xref: /linux-6.15/include/linux/netdevice.h (revision 542e893f)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <[email protected]>
13  *		Corey Minyard <[email protected]>
14  *		Donald J. Becker, <[email protected]>
15  *		Alan Cox, <[email protected]>
16  *		Bjorn Ekwall. <[email protected]>
17  *              Pekka Riikonen <[email protected]>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 
44 #include <linux/netdev_features.h>
45 #include <linux/neighbour.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <uapi/linux/netdev.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 #include <net/net_debug.h>
54 #include <net/dropreason-core.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct ethtool_ops;
59 struct kernel_hwtstamp_config;
60 struct phy_device;
61 struct dsa_port;
62 struct ip_tunnel_parm;
63 struct macsec_context;
64 struct macsec_ops;
65 struct netdev_name_node;
66 struct sd_flow_limit;
67 struct sfp_bus;
68 /* 802.11 specific */
69 struct wireless_dev;
70 /* 802.15.4 specific */
71 struct wpan_dev;
72 struct mpls_dev;
73 /* UDP Tunnel offloads */
74 struct udp_tunnel_info;
75 struct udp_tunnel_nic_info;
76 struct udp_tunnel_nic;
77 struct bpf_prog;
78 struct xdp_buff;
79 struct xdp_frame;
80 struct xdp_metadata_ops;
81 struct xdp_md;
82 /* DPLL specific */
83 struct dpll_pin;
84 
85 typedef u32 xdp_features_t;
86 
87 void synchronize_net(void);
88 void netdev_set_default_ethtool_ops(struct net_device *dev,
89 				    const struct ethtool_ops *ops);
90 void netdev_sw_irq_coalesce_default_on(struct net_device *dev);
91 
92 /* Backlog congestion levels */
93 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
94 #define NET_RX_DROP		1	/* packet dropped */
95 
96 #define MAX_NEST_DEV 8
97 
98 /*
99  * Transmit return codes: transmit return codes originate from three different
100  * namespaces:
101  *
102  * - qdisc return codes
103  * - driver transmit return codes
104  * - errno values
105  *
106  * Drivers are allowed to return any one of those in their hard_start_xmit()
107  * function. Real network devices commonly used with qdiscs should only return
108  * the driver transmit return codes though - when qdiscs are used, the actual
109  * transmission happens asynchronously, so the value is not propagated to
110  * higher layers. Virtual network devices transmit synchronously; in this case
111  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
112  * others are propagated to higher layers.
113  */
114 
115 /* qdisc ->enqueue() return codes. */
116 #define NET_XMIT_SUCCESS	0x00
117 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
118 #define NET_XMIT_CN		0x02	/* congestion notification	*/
119 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
120 
121 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
122  * indicates that the device will soon be dropping packets, or already drops
123  * some packets of the same priority; prompting us to send less aggressively. */
124 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
125 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
126 
127 /* Driver transmit return codes */
128 #define NETDEV_TX_MASK		0xf0
129 
130 enum netdev_tx {
131 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
132 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
133 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
134 };
135 typedef enum netdev_tx netdev_tx_t;
136 
137 /*
138  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
139  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
140  */
141 static inline bool dev_xmit_complete(int rc)
142 {
143 	/*
144 	 * Positive cases with an skb consumed by a driver:
145 	 * - successful transmission (rc == NETDEV_TX_OK)
146 	 * - error while transmitting (rc < 0)
147 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
148 	 */
149 	if (likely(rc < NET_XMIT_MASK))
150 		return true;
151 
152 	return false;
153 }
154 
155 /*
156  *	Compute the worst-case header length according to the protocols
157  *	used.
158  */
159 
160 #if defined(CONFIG_HYPERV_NET)
161 # define LL_MAX_HEADER 128
162 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
163 # if defined(CONFIG_MAC80211_MESH)
164 #  define LL_MAX_HEADER 128
165 # else
166 #  define LL_MAX_HEADER 96
167 # endif
168 #else
169 # define LL_MAX_HEADER 32
170 #endif
171 
172 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
173     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
174 #define MAX_HEADER LL_MAX_HEADER
175 #else
176 #define MAX_HEADER (LL_MAX_HEADER + 48)
177 #endif
178 
179 /*
180  *	Old network device statistics. Fields are native words
181  *	(unsigned long) so they can be read and written atomically.
182  */
183 
184 #define NET_DEV_STAT(FIELD)			\
185 	union {					\
186 		unsigned long FIELD;		\
187 		atomic_long_t __##FIELD;	\
188 	}
189 
190 struct net_device_stats {
191 	NET_DEV_STAT(rx_packets);
192 	NET_DEV_STAT(tx_packets);
193 	NET_DEV_STAT(rx_bytes);
194 	NET_DEV_STAT(tx_bytes);
195 	NET_DEV_STAT(rx_errors);
196 	NET_DEV_STAT(tx_errors);
197 	NET_DEV_STAT(rx_dropped);
198 	NET_DEV_STAT(tx_dropped);
199 	NET_DEV_STAT(multicast);
200 	NET_DEV_STAT(collisions);
201 	NET_DEV_STAT(rx_length_errors);
202 	NET_DEV_STAT(rx_over_errors);
203 	NET_DEV_STAT(rx_crc_errors);
204 	NET_DEV_STAT(rx_frame_errors);
205 	NET_DEV_STAT(rx_fifo_errors);
206 	NET_DEV_STAT(rx_missed_errors);
207 	NET_DEV_STAT(tx_aborted_errors);
208 	NET_DEV_STAT(tx_carrier_errors);
209 	NET_DEV_STAT(tx_fifo_errors);
210 	NET_DEV_STAT(tx_heartbeat_errors);
211 	NET_DEV_STAT(tx_window_errors);
212 	NET_DEV_STAT(rx_compressed);
213 	NET_DEV_STAT(tx_compressed);
214 };
215 #undef NET_DEV_STAT
216 
217 /* per-cpu stats, allocated on demand.
218  * Try to fit them in a single cache line, for dev_get_stats() sake.
219  */
220 struct net_device_core_stats {
221 	unsigned long	rx_dropped;
222 	unsigned long	tx_dropped;
223 	unsigned long	rx_nohandler;
224 	unsigned long	rx_otherhost_dropped;
225 } __aligned(4 * sizeof(unsigned long));
226 
227 #include <linux/cache.h>
228 #include <linux/skbuff.h>
229 
230 #ifdef CONFIG_RPS
231 #include <linux/static_key.h>
232 extern struct static_key_false rps_needed;
233 extern struct static_key_false rfs_needed;
234 #endif
235 
236 struct neighbour;
237 struct neigh_parms;
238 struct sk_buff;
239 
240 struct netdev_hw_addr {
241 	struct list_head	list;
242 	struct rb_node		node;
243 	unsigned char		addr[MAX_ADDR_LEN];
244 	unsigned char		type;
245 #define NETDEV_HW_ADDR_T_LAN		1
246 #define NETDEV_HW_ADDR_T_SAN		2
247 #define NETDEV_HW_ADDR_T_UNICAST	3
248 #define NETDEV_HW_ADDR_T_MULTICAST	4
249 	bool			global_use;
250 	int			sync_cnt;
251 	int			refcount;
252 	int			synced;
253 	struct rcu_head		rcu_head;
254 };
255 
256 struct netdev_hw_addr_list {
257 	struct list_head	list;
258 	int			count;
259 
260 	/* Auxiliary tree for faster lookup on addition and deletion */
261 	struct rb_root		tree;
262 };
263 
264 #define netdev_hw_addr_list_count(l) ((l)->count)
265 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
266 #define netdev_hw_addr_list_for_each(ha, l) \
267 	list_for_each_entry(ha, &(l)->list, list)
268 
269 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
270 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
271 #define netdev_for_each_uc_addr(ha, dev) \
272 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
273 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
274 	netdev_for_each_uc_addr((_ha), (_dev)) \
275 		if ((_ha)->sync_cnt)
276 
277 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
278 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
279 #define netdev_for_each_mc_addr(ha, dev) \
280 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
281 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
282 	netdev_for_each_mc_addr((_ha), (_dev)) \
283 		if ((_ha)->sync_cnt)
284 
285 struct hh_cache {
286 	unsigned int	hh_len;
287 	seqlock_t	hh_lock;
288 
289 	/* cached hardware header; allow for machine alignment needs.        */
290 #define HH_DATA_MOD	16
291 #define HH_DATA_OFF(__len) \
292 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
293 #define HH_DATA_ALIGN(__len) \
294 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
295 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
296 };
297 
298 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
299  * Alternative is:
300  *   dev->hard_header_len ? (dev->hard_header_len +
301  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
302  *
303  * We could use other alignment values, but we must maintain the
304  * relationship HH alignment <= LL alignment.
305  */
306 #define LL_RESERVED_SPACE(dev) \
307 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
308 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
309 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
310 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
311 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
312 
313 struct header_ops {
314 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
315 			   unsigned short type, const void *daddr,
316 			   const void *saddr, unsigned int len);
317 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
318 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
319 	void	(*cache_update)(struct hh_cache *hh,
320 				const struct net_device *dev,
321 				const unsigned char *haddr);
322 	bool	(*validate)(const char *ll_header, unsigned int len);
323 	__be16	(*parse_protocol)(const struct sk_buff *skb);
324 };
325 
326 /* These flag bits are private to the generic network queueing
327  * layer; they may not be explicitly referenced by any other
328  * code.
329  */
330 
331 enum netdev_state_t {
332 	__LINK_STATE_START,
333 	__LINK_STATE_PRESENT,
334 	__LINK_STATE_NOCARRIER,
335 	__LINK_STATE_LINKWATCH_PENDING,
336 	__LINK_STATE_DORMANT,
337 	__LINK_STATE_TESTING,
338 };
339 
340 struct gro_list {
341 	struct list_head	list;
342 	int			count;
343 };
344 
345 /*
346  * size of gro hash buckets, must less than bit number of
347  * napi_struct::gro_bitmask
348  */
349 #define GRO_HASH_BUCKETS	8
350 
351 /*
352  * Structure for NAPI scheduling similar to tasklet but with weighting
353  */
354 struct napi_struct {
355 	/* The poll_list must only be managed by the entity which
356 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
357 	 * whoever atomically sets that bit can add this napi_struct
358 	 * to the per-CPU poll_list, and whoever clears that bit
359 	 * can remove from the list right before clearing the bit.
360 	 */
361 	struct list_head	poll_list;
362 
363 	unsigned long		state;
364 	int			weight;
365 	int			defer_hard_irqs_count;
366 	unsigned long		gro_bitmask;
367 	int			(*poll)(struct napi_struct *, int);
368 #ifdef CONFIG_NETPOLL
369 	/* CPU actively polling if netpoll is configured */
370 	int			poll_owner;
371 #endif
372 	/* CPU on which NAPI has been scheduled for processing */
373 	int			list_owner;
374 	struct net_device	*dev;
375 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
376 	struct sk_buff		*skb;
377 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
378 	int			rx_count; /* length of rx_list */
379 	unsigned int		napi_id;
380 	struct hrtimer		timer;
381 	struct task_struct	*thread;
382 	/* control-path-only fields follow */
383 	struct list_head	dev_list;
384 	struct hlist_node	napi_hash_node;
385 	int			irq;
386 };
387 
388 enum {
389 	NAPI_STATE_SCHED,		/* Poll is scheduled */
390 	NAPI_STATE_MISSED,		/* reschedule a napi */
391 	NAPI_STATE_DISABLE,		/* Disable pending */
392 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
393 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
394 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
395 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
396 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
397 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
398 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
399 };
400 
401 enum {
402 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
403 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
404 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
405 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
406 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
407 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
408 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
409 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
410 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
411 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
412 };
413 
414 enum gro_result {
415 	GRO_MERGED,
416 	GRO_MERGED_FREE,
417 	GRO_HELD,
418 	GRO_NORMAL,
419 	GRO_CONSUMED,
420 };
421 typedef enum gro_result gro_result_t;
422 
423 /*
424  * enum rx_handler_result - Possible return values for rx_handlers.
425  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
426  * further.
427  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
428  * case skb->dev was changed by rx_handler.
429  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
430  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
431  *
432  * rx_handlers are functions called from inside __netif_receive_skb(), to do
433  * special processing of the skb, prior to delivery to protocol handlers.
434  *
435  * Currently, a net_device can only have a single rx_handler registered. Trying
436  * to register a second rx_handler will return -EBUSY.
437  *
438  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
439  * To unregister a rx_handler on a net_device, use
440  * netdev_rx_handler_unregister().
441  *
442  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
443  * do with the skb.
444  *
445  * If the rx_handler consumed the skb in some way, it should return
446  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
447  * the skb to be delivered in some other way.
448  *
449  * If the rx_handler changed skb->dev, to divert the skb to another
450  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
451  * new device will be called if it exists.
452  *
453  * If the rx_handler decides the skb should be ignored, it should return
454  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
455  * are registered on exact device (ptype->dev == skb->dev).
456  *
457  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
458  * delivered, it should return RX_HANDLER_PASS.
459  *
460  * A device without a registered rx_handler will behave as if rx_handler
461  * returned RX_HANDLER_PASS.
462  */
463 
464 enum rx_handler_result {
465 	RX_HANDLER_CONSUMED,
466 	RX_HANDLER_ANOTHER,
467 	RX_HANDLER_EXACT,
468 	RX_HANDLER_PASS,
469 };
470 typedef enum rx_handler_result rx_handler_result_t;
471 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
472 
473 void __napi_schedule(struct napi_struct *n);
474 void __napi_schedule_irqoff(struct napi_struct *n);
475 
476 static inline bool napi_disable_pending(struct napi_struct *n)
477 {
478 	return test_bit(NAPI_STATE_DISABLE, &n->state);
479 }
480 
481 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
482 {
483 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
484 }
485 
486 /**
487  * napi_is_scheduled - test if NAPI is scheduled
488  * @n: NAPI context
489  *
490  * This check is "best-effort". With no locking implemented,
491  * a NAPI can be scheduled or terminate right after this check
492  * and produce not precise results.
493  *
494  * NAPI_STATE_SCHED is an internal state, napi_is_scheduled
495  * should not be used normally and napi_schedule should be
496  * used instead.
497  *
498  * Use only if the driver really needs to check if a NAPI
499  * is scheduled for example in the context of delayed timer
500  * that can be skipped if a NAPI is already scheduled.
501  *
502  * Return True if NAPI is scheduled, False otherwise.
503  */
504 static inline bool napi_is_scheduled(struct napi_struct *n)
505 {
506 	return test_bit(NAPI_STATE_SCHED, &n->state);
507 }
508 
509 bool napi_schedule_prep(struct napi_struct *n);
510 
511 /**
512  *	napi_schedule - schedule NAPI poll
513  *	@n: NAPI context
514  *
515  * Schedule NAPI poll routine to be called if it is not already
516  * running.
517  * Return true if we schedule a NAPI or false if not.
518  * Refer to napi_schedule_prep() for additional reason on why
519  * a NAPI might not be scheduled.
520  */
521 static inline bool napi_schedule(struct napi_struct *n)
522 {
523 	if (napi_schedule_prep(n)) {
524 		__napi_schedule(n);
525 		return true;
526 	}
527 
528 	return false;
529 }
530 
531 /**
532  *	napi_schedule_irqoff - schedule NAPI poll
533  *	@n: NAPI context
534  *
535  * Variant of napi_schedule(), assuming hard irqs are masked.
536  */
537 static inline void napi_schedule_irqoff(struct napi_struct *n)
538 {
539 	if (napi_schedule_prep(n))
540 		__napi_schedule_irqoff(n);
541 }
542 
543 /**
544  * napi_complete_done - NAPI processing complete
545  * @n: NAPI context
546  * @work_done: number of packets processed
547  *
548  * Mark NAPI processing as complete. Should only be called if poll budget
549  * has not been completely consumed.
550  * Prefer over napi_complete().
551  * Return false if device should avoid rearming interrupts.
552  */
553 bool napi_complete_done(struct napi_struct *n, int work_done);
554 
555 static inline bool napi_complete(struct napi_struct *n)
556 {
557 	return napi_complete_done(n, 0);
558 }
559 
560 int dev_set_threaded(struct net_device *dev, bool threaded);
561 
562 /**
563  *	napi_disable - prevent NAPI from scheduling
564  *	@n: NAPI context
565  *
566  * Stop NAPI from being scheduled on this context.
567  * Waits till any outstanding processing completes.
568  */
569 void napi_disable(struct napi_struct *n);
570 
571 void napi_enable(struct napi_struct *n);
572 
573 /**
574  *	napi_synchronize - wait until NAPI is not running
575  *	@n: NAPI context
576  *
577  * Wait until NAPI is done being scheduled on this context.
578  * Waits till any outstanding processing completes but
579  * does not disable future activations.
580  */
581 static inline void napi_synchronize(const struct napi_struct *n)
582 {
583 	if (IS_ENABLED(CONFIG_SMP))
584 		while (test_bit(NAPI_STATE_SCHED, &n->state))
585 			msleep(1);
586 	else
587 		barrier();
588 }
589 
590 /**
591  *	napi_if_scheduled_mark_missed - if napi is running, set the
592  *	NAPIF_STATE_MISSED
593  *	@n: NAPI context
594  *
595  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
596  * NAPI is scheduled.
597  **/
598 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
599 {
600 	unsigned long val, new;
601 
602 	val = READ_ONCE(n->state);
603 	do {
604 		if (val & NAPIF_STATE_DISABLE)
605 			return true;
606 
607 		if (!(val & NAPIF_STATE_SCHED))
608 			return false;
609 
610 		new = val | NAPIF_STATE_MISSED;
611 	} while (!try_cmpxchg(&n->state, &val, new));
612 
613 	return true;
614 }
615 
616 enum netdev_queue_state_t {
617 	__QUEUE_STATE_DRV_XOFF,
618 	__QUEUE_STATE_STACK_XOFF,
619 	__QUEUE_STATE_FROZEN,
620 };
621 
622 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
623 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
624 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
625 
626 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
627 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
628 					QUEUE_STATE_FROZEN)
629 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
630 					QUEUE_STATE_FROZEN)
631 
632 /*
633  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
634  * netif_tx_* functions below are used to manipulate this flag.  The
635  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
636  * queue independently.  The netif_xmit_*stopped functions below are called
637  * to check if the queue has been stopped by the driver or stack (either
638  * of the XOFF bits are set in the state).  Drivers should not need to call
639  * netif_xmit*stopped functions, they should only be using netif_tx_*.
640  */
641 
642 struct netdev_queue {
643 /*
644  * read-mostly part
645  */
646 	struct net_device	*dev;
647 	netdevice_tracker	dev_tracker;
648 
649 	struct Qdisc __rcu	*qdisc;
650 	struct Qdisc __rcu	*qdisc_sleeping;
651 #ifdef CONFIG_SYSFS
652 	struct kobject		kobj;
653 #endif
654 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
655 	int			numa_node;
656 #endif
657 	unsigned long		tx_maxrate;
658 	/*
659 	 * Number of TX timeouts for this queue
660 	 * (/sys/class/net/DEV/Q/trans_timeout)
661 	 */
662 	atomic_long_t		trans_timeout;
663 
664 	/* Subordinate device that the queue has been assigned to */
665 	struct net_device	*sb_dev;
666 #ifdef CONFIG_XDP_SOCKETS
667 	struct xsk_buff_pool    *pool;
668 #endif
669 	/* NAPI instance for the queue
670 	 * Readers and writers must hold RTNL
671 	 */
672 	struct napi_struct      *napi;
673 /*
674  * write-mostly part
675  */
676 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
677 	int			xmit_lock_owner;
678 	/*
679 	 * Time (in jiffies) of last Tx
680 	 */
681 	unsigned long		trans_start;
682 
683 	unsigned long		state;
684 
685 #ifdef CONFIG_BQL
686 	struct dql		dql;
687 #endif
688 } ____cacheline_aligned_in_smp;
689 
690 extern int sysctl_fb_tunnels_only_for_init_net;
691 extern int sysctl_devconf_inherit_init_net;
692 
693 /*
694  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
695  *                                     == 1 : For initns only
696  *                                     == 2 : For none.
697  */
698 static inline bool net_has_fallback_tunnels(const struct net *net)
699 {
700 #if IS_ENABLED(CONFIG_SYSCTL)
701 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
702 
703 	return !fb_tunnels_only_for_init_net ||
704 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
705 #else
706 	return true;
707 #endif
708 }
709 
710 static inline int net_inherit_devconf(void)
711 {
712 #if IS_ENABLED(CONFIG_SYSCTL)
713 	return READ_ONCE(sysctl_devconf_inherit_init_net);
714 #else
715 	return 0;
716 #endif
717 }
718 
719 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
720 {
721 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
722 	return q->numa_node;
723 #else
724 	return NUMA_NO_NODE;
725 #endif
726 }
727 
728 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
729 {
730 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
731 	q->numa_node = node;
732 #endif
733 }
734 
735 #ifdef CONFIG_RPS
736 /*
737  * This structure holds an RPS map which can be of variable length.  The
738  * map is an array of CPUs.
739  */
740 struct rps_map {
741 	unsigned int len;
742 	struct rcu_head rcu;
743 	u16 cpus[];
744 };
745 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
746 
747 /*
748  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
749  * tail pointer for that CPU's input queue at the time of last enqueue, and
750  * a hardware filter index.
