_queue(txq);
3111 }
3112 
3113 /**
3114  *	netif_subqueue_stopped - test status of subqueue
3115  *	@dev: network device
3116  *	@queue_index: sub queue index
3117  *
3118  * Check individual transmit queue of a device with multiple transmit queues.
3119  */
3120 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3121 					    u16 queue_index)
3122 {
3123 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3124 
3125 	return netif_tx_queue_stopped(txq);
3126 }
3127 
3128 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3129 					  struct sk_buff *skb)
3130 {
3131 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3132 }
3133 
3134 /**
3135  *	netif_wake_subqueue - allow sending packets on subqueue
3136  *	@dev: network device
3137  *	@queue_index: sub queue index
3138  *
3139  * Resume individual transmit queue of a device with multiple transmit queues.
3140  */
3141 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3142 {
3143 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3144 
3145 	netif_tx_wake_queue(txq);
3146 }
3147 
3148 #ifdef CONFIG_XPS
3149 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3150 			u16 index);
3151 #else
3152 static inline int netif_set_xps_queue(struct net_device *dev,
3153 				      const struct cpumask *mask,
3154 				      u16 index)
3155 {
3156 	return 0;
3157 }
3158 #endif
3159 
3160 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3161 		  unsigned int num_tx_queues);
3162 
3163 /*
3164  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3165  * as a distribution range limit for the returned value.
3166  */
3167 static inline u16 skb_tx_hash(const struct net_device *dev,
3168 			      struct sk_buff *skb)
3169 {
3170 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3171 }
3172 
3173 /**
3174  *	netif_is_multiqueue - test if device has multiple transmit queues
3175  *	@dev: network device
3176  *
3177  * Check if device has multiple transmit queues
3178  */
3179 static inline bool netif_is_multiqueue(const struct net_device *dev)
3180 {
3181 	return dev->num_tx_queues > 1;
3182 }
3183 
3184 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3185 
3186 #ifdef CONFIG_SYSFS
3187 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3188 #else
3189 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3190 						unsigned int rxq)
3191 {
3192 	return 0;
3193 }
3194 #endif
3195 
3196 #ifdef CONFIG_SYSFS
3197 static inline unsigned int get_netdev_rx_queue_index(
3198 		struct netdev_rx_queue *queue)
3199 {
3200 	struct net_device *dev = queue->dev;
3201 	int index = queue - dev->_rx;
3202 
3203 	BUG_ON(index >= dev->num_rx_queues);
3204 	return index;
3205 }
3206 #endif
3207 
3208 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3209 int netif_get_num_default_rss_queues(void);
3210 
3211 enum skb_free_reason {
3212 	SKB_REASON_CONSUMED,
3213 	SKB_REASON_DROPPED,
3214 };
3215 
3216 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3217 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3218 
3219 /*
3220  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3221  * interrupt context or with hardware interrupts being disabled.
3222  * (in_irq() || irqs_disabled())
3223  *
3224  * We provide four helpers that can be used in following contexts :
3225  *
3226  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3227  *  replacing kfree_skb(skb)
3228  *
3229  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3230  *  Typically used in place of consume_skb(skb) in TX completion path
3231  *
3232  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3233  *  replacing kfree_skb(skb)
3234  *
3235  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3236  *  and consumed a packet. Used in place of consume_skb(skb)
3237  */
3238 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3239 {
3240 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3241 }
3242 
3243 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3244 {
3245 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3246 }
3247 
3248 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3249 {
3250 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3251 }
3252 
3253 static inline void dev_consume_skb_any(struct sk_buff *skb)
3254 {
3255 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3256 }
3257 
3258 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3259 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3260 int netif_rx(struct sk_buff *skb);
3261 int netif_rx_ni(struct sk_buff *skb);
3262 int netif_receive_skb(struct sk_buff *skb);
3263 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3264 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3265 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3266 gro_result_t napi_gro_frags(struct napi_struct *napi);
3267 struct packet_offload *gro_find_receive_by_type(__be16 type);
3268 struct packet_offload *gro_find_complete_by_type(__be16 type);
3269 
3270 static inline void napi_free_frags(struct napi_struct *napi)
3271 {
3272 	kfree_skb(napi->skb);
3273 	napi->skb = NULL;
3274 }
3275 
3276 bool netdev_is_rx_handler_busy(struct net_device *dev);
3277 int netdev_rx_handler_register(struct net_device *dev,
3278 			       rx_handler_func_t *rx_handler,
3279 			       void *rx_handler_data);
3280 void netdev_rx_handler_unregister(struct net_device *dev);
3281 
3282 bool dev_valid_name(const char *name);
3283 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3284 int dev_ethtool(struct net *net, struct ifreq *);
3285 unsigned int dev_get_flags(const struct net_device *);
3286 int __dev_change_flags(struct net_device *, unsigned int flags);
3287 int dev_change_flags(struct net_device *, unsigned int);
