xref: /linux-6.15/include/linux/netdevice.h (revision 5148fa52)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <[email protected]>
12  *		Corey Minyard <[email protected]>
13  *		Donald J. Becker, <[email protected]>
14  *		Alan Cox, <[email protected]>
15  *		Bjorn Ekwall. <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/if.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_link.h>
32 
33 #ifdef __KERNEL__
34 #include <linux/pm_qos.h>
35 #include <linux/timer.h>
36 #include <linux/bug.h>
37 #include <linux/delay.h>
38 #include <linux/atomic.h>
39 #include <asm/cache.h>
40 #include <asm/byteorder.h>
41 
42 #include <linux/percpu.h>
43 #include <linux/rculist.h>
44 #include <linux/dmaengine.h>
45 #include <linux/workqueue.h>
46 #include <linux/dynamic_queue_limits.h>
47 
48 #include <linux/ethtool.h>
49 #include <net/net_namespace.h>
50 #include <net/dsa.h>
51 #ifdef CONFIG_DCB
52 #include <net/dcbnl.h>
53 #endif
54 #include <net/netprio_cgroup.h>
55 
56 #include <linux/netdev_features.h>
57 #include <linux/neighbour.h>
58 
59 struct netpoll_info;
60 struct device;
61 struct phy_device;
62 /* 802.11 specific */
63 struct wireless_dev;
64 					/* source back-compat hooks */
65 #define SET_ETHTOOL_OPS(netdev,ops) \
66 	( (netdev)->ethtool_ops = (ops) )
67 
68 /* hardware address assignment types */
69 #define NET_ADDR_PERM		0	/* address is permanent (default) */
70 #define NET_ADDR_RANDOM		1	/* address is generated randomly */
71 #define NET_ADDR_STOLEN		2	/* address is stolen from other device */
72 
73 /* Backlog congestion levels */
74 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
75 #define NET_RX_DROP		1	/* packet dropped */
76 
77 /*
78  * Transmit return codes: transmit return codes originate from three different
79  * namespaces:
80  *
81  * - qdisc return codes
82  * - driver transmit return codes
83  * - errno values
84  *
85  * Drivers are allowed to return any one of those in their hard_start_xmit()
86  * function. Real network devices commonly used with qdiscs should only return
87  * the driver transmit return codes though - when qdiscs are used, the actual
88  * transmission happens asynchronously, so the value is not propagated to
89  * higher layers. Virtual network devices transmit synchronously, in this case
90  * the driver transmit return codes are consumed by dev_queue_xmit(), all
91  * others are propagated to higher layers.
92  */
93 
94 /* qdisc ->enqueue() return codes. */
95 #define NET_XMIT_SUCCESS	0x00
96 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
97 #define NET_XMIT_CN		0x02	/* congestion notification	*/
98 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
99 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
100 
101 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
102  * indicates that the device will soon be dropping packets, or already drops
103  * some packets of the same priority; prompting us to send less aggressively. */
104 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
105 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
106 
107 /* Driver transmit return codes */
108 #define NETDEV_TX_MASK		0xf0
109 
110 enum netdev_tx {
111 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
112 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
113 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
114 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
115 };
116 typedef enum netdev_tx netdev_tx_t;
117 
118 /*
119  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121  */
122 static inline bool dev_xmit_complete(int rc)
123 {
124 	/*
125 	 * Positive cases with an skb consumed by a driver:
126 	 * - successful transmission (rc == NETDEV_TX_OK)
127 	 * - error while transmitting (rc < 0)
128 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 	 */
130 	if (likely(rc < NET_XMIT_MASK))
131 		return true;
132 
133 	return false;
134 }
135 
136 #endif
137 
138 #define MAX_ADDR_LEN	32		/* Largest hardware address length */
139 
140 /* Initial net device group. All devices belong to group 0 by default. */
141 #define INIT_NETDEV_GROUP	0
142 
143 #ifdef  __KERNEL__
144 /*
145  *	Compute the worst case header length according to the protocols
146  *	used.
147  */
148 
149 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
150 # if defined(CONFIG_MAC80211_MESH)
151 #  define LL_MAX_HEADER 128
152 # else
153 #  define LL_MAX_HEADER 96
154 # endif
155 #elif IS_ENABLED(CONFIG_TR)
156 # define LL_MAX_HEADER 48
157 #else
158 # define LL_MAX_HEADER 32
159 #endif
160 
161 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
162     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
163 #define MAX_HEADER LL_MAX_HEADER
164 #else
165 #define MAX_HEADER (LL_MAX_HEADER + 48)
166 #endif
167 
168 /*
169  *	Old network device statistics. Fields are native words
170  *	(unsigned long) so they can be read and written atomically.
171  */
172 
173 struct net_device_stats {
174 	unsigned long	rx_packets;
175 	unsigned long	tx_packets;
176 	unsigned long	rx_bytes;
177 	unsigned long	tx_bytes;
178 	unsigned long	rx_errors;
179 	unsigned long	tx_errors;
180 	unsigned long	rx_dropped;
181 	unsigned long	tx_dropped;
182 	unsigned long	multicast;
183 	unsigned long	collisions;
184 	unsigned long	rx_length_errors;
185 	unsigned long	rx_over_errors;
186 	unsigned long	rx_crc_errors;
187 	unsigned long	rx_frame_errors;
188 	unsigned long	rx_fifo_errors;
189 	unsigned long	rx_missed_errors;
190 	unsigned long	tx_aborted_errors;
191 	unsigned long	tx_carrier_errors;
192 	unsigned long	tx_fifo_errors;
193 	unsigned long	tx_heartbeat_errors;
194 	unsigned long	tx_window_errors;
195 	unsigned long	rx_compressed;
196 	unsigned long	tx_compressed;
197 };
198 
199 #endif  /*  __KERNEL__  */
200 
201 
202 /* Media selection options. */
203 enum {
204         IF_PORT_UNKNOWN = 0,
205         IF_PORT_10BASE2,
206         IF_PORT_10BASET,
207         IF_PORT_AUI,
208         IF_PORT_100BASET,
209         IF_PORT_100BASETX,
210         IF_PORT_100BASEFX
211 };
212 
213 #ifdef __KERNEL__
214 
215 #include <linux/cache.h>
216 #include <linux/skbuff.h>
217 
218 #ifdef CONFIG_RPS
219 #include <linux/static_key.h>
220 extern struct static_key rps_needed;
221 #endif
222 
223 struct neighbour;
224 struct neigh_parms;
225 struct sk_buff;
226 
227 struct netdev_hw_addr {
228 	struct list_head	list;
229 	unsigned char		addr[MAX_ADDR_LEN];
230 	unsigned char		type;
231 #define NETDEV_HW_ADDR_T_LAN		1
232 #define NETDEV_HW_ADDR_T_SAN		2
233 #define NETDEV_HW_ADDR_T_SLAVE		3
234 #define NETDEV_HW_ADDR_T_UNICAST	4
235 #define NETDEV_HW_ADDR_T_MULTICAST	5
236 	bool			synced;
237 	bool			global_use;
238 	int			refcount;
239 	struct rcu_head		rcu_head;
240 };
241 
242 struct netdev_hw_addr_list {
243 	struct list_head	list;
244 	int			count;
245 };
246 
247 #define netdev_hw_addr_list_count(l) ((l)->count)
248 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
249 #define netdev_hw_addr_list_for_each(ha, l) \
250 	list_for_each_entry(ha, &(l)->list, list)
251 
252 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
253 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
254 #define netdev_for_each_uc_addr(ha, dev) \
255 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
256 
257 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
258 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
259 #define netdev_for_each_mc_addr(ha, dev) \
260 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
261 
262 struct hh_cache {
263 	u16		hh_len;
264 	u16		__pad;
265 	seqlock_t	hh_lock;
266 
267 	/* cached hardware header; allow for machine alignment needs.        */
268 #define HH_DATA_MOD	16
269 #define HH_DATA_OFF(__len) \
270 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
271 #define HH_DATA_ALIGN(__len) \
272 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
273 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
274 };
275 
276 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
277  * Alternative is:
278  *   dev->hard_header_len ? (dev->hard_header_len +
279  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
280  *
281  * We could use other alignment values, but we must maintain the
282  * relationship HH alignment <= LL alignment.
283  */
284 #define LL_RESERVED_SPACE(dev) \
285 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
286 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
287 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
288 
289 struct header_ops {
290 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
291 			   unsigned short type, const void *daddr,
292 			   const void *saddr, unsigned int len);
293 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
294 	int	(*rebuild)(struct sk_buff *skb);
295 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
296 	void	(*cache_update)(struct hh_cache *hh,
297 				const struct net_device *dev,
298 				const unsigned char *haddr);
299 };
300 
301 /* These flag bits are private to the generic network queueing
302  * layer, they may not be explicitly referenced by any other
303  * code.
304  */
305 
306 enum netdev_state_t {
307 	__LINK_STATE_START,
308 	__LINK_STATE_PRESENT,
309 	__LINK_STATE_NOCARRIER,
310 	__LINK_STATE_LINKWATCH_PENDING,
311 	__LINK_STATE_DORMANT,
312 };
313 
314 
315 /*
316  * This structure holds at boot time configured netdevice settings. They
317  * are then used in the device probing.
318  */
319 struct netdev_boot_setup {
320 	char name[IFNAMSIZ];
321 	struct ifmap map;
322 };
323 #define NETDEV_BOOT_SETUP_MAX 8
324 
325 extern int __init netdev_boot_setup(char *str);
326 
327 /*
328  * Structure for NAPI scheduling similar to tasklet but with weighting
329  */
330 struct napi_struct {
331 	/* The poll_list must only be managed by the entity which
332 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
333 	 * whoever atomically sets that bit can add this napi_struct
334 	 * to the per-cpu poll_list, and whoever clears that bit
335 	 * can remove from the list right before clearing the bit.
336 	 */
337 	struct list_head	poll_list;
338 
339 	unsigned long		state;
340 	int			weight;
341 	int			(*poll)(struct napi_struct *, int);
342 #ifdef CONFIG_NETPOLL
343 	spinlock_t		poll_lock;
344 	int			poll_owner;
345 #endif
346 
347 	unsigned int		gro_count;
348 
349 	struct net_device	*dev;
350 	struct list_head	dev_list;
351 	struct sk_buff		*gro_list;
352 	struct sk_buff		*skb;
353 };
354 
355 enum {
356 	NAPI_STATE_SCHED,	/* Poll is scheduled */
357 	NAPI_STATE_DISABLE,	/* Disable pending */
358 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
359 };
360 
361 enum gro_result {
362 	GRO_MERGED,
363 	GRO_MERGED_FREE,
364 	GRO_HELD,
365 	GRO_NORMAL,
366 	GRO_DROP,
367 };
368 typedef enum gro_result gro_result_t;
369 
370 /*
371  * enum rx_handler_result - Possible return values for rx_handlers.
372  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
373  * further.
374  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
375  * case skb->dev was changed by rx_handler.
376  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
377  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
378  *
379  * rx_handlers are functions called from inside __netif_receive_skb(), to do
380  * special processing of the skb, prior to delivery to protocol handlers.
381  *
382  * Currently, a net_device can only have a single rx_handler registered. Trying
383  * to register a second rx_handler will return -EBUSY.
384  *
385  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
386  * To unregister a rx_handler on a net_device, use
387  * netdev_rx_handler_unregister().
388  *
389  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
390  * do with the skb.
391  *
392  * If the rx_handler consumed to skb in some way, it should return
393  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
394  * the skb to be delivered in some other ways.