751  */
752 struct rps_dev_flow {
753 	u16 cpu;
754 	u16 filter;
755 	unsigned int last_qtail;
756 };
757 #define RPS_NO_FILTER 0xffff
758 
759 /*
760  * The rps_dev_flow_table structure contains a table of flow mappings.
761  */
762 struct rps_dev_flow_table {
763 	unsigned int mask;
764 	struct rcu_head rcu;
765 	struct rps_dev_flow flows[];
766 };
767 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
768     ((_num) * sizeof(struct rps_dev_flow)))
769 
770 /*
771  * The rps_sock_flow_table contains mappings of flows to the last CPU
772  * on which they were processed by the application (set in recvmsg).
773  * Each entry is a 32bit value. Upper part is the high-order bits
774  * of flow hash, lower part is CPU number.
775  * rps_cpu_mask is used to partition the space, depending on number of
776  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
777  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
778  * meaning we use 32-6=26 bits for the hash.
779  */
780 struct rps_sock_flow_table {
781 	u32	mask;
782 
783 	u32	ents[] ____cacheline_aligned_in_smp;
784 };
785 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
786 
787 #define RPS_NO_CPU 0xffff
788 
789 extern u32 rps_cpu_mask;
790 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
791 
792 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
793 					u32 hash)
794 {
795 	if (table && hash) {
796 		unsigned int index = hash & table->mask;
797 		u32 val = hash & ~rps_cpu_mask;
798 
799 		/* We only give a hint, preemption can change CPU under us */
800 		val |= raw_smp_processor_id();
801 
802 		/* The following WRITE_ONCE() is paired with the READ_ONCE()
803 		 * here, and another one in get_rps_cpu().
804 		 */
805 		if (READ_ONCE(table->ents[index]) != val)
806 			WRITE_ONCE(table->ents[index], val);
807 	}
808 }
809 
810 #ifdef CONFIG_RFS_ACCEL
811 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
812 			 u16 filter_id);
813 #endif
814 #endif /* CONFIG_RPS */
815 
816 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
817 enum xps_map_type {
818 	XPS_CPUS = 0,
819 	XPS_RXQS,
820 	XPS_MAPS_MAX,
821 };
822 
823 #ifdef CONFIG_XPS
824 /*
825  * This structure holds an XPS map which can be of variable length.  The
826  * map is an array of queues.
827  */
828 struct xps_map {
829 	unsigned int len;
830 	unsigned int alloc_len;
831 	struct rcu_head rcu;
832 	u16 queues[];
833 };
834 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
835 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
836        - sizeof(struct xps_map)) / sizeof(u16))
837 
838 /*
839  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
840  *
841  * We keep track of the number of cpus/rxqs used when the struct is allocated,
842  * in nr_ids. This will help not accessing out-of-bound memory.
843  *
844  * We keep track of the number of traffic classes used when the struct is
845  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
846  * not crossing its upper bound, as the original dev->num_tc can be updated in
847  * the meantime.
848  */
849 struct xps_dev_maps {
850 	struct rcu_head rcu;
851 	unsigned int nr_ids;
852 	s16 num_tc;
853 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
854 };
855 
856 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
857 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
858 
859 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
860 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
861 
862 #endif /* CONFIG_XPS */
863 
864 #define TC_MAX_QUEUE	16
865 #define TC_BITMASK	15
866 /* HW offloaded queuing disciplines txq count and offset maps */
867 struct netdev_tc_txq {
868 	u16 count;
869 	u16 offset;
870 };
871 
872 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
873 /*
874  * This structure is to hold information about the device
875  * configured to run FCoE protocol stack.
876  */
877 struct netdev_fcoe_hbainfo {
878 	char	manufacturer[64];
879 	char	serial_number[64];
880 	char	hardware_version[64];
881 	char	driver_version[64];
882 	char	optionrom_version[64];
883 	char	firmware_version[64];
884 	char	model[256];
885 	char	model_description[256];
886 };
887 #endif
888 
889 #define MAX_PHYS_ITEM_ID_LEN 32
890 
891 /* This structure holds a unique identifier to identify some
892  * physical item (port for example) used by a netdevice.
893  */
894 struct netdev_phys_item_id {
895 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
896 	unsigned char id_len;
897 };
898 
899 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
900 					    struct netdev_phys_item_id *b)
901 {
902 	return a->id_len == b->id_len &&
903 	       memcmp(a->id, b->id, a->id_len) == 0;
904 }
905 
906 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
907 				       struct sk_buff *skb,
908 				       struct net_device *sb_dev);
909 
910 enum net_device_path_type {
911 	DEV_PATH_ETHERNET = 0,
912 	DEV_PATH_VLAN,
913 	DEV_PATH_BRIDGE,
914 	DEV_PATH_PPPOE,
915 	DEV_PATH_DSA,
916 	DEV_PATH_MTK_WDMA,
917 };
918 
919 struct net_device_path {
920 	enum net_device_path_type	type;
921 	const struct net_device		*dev;
922 	union {
923 		struct {
924 			u16		id;
925 			__be16		proto;
926 			u8		h_dest[ETH_ALEN];
927 		} encap;
928 		struct {
929 			enum {
930 				DEV_PATH_BR_VLAN_KEEP,
931 				DEV_PATH_BR_VLAN_TAG,
932 				DEV_PATH_BR_VLAN_UNTAG,
933 				DEV_PATH_BR_VLAN_UNTAG_HW,
934 			}		vlan_mode;
935 			u16		vlan_id;
936 			__be16		vlan_proto;
937 		} bridge;
938 		struct {
939 			int port;
940 			u16 proto;
941 		} dsa;
942 		struct {
943 			u8 wdma_idx;
944 			u8 queue;
945 			u16 wcid;
946 			u8 bss;
947 			u8 amsdu;
948 		} mtk_wdma;
949 	};
950 };
951 
952 #define NET_DEVICE_PATH_STACK_MAX	5
953 #define NET_DEVICE_PATH_VLAN_MAX	2
954 
955 struct net_device_path_stack {
956 	int			num_paths;
957 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
958 };
959 
960 struct net_device_path_ctx {
961 	const struct net_device *dev;
962 	u8			daddr[ETH_ALEN];
963 
964 	int			num_vlans;
965 	struct {
966 		u16		id;
967 		__be16		proto;
968 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
969 };
970 
971 enum tc_setup_type {
972 	TC_QUERY_CAPS,
973 	TC_SETUP_QDISC_MQPRIO,
974 	TC_SETUP_CLSU32,
975 	TC_SETUP_CLSFLOWER,
976 	TC_SETUP_CLSMATCHALL,
977 	TC_SETUP_CLSBPF,
978 	TC_SETUP_BLOCK,
979 	TC_SETUP_QDISC_CBS,
980 	TC_SETUP_QDISC_RED,
981 	TC_SETUP_QDISC_PRIO,
982 	TC_SETUP_QDISC_MQ,
983 	TC_SETUP_QDISC_ETF,
984 	TC_SETUP_ROOT_QDISC,
985 	TC_SETUP_QDISC_GRED,
986 	TC_SETUP_QDISC_TAPRIO,
987 	TC_SETUP_FT,
988 	TC_SETUP_QDISC_ETS,
989 	TC_SETUP_QDISC_TBF,
990 	TC_SETUP_QDISC_FIFO,
991 	TC_SETUP_QDISC_HTB,
992 	TC_SETUP_ACT,
993 };
994 
995 /* These structures hold the attributes of bpf state that are being passed
996  * to the netdevice through the bpf op.
997  */
998 enum bpf_netdev_command {
999 	/* Set or clear a bpf program used in the earliest stages of packet
1000 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
1001 	 * is responsible for calling bpf_prog_put on any old progs that are
1002 	 * stored. In case of error, the callee need not release the new prog
1003 	 * reference, but on success it takes ownership and must bpf_prog_put
1004 	 * when it is no longer used.
1005 	 */
1006 	XDP_SETUP_PROG,
1007 	XDP_SETUP_PROG_HW,
1008 	/* BPF program for offload callbacks, invoked at program load time. */
1009 	BPF_OFFLOAD_MAP_ALLOC,
1010 	BPF_OFFLOAD_MAP_FREE,
1011 	XDP_SETUP_XSK_POOL,
1012 };
1013 
1014 struct bpf_prog_offload_ops;
1015 struct netlink_ext_ack;
1016 struct xdp_umem;
1017 struct xdp_dev_bulk_queue;
1018 struct bpf_xdp_link;
1019 
1020 enum bpf_xdp_mode {
1021 	XDP_MODE_SKB = 0,
1022 	XDP_MODE_DRV = 1,
1023 	XDP_MODE_HW = 2,
1024 	__MAX_XDP_MODE
1025 };
1026 
1027 struct bpf_xdp_entity {
1028 	struct bpf_prog *prog;
1029 	struct bpf_xdp_link *link;
1030 };
1031 
1032 struct netdev_bpf {
1033 	enum bpf_netdev_command command;
1034 	union {
1035 		/* XDP_SETUP_PROG */
1036 		struct {
1037 			u32 flags;
1038 			struct bpf_prog *prog;
1039 			struct netlink_ext_ack *extack;
1040 		};
1041 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
1042 		struct {
1043 			struct bpf_offloaded_map *offmap;
1044 		};
1045 		/* XDP_SETUP_XSK_POOL */
1046 		struct {
1047 			struct xsk_buff_pool *pool;
1048 			u16 queue_id;
1049 		} xsk;
1050 	};
1051 };
1052 
1053 /* Flags for ndo_xsk_wakeup. */
1054 #define XDP_WAKEUP_RX (1 << 0)
1055 #define XDP_WAKEUP_TX (1 << 1)
1056 
1057 #ifdef CONFIG_XFRM_OFFLOAD
1058 struct xfrmdev_ops {
1059 	int	(*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack);
1060 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
1061 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
1062 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1063 				       struct xfrm_state *x);
1064 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1065 	void	(*xdo_dev_state_update_curlft) (struct xfrm_state *x);
1066 	int	(*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack);
1067 	void	(*xdo_dev_policy_delete) (struct xfrm_policy *x);
1068 	void	(*xdo_dev_policy_free) (struct xfrm_policy *x);
1069 };
1070 #endif
1071 
1072 struct dev_ifalias {
1073 	struct rcu_head rcuhead;
1074 	char ifalias[];
1075 };
1076 
1077 struct devlink;
1078 struct tlsdev_ops;
1079 
1080 struct netdev_net_notifier {
1081 	struct list_head list;
1082 	struct notifier_block *nb;
1083 };
1084 
1085 /*
1086  * This structure defines the management hooks for network devices.
1087  * The following hooks can be defined; unless noted otherwise, they are
1088  * optional and can be filled with a null pointer.
1089  *
1090  * int (*ndo_init)(struct net_device *dev);
1091  *     This function is called once when a network device is registered.
1092  *     The network device can use this for any late stage initialization
1093  *     or semantic validation. It can fail with an error code which will
1094  *     be propagated back to register_netdev.
1095  *
1096  * void (*ndo_uninit)(struct net_device *dev);
1097  *     This function is called when device is unregistered or when registration
1098  *     fails. It is not called if init fails.
1099  *
1100  * int (*ndo_open)(struct net_device *dev);
1101  *     This function is called when a network device transitions to the up
1102  *     state.
1103  *
1104  * int (*ndo_stop)(struct net_device *dev);
1105  *     This function is called when a network device transitions to the down
1106  *     state.
1107  *
1108  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1109  *                               struct net_device *dev);
1110  *	Called when a packet needs to be transmitted.
1111  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1112  *	the queue before that can happen; it's for obsolete devices and weird
1113  *	corner cases, but the stack really does a non-trivial amount
1114  *	of useless work if you return NETDEV_TX_BUSY.
1115  *	Required; cannot be NULL.
1116  *
1117  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1118  *					   struct net_device *dev
1119  *					   netdev_features_t features);
1120  *	Called by core transmit path to determine if device is capable of
1121  *	performing offload operations on a given packet. This is to give
1122  *	the device an opportunity to implement any restrictions that cannot
1123  *	be otherwise expressed by feature flags. The check is called with
1124  *	the set of features that the stack has calculated and it returns
1125  *	those the driver believes to be appropriate.
1126  *
1127  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1128  *                         struct net_device *sb_dev);
1129  *	Called to decide which queue to use when device supports multiple
1130  *	transmit queues.
1131  *
1132  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1133  *	This function is called to allow device receiver to make
1134  *	changes to configuration when multicast or promiscuous is enabled.
1135  *
1136  * void (*ndo_set_rx_mode)(struct net_device *dev);
1137  *	This function is called device changes address list filtering.
1138  *	If driver handles unicast address filtering, it should set
1139  *	IFF_UNICAST_FLT in its priv_flags.
1140  *
1141  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1142  *	This function  is called when the Media Access Control address
1143  *	needs to be changed. If this interface is not defined, the
1144  *	MAC address can not be changed.
1145  *
1146  * int (*ndo_validate_addr)(struct net_device *dev);
1147  *	Test if Media Access Control address is valid for the device.
1148  *
1149  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1150  *	Old-style ioctl entry point. This is used internally by the
1151  *	appletalk and ieee802154 subsystems but is no longer called by
1152  *	the device ioctl handler.
1153  *
1154  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1155  *	Used by the bonding driver for its device specific ioctls:
1156  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1157  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1158  *
1159  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1160  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1161  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1162  *
1163  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1164  *	Used to set network devices bus interface parameters. This interface
1165  *	is retained for legacy reasons; new devices should use the bus
1166  *	interface (PCI) for low level management.
1167  *
1168  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1169  *	Called when a user wants to change the Maximum Transfer Unit
1170  *	of a device.
1171  *
1172  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1173  *	Callback used when the transmitter has not made any progress
1174  *	for dev->watchdog ticks.
1175  *
1176  * void (*ndo_get_stats64)(struct net_device *dev,
1177  *                         struct rtnl_link_stats64 *storage);
1178  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1179  *	Called when a user wants to get the network device usage
1180  *	statistics. Drivers must do one of the following:
1181  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1182  *	   rtnl_link_stats64 structure passed by the caller.
1183  *	2. Define @ndo_get_stats to update a net_device_stats structure
1184  *	   (which should normally be dev->stats) and return a pointer to
1185  *	   it. The structure may be changed asynchronously only if each
1186  *	   field is written atomically.
1187  *	3. Update dev->stats asynchronously and atomically, and define
1188  *	   neither operation.
1189  *
1190  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1191  *	Return true if this device supports offload stats of this attr_id.
1192  *
1193  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1194  *	void *attr_data)
1195  *	Get statistics for offload operations by attr_id. Write it into the
1196  *	attr_data pointer.
1197  *
1198  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1199  *	If device supports VLAN filtering this function is called when a
1200  *	VLAN id is registered.
1201  *
1202  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1203  *	If device supports VLAN filtering this function is called when a
1204  *	VLAN id is unregistered.
1205  *
1206  * void (*ndo_poll_controller)(struct net_device *dev);
1207  *
1208  *	SR-IOV management functions.
1209  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1210  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1211  *			  u8 qos, __be16 proto);
1212  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1213  *			  int max_tx_rate);
1214  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1215  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1216  * int (*ndo_get_vf_config)(struct net_device *dev,
1217  *			    int vf, struct ifla_vf_info *ivf);
1218  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1219  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1220  *			  struct nlattr *port[]);
1221  *
1222  *      Enable or disable the VF ability to query its RSS Redirection Table and
1223  *      Hash Key. This is needed since on some devices VF share this information
1224  *      with PF and querying it may introduce a theoretical security risk.
1225  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1226  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1227  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1228  *		       void *type_data);
1229  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1230  *	This is always called from the stack with the rtnl lock held and netif
1231  *	tx queues stopped. This allows the netdevice to perform queue
1232  *	management safely.
1233  *
1234  *	Fiber Channel over Ethernet (FCoE) offload functions.
1235  * int (*ndo_fcoe_enable)(struct net_device *dev);
1236  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1237  *	so the underlying device can perform whatever needed configuration or
1238  *	initialization to support acceleration of FCoE traffic.
1239  *
1240  * int (*ndo_fcoe_disable)(struct net_device *dev);
1241  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1242  *	so the underlying device can perform whatever needed clean-ups to
1243  *	stop supporting acceleration of FCoE traffic.
1244  *
1245  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1246  *			     struct scatterlist *sgl, unsigned int sgc);
1247  *	Called when the FCoE Initiator wants to initialize an I/O that
1248  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1249  *	perform necessary setup and returns 1 to indicate the device is set up
1250  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1251  *
1252  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1253  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1254  *	indicated by the FC exchange id 'xid', so the underlying device can
1255  *	clean up and reuse resources for later DDP requests.
1256  *
1257  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1258  *			      struct scatterlist *sgl, unsigned int sgc);
1259  *	Called when the FCoE Target wants to initialize an I/O that
1260  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1261  *	perform necessary setup and returns 1 to indicate the device is set up
1262  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1263  *
1264  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1265  *			       struct netdev_fcoe_hbainfo *hbainfo);
1266  *	Called when the FCoE Protocol stack wants information on the underlying
1267  *	device. This information is utilized by the FCoE protocol stack to
1268  *	register attributes with Fiber Channel management service as per the
1269  *	FC-GS Fabric Device Management Information(FDMI) specification.
1270  *
1271  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1272  *	Called when the underlying device wants to override default World Wide
1273  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1274  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1275  *	protocol stack to use.
1276  *
1277  *	RFS acceleration.
1278  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1279  *			    u16 rxq_index, u32 flow_id);
1280  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1281  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1282  *	Return the filter ID on success, or a negative error code.
1283  *
1284  *	Slave management functions (for bridge, bonding, etc).
1285  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1286  *	Called to make another netdev an underling.
1287  *
1288  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1289  *	Called to release previously enslaved netdev.
1290  *
1291  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1292  *					    struct sk_buff *skb,
1293  *					    bool all_slaves);
1294  *	Get the xmit slave of master device. If all_slaves is true, function
1295  *	assume all the slaves can transmit.
1296  *
1297  *      Feature/offload setting functions.
1298  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1299  *		netdev_features_t features);
1300  *	Adjusts the requested feature flags according to device-specific
1301  *	constraints, and returns the resulting flags. Must not modify
1302  *	the device state.
1303  *
1304  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1305  *	Called to update device configuration to new features. Passed
1306  *	feature set might be less than what was returned by ndo_fix_features()).
1307  *	Must return >0 or -errno if it changed dev->features itself.
1308  *
1309  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1310  *		      struct net_device *dev,
1311  *		      const unsigned char *addr, u16 vid, u16 flags,
1312  *		      struct netlink_ext_ack *extack);
1313  *	Adds an FDB entry to dev for addr.
1314  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1315  *		      struct net_device *dev,
1316  *		      const unsigned char *addr, u16 vid)
1317  *	Deletes the FDB entry from dev coresponding to addr.
1318  * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev,
1319  *			   struct netlink_ext_ack *extack);
1320  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1321  *		       struct net_device *dev, struct net_device *filter_dev,
1322  *		       int *idx)
1323  *	Used to add FDB entries to dump requests. Implementers should add
1324  *	entries to skb and update idx with the number of entries.
1325  *
1326  * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[],
1327  *		      u16 nlmsg_flags, struct netlink_ext_ack *extack);
1328  *	Adds an MDB entry to dev.
1329  * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[],
1330  *		      struct netlink_ext_ack *extack);
1331  *	Deletes the MDB entry from dev.
1332  * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb,
1333  *		       struct netlink_callback *cb);
1334  *	Dumps MDB entries from dev. The first argument (marker) in the netlink
1335  *	callback is used by core rtnetlink code.
1336  *
1337  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1338  *			     u16 flags, struct netlink_ext_ack *extack)
1339  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1340  *			     struct net_device *dev, u32 filter_mask,
1341  *			     int nlflags)
1342  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1343  *			     u16 flags);
1344  *
1345  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1346  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1347  *	which do not represent real hardware may define this to allow their
1348  *	userspace components to manage their virtual carrier state. Devices
1349  *	that determine carrier state from physical hardware properties (eg
1350  *	network cables) or protocol-dependent mechanisms (eg
1351  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1352  *
1353  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1354  *			       struct netdev_phys_item_id *ppid);
1355  *	Called to get ID of physical port of this device. If driver does
1356  *	not implement this, it is assumed that the hw is not able to have
1357  *	multiple net devices on single physical port.
1358  *
1359  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1360  *				 struct netdev_phys_item_id *ppid)
1361  *	Called to get the parent ID of the physical port of this device.
1362  *
1363  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1364  *				 struct net_device *dev)
1365  *	Called by upper layer devices to accelerate switching or other
1366  *	station functionality into hardware. 'pdev is the lowerdev
1367  *	to use for the offload and 'dev' is the net device that will
1368  *	back the offload. Returns a pointer to the private structure
1369  *	the upper layer will maintain.
1370  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1371  *	Called by upper layer device to delete the station created
1372  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1373  *	the station and priv is the structure returned by the add
1374  *	operation.
1375  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1376  *			     int queue_index, u32 maxrate);
1377  *	Called when a user wants to set a max-rate limitation of specific
1378  *	TX queue.
1379  * int (*ndo_get_iflink)(const struct net_device *dev);
1380  *	Called to get the iflink value of this device.
1381  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1382  *	This function is used to get egress tunnel information for given skb.