3288 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3289 			unsigned int gchanges);
3290 int dev_change_name(struct net_device *, const char *);
3291 int dev_set_alias(struct net_device *, const char *, size_t);
3292 int dev_get_alias(const struct net_device *, char *, size_t);
3293 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3294 int __dev_set_mtu(struct net_device *, int);
3295 int dev_set_mtu(struct net_device *, int);
3296 void dev_set_group(struct net_device *, int);
3297 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3298 int dev_change_carrier(struct net_device *, bool new_carrier);
3299 int dev_get_phys_port_id(struct net_device *dev,
3300 			 struct netdev_phys_item_id *ppid);
3301 int dev_get_phys_port_name(struct net_device *dev,
3302 			   char *name, size_t len);
3303 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3304 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3305 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3306 				    struct netdev_queue *txq, int *ret);
3307 
3308 typedef int (*xdp_op_t)(struct net_device *dev, struct netdev_xdp *xdp);
3309 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3310 		      int fd, u32 flags);
3311 u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id);
3312 
3313 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3314 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3315 bool is_skb_forwardable(const struct net_device *dev,
3316 			const struct sk_buff *skb);
3317 
3318 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3319 					       struct sk_buff *skb)
3320 {
3321 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3322 	    unlikely(!is_skb_forwardable(dev, skb))) {
3323 		atomic_long_inc(&dev->rx_dropped);
3324 		kfree_skb(skb);
3325 		return NET_RX_DROP;
3326 	}
3327 
3328 	skb_scrub_packet(skb, true);
3329 	skb->priority = 0;
3330 	return 0;
3331 }
3332 
3333 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3334 
3335 extern int		netdev_budget;
3336 extern unsigned int	netdev_budget_usecs;
3337 
3338 /* Called by rtnetlink.c:rtnl_unlock() */
3339 void netdev_run_todo(void);
3340 
3341 /**
3342  *	dev_put - release reference to device
3343  *	@dev: network device
3344  *
3345  * Release reference to device to allow it to be freed.
3346  */
3347 static inline void dev_put(struct net_device *dev)
3348 {
3349 	this_cpu_dec(*dev->pcpu_refcnt);
3350 }
3351 
3352 /**
3353  *	dev_hold - get reference to device
3354  *	@dev: network device
3355  *
3356  * Hold reference to device to keep it from being freed.
3357  */
3358 static inline void dev_hold(struct net_device *dev)
3359 {
3360 	this_cpu_inc(*dev->pcpu_refcnt);
3361 }
3362 
3363 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3364  * and _off may be called from IRQ context, but it is caller
3365  * who is responsible for serialization of these calls.
3366  *
3367  * The name carrier is inappropriate, these functions should really be
3368  * called netif_lowerlayer_*() because they represent the state of any
3369  * kind of lower layer not just hardware media.
3370  */
3371 
3372 void linkwatch_init_dev(struct net_device *dev);
3373 void linkwatch_fire_event(struct net_device *dev);
3374 void linkwatch_forget_dev(struct net_device *dev);
3375 
3376 /**
3377  *	netif_carrier_ok - test if carrier present
3378  *	@dev: network device
3379  *
3380  * Check if carrier is present on device
3381  */
3382 static inline bool netif_carrier_ok(const struct net_device *dev)
3383 {
3384 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3385 }
3386 
3387 unsigned long dev_trans_start(struct net_device *dev);
3388 
3389 void __netdev_watchdog_up(struct net_device *dev);
3390 
3391 void netif_carrier_on(struct net_device *dev);
3392 
3393 void netif_carrier_off(struct net_device *dev);
3394 
3395 /**
3396  *	netif_dormant_on - mark device as dormant.
3397  *	@dev: network device
3398  *
3399  * Mark device as dormant (as per RFC2863).
3400  *
3401  * The dormant state indicates that the relevant interface is not
3402  * actually in a condition to pass packets (i.e., it is not 'up') but is
3403  * in a "pending" state, waiting for some external event.  For "on-
3404  * demand" interfaces, this new state identifies the situation where the
3405  * interface is waiting for events to place it in the up state.
3406  */
3407 static inline void netif_dormant_on(struct net_device *dev)
3408 {
3409 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3410 		linkwatch_fire_event(dev);
3411 }
3412 
3413 /**
3414  *	netif_dormant_off - set device as not dormant.
3415  *	@dev: network device
3416  *
3417  * Device is not in dormant state.
3418  */
3419 static inline void netif_dormant_off(struct net_device *dev)
3420 {
3421 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3422 		linkwatch_fire_event(dev);
3423 }
3424 
3425 /**
3426  *	netif_dormant - test if device is dormant
3427  *	@dev: network device
3428  *
3429  * Check if device is dormant.
3430  */
3431 static inline bool netif_dormant(const struct net_device *dev)
3432 {
3433 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3434 }
3435 
3436 
3437 /**
3438  *	netif_oper_up - test if device is operational
3439  *	@dev: network device
3440  *
3441  * Check if carrier is operational
3442  */
3443 static inline bool netif_oper_up(const struct net_device *dev)
3444 {
3445 	return (dev->operstate == IF_OPER_UP ||
3446 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3447 }
3448 
3449 /**
3450  *	netif_device_present - is device available or removed
3451  *	@dev: network device
3452  *
3453  * Check if device has not been removed from system.