395  *
396  * If the rx_handler changed skb->dev, to divert the skb to another
397  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
398  * new device will be called if it exists.
399  *
400  * If the rx_handler consider the skb should be ignored, it should return
401  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
402  * are registred on exact device (ptype->dev == skb->dev).
403  *
404  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
405  * delivered, it should return RX_HANDLER_PASS.
406  *
407  * A device without a registered rx_handler will behave as if rx_handler
408  * returned RX_HANDLER_PASS.
409  */
410 
411 enum rx_handler_result {
412 	RX_HANDLER_CONSUMED,
413 	RX_HANDLER_ANOTHER,
414 	RX_HANDLER_EXACT,
415 	RX_HANDLER_PASS,
416 };
417 typedef enum rx_handler_result rx_handler_result_t;
418 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
419 
420 extern void __napi_schedule(struct napi_struct *n);
421 
422 static inline bool napi_disable_pending(struct napi_struct *n)
423 {
424 	return test_bit(NAPI_STATE_DISABLE, &n->state);
425 }
426 
427 /**
428  *	napi_schedule_prep - check if napi can be scheduled
429  *	@n: napi context
430  *
431  * Test if NAPI routine is already running, and if not mark
432  * it as running.  This is used as a condition variable
433  * insure only one NAPI poll instance runs.  We also make
434  * sure there is no pending NAPI disable.
435  */
436 static inline bool napi_schedule_prep(struct napi_struct *n)
437 {
438 	return !napi_disable_pending(n) &&
439 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
440 }
441 
442 /**
443  *	napi_schedule - schedule NAPI poll
444  *	@n: napi context
445  *
446  * Schedule NAPI poll routine to be called if it is not already
447  * running.
448  */
449 static inline void napi_schedule(struct napi_struct *n)
450 {
451 	if (napi_schedule_prep(n))
452 		__napi_schedule(n);
453 }
454 
455 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
456 static inline bool napi_reschedule(struct napi_struct *napi)
457 {
458 	if (napi_schedule_prep(napi)) {
459 		__napi_schedule(napi);
460 		return true;
461 	}
462 	return false;
463 }
464 
465 /**
466  *	napi_complete - NAPI processing complete
467  *	@n: napi context
468  *
469  * Mark NAPI processing as complete.
470  */
471 extern void __napi_complete(struct napi_struct *n);
472 extern void napi_complete(struct napi_struct *n);
473 
474 /**
475  *	napi_disable - prevent NAPI from scheduling
476  *	@n: napi context
477  *
478  * Stop NAPI from being scheduled on this context.
479  * Waits till any outstanding processing completes.
480  */
481 static inline void napi_disable(struct napi_struct *n)
482 {
483 	set_bit(NAPI_STATE_DISABLE, &n->state);
484 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
485 		msleep(1);
486 	clear_bit(NAPI_STATE_DISABLE, &n->state);
487 }
488 
489 /**
490  *	napi_enable - enable NAPI scheduling
491  *	@n: napi context
492  *
493  * Resume NAPI from being scheduled on this context.
494  * Must be paired with napi_disable.
495  */
496 static inline void napi_enable(struct napi_struct *n)
497 {
498 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
499 	smp_mb__before_clear_bit();
500 	clear_bit(NAPI_STATE_SCHED, &n->state);
501 }
502 
503 #ifdef CONFIG_SMP
504 /**
505  *	napi_synchronize - wait until NAPI is not running
506  *	@n: napi context
507  *
508  * Wait until NAPI is done being scheduled on this context.
509  * Waits till any outstanding processing completes but
510  * does not disable future activations.
511  */
512 static inline void napi_synchronize(const struct napi_struct *n)
513 {
514 	while (test_bit(NAPI_STATE_SCHED, &n->state))
515 		msleep(1);
516 }
517 #else
518 # define napi_synchronize(n)	barrier()
519 #endif
520 
521 enum netdev_queue_state_t {
522 	__QUEUE_STATE_DRV_XOFF,
523 	__QUEUE_STATE_STACK_XOFF,
524 	__QUEUE_STATE_FROZEN,
525 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF)		| \
526 			      (1 << __QUEUE_STATE_STACK_XOFF))
527 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF		| \
528 					(1 << __QUEUE_STATE_FROZEN))
529 };
530 /*
531  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
532  * netif_tx_* functions below are used to manipulate this flag.  The
533  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
534  * queue independently.  The netif_xmit_*stopped functions below are called
535  * to check if the queue has been stopped by the driver or stack (either
536  * of the XOFF bits are set in the state).  Drivers should not need to call
537  * netif_xmit*stopped functions, they should only be using netif_tx_*.
538  */
539 
540 struct netdev_queue {
541 /*
542  * read mostly part
543  */
544 	struct net_device	*dev;
545 	struct Qdisc		*qdisc;
546 	struct Qdisc		*qdisc_sleeping;
547 #ifdef CONFIG_SYSFS
548 	struct kobject		kobj;
549 #endif
550 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
551 	int			numa_node;
552 #endif
553 /*
554  * write mostly part
555  */
556 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
557 	int			xmit_lock_owner;
558 	/*
559 	 * please use this field instead of dev->trans_start
560 	 */
561 	unsigned long		trans_start;
562 
563 	/*
564 	 * Number of TX timeouts for this queue
565 	 * (/sys/class/net/DEV/Q/trans_timeout)
566 	 */
567 	unsigned long		trans_timeout;
568 
569 	unsigned long		state;
570 
571 #ifdef CONFIG_BQL
572 	struct dql		dql;
573 #endif
574 } ____cacheline_aligned_in_smp;
575 
576 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
577 {
578 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
579 	return q->numa_node;
580 #else
581 	return NUMA_NO_NODE;
582 #endif
583 }
584 
585 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
586 {
587 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
588 	q->numa_node = node;
589 #endif
590 }
591 
592 #ifdef CONFIG_RPS
593 /*
594  * This structure holds an RPS map which can be of variable length.  The
595  * map is an array of CPUs.
596  */
597 struct rps_map {
598 	unsigned int len;
599 	struct rcu_head rcu;
600 	u16 cpus[0];
601 };
602 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
603 
604 /*
605  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
606  * tail pointer for that CPU's input queue at the time of last enqueue, and
607  * a hardware filter index.
608  */
609 struct rps_dev_flow {
610 	u16 cpu;
611 	u16 filter;
612 	unsigned int last_qtail;
613 };
614 #define RPS_NO_FILTER 0xffff
615 
616 /*
617  * The rps_dev_flow_table structure contains a table of flow mappings.
618  */
619 struct rps_dev_flow_table {
620 	unsigned int mask;
621 	struct rcu_head rcu;
622 	struct work_struct free_work;
623 	struct rps_dev_flow flows[0];
624 };
625 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
626     ((_num) * sizeof(struct rps_dev_flow)))
627 
628 /*
629  * The rps_sock_flow_table contains mappings of flows to the last CPU
630  * on which they were processed by the application (set in recvmsg).
631  */
632 struct rps_sock_flow_table {
633 	unsigned int mask;
634 	u16 ents[0];
635 };
636 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
637     ((_num) * sizeof(u16)))
638 
639 #define RPS_NO_CPU 0xffff
640 
641 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
642 					u32 hash)
643 {
644 	if (table && hash) {
645 		unsigned int cpu, index = hash & table->mask;
646 
647 		/* We only give a hint, preemption can change cpu under us */
648 		cpu = raw_smp_processor_id();
649 
650 		if (table->ents[index] != cpu)
651 			table->ents[index] = cpu;
652 	}
653 }
654 
655 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
656 				       u32 hash)
657 {
658 	if (table && hash)
659 		table->ents[hash & table->mask] = RPS_NO_CPU;
660 }
661 
662 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
663 
664 #ifdef CONFIG_RFS_ACCEL
665 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
666 				u32 flow_id, u16 filter_id);
667 #endif
668 
669 /* This structure contains an instance of an RX queue. */
670 struct netdev_rx_queue {
671 	struct rps_map __rcu		*rps_map;
672 	struct rps_dev_flow_table __rcu	*rps_flow_table;
673 	struct kobject			kobj;
674 	struct net_device		*dev;
675 } ____cacheline_aligned_in_smp;
676 #endif /* CONFIG_RPS */
677 
678 #ifdef CONFIG_XPS
679 /*
680  * This structure holds an XPS map which can be of variable length.  The
681  * map is an array of queues.
682  */
683 struct xps_map {
684 	unsigned int len;
685 	unsigned int alloc_len;
686 	struct rcu_head rcu;
687 	u16 queues[0];
688 };
689 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
690 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))	\
691     / sizeof(u16))
692 
693 /*
694  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
695  */
696 struct xps_dev_maps {
697 	struct rcu_head rcu;
698 	struct xps_map __rcu *cpu_map[0];
699 };
700 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
701     (nr_cpu_ids * sizeof(struct xps_map *)))
702 #endif /* CONFIG_XPS */
703 
704 #define TC_MAX_QUEUE	16
705 #define TC_BITMASK	15
706 /* HW offloaded queuing disciplines txq count and offset maps */
707 struct netdev_tc_txq {
708 	u16 count;
709 	u16 offset;
710 };
711 
712 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
713 /*
714  * This structure is to hold information about the device
715  * configured to run FCoE protocol stack.
716  */
717 struct netdev_fcoe_hbainfo {
718 	char	manufacturer[64];
719 	char	serial_number[64];
720 	char	hardware_version[64];
721 	char	driver_version[64];
722 	char	optionrom_version[64];
723 	char	firmware_version[64];
724 	char	model[256];
725 	char	model_description[256];
726 };
727 #endif
728 
729 /*
730  * This structure defines the management hooks for network devices.
731  * The following hooks can be defined; unless noted otherwise, they are
732  * optional and can be filled with a null pointer.
733  *
734  * int (*ndo_init)(struct net_device *dev);
735  *     This function is called once when network device is registered.
736  *     The network device can use this to any late stage initializaton
737  *     or semantic validattion. It can fail with an error code which will
738  *     be propogated back to register_netdev
739  *
740  * void (*ndo_uninit)(struct net_device *dev);
741  *     This function is called when device is unregistered or when registration
742  *     fails. It is not called if init fails.
743  *
744  * int (*ndo_open)(struct net_device *dev);
745  *     This function is called when network device transistions to the up
746  *     state.
747  *
748  * int (*ndo_stop)(struct net_device *dev);
749  *     This function is called when network device transistions to the down
750  *     state.
751  *
752  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
753  *                               struct net_device *dev);
754  *	Called when a packet needs to be transmitted.
755  *	Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
756  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
757  *	Required can not be NULL.
758  *
759  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
760  *	Called to decide which queue to when device supports multiple
761  *	transmit queues.
762  *
763  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
764  *	This function is called to allow device receiver to make
765  *	changes to configuration when multicast or promiscious is enabled.
766  *
767  * void (*ndo_set_rx_mode)(struct net_device *dev);
768  *	This function is called device changes address list filtering.
769  *	If driver handles unicast address filtering, it should set
770  *	IFF_UNICAST_FLT to its priv_flags.
771  *
772  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
773  *	This function  is called when the Media Access Control address
774  *	needs to be changed. If this interface is not defined, the
775  *	mac address can not be changed.
776  *
777  * int (*ndo_validate_addr)(struct net_device *dev);
778  *	Test if Media Access Control address is valid for the device.
779  *
780  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
781  *	Called when a user request an ioctl which can't be handled by
782  *	the generic interface code. If not defined ioctl's return
783  *	not supported error code.
