1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <[email protected]> 12 * Corey Minyard <[email protected]> 13 * Donald J. Becker, <[email protected]> 14 * Alan Cox, <[email protected]> 15 * Bjorn Ekwall. <[email protected]> 16 * Pekka Riikonen <[email protected]> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/if.h> 29 #include <linux/if_ether.h> 30 #include <linux/if_packet.h> 31 #include <linux/if_link.h> 32 33 #ifdef __KERNEL__ 34 #include <linux/pm_qos.h> 35 #include <linux/timer.h> 36 #include <linux/bug.h> 37 #include <linux/delay.h> 38 #include <linux/atomic.h> 39 #include <asm/cache.h> 40 #include <asm/byteorder.h> 41 42 #include <linux/percpu.h> 43 #include <linux/rculist.h> 44 #include <linux/dmaengine.h> 45 #include <linux/workqueue.h> 46 #include <linux/dynamic_queue_limits.h> 47 48 #include <linux/ethtool.h> 49 #include <net/net_namespace.h> 50 #include <net/dsa.h> 51 #ifdef CONFIG_DCB 52 #include <net/dcbnl.h> 53 #endif 54 #include <net/netprio_cgroup.h> 55 56 #include <linux/netdev_features.h> 57 #include <linux/neighbour.h> 58 59 struct netpoll_info; 60 struct device; 61 struct phy_device; 62 /* 802.11 specific */ 63 struct wireless_dev; 64 /* source back-compat hooks */ 65 #define SET_ETHTOOL_OPS(netdev,ops) \ 66 ( (netdev)->ethtool_ops = (ops) ) 67 68 /* hardware address assignment types */ 69 #define NET_ADDR_PERM 0 /* address is permanent (default) */ 70 #define NET_ADDR_RANDOM 1 /* address is generated randomly */ 71 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */ 72 73 /* Backlog congestion levels */ 74 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 75 #define NET_RX_DROP 1 /* packet dropped */ 76 77 /* 78 * Transmit return codes: transmit return codes originate from three different 79 * namespaces: 80 * 81 * - qdisc return codes 82 * - driver transmit return codes 83 * - errno values 84 * 85 * Drivers are allowed to return any one of those in their hard_start_xmit() 86 * function. Real network devices commonly used with qdiscs should only return 87 * the driver transmit return codes though - when qdiscs are used, the actual 88 * transmission happens asynchronously, so the value is not propagated to 89 * higher layers. Virtual network devices transmit synchronously, in this case 90 * the driver transmit return codes are consumed by dev_queue_xmit(), all 91 * others are propagated to higher layers. 92 */ 93 94 /* qdisc ->enqueue() return codes. */ 95 #define NET_XMIT_SUCCESS 0x00 96 #define NET_XMIT_DROP 0x01 /* skb dropped */ 97 #define NET_XMIT_CN 0x02 /* congestion notification */ 98 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */ 99 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 100 101 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 102 * indicates that the device will soon be dropping packets, or already drops 103 * some packets of the same priority; prompting us to send less aggressively. */ 104 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 105 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 106 107 /* Driver transmit return codes */ 108 #define NETDEV_TX_MASK 0xf0 109 110 enum netdev_tx { 111 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 112 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 113 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 114 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ 115 }; 116 typedef enum netdev_tx netdev_tx_t; 117 118 /* 119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 121 */ 122 static inline bool dev_xmit_complete(int rc) 123 { 124 /* 125 * Positive cases with an skb consumed by a driver: 126 * - successful transmission (rc == NETDEV_TX_OK) 127 * - error while transmitting (rc < 0) 128 * - error while queueing to a different device (rc & NET_XMIT_MASK) 129 */ 130 if (likely(rc < NET_XMIT_MASK)) 131 return true; 132 133 return false; 134 } 135 136 #endif 137 138 #define MAX_ADDR_LEN 32 /* Largest hardware address length */ 139 140 /* Initial net device group. All devices belong to group 0 by default. */ 141 #define INIT_NETDEV_GROUP 0 142 143 #ifdef __KERNEL__ 144 /* 145 * Compute the worst case header length according to the protocols 146 * used. 147 */ 148 149 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 150 # if defined(CONFIG_MAC80211_MESH) 151 # define LL_MAX_HEADER 128 152 # else 153 # define LL_MAX_HEADER 96 154 # endif 155 #elif IS_ENABLED(CONFIG_TR) 156 # define LL_MAX_HEADER 48 157 #else 158 # define LL_MAX_HEADER 32 159 #endif 160 161 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 162 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 163 #define MAX_HEADER LL_MAX_HEADER 164 #else 165 #define MAX_HEADER (LL_MAX_HEADER + 48) 166 #endif 167 168 /* 169 * Old network device statistics. Fields are native words 170 * (unsigned long) so they can be read and written atomically. 