1383  *	This is useful for retrieving outer tunnel header parameters while
1384  *	sampling packet.
1385  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1386  *	This function is used to specify the headroom that the skb must
1387  *	consider when allocation skb during packet reception. Setting
1388  *	appropriate rx headroom value allows avoiding skb head copy on
1389  *	forward. Setting a negative value resets the rx headroom to the
1390  *	default value.
1391  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1392  *	This function is used to set or query state related to XDP on the
1393  *	netdevice and manage BPF offload. See definition of
1394  *	enum bpf_netdev_command for details.
1395  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1396  *			u32 flags);
1397  *	This function is used to submit @n XDP packets for transmit on a
1398  *	netdevice. Returns number of frames successfully transmitted, frames
1399  *	that got dropped are freed/returned via xdp_return_frame().
1400  *	Returns negative number, means general error invoking ndo, meaning
1401  *	no frames were xmit'ed and core-caller will free all frames.
1402  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1403  *					        struct xdp_buff *xdp);
1404  *      Get the xmit slave of master device based on the xdp_buff.
1405  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1406  *      This function is used to wake up the softirq, ksoftirqd or kthread
1407  *	responsible for sending and/or receiving packets on a specific
1408  *	queue id bound to an AF_XDP socket. The flags field specifies if
1409  *	only RX, only Tx, or both should be woken up using the flags
1410  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1411  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1412  *			 int cmd);
1413  *	Add, change, delete or get information on an IPv4 tunnel.
1414  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1415  *	If a device is paired with a peer device, return the peer instance.
1416  *	The caller must be under RCU read context.
1417  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1418  *     Get the forwarding path to reach the real device from the HW destination address
1419  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1420  *			     const struct skb_shared_hwtstamps *hwtstamps,
1421  *			     bool cycles);
1422  *	Get hardware timestamp based on normal/adjustable time or free running
1423  *	cycle counter. This function is required if physical clock supports a
1424  *	free running cycle counter.
1425  *
1426  * int (*ndo_hwtstamp_get)(struct net_device *dev,
1427  *			   struct kernel_hwtstamp_config *kernel_config);
1428  *	Get the currently configured hardware timestamping parameters for the
1429  *	NIC device.
1430  *
1431  * int (*ndo_hwtstamp_set)(struct net_device *dev,
1432  *			   struct kernel_hwtstamp_config *kernel_config,
1433  *			   struct netlink_ext_ack *extack);
1434  *	Change the hardware timestamping parameters for NIC device.
1435  */
1436 struct net_device_ops {
1437 	int			(*ndo_init)(struct net_device *dev);
1438 	void			(*ndo_uninit)(struct net_device *dev);
1439 	int			(*ndo_open)(struct net_device *dev);
1440 	int			(*ndo_stop)(struct net_device *dev);
1441 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1442 						  struct net_device *dev);
1443 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1444 						      struct net_device *dev,
1445 						      netdev_features_t features);
1446 	u16			(*ndo_select_queue)(struct net_device *dev,
1447 						    struct sk_buff *skb,
1448 						    struct net_device *sb_dev);
1449 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1450 						       int flags);
1451 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1452 	int			(*ndo_set_mac_address)(struct net_device *dev,
1453 						       void *addr);
1454 	int			(*ndo_validate_addr)(struct net_device *dev);
1455 	int			(*ndo_do_ioctl)(struct net_device *dev,
1456 					        struct ifreq *ifr, int cmd);
1457 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1458 						 struct ifreq *ifr, int cmd);
1459 	int			(*ndo_siocbond)(struct net_device *dev,
1460 						struct ifreq *ifr, int cmd);
1461 	int			(*ndo_siocwandev)(struct net_device *dev,
1462 						  struct if_settings *ifs);
1463 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1464 						      struct ifreq *ifr,
1465 						      void __user *data, int cmd);
1466 	int			(*ndo_set_config)(struct net_device *dev,
1467 					          struct ifmap *map);
1468 	int			(*ndo_change_mtu)(struct net_device *dev,
1469 						  int new_mtu);
1470 	int			(*ndo_neigh_setup)(struct net_device *dev,
1471 						   struct neigh_parms *);
1472 	void			(*ndo_tx_timeout) (struct net_device *dev,
1473 						   unsigned int txqueue);
1474 
1475 	void			(*ndo_get_stats64)(struct net_device *dev,
1476 						   struct rtnl_link_stats64 *storage);
1477 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1478 	int			(*ndo_get_offload_stats)(int attr_id,
1479 							 const struct net_device *dev,
1480 							 void *attr_data);
1481 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1482 
1483 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1484 						       __be16 proto, u16 vid);
1485 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1486 						        __be16 proto, u16 vid);
1487 #ifdef CONFIG_NET_POLL_CONTROLLER
1488 	void                    (*ndo_poll_controller)(struct net_device *dev);
1489 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1490 						     struct netpoll_info *info);
1491 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1492 #endif
1493 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1494 						  int queue, u8 *mac);
1495 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1496 						   int queue, u16 vlan,
1497 						   u8 qos, __be16 proto);
1498 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1499 						   int vf, int min_tx_rate,
1500 						   int max_tx_rate);
1501 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1502 						       int vf, bool setting);
1503 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1504 						    int vf, bool setting);
1505 	int			(*ndo_get_vf_config)(struct net_device *dev,
1506 						     int vf,
1507 						     struct ifla_vf_info *ivf);
1508 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1509 							 int vf, int link_state);
1510 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1511 						    int vf,
1512 						    struct ifla_vf_stats
1513 						    *vf_stats);
1514 	int			(*ndo_set_vf_port)(struct net_device *dev,
1515 						   int vf,
1516 						   struct nlattr *port[]);
1517 	int			(*ndo_get_vf_port)(struct net_device *dev,
1518 						   int vf, struct sk_buff *skb);
1519 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1520 						   int vf,
1521 						   struct ifla_vf_guid *node_guid,
1522 						   struct ifla_vf_guid *port_guid);
1523 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1524 						   int vf, u64 guid,
1525 						   int guid_type);
1526 	int			(*ndo_set_vf_rss_query_en)(
1527 						   struct net_device *dev,
1528 						   int vf, bool setting);
1529 	int			(*ndo_setup_tc)(struct net_device *dev,
1530 						enum tc_setup_type type,
1531 						void *type_data);
1532 #if IS_ENABLED(CONFIG_FCOE)
1533 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1534 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1535 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1536 						      u16 xid,
1537 						      struct scatterlist *sgl,
1538 						      unsigned int sgc);
1539 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1540 						     u16 xid);
1541 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1542 						       u16 xid,
1543 						       struct scatterlist *sgl,
1544 						       unsigned int sgc);
1545 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1546 							struct netdev_fcoe_hbainfo *hbainfo);
1547 #endif
1548 
1549 #if IS_ENABLED(CONFIG_LIBFCOE)
1550 #define NETDEV_FCOE_WWNN 0
1551 #define NETDEV_FCOE_WWPN 1
1552 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1553 						    u64 *wwn, int type);
1554 #endif
1555 
1556 #ifdef CONFIG_RFS_ACCEL
1557 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1558 						     const struct sk_buff *skb,
1559 						     u16 rxq_index,
1560 						     u32 flow_id);
1561 #endif
1562 	int			(*ndo_add_slave)(struct net_device *dev,
1563 						 struct net_device *slave_dev,
1564 						 struct netlink_ext_ack *extack);
1565 	int			(*ndo_del_slave)(struct net_device *dev,
1566 						 struct net_device *slave_dev);
1567 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1568 						      struct sk_buff *skb,
1569 						      bool all_slaves);
1570 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1571 							struct sock *sk);
1572 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1573 						    netdev_features_t features);
1574 	int			(*ndo_set_features)(struct net_device *dev,
1575 						    netdev_features_t features);
1576 	int			(*ndo_neigh_construct)(struct net_device *dev,
1577 						       struct neighbour *n);
1578 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1579 						     struct neighbour *n);
1580 
1581 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1582 					       struct nlattr *tb[],
1583 					       struct net_device *dev,
1584 					       const unsigned char *addr,
1585 					       u16 vid,
1586 					       u16 flags,
1587 					       struct netlink_ext_ack *extack);
1588 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1589 					       struct nlattr *tb[],
1590 					       struct net_device *dev,
1591 					       const unsigned char *addr,
1592 					       u16 vid, struct netlink_ext_ack *extack);
1593 	int			(*ndo_fdb_del_bulk)(struct nlmsghdr *nlh,
1594 						    struct net_device *dev,
1595 						    struct netlink_ext_ack *extack);
1596 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1597 						struct netlink_callback *cb,
1598 						struct net_device *dev,
1599 						struct net_device *filter_dev,
1600 						int *idx);
1601 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1602 					       struct nlattr *tb[],
1603 					       struct net_device *dev,
1604 					       const unsigned char *addr,
1605 					       u16 vid, u32 portid, u32 seq,
1606 					       struct netlink_ext_ack *extack);
1607 	int			(*ndo_mdb_add)(struct net_device *dev,
1608 					       struct nlattr *tb[],
1609 					       u16 nlmsg_flags,
1610 					       struct netlink_ext_ack *extack);
1611 	int			(*ndo_mdb_del)(struct net_device *dev,
1612 					       struct nlattr *tb[],
1613 					       struct netlink_ext_ack *extack);
1614 	int			(*ndo_mdb_dump)(struct net_device *dev,
1615 						struct sk_buff *skb,
1616 						struct netlink_callback *cb);
1617 	int			(*ndo_mdb_get)(struct net_device *dev,
1618 					       struct nlattr *tb[], u32 portid,
1619 					       u32 seq,
1620 					       struct netlink_ext_ack *extack);
1621 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1622 						      struct nlmsghdr *nlh,
1623 						      u16 flags,
1624 						      struct netlink_ext_ack *extack);
1625 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1626 						      u32 pid, u32 seq,
1627 						      struct net_device *dev,
1628 						      u32 filter_mask,
1629 						      int nlflags);
1630 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1631 						      struct nlmsghdr *nlh,
1632 						      u16 flags);
1633 	int			(*ndo_change_carrier)(struct net_device *dev,
1634 						      bool new_carrier);
1635 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1636 							struct netdev_phys_item_id *ppid);
1637 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1638 							  struct netdev_phys_item_id *ppid);
1639 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1640 							  char *name, size_t len);
1641 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1642 							struct net_device *dev);
1643 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1644 							void *priv);
1645 
1646 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1647 						      int queue_index,
1648 						      u32 maxrate);
1649 	int			(*ndo_get_iflink)(const struct net_device *dev);
1650 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1651 						       struct sk_buff *skb);
1652 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1653 						       int needed_headroom);
1654 	int			(*ndo_bpf)(struct net_device *dev,
1655 					   struct netdev_bpf *bpf);
1656 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1657 						struct xdp_frame **xdp,
1658 						u32 flags);
1659 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1660 							  struct xdp_buff *xdp);
1661 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1662 						  u32 queue_id, u32 flags);
1663 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1664 						  struct ip_tunnel_parm *p, int cmd);
1665 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1666 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1667                                                          struct net_device_path *path);
1668 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1669 						  const struct skb_shared_hwtstamps *hwtstamps,
1670 						  bool cycles);
1671 	int			(*ndo_hwtstamp_get)(struct net_device *dev,
1672 						    struct kernel_hwtstamp_config *kernel_config);
1673 	int			(*ndo_hwtstamp_set)(struct net_device *dev,
1674 						    struct kernel_hwtstamp_config *kernel_config,
1675 						    struct netlink_ext_ack *extack);
1676 };
1677 
1678 /**
1679  * enum netdev_priv_flags - &struct net_device priv_flags
1680  *
1681  * These are the &struct net_device, they are only set internally
1682  * by drivers and used in the kernel. These flags are invisible to
1683  * userspace; this means that the order of these flags can change
1684  * during any kernel release.
1685  *
1686  * You should have a pretty good reason to be extending these flags.
1687  *
1688  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1689  * @IFF_EBRIDGE: Ethernet bridging device
1690  * @IFF_BONDING: bonding master or slave
1691  * @IFF_ISATAP: ISATAP interface (RFC4214)
1692  * @IFF_WAN_HDLC: WAN HDLC device
1693  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1694  *	release skb->dst
1695  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1696  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1697  * @IFF_MACVLAN_PORT: device used as macvlan port
1698  * @IFF_BRIDGE_PORT: device used as bridge port
1699  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1700  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1701  * @IFF_UNICAST_FLT: Supports unicast filtering
1702  * @IFF_TEAM_PORT: device used as team port
1703  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1704  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1705  *	change when it's running
1706  * @IFF_MACVLAN: Macvlan device
1707  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1708  *	underlying stacked devices
1709  * @IFF_L3MDEV_MASTER: device is an L3 master device
1710  * @IFF_NO_QUEUE: device can run without qdisc attached
1711  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1712  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1713  * @IFF_TEAM: device is a team device
1714  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1715  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1716  *	entity (i.e. the master device for bridged veth)
1717  * @IFF_MACSEC: device is a MACsec device
1718  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1719  * @IFF_FAILOVER: device is a failover master device
1720  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1721  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1722  * @IFF_NO_ADDRCONF: prevent ipv6 addrconf
1723  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1724  *	skb_headlen(skb) == 0 (data starts from frag0)
1725  * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1726  * @IFF_SEE_ALL_HWTSTAMP_REQUESTS: device wants to see calls to
1727  *	ndo_hwtstamp_set() for all timestamp requests regardless of source,
1728  *	even if those aren't HWTSTAMP_SOURCE_NETDEV.
1729  */
1730 enum netdev_priv_flags {
1731 	IFF_802_1Q_VLAN			= 1<<0,
1732 	IFF_EBRIDGE			= 1<<1,
1733 	IFF_BONDING			= 1<<2,
1734 	IFF_ISATAP			= 1<<3,
1735 	IFF_WAN_HDLC			= 1<<4,
1736 	IFF_XMIT_DST_RELEASE		= 1<<5,
1737 	IFF_DONT_BRIDGE			= 1<<6,
1738 	IFF_DISABLE_NETPOLL		= 1<<7,
1739 	IFF_MACVLAN_PORT		= 1<<8,
1740 	IFF_BRIDGE_PORT			= 1<<9,
1741 	IFF_OVS_DATAPATH		= 1<<10,
1742 	IFF_TX_SKB_SHARING		= 1<<11,
1743 	IFF_UNICAST_FLT			= 1<<12,
1744 	IFF_TEAM_PORT			= 1<<13,
1745 	IFF_SUPP_NOFCS			= 1<<14,
1746 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1747 	IFF_MACVLAN			= 1<<16,
1748 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1749 	IFF_L3MDEV_MASTER		= 1<<18,
1750 	IFF_NO_QUEUE			= 1<<19,
1751 	IFF_OPENVSWITCH			= 1<<20,
1752 	IFF_L3MDEV_SLAVE		= 1<<21,
1753 	IFF_TEAM			= 1<<22,
1754 	IFF_RXFH_CONFIGURED		= 1<<23,
1755 	IFF_PHONY_HEADROOM		= 1<<24,
1756 	IFF_MACSEC			= 1<<25,
1757 	IFF_NO_RX_HANDLER		= 1<<26,
1758 	IFF_FAILOVER			= 1<<27,
1759 	IFF_FAILOVER_SLAVE		= 1<<28,
1760 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1761 	IFF_NO_ADDRCONF			= BIT_ULL(30),
1762 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1763 	IFF_CHANGE_PROTO_DOWN		= BIT_ULL(32),
1764 	IFF_SEE_ALL_HWTSTAMP_REQUESTS	= BIT_ULL(33),
1765 };
1766 
1767 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1768 #define IFF_EBRIDGE			IFF_EBRIDGE
1769 #define IFF_BONDING			IFF_BONDING
1770 #define IFF_ISATAP			IFF_ISATAP
1771 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1772 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1773 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1774 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1775 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1776 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1777 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1778 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1779 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1780 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1781 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1782 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1783 #define IFF_MACVLAN			IFF_MACVLAN
1784 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1785 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1786 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1787 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1788 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1789 #define IFF_TEAM			IFF_TEAM
1790 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1791 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1792 #define IFF_MACSEC			IFF_MACSEC
1793 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1794 #define IFF_FAILOVER			IFF_FAILOVER
1795 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1796 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1797 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1798 
1799 /* Specifies the type of the struct net_device::ml_priv pointer */
1800 enum netdev_ml_priv_type {
1801 	ML_PRIV_NONE,
1802 	ML_PRIV_CAN,
1803 };
1804 
1805 enum netdev_stat_type {
1806 	NETDEV_PCPU_STAT_NONE,
1807 	NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */
1808 	NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */
1809 	NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */
1810 };
1811 
1812 /**
1813  *	struct net_device - The DEVICE structure.
1814  *
1815  *	Actually, this whole structure is a big mistake.  It mixes I/O
1816  *	data with strictly "high-level" data, and it has to know about
1817  *	almost every data structure used in the INET module.
1818  *
1819  *	@name:	This is the first field of the "visible" part of this structure
1820  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1821  *		of the interface.
1822  *
1823  *	@name_node:	Name hashlist node
1824  *	@ifalias:	SNMP alias
1825  *	@mem_end:	Shared memory end
1826  *	@mem_start:	Shared memory start
1827  *	@base_addr:	Device I/O address
1828  *	@irq:		Device IRQ number
1829  *
1830  *	@state:		Generic network queuing layer state, see netdev_state_t
1831  *	@dev_list:	The global list of network devices
1832  *	@napi_list:	List entry used for polling NAPI devices
1833  *	@unreg_list:	List entry  when we are unregistering the
1834  *			device; see the function unregister_netdev
1835  *	@close_list:	List entry used when we are closing the device
1836  *	@ptype_all:     Device-specific packet handlers for all protocols
1837  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1838  *
1839  *	@adj_list:	Directly linked devices, like slaves for bonding
1840  *	@features:	Currently active device features
1841  *	@hw_features:	User-changeable features
1842  *
1843  *	@wanted_features:	User-requested features
1844  *	@vlan_features:		Mask of features inheritable by VLAN devices
1845  *
1846  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1847  *				This field indicates what encapsulation
1848  *				offloads the hardware is capable of doing,
1849  *				and drivers will need to set them appropriately.
1850  *
1851  *	@mpls_features:	Mask of features inheritable by MPLS
1852  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1853  *
1854  *	@ifindex:	interface index
1855  *	@group:		The group the device belongs to
1856  *
1857  *	@stats:		Statistics struct, which was left as a legacy, use
1858  *			rtnl_link_stats64 instead
1859  *
1860  *	@core_stats:	core networking counters,
1861  *			do not use this in drivers
1862  *	@carrier_up_count:	Number of times the carrier has been up
1863  *	@carrier_down_count:	Number of times the carrier has been down
1864  *
1865  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1866  *				instead of ioctl,
1867  *				see <net/iw_handler.h> for details.
1868  *	@wireless_data:	Instance data managed by the core of wireless extensions
1869  *
1870  *	@netdev_ops:	Includes several pointers to callbacks,
1871  *			if one wants to override the ndo_*() functions
1872  *	@xdp_metadata_ops:	Includes pointers to XDP metadata callbacks.
1873  *	@xsk_tx_metadata_ops:	Includes pointers to AF_XDP TX metadata callbacks.
1874  *	@ethtool_ops:	Management operations
1875  *	@l3mdev_ops:	Layer 3 master device operations
1876  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1877  *			discovery handling. Necessary for e.g. 6LoWPAN.
1878  *	@xfrmdev_ops:	Transformation offload operations
1879  *	@tlsdev_ops:	Transport Layer Security offload operations
1880  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1881  *			of Layer 2 headers.
1882  *
1883  *	@flags:		Interface flags (a la BSD)
1884  *	@xdp_features:	XDP capability supported by the device
1885  *	@priv_flags:	Like 'flags' but invisible to userspace,
1886  *			see if.h for the definitions
1887  *	@gflags:	Global flags ( kept as legacy )
1888  *	@padded:	How much padding added by alloc_netdev()
1889  *	@operstate:	RFC2863 operstate
1890  *	@link_mode:	Mapping policy to operstate
1891  *	@if_port:	Selectable AUI, TP, ...
1892  *	@dma:		DMA channel
1893  *	@mtu:		Interface MTU value
1894  *	@min_mtu:	Interface Minimum MTU value
1895  *	@max_mtu:	Interface Maximum MTU value
1896  *	@type:		Interface hardware type
1897  *	@hard_header_len: Maximum hardware header length.
1898  *	@min_header_len:  Minimum hardware header length
1899  *
1900  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1901  *			  cases can this be guaranteed
1902  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1903  *			  cases can this be guaranteed. Some cases also use
1904  *			  LL_MAX_HEADER instead to allocate the skb
1905  *
1906  *	interface address info:
1907  *
1908  * 	@perm_addr:		Permanent hw address
1909  * 	@addr_assign_type:	Hw address assignment type
1910  * 	@addr_len:		Hardware address length
1911  *	@upper_level:		Maximum depth level of upper devices.
1912  *	@lower_level:		Maximum depth level of lower devices.