784  *
785  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
786  *	Used to set network devices bus interface parameters. This interface
787  *	is retained for legacy reason, new devices should use the bus
788  *	interface (PCI) for low level management.
789  *
790  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
791  *	Called when a user wants to change the Maximum Transfer Unit
792  *	of a device. If not defined, any request to change MTU will
793  *	will return an error.
794  *
795  * void (*ndo_tx_timeout)(struct net_device *dev);
796  *	Callback uses when the transmitter has not made any progress
797  *	for dev->watchdog ticks.
798  *
799  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
800  *                      struct rtnl_link_stats64 *storage);
801  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
802  *	Called when a user wants to get the network device usage
803  *	statistics. Drivers must do one of the following:
804  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
805  *	   rtnl_link_stats64 structure passed by the caller.
806  *	2. Define @ndo_get_stats to update a net_device_stats structure
807  *	   (which should normally be dev->stats) and return a pointer to
808  *	   it. The structure may be changed asynchronously only if each
809  *	   field is written atomically.
810  *	3. Update dev->stats asynchronously and atomically, and define
811  *	   neither operation.
812  *
813  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
814  *	If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
815  *	this function is called when a VLAN id is registered.
816  *
817  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
818  *	If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
819  *	this function is called when a VLAN id is unregistered.
820  *
821  * void (*ndo_poll_controller)(struct net_device *dev);
822  *
823  *	SR-IOV management functions.
824  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
825  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
826  * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
827  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
828  * int (*ndo_get_vf_config)(struct net_device *dev,
829  *			    int vf, struct ifla_vf_info *ivf);
830  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
831  *			  struct nlattr *port[]);
832  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
833  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
834  * 	Called to setup 'tc' number of traffic classes in the net device. This
835  * 	is always called from the stack with the rtnl lock held and netif tx
836  * 	queues stopped. This allows the netdevice to perform queue management
837  * 	safely.
838  *
839  *	Fiber Channel over Ethernet (FCoE) offload functions.
840  * int (*ndo_fcoe_enable)(struct net_device *dev);
841  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
842  *	so the underlying device can perform whatever needed configuration or
843  *	initialization to support acceleration of FCoE traffic.
844  *
845  * int (*ndo_fcoe_disable)(struct net_device *dev);
846  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
847  *	so the underlying device can perform whatever needed clean-ups to
848  *	stop supporting acceleration of FCoE traffic.
849  *
850  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
851  *			     struct scatterlist *sgl, unsigned int sgc);
852  *	Called when the FCoE Initiator wants to initialize an I/O that
853  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
854  *	perform necessary setup and returns 1 to indicate the device is set up
855  *	successfully to perform DDP on this I/O, otherwise this returns 0.
856  *
857  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
858  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
859  *	indicated by the FC exchange id 'xid', so the underlying device can
860  *	clean up and reuse resources for later DDP requests.
861  *
862  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
863  *			      struct scatterlist *sgl, unsigned int sgc);
864  *	Called when the FCoE Target wants to initialize an I/O that
865  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
866  *	perform necessary setup and returns 1 to indicate the device is set up
867  *	successfully to perform DDP on this I/O, otherwise this returns 0.
868  *
869  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
870  *			       struct netdev_fcoe_hbainfo *hbainfo);
871  *	Called when the FCoE Protocol stack wants information on the underlying
872  *	device. This information is utilized by the FCoE protocol stack to
873  *	register attributes with Fiber Channel management service as per the
874  *	FC-GS Fabric Device Management Information(FDMI) specification.
875  *
876  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
877  *	Called when the underlying device wants to override default World Wide
878  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
879  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
880  *	protocol stack to use.
881  *
882  *	RFS acceleration.
883  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
884  *			    u16 rxq_index, u32 flow_id);
885  *	Set hardware filter for RFS.  rxq_index is the target queue index;
886  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
887  *	Return the filter ID on success, or a negative error code.
888  *
889  *	Slave management functions (for bridge, bonding, etc). User should
890  *	call netdev_set_master() to set dev->master properly.
891  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
892  *	Called to make another netdev an underling.
893  *
894  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
895  *	Called to release previously enslaved netdev.
896  *
897  *      Feature/offload setting functions.
898  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
899  *		netdev_features_t features);
900  *	Adjusts the requested feature flags according to device-specific
901  *	constraints, and returns the resulting flags. Must not modify
902  *	the device state.
903  *
904  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
905  *	Called to update device configuration to new features. Passed
906  *	feature set might be less than what was returned by ndo_fix_features()).
907  *	Must return >0 or -errno if it changed dev->features itself.
908  *
909  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct net_device *dev,
910  *		      unsigned char *addr, u16 flags)
911  *	Adds an FDB entry to dev for addr.
912  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct net_device *dev,
913  *		      unsigned char *addr)
914  *	Deletes the FDB entry from dev coresponding to addr.
915  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
916  *		       struct net_device *dev, int idx)
917  *	Used to add FDB entries to dump requests. Implementers should add
918  *	entries to skb and update idx with the number of entries.
919  */
920 struct net_device_ops {
921 	int			(*ndo_init)(struct net_device *dev);
922 	void			(*ndo_uninit)(struct net_device *dev);
923 	int			(*ndo_open)(struct net_device *dev);
924 	int			(*ndo_stop)(struct net_device *dev);
925 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
926 						   struct net_device *dev);
927 	u16			(*ndo_select_queue)(struct net_device *dev,
928 						    struct sk_buff *skb);
929 	void			(*ndo_change_rx_flags)(struct net_device *dev,
930 						       int flags);
931 	void			(*ndo_set_rx_mode)(struct net_device *dev);
932 	int			(*ndo_set_mac_address)(struct net_device *dev,
933 						       void *addr);
934 	int			(*ndo_validate_addr)(struct net_device *dev);
935 	int			(*ndo_do_ioctl)(struct net_device *dev,
936 					        struct ifreq *ifr, int cmd);
937 	int			(*ndo_set_config)(struct net_device *dev,
938 					          struct ifmap *map);
939 	int			(*ndo_change_mtu)(struct net_device *dev,
940 						  int new_mtu);
941 	int			(*ndo_neigh_setup)(struct net_device *dev,
942 						   struct neigh_parms *);
943 	void			(*ndo_tx_timeout) (struct net_device *dev);
944 
945 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
946 						     struct rtnl_link_stats64 *storage);
947 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
948 
949 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
950 						       unsigned short vid);
951 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
952 						        unsigned short vid);
953 #ifdef CONFIG_NET_POLL_CONTROLLER
954 	void                    (*ndo_poll_controller)(struct net_device *dev);
955 	int			(*ndo_netpoll_setup)(struct net_device *dev,
956 						     struct netpoll_info *info);
957 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
958 #endif
959 	int			(*ndo_set_vf_mac)(struct net_device *dev,
960 						  int queue, u8 *mac);
961 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
962 						   int queue, u16 vlan, u8 qos);
963 	int			(*ndo_set_vf_tx_rate)(struct net_device *dev,
964 						      int vf, int rate);
965 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
966 						       int vf, bool setting);
967 	int			(*ndo_get_vf_config)(struct net_device *dev,
968 						     int vf,
969 						     struct ifla_vf_info *ivf);
970 	int			(*ndo_set_vf_port)(struct net_device *dev,
971 						   int vf,
972 						   struct nlattr *port[]);
973 	int			(*ndo_get_vf_port)(struct net_device *dev,
974 						   int vf, struct sk_buff *skb);
975 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
976 #if IS_ENABLED(CONFIG_FCOE)
977 	int			(*ndo_fcoe_enable)(struct net_device *dev);
978 	int			(*ndo_fcoe_disable)(struct net_device *dev);
979 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
980 						      u16 xid,
981 						      struct scatterlist *sgl,
982 						      unsigned int sgc);
983 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
984 						     u16 xid);
985 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
986 						       u16 xid,
987 						       struct scatterlist *sgl,
988 						       unsigned int sgc);
989 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
990 							struct netdev_fcoe_hbainfo *hbainfo);
991 #endif
992 
993 #if IS_ENABLED(CONFIG_LIBFCOE)
994 #define NETDEV_FCOE_WWNN 0
995 #define NETDEV_FCOE_WWPN 1
996 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
997 						    u64 *wwn, int type);
998 #endif
999 
1000 #ifdef CONFIG_RFS_ACCEL
1001 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1002 						     const struct sk_buff *skb,
1003 						     u16 rxq_index,
1004 						     u32 flow_id);
1005 #endif
1006 	int			(*ndo_add_slave)(struct net_device *dev,
1007 						 struct net_device *slave_dev);
1008 	int			(*ndo_del_slave)(struct net_device *dev,
1009 						 struct net_device *slave_dev);
1010 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1011 						    netdev_features_t features);
1012 	int			(*ndo_set_features)(struct net_device *dev,
1013 						    netdev_features_t features);
1014 	int			(*ndo_neigh_construct)(struct neighbour *n);
1015 	void			(*ndo_neigh_destroy)(struct neighbour *n);
1016 
1017 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1018 					       struct net_device *dev,
1019 					       unsigned char *addr,
1020 					       u16 flags);
1021 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1022 					       struct net_device *dev,
1023 					       unsigned char *addr);
1024 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1025 						struct netlink_callback *cb,
1026 						struct net_device *dev,
1027 						int idx);
1028 };
1029 
1030 /*
1031  *	The DEVICE structure.
1032  *	Actually, this whole structure is a big mistake.  It mixes I/O
1033  *	data with strictly "high-level" data, and it has to know about
1034  *	almost every data structure used in the INET module.
1035  *
1036  *	FIXME: cleanup struct net_device such that network protocol info
1037  *	moves out.
1038  */
1039 
1040 struct net_device {
1041 
1042 	/*
1043 	 * This is the first field of the "visible" part of this structure
1044 	 * (i.e. as seen by users in the "Space.c" file).  It is the name
1045 	 * of the interface.
1046 	 */
1047 	char			name[IFNAMSIZ];
1048 
1049 	struct pm_qos_request	pm_qos_req;
1050 
1051 	/* device name hash chain */
1052 	struct hlist_node	name_hlist;
1053 	/* snmp alias */
1054 	char 			*ifalias;
1055 
1056 	/*
1057 	 *	I/O specific fields
1058 	 *	FIXME: Merge these and struct ifmap into one
1059 	 */
1060 	unsigned long		mem_end;	/* shared mem end	*/
1061 	unsigned long		mem_start;	/* shared mem start	*/
1062 	unsigned long		base_addr;	/* device I/O address	*/
1063 	unsigned int		irq;		/* device IRQ number	*/
1064 
1065 	/*
1066 	 *	Some hardware also needs these fields, but they are not
1067 	 *	part of the usual set specified in Space.c.
1068 	 */
1069 
1070 	unsigned long		state;
1071 
1072 	struct list_head	dev_list;
1073 	struct list_head	napi_list;
1074 	struct list_head	unreg_list;
1075 
1076 	/* currently active device features */
1077 	netdev_features_t	features;
1078 	/* user-changeable features */
1079 	netdev_features_t	hw_features;
1080 	/* user-requested features */
1081 	netdev_features_t	wanted_features;
1082 	/* mask of features inheritable by VLAN devices */
1083 	netdev_features_t	vlan_features;
1084 
1085 	/* Interface index. Unique device identifier	*/
1086 	int			ifindex;
1087 	int			iflink;
1088 
1089 	struct net_device_stats	stats;
1090 	atomic_long_t		rx_dropped; /* dropped packets by core network
1091 					     * Do not use this in drivers.