171 */ 172 173 struct net_device_stats { 174 unsigned long rx_packets; 175 unsigned long tx_packets; 176 unsigned long rx_bytes; 177 unsigned long tx_bytes; 178 unsigned long rx_errors; 179 unsigned long tx_errors; 180 unsigned long rx_dropped; 181 unsigned long tx_dropped; 182 unsigned long multicast; 183 unsigned long collisions; 184 unsigned long rx_length_errors; 185 unsigned long rx_over_errors; 186 unsigned long rx_crc_errors; 187 unsigned long rx_frame_errors; 188 unsigned long rx_fifo_errors; 189 unsigned long rx_missed_errors; 190 unsigned long tx_aborted_errors; 191 unsigned long tx_carrier_errors; 192 unsigned long tx_fifo_errors; 193 unsigned long tx_heartbeat_errors; 194 unsigned long tx_window_errors; 195 unsigned long rx_compressed; 196 unsigned long tx_compressed; 197 }; 198 199 #endif /* __KERNEL__ */ 200 201 202 /* Media selection options. */ 203 enum { 204 IF_PORT_UNKNOWN = 0, 205 IF_PORT_10BASE2, 206 IF_PORT_10BASET, 207 IF_PORT_AUI, 208 IF_PORT_100BASET, 209 IF_PORT_100BASETX, 210 IF_PORT_100BASEFX 211 }; 212 213 #ifdef __KERNEL__ 214 215 #include <linux/cache.h> 216 #include <linux/skbuff.h> 217 218 #ifdef CONFIG_RPS 219 #include <linux/static_key.h> 220 extern struct static_key rps_needed; 221 #endif 222 223 struct neighbour; 224 struct neigh_parms; 225 struct sk_buff; 226 227 struct netdev_hw_addr { 228 struct list_head list; 229 unsigned char addr[MAX_ADDR_LEN]; 230 unsigned char type; 231 #define NETDEV_HW_ADDR_T_LAN 1 232 #define NETDEV_HW_ADDR_T_SAN 2 233 #define NETDEV_HW_ADDR_T_SLAVE 3 234 #define NETDEV_HW_ADDR_T_UNICAST 4 235 #define NETDEV_HW_ADDR_T_MULTICAST 5 236 bool synced; 237 bool global_use; 238 int refcount; 239 struct rcu_head rcu_head; 240 }; 241 242 struct netdev_hw_addr_list { 243 struct list_head list; 244 int count; 245 }; 246 247 #define netdev_hw_addr_list_count(l) ((l)->count) 248 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 249 #define netdev_hw_addr_list_for_each(ha, l) \ 250 list_for_each_entry(ha, &(l)->list, list) 251 252 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 253 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 254 #define netdev_for_each_uc_addr(ha, dev) \ 255 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 256 257 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 258 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 259 #define netdev_for_each_mc_addr(ha, dev) \ 260 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 261 262 struct hh_cache { 263 u16 hh_len; 264 u16 __pad; 265 seqlock_t hh_lock; 266 267 /* cached hardware header; allow for machine alignment needs. */ 268 #define HH_DATA_MOD 16 269 #define HH_DATA_OFF(__len) \ 270 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 271 #define HH_DATA_ALIGN(__len) \ 272 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 273 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 274 }; 275 276 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much. 277 * Alternative is: 278 * dev->hard_header_len ? (dev->hard_header_len + 279 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 280 * 281 * We could use other alignment values, but we must maintain the 282 * relationship HH alignment <= LL alignment. 283 */ 284 #define LL_RESERVED_SPACE(dev) \ 285 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 286 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 287 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 288 289 struct header_ops { 290 int (*create) (struct sk_buff *skb, struct net_device *dev, 291 unsigned short type, const void *daddr, 292 const void *saddr, unsigned int len); 293 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 294 int (*rebuild)(struct sk_buff *skb); 295 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 296 void (*cache_update)(struct hh_cache *hh, 297 const struct net_device *dev, 298 const unsigned char *haddr); 299 }; 300 301 /* These flag bits are private to the generic network queueing 302 * layer, they may not be explicitly referenced by any other 303 * code. 304 */ 305 306 enum netdev_state_t { 307 __LINK_STATE_START, 308 __LINK_STATE_PRESENT, 309 __LINK_STATE_NOCARRIER, 310 __LINK_STATE_LINKWATCH_PENDING, 311 __LINK_STATE_DORMANT, 312 }; 313 314 315 /* 316 * This structure holds at boot time configured netdevice settings. They 317 * are then used in the device probing. 