1913  *	@neigh_priv_len:	Used in neigh_alloc()
1914  * 	@dev_id:		Used to differentiate devices that share
1915  * 				the same link layer address
1916  * 	@dev_port:		Used to differentiate devices that share
1917  * 				the same function
1918  *	@addr_list_lock:	XXX: need comments on this one
1919  *	@name_assign_type:	network interface name assignment type
1920  *	@uc_promisc:		Counter that indicates promiscuous mode
1921  *				has been enabled due to the need to listen to
1922  *				additional unicast addresses in a device that
1923  *				does not implement ndo_set_rx_mode()
1924  *	@uc:			unicast mac addresses
1925  *	@mc:			multicast mac addresses
1926  *	@dev_addrs:		list of device hw addresses
1927  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1928  *	@promiscuity:		Number of times the NIC is told to work in
1929  *				promiscuous mode; if it becomes 0 the NIC will
1930  *				exit promiscuous mode
1931  *	@allmulti:		Counter, enables or disables allmulticast mode
1932  *
1933  *	@vlan_info:	VLAN info
1934  *	@dsa_ptr:	dsa specific data
1935  *	@tipc_ptr:	TIPC specific data
1936  *	@atalk_ptr:	AppleTalk link
1937  *	@ip_ptr:	IPv4 specific data
1938  *	@ip6_ptr:	IPv6 specific data
1939  *	@ax25_ptr:	AX.25 specific data
1940  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1941  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1942  *			 device struct
1943  *	@mpls_ptr:	mpls_dev struct pointer
1944  *	@mctp_ptr:	MCTP specific data
1945  *
1946  *	@dev_addr:	Hw address (before bcast,
1947  *			because most packets are unicast)
1948  *
1949  *	@_rx:			Array of RX queues
1950  *	@num_rx_queues:		Number of RX queues
1951  *				allocated at register_netdev() time
1952  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1953  *	@xdp_prog:		XDP sockets filter program pointer
1954  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1955  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1956  *				allow to avoid NIC hard IRQ, on busy queues.
1957  *
1958  *	@rx_handler:		handler for received packets
1959  *	@rx_handler_data: 	XXX: need comments on this one
1960  *	@tcx_ingress:		BPF & clsact qdisc specific data for ingress processing
1961  *	@ingress_queue:		XXX: need comments on this one
1962  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1963  *	@broadcast:		hw bcast address
1964  *
1965  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1966  *			indexed by RX queue number. Assigned by driver.
1967  *			This must only be set if the ndo_rx_flow_steer
1968  *			operation is defined
1969  *	@index_hlist:		Device index hash chain
1970  *
1971  *	@_tx:			Array of TX queues
1972  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1973  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1974  *	@qdisc:			Root qdisc from userspace point of view
1975  *	@tx_queue_len:		Max frames per queue allowed
1976  *	@tx_global_lock: 	XXX: need comments on this one
1977  *	@xdp_bulkq:		XDP device bulk queue
1978  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1979  *
1980  *	@xps_maps:	XXX: need comments on this one
1981  *	@tcx_egress:		BPF & clsact qdisc specific data for egress processing
1982  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1983  *	@qdisc_hash:		qdisc hash table
1984  *	@watchdog_timeo:	Represents the timeout that is used by
1985  *				the watchdog (see dev_watchdog())
1986  *	@watchdog_timer:	List of timers
1987  *
1988  *	@proto_down_reason:	reason a netdev interface is held down
1989  *	@pcpu_refcnt:		Number of references to this device
1990  *	@dev_refcnt:		Number of references to this device
1991  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1992  *	@todo_list:		Delayed register/unregister
1993  *	@link_watch_list:	XXX: need comments on this one
1994  *
1995  *	@reg_state:		Register/unregister state machine
1996  *	@dismantle:		Device is going to be freed
1997  *	@rtnl_link_state:	This enum represents the phases of creating
1998  *				a new link
1999  *
2000  *	@needs_free_netdev:	Should unregister perform free_netdev?
2001  *	@priv_destructor:	Called from unregister
2002  *	@npinfo:		XXX: need comments on this one
2003  * 	@nd_net:		Network namespace this network device is inside
2004  *
2005  * 	@ml_priv:	Mid-layer private
2006  *	@ml_priv_type:  Mid-layer private type
2007  *
2008  *	@pcpu_stat_type:	Type of device statistics which the core should
2009  *				allocate/free: none, lstats, tstats, dstats. none
2010  *				means the driver is handling statistics allocation/
2011  *				freeing internally.
2012  *	@lstats:		Loopback statistics: packets, bytes
2013  *	@tstats:		Tunnel statistics: RX/TX packets, RX/TX bytes
2014  *	@dstats:		Dummy statistics: RX/TX/drop packets, RX/TX bytes
2015  *
2016  *	@garp_port:	GARP
2017  *	@mrp_port:	MRP
2018  *
2019  *	@dm_private:	Drop monitor private
2020  *
2021  *	@dev:		Class/net/name entry
2022  *	@sysfs_groups:	Space for optional device, statistics and wireless
2023  *			sysfs groups
2024  *
2025  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
2026  *	@rtnl_link_ops:	Rtnl_link_ops
2027  *
2028  *	@gso_max_size:	Maximum size of generic segmentation offload
2029  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
2030  *	@gso_max_segs:	Maximum number of segments that can be passed to the
2031  *			NIC for GSO
2032  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
2033  * 	@gso_ipv4_max_size:	Maximum size of generic segmentation offload,
2034  * 				for IPv4.
2035  *
2036  *	@dcbnl_ops:	Data Center Bridging netlink ops
2037  *	@num_tc:	Number of traffic classes in the net device
2038  *	@tc_to_txq:	XXX: need comments on this one
2039  *	@prio_tc_map:	XXX: need comments on this one
2040  *
2041  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
2042  *
2043  *	@priomap:	XXX: need comments on this one
2044  *	@phydev:	Physical device may attach itself
2045  *			for hardware timestamping
2046  *	@sfp_bus:	attached &struct sfp_bus structure.
2047  *
2048  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
2049  *
2050  *	@proto_down:	protocol port state information can be sent to the
2051  *			switch driver and used to set the phys state of the
2052  *			switch port.
2053  *
2054  *	@wol_enabled:	Wake-on-LAN is enabled
2055  *
2056  *	@threaded:	napi threaded mode is enabled
2057  *
2058  *	@net_notifier_list:	List of per-net netdev notifier block
2059  *				that follow this device when it is moved
2060  *				to another network namespace.
2061  *
2062  *	@macsec_ops:    MACsec offloading ops
2063  *
2064  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
2065  *				offload capabilities of the device
2066  *	@udp_tunnel_nic:	UDP tunnel offload state
2067  *	@xdp_state:		stores info on attached XDP BPF programs
2068  *
2069  *	@nested_level:	Used as a parameter of spin_lock_nested() of
2070  *			dev->addr_list_lock.
2071  *	@unlink_list:	As netif_addr_lock() can be called recursively,
2072  *			keep a list of interfaces to be deleted.
2073  *	@gro_max_size:	Maximum size of aggregated packet in generic
2074  *			receive offload (GRO)
2075  * 	@gro_ipv4_max_size:	Maximum size of aggregated packet in generic
2076  * 				receive offload (GRO), for IPv4.
2077  *	@xdp_zc_max_segs:	Maximum number of segments supported by AF_XDP
2078  *				zero copy driver
2079  *
2080  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
2081  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
2082  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
2083  *	@dev_registered_tracker:	tracker for reference held while
2084  *					registered
2085  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
2086  *
2087  *	@devlink_port:	Pointer to related devlink port structure.
2088  *			Assigned by a driver before netdev registration using
2089  *			SET_NETDEV_DEVLINK_PORT macro. This pointer is static
2090  *			during the time netdevice is registered.
2091  *
2092  *	@dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem,
2093  *		   where the clock is recovered.
2094  *
2095  *	FIXME: cleanup struct net_device such that network protocol info
2096  *	moves out.
2097  */
2098 
2099 struct net_device {
2100 	/* Cacheline organization can be found documented in
2101 	 * Documentation/networking/net_cachelines/net_device.rst.
2102 	 * Please update the document when adding new fields.
2103 	 */
2104 
2105 	/* TX read-mostly hotpath */
2106 	__cacheline_group_begin(net_device_read_tx);
2107 	unsigned long long	priv_flags;
2108 	const struct net_device_ops *netdev_ops;
2109 	const struct header_ops *header_ops;
2110 	struct netdev_queue	*_tx;
2111 	unsigned int		real_num_tx_queues;
2112 	unsigned int		gso_max_size;
2113 	unsigned int		gso_ipv4_max_size;
2114 	u16			gso_max_segs;
2115 	s16			num_tc;
2116 	/* Note : dev->mtu is often read without holding a lock.
2117 	 * Writers usually hold RTNL.
2118 	 * It is recommended to use READ_ONCE() to annotate the reads,
2119 	 * and to use WRITE_ONCE() to annotate the writes.
2120 	 */
2121 	unsigned int		mtu;
2122 	unsigned short		needed_headroom;
2123 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2124 #ifdef CONFIG_XPS
2125 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2126 #endif
2127 #ifdef CONFIG_NETFILTER_EGRESS
2128 	struct nf_hook_entries __rcu *nf_hooks_egress;
2129 #endif
2130 #ifdef CONFIG_NET_XGRESS
2131 	struct bpf_mprog_entry __rcu *tcx_egress;
2132 #endif
2133 	__cacheline_group_end(net_device_read_tx);
2134 
2135 	/* TXRX read-mostly hotpath */
2136 	__cacheline_group_begin(net_device_read_txrx);
2137 	unsigned int		flags;
2138 	unsigned short		hard_header_len;
2139 	netdev_features_t	features;
2140 	struct inet6_dev __rcu	*ip6_ptr;
2141 	__cacheline_group_end(net_device_read_txrx);
2142 
2143 	/* RX read-mostly hotpath */
2144 	__cacheline_group_begin(net_device_read_rx);
2145 	struct list_head	ptype_specific;
2146 	int			ifindex;
2147 	unsigned int		real_num_rx_queues;
2148 	struct netdev_rx_queue	*_rx;
2149 	unsigned long		gro_flush_timeout;
2150 	int			napi_defer_hard_irqs;
2151 	unsigned int		gro_max_size;
2152 	unsigned int		gro_ipv4_max_size;
2153 	rx_handler_func_t __rcu	*rx_handler;
2154 	void __rcu		*rx_handler_data;
2155 	possible_net_t			nd_net;
2156 #ifdef CONFIG_NETPOLL
2157 	struct netpoll_info __rcu	*npinfo;
2158 #endif
2159 #ifdef CONFIG_NET_XGRESS
2160 	struct bpf_mprog_entry __rcu *tcx_ingress;
2161 #endif
2162 	__cacheline_group_end(net_device_read_rx);
2163 
2164 	char			name[IFNAMSIZ];
2165 	struct netdev_name_node	*name_node;
2166 	struct dev_ifalias	__rcu *ifalias;
2167 	/*
2168 	 *	I/O specific fields
2169 	 *	FIXME: Merge these and struct ifmap into one
2170 	 */
2171 	unsigned long		mem_end;
2172 	unsigned long		mem_start;
2173 	unsigned long		base_addr;
2174 
2175 	/*
2176 	 *	Some hardware also needs these fields (state,dev_list,
2177 	 *	napi_list,unreg_list,close_list) but they are not
2178 	 *	part of the usual set specified in Space.c.
2179 	 */
2180 
2181 	unsigned long		state;
2182 
2183 	struct list_head	dev_list;
2184 	struct list_head	napi_list;
2185 	struct list_head	unreg_list;
2186 	struct list_head	close_list;
2187 	struct list_head	ptype_all;
2188 
2189 	struct {
2190 		struct list_head upper;
2191 		struct list_head lower;
2192 	} adj_list;
2193 
2194 	/* Read-mostly cache-line for fast-path access */
2195 	xdp_features_t		xdp_features;
2196 	const struct xdp_metadata_ops *xdp_metadata_ops;
2197 	const struct xsk_tx_metadata_ops *xsk_tx_metadata_ops;
2198 	unsigned short		gflags;
2199 
2200 	unsigned short		needed_tailroom;
2201 
2202 	netdev_features_t	hw_features;
2203 	netdev_features_t	wanted_features;
2204 	netdev_features_t	vlan_features;
2205 	netdev_features_t	hw_enc_features;
2206 	netdev_features_t	mpls_features;
2207 	netdev_features_t	gso_partial_features;
2208 
2209 	unsigned int		min_mtu;
2210 	unsigned int		max_mtu;
2211 	unsigned short		type;
2212 	unsigned char		min_header_len;
2213 	unsigned char		name_assign_type;
2214 
2215 	int			group;
2216 
2217 	struct net_device_stats	stats; /* not used by modern drivers */
2218 
2219 	struct net_device_core_stats __percpu *core_stats;
2220 
2221 	/* Stats to monitor link on/off, flapping */
2222 	atomic_t		carrier_up_count;
2223 	atomic_t		carrier_down_count;
2224 
2225 #ifdef CONFIG_WIRELESS_EXT
2226 	const struct iw_handler_def *wireless_handlers;
2227 	struct iw_public_data	*wireless_data;
2228 #endif
2229 	const struct ethtool_ops *ethtool_ops;
2230 #ifdef CONFIG_NET_L3_MASTER_DEV
2231 	const struct l3mdev_ops	*l3mdev_ops;
2232 #endif
2233 #if IS_ENABLED(CONFIG_IPV6)
2234 	const struct ndisc_ops *ndisc_ops;
2235 #endif
2236 
2237 #ifdef CONFIG_XFRM_OFFLOAD
2238 	const struct xfrmdev_ops *xfrmdev_ops;
2239 #endif
2240 
2241 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2242 	const struct tlsdev_ops *tlsdev_ops;
2243 #endif
2244 
2245 	unsigned char		operstate;
2246 	unsigned char		link_mode;
2247 
2248 	unsigned char		if_port;
2249 	unsigned char		dma;
2250 
2251 	/* Interface address info. */
2252 	unsigned char		perm_addr[MAX_ADDR_LEN];
2253 	unsigned char		addr_assign_type;
2254 	unsigned char		addr_len;
2255 	unsigned char		upper_level;
2256 	unsigned char		lower_level;
2257 
2258 	unsigned short		neigh_priv_len;
2259 	unsigned short          dev_id;
2260 	unsigned short          dev_port;
2261 	unsigned short		padded;
2262 
2263 	spinlock_t		addr_list_lock;
2264 	int			irq;
2265 
2266 	struct netdev_hw_addr_list	uc;
2267 	struct netdev_hw_addr_list	mc;
2268 	struct netdev_hw_addr_list	dev_addrs;
2269 
2270 #ifdef CONFIG_SYSFS
2271 	struct kset		*queues_kset;
2272 #endif
2273 #ifdef CONFIG_LOCKDEP
2274 	struct list_head	unlink_list;
2275 #endif
2276 	unsigned int		promiscuity;
2277 	unsigned int		allmulti;
2278 	bool			uc_promisc;
2279 #ifdef CONFIG_LOCKDEP
2280 	unsigned char		nested_level;
2281 #endif
2282 
2283 
2284 	/* Protocol-specific pointers */
2285 	struct in_device __rcu	*ip_ptr;
2286 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2287 	struct vlan_info __rcu	*vlan_info;
2288 #endif
2289 #if IS_ENABLED(CONFIG_NET_DSA)
2290 	struct dsa_port		*dsa_ptr;
2291 #endif
2292 #if IS_ENABLED(CONFIG_TIPC)
2293 	struct tipc_bearer __rcu *tipc_ptr;
2294 #endif
2295 #if IS_ENABLED(CONFIG_ATALK)
2296 	void 			*atalk_ptr;
2297 #endif
2298 #if IS_ENABLED(CONFIG_AX25)
2299 	void			*ax25_ptr;
2300 #endif
2301 #if IS_ENABLED(CONFIG_CFG80211)
2302 	struct wireless_dev	*ieee80211_ptr;
2303 #endif
2304 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2305 	struct wpan_dev		*ieee802154_ptr;
2306 #endif
2307 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2308 	struct mpls_dev __rcu	*mpls_ptr;
2309 #endif
2310 #if IS_ENABLED(CONFIG_MCTP)
2311 	struct mctp_dev __rcu	*mctp_ptr;
2312 #endif
2313 
2314 /*
2315  * Cache lines mostly used on receive path (including eth_type_trans())
2316  */
2317 	/* Interface address info used in eth_type_trans() */
2318 	const unsigned char	*dev_addr;
2319 
2320 	unsigned int		num_rx_queues;
2321 	struct bpf_prog __rcu	*xdp_prog;
2322 #define GRO_LEGACY_MAX_SIZE	65536u
2323 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2324  * and shinfo->gso_segs is a 16bit field.
2325  */
2326 #define GRO_MAX_SIZE		(8 * 65535u)
2327 	unsigned int		xdp_zc_max_segs;
2328 	struct netdev_queue __rcu *ingress_queue;
2329 #ifdef CONFIG_NETFILTER_INGRESS
2330 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2331 #endif
2332 
2333 	unsigned char		broadcast[MAX_ADDR_LEN];
2334 #ifdef CONFIG_RFS_ACCEL
2335 	struct cpu_rmap		*rx_cpu_rmap;
2336 #endif
2337 	struct hlist_node	index_hlist;
2338 
2339 /*
2340  * Cache lines mostly used on transmit path
2341  */
2342 	unsigned int		num_tx_queues;
2343 	struct Qdisc __rcu	*qdisc;
2344 	unsigned int		tx_queue_len;
2345 	spinlock_t		tx_global_lock;
2346 
2347 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2348 
2349 #ifdef CONFIG_NET_SCHED
2350 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2351 #endif
2352 	/* These may be needed for future network-power-down code. */
2353 	struct timer_list	watchdog_timer;
2354 	int			watchdog_timeo;
2355 
2356 	u32                     proto_down_reason;
2357 
2358 	struct list_head	todo_list;
2359 
2360 #ifdef CONFIG_PCPU_DEV_REFCNT
2361 	int __percpu		*pcpu_refcnt;
2362 #else
2363 	refcount_t		dev_refcnt;
2364 #endif
2365 	struct ref_tracker_dir	refcnt_tracker;
2366 
2367 	struct list_head	link_watch_list;
2368 
2369 	enum { NETREG_UNINITIALIZED=0,
2370 	       NETREG_REGISTERED,	/* completed register_netdevice */
2371 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2372 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2373 	       NETREG_RELEASED,		/* called free_netdev */
2374 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2375 	} reg_state:8;
2376 
2377 	bool dismantle;
2378 
2379 	enum {
2380 		RTNL_LINK_INITIALIZED,
2381 		RTNL_LINK_INITIALIZING,
2382 	} rtnl_link_state:16;
2383 
2384 	bool needs_free_netdev;
2385 	void (*priv_destructor)(struct net_device *dev);
2386 
2387 	/* mid-layer private */
2388 	void				*ml_priv;
2389 	enum netdev_ml_priv_type	ml_priv_type;
2390 
2391 	enum netdev_stat_type		pcpu_stat_type:8;
2392 	union {
2393 		struct pcpu_lstats __percpu		*lstats;
2394 		struct pcpu_sw_netstats __percpu	*tstats;
2395 		struct pcpu_dstats __percpu		*dstats;
2396 	};
2397 
2398 #if IS_ENABLED(CONFIG_GARP)
2399 	struct garp_port __rcu	*garp_port;
2400 #endif
2401 #if IS_ENABLED(CONFIG_MRP)
2402 	struct mrp_port __rcu	*mrp_port;
2403 #endif
2404 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2405 	struct dm_hw_stat_delta __rcu *dm_private;
2406 #endif
2407 	struct device		dev;
2408 	const struct attribute_group *sysfs_groups[4];
2409 	const struct attribute_group *sysfs_rx_queue_group;
2410 
2411 	const struct rtnl_link_ops *rtnl_link_ops;
2412 
2413 	/* for setting kernel sock attribute on TCP connection setup */
2414 #define GSO_MAX_SEGS		65535u
2415 #define GSO_LEGACY_MAX_SIZE	65536u
2416 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2417  * and shinfo->gso_segs is a 16bit field.
2418  */
2419 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2420 
2421 #define TSO_LEGACY_MAX_SIZE	65536
2422 #define TSO_MAX_SIZE		UINT_MAX
2423 	unsigned int		tso_max_size;
2424 #define TSO_MAX_SEGS		U16_MAX
2425 	u16			tso_max_segs;
2426 
2427 #ifdef CONFIG_DCB
2428 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2429 #endif
2430 	u8			prio_tc_map[TC_BITMASK + 1];
2431 
2432 #if IS_ENABLED(CONFIG_FCOE)
2433 	unsigned int		fcoe_ddp_xid;
2434 #endif
2435 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2436 	struct netprio_map __rcu *priomap;
2437 #endif
2438 	struct phy_device	*phydev;
2439 	struct sfp_bus		*sfp_bus;
2440 	struct lock_class_key	*qdisc_tx_busylock;
2441 	bool			proto_down;
2442 	unsigned		wol_enabled:1;
2443 	unsigned		threaded:1;
2444 
2445 	struct list_head	net_notifier_list;
2446 
2447 #if IS_ENABLED(CONFIG_MACSEC)
2448 	/* MACsec management functions */
2449 	const struct macsec_ops *macsec_ops;
2450 #endif
2451 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2452 	struct udp_tunnel_nic	*udp_tunnel_nic;
2453 
2454 	/* protected by rtnl_lock */
2455 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2456 
2457 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2458 	netdevice_tracker	linkwatch_dev_tracker;
2459 	netdevice_tracker	watchdog_dev_tracker;
2460 	netdevice_tracker	dev_registered_tracker;
2461 	struct rtnl_hw_stats64	*offload_xstats_l3;
2462 
2463 	struct devlink_port	*devlink_port;
2464 
2465 #if IS_ENABLED(CONFIG_DPLL)
2466 	struct dpll_pin		*dpll_pin;
2467 #endif
2468 #if IS_ENABLED(CONFIG_PAGE_POOL)
2469 	/** @page_pools: page pools created for this netdevice */
2470 	struct hlist_head	page_pools;
2471 #endif
2472 };
2473 #define to_net_dev(d) container_of(d, struct net_device, dev)
2474 
2475 /*
2476  * Driver should use this to assign devlink port instance to a netdevice
2477  * before it registers the netdevice. Therefore devlink_port is static
2478  * during the netdev lifetime after it is registered.