1092 					     */
1093 
1094 #ifdef CONFIG_WIRELESS_EXT
1095 	/* List of functions to handle Wireless Extensions (instead of ioctl).
1096 	 * See <net/iw_handler.h> for details. Jean II */
1097 	const struct iw_handler_def *	wireless_handlers;
1098 	/* Instance data managed by the core of Wireless Extensions. */
1099 	struct iw_public_data *	wireless_data;
1100 #endif
1101 	/* Management operations */
1102 	const struct net_device_ops *netdev_ops;
1103 	const struct ethtool_ops *ethtool_ops;
1104 
1105 	/* Hardware header description */
1106 	const struct header_ops *header_ops;
1107 
1108 	unsigned int		flags;	/* interface flags (a la BSD)	*/
1109 	unsigned int		priv_flags; /* Like 'flags' but invisible to userspace.
1110 					     * See if.h for definitions. */
1111 	unsigned short		gflags;
1112 	unsigned short		padded;	/* How much padding added by alloc_netdev() */
1113 
1114 	unsigned char		operstate; /* RFC2863 operstate */
1115 	unsigned char		link_mode; /* mapping policy to operstate */
1116 
1117 	unsigned char		if_port;	/* Selectable AUI, TP,..*/
1118 	unsigned char		dma;		/* DMA channel		*/
1119 
1120 	unsigned int		mtu;	/* interface MTU value		*/
1121 	unsigned short		type;	/* interface hardware type	*/
1122 	unsigned short		hard_header_len;	/* hardware hdr length	*/
1123 
1124 	/* extra head- and tailroom the hardware may need, but not in all cases
1125 	 * can this be guaranteed, especially tailroom. Some cases also use
1126 	 * LL_MAX_HEADER instead to allocate the skb.
1127 	 */
1128 	unsigned short		needed_headroom;
1129 	unsigned short		needed_tailroom;
1130 
1131 	/* Interface address info. */
1132 	unsigned char		perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1133 	unsigned char		addr_assign_type; /* hw address assignment type */
1134 	unsigned char		addr_len;	/* hardware address length	*/
1135 	unsigned char		neigh_priv_len;
1136 	unsigned short          dev_id;		/* for shared network cards */
1137 
1138 	spinlock_t		addr_list_lock;
1139 	struct netdev_hw_addr_list	uc;	/* Unicast mac addresses */
1140 	struct netdev_hw_addr_list	mc;	/* Multicast mac addresses */
1141 	bool			uc_promisc;
1142 	unsigned int		promiscuity;
1143 	unsigned int		allmulti;
1144 
1145 
1146 	/* Protocol specific pointers */
1147 
1148 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1149 	struct vlan_info __rcu	*vlan_info;	/* VLAN info */
1150 #endif
1151 #if IS_ENABLED(CONFIG_NET_DSA)
1152 	struct dsa_switch_tree	*dsa_ptr;	/* dsa specific data */
1153 #endif
1154 	void 			*atalk_ptr;	/* AppleTalk link 	*/
1155 	struct in_device __rcu	*ip_ptr;	/* IPv4 specific data	*/
1156 	struct dn_dev __rcu     *dn_ptr;        /* DECnet specific data */
1157 	struct inet6_dev __rcu	*ip6_ptr;       /* IPv6 specific data */
1158 	void			*ax25_ptr;	/* AX.25 specific data */
1159 	struct wireless_dev	*ieee80211_ptr;	/* IEEE 802.11 specific data,
1160 						   assign before registering */
1161 
1162 /*
1163  * Cache lines mostly used on receive path (including eth_type_trans())
1164  */
1165 	unsigned long		last_rx;	/* Time of last Rx
1166 						 * This should not be set in
1167 						 * drivers, unless really needed,
1168 						 * because network stack (bonding)
1169 						 * use it if/when necessary, to
1170 						 * avoid dirtying this cache line.
1171 						 */
1172 
1173 	struct net_device	*master; /* Pointer to master device of a group,
1174 					  * which this device is member of.
1175 					  */
1176 
1177 	/* Interface address info used in eth_type_trans() */
1178 	unsigned char		*dev_addr;	/* hw address, (before bcast
1179 						   because most packets are
1180 						   unicast) */
1181 
1182 	struct netdev_hw_addr_list	dev_addrs; /* list of device
1183 						      hw addresses */
1184 
1185 	unsigned char		broadcast[MAX_ADDR_LEN];	/* hw bcast add	*/
1186 
1187 #ifdef CONFIG_SYSFS
1188 	struct kset		*queues_kset;
1189 #endif
1190 
1191 #ifdef CONFIG_RPS
1192 	struct netdev_rx_queue	*_rx;
1193 
1194 	/* Number of RX queues allocated at register_netdev() time */
1195 	unsigned int		num_rx_queues;
1196 
1197 	/* Number of RX queues currently active in device */
1198 	unsigned int		real_num_rx_queues;
1199 
1200 #ifdef CONFIG_RFS_ACCEL
1201 	/* CPU reverse-mapping for RX completion interrupts, indexed
1202 	 * by RX queue number.  Assigned by driver.  This must only be
1203 	 * set if the ndo_rx_flow_steer operation is defined. */
1204 	struct cpu_rmap		*rx_cpu_rmap;
1205 #endif
1206 #endif
1207 
1208 	rx_handler_func_t __rcu	*rx_handler;
1209 	void __rcu		*rx_handler_data;
1210 
1211 	struct netdev_queue __rcu *ingress_queue;
1212 
1213 /*
1214  * Cache lines mostly used on transmit path
1215  */
1216 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1217 
1218 	/* Number of TX queues allocated at alloc_netdev_mq() time  */
1219 	unsigned int		num_tx_queues;
1220 
1221 	/* Number of TX queues currently active in device  */
1222 	unsigned int		real_num_tx_queues;
1223 
1224 	/* root qdisc from userspace point of view */
1225 	struct Qdisc		*qdisc;
1226 
1227 	unsigned long		tx_queue_len;	/* Max frames per queue allowed */
1228 	spinlock_t		tx_global_lock;
1229 
1230 #ifdef CONFIG_XPS
1231 	struct xps_dev_maps __rcu *xps_maps;
1232 #endif
1233 
1234 	/* These may be needed for future network-power-down code. */
1235 
1236 	/*
1237 	 * trans_start here is expensive for high speed devices on SMP,
1238 	 * please use netdev_queue->trans_start instead.
1239 	 */
1240 	unsigned long		trans_start;	/* Time (in jiffies) of last Tx	*/
1241 
1242 	int			watchdog_timeo; /* used by dev_watchdog() */
1243 	struct timer_list	watchdog_timer;
1244 
1245 	/* Number of references to this device */
1246 	int __percpu		*pcpu_refcnt;
1247 
1248 	/* delayed register/unregister */
1249 	struct list_head	todo_list;
1250 	/* device index hash chain */
1251 	struct hlist_node	index_hlist;
1252 
1253 	struct list_head	link_watch_list;
1254 
1255 	/* register/unregister state machine */
1256 	enum { NETREG_UNINITIALIZED=0,
1257 	       NETREG_REGISTERED,	/* completed register_netdevice */
1258 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1259 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1260 	       NETREG_RELEASED,		/* called free_netdev */
1261 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1262 	} reg_state:8;
1263 
1264 	bool dismantle; /* device is going do be freed */
1265 
1266 	enum {
1267 		RTNL_LINK_INITIALIZED,
1268 		RTNL_LINK_INITIALIZING,
1269 	} rtnl_link_state:16;
1270 
1271 	/* Called from unregister, can be used to call free_netdev */
1272 	void (*destructor)(struct net_device *dev);
1273 
1274 #ifdef CONFIG_NETPOLL
1275 	struct netpoll_info	*npinfo;
1276 #endif
1277 
1278 #ifdef CONFIG_NET_NS
1279 	/* Network namespace this network device is inside */
1280 	struct net		*nd_net;
1281 #endif
1282 
1283 	/* mid-layer private */
1284 	union {
1285 		void				*ml_priv;
1286 		struct pcpu_lstats __percpu	*lstats; /* loopback stats */
1287 		struct pcpu_tstats __percpu	*tstats; /* tunnel stats */
1288 		struct pcpu_dstats __percpu	*dstats; /* dummy stats */
1289 	};
1290 	/* GARP */
1291 	struct garp_port __rcu	*garp_port;
1292 
1293 	/* class/net/name entry */
1294 	struct device		dev;
1295 	/* space for optional device, statistics, and wireless sysfs groups */
1296 	const struct attribute_group *sysfs_groups[4];
1297 
1298 	/* rtnetlink link ops */
1299 	const struct rtnl_link_ops *rtnl_link_ops;
1300 
1301 	/* for setting kernel sock attribute on TCP connection setup */
1302 #define GSO_MAX_SIZE		65536
1303 	unsigned int		gso_max_size;
1304 
1305 #ifdef CONFIG_DCB
1306 	/* Data Center Bridging netlink ops */
1307 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1308 #endif
1309 	u8 num_tc;
1310 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1311 	u8 prio_tc_map[TC_BITMASK + 1];
1312 
1313 #if IS_ENABLED(CONFIG_FCOE)
1314 	/* max exchange id for FCoE LRO by ddp */
1315 	unsigned int		fcoe_ddp_xid;
1316 #endif
1317 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1318 	struct netprio_map __rcu *priomap;
1319 #endif
1320 	/* phy device may attach itself for hardware timestamping */
1321 	struct phy_device *phydev;
1322 
1323 	/* group the device belongs to */
1324 	int group;
1325 };
1326 #define to_net_dev(d) container_of(d, struct net_device, dev)
1327 
1328 #define	NETDEV_ALIGN		32
1329 
1330 static inline
1331 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1332 {
1333 	return dev->prio_tc_map[prio & TC_BITMASK];
1334 }
1335 
1336 static inline
1337 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1338 {
1339 	if (tc >= dev->num_tc)
1340 		return -EINVAL;
1341 
1342 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1343 	return 0;
1344 }
1345 
1346 static inline
1347 void netdev_reset_tc(struct net_device *dev)
1348 {
1349 	dev->num_tc = 0;
1350 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1351 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1352 }
1353 
1354 static inline
1355 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1356 {
1357 	if (tc >= dev->num_tc)
1358 		return -EINVAL;
1359 
1360 	dev->tc_to_txq[tc].count = count;
1361 	dev->tc_to_txq[tc].offset = offset;
1362 	return 0;
1363 }
1364 
1365 static inline
1366 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1367 {
1368 	if (num_tc > TC_MAX_QUEUE)
1369 		return -EINVAL;
1370 
1371 	dev->num_tc = num_tc;
1372 	return 0;
1373 }
1374 
1375 static inline
1376 int netdev_get_num_tc(struct net_device *dev)
1377 {
1378 	return dev->num_tc;
1379 }
1380 
1381 static inline
1382 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1383 					 unsigned int index)
1384 {
1385 	return &dev->_tx[index];
1386 }
1387 
1388 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1389 					    void (*f)(struct net_device *,
1390 						      struct netdev_queue *,
1391 						      void *),
1392 					    void *arg)
1393 {
1394 	unsigned int i;
1395 
1396 	for (i = 0; i < dev->num_tx_queues; i++)
1397 		f(dev, &dev->_tx[i], arg);
1398 }
1399 
1400 /*
1401  * Net namespace inlines
1402  */
1403 static inline
1404 struct net *dev_net(const struct net_device *dev)
1405 {
1406 	return read_pnet(&dev->nd_net);
1407 }
1408 
1409 static inline
1410 void dev_net_set(struct net_device *dev, struct net *net)
1411 {
1412 #ifdef CONFIG_NET_NS
1413 	release_net(dev->nd_net);
1414 	dev->nd_net = hold_net(net);
1415 #endif
1416 }
1417 
1418 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1419 {
1420 #ifdef CONFIG_NET_DSA_TAG_DSA
1421 	if (dev->dsa_ptr != NULL)
1422 		return dsa_uses_dsa_tags(dev->dsa_ptr);
1423 #endif
1424 
1425 	return 0;
1426 }
1427 
1428 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1429 {
1430 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1431 	if (dev->dsa_ptr != NULL)
1432 		return dsa_uses_trailer_tags(dev->dsa_ptr);
1433 #endif
1434 
1435 	return 0;
1436 }
1437 
1438 /**
1439  *	netdev_priv - access network device private data
1440  *	@dev: network device
1441  *
1442  * Get network device private data
1443  */
1444 static inline void *netdev_priv(const struct net_device *dev)
1445 {
1446 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1447 }
1448 
1449 /* Set the sysfs physical device reference for the network logical device
1450  * if set prior to registration will cause a symlink during initialization.