3454  */
3455 static inline bool netif_device_present(struct net_device *dev)
3456 {
3457 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3458 }
3459 
3460 void netif_device_detach(struct net_device *dev);
3461 
3462 void netif_device_attach(struct net_device *dev);
3463 
3464 /*
3465  * Network interface message level settings
3466  */
3467 
3468 enum {
3469 	NETIF_MSG_DRV		= 0x0001,
3470 	NETIF_MSG_PROBE		= 0x0002,
3471 	NETIF_MSG_LINK		= 0x0004,
3472 	NETIF_MSG_TIMER		= 0x0008,
3473 	NETIF_MSG_IFDOWN	= 0x0010,
3474 	NETIF_MSG_IFUP		= 0x0020,
3475 	NETIF_MSG_RX_ERR	= 0x0040,
3476 	NETIF_MSG_TX_ERR	= 0x0080,
3477 	NETIF_MSG_TX_QUEUED	= 0x0100,
3478 	NETIF_MSG_INTR		= 0x0200,
3479 	NETIF_MSG_TX_DONE	= 0x0400,
3480 	NETIF_MSG_RX_STATUS	= 0x0800,
3481 	NETIF_MSG_PKTDATA	= 0x1000,
3482 	NETIF_MSG_HW		= 0x2000,
3483 	NETIF_MSG_WOL		= 0x4000,
3484 };
3485 
3486 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3487 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3488 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3489 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3490 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3491 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3492 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3493 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3494 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3495 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3496 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3497 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3498 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3499 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3500 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3501 
3502 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3503 {
3504 	/* use default */
3505 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3506 		return default_msg_enable_bits;
3507 	if (debug_value == 0)	/* no output */
3508 		return 0;
3509 	/* set low N bits */
3510 	return (1 << debug_value) - 1;
3511 }
3512 
3513 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3514 {
3515 	spin_lock(&txq->_xmit_lock);
3516 	txq->xmit_lock_owner = cpu;
3517 }
3518 
3519 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3520 {
3521 	__acquire(&txq->_xmit_lock);
3522 	return true;
3523 }
3524 
3525 static inline void __netif_tx_release(struct netdev_queue *txq)
3526 {
3527 	__release(&txq->_xmit_lock);
3528 }
3529 
3530 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3531 {
3532 	spin_lock_bh(&txq->_xmit_lock);
3533 	txq->xmit_lock_owner = smp_processor_id();
3534 }
3535 
3536 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3537 {
3538 	bool ok = spin_trylock(&txq->_xmit_lock);
3539 	if (likely(ok))
3540 		txq->xmit_lock_owner = smp_processor_id();
3541 	return ok;
3542 }
3543 
3544 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3545 {
3546 	txq->xmit_lock_owner = -1;
3547 	spin_unlock(&txq->_xmit_lock);
3548 }
3549 
3550 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3551 {
3552 	txq->xmit_lock_owner = -1;
3553 	spin_unlock_bh(&txq->_xmit_lock);
3554 }
3555 
3556 static inline void txq_trans_update(struct netdev_queue *txq)
3557 {
3558 	if (txq->xmit_lock_owner != -1)
3559 		txq->trans_start = jiffies;
3560 }
3561 
3562 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3563 static inline void netif_trans_update(struct net_device *dev)
3564 {
3565 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3566 
3567 	if (txq->trans_start != jiffies)
3568 		txq->trans_start = jiffies;
3569 }
3570 
3571 /**
3572  *	netif_tx_lock - grab network device transmit lock
3573  *	@dev: network device
3574  *
3575  * Get network device transmit lock
3576  */
3577 static inline void netif_tx_lock(struct net_device *dev)
3578 {
3579 	unsigned int i;
3580 	int cpu;
3581 
3582 	spin_lock(&dev->tx_global_lock);
3583 	cpu = smp_processor_id();
3584 	for (i = 0; i < dev->num_tx_queues; i++) {
3585 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3586 
3587 		/* We are the only thread of execution doing a
3588 		 * freeze, but we have to grab the _xmit_lock in
3589 		 * order to synchronize with threads which are in
3590 		 * the ->hard_start_xmit() handler and already
3591 		 * checked the frozen bit.
3592 		 */
3593 		__netif_tx_lock(txq, cpu);
3594 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3595 		__netif_tx_unlock(txq);
3596 	}
3597 }
3598 
3599 static inline void netif_tx_lock_bh(struct net_device *dev)
3600 {
3601 	local_bh_disable();
3602 	netif_tx_lock(dev);
3603 }
3604 
3605 static inline void netif_tx_unlock(struct net_device *dev)
3606 {
3607 	unsigned int i;
3608 
3609 	for (i = 0; i < dev->num_tx_queues; i++) {
3610 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3611 
3612 		/* No need to grab the _xmit_lock here.  If the
3613 		 * queue is not stopped for another reason, we
3614 		 * force a schedule.