2479  */
2480 #define SET_NETDEV_DEVLINK_PORT(dev, port)			\
2481 ({								\
2482 	WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED);	\
2483 	((dev)->devlink_port = (port));				\
2484 })
2485 
2486 static inline bool netif_elide_gro(const struct net_device *dev)
2487 {
2488 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2489 		return true;
2490 	return false;
2491 }
2492 
2493 #define	NETDEV_ALIGN		32
2494 
2495 static inline
2496 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2497 {
2498 	return dev->prio_tc_map[prio & TC_BITMASK];
2499 }
2500 
2501 static inline
2502 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2503 {
2504 	if (tc >= dev->num_tc)
2505 		return -EINVAL;
2506 
2507 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2508 	return 0;
2509 }
2510 
2511 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2512 void netdev_reset_tc(struct net_device *dev);
2513 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2514 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2515 
2516 static inline
2517 int netdev_get_num_tc(struct net_device *dev)
2518 {
2519 	return dev->num_tc;
2520 }
2521 
2522 static inline void net_prefetch(void *p)
2523 {
2524 	prefetch(p);
2525 #if L1_CACHE_BYTES < 128
2526 	prefetch((u8 *)p + L1_CACHE_BYTES);
2527 #endif
2528 }
2529 
2530 static inline void net_prefetchw(void *p)
2531 {
2532 	prefetchw(p);
2533 #if L1_CACHE_BYTES < 128
2534 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2535 #endif
2536 }
2537 
2538 void netdev_unbind_sb_channel(struct net_device *dev,
2539 			      struct net_device *sb_dev);
2540 int netdev_bind_sb_channel_queue(struct net_device *dev,
2541 				 struct net_device *sb_dev,
2542 				 u8 tc, u16 count, u16 offset);
2543 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2544 static inline int netdev_get_sb_channel(struct net_device *dev)
2545 {
2546 	return max_t(int, -dev->num_tc, 0);
2547 }
2548 
2549 static inline
2550 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2551 					 unsigned int index)
2552 {
2553 	DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues);
2554 	return &dev->_tx[index];
2555 }
2556 
2557 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2558 						    const struct sk_buff *skb)
2559 {
2560 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2561 }
2562 
2563 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2564 					    void (*f)(struct net_device *,
2565 						      struct netdev_queue *,
2566 						      void *),
2567 					    void *arg)
2568 {
2569 	unsigned int i;
2570 
2571 	for (i = 0; i < dev->num_tx_queues; i++)
2572 		f(dev, &dev->_tx[i], arg);
2573 }
2574 
2575 #define netdev_lockdep_set_classes(dev)				\
2576 {								\
2577 	static struct lock_class_key qdisc_tx_busylock_key;	\
2578 	static struct lock_class_key qdisc_xmit_lock_key;	\
2579 	static struct lock_class_key dev_addr_list_lock_key;	\
2580 	unsigned int i;						\
2581 								\
2582 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2583 	lockdep_set_class(&(dev)->addr_list_lock,		\
2584 			  &dev_addr_list_lock_key);		\
2585 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2586 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2587 				  &qdisc_xmit_lock_key);	\
2588 }
2589 
2590 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2591 		     struct net_device *sb_dev);
2592 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2593 					 struct sk_buff *skb,
2594 					 struct net_device *sb_dev);
2595 
2596 /* returns the headroom that the master device needs to take in account
2597  * when forwarding to this dev
2598  */
2599 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2600 {
2601 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2602 }
2603 
2604 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2605 {
2606 	if (dev->netdev_ops->ndo_set_rx_headroom)
2607 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2608 }
2609 
2610 /* set the device rx headroom to the dev's default */
2611 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2612 {
2613 	netdev_set_rx_headroom(dev, -1);
2614 }
2615 
2616 static inline void *netdev_get_ml_priv(struct net_device *dev,
2617 				       enum netdev_ml_priv_type type)
2618 {
2619 	if (dev->ml_priv_type != type)
2620 		return NULL;
2621 
2622 	return dev->ml_priv;
2623 }
2624 
2625 static inline void netdev_set_ml_priv(struct net_device *dev,
2626 				      void *ml_priv,
2627 				      enum netdev_ml_priv_type type)
2628 {
2629 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2630 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2631 	     dev->ml_priv_type, type);
2632 	WARN(!dev->ml_priv_type && dev->ml_priv,
2633 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2634 
2635 	dev->ml_priv = ml_priv;
2636 	dev->ml_priv_type = type;
2637 }
2638 
2639 /*
2640  * Net namespace inlines
2641  */
2642 static inline
2643 struct net *dev_net(const struct net_device *dev)
2644 {
2645 	return read_pnet(&dev->nd_net);
2646 }
2647 
2648 static inline
2649 void dev_net_set(struct net_device *dev, struct net *net)
2650 {
2651 	write_pnet(&dev->nd_net, net);
2652 }
2653 
2654 /**
2655  *	netdev_priv - access network device private data
2656  *	@dev: network device
2657  *
2658  * Get network device private data
2659  */
2660 static inline void *netdev_priv(const struct net_device *dev)
2661 {
2662 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2663 }
2664 
2665 /* Set the sysfs physical device reference for the network logical device
2666  * if set prior to registration will cause a symlink during initialization.
2667  */
2668 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2669 
2670 /* Set the sysfs device type for the network logical device to allow
2671  * fine-grained identification of different network device types. For
2672  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2673  */
2674 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2675 
2676 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
2677 			  enum netdev_queue_type type,
2678 			  struct napi_struct *napi);
2679 
2680 static inline void netif_napi_set_irq(struct napi_struct *napi, int irq)
2681 {
2682 	napi->irq = irq;
2683 }
2684 
2685 /* Default NAPI poll() weight
2686  * Device drivers are strongly advised to not use bigger value
2687  */
2688 #define NAPI_POLL_WEIGHT 64
2689 
2690 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2691 			   int (*poll)(struct napi_struct *, int), int weight);
2692 
2693 /**
2694  * netif_napi_add() - initialize a NAPI context
2695  * @dev:  network device
2696  * @napi: NAPI context
2697  * @poll: polling function
2698  *
2699  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2700  * *any* of the other NAPI-related functions.
2701  */
2702 static inline void
2703 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2704 	       int (*poll)(struct napi_struct *, int))
2705 {
2706 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2707 }
2708 
2709 static inline void
2710 netif_napi_add_tx_weight(struct net_device *dev,
2711 			 struct napi_struct *napi,
2712 			 int (*poll)(struct napi_struct *, int),
2713 			 int weight)
2714 {
2715 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2716 	netif_napi_add_weight(dev, napi, poll, weight);
2717 }
2718 
2719 /**
2720  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2721  * @dev:  network device
2722  * @napi: NAPI context
2723  * @poll: polling function
2724  *
2725  * This variant of netif_napi_add() should be used from drivers using NAPI
2726  * to exclusively poll a TX queue.
2727  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2728  */
2729 static inline void netif_napi_add_tx(struct net_device *dev,
2730 				     struct napi_struct *napi,
2731 				     int (*poll)(struct napi_struct *, int))
2732 {
2733 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2734 }
2735 
2736 /**
2737  *  __netif_napi_del - remove a NAPI context
2738  *  @napi: NAPI context
2739  *
2740  * Warning: caller must observe RCU grace period before freeing memory
2741  * containing @napi. Drivers might want to call this helper to combine
2742  * all the needed RCU grace periods into a single one.
2743  */
2744 void __netif_napi_del(struct napi_struct *napi);
2745 
2746 /**
2747  *  netif_napi_del - remove a NAPI context
2748  *  @napi: NAPI context
2749  *
2750  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2751  */
2752 static inline void netif_napi_del(struct napi_struct *napi)
2753 {
2754 	__netif_napi_del(napi);
2755 	synchronize_net();
2756 }
2757 
2758 struct packet_type {
2759 	__be16			type;	/* This is really htons(ether_type). */
2760 	bool			ignore_outgoing;
2761 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2762 	netdevice_tracker	dev_tracker;
2763 	int			(*func) (struct sk_buff *,
2764 					 struct net_device *,
2765 					 struct packet_type *,
2766 					 struct net_device *);
2767 	void			(*list_func) (struct list_head *,
2768 					      struct packet_type *,
2769 					      struct net_device *);
2770 	bool			(*id_match)(struct packet_type *ptype,
2771 					    struct sock *sk);
2772 	struct net		*af_packet_net;
2773 	void			*af_packet_priv;
2774 	struct list_head	list;
2775 };
2776 
2777 struct offload_callbacks {
2778 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2779 						netdev_features_t features);
2780 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2781 						struct sk_buff *skb);
2782 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2783 };
2784 
2785 struct packet_offload {
2786 	__be16			 type;	/* This is really htons(ether_type). */
2787 	u16			 priority;
2788 	struct offload_callbacks callbacks;
2789 	struct list_head	 list;
2790 };
2791 
2792 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2793 struct pcpu_sw_netstats {
2794 	u64_stats_t		rx_packets;
2795 	u64_stats_t		rx_bytes;
2796 	u64_stats_t		tx_packets;
2797 	u64_stats_t		tx_bytes;
2798 	struct u64_stats_sync   syncp;
2799 } __aligned(4 * sizeof(u64));
2800 
2801 struct pcpu_dstats {
2802 	u64			rx_packets;
2803 	u64			rx_bytes;
2804 	u64			rx_drops;
2805 	u64			tx_packets;
2806 	u64			tx_bytes;
2807 	u64			tx_drops;
2808 	struct u64_stats_sync	syncp;
2809 } __aligned(8 * sizeof(u64));
2810 
2811 struct pcpu_lstats {
2812 	u64_stats_t packets;
2813 	u64_stats_t bytes;
2814 	struct u64_stats_sync syncp;
2815 } __aligned(2 * sizeof(u64));
2816 
2817 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2818 
2819 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2820 {
2821 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2822 
2823 	u64_stats_update_begin(&tstats->syncp);
2824 	u64_stats_add(&tstats->rx_bytes, len);
2825 	u64_stats_inc(&tstats->rx_packets);
2826 	u64_stats_update_end(&tstats->syncp);
2827 }
2828 
2829 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2830 					  unsigned int packets,
2831 					  unsigned int len)
2832 {
2833 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2834 
2835 	u64_stats_update_begin(&tstats->syncp);
2836 	u64_stats_add(&tstats->tx_bytes, len);
2837 	u64_stats_add(&tstats->tx_packets, packets);
2838 	u64_stats_update_end(&tstats->syncp);
2839 }
2840 
2841 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2842 {
2843 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2844 
2845 	u64_stats_update_begin(&lstats->syncp);
2846 	u64_stats_add(&lstats->bytes, len);
2847 	u64_stats_inc(&lstats->packets);
2848 	u64_stats_update_end(&lstats->syncp);
2849 }
2850 
2851 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2852 ({									\
2853 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2854 	if (pcpu_stats)	{						\
2855 		int __cpu;						\
2856 		for_each_possible_cpu(__cpu) {				\
2857 			typeof(type) *stat;				\
2858 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2859 			u64_stats_init(&stat->syncp);			\
2860 		}							\
2861 	}								\
2862 	pcpu_stats;							\
2863 })
2864 
2865 #define netdev_alloc_pcpu_stats(type)					\
2866 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2867 
2868 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2869 ({									\
2870 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2871 	if (pcpu_stats) {						\
2872 		int __cpu;						\
2873 		for_each_possible_cpu(__cpu) {				\
2874 			typeof(type) *stat;				\
2875 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2876 			u64_stats_init(&stat->syncp);			\
2877 		}							\
2878 	}								\
2879 	pcpu_stats;							\
2880 })
2881 
2882 enum netdev_lag_tx_type {
2883 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2884 	NETDEV_LAG_TX_TYPE_RANDOM,
2885 	NETDEV_LAG_TX_TYPE_BROADCAST,
2886 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2887 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2888 	NETDEV_LAG_TX_TYPE_HASH,
2889 };
2890 
2891 enum netdev_lag_hash {
2892 	NETDEV_LAG_HASH_NONE,
2893 	NETDEV_LAG_HASH_L2,
2894 	NETDEV_LAG_HASH_L34,
2895 	NETDEV_LAG_HASH_L23,
2896 	NETDEV_LAG_HASH_E23,
2897 	NETDEV_LAG_HASH_E34,
2898 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2899 	NETDEV_LAG_HASH_UNKNOWN,
2900 };
2901 
2902 struct netdev_lag_upper_info {
2903 	enum netdev_lag_tx_type tx_type;
2904 	enum netdev_lag_hash hash_type;
2905 };
2906 
2907 struct netdev_lag_lower_state_info {
2908 	u8 link_up : 1,
2909 	   tx_enabled : 1;
2910 };
2911 
2912 #include <linux/notifier.h>
2913 
2914 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2915  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2916  * adding new types.
2917  */
2918 enum netdev_cmd {
2919 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2920 	NETDEV_DOWN,
2921 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2922 				   detected a hardware crash and restarted
2923 				   - we can use this eg to kick tcp sessions
2924 				   once done */
2925 	NETDEV_CHANGE,		/* Notify device state change */
2926 	NETDEV_REGISTER,
2927 	NETDEV_UNREGISTER,
2928 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2929 	NETDEV_CHANGEADDR,	/* notify after the address change */
2930 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2931 	NETDEV_GOING_DOWN,
2932 	NETDEV_CHANGENAME,
2933 	NETDEV_FEAT_CHANGE,
2934 	NETDEV_BONDING_FAILOVER,
2935 	NETDEV_PRE_UP,
2936 	NETDEV_PRE_TYPE_CHANGE,
2937 	NETDEV_POST_TYPE_CHANGE,
2938 	NETDEV_POST_INIT,
2939 	NETDEV_PRE_UNINIT,
2940 	NETDEV_RELEASE,
2941 	NETDEV_NOTIFY_PEERS,
2942 	NETDEV_JOIN,
2943 	NETDEV_CHANGEUPPER,
2944 	NETDEV_RESEND_IGMP,
2945 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2946 	NETDEV_CHANGEINFODATA,
2947 	NETDEV_BONDING_INFO,
2948 	NETDEV_PRECHANGEUPPER,
2949 	NETDEV_CHANGELOWERSTATE,
2950 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2951 	NETDEV_UDP_TUNNEL_DROP_INFO,
2952 	NETDEV_CHANGE_TX_QUEUE_LEN,
2953 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2954 	NETDEV_CVLAN_FILTER_DROP_INFO,
2955 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2956 	NETDEV_SVLAN_FILTER_DROP_INFO,
2957 	NETDEV_OFFLOAD_XSTATS_ENABLE,
2958 	NETDEV_OFFLOAD_XSTATS_DISABLE,
2959 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2960 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2961 	NETDEV_XDP_FEAT_CHANGE,
2962 };
2963 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2964 
2965 int register_netdevice_notifier(struct notifier_block *nb);
2966 int unregister_netdevice_notifier(struct notifier_block *nb);
2967 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2968 int unregister_netdevice_notifier_net(struct net *net,
2969 				      struct notifier_block *nb);
2970 int register_netdevice_notifier_dev_net(struct net_device *dev,
2971 					struct notifier_block *nb,
2972 					struct netdev_net_notifier *nn);
2973 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2974 					  struct notifier_block *nb,
2975 					  struct netdev_net_notifier *nn);
2976 
2977 struct netdev_notifier_info {
2978 	struct net_device	*dev;
2979 	struct netlink_ext_ack	*extack;
2980 };
2981 
2982 struct netdev_notifier_info_ext {
2983 	struct netdev_notifier_info info; /* must be first */
2984 	union {
2985 		u32 mtu;
2986 	} ext;
2987 };
2988 
2989 struct netdev_notifier_change_info {
2990 	struct netdev_notifier_info info; /* must be first */
2991 	unsigned int flags_changed;
2992 };
2993 
2994 struct netdev_notifier_changeupper_info {
2995 	struct netdev_notifier_info info; /* must be first */
2996 	struct net_device *upper_dev; /* new upper dev */
2997 	bool master; /* is upper dev master */
2998 	bool linking; /* is the notification for link or unlink */
2999 	void *upper_info; /* upper dev info */
3000 };
3001 
3002 struct netdev_notifier_changelowerstate_info {
3003 	struct netdev_notifier_info info; /* must be first */
3004 	void *lower_state_info; /* is lower dev state */
3005 };
3006 
3007 struct netdev_notifier_pre_changeaddr_info {
3008 	struct netdev_notifier_info info; /* must be first */
3009 	const unsigned char *dev_addr;
3010 };
3011 
3012 enum netdev_offload_xstats_type {
3013 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
3014 };
3015 
3016 struct netdev_notifier_offload_xstats_info {
3017 	struct netdev_notifier_info info; /* must be first */
3018 	enum netdev_offload_xstats_type type;
3019 
3020 	union {
3021 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
3022 		struct netdev_notifier_offload_xstats_rd *report_delta;
3023 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
3024 		struct netdev_notifier_offload_xstats_ru *report_used;
3025 	};
3026 };
3027 
3028 int netdev_offload_xstats_enable(struct net_device *dev,
3029 				 enum netdev_offload_xstats_type type,
3030 				 struct netlink_ext_ack *extack);
3031 int netdev_offload_xstats_disable(struct net_device *dev,
3032 				  enum netdev_offload_xstats_type type);
3033 bool netdev_offload_xstats_enabled(const struct net_device *dev,
3034 				   enum netdev_offload_xstats_type type);
3035 int netdev_offload_xstats_get(struct net_device *dev,
3036 			      enum netdev_offload_xstats_type type,
3037 			      struct rtnl_hw_stats64 *stats, bool *used,
3038 			      struct netlink_ext_ack *extack);
3039 void
3040 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
3041 				   const struct rtnl_hw_stats64 *stats);
3042 void
3043 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
3044 void netdev_offload_xstats_push_delta(struct net_device *dev,
3045 				      enum netdev_offload_xstats_type type,
3046 				      const struct rtnl_hw_stats64 *stats);
3047 
3048 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
3049 					     struct net_device *dev)
3050 {
3051 	info->dev = dev;
3052 	info->extack = NULL;
3053 }
3054 
3055 static inline struct net_device *
3056 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
3057 {
3058 	return info->dev;
3059 }
3060 
3061 static inline struct netlink_ext_ack *
3062 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
3063 {
3064 	return info->extack;
3065 }
3066 
3067 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
3068 int call_netdevice_notifiers_info(unsigned long val,
3069 				  struct netdev_notifier_info *info);
3070 
3071 extern rwlock_t				dev_base_lock;		/* Device list lock */
3072 
3073 #define for_each_netdev(net, d)		\
3074 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
3075 #define for_each_netdev_reverse(net, d)	\
3076 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
3077 #define for_each_netdev_rcu(net, d)		\
3078 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
3079 #define for_each_netdev_safe(net, d, n)	\
3080 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
3081 #define for_each_netdev_continue(net, d)		\
3082 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
3083 #define for_each_netdev_continue_reverse(net, d)		\
3084 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
3085 						     dev_list)
3086 #define for_each_netdev_continue_rcu(net, d)		\
3087 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
3088 #define for_each_netdev_in_bond_rcu(bond, slave)	\
3089 		for_each_netdev_rcu(&init_net, slave)	\
3090 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
3091 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
3092 
3093 #define for_each_netdev_dump(net, d, ifindex)				\
3094 	xa_for_each_start(&(net)->dev_by_index, (ifindex), (d), (ifindex))
3095 
3096 static inline struct net_device *next_net_device(struct net_device *dev)
3097 {
3098 	struct list_head *lh;
3099 	struct net *net;
3100 
3101 	net = dev_net(dev);
3102 	lh = dev->dev_list.next;
3103 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3104 }
3105 
3106 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
3107 {
3108 	struct list_head *lh;
3109 	struct net *net;
3110 
3111 	net = dev_net(dev);
3112 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
3113 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3114 }
3115 
3116 static inline struct net_device *first_net_device(struct net *net)
3117 {
3118 	return list_empty(&net->dev_base_head) ? NULL :
3119 		net_device_entry(net->dev_base_head.next);
3120 }
3121 
3122 static inline struct net_device *first_net_device_rcu(struct net *net)
3123 {
3124 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
3125 
3126 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3127 }
3128 
3129 int netdev_boot_setup_check(struct net_device *dev);
3130 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3131 				       const char *hwaddr);
3132 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
3133 void dev_add_pack(struct packet_type *pt);
3134 void dev_remove_pack(struct packet_type *pt);
3135 void __dev_remove_pack(struct packet_type *pt);
3136 void dev_add_offload(struct packet_offload *po);
3137 void dev_remove_offload(struct packet_offload *po);
3138 
3139 int dev_get_iflink(const struct net_device *dev);
3140 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3141 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3142 			  struct net_device_path_stack *stack);
3143 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3144 				      unsigned short mask);
3145 struct net_device *dev_get_by_name(struct net *net, const char *name);
3146 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3147 struct net_device *__dev_get_by_name(struct net *net, const char *name);
3148 bool netdev_name_in_use(struct net *net, const char *name);
3149 int dev_alloc_name(struct net_device *dev, const char *name);
3150 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3151 void dev_close(struct net_device *dev);
3152 void dev_close_many(struct list_head *head, bool unlink);
3153 void dev_disable_lro(struct net_device *dev);
3154 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3155 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3156 		     struct net_device *sb_dev);
3157 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3158 		       struct net_device *sb_dev);
3159 
3160 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3161 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3162 
3163 static inline int dev_queue_xmit(struct sk_buff *skb)
3164 {
3165 	return __dev_queue_xmit(skb, NULL);
3166 }
3167 
3168 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3169 				       struct net_device *sb_dev)
3170 {
3171 	return __dev_queue_xmit(skb, sb_dev);
3172 }
3173 
3174 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3175 {
3176 	int ret;
3177 
3178 	ret = __dev_direct_xmit(skb, queue_id);
3179 	if (!dev_xmit_complete(ret))
3180 		kfree_skb(skb);
3181 	return ret;
3182 }
3183 
3184 int register_netdevice(struct net_device *dev);
3185 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3186 void unregister_netdevice_many(struct list_head *head);
3187 static inline void unregister_netdevice(struct net_device *dev)
3188 {
3189 	unregister_netdevice_queue(dev, NULL);
3190 }
3191 
3192 int netdev_refcnt_read(const struct net_device *dev);
3193 void free_netdev(struct net_device *dev);
3194 void netdev_freemem(struct net_device *dev);
3195 int init_dummy_netdev(struct net_device *dev);
3196 
3197 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3198 					 struct sk_buff *skb,
3199 					 bool all_slaves);
3200 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3201 					    struct sock *sk);
3202 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3203 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3204 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
3205 				       netdevice_tracker *tracker, gfp_t gfp);
3206 struct net_device *netdev_get_by_name(struct net *net, const char *name,
3207 				      netdevice_tracker *tracker, gfp_t gfp);
3208 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3209 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3210 
3211 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3212 				  unsigned short type,
3213 				  const void *daddr, const void *saddr,
3214 				  unsigned int len)
3215 {
3216 	if (!dev->header_ops || !dev->header_ops->create)
3217 		return 0;
3218 
3219 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3220 }
3221 
3222 static inline int dev_parse_header(const struct sk_buff *skb,
3223 				   unsigned char *haddr)
3224 {
3225 	const struct net_device *dev = skb->dev;
3226 
3227 	if (!dev->header_ops || !dev->header_ops->parse)
3228 		return 0;
3229 	return dev->header_ops->parse(skb, haddr);
3230 }
3231 
3232 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3233 {
3234 	const struct net_device *dev = skb->dev;
3235 
3236 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3237 		return 0;
3238 	return dev->header_ops->parse_protocol(skb);
3239 }
3240 
3241 /* ll_header must have at least hard_header_len allocated */
3242 static inline bool dev_validate_header(const struct net_device *dev,
3243 				       char *ll_header, int len)
3244 {
3245 	if (likely(len >= dev->hard_header_len))
3246 		return true;
3247 	if (len < dev->min_header_len)
3248 		return false;
3249 
3250 	if (capable(CAP_SYS_RAWIO)) {
3251 		memset(ll_header + len, 0, dev->hard_header_len - len);
3252 		return true;
3253 	}
3254 
3255 	if (dev->header_ops && dev->header_ops->validate)
3256 		return dev->header_ops->validate(ll_header, len);
3257 
3258 	return false;
3259 }
3260 
3261 static inline bool dev_has_header(const struct net_device *dev)
3262 {
3263 	return dev->header_ops && dev->header_ops->create;
3264 }
3265 
3266 /*
3267  * Incoming packets are placed on per-CPU queues
3268  */
3269 struct softnet_data {
3270 	struct list_head	poll_list;
3271 	struct sk_buff_head	process_queue;
3272 
3273 	/* stats */
3274 	unsigned int		processed;
3275 	unsigned int		time_squeeze;
3276 #ifdef CONFIG_RPS
3277 	struct softnet_data	*rps_ipi_list;
3278 #endif
3279 
3280 	bool			in_net_rx_action;
3281 	bool			in_napi_threaded_poll;
3282 
3283 #ifdef CONFIG_NET_FLOW_LIMIT
3284 	struct sd_flow_limit __rcu *flow_limit;
3285 #endif
3286 	struct Qdisc		*output_queue;
3287 	struct Qdisc		**output_queue_tailp;
3288 	struct sk_buff		*completion_queue;
3289 #ifdef CONFIG_XFRM_OFFLOAD
3290 	struct sk_buff_head	xfrm_backlog;
3291 #endif
3292 	/* written and read only by owning cpu: */
3293 	struct {
3294 		u16 recursion;
3295 		u8  more;
3296 #ifdef CONFIG_NET_EGRESS
3297 		u8  skip_txqueue;
3298 #endif
3299 	} xmit;
3300 #ifdef CONFIG_RPS
3301 	/* input_queue_head should be written by cpu owning this struct,
3302 	 * and only read by other cpus. Worth using a cache line.