1451  */
1452 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1453 
1454 /* Set the sysfs device type for the network logical device to allow
1455  * fin grained indentification of different network device types. For
1456  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1457  */
1458 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1459 
1460 /**
1461  *	netif_napi_add - initialize a napi context
1462  *	@dev:  network device
1463  *	@napi: napi context
1464  *	@poll: polling function
1465  *	@weight: default weight
1466  *
1467  * netif_napi_add() must be used to initialize a napi context prior to calling
1468  * *any* of the other napi related functions.
1469  */
1470 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1471 		    int (*poll)(struct napi_struct *, int), int weight);
1472 
1473 /**
1474  *  netif_napi_del - remove a napi context
1475  *  @napi: napi context
1476  *
1477  *  netif_napi_del() removes a napi context from the network device napi list
1478  */
1479 void netif_napi_del(struct napi_struct *napi);
1480 
1481 struct napi_gro_cb {
1482 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1483 	void *frag0;
1484 
1485 	/* Length of frag0. */
1486 	unsigned int frag0_len;
1487 
1488 	/* This indicates where we are processing relative to skb->data. */
1489 	int data_offset;
1490 
1491 	/* This is non-zero if the packet may be of the same flow. */
1492 	int same_flow;
1493 
1494 	/* This is non-zero if the packet cannot be merged with the new skb. */
1495 	int flush;
1496 
1497 	/* Number of segments aggregated. */
1498 	int count;
1499 
1500 	/* Free the skb? */
1501 	int free;
1502 #define NAPI_GRO_FREE		  1
1503 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1504 };
1505 
1506 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1507 
1508 struct packet_type {
1509 	__be16			type;	/* This is really htons(ether_type). */
1510 	struct net_device	*dev;	/* NULL is wildcarded here	     */
1511 	int			(*func) (struct sk_buff *,
1512 					 struct net_device *,
1513 					 struct packet_type *,
1514 					 struct net_device *);
1515 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
1516 						netdev_features_t features);
1517 	int			(*gso_send_check)(struct sk_buff *skb);
1518 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
1519 					       struct sk_buff *skb);
1520 	int			(*gro_complete)(struct sk_buff *skb);
1521 	void			*af_packet_priv;
1522 	struct list_head	list;
1523 };
1524 
1525 #include <linux/notifier.h>
1526 
1527 /* netdevice notifier chain. Please remember to update the rtnetlink
1528  * notification exclusion list in rtnetlink_event() when adding new
1529  * types.
1530  */
1531 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
1532 #define NETDEV_DOWN	0x0002
1533 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
1534 				   detected a hardware crash and restarted
1535 				   - we can use this eg to kick tcp sessions
1536 				   once done */
1537 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
1538 #define NETDEV_REGISTER 0x0005
1539 #define NETDEV_UNREGISTER	0x0006
1540 #define NETDEV_CHANGEMTU	0x0007
1541 #define NETDEV_CHANGEADDR	0x0008
1542 #define NETDEV_GOING_DOWN	0x0009
1543 #define NETDEV_CHANGENAME	0x000A
1544 #define NETDEV_FEAT_CHANGE	0x000B
1545 #define NETDEV_BONDING_FAILOVER 0x000C
1546 #define NETDEV_PRE_UP		0x000D
1547 #define NETDEV_PRE_TYPE_CHANGE	0x000E
1548 #define NETDEV_POST_TYPE_CHANGE	0x000F
1549 #define NETDEV_POST_INIT	0x0010
1550 #define NETDEV_UNREGISTER_BATCH 0x0011
1551 #define NETDEV_RELEASE		0x0012
1552 #define NETDEV_NOTIFY_PEERS	0x0013
1553 #define NETDEV_JOIN		0x0014
1554 
1555 extern int register_netdevice_notifier(struct notifier_block *nb);
1556 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1557 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1558 
1559 
1560 extern rwlock_t				dev_base_lock;		/* Device list lock */
1561 
1562 
1563 #define for_each_netdev(net, d)		\
1564 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1565 #define for_each_netdev_reverse(net, d)	\
1566 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1567 #define for_each_netdev_rcu(net, d)		\
1568 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1569 #define for_each_netdev_safe(net, d, n)	\
1570 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1571 #define for_each_netdev_continue(net, d)		\
1572 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1573 #define for_each_netdev_continue_rcu(net, d)		\
1574 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1575 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
1576 
1577 static inline struct net_device *next_net_device(struct net_device *dev)
1578 {
1579 	struct list_head *lh;
1580 	struct net *net;
1581 
1582 	net = dev_net(dev);
1583 	lh = dev->dev_list.next;
1584 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1585 }
1586 
1587 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1588 {
1589 	struct list_head *lh;
1590 	struct net *net;
1591 
1592 	net = dev_net(dev);
1593 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1594 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1595 }
1596 
1597 static inline struct net_device *first_net_device(struct net *net)
1598 {
1599 	return list_empty(&net->dev_base_head) ? NULL :
1600 		net_device_entry(net->dev_base_head.next);
1601 }
1602 
1603 static inline struct net_device *first_net_device_rcu(struct net *net)
1604 {
1605 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1606 
1607 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1608 }
1609 
1610 extern int 			netdev_boot_setup_check(struct net_device *dev);
1611 extern unsigned long		netdev_boot_base(const char *prefix, int unit);
1612 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1613 					      const char *hwaddr);
1614 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1615 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1616 extern void		dev_add_pack(struct packet_type *pt);
1617 extern void		dev_remove_pack(struct packet_type *pt);
1618 extern void		__dev_remove_pack(struct packet_type *pt);
1619 
1620 extern struct net_device	*dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1621 						      unsigned short mask);
1622 extern struct net_device	*dev_get_by_name(struct net *net, const char *name);
1623 extern struct net_device	*dev_get_by_name_rcu(struct net *net, const char *name);
1624 extern struct net_device	*__dev_get_by_name(struct net *net, const char *name);
1625 extern int		dev_alloc_name(struct net_device *dev, const char *name);
1626 extern int		dev_open(struct net_device *dev);
1627 extern int		dev_close(struct net_device *dev);
1628 extern void		dev_disable_lro(struct net_device *dev);
1629 extern int		dev_queue_xmit(struct sk_buff *skb);
1630 extern int		register_netdevice(struct net_device *dev);
1631 extern void		unregister_netdevice_queue(struct net_device *dev,
1632 						   struct list_head *head);
1633 extern void		unregister_netdevice_many(struct list_head *head);
1634 static inline void unregister_netdevice(struct net_device *dev)
1635 {
1636 	unregister_netdevice_queue(dev, NULL);
1637 }
1638 
1639 extern int 		netdev_refcnt_read(const struct net_device *dev);
1640 extern void		free_netdev(struct net_device *dev);
1641 extern void		synchronize_net(void);
1642 extern int		init_dummy_netdev(struct net_device *dev);
1643 extern void		netdev_resync_ops(struct net_device *dev);
1644 
1645 extern struct net_device	*dev_get_by_index(struct net *net, int ifindex);
1646 extern struct net_device	*__dev_get_by_index(struct net *net, int ifindex);
1647 extern struct net_device	*dev_get_by_index_rcu(struct net *net, int ifindex);
1648 extern int		dev_restart(struct net_device *dev);
1649 #ifdef CONFIG_NETPOLL_TRAP
1650 extern int		netpoll_trap(void);
1651 #endif
1652 extern int	       skb_gro_receive(struct sk_buff **head,
1653 				       struct sk_buff *skb);
1654 extern void	       skb_gro_reset_offset(struct sk_buff *skb);
1655 
1656 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1657 {
1658 	return NAPI_GRO_CB(skb)->data_offset;
1659 }
1660 
1661 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1662 {
1663 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
1664 }
1665 
1666 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1667 {
1668 	NAPI_GRO_CB(skb)->data_offset += len;
1669 }
1670 
1671 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1672 					unsigned int offset)
1673 {
1674 	return NAPI_GRO_CB(skb)->frag0 + offset;
1675 }
1676 
1677 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1678 {
1679 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
1680 }
1681 
1682 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1683 					unsigned int offset)
1684 {
1685 	if (!pskb_may_pull(skb, hlen))
1686 		return NULL;
1687 
1688 	NAPI_GRO_CB(skb)->frag0 = NULL;
1689 	NAPI_GRO_CB(skb)->frag0_len = 0;
1690 	return skb->data + offset;
1691 }
1692 
1693 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1694 {
1695 	return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1696 }
1697 
1698 static inline void *skb_gro_network_header(struct sk_buff *skb)
1699 {
1700 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1701 	       skb_network_offset(skb);
1702 }
1703 
1704 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1705 				  unsigned short type,
1706 				  const void *daddr, const void *saddr,
1707 				  unsigned int len)
1708 {
1709 	if (!dev->header_ops || !dev->header_ops->create)
1710 		return 0;
1711 
1712 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1713 }
1714 
1715 static inline int dev_parse_header(const struct sk_buff *skb,
1716 				   unsigned char *haddr)
1717 {
1718 	const struct net_device *dev = skb->dev;
1719 
1720 	if (!dev->header_ops || !dev->header_ops->parse)
1721 		return 0;
1722 	return dev->header_ops->parse(skb, haddr);
1723 }
1724 
1725 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1726 extern int		register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1727 static inline int unregister_gifconf(unsigned int family)
1728 {
1729 	return register_gifconf(family, NULL);
1730 }
1731 
1732 /*
1733  * Incoming packets are placed on per-cpu queues
1734  */
1735 struct softnet_data {
1736 	struct Qdisc		*output_queue;
1737 	struct Qdisc		**output_queue_tailp;
1738 	struct list_head	poll_list;
1739 	struct sk_buff		*completion_queue;
1740 	struct sk_buff_head	process_queue;
1741 
1742 	/* stats */
1743 	unsigned int		processed;
1744 	unsigned int		time_squeeze;
1745 	unsigned int		cpu_collision;
1746 	unsigned int		received_rps;
1747 
1748 #ifdef CONFIG_RPS
1749 	struct softnet_data	*rps_ipi_list;
1750 
1751 	/* Elements below can be accessed between CPUs for RPS */
1752 	struct call_single_data	csd ____cacheline_aligned_in_smp;
1753 	struct softnet_data	*rps_ipi_next;
1754 	unsigned int		cpu;
1755 	unsigned int		input_queue_head;
1756 	unsigned int		input_queue_tail;
1757 #endif
1758 	unsigned int		dropped;
1759 	struct sk_buff_head	input_pkt_queue;
1760 	struct napi_struct	backlog;
1761 };
1762 
1763 static inline void input_queue_head_incr(struct softnet_data *sd)
1764 {
1765 #ifdef CONFIG_RPS
1766 	sd->input_queue_head++;
1767 #endif
1768 }
1769 
1770 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1771 					      unsigned int *qtail)
1772 {
1773 #ifdef CONFIG_RPS
1774 	*qtail = ++sd->input_queue_tail;
1775 #endif
1776 }
1777 
1778 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1779 
1780 extern void __netif_schedule(struct Qdisc *q);
1781 
1782 static inline void netif_schedule_queue(struct netdev_queue *txq)
1783 {
1784 	if (!(txq->state & QUEUE_STATE_ANY_XOFF))
1785 		__netif_schedule(txq->qdisc);
1786 }
1787 
1788 static inline void netif_tx_schedule_all(struct net_device *dev)
1789 {
1790 	unsigned int i;
1791 
1792 	for (i = 0; i < dev->num_tx_queues; i++)
1793 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
1794 }
1795 
1796 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1797 {
1798 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1799 }
1800 
1801 /**
1802  *	netif_start_queue - allow transmit
1803  *	@dev: network device
1804  *
1805  *	Allow upper layers to call the device hard_start_xmit routine.