318 */ 319 struct netdev_boot_setup { 320 char name[IFNAMSIZ]; 321 struct ifmap map; 322 }; 323 #define NETDEV_BOOT_SETUP_MAX 8 324 325 extern int __init netdev_boot_setup(char *str); 326 327 /* 328 * Structure for NAPI scheduling similar to tasklet but with weighting 329 */ 330 struct napi_struct { 331 /* The poll_list must only be managed by the entity which 332 * changes the state of the NAPI_STATE_SCHED bit. This means 333 * whoever atomically sets that bit can add this napi_struct 334 * to the per-cpu poll_list, and whoever clears that bit 335 * can remove from the list right before clearing the bit. 336 */ 337 struct list_head poll_list; 338 339 unsigned long state; 340 int weight; 341 int (*poll)(struct napi_struct *, int); 342 #ifdef CONFIG_NETPOLL 343 spinlock_t poll_lock; 344 int poll_owner; 345 #endif 346 347 unsigned int gro_count; 348 349 struct net_device *dev; 350 struct list_head dev_list; 351 struct sk_buff *gro_list; 352 struct sk_buff *skb; 353 }; 354 355 enum { 356 NAPI_STATE_SCHED, /* Poll is scheduled */ 357 NAPI_STATE_DISABLE, /* Disable pending */ 358 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 359 }; 360 361 enum gro_result { 362 GRO_MERGED, 363 GRO_MERGED_FREE, 364 GRO_HELD, 365 GRO_NORMAL, 366 GRO_DROP, 367 }; 368 typedef enum gro_result gro_result_t; 369 370 /* 371 * enum rx_handler_result - Possible return values for rx_handlers. 372 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 373 * further. 374 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 375 * case skb->dev was changed by rx_handler. 376 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 377 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called. 378 * 379 * rx_handlers are functions called from inside __netif_receive_skb(), to do 380 * special processing of the skb, prior to delivery to protocol handlers. 381 * 382 * Currently, a net_device can only have a single rx_handler registered. Trying 383 * to register a second rx_handler will return -EBUSY. 384 * 385 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 386 * To unregister a rx_handler on a net_device, use 387 * netdev_rx_handler_unregister(). 388 * 389 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 390 * do with the skb. 391 * 392 * If the rx_handler consumed to skb in some way, it should return 393 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 394 * the skb to be delivered in some other ways. 395 * 396 * If the rx_handler changed skb->dev, to divert the skb to another 397 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 398 * new device will be called if it exists. 399 * 400 * If the rx_handler consider the skb should be ignored, it should return 401 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 402 * are registred on exact device (ptype->dev == skb->dev). 403 * 404 * If the rx_handler didn't changed skb->dev, but want the skb to be normally 405 * delivered, it should return RX_HANDLER_PASS. 406 * 407 * A device without a registered rx_handler will behave as if rx_handler 408 * returned RX_HANDLER_PASS. 409 */ 410 411 enum rx_handler_result { 412 RX_HANDLER_CONSUMED, 413 RX_HANDLER_ANOTHER, 414 RX_HANDLER_EXACT, 415 RX_HANDLER_PASS, 416 }; 417 typedef enum rx_handler_result rx_handler_result_t; 418 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 419 420 extern void __napi_schedule(struct napi_struct *n); 421 422 static inline bool napi_disable_pending(struct napi_struct *n) 423 { 424 return test_bit(NAPI_STATE_DISABLE, &n->state); 425 } 426 427 /** 428 * napi_schedule_prep - check if napi can be scheduled 429 * @n: napi context 430 * 431 * Test if NAPI routine is already running, and if not mark 432 * it as running. This is used as a condition variable 433 * insure only one NAPI poll instance runs. We also make 434 * sure there is no pending NAPI disable. 435 */ 436 static inline bool napi_schedule_prep(struct napi_struct *n) 437 { 438 return !napi_disable_pending(n) && 439 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 440 } 441 442 /** 443 * napi_schedule - schedule NAPI poll 444 * @n: napi context 445 * 446 * Schedule NAPI poll routine to be called if it is not already 447 * running. 448 */ 449 static inline void napi_schedule(struct napi_struct *n) 450 { 451 if (napi_schedule_prep(n)) 452 __napi_schedule(n); 453 } 454 455 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 456 static inline bool napi_reschedule(struct napi_struct *napi) 457 { 458 if (napi_schedule_prep(napi)) { 459 __napi_schedule(napi); 460 return true; 461 } 462 return false; 463 } 464 465 /** 466 * napi_complete - NAPI processing complete 467 * @n: napi context 468 * 469 * Mark NAPI processing as complete. 470 */ 471 extern void __napi_complete(struct napi_struct *n); 472 extern void napi_complete(struct napi_struct *n); 473 474 /** 475 * napi_disable - prevent NAPI from scheduling 476 * @n: napi context 477 * 478 * Stop NAPI from being scheduled on this context. 479 * Waits till any outstanding processing completes. 