3303 	 */
3304 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3305 
3306 	/* Elements below can be accessed between CPUs for RPS/RFS */
3307 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3308 	struct softnet_data	*rps_ipi_next;
3309 	unsigned int		cpu;
3310 	unsigned int		input_queue_tail;
3311 #endif
3312 	unsigned int		received_rps;
3313 	unsigned int		dropped;
3314 	struct sk_buff_head	input_pkt_queue;
3315 	struct napi_struct	backlog;
3316 
3317 	/* Another possibly contended cache line */
3318 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3319 	int			defer_count;
3320 	int			defer_ipi_scheduled;
3321 	struct sk_buff		*defer_list;
3322 	call_single_data_t	defer_csd;
3323 };
3324 
3325 static inline void input_queue_head_incr(struct softnet_data *sd)
3326 {
3327 #ifdef CONFIG_RPS
3328 	sd->input_queue_head++;
3329 #endif
3330 }
3331 
3332 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3333 					      unsigned int *qtail)
3334 {
3335 #ifdef CONFIG_RPS
3336 	*qtail = ++sd->input_queue_tail;
3337 #endif
3338 }
3339 
3340 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3341 
3342 static inline int dev_recursion_level(void)
3343 {
3344 	return this_cpu_read(softnet_data.xmit.recursion);
3345 }
3346 
3347 #define XMIT_RECURSION_LIMIT	8
3348 static inline bool dev_xmit_recursion(void)
3349 {
3350 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3351 			XMIT_RECURSION_LIMIT);
3352 }
3353 
3354 static inline void dev_xmit_recursion_inc(void)
3355 {
3356 	__this_cpu_inc(softnet_data.xmit.recursion);
3357 }
3358 
3359 static inline void dev_xmit_recursion_dec(void)
3360 {
3361 	__this_cpu_dec(softnet_data.xmit.recursion);
3362 }
3363 
3364 void __netif_schedule(struct Qdisc *q);
3365 void netif_schedule_queue(struct netdev_queue *txq);
3366 
3367 static inline void netif_tx_schedule_all(struct net_device *dev)
3368 {
3369 	unsigned int i;
3370 
3371 	for (i = 0; i < dev->num_tx_queues; i++)
3372 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3373 }
3374 
3375 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3376 {
3377 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3378 }
3379 
3380 /**
3381  *	netif_start_queue - allow transmit
3382  *	@dev: network device
3383  *
3384  *	Allow upper layers to call the device hard_start_xmit routine.
3385  */
3386 static inline void netif_start_queue(struct net_device *dev)
3387 {
3388 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3389 }
3390 
3391 static inline void netif_tx_start_all_queues(struct net_device *dev)
3392 {
3393 	unsigned int i;
3394 
3395 	for (i = 0; i < dev->num_tx_queues; i++) {
3396 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3397 		netif_tx_start_queue(txq);
3398 	}
3399 }
3400 
3401 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3402 
3403 /**
3404  *	netif_wake_queue - restart transmit
3405  *	@dev: network device
3406  *
3407  *	Allow upper layers to call the device hard_start_xmit routine.
3408  *	Used for flow control when transmit resources are available.
3409  */
3410 static inline void netif_wake_queue(struct net_device *dev)
3411 {
3412 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3413 }
3414 
3415 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3416 {
3417 	unsigned int i;
3418 
3419 	for (i = 0; i < dev->num_tx_queues; i++) {
3420 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3421 		netif_tx_wake_queue(txq);
3422 	}
3423 }
3424 
3425 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3426 {
3427 	/* Must be an atomic op see netif_txq_try_stop() */
3428 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3429 }
3430 
3431 /**
3432  *	netif_stop_queue - stop transmitted packets
3433  *	@dev: network device
3434  *
3435  *	Stop upper layers calling the device hard_start_xmit routine.
3436  *	Used for flow control when transmit resources are unavailable.
3437  */
3438 static inline void netif_stop_queue(struct net_device *dev)
3439 {
3440 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3441 }
3442 
3443 void netif_tx_stop_all_queues(struct net_device *dev);
3444 
3445 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3446 {
3447 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3448 }
3449 
3450 /**
3451  *	netif_queue_stopped - test if transmit queue is flowblocked
3452  *	@dev: network device
3453  *
3454  *	Test if transmit queue on device is currently unable to send.
3455  */
3456 static inline bool netif_queue_stopped(const struct net_device *dev)
3457 {
3458 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3459 }
3460 
3461 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3462 {
3463 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3464 }
3465 
3466 static inline bool
3467 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3468 {
3469 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3470 }
3471 
3472 static inline bool
3473 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3474 {
3475 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3476 }
3477 
3478 /**
3479  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3480  *	@dev_queue: pointer to transmit queue
3481  *	@min_limit: dql minimum limit
3482  *
3483  * Forces xmit_more() to return true until the minimum threshold
3484  * defined by @min_limit is reached (or until the tx queue is
3485  * empty). Warning: to be use with care, misuse will impact the
3486  * latency.
3487  */
3488 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3489 						  unsigned int min_limit)
3490 {
3491 #ifdef CONFIG_BQL
3492 	dev_queue->dql.min_limit = min_limit;
3493 #endif
3494 }
3495 
3496 /**
3497  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3498  *	@dev_queue: pointer to transmit queue
3499  *
3500  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3501  * to give appropriate hint to the CPU.
3502  */
3503 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3504 {
3505 #ifdef CONFIG_BQL
3506 	prefetchw(&dev_queue->dql.num_queued);
3507 #endif
3508 }
3509 
3510 /**
3511  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3512  *	@dev_queue: pointer to transmit queue
3513  *
3514  * BQL enabled drivers might use this helper in their TX completion path,
3515  * to give appropriate hint to the CPU.
3516  */
3517 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3518 {
3519 #ifdef CONFIG_BQL
3520 	prefetchw(&dev_queue->dql.limit);
3521 #endif
3522 }
3523 
3524 /**
3525  *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3526  *	@dev_queue: network device queue
3527  *	@bytes: number of bytes queued to the device queue
3528  *
3529  *	Report the number of bytes queued for sending/completion to the network
3530  *	device hardware queue. @bytes should be a good approximation and should
3531  *	exactly match netdev_completed_queue() @bytes.
3532  *	This is typically called once per packet, from ndo_start_xmit().
3533  */
3534 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3535 					unsigned int bytes)
3536 {
3537 #ifdef CONFIG_BQL
3538 	dql_queued(&dev_queue->dql, bytes);
3539 
3540 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3541 		return;
3542 
3543 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3544 
3545 	/*
3546 	 * The XOFF flag must be set before checking the dql_avail below,
3547 	 * because in netdev_tx_completed_queue we update the dql_completed
3548 	 * before checking the XOFF flag.
3549 	 */
3550 	smp_mb();
3551 
3552 	/* check again in case another CPU has just made room avail */
3553 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3554 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3555 #endif
3556 }
3557 
3558 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3559  * that they should not test BQL status themselves.
3560  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3561  * skb of a batch.
3562  * Returns true if the doorbell must be used to kick the NIC.
3563  */
3564 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3565 					  unsigned int bytes,
3566 					  bool xmit_more)
3567 {
3568 	if (xmit_more) {
3569 #ifdef CONFIG_BQL
3570 		dql_queued(&dev_queue->dql, bytes);
3571 #endif
3572 		return netif_tx_queue_stopped(dev_queue);
3573 	}
3574 	netdev_tx_sent_queue(dev_queue, bytes);
3575 	return true;
3576 }
3577 
3578 /**
3579  *	netdev_sent_queue - report the number of bytes queued to hardware
3580  *	@dev: network device
3581  *	@bytes: number of bytes queued to the hardware device queue
3582  *
3583  *	Report the number of bytes queued for sending/completion to the network
3584  *	device hardware queue#0. @bytes should be a good approximation and should
3585  *	exactly match netdev_completed_queue() @bytes.
3586  *	This is typically called once per packet, from ndo_start_xmit().
3587  */
3588 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3589 {
3590 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3591 }
3592 
3593 static inline bool __netdev_sent_queue(struct net_device *dev,
3594 				       unsigned int bytes,
3595 				       bool xmit_more)
3596 {
3597 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3598 				      xmit_more);
3599 }
3600 
3601 /**
3602  *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3603  *	@dev_queue: network device queue
3604  *	@pkts: number of packets (currently ignored)
3605  *	@bytes: number of bytes dequeued from the device queue
3606  *
3607  *	Must be called at most once per TX completion round (and not per
3608  *	individual packet), so that BQL can adjust its limits appropriately.
3609  */
3610 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3611 					     unsigned int pkts, unsigned int bytes)
3612 {
3613 #ifdef CONFIG_BQL
3614 	if (unlikely(!bytes))
3615 		return;
3616 
3617 	dql_completed(&dev_queue->dql, bytes);
3618 
3619 	/*
3620 	 * Without the memory barrier there is a small possiblity that
3621 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3622 	 * be stopped forever
3623 	 */
3624 	smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */
3625 
3626 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3627 		return;
3628 
3629 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3630 		netif_schedule_queue(dev_queue);
3631 #endif
3632 }
3633 
3634 /**
3635  * 	netdev_completed_queue - report bytes and packets completed by device
3636  * 	@dev: network device
3637  * 	@pkts: actual number of packets sent over the medium
3638  * 	@bytes: actual number of bytes sent over the medium
3639  *
3640  * 	Report the number of bytes and packets transmitted by the network device
3641  * 	hardware queue over the physical medium, @bytes must exactly match the
3642  * 	@bytes amount passed to netdev_sent_queue()
3643  */
3644 static inline void netdev_completed_queue(struct net_device *dev,
3645 					  unsigned int pkts, unsigned int bytes)
3646 {
3647 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3648 }
3649 
3650 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3651 {
3652 #ifdef CONFIG_BQL
3653 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3654 	dql_reset(&q->dql);
3655 #endif
3656 }
3657 
3658 /**
3659  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3660  * 	@dev_queue: network device
3661  *
3662  * 	Reset the bytes and packet count of a network device and clear the
3663  * 	software flow control OFF bit for this network device
3664  */
3665 static inline void netdev_reset_queue(struct net_device *dev_queue)
3666 {
3667 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3668 }
3669 
3670 /**
3671  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3672  * 	@dev: network device
3673  * 	@queue_index: given tx queue index
3674  *
3675  * 	Returns 0 if given tx queue index >= number of device tx queues,
3676  * 	otherwise returns the originally passed tx queue index.
3677  */
3678 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3679 {
3680 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3681 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3682 				     dev->name, queue_index,
3683 				     dev->real_num_tx_queues);
3684 		return 0;
3685 	}
3686 
3687 	return queue_index;
3688 }
3689 
3690 /**
3691  *	netif_running - test if up
3692  *	@dev: network device
3693  *
3694  *	Test if the device has been brought up.
3695  */
3696 static inline bool netif_running(const struct net_device *dev)
3697 {
3698 	return test_bit(__LINK_STATE_START, &dev->state);
3699 }
3700 
3701 /*
3702  * Routines to manage the subqueues on a device.  We only need start,
3703  * stop, and a check if it's stopped.  All other device management is
3704  * done at the overall netdevice level.
3705  * Also test the device if we're multiqueue.
3706  */
3707 
3708 /**
3709  *	netif_start_subqueue - allow sending packets on subqueue
3710  *	@dev: network device
3711  *	@queue_index: sub queue index
3712  *
3713  * Start individual transmit queue of a device with multiple transmit queues.
3714  */
3715 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3716 {
3717 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3718 
3719 	netif_tx_start_queue(txq);
3720 }
3721 
3722 /**
3723  *	netif_stop_subqueue - stop sending packets on subqueue
3724  *	@dev: network device
3725  *	@queue_index: sub queue index
3726  *
3727  * Stop individual transmit queue of a device with multiple transmit queues.
3728  */
3729 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3730 {
3731 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3732 	netif_tx_stop_queue(txq);
3733 }
3734 
3735 /**
3736  *	__netif_subqueue_stopped - test status of subqueue
3737  *	@dev: network device
3738  *	@queue_index: sub queue index
3739  *
3740  * Check individual transmit queue of a device with multiple transmit queues.
3741  */
3742 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3743 					    u16 queue_index)
3744 {
3745 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3746 
3747 	return netif_tx_queue_stopped(txq);
3748 }
3749 
3750 /**
3751  *	netif_subqueue_stopped - test status of subqueue
3752  *	@dev: network device
3753  *	@skb: sub queue buffer pointer
3754  *
3755  * Check individual transmit queue of a device with multiple transmit queues.
3756  */
3757 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3758 					  struct sk_buff *skb)
3759 {
3760 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3761 }
3762 
3763 /**
3764  *	netif_wake_subqueue - allow sending packets on subqueue
3765  *	@dev: network device
3766  *	@queue_index: sub queue index
3767  *
3768  * Resume individual transmit queue of a device with multiple transmit queues.
3769  */
3770 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3771 {
3772 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3773 
3774 	netif_tx_wake_queue(txq);
3775 }
3776 
3777 #ifdef CONFIG_XPS
3778 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3779 			u16 index);
3780 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3781 			  u16 index, enum xps_map_type type);
3782 
3783 /**
3784  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3785  *	@j: CPU/Rx queue index
3786  *	@mask: bitmask of all cpus/rx queues
3787  *	@nr_bits: number of bits in the bitmask
3788  *
3789  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3790  */
3791 static inline bool netif_attr_test_mask(unsigned long j,
3792 					const unsigned long *mask,
3793 					unsigned int nr_bits)
3794 {
3795 	cpu_max_bits_warn(j, nr_bits);
3796 	return test_bit(j, mask);
3797 }
3798 
3799 /**
3800  *	netif_attr_test_online - Test for online CPU/Rx queue
3801  *	@j: CPU/Rx queue index
3802  *	@online_mask: bitmask for CPUs/Rx queues that are online
3803  *	@nr_bits: number of bits in the bitmask
3804  *
3805  * Returns true if a CPU/Rx queue is online.
3806  */
3807 static inline bool netif_attr_test_online(unsigned long j,
3808 					  const unsigned long *online_mask,
3809 					  unsigned int nr_bits)
3810 {
3811 	cpu_max_bits_warn(j, nr_bits);
3812 
3813 	if (online_mask)
3814 		return test_bit(j, online_mask);
3815 
3816 	return (j < nr_bits);
3817 }
3818 
3819 /**
3820  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3821  *	@n: CPU/Rx queue index
3822  *	@srcp: the cpumask/Rx queue mask pointer
3823  *	@nr_bits: number of bits in the bitmask
3824  *
3825  * Returns >= nr_bits if no further CPUs/Rx queues set.
3826  */
3827 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3828 					       unsigned int nr_bits)
3829 {
3830 	/* -1 is a legal arg here. */
3831 	if (n != -1)
3832 		cpu_max_bits_warn(n, nr_bits);
3833 
3834 	if (srcp)
3835 		return find_next_bit(srcp, nr_bits, n + 1);
3836 
3837 	return n + 1;
3838 }
3839 
3840 /**
3841  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3842  *	@n: CPU/Rx queue index
3843  *	@src1p: the first CPUs/Rx queues mask pointer
3844  *	@src2p: the second CPUs/Rx queues mask pointer
3845  *	@nr_bits: number of bits in the bitmask
3846  *
3847  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3848  */
3849 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3850 					  const unsigned long *src2p,
3851 					  unsigned int nr_bits)
3852 {
3853 	/* -1 is a legal arg here. */
3854 	if (n != -1)
3855 		cpu_max_bits_warn(n, nr_bits);
3856 
3857 	if (src1p && src2p)
3858 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3859 	else if (src1p)
3860 		return find_next_bit(src1p, nr_bits, n + 1);
3861 	else if (src2p)
3862 		return find_next_bit(src2p, nr_bits, n + 1);
3863 
3864 	return n + 1;
3865 }
3866 #else
3867 static inline int netif_set_xps_queue(struct net_device *dev,
3868 				      const struct cpumask *mask,
3869 				      u16 index)
3870 {
3871 	return 0;
3872 }
3873 
3874 static inline int __netif_set_xps_queue(struct net_device *dev,
3875 					const unsigned long *mask,
3876 					u16 index, enum xps_map_type type)
3877 {
3878 	return 0;
3879 }
3880 #endif
3881 
3882 /**
3883  *	netif_is_multiqueue - test if device has multiple transmit queues
3884  *	@dev: network device
3885  *
3886  * Check if device has multiple transmit queues
3887  */
3888 static inline bool netif_is_multiqueue(const struct net_device *dev)
3889 {
3890 	return dev->num_tx_queues > 1;
3891 }
3892 
3893 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3894 
3895 #ifdef CONFIG_SYSFS
3896 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3897 #else
3898 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3899 						unsigned int rxqs)
3900 {
3901 	dev->real_num_rx_queues = rxqs;
3902 	return 0;
3903 }
3904 #endif
3905 int netif_set_real_num_queues(struct net_device *dev,
3906 			      unsigned int txq, unsigned int rxq);
3907 
3908 int netif_get_num_default_rss_queues(void);
3909 
3910 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3911 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3912 
3913 /*
3914  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3915  * interrupt context or with hardware interrupts being disabled.