1806  */
1807 static inline void netif_start_queue(struct net_device *dev)
1808 {
1809 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1810 }
1811 
1812 static inline void netif_tx_start_all_queues(struct net_device *dev)
1813 {
1814 	unsigned int i;
1815 
1816 	for (i = 0; i < dev->num_tx_queues; i++) {
1817 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1818 		netif_tx_start_queue(txq);
1819 	}
1820 }
1821 
1822 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1823 {
1824 #ifdef CONFIG_NETPOLL_TRAP
1825 	if (netpoll_trap()) {
1826 		netif_tx_start_queue(dev_queue);
1827 		return;
1828 	}
1829 #endif
1830 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
1831 		__netif_schedule(dev_queue->qdisc);
1832 }
1833 
1834 /**
1835  *	netif_wake_queue - restart transmit
1836  *	@dev: network device
1837  *
1838  *	Allow upper layers to call the device hard_start_xmit routine.
1839  *	Used for flow control when transmit resources are available.
1840  */
1841 static inline void netif_wake_queue(struct net_device *dev)
1842 {
1843 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1844 }
1845 
1846 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1847 {
1848 	unsigned int i;
1849 
1850 	for (i = 0; i < dev->num_tx_queues; i++) {
1851 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1852 		netif_tx_wake_queue(txq);
1853 	}
1854 }
1855 
1856 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1857 {
1858 	if (WARN_ON(!dev_queue)) {
1859 		pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1860 		return;
1861 	}
1862 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1863 }
1864 
1865 /**
1866  *	netif_stop_queue - stop transmitted packets
1867  *	@dev: network device
1868  *
1869  *	Stop upper layers calling the device hard_start_xmit routine.
1870  *	Used for flow control when transmit resources are unavailable.
1871  */
1872 static inline void netif_stop_queue(struct net_device *dev)
1873 {
1874 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1875 }
1876 
1877 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1878 {
1879 	unsigned int i;
1880 
1881 	for (i = 0; i < dev->num_tx_queues; i++) {
1882 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1883 		netif_tx_stop_queue(txq);
1884 	}
1885 }
1886 
1887 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1888 {
1889 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1890 }
1891 
1892 /**
1893  *	netif_queue_stopped - test if transmit queue is flowblocked
1894  *	@dev: network device
1895  *
1896  *	Test if transmit queue on device is currently unable to send.
1897  */
1898 static inline bool netif_queue_stopped(const struct net_device *dev)
1899 {
1900 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1901 }
1902 
1903 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
1904 {
1905 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
1906 }
1907 
1908 static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
1909 {
1910 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
1911 }
1912 
1913 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
1914 					unsigned int bytes)
1915 {
1916 #ifdef CONFIG_BQL
1917 	dql_queued(&dev_queue->dql, bytes);
1918 
1919 	if (likely(dql_avail(&dev_queue->dql) >= 0))
1920 		return;
1921 
1922 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1923 
1924 	/*
1925 	 * The XOFF flag must be set before checking the dql_avail below,
1926 	 * because in netdev_tx_completed_queue we update the dql_completed
1927 	 * before checking the XOFF flag.
1928 	 */
1929 	smp_mb();
1930 
1931 	/* check again in case another CPU has just made room avail */
1932 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
1933 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1934 #endif
1935 }
1936 
1937 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
1938 {
1939 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
1940 }
1941 
1942 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
1943 					     unsigned int pkts, unsigned int bytes)
1944 {
1945 #ifdef CONFIG_BQL
1946 	if (unlikely(!bytes))
1947 		return;
1948 
1949 	dql_completed(&dev_queue->dql, bytes);
1950 
1951 	/*
1952 	 * Without the memory barrier there is a small possiblity that
1953 	 * netdev_tx_sent_queue will miss the update and cause the queue to
1954 	 * be stopped forever
1955 	 */
1956 	smp_mb();
1957 
1958 	if (dql_avail(&dev_queue->dql) < 0)
1959 		return;
1960 
1961 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
1962 		netif_schedule_queue(dev_queue);
1963 #endif
1964 }
1965 
1966 static inline void netdev_completed_queue(struct net_device *dev,
1967 					  unsigned int pkts, unsigned int bytes)
1968 {
1969 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
1970 }
1971 
1972 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
1973 {
1974 #ifdef CONFIG_BQL
1975 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
1976 	dql_reset(&q->dql);
1977 #endif
1978 }
1979 
1980 static inline void netdev_reset_queue(struct net_device *dev_queue)
1981 {
1982 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
1983 }
1984 
1985 /**
1986  *	netif_running - test if up
1987  *	@dev: network device
1988  *
1989  *	Test if the device has been brought up.
1990  */
1991 static inline bool netif_running(const struct net_device *dev)
1992 {
1993 	return test_bit(__LINK_STATE_START, &dev->state);
1994 }
1995 
1996 /*
1997  * Routines to manage the subqueues on a device.  We only need start
1998  * stop, and a check if it's stopped.  All other device management is
1999  * done at the overall netdevice level.
2000  * Also test the device if we're multiqueue.
2001  */
2002 
2003 /**
2004  *	netif_start_subqueue - allow sending packets on subqueue
2005  *	@dev: network device
2006  *	@queue_index: sub queue index
2007  *
2008  * Start individual transmit queue of a device with multiple transmit queues.
2009  */
2010 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2011 {
2012 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2013 
2014 	netif_tx_start_queue(txq);
2015 }
2016 
2017 /**
2018  *	netif_stop_subqueue - stop sending packets on subqueue
2019  *	@dev: network device
2020  *	@queue_index: sub queue index
2021  *
2022  * Stop individual transmit queue of a device with multiple transmit queues.
2023  */
2024 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2025 {
2026 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2027 #ifdef CONFIG_NETPOLL_TRAP
2028 	if (netpoll_trap())
2029 		return;
2030 #endif
2031 	netif_tx_stop_queue(txq);
2032 }
2033 
2034 /**
2035  *	netif_subqueue_stopped - test status of subqueue
2036  *	@dev: network device
2037  *	@queue_index: sub queue index
2038  *
2039  * Check individual transmit queue of a device with multiple transmit queues.
2040  */
2041 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2042 					    u16 queue_index)
2043 {
2044 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2045 
2046 	return netif_tx_queue_stopped(txq);
2047 }
2048 
2049 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2050 					  struct sk_buff *skb)
2051 {
2052 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2053 }
2054 
2055 /**
2056  *	netif_wake_subqueue - allow sending packets on subqueue
2057  *	@dev: network device
2058  *	@queue_index: sub queue index
2059  *
2060  * Resume individual transmit queue of a device with multiple transmit queues.
2061  */
2062 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2063 {
2064 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2065 #ifdef CONFIG_NETPOLL_TRAP
2066 	if (netpoll_trap())
2067 		return;
2068 #endif
2069 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2070 		__netif_schedule(txq->qdisc);
2071 }
2072 
2073 /*
2074  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2075  * as a distribution range limit for the returned value.
2076  */
2077 static inline u16 skb_tx_hash(const struct net_device *dev,
2078 			      const struct sk_buff *skb)
2079 {
2080 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2081 }
2082 
2083 /**
2084  *	netif_is_multiqueue - test if device has multiple transmit queues
2085  *	@dev: network device
2086  *
2087  * Check if device has multiple transmit queues
2088  */
2089 static inline bool netif_is_multiqueue(const struct net_device *dev)
2090 {
2091 	return dev->num_tx_queues > 1;
2092 }
2093 
2094 extern int netif_set_real_num_tx_queues(struct net_device *dev,
2095 					unsigned int txq);
2096 
2097 #ifdef CONFIG_RPS
2098 extern int netif_set_real_num_rx_queues(struct net_device *dev,
2099 					unsigned int rxq);
2100 #else
2101 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2102 						unsigned int rxq)
2103 {
2104 	return 0;
2105 }
2106 #endif
2107 
2108 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2109 					     const struct net_device *from_dev)
2110 {
2111 	netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues);
2112 #ifdef CONFIG_RPS
2113 	return netif_set_real_num_rx_queues(to_dev,
2114 					    from_dev->real_num_rx_queues);
2115 #else
2116 	return 0;
2117 #endif
2118 }
2119 
2120 /* Use this variant when it is known for sure that it
2121  * is executing from hardware interrupt context or with hardware interrupts
2122  * disabled.
2123  */
2124 extern void dev_kfree_skb_irq(struct sk_buff *skb);
2125 
2126 /* Use this variant in places where it could be invoked
2127  * from either hardware interrupt or other context, with hardware interrupts
2128  * either disabled or enabled.
2129  */
2130 extern void dev_kfree_skb_any(struct sk_buff *skb);
2131 
2132 extern int		netif_rx(struct sk_buff *skb);
2133 extern int		netif_rx_ni(struct sk_buff *skb);
2134 extern int		netif_receive_skb(struct sk_buff *skb);
2135 extern gro_result_t	dev_gro_receive(struct napi_struct *napi,
2136 					struct sk_buff *skb);
2137 extern gro_result_t	napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
2138 extern gro_result_t	napi_gro_receive(struct napi_struct *napi,
2139 					 struct sk_buff *skb);
2140 extern void		napi_gro_flush(struct napi_struct *napi);
2141 extern struct sk_buff *	napi_get_frags(struct napi_struct *napi);
2142 extern gro_result_t	napi_frags_finish(struct napi_struct *napi,
2143 					  struct sk_buff *skb,
2144 					  gro_result_t ret);
2145 extern gro_result_t	napi_gro_frags(struct napi_struct *napi);
2146 
2147 static inline void napi_free_frags(struct napi_struct *napi)
2148 {
2149 	kfree_skb(napi->skb);
2150 	napi->skb = NULL;
2151 }
2152 
2153 extern int netdev_rx_handler_register(struct net_device *dev,
2154 				      rx_handler_func_t *rx_handler,
2155 				      void *rx_handler_data);
2156 extern void netdev_rx_handler_unregister(struct net_device *dev);
2157 
2158 extern bool		dev_valid_name(const char *name);
2159 extern int		dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2160 extern int		dev_ethtool(struct net *net, struct ifreq *);
2161 extern unsigned int	dev_get_flags(const struct net_device *);
2162 extern int		__dev_change_flags(struct net_device *, unsigned int flags);
2163 extern int		dev_change_flags(struct net_device *, unsigned int);
2164 extern void		__dev_notify_flags(struct net_device *, unsigned int old_flags);
2165 extern int		dev_change_name(struct net_device *, const char *);
2166 extern int		dev_set_alias(struct net_device *, const char *, size_t);
2167 extern int		dev_change_net_namespace(struct net_device *,
2168 						 struct net *, const char *);
2169 extern int		dev_set_mtu(struct net_device *, int);
2170 extern void		dev_set_group(struct net_device *, int);
2171 extern int		dev_set_mac_address(struct net_device *,
2172 					    struct sockaddr *);
2173 extern int		dev_hard_start_xmit(struct sk_buff *skb,
2174 					    struct net_device *dev,
2175 					    struct netdev_queue *txq);
2176 extern int		dev_forward_skb(struct net_device *dev,
2177 					struct sk_buff *skb);
2178 
2179 extern int		netdev_budget;
2180 
2181 /* Called by rtnetlink.c:rtnl_unlock() */
2182 extern void netdev_run_todo(void);
2183 
2184 /**
2185  *	dev_put - release reference to device
2186  *	@dev: network device
2187  *
2188  * Release reference to device to allow it to be freed.