3615 		 */
3616 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3617 		netif_schedule_queue(txq);
3618 	}
3619 	spin_unlock(&dev->tx_global_lock);
3620 }
3621 
3622 static inline void netif_tx_unlock_bh(struct net_device *dev)
3623 {
3624 	netif_tx_unlock(dev);
3625 	local_bh_enable();
3626 }
3627 
3628 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3629 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3630 		__netif_tx_lock(txq, cpu);		\
3631 	} else {					\
3632 		__netif_tx_acquire(txq);		\
3633 	}						\
3634 }
3635 
3636 #define HARD_TX_TRYLOCK(dev, txq)			\
3637 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3638 		__netif_tx_trylock(txq) :		\
3639 		__netif_tx_acquire(txq))
3640 
3641 #define HARD_TX_UNLOCK(dev, txq) {			\
3642 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3643 		__netif_tx_unlock(txq);			\
3644 	} else {					\
3645 		__netif_tx_release(txq);		\
3646 	}						\
3647 }
3648 
3649 static inline void netif_tx_disable(struct net_device *dev)
3650 {
3651 	unsigned int i;
3652 	int cpu;
3653 
3654 	local_bh_disable();
3655 	cpu = smp_processor_id();
3656 	for (i = 0; i < dev->num_tx_queues; i++) {
3657 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3658 
3659 		__netif_tx_lock(txq, cpu);
3660 		netif_tx_stop_queue(txq);
3661 		__netif_tx_unlock(txq);
3662 	}
3663 	local_bh_enable();
3664 }
3665 
3666 static inline void netif_addr_lock(struct net_device *dev)
3667 {
3668 	spin_lock(&dev->addr_list_lock);
3669 }
3670 
3671 static inline void netif_addr_lock_nested(struct net_device *dev)
3672 {
3673 	int subclass = SINGLE_DEPTH_NESTING;
3674 
3675 	if (dev->netdev_ops->ndo_get_lock_subclass)
3676 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3677 
3678 	spin_lock_nested(&dev->addr_list_lock, subclass);
3679 }
3680 
3681 static inline void netif_addr_lock_bh(struct net_device *dev)
3682 {
3683 	spin_lock_bh(&dev->addr_list_lock);
3684 }
3685 
3686 static inline void netif_addr_unlock(struct net_device *dev)
3687 {
3688 	spin_unlock(&dev->addr_list_lock);
3689 }
3690 
3691 static inline void netif_addr_unlock_bh(struct net_device *dev)
3692 {
3693 	spin_unlock_bh(&dev->addr_list_lock);
3694 }
3695 
3696 /*
3697  * dev_addrs walker. Should be used only for read access. Call with
3698  * rcu_read_lock held.
3699  */
3700 #define for_each_dev_addr(dev, ha) \
3701 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3702 
3703 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3704 
3705 void ether_setup(struct net_device *dev);
3706 
3707 /* Support for loadable net-drivers */
3708 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3709 				    unsigned char name_assign_type,
3710 				    void (*setup)(struct net_device *),
3711 				    unsigned int txqs, unsigned int rxqs);
3712 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3713 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3714 
3715 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3716 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3717 			 count)
3718 
3719 int register_netdev(struct net_device *dev);
3720 void unregister_netdev(struct net_device *dev);
3721 
3722 /* General hardware address lists handling functions */
3723 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3724 		   struct netdev_hw_addr_list *from_list, int addr_len);
3725 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3726 		      struct netdev_hw_addr_list *from_list, int addr_len);
3727 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3728 		       struct net_device *dev,
3729 		       int (*sync)(struct net_device *, const unsigned char *),
3730 		       int (*unsync)(struct net_device *,
3731 				     const unsigned char *));
3732 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3733 			  struct net_device *dev,
3734 			  int (*unsync)(struct net_device *,
3735 					const unsigned char *));
3736 void __hw_addr_init(struct netdev_hw_addr_list *list);
3737 
3738 /* Functions used for device addresses handling */
3739 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3740 		 unsigned char addr_type);
3741 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3742 		 unsigned char addr_type);
3743 void dev_addr_flush(struct net_device *dev);
3744 int dev_addr_init(struct net_device *dev);
3745 
3746 /* Functions used for unicast addresses handling */
3747 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3748 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3749 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3750 int dev_uc_sync(struct net_device *to, struct net_device *from);
3751 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3752 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3753 void dev_uc_flush(struct net_device *dev);
3754 void dev_uc_init(struct net_device *dev);
3755 
3756 /**
3757  *  __dev_uc_sync - Synchonize device's unicast list
3758  *  @dev:  device to sync
3759  *  @sync: function to call if address should be added
3760  *  @unsync: function to call if address should be removed
3761  *
3762  *  Add newly added addresses to the interface, and release
3763  *  addresses that have been deleted.
3764  */
3765 static inline int __dev_uc_sync(struct net_device *dev,
3766 				int (*sync)(struct net_device *,
3767 					    const unsigned char *),
3768 				int (*unsync)(struct net_device *,
3769 					      const unsigned char *))
3770 {
3771 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3772 }
3773 
3774 /**
3775  *  __dev_uc_unsync - Remove synchronized addresses from device
3776  *  @dev:  device to sync
3777  *  @unsync: function to call if address should be removed
3778  *
3779  *  Remove all addresses that were added to the device by dev_uc_sync().
3780  */
3781 static inline void __dev_uc_unsync(struct net_device *dev,
3782 				   int (*unsync)(struct net_device *,
3783 						 const unsigned char *))
3784 {
3785 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3786 }
3787 
3788 /* Functions used for multicast addresses handling */
3789 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3790 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3791 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3792 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3793 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3794 int dev_mc_sync(struct net_device *to, struct net_device *from);
3795 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3796 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3797 void dev_mc_flush(struct net_device *dev);
3798 void dev_mc_init(struct net_device *dev);
3799 
3800 /**
3801  *  __dev_mc_sync - Synchonize device's multicast list
3802  *  @dev:  device to sync
3803  *  @sync: function to call if address should be added
3804  *  @unsync: function to call if address should be removed
3805  *
3806  *  Add newly added addresses to the interface, and release
3807  *  addresses that have been deleted.