3916  * (in_hardirq() || irqs_disabled())
3917  *
3918  * We provide four helpers that can be used in following contexts :
3919  *
3920  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3921  *  replacing kfree_skb(skb)
3922  *
3923  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3924  *  Typically used in place of consume_skb(skb) in TX completion path
3925  *
3926  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3927  *  replacing kfree_skb(skb)
3928  *
3929  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3930  *  and consumed a packet. Used in place of consume_skb(skb)
3931  */
3932 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3933 {
3934 	dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3935 }
3936 
3937 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3938 {
3939 	dev_kfree_skb_irq_reason(skb, SKB_CONSUMED);
3940 }
3941 
3942 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3943 {
3944 	dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3945 }
3946 
3947 static inline void dev_consume_skb_any(struct sk_buff *skb)
3948 {
3949 	dev_kfree_skb_any_reason(skb, SKB_CONSUMED);
3950 }
3951 
3952 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3953 			     struct bpf_prog *xdp_prog);
3954 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3955 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3956 int netif_rx(struct sk_buff *skb);
3957 int __netif_rx(struct sk_buff *skb);
3958 
3959 int netif_receive_skb(struct sk_buff *skb);
3960 int netif_receive_skb_core(struct sk_buff *skb);
3961 void netif_receive_skb_list_internal(struct list_head *head);
3962 void netif_receive_skb_list(struct list_head *head);
3963 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3964 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3965 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3966 void napi_get_frags_check(struct napi_struct *napi);
3967 gro_result_t napi_gro_frags(struct napi_struct *napi);
3968 struct packet_offload *gro_find_receive_by_type(__be16 type);
3969 struct packet_offload *gro_find_complete_by_type(__be16 type);
3970 
3971 static inline void napi_free_frags(struct napi_struct *napi)
3972 {
3973 	kfree_skb(napi->skb);
3974 	napi->skb = NULL;
3975 }
3976 
3977 bool netdev_is_rx_handler_busy(struct net_device *dev);
3978 int netdev_rx_handler_register(struct net_device *dev,
3979 			       rx_handler_func_t *rx_handler,
3980 			       void *rx_handler_data);
3981 void netdev_rx_handler_unregister(struct net_device *dev);
3982 
3983 bool dev_valid_name(const char *name);
3984 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3985 {
3986 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3987 }
3988 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3989 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3990 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3991 		void __user *data, bool *need_copyout);
3992 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3993 int generic_hwtstamp_get_lower(struct net_device *dev,
3994 			       struct kernel_hwtstamp_config *kernel_cfg);
3995 int generic_hwtstamp_set_lower(struct net_device *dev,
3996 			       struct kernel_hwtstamp_config *kernel_cfg,
3997 			       struct netlink_ext_ack *extack);
3998 int dev_set_hwtstamp_phylib(struct net_device *dev,
3999 			    struct kernel_hwtstamp_config *cfg,
4000 			    struct netlink_ext_ack *extack);
4001 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
4002 unsigned int dev_get_flags(const struct net_device *);
4003 int __dev_change_flags(struct net_device *dev, unsigned int flags,
4004 		       struct netlink_ext_ack *extack);
4005 int dev_change_flags(struct net_device *dev, unsigned int flags,
4006 		     struct netlink_ext_ack *extack);
4007 int dev_set_alias(struct net_device *, const char *, size_t);
4008 int dev_get_alias(const struct net_device *, char *, size_t);
4009 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
4010 			       const char *pat, int new_ifindex);
4011 static inline
4012 int dev_change_net_namespace(struct net_device *dev, struct net *net,
4013 			     const char *pat)
4014 {
4015 	return __dev_change_net_namespace(dev, net, pat, 0);
4016 }
4017 int __dev_set_mtu(struct net_device *, int);
4018 int dev_set_mtu(struct net_device *, int);
4019 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
4020 			      struct netlink_ext_ack *extack);
4021 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
4022 			struct netlink_ext_ack *extack);
4023 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
4024 			     struct netlink_ext_ack *extack);
4025 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
4026 int dev_get_port_parent_id(struct net_device *dev,
4027 			   struct netdev_phys_item_id *ppid, bool recurse);
4028 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
4029 void netdev_dpll_pin_set(struct net_device *dev, struct dpll_pin *dpll_pin);
4030 void netdev_dpll_pin_clear(struct net_device *dev);
4031 
4032 static inline struct dpll_pin *netdev_dpll_pin(const struct net_device *dev)
4033 {
4034 #if IS_ENABLED(CONFIG_DPLL)
4035 	return dev->dpll_pin;
4036 #else
4037 	return NULL;
4038 #endif
4039 }
4040 
4041 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
4042 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
4043 				    struct netdev_queue *txq, int *ret);
4044 
4045 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
4046 u8 dev_xdp_prog_count(struct net_device *dev);
4047 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
4048 
4049 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4050 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4051 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
4052 bool is_skb_forwardable(const struct net_device *dev,
4053 			const struct sk_buff *skb);
4054 
4055 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
4056 						 const struct sk_buff *skb,
4057 						 const bool check_mtu)
4058 {
4059 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
4060 	unsigned int len;
4061 
4062 	if (!(dev->flags & IFF_UP))
4063 		return false;
4064 
4065 	if (!check_mtu)
4066 		return true;
4067 
4068 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
4069 	if (skb->len <= len)
4070 		return true;
4071 
4072 	/* if TSO is enabled, we don't care about the length as the packet
4073 	 * could be forwarded without being segmented before
4074 	 */
4075 	if (skb_is_gso(skb))
4076 		return true;
4077 
4078 	return false;
4079 }
4080 
4081 void netdev_core_stats_inc(struct net_device *dev, u32 offset);
4082 
4083 #define DEV_CORE_STATS_INC(FIELD)						\
4084 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
4085 {										\
4086 	netdev_core_stats_inc(dev,						\
4087 			offsetof(struct net_device_core_stats, FIELD));		\
4088 }
4089 DEV_CORE_STATS_INC(rx_dropped)
4090 DEV_CORE_STATS_INC(tx_dropped)
4091 DEV_CORE_STATS_INC(rx_nohandler)
4092 DEV_CORE_STATS_INC(rx_otherhost_dropped)
4093 #undef DEV_CORE_STATS_INC
4094 
4095 static __always_inline int ____dev_forward_skb(struct net_device *dev,
4096 					       struct sk_buff *skb,
4097 					       const bool check_mtu)
4098 {
4099 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4100 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4101 		dev_core_stats_rx_dropped_inc(dev);
4102 		kfree_skb(skb);
4103 		return NET_RX_DROP;
4104 	}
4105 
4106 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4107 	skb->priority = 0;
4108 	return 0;
4109 }
4110 
4111 bool dev_nit_active(struct net_device *dev);
4112 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4113 
4114 static inline void __dev_put(struct net_device *dev)
4115 {
4116 	if (dev) {
4117 #ifdef CONFIG_PCPU_DEV_REFCNT
4118 		this_cpu_dec(*dev->pcpu_refcnt);
4119 #else
4120 		refcount_dec(&dev->dev_refcnt);
4121 #endif
4122 	}
4123 }
4124 
4125 static inline void __dev_hold(struct net_device *dev)
4126 {
4127 	if (dev) {
4128 #ifdef CONFIG_PCPU_DEV_REFCNT
4129 		this_cpu_inc(*dev->pcpu_refcnt);
4130 #else
4131 		refcount_inc(&dev->dev_refcnt);
4132 #endif
4133 	}
4134 }
4135 
4136 static inline void __netdev_tracker_alloc(struct net_device *dev,
4137 					  netdevice_tracker *tracker,
4138 					  gfp_t gfp)
4139 {
4140 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4141 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4142 #endif
4143 }
4144 
4145 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4146  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4147  */
4148 static inline void netdev_tracker_alloc(struct net_device *dev,
4149 					netdevice_tracker *tracker, gfp_t gfp)
4150 {
4151 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4152 	refcount_dec(&dev->refcnt_tracker.no_tracker);
4153 	__netdev_tracker_alloc(dev, tracker, gfp);
4154 #endif
4155 }
4156 
4157 static inline void netdev_tracker_free(struct net_device *dev,
4158 				       netdevice_tracker *tracker)
4159 {
4160 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4161 	ref_tracker_free(&dev->refcnt_tracker, tracker);
4162 #endif
4163 }
4164 
4165 static inline void netdev_hold(struct net_device *dev,
4166 			       netdevice_tracker *tracker, gfp_t gfp)
4167 {
4168 	if (dev) {
4169 		__dev_hold(dev);
4170 		__netdev_tracker_alloc(dev, tracker, gfp);
4171 	}
4172 }
4173 
4174 static inline void netdev_put(struct net_device *dev,
4175 			      netdevice_tracker *tracker)
4176 {
4177 	if (dev) {
4178 		netdev_tracker_free(dev, tracker);
4179 		__dev_put(dev);
4180 	}
4181 }
4182 
4183 /**
4184  *	dev_hold - get reference to device
4185  *	@dev: network device
4186  *
4187  * Hold reference to device to keep it from being freed.
4188  * Try using netdev_hold() instead.
4189  */
4190 static inline void dev_hold(struct net_device *dev)
4191 {
4192 	netdev_hold(dev, NULL, GFP_ATOMIC);
4193 }
4194 
4195 /**
4196  *	dev_put - release reference to device
4197  *	@dev: network device
4198  *
4199  * Release reference to device to allow it to be freed.
4200  * Try using netdev_put() instead.
4201  */
4202 static inline void dev_put(struct net_device *dev)
4203 {
4204 	netdev_put(dev, NULL);
4205 }
4206 
4207 static inline void netdev_ref_replace(struct net_device *odev,
4208 				      struct net_device *ndev,
4209 				      netdevice_tracker *tracker,
4210 				      gfp_t gfp)
4211 {
4212 	if (odev)
4213 		netdev_tracker_free(odev, tracker);
4214 
4215 	__dev_hold(ndev);
4216 	__dev_put(odev);
4217 
4218 	if (ndev)
4219 		__netdev_tracker_alloc(ndev, tracker, gfp);
4220 }
4221 
4222 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4223  * and _off may be called from IRQ context, but it is caller
4224  * who is responsible for serialization of these calls.
4225  *
4226  * The name carrier is inappropriate, these functions should really be
4227  * called netif_lowerlayer_*() because they represent the state of any
4228  * kind of lower layer not just hardware media.
4229  */
4230 void linkwatch_fire_event(struct net_device *dev);
4231 
4232 /**
4233  * linkwatch_sync_dev - sync linkwatch for the given device
4234  * @dev: network device to sync linkwatch for
4235  *
4236  * Sync linkwatch for the given device, removing it from the
4237  * pending work list (if queued).
4238  */
4239 void linkwatch_sync_dev(struct net_device *dev);
4240 
4241 /**
4242  *	netif_carrier_ok - test if carrier present
4243  *	@dev: network device
4244  *
4245  * Check if carrier is present on device
4246  */
4247 static inline bool netif_carrier_ok(const struct net_device *dev)
4248 {
4249 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4250 }
4251 
4252 unsigned long dev_trans_start(struct net_device *dev);
4253 
4254 void __netdev_watchdog_up(struct net_device *dev);
4255 
4256 void netif_carrier_on(struct net_device *dev);
4257 void netif_carrier_off(struct net_device *dev);
4258 void netif_carrier_event(struct net_device *dev);
4259 
4260 /**
4261  *	netif_dormant_on - mark device as dormant.
4262  *	@dev: network device
4263  *
4264  * Mark device as dormant (as per RFC2863).
4265  *
4266  * The dormant state indicates that the relevant interface is not
4267  * actually in a condition to pass packets (i.e., it is not 'up') but is
4268  * in a "pending" state, waiting for some external event.  For "on-
4269  * demand" interfaces, this new state identifies the situation where the
4270  * interface is waiting for events to place it in the up state.
4271  */
4272 static inline void netif_dormant_on(struct net_device *dev)
4273 {
4274 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4275 		linkwatch_fire_event(dev);
4276 }
4277 
4278 /**
4279  *	netif_dormant_off - set device as not dormant.
4280  *	@dev: network device
4281  *
4282  * Device is not in dormant state.
4283  */
4284 static inline void netif_dormant_off(struct net_device *dev)
4285 {
4286 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4287 		linkwatch_fire_event(dev);
4288 }
4289 
4290 /**
4291  *	netif_dormant - test if device is dormant
4292  *	@dev: network device
4293  *
4294  * Check if device is dormant.
4295  */
4296 static inline bool netif_dormant(const struct net_device *dev)
4297 {
4298 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4299 }
4300 
4301 
4302 /**
4303  *	netif_testing_on - mark device as under test.
4304  *	@dev: network device
4305  *
4306  * Mark device as under test (as per RFC2863).
4307  *
4308  * The testing state indicates that some test(s) must be performed on
4309  * the interface. After completion, of the test, the interface state
4310  * will change to up, dormant, or down, as appropriate.
4311  */
4312 static inline void netif_testing_on(struct net_device *dev)
4313 {
4314 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4315 		linkwatch_fire_event(dev);
4316 }
4317 
4318 /**
4319  *	netif_testing_off - set device as not under test.
4320  *	@dev: network device
4321  *
4322  * Device is not in testing state.
4323  */
4324 static inline void netif_testing_off(struct net_device *dev)
4325 {
4326 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4327 		linkwatch_fire_event(dev);
4328 }
4329 
4330 /**
4331  *	netif_testing - test if device is under test
4332  *	@dev: network device
4333  *
4334  * Check if device is under test
4335  */
4336 static inline bool netif_testing(const struct net_device *dev)
4337 {
4338 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4339 }
4340 
4341 
4342 /**
4343  *	netif_oper_up - test if device is operational
4344  *	@dev: network device
4345  *
4346  * Check if carrier is operational
4347  */
4348 static inline bool netif_oper_up(const struct net_device *dev)
4349 {
4350 	return (dev->operstate == IF_OPER_UP ||
4351 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4352 }
4353 
4354 /**
4355  *	netif_device_present - is device available or removed
4356  *	@dev: network device
4357  *
4358  * Check if device has not been removed from system.
4359  */
4360 static inline bool netif_device_present(const struct net_device *dev)
4361 {
4362 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4363 }
4364 
4365 void netif_device_detach(struct net_device *dev);
4366 
4367 void netif_device_attach(struct net_device *dev);
4368 
4369 /*
4370  * Network interface message level settings
4371  */
4372 
4373 enum {
4374 	NETIF_MSG_DRV_BIT,
4375 	NETIF_MSG_PROBE_BIT,
4376 	NETIF_MSG_LINK_BIT,
4377 	NETIF_MSG_TIMER_BIT,
4378 	NETIF_MSG_IFDOWN_BIT,
4379 	NETIF_MSG_IFUP_BIT,
4380 	NETIF_MSG_RX_ERR_BIT,
4381 	NETIF_MSG_TX_ERR_BIT,
4382 	NETIF_MSG_TX_QUEUED_BIT,
4383 	NETIF_MSG_INTR_BIT,
4384 	NETIF_MSG_TX_DONE_BIT,
4385 	NETIF_MSG_RX_STATUS_BIT,
4386 	NETIF_MSG_PKTDATA_BIT,
4387 	NETIF_MSG_HW_BIT,
4388 	NETIF_MSG_WOL_BIT,
4389 
4390 	/* When you add a new bit above, update netif_msg_class_names array
4391 	 * in net/ethtool/common.c
4392 	 */
4393 	NETIF_MSG_CLASS_COUNT,
4394 };
4395 /* Both ethtool_ops interface and internal driver implementation use u32 */
4396 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4397 
4398 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4399 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4400 
4401 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4402 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4403 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4404 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4405 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4406 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4407 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4408 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4409 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4410 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4411 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4412 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4413 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4414 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4415 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4416 
4417 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4418 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4419 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4420 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4421 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4422 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4423 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4424 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4425 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4426 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4427 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4428 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4429 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4430 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4431 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4432 
4433 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4434 {
4435 	/* use default */
4436 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4437 		return default_msg_enable_bits;
4438 	if (debug_value == 0)	/* no output */
4439 		return 0;
4440 	/* set low N bits */
4441 	return (1U << debug_value) - 1;
4442 }
4443 
4444 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4445 {
4446 	spin_lock(&txq->_xmit_lock);
4447 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4448 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4449 }
4450 
4451 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4452 {
4453 	__acquire(&txq->_xmit_lock);
4454 	return true;
4455 }
4456 
4457 static inline void __netif_tx_release(struct netdev_queue *txq)
4458 {
4459 	__release(&txq->_xmit_lock);
4460 }
4461 
4462 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4463 {
4464 	spin_lock_bh(&txq->_xmit_lock);
4465 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4466 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4467 }
4468 
4469 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4470 {
4471 	bool ok = spin_trylock(&txq->_xmit_lock);
4472 
4473 	if (likely(ok)) {
4474 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4475 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4476 	}
4477 	return ok;
4478 }
4479 
4480 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4481 {
4482 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4483 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4484 	spin_unlock(&txq->_xmit_lock);
4485 }
4486 
4487 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4488 {
4489 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4490 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4491 	spin_unlock_bh(&txq->_xmit_lock);
4492 }
4493 
4494 /*
4495  * txq->trans_start can be read locklessly from dev_watchdog()
4496  */
4497 static inline void txq_trans_update(struct netdev_queue *txq)
4498 {
4499 	if (txq->xmit_lock_owner != -1)
4500 		WRITE_ONCE(txq->trans_start, jiffies);
4501 }
4502 
4503 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4504 {
4505 	unsigned long now = jiffies;
4506 
4507 	if (READ_ONCE(txq->trans_start) != now)
4508 		WRITE_ONCE(txq->trans_start, now);
4509 }
4510 
4511 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4512 static inline void netif_trans_update(struct net_device *dev)
4513 {
4514 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4515 
4516 	txq_trans_cond_update(txq);
4517 }
4518 
4519 /**
4520  *	netif_tx_lock - grab network device transmit lock
4521  *	@dev: network device
4522  *
4523  * Get network device transmit lock
4524  */
4525 void netif_tx_lock(struct net_device *dev);
4526 
4527 static inline void netif_tx_lock_bh(struct net_device *dev)
4528 {
4529 	local_bh_disable();
4530 	netif_tx_lock(dev);
4531 }
4532 
4533 void netif_tx_unlock(struct net_device *dev);
4534 
4535 static inline void netif_tx_unlock_bh(struct net_device *dev)
4536 {
4537 	netif_tx_unlock(dev);
4538 	local_bh_enable();
4539 }
4540 
4541 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4542 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4543 		__netif_tx_lock(txq, cpu);		\
4544 	} else {					\
4545 		__netif_tx_acquire(txq);		\
4546 	}						\
4547 }
4548 
4549 #define HARD_TX_TRYLOCK(dev, txq)			\
4550 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4551 		__netif_tx_trylock(txq) :		\
4552 		__netif_tx_acquire(txq))
4553 
4554 #define HARD_TX_UNLOCK(dev, txq) {			\
4555 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4556 		__netif_tx_unlock(txq);			\
4557 	} else {					\
4558 		__netif_tx_release(txq);		\
4559 	}						\
4560 }
4561 
4562 static inline void netif_tx_disable(struct net_device *dev)
4563 {
4564 	unsigned int i;
4565 	int cpu;
4566 
4567 	local_bh_disable();
4568 	cpu = smp_processor_id();
4569 	spin_lock(&dev->tx_global_lock);
4570 	for (i = 0; i < dev->num_tx_queues; i++) {
4571 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4572 
4573 		__netif_tx_lock(txq, cpu);
4574 		netif_tx_stop_queue(txq);
4575 		__netif_tx_unlock(txq);
4576 	}
4577 	spin_unlock(&dev->tx_global_lock);
4578 	local_bh_enable();
4579 }
4580 
4581 static inline void netif_addr_lock(struct net_device *dev)
4582 {
4583 	unsigned char nest_level = 0;
4584 
4585 #ifdef CONFIG_LOCKDEP
4586 	nest_level = dev->nested_level;
4587 #endif
4588 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4589 }
4590 
4591 static inline void netif_addr_lock_bh(struct net_device *dev)
4592 {
4593 	unsigned char nest_level = 0;
4594 
4595 #ifdef CONFIG_LOCKDEP
4596 	nest_level = dev->nested_level;
4597 #endif
4598 	local_bh_disable();
4599 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4600 }
4601 
4602 static inline void netif_addr_unlock(struct net_device *dev)
4603 {
4604 	spin_unlock(&dev->addr_list_lock);
4605 }
4606 
4607 static inline void netif_addr_unlock_bh(struct net_device *dev)
4608 {
4609 	spin_unlock_bh(&dev->addr_list_lock);
4610 }
4611 
4612 /*
4613  * dev_addrs walker. Should be used only for read access. Call with
4614  * rcu_read_lock held.