2189  */
2190 static inline void dev_put(struct net_device *dev)
2191 {
2192 	this_cpu_dec(*dev->pcpu_refcnt);
2193 }
2194 
2195 /**
2196  *	dev_hold - get reference to device
2197  *	@dev: network device
2198  *
2199  * Hold reference to device to keep it from being freed.
2200  */
2201 static inline void dev_hold(struct net_device *dev)
2202 {
2203 	this_cpu_inc(*dev->pcpu_refcnt);
2204 }
2205 
2206 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2207  * and _off may be called from IRQ context, but it is caller
2208  * who is responsible for serialization of these calls.
2209  *
2210  * The name carrier is inappropriate, these functions should really be
2211  * called netif_lowerlayer_*() because they represent the state of any
2212  * kind of lower layer not just hardware media.
2213  */
2214 
2215 extern void linkwatch_fire_event(struct net_device *dev);
2216 extern void linkwatch_forget_dev(struct net_device *dev);
2217 
2218 /**
2219  *	netif_carrier_ok - test if carrier present
2220  *	@dev: network device
2221  *
2222  * Check if carrier is present on device
2223  */
2224 static inline bool netif_carrier_ok(const struct net_device *dev)
2225 {
2226 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2227 }
2228 
2229 extern unsigned long dev_trans_start(struct net_device *dev);
2230 
2231 extern void __netdev_watchdog_up(struct net_device *dev);
2232 
2233 extern void netif_carrier_on(struct net_device *dev);
2234 
2235 extern void netif_carrier_off(struct net_device *dev);
2236 
2237 extern void netif_notify_peers(struct net_device *dev);
2238 
2239 /**
2240  *	netif_dormant_on - mark device as dormant.
2241  *	@dev: network device
2242  *
2243  * Mark device as dormant (as per RFC2863).
2244  *
2245  * The dormant state indicates that the relevant interface is not
2246  * actually in a condition to pass packets (i.e., it is not 'up') but is
2247  * in a "pending" state, waiting for some external event.  For "on-
2248  * demand" interfaces, this new state identifies the situation where the
2249  * interface is waiting for events to place it in the up state.
2250  *
2251  */
2252 static inline void netif_dormant_on(struct net_device *dev)
2253 {
2254 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2255 		linkwatch_fire_event(dev);
2256 }
2257 
2258 /**
2259  *	netif_dormant_off - set device as not dormant.
2260  *	@dev: network device
2261  *
2262  * Device is not in dormant state.
2263  */
2264 static inline void netif_dormant_off(struct net_device *dev)
2265 {
2266 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2267 		linkwatch_fire_event(dev);
2268 }
2269 
2270 /**
2271  *	netif_dormant - test if carrier present
2272  *	@dev: network device
2273  *
2274  * Check if carrier is present on device
2275  */
2276 static inline bool netif_dormant(const struct net_device *dev)
2277 {
2278 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
2279 }
2280 
2281 
2282 /**
2283  *	netif_oper_up - test if device is operational
2284  *	@dev: network device
2285  *
2286  * Check if carrier is operational
2287  */
2288 static inline bool netif_oper_up(const struct net_device *dev)
2289 {
2290 	return (dev->operstate == IF_OPER_UP ||
2291 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2292 }
2293 
2294 /**
2295  *	netif_device_present - is device available or removed
2296  *	@dev: network device
2297  *
2298  * Check if device has not been removed from system.
2299  */
2300 static inline bool netif_device_present(struct net_device *dev)
2301 {
2302 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
2303 }
2304 
2305 extern void netif_device_detach(struct net_device *dev);
2306 
2307 extern void netif_device_attach(struct net_device *dev);
2308 
2309 /*
2310  * Network interface message level settings
2311  */
2312 
2313 enum {
2314 	NETIF_MSG_DRV		= 0x0001,
2315 	NETIF_MSG_PROBE		= 0x0002,
2316 	NETIF_MSG_LINK		= 0x0004,
2317 	NETIF_MSG_TIMER		= 0x0008,
2318 	NETIF_MSG_IFDOWN	= 0x0010,
2319 	NETIF_MSG_IFUP		= 0x0020,
2320 	NETIF_MSG_RX_ERR	= 0x0040,
2321 	NETIF_MSG_TX_ERR	= 0x0080,
2322 	NETIF_MSG_TX_QUEUED	= 0x0100,
2323 	NETIF_MSG_INTR		= 0x0200,
2324 	NETIF_MSG_TX_DONE	= 0x0400,
2325 	NETIF_MSG_RX_STATUS	= 0x0800,
2326 	NETIF_MSG_PKTDATA	= 0x1000,
2327 	NETIF_MSG_HW		= 0x2000,
2328 	NETIF_MSG_WOL		= 0x4000,
2329 };
2330 
2331 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
2332 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
2333 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
2334 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
2335 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
2336 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
2337 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
2338 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
2339 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2340 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
2341 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
2342 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
2343 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
2344 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
2345 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
2346 
2347 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2348 {
2349 	/* use default */
2350 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2351 		return default_msg_enable_bits;
2352 	if (debug_value == 0)	/* no output */
2353 		return 0;
2354 	/* set low N bits */
2355 	return (1 << debug_value) - 1;
2356 }
2357 
2358 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2359 {
2360 	spin_lock(&txq->_xmit_lock);
2361 	txq->xmit_lock_owner = cpu;
2362 }
2363 
2364 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2365 {
2366 	spin_lock_bh(&txq->_xmit_lock);
2367 	txq->xmit_lock_owner = smp_processor_id();
2368 }
2369 
2370 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2371 {
2372 	bool ok = spin_trylock(&txq->_xmit_lock);
2373 	if (likely(ok))
2374 		txq->xmit_lock_owner = smp_processor_id();
2375 	return ok;
2376 }
2377 
2378 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2379 {
2380 	txq->xmit_lock_owner = -1;
2381 	spin_unlock(&txq->_xmit_lock);
2382 }
2383 
2384 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2385 {
2386 	txq->xmit_lock_owner = -1;
2387 	spin_unlock_bh(&txq->_xmit_lock);
2388 }
2389 
2390 static inline void txq_trans_update(struct netdev_queue *txq)
2391 {
2392 	if (txq->xmit_lock_owner != -1)
2393 		txq->trans_start = jiffies;
2394 }
2395 
2396 /**
2397  *	netif_tx_lock - grab network device transmit lock
2398  *	@dev: network device
2399  *
2400  * Get network device transmit lock
2401  */
2402 static inline void netif_tx_lock(struct net_device *dev)
2403 {
2404 	unsigned int i;
2405 	int cpu;
2406 
2407 	spin_lock(&dev->tx_global_lock);
2408 	cpu = smp_processor_id();
2409 	for (i = 0; i < dev->num_tx_queues; i++) {
2410 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2411 
2412 		/* We are the only thread of execution doing a
2413 		 * freeze, but we have to grab the _xmit_lock in
2414 		 * order to synchronize with threads which are in
2415 		 * the ->hard_start_xmit() handler and already
2416 		 * checked the frozen bit.
2417 		 */
2418 		__netif_tx_lock(txq, cpu);
2419 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2420 		__netif_tx_unlock(txq);
2421 	}
2422 }
2423 
2424 static inline void netif_tx_lock_bh(struct net_device *dev)
2425 {
2426 	local_bh_disable();
2427 	netif_tx_lock(dev);
2428 }
2429 
2430 static inline void netif_tx_unlock(struct net_device *dev)
2431 {
2432 	unsigned int i;
2433 
2434 	for (i = 0; i < dev->num_tx_queues; i++) {
2435 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2436 
2437 		/* No need to grab the _xmit_lock here.  If the
2438 		 * queue is not stopped for another reason, we
2439 		 * force a schedule.
2440 		 */
2441 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2442 		netif_schedule_queue(txq);
2443 	}
2444 	spin_unlock(&dev->tx_global_lock);
2445 }
2446 
2447 static inline void netif_tx_unlock_bh(struct net_device *dev)
2448 {
2449 	netif_tx_unlock(dev);
2450 	local_bh_enable();
2451 }
2452 
2453 #define HARD_TX_LOCK(dev, txq, cpu) {			\
2454 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2455 		__netif_tx_lock(txq, cpu);		\
2456 	}						\
2457 }
2458 
2459 #define HARD_TX_UNLOCK(dev, txq) {			\
2460 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2461 		__netif_tx_unlock(txq);			\
2462 	}						\
2463 }
2464 
2465 static inline void netif_tx_disable(struct net_device *dev)
2466 {
2467 	unsigned int i;
2468 	int cpu;
2469 
2470 	local_bh_disable();
2471 	cpu = smp_processor_id();
2472 	for (i = 0; i < dev->num_tx_queues; i++) {
2473 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2474 
2475 		__netif_tx_lock(txq, cpu);
2476 		netif_tx_stop_queue(txq);
2477 		__netif_tx_unlock(txq);
2478 	}
2479 	local_bh_enable();
2480 }
2481 
2482 static inline void netif_addr_lock(struct net_device *dev)
2483 {
2484 	spin_lock(&dev->addr_list_lock);
2485 }
2486 
2487 static inline void netif_addr_lock_nested(struct net_device *dev)
2488 {
2489 	spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2490 }
2491 
2492 static inline void netif_addr_lock_bh(struct net_device *dev)
2493 {
2494 	spin_lock_bh(&dev->addr_list_lock);
2495 }
2496 
2497 static inline void netif_addr_unlock(struct net_device *dev)
2498 {
2499 	spin_unlock(&dev->addr_list_lock);
2500 }
2501 
2502 static inline void netif_addr_unlock_bh(struct net_device *dev)
2503 {
2504 	spin_unlock_bh(&dev->addr_list_lock);
2505 }
2506 
2507 /*
2508  * dev_addrs walker. Should be used only for read access. Call with
2509  * rcu_read_lock held.