3808  */
3809 static inline int __dev_mc_sync(struct net_device *dev,
3810 				int (*sync)(struct net_device *,
3811 					    const unsigned char *),
3812 				int (*unsync)(struct net_device *,
3813 					      const unsigned char *))
3814 {
3815 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3816 }
3817 
3818 /**
3819  *  __dev_mc_unsync - Remove synchronized addresses from device
3820  *  @dev:  device to sync
3821  *  @unsync: function to call if address should be removed
3822  *
3823  *  Remove all addresses that were added to the device by dev_mc_sync().
3824  */
3825 static inline void __dev_mc_unsync(struct net_device *dev,
3826 				   int (*unsync)(struct net_device *,
3827 						 const unsigned char *))
3828 {
3829 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3830 }
3831 
3832 /* Functions used for secondary unicast and multicast support */
3833 void dev_set_rx_mode(struct net_device *dev);
3834 void __dev_set_rx_mode(struct net_device *dev);
3835 int dev_set_promiscuity(struct net_device *dev, int inc);
3836 int dev_set_allmulti(struct net_device *dev, int inc);
3837 void netdev_state_change(struct net_device *dev);
3838 void netdev_notify_peers(struct net_device *dev);
3839 void netdev_features_change(struct net_device *dev);
3840 /* Load a device via the kmod */
3841 void dev_load(struct net *net, const char *name);
3842 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3843 					struct rtnl_link_stats64 *storage);
3844 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3845 			     const struct net_device_stats *netdev_stats);
3846 
3847 extern int		netdev_max_backlog;
3848 extern int		netdev_tstamp_prequeue;
3849 extern int		weight_p;
3850 extern int		dev_weight_rx_bias;
3851 extern int		dev_weight_tx_bias;
3852 extern int		dev_rx_weight;
3853 extern int		dev_tx_weight;
3854 
3855 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3856 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3857 						     struct list_head **iter);
3858 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3859 						     struct list_head **iter);
3860 
3861 /* iterate through upper list, must be called under RCU read lock */
3862 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3863 	for (iter = &(dev)->adj_list.upper, \
3864 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3865 	     updev; \
3866 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3867 
3868 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
3869 				  int (*fn)(struct net_device *upper_dev,
3870 					    void *data),
3871 				  void *data);
3872 
3873 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
3874 				  struct net_device *upper_dev);
3875 
3876 bool netdev_has_any_upper_dev(struct net_device *dev);
3877 
3878 void *netdev_lower_get_next_private(struct net_device *dev,
3879 				    struct list_head **iter);
3880 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3881 					struct list_head **iter);
3882 
3883 #define netdev_for_each_lower_private(dev, priv, iter) \
3884 	for (iter = (dev)->adj_list.lower.next, \
3885 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3886 	     priv; \
3887 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3888 
3889 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3890 	for (iter = &(dev)->adj_list.lower, \
3891 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3892 	     priv; \
3893 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3894 
3895 void *netdev_lower_get_next(struct net_device *dev,
3896 				struct list_head **iter);
3897 
3898 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3899 	for (iter = (dev)->adj_list.lower.next, \
3900 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3901 	     ldev; \
3902 	     ldev = netdev_lower_get_next(dev, &(iter)))
3903 
3904 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3905 					     struct list_head **iter);
3906 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3907 						 struct list_head **iter);
3908 
3909 int netdev_walk_all_lower_dev(struct net_device *dev,
3910 			      int (*fn)(struct net_device *lower_dev,
3911 					void *data),
3912 			      void *data);
3913 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
3914 				  int (*fn)(struct net_device *lower_dev,
3915 					    void *data),
3916 				  void *data);
3917 
3918 void *netdev_adjacent_get_private(struct list_head *adj_list);
3919 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3920 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3921 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3922 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
3923 			  struct netlink_ext_ack *extack);
3924 int netdev_master_upper_dev_link(struct net_device *dev,
3925 				 struct net_device *upper_dev,