4615  */
4616 #define for_each_dev_addr(dev, ha) \
4617 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4618 
4619 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4620 
4621 void ether_setup(struct net_device *dev);
4622 
4623 /* Support for loadable net-drivers */
4624 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4625 				    unsigned char name_assign_type,
4626 				    void (*setup)(struct net_device *),
4627 				    unsigned int txqs, unsigned int rxqs);
4628 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4629 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4630 
4631 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4632 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4633 			 count)
4634 
4635 int register_netdev(struct net_device *dev);
4636 void unregister_netdev(struct net_device *dev);
4637 
4638 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4639 
4640 /* General hardware address lists handling functions */
4641 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4642 		   struct netdev_hw_addr_list *from_list, int addr_len);
4643 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4644 		      struct netdev_hw_addr_list *from_list, int addr_len);
4645 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4646 		       struct net_device *dev,
4647 		       int (*sync)(struct net_device *, const unsigned char *),
4648 		       int (*unsync)(struct net_device *,
4649 				     const unsigned char *));
4650 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4651 			   struct net_device *dev,
4652 			   int (*sync)(struct net_device *,
4653 				       const unsigned char *, int),
4654 			   int (*unsync)(struct net_device *,
4655 					 const unsigned char *, int));
4656 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4657 			      struct net_device *dev,
4658 			      int (*unsync)(struct net_device *,
4659 					    const unsigned char *, int));
4660 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4661 			  struct net_device *dev,
4662 			  int (*unsync)(struct net_device *,
4663 					const unsigned char *));
4664 void __hw_addr_init(struct netdev_hw_addr_list *list);
4665 
4666 /* Functions used for device addresses handling */
4667 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4668 		  const void *addr, size_t len);
4669 
4670 static inline void
4671 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4672 {
4673 	dev_addr_mod(dev, 0, addr, len);
4674 }
4675 
4676 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4677 {
4678 	__dev_addr_set(dev, addr, dev->addr_len);
4679 }
4680 
4681 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4682 		 unsigned char addr_type);
4683 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4684 		 unsigned char addr_type);
4685 
4686 /* Functions used for unicast addresses handling */
4687 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4688 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4689 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4690 int dev_uc_sync(struct net_device *to, struct net_device *from);
4691 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4692 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4693 void dev_uc_flush(struct net_device *dev);
4694 void dev_uc_init(struct net_device *dev);
4695 
4696 /**
4697  *  __dev_uc_sync - Synchonize device's unicast list
4698  *  @dev:  device to sync
4699  *  @sync: function to call if address should be added
4700  *  @unsync: function to call if address should be removed
4701  *
4702  *  Add newly added addresses to the interface, and release
4703  *  addresses that have been deleted.
4704  */
4705 static inline int __dev_uc_sync(struct net_device *dev,
4706 				int (*sync)(struct net_device *,
4707 					    const unsigned char *),
4708 				int (*unsync)(struct net_device *,
4709 					      const unsigned char *))
4710 {
4711 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4712 }
4713 
4714 /**
4715  *  __dev_uc_unsync - Remove synchronized addresses from device
4716  *  @dev:  device to sync
4717  *  @unsync: function to call if address should be removed
4718  *
4719  *  Remove all addresses that were added to the device by dev_uc_sync().
4720  */
4721 static inline void __dev_uc_unsync(struct net_device *dev,
4722 				   int (*unsync)(struct net_device *,
4723 						 const unsigned char *))
4724 {
4725 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4726 }
4727 
4728 /* Functions used for multicast addresses handling */
4729 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4730 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4731 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4732 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4733 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4734 int dev_mc_sync(struct net_device *to, struct net_device *from);
4735 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4736 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4737 void dev_mc_flush(struct net_device *dev);
4738 void dev_mc_init(struct net_device *dev);
4739 
4740 /**
4741  *  __dev_mc_sync - Synchonize device's multicast list
4742  *  @dev:  device to sync
4743  *  @sync: function to call if address should be added
4744  *  @unsync: function to call if address should be removed
4745  *
4746  *  Add newly added addresses to the interface, and release
4747  *  addresses that have been deleted.
4748  */
4749 static inline int __dev_mc_sync(struct net_device *dev,
4750 				int (*sync)(struct net_device *,
4751 					    const unsigned char *),
4752 				int (*unsync)(struct net_device *,
4753 					      const unsigned char *))
4754 {
4755 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4756 }
4757 
4758 /**
4759  *  __dev_mc_unsync - Remove synchronized addresses from device
4760  *  @dev:  device to sync
4761  *  @unsync: function to call if address should be removed
4762  *
4763  *  Remove all addresses that were added to the device by dev_mc_sync().
4764  */
4765 static inline void __dev_mc_unsync(struct net_device *dev,
4766 				   int (*unsync)(struct net_device *,
4767 						 const unsigned char *))
4768 {
4769 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4770 }
4771 
4772 /* Functions used for secondary unicast and multicast support */
4773 void dev_set_rx_mode(struct net_device *dev);
4774 int dev_set_promiscuity(struct net_device *dev, int inc);
4775 int dev_set_allmulti(struct net_device *dev, int inc);
4776 void netdev_state_change(struct net_device *dev);
4777 void __netdev_notify_peers(struct net_device *dev);
4778 void netdev_notify_peers(struct net_device *dev);
4779 void netdev_features_change(struct net_device *dev);
4780 /* Load a device via the kmod */
4781 void dev_load(struct net *net, const char *name);
4782 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4783 					struct rtnl_link_stats64 *storage);
4784 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4785 			     const struct net_device_stats *netdev_stats);
4786 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4787 			   const struct pcpu_sw_netstats __percpu *netstats);
4788 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4789 
4790 extern int		netdev_max_backlog;
4791 extern int		dev_rx_weight;
4792 extern int		dev_tx_weight;
4793 extern int		gro_normal_batch;
4794 
4795 enum {
4796 	NESTED_SYNC_IMM_BIT,
4797 	NESTED_SYNC_TODO_BIT,
4798 };
4799 
4800 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4801 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4802 
4803 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4804 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4805 
4806 struct netdev_nested_priv {
4807 	unsigned char flags;
4808 	void *data;
4809 };
4810 
4811 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4812 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4813 						     struct list_head **iter);
4814 
4815 /* iterate through upper list, must be called under RCU read lock */
4816 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4817 	for (iter = &(dev)->adj_list.upper, \
4818 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4819 	     updev; \
4820 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4821 
4822 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4823 				  int (*fn)(struct net_device *upper_dev,
4824 					    struct netdev_nested_priv *priv),
4825 				  struct netdev_nested_priv *priv);
4826 
4827 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4828 				  struct net_device *upper_dev);
4829 
4830 bool netdev_has_any_upper_dev(struct net_device *dev);
4831 
4832 void *netdev_lower_get_next_private(struct net_device *dev,
4833 				    struct list_head **iter);
4834 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4835 					struct list_head **iter);
4836 
4837 #define netdev_for_each_lower_private(dev, priv, iter) \
4838 	for (iter = (dev)->adj_list.lower.next, \
4839 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4840 	     priv; \
4841 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4842 
4843 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4844 	for (iter = &(dev)->adj_list.lower, \
4845 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4846 	     priv; \
4847 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4848 
4849 void *netdev_lower_get_next(struct net_device *dev,
4850 				struct list_head **iter);
4851 
4852 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4853 	for (iter = (dev)->adj_list.lower.next, \
4854 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4855 	     ldev; \
4856 	     ldev = netdev_lower_get_next(dev, &(iter)))
4857 
4858 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4859 					     struct list_head **iter);
4860 int netdev_walk_all_lower_dev(struct net_device *dev,
4861 			      int (*fn)(struct net_device *lower_dev,
4862 					struct netdev_nested_priv *priv),
4863 			      struct netdev_nested_priv *priv);
4864 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4865 				  int (*fn)(struct net_device *lower_dev,
4866 					    struct netdev_nested_priv *priv),
4867 				  struct netdev_nested_priv *priv);
4868 
4869 void *netdev_adjacent_get_private(struct list_head *adj_list);
4870 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4871 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4872 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4873 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4874 			  struct netlink_ext_ack *extack);
4875 int netdev_master_upper_dev_link(struct net_device *dev,
4876 				 struct net_device *upper_dev,
4877 				 void *upper_priv, void *upper_info,
4878 				 struct netlink_ext_ack *extack);
4879 void netdev_upper_dev_unlink(struct net_device *dev,
4880 			     struct net_device *upper_dev);
4881 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4882 				   struct net_device *new_dev,
4883 				   struct net_device *dev,
4884 				   struct netlink_ext_ack *extack);
4885 void netdev_adjacent_change_commit(struct net_device *old_dev,
4886 				   struct net_device *new_dev,
4887 				   struct net_device *dev);
4888 void netdev_adjacent_change_abort(struct net_device *old_dev,
4889 				  struct net_device *new_dev,
4890 				  struct net_device *dev);
4891 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4892 void *netdev_lower_dev_get_private(struct net_device *dev,
4893 				   struct net_device *lower_dev);
4894 void netdev_lower_state_changed(struct net_device *lower_dev,
4895 				void *lower_state_info);
4896 
4897 /* RSS keys are 40 or 52 bytes long */
4898 #define NETDEV_RSS_KEY_LEN 52
4899 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4900 void netdev_rss_key_fill(void *buffer, size_t len);
4901 
4902 int skb_checksum_help(struct sk_buff *skb);
4903 int skb_crc32c_csum_help(struct sk_buff *skb);
4904 int skb_csum_hwoffload_help(struct sk_buff *skb,
4905 			    const netdev_features_t features);
4906 
4907 struct netdev_bonding_info {
4908 	ifslave	slave;
4909 	ifbond	master;
4910 };
4911 
4912 struct netdev_notifier_bonding_info {
4913 	struct netdev_notifier_info info; /* must be first */
4914 	struct netdev_bonding_info  bonding_info;
4915 };
4916 
4917 void netdev_bonding_info_change(struct net_device *dev,
4918 				struct netdev_bonding_info *bonding_info);
4919 
4920 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4921 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4922 #else
4923 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4924 				  const void *data)
4925 {
4926 }
4927 #endif
4928 
4929 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4930 
4931 static inline bool can_checksum_protocol(netdev_features_t features,
4932 					 __be16 protocol)
4933 {
4934 	if (protocol == htons(ETH_P_FCOE))
4935 		return !!(features & NETIF_F_FCOE_CRC);
4936 
4937 	/* Assume this is an IP checksum (not SCTP CRC) */
4938 
4939 	if (features & NETIF_F_HW_CSUM) {
4940 		/* Can checksum everything */
4941 		return true;
4942 	}
4943 
4944 	switch (protocol) {
4945 	case htons(ETH_P_IP):
4946 		return !!(features & NETIF_F_IP_CSUM);
4947 	case htons(ETH_P_IPV6):
4948 		return !!(features & NETIF_F_IPV6_CSUM);
4949 	default:
4950 		return false;
4951 	}
4952 }
4953 
4954 #ifdef CONFIG_BUG
4955 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4956 #else
4957 static inline void netdev_rx_csum_fault(struct net_device *dev,
4958 					struct sk_buff *skb)
4959 {
4960 }
4961 #endif
4962 /* rx skb timestamps */
4963 void net_enable_timestamp(void);
4964 void net_disable_timestamp(void);
4965 
4966 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4967 					const struct skb_shared_hwtstamps *hwtstamps,
4968 					bool cycles)
4969 {
4970 	const struct net_device_ops *ops = dev->netdev_ops;
4971 
4972 	if (ops->ndo_get_tstamp)
4973 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4974 
4975 	return hwtstamps->hwtstamp;
4976 }
4977 
4978 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4979 					      struct sk_buff *skb, struct net_device *dev,
4980 					      bool more)
4981 {
4982 	__this_cpu_write(softnet_data.xmit.more, more);
4983 	return ops->ndo_start_xmit(skb, dev);
4984 }
4985 
4986 static inline bool netdev_xmit_more(void)
4987 {
4988 	return __this_cpu_read(softnet_data.xmit.more);
4989 }
4990 
4991 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4992 					    struct netdev_queue *txq, bool more)
4993 {
4994 	const struct net_device_ops *ops = dev->netdev_ops;
4995 	netdev_tx_t rc;
4996 
4997 	rc = __netdev_start_xmit(ops, skb, dev, more);
4998 	if (rc == NETDEV_TX_OK)
4999 		txq_trans_update(txq);
5000 
5001 	return rc;
5002 }
5003 
5004 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
5005 				const void *ns);
5006 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
5007 				 const void *ns);
5008 
5009 extern const struct kobj_ns_type_operations net_ns_type_operations;
5010 
5011 const char *netdev_drivername(const struct net_device *dev);
5012 
5013 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
5014 							  netdev_features_t f2)
5015 {
5016 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
5017 		if (f1 & NETIF_F_HW_CSUM)
5018 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5019 		else
5020 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5021 	}
5022 
5023 	return f1 & f2;
5024 }
5025 
5026 static inline netdev_features_t netdev_get_wanted_features(
5027 	struct net_device *dev)
5028 {
5029 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
5030 }
5031 netdev_features_t netdev_increment_features(netdev_features_t all,
5032 	netdev_features_t one, netdev_features_t mask);
5033 
5034 /* Allow TSO being used on stacked device :
5035  * Performing the GSO segmentation before last device
5036  * is a performance improvement.
5037  */
5038 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
5039 							netdev_features_t mask)
5040 {
5041 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
5042 }
5043 
5044 int __netdev_update_features(struct net_device *dev);
5045 void netdev_update_features(struct net_device *dev);
5046 void netdev_change_features(struct net_device *dev);
5047 
5048 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5049 					struct net_device *dev);
5050 
5051 netdev_features_t passthru_features_check(struct sk_buff *skb,
5052 					  struct net_device *dev,
5053 					  netdev_features_t features);
5054 netdev_features_t netif_skb_features(struct sk_buff *skb);
5055 void skb_warn_bad_offload(const struct sk_buff *skb);
5056 
5057 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
5058 {
5059 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
5060 
5061 	/* check flags correspondence */
5062 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
5063 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
5064 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
5065 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
5066 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
5067 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
5068 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
5069 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
5070 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
5071 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
5072 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
5073 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
5074 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
5075 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
5076 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
5077 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
5078 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
5079 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5080 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5081 
5082 	return (features & feature) == feature;
5083 }
5084 
5085 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5086 {
5087 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5088 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5089 }
5090 
5091 static inline bool netif_needs_gso(struct sk_buff *skb,
5092 				   netdev_features_t features)
5093 {
5094 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5095 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5096 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5097 }
5098 
5099 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
5100 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
5101 void netif_inherit_tso_max(struct net_device *to,
5102 			   const struct net_device *from);
5103 
5104 static inline bool netif_is_macsec(const struct net_device *dev)
5105 {
5106 	return dev->priv_flags & IFF_MACSEC;
5107 }
5108 
5109 static inline bool netif_is_macvlan(const struct net_device *dev)
5110 {
5111 	return dev->priv_flags & IFF_MACVLAN;
5112 }
5113 
5114 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5115 {
5116 	return dev->priv_flags & IFF_MACVLAN_PORT;
5117 }
5118 
5119 static inline bool netif_is_bond_master(const struct net_device *dev)
5120 {
5121 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5122 }
5123 
5124 static inline bool netif_is_bond_slave(const struct net_device *dev)
5125 {
5126 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5127 }
5128 
5129 static inline bool netif_supports_nofcs(struct net_device *dev)
5130 {
5131 	return dev->priv_flags & IFF_SUPP_NOFCS;
5132 }
5133 
5134 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5135 {
5136 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5137 }
5138 
5139 static inline bool netif_is_l3_master(const struct net_device *dev)
5140 {
5141 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5142 }
5143 
5144 static inline bool netif_is_l3_slave(const struct net_device *dev)
5145 {
5146 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5147 }
5148 
5149 static inline int dev_sdif(const struct net_device *dev)
5150 {
5151 #ifdef CONFIG_NET_L3_MASTER_DEV
5152 	if (netif_is_l3_slave(dev))
5153 		return dev->ifindex;
5154 #endif
5155 	return 0;
5156 }
5157 
5158 static inline bool netif_is_bridge_master(const struct net_device *dev)
5159 {
5160 	return dev->priv_flags & IFF_EBRIDGE;
5161 }
5162 
5163 static inline bool netif_is_bridge_port(const struct net_device *dev)
5164 {
5165 	return dev->priv_flags & IFF_BRIDGE_PORT;
5166 }
5167 
5168 static inline bool netif_is_ovs_master(const struct net_device *dev)
5169 {
5170 	return dev->priv_flags & IFF_OPENVSWITCH;
5171 }
5172 
5173 static inline bool netif_is_ovs_port(const struct net_device *dev)
5174 {
5175 	return dev->priv_flags & IFF_OVS_DATAPATH;
5176 }
5177 
5178 static inline bool netif_is_any_bridge_master(const struct net_device *dev)
5179 {
5180 	return netif_is_bridge_master(dev) || netif_is_ovs_master(dev);
5181 }
5182 
5183 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5184 {
5185 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5186 }
5187 
5188 static inline bool netif_is_team_master(const struct net_device *dev)
5189 {
5190 	return dev->priv_flags & IFF_TEAM;
5191 }
5192 
5193 static inline bool netif_is_team_port(const struct net_device *dev)
5194 {
5195 	return dev->priv_flags & IFF_TEAM_PORT;
5196 }
5197 
5198 static inline bool netif_is_lag_master(const struct net_device *dev)
5199 {
5200 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5201 }
5202 
5203 static inline bool netif_is_lag_port(const struct net_device *dev)
5204 {
5205 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5206 }
5207 
5208 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5209 {
5210 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5211 }
5212 
5213 static inline bool netif_is_failover(const struct net_device *dev)
5214 {
5215 	return dev->priv_flags & IFF_FAILOVER;
5216 }
5217 
5218 static inline bool netif_is_failover_slave(const struct net_device *dev)
5219 {
5220 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5221 }
5222 
5223 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5224 static inline void netif_keep_dst(struct net_device *dev)
5225 {
5226 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5227 }
5228 
5229 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5230 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5231 {
5232 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5233 	return netif_is_macsec(dev);
5234 }
5235 
5236 extern struct pernet_operations __net_initdata loopback_net_ops;
5237 
5238 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5239 
5240 /* netdev_printk helpers, similar to dev_printk */
5241 
5242 static inline const char *netdev_name(const struct net_device *dev)
5243 {
5244 	if (!dev->name[0] || strchr(dev->name, '%'))
5245 		return "(unnamed net_device)";
5246 	return dev->name;
5247 }
5248 
5249 static inline const char *netdev_reg_state(const struct net_device *dev)
5250 {
5251 	switch (dev->reg_state) {
5252 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5253 	case NETREG_REGISTERED: return "";
5254 	case NETREG_UNREGISTERING: return " (unregistering)";
5255 	case NETREG_UNREGISTERED: return " (unregistered)";
5256 	case NETREG_RELEASED: return " (released)";
5257 	case NETREG_DUMMY: return " (dummy)";
5258 	}
5259 
5260 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5261 	return " (unknown)";
5262 }
5263 
5264 #define MODULE_ALIAS_NETDEV(device) \
5265 	MODULE_ALIAS("netdev-" device)
5266 
5267 /*
5268  * netdev_WARN() acts like dev_printk(), but with the key difference
5269  * of using a WARN/WARN_ON to get the message out, including the
5270  * file/line information and a backtrace.
5271  */
5272 #define netdev_WARN(dev, format, args...)			\
5273 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5274 	     netdev_reg_state(dev), ##args)
5275 
5276 #define netdev_WARN_ONCE(dev, format, args...)				\
5277 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5278 		  netdev_reg_state(dev), ##args)
5279 
5280 /*
5281  *	The list of packet types we will receive (as opposed to discard)
5282  *	and the routines to invoke.
5283  *
5284  *	Why 16. Because with 16 the only overlap we get on a hash of the
5285  *	low nibble of the protocol value is RARP/SNAP/X.25.
5286  *
5287  *		0800	IP
5288  *		0001	802.3
5289  *		0002	AX.25
5290  *		0004	802.2
5291  *		8035	RARP
5292  *		0005	SNAP
5293  *		0805	X.25
5294  *		0806	ARP
5295  *		8137	IPX
5296  *		0009	Localtalk
5297  *		86DD	IPv6
5298  */
5299 #define PTYPE_HASH_SIZE	(16)
5300 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5301 
5302 extern struct list_head ptype_all __read_mostly;
5303 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5304 
5305 extern struct net_device *blackhole_netdev;
5306 
5307 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5308 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5309 #define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
5310 		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5311 #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD)
5312 
5313 #endif	/* _LINUX_NETDEVICE_H */
5314