2510  */
2511 #define for_each_dev_addr(dev, ha) \
2512 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2513 
2514 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2515 
2516 extern void		ether_setup(struct net_device *dev);
2517 
2518 /* Support for loadable net-drivers */
2519 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2520 				       void (*setup)(struct net_device *),
2521 				       unsigned int txqs, unsigned int rxqs);
2522 #define alloc_netdev(sizeof_priv, name, setup) \
2523 	alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2524 
2525 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2526 	alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2527 
2528 extern int		register_netdev(struct net_device *dev);
2529 extern void		unregister_netdev(struct net_device *dev);
2530 
2531 /* General hardware address lists handling functions */
2532 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2533 				  struct netdev_hw_addr_list *from_list,
2534 				  int addr_len, unsigned char addr_type);
2535 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2536 				   struct netdev_hw_addr_list *from_list,
2537 				   int addr_len, unsigned char addr_type);
2538 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2539 			  struct netdev_hw_addr_list *from_list,
2540 			  int addr_len);
2541 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2542 			     struct netdev_hw_addr_list *from_list,
2543 			     int addr_len);
2544 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2545 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2546 
2547 /* Functions used for device addresses handling */
2548 extern int dev_addr_add(struct net_device *dev, unsigned char *addr,
2549 			unsigned char addr_type);
2550 extern int dev_addr_del(struct net_device *dev, unsigned char *addr,
2551 			unsigned char addr_type);
2552 extern int dev_addr_add_multiple(struct net_device *to_dev,
2553 				 struct net_device *from_dev,
2554 				 unsigned char addr_type);
2555 extern int dev_addr_del_multiple(struct net_device *to_dev,
2556 				 struct net_device *from_dev,
2557 				 unsigned char addr_type);
2558 extern void dev_addr_flush(struct net_device *dev);
2559 extern int dev_addr_init(struct net_device *dev);
2560 
2561 /* Functions used for unicast addresses handling */
2562 extern int dev_uc_add(struct net_device *dev, unsigned char *addr);
2563 extern int dev_uc_add_excl(struct net_device *dev, unsigned char *addr);
2564 extern int dev_uc_del(struct net_device *dev, unsigned char *addr);
2565 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2566 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2567 extern void dev_uc_flush(struct net_device *dev);
2568 extern void dev_uc_init(struct net_device *dev);
2569 
2570 /* Functions used for multicast addresses handling */
2571 extern int dev_mc_add(struct net_device *dev, unsigned char *addr);
2572 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr);
2573 extern int dev_mc_add_excl(struct net_device *dev, unsigned char *addr);
2574 extern int dev_mc_del(struct net_device *dev, unsigned char *addr);
2575 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr);
2576 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2577 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2578 extern void dev_mc_flush(struct net_device *dev);
2579 extern void dev_mc_init(struct net_device *dev);
2580 
2581 /* Functions used for secondary unicast and multicast support */
2582 extern void		dev_set_rx_mode(struct net_device *dev);
2583 extern void		__dev_set_rx_mode(struct net_device *dev);
2584 extern int		dev_set_promiscuity(struct net_device *dev, int inc);
2585 extern int		dev_set_allmulti(struct net_device *dev, int inc);
2586 extern void		netdev_state_change(struct net_device *dev);
2587 extern int		netdev_bonding_change(struct net_device *dev,
2588 					      unsigned long event);
2589 extern void		netdev_features_change(struct net_device *dev);
2590 /* Load a device via the kmod */
2591 extern void		dev_load(struct net *net, const char *name);
2592 extern void		dev_mcast_init(void);
2593 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2594 					       struct rtnl_link_stats64 *storage);
2595 extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
2596 				    const struct net_device_stats *netdev_stats);
2597 
2598 extern int		netdev_max_backlog;
2599 extern int		netdev_tstamp_prequeue;
2600 extern int		weight_p;
2601 extern int		bpf_jit_enable;
2602 extern int		netdev_set_master(struct net_device *dev, struct net_device *master);
2603 extern int netdev_set_bond_master(struct net_device *dev,
2604 				  struct net_device *master);
2605 extern int skb_checksum_help(struct sk_buff *skb);
2606 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb,
2607 	netdev_features_t features);
2608 #ifdef CONFIG_BUG
2609 extern void netdev_rx_csum_fault(struct net_device *dev);
2610 #else
2611 static inline void netdev_rx_csum_fault(struct net_device *dev)
2612 {
2613 }
2614 #endif
2615 /* rx skb timestamps */
2616 extern void		net_enable_timestamp(void);
2617 extern void		net_disable_timestamp(void);
2618 
2619 #ifdef CONFIG_PROC_FS
2620 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2621 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2622 extern void dev_seq_stop(struct seq_file *seq, void *v);
2623 #endif
2624 
2625 extern int netdev_class_create_file(struct class_attribute *class_attr);
2626 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2627 
2628 extern struct kobj_ns_type_operations net_ns_type_operations;
2629 
2630 extern const char *netdev_drivername(const struct net_device *dev);
2631 
2632 extern void linkwatch_run_queue(void);
2633 
2634 static inline netdev_features_t netdev_get_wanted_features(
2635 	struct net_device *dev)
2636 {
2637 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
2638 }
2639 netdev_features_t netdev_increment_features(netdev_features_t all,
2640 	netdev_features_t one, netdev_features_t mask);
2641 int __netdev_update_features(struct net_device *dev);
2642 void netdev_update_features(struct net_device *dev);
2643 void netdev_change_features(struct net_device *dev);
2644 
2645 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2646 					struct net_device *dev);
2647 
2648 netdev_features_t netif_skb_features(struct sk_buff *skb);
2649 
2650 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
2651 {
2652 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2653 
2654 	/* check flags correspondence */
2655 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2656 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2657 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2658 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2659 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2660 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
2661 
2662 	return (features & feature) == feature;
2663 }
2664 
2665 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
2666 {
2667 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2668 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2669 }
2670 
2671 static inline bool netif_needs_gso(struct sk_buff *skb,
2672 				   netdev_features_t features)
2673 {
2674 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2675 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
2676 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
2677 }
2678 
2679 static inline void netif_set_gso_max_size(struct net_device *dev,
2680 					  unsigned int size)
2681 {
2682 	dev->gso_max_size = size;
2683 }
2684 
2685 static inline bool netif_is_bond_slave(struct net_device *dev)
2686 {
2687 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2688 }
2689 
2690 static inline bool netif_supports_nofcs(struct net_device *dev)
2691 {
2692 	return dev->priv_flags & IFF_SUPP_NOFCS;
2693 }
2694 
2695 extern struct pernet_operations __net_initdata loopback_net_ops;
2696 
2697 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2698 
2699 /* netdev_printk helpers, similar to dev_printk */
2700 
2701 static inline const char *netdev_name(const struct net_device *dev)
2702 {
2703 	if (dev->reg_state != NETREG_REGISTERED)
2704 		return "(unregistered net_device)";
2705 	return dev->name;
2706 }
2707 
2708 extern int __netdev_printk(const char *level, const struct net_device *dev,
2709 			struct va_format *vaf);
2710 
2711 extern __printf(3, 4)
2712 int netdev_printk(const char *level, const struct net_device *dev,
2713 		  const char *format, ...);
2714 extern __printf(2, 3)
2715 int netdev_emerg(const struct net_device *dev, const char *format, ...);
2716 extern __printf(2, 3)
2717 int netdev_alert(const struct net_device *dev, const char *format, ...);
2718 extern __printf(2, 3)
2719 int netdev_crit(const struct net_device *dev, const char *format, ...);
2720 extern __printf(2, 3)
2721 int netdev_err(const struct net_device *dev, const char *format, ...);
2722 extern __printf(2, 3)
2723 int netdev_warn(const struct net_device *dev, const char *format, ...);
2724 extern __printf(2, 3)
2725 int netdev_notice(const struct net_device *dev, const char *format, ...);
2726 extern __printf(2, 3)
2727 int netdev_info(const struct net_device *dev, const char *format, ...);
2728 
2729 #define MODULE_ALIAS_NETDEV(device) \
2730 	MODULE_ALIAS("netdev-" device)
2731 
2732 #if defined(CONFIG_DYNAMIC_DEBUG)
2733 #define netdev_dbg(__dev, format, args...)			\
2734 do {								\
2735 	dynamic_netdev_dbg(__dev, format, ##args);		\
2736 } while (0)
2737 #elif defined(DEBUG)
2738 #define netdev_dbg(__dev, format, args...)			\
2739 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
2740 #else
2741 #define netdev_dbg(__dev, format, args...)			\
2742 ({								\
2743 	if (0)							\
2744 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2745 	0;							\
2746 })
2747 #endif
2748 
2749 #if defined(VERBOSE_DEBUG)
2750 #define netdev_vdbg	netdev_dbg
2751 #else
2752 
2753 #define netdev_vdbg(dev, format, args...)			\
2754 ({								\
2755 	if (0)							\
2756 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
2757 	0;							\
2758 })
2759 #endif
2760 
2761 /*
2762  * netdev_WARN() acts like dev_printk(), but with the key difference
2763  * of using a WARN/WARN_ON to get the message out, including the
2764  * file/line information and a backtrace.
2765  */
2766 #define netdev_WARN(dev, format, args...)			\
2767 	WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2768 
2769 /* netif printk helpers, similar to netdev_printk */
2770 
2771 #define netif_printk(priv, type, level, dev, fmt, args...)	\
2772 do {					  			\
2773 	if (netif_msg_##type(priv))				\
2774 		netdev_printk(level, (dev), fmt, ##args);	\
2775 } while (0)
2776 
2777 #define netif_level(level, priv, type, dev, fmt, args...)	\
2778 do {								\
2779 	if (netif_msg_##type(priv))				\
2780 		netdev_##level(dev, fmt, ##args);		\
2781 } while (0)
2782 
2783 #define netif_emerg(priv, type, dev, fmt, args...)		\
2784 	netif_level(emerg, priv, type, dev, fmt, ##args)
2785 #define netif_alert(priv, type, dev, fmt, args...)		\
2786 	netif_level(alert, priv, type, dev, fmt, ##args)
2787 #define netif_crit(priv, type, dev, fmt, args...)		\
2788 	netif_level(crit, priv, type, dev, fmt, ##args)
2789 #define netif_err(priv, type, dev, fmt, args...)		\
2790 	netif_level(err, priv, type, dev, fmt, ##args)
2791 #define netif_warn(priv, type, dev, fmt, args...)		\
2792 	netif_level(warn, priv, type, dev, fmt, ##args)
2793 #define netif_notice(priv, type, dev, fmt, args...)		\
2794 	netif_level(notice, priv, type, dev, fmt, ##args)
2795 #define netif_info(priv, type, dev, fmt, args...)		\
2796 	netif_level(info, priv, type, dev, fmt, ##args)
2797 
2798 #if defined(DEBUG)
2799 #define netif_dbg(priv, type, dev, format, args...)		\
2800 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2801 #elif defined(CONFIG_DYNAMIC_DEBUG)
2802 #define netif_dbg(priv, type, netdev, format, args...)		\
2803 do {								\
2804 	if (netif_msg_##type(priv))				\
2805 		dynamic_netdev_dbg(netdev, format, ##args);	\
2806 } while (0)
2807 #else
2808 #define netif_dbg(priv, type, dev, format, args...)			\
2809 ({									\
2810 	if (0)								\
2811 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2812 	0;								\
2813 })
2814 #endif
2815 
2816 #if defined(VERBOSE_DEBUG)
2817 #define netif_vdbg	netif_dbg
2818 #else
2819 #define netif_vdbg(priv, type, dev, format, args...)		\
2820 ({								\
2821 	if (0)							\
2822 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2823 	0;							\
2824 })
2825 #endif
2826 
2827 #endif /* __KERNEL__ */
2828 
2829 #endif	/* _LINUX_NETDEVICE_H */
2830