3926 				 void *upper_priv, void *upper_info,
3927 				 struct netlink_ext_ack *extack);
3928 void netdev_upper_dev_unlink(struct net_device *dev,
3929 			     struct net_device *upper_dev);
3930 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3931 void *netdev_lower_dev_get_private(struct net_device *dev,
3932 				   struct net_device *lower_dev);
3933 void netdev_lower_state_changed(struct net_device *lower_dev,
3934 				void *lower_state_info);
3935 
3936 /* RSS keys are 40 or 52 bytes long */
3937 #define NETDEV_RSS_KEY_LEN 52
3938 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3939 void netdev_rss_key_fill(void *buffer, size_t len);
3940 
3941 int dev_get_nest_level(struct net_device *dev);
3942 int skb_checksum_help(struct sk_buff *skb);
3943 int skb_crc32c_csum_help(struct sk_buff *skb);
3944 int skb_csum_hwoffload_help(struct sk_buff *skb,
3945 			    const netdev_features_t features);
3946 
3947 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3948 				  netdev_features_t features, bool tx_path);
3949 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3950 				    netdev_features_t features);
3951 
3952 struct netdev_bonding_info {
3953 	ifslave	slave;
3954 	ifbond	master;
3955 };
3956 
3957 struct netdev_notifier_bonding_info {
3958 	struct netdev_notifier_info info; /* must be first */
3959 	struct netdev_bonding_info  bonding_info;
3960 };
3961 
3962 void netdev_bonding_info_change(struct net_device *dev,
3963 				struct netdev_bonding_info *bonding_info);
3964 
3965 static inline
3966 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3967 {
3968 	return __skb_gso_segment(skb, features, true);
3969 }
3970 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3971 
3972 static inline bool can_checksum_protocol(netdev_features_t features,
3973 					 __be16 protocol)
3974 {
3975 	if (protocol == htons(ETH_P_FCOE))
3976 		return !!(features & NETIF_F_FCOE_CRC);
3977 
3978 	/* Assume this is an IP checksum (not SCTP CRC) */
3979 
3980 	if (features & NETIF_F_HW_CSUM) {
3981 		/* Can checksum everything */
3982 		return true;
3983 	}
3984 
3985 	switch (protocol) {
3986 	case htons(ETH_P_IP):
3987 		return !!(features & NETIF_F_IP_CSUM);
3988 	case htons(ETH_P_IPV6):
3989 		return !!(features & NETIF_F_IPV6_CSUM);
3990 	default:
3991 		return false;
3992 	}
3993 }
3994 
3995 #ifdef CONFIG_BUG
3996 void netdev_rx_csum_fault(struct net_device *dev);
3997 #else
3998 static inline void netdev_rx_csum_fault(struct net_device *dev)
3999 {
4000 }
4001 #endif
4002 /* rx skb timestamps */
4003 void net_enable_timestamp(void);
4004 void net_disable_timestamp(void);
4005 
4006 #ifdef CONFIG_PROC_FS
4007 int __init dev_proc_init(void);
4008 #else
4009 #define dev_proc_init() 0
4010 #endif
4011 
4012 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4013 					      struct sk_buff *skb, struct net_device *dev,
4014 					      bool more)
4015 {
4016 	skb->xmit_more = more ? 1 : 0;
4017 	return ops->ndo_start_xmit(skb, dev);
4018 }
4019 
4020 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4021 					    struct netdev_queue *txq, bool more)
4022 {
4023 	const struct net_device_ops *ops = dev->netdev_ops;
4024 	int rc;
4025 
4026 	rc = __netdev_start_xmit(ops, skb, dev, more);
4027 	if (rc == NETDEV_TX_OK)
4028 		txq_trans_update(txq);
4029 
4030 	return rc;
4031 }
4032 
4033 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4034 				const void *ns);
4035 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4036 				 const void *ns);
4037 
4038 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4039 {
4040 	return netdev_class_create_file_ns(class_attr, NULL);
4041 }
4042 
4043 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4044 {
4045 	netdev_class_remove_file_ns(class_attr, NULL);
4046 }
4047 
4048 extern const struct kobj_ns_type_operations net_ns_type_operations;
4049 
4050 const char *netdev_drivername(const struct net_device *dev);
4051 
4052 void linkwatch_run_queue(void);
4053 
4054 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4055 							  netdev_features_t f2)
4056 {
4057 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4058 		if (f1 & NETIF_F_HW_CSUM)
4059 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4060 		else
4061 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4062 	}
4063 
4064 	return f1 & f2;
4065 }
4066 
4067 static inline netdev_features_t netdev_get_wanted_features(
4068 	struct net_device *dev)
4069 {
4070 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4071 }
4072 netdev_features_t netdev_increment_features(netdev_features_t all,
4073 	netdev_features_t one, netdev_features_t mask);
4074 
4075 /* Allow TSO being used on stacked device :
4076  * Performing the GSO segmentation before last device
4077  * is a performance improvement.
4078  */
4079 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4080 							netdev_features_t mask)
4081 {
4082 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4083 }
4084 
4085 int __netdev_update_features(struct net_device *dev);
4086 void netdev_update_features(struct net_device *dev);
4087 void netdev_change_features(struct net_device *dev);
4088 
4089 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4090 					struct net_device *dev);
4091 
4092 netdev_features_t passthru_features_check(struct sk_buff *skb,
4093 					  struct net_device *dev,
4094 					  netdev_features_t features);
4095 netdev_features_t netif_skb_features(struct sk_buff *skb);
4096 
4097 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4098 {
4099 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4100 
4101 	/* check flags correspondence */
4102 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4103 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4104 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4105 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4106 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4107 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4108 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4109 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4110 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4111 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4112 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4113 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4114 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4115 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4116 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4117 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4118 
4119 	return (features & feature) == feature;
4120 }
4121 
4122 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4123 {
4124 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4125 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4126 }
4127 
4128 static inline bool netif_needs_gso(struct sk_buff *skb,
4129 				   netdev_features_t features)
4130 {
4131 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4132 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4133 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4134 }
4135 
4136 static inline void netif_set_gso_max_size(struct net_device *dev,
4137 					  unsigned int size)
4138 {
4139 	dev->gso_max_size = size;
4140 }
4141 
4142 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4143 					int pulled_hlen, u16 mac_offset,
4144 					int mac_len)
4145 {
4146 	skb->protocol = protocol;
4147 	skb->encapsulation = 1;
4148 	skb_push(skb, pulled_hlen);
4149 	skb_reset_transport_header(skb);
4150 	skb->mac_header = mac_offset;
4151 	skb->network_header = skb->mac_header + mac_len;
4152 	skb->mac_len = mac_len;
4153 }
4154 
4155 static inline bool netif_is_macsec(const struct net_device *dev)
4156 {
4157 	return dev->priv_flags & IFF_MACSEC;
4158 }
4159 
4160 static inline bool netif_is_macvlan(const struct net_device *dev)
4161 {
4162 	return dev->priv_flags & IFF_MACVLAN;
4163 }
4164 
4165 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4166 {
4167 	return dev->priv_flags & IFF_MACVLAN_PORT;
4168 }
4169 
4170 static inline bool netif_is_ipvlan(const struct net_device *dev)
4171 {
4172 	return dev->priv_flags & IFF_IPVLAN_SLAVE;
4173 }
4174 
4175 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4176 {
4177 	return dev->priv_flags & IFF_IPVLAN_MASTER;
4178 }
4179 
4180 static inline bool netif_is_bond_master(const struct net_device *dev)
4181 {
4182 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4183 }
4184 
4185 static inline bool netif_is_bond_slave(const struct net_device *dev)
4186 {
4187 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4188 }
4189 
4190 static inline bool netif_supports_nofcs(struct net_device *dev)
4191 {
4192 	return dev->priv_flags & IFF_SUPP_NOFCS;
4193 }
4194 
4195 static inline bool netif_is_l3_master(const struct net_device *dev)
4196 {
4197 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4198 }
4199 
4200 static inline bool netif_is_l3_slave(const struct net_device *dev)
4201 {
4202 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4203 }
4204 
4205 static inline bool netif_is_bridge_master(const struct net_device *dev)
4206 {
4207 	return dev->priv_flags & IFF_EBRIDGE;
4208 }
4209 
4210 static inline bool netif_is_bridge_port(const struct net_device *dev)
4211 {
4212 	return dev->priv_flags & IFF_BRIDGE_PORT;
4213 }
4214 
4215 static inline bool netif_is_ovs_master(const struct net_device *dev)
4216 {
4217 	return dev->priv_flags & IFF_OPENVSWITCH;
4218 }
4219 
4220 static inline bool netif_is_ovs_port(const struct net_device *dev)
4221 {
4222 	return dev->priv_flags & IFF_OVS_DATAPATH;
4223 }
4224 
4225 static inline bool netif_is_team_master(const struct net_device *dev)
4226 {
4227 	return dev->priv_flags & IFF_TEAM;
4228 }
4229 
4230 static inline bool netif_is_team_port(const struct net_device *dev)
4231 {
4232 	return dev->priv_flags & IFF_TEAM_PORT;
4233 }
4234 
4235 static inline bool netif_is_lag_master(const struct net_device *dev)
4236 {
4237 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4238 }
4239 
4240 static inline bool netif_is_lag_port(const struct net_device *dev)
4241 {
4242 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4243 }
4244 
4245 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4246 {
4247 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4248 }
4249 
4250 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4251 static inline void netif_keep_dst(struct net_device *dev)
4252 {
4253 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4254 }
4255 
4256 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4257 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4258 {
4259 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4260 	return dev->priv_flags & IFF_MACSEC;
4261 }
4262 
4263 extern struct pernet_operations __net_initdata loopback_net_ops;
4264 
4265 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4266 
4267 /* netdev_printk helpers, similar to dev_printk */
4268 
4269 static inline const char *netdev_name(const struct net_device *dev)
4270 {
4271 	if (!dev->name[0] || strchr(dev->name, '%'))
4272 		return "(unnamed net_device)";
4273 	return dev->name;
4274 }
4275 
4276 static inline bool netdev_unregistering(const struct net_device *dev)
4277 {
4278 	return dev->reg_state == NETREG_UNREGISTERING;
4279 }
4280 
4281 static inline const char *netdev_reg_state(const struct net_device *dev)
4282 {
4283 	switch (dev->reg_state) {
4284 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4285 	case NETREG_REGISTERED: return "";
4286 	case NETREG_UNREGISTERING: return " (unregistering)";
4287 	case NETREG_UNREGISTERED: return " (unregistered)";
4288 	case NETREG_RELEASED: return " (released)";
4289 	case NETREG_DUMMY: return " (dummy)";
4290 	}
4291 
4292 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4293 	return " (unknown)";
4294 }
4295 
4296 __printf(3, 4)
4297 void netdev_printk(const char *level, const struct net_device *dev,
4298 		   const char *format, ...);
4299 __printf(2, 3)
4300 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4301 __printf(2, 3)
4302 void netdev_alert(const struct net_device *dev, const char *format, ...);
4303 __printf(2, 3)
4304 void netdev_crit(const struct net_device *dev, const char *format, ...);
4305 __printf(2, 3)
4306 void netdev_err(const struct net_device *dev, const char *format, ...);
4307 __printf(2, 3)
4308 void netdev_warn(const struct net_device *dev, const char *format, ...);
4309 __printf(2, 3)
4310 void netdev_notice(const struct net_device *dev, const char *format, ...);
4311 __printf(2, 3)
4312 void netdev_info(const struct net_device *dev, const char *format, ...);
4313 
4314 #define MODULE_ALIAS_NETDEV(device) \
4315 	MODULE_ALIAS("netdev-" device)
4316 
4317 #if defined(CONFIG_DYNAMIC_DEBUG)
4318 #define netdev_dbg(__dev, format, args...)			\
4319 do {								\
4320 	dynamic_netdev_dbg(__dev, format, ##args);		\
4321 } while (0)
4322 #elif defined(DEBUG)
4323 #define netdev_dbg(__dev, format, args...)			\
4324 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4325 #else
4326 #define netdev_dbg(__dev, format, args...)			\
4327 ({								\
4328 	if (0)							\
4329 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4330 })
4331 #endif
4332 
4333 #if defined(VERBOSE_DEBUG)
4334 #define netdev_vdbg	netdev_dbg
4335 #else
4336 
4337 #define netdev_vdbg(dev, format, args...)			\
4338 ({								\
4339 	if (0)							\
4340 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4341 	0;							\
4342 })
4343 #endif
4344 
4345 /*
4346  * netdev_WARN() acts like dev_printk(), but with the key difference
4347  * of using a WARN/WARN_ON to get the message out, including the
4348  * file/line information and a backtrace.
4349  */
4350 #define netdev_WARN(dev, format, args...)			\
4351 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
4352 	     netdev_reg_state(dev), ##args)
4353 
4354 /* netif printk helpers, similar to netdev_printk */
4355 
4356 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4357 do {					  			\
4358 	if (netif_msg_##type(priv))				\
4359 		netdev_printk(level, (dev), fmt, ##args);	\
4360 } while (0)
4361 
4362 #define netif_level(level, priv, type, dev, fmt, args...)	\
4363 do {								\
4364 	if (netif_msg_##type(priv))				\
4365 		netdev_##level(dev, fmt, ##args);		\
4366 } while (0)
4367 
4368 #define netif_emerg(priv, type, dev, fmt, args...)		\
4369 	netif_level(emerg, priv, type, dev, fmt, ##args)
4370 #define netif_alert(priv, type, dev, fmt, args...)		\
4371 	netif_level(alert, priv, type, dev, fmt, ##args)
4372 #define netif_crit(priv, type, dev, fmt, args...)		\
4373 	netif_level(crit, priv, type, dev, fmt, ##args)
4374 #define netif_err(priv, type, dev, fmt, args...)		\
4375 	netif_level(err, priv, type, dev, fmt, ##args)
4376 #define netif_warn(priv, type, dev, fmt, args...)		\
4377 	netif_level(warn, priv, type, dev, fmt, ##args)
4378 #define netif_notice(priv, type, dev, fmt, args...)		\
4379 	netif_level(notice, priv, type, dev, fmt, ##args)
4380 #define netif_info(priv, type, dev, fmt, args...)		\
4381 	netif_level(info, priv, type, dev, fmt, ##args)
4382 
4383 #if defined(CONFIG_DYNAMIC_DEBUG)
4384 #define netif_dbg(priv, type, netdev, format, args...)		\
4385 do {								\
4386 	if (netif_msg_##type(priv))				\
4387 		dynamic_netdev_dbg(netdev, format, ##args);	\
4388 } while (0)
4389 #elif defined(DEBUG)
4390 #define netif_dbg(priv, type, dev, format, args...)		\
4391 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4392 #else
4393 #define netif_dbg(priv, type, dev, format, args...)			\
4394 ({									\
4395 	if (0)								\
4396 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4397 	0;								\
4398 })
4399 #endif
4400 
4401 /* if @cond then downgrade to debug, else print at @level */
4402 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4403 	do {                                                              \
4404 		if (cond)                                                 \
4405 			netif_dbg(priv, type, netdev, fmt, ##args);       \
4406 		else                                                      \
4407 			netif_ ## level(priv, type, netdev, fmt, ##args); \
4408 	} while (0)
4409 
4410 #if defined(VERBOSE_DEBUG)
4411 #define netif_vdbg	netif_dbg
4412 #else
4413 #define netif_vdbg(priv, type, dev, format, args...)		\
4414 ({								\
4415 	if (0)							\
4416 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4417 	0;							\
4418 })
4419 #endif
4420 
4421 /*
4422  *	The list of packet types we will receive (as opposed to discard)
4423  *	and the routines to invoke.
4424  *
4425  *	Why 16. Because with 16 the only overlap we get on a hash of the
4426  *	low nibble of the protocol value is RARP/SNAP/X.25.
4427  *
4428  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4429  *             sure which should go first, but I bet it won't make much
4430  *             difference if we are running VLANs.  The good news is that
4431  *             this protocol won't be in the list unless compiled in, so
4432  *             the average user (w/out VLANs) will not be adversely affected.
4433  *             --BLG
4434  *
4435  *		0800	IP
4436  *		8100    802.1Q VLAN
4437  *		0001	802.3
4438  *		0002	AX.25
4439  *		0004	802.2
4440  *		8035	RARP
4441  *		0005	SNAP
4442  *		0805	X.25
4443  *		0806	ARP
4444  *		8137	IPX
4445  *		0009	Localtalk
4446  *		86DD	IPv6
4447  */
4448 #define PTYPE_HASH_SIZE	(16)
4449 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4450 
4451 #endif	/* _LINUX_NETDEVICE_H */
4452