480 */ 481 static inline void napi_disable(struct napi_struct *n) 482 { 483 set_bit(NAPI_STATE_DISABLE, &n->state); 484 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 485 msleep(1); 486 clear_bit(NAPI_STATE_DISABLE, &n->state); 487 } 488 489 /** 490 * napi_enable - enable NAPI scheduling 491 * @n: napi context 492 * 493 * Resume NAPI from being scheduled on this context. 494 * Must be paired with napi_disable. 495 */ 496 static inline void napi_enable(struct napi_struct *n) 497 { 498 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 499 smp_mb__before_clear_bit(); 500 clear_bit(NAPI_STATE_SCHED, &n->state); 501 } 502 503 #ifdef CONFIG_SMP 504 /** 505 * napi_synchronize - wait until NAPI is not running 506 * @n: napi context 507 * 508 * Wait until NAPI is done being scheduled on this context. 509 * Waits till any outstanding processing completes but 510 * does not disable future activations. 511 */ 512 static inline void napi_synchronize(const struct napi_struct *n) 513 { 514 while (test_bit(NAPI_STATE_SCHED, &n->state)) 515 msleep(1); 516 } 517 #else 518 # define napi_synchronize(n) barrier() 519 #endif 520 521 enum netdev_queue_state_t { 522 __QUEUE_STATE_DRV_XOFF, 523 __QUEUE_STATE_STACK_XOFF, 524 __QUEUE_STATE_FROZEN, 525 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \ 526 (1 << __QUEUE_STATE_STACK_XOFF)) 527 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 528 (1 << __QUEUE_STATE_FROZEN)) 529 }; 530 /* 531 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 532 * netif_tx_* functions below are used to manipulate this flag. The 533 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 534 * queue independently. The netif_xmit_*stopped functions below are called 535 * to check if the queue has been stopped by the driver or stack (either 536 * of the XOFF bits are set in the state). Drivers should not need to call 537 * netif_xmit*stopped functions, they should only be using netif_tx_*. 538 */ 539 540 struct netdev_queue { 541 /* 542 * read mostly part 543 */ 544 struct net_device *dev; 545 struct Qdisc *qdisc; 546 struct Qdisc *qdisc_sleeping; 547 #ifdef CONFIG_SYSFS 548 struct kobject kobj; 549 #endif 550 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 551 int numa_node; 552 #endif 553 /* 554 * write mostly part 555 */ 556 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 557 int xmit_lock_owner; 558 /* 559 * please use this field instead of dev->trans_start 560 */ 561 unsigned long trans_start; 562 563 /* 564 * Number of TX timeouts for this queue 565 * (/sys/class/net/DEV/Q/trans_timeout) 566 */ 567 unsigned long trans_timeout; 568 569 unsigned long state; 570 571 #ifdef CONFIG_BQL 572 struct dql dql; 573 #endif 574 } ____cacheline_aligned_in_smp; 575 576 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 577 { 578 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 579 return q->numa_node; 580 #else 581 return NUMA_NO_NODE; 582 #endif 583 } 584 585 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 586 { 587 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 588 q->numa_node = node; 589 #endif 590 } 591 592 #ifdef CONFIG_RPS 593 /* 594 * This structure holds an RPS map which can be of variable length. The 595 * map is an array of CPUs. 596 */ 597 struct rps_map { 598 unsigned int len; 599 struct rcu_head rcu; 600 u16 cpus[0]; 601 }; 602 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 603 604 /* 605 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 606 * tail pointer for that CPU's input queue at the time of last enqueue, and 607 * a hardware filter index. 608 */ 609 struct rps_dev_flow { 610 u16 cpu; 611 u16 filter; 612 unsigned int last_qtail; 613 }; 614 #define RPS_NO_FILTER 0xffff 615 616 /* 617 * The rps_dev_flow_table structure contains a table of flow mappings. 618 */ 619 struct rps_dev_flow_table { 620 unsigned int mask; 621 struct rcu_head rcu; 622 struct work_struct free_work; 623 struct rps_dev_flow flows[0]; 624 }; 625 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 626 ((_num) * sizeof(struct rps_dev_flow))) 627 628 /* 629 * The rps_sock_flow_table contains mappings of flows to the last CPU 630 * on which they were processed by the application (set in recvmsg). 631 */ 632 struct rps_sock_flow_table { 633 unsigned int mask; 634 u16 ents[0]; 635 }; 636 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \ 637 ((_num) * sizeof(u16))) 638 639 #define RPS_NO_CPU 0xffff 640 641 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 642 u32 hash) 643 { 644 if (table && hash) { 645 unsigned int cpu, index = hash & table->mask; 646 647 /* We only give a hint, preemption can change cpu under us */ 648 cpu = raw_smp_processor_id(); 649 650 if (table->ents[index] != cpu) 651 table->ents[index] = cpu; 652 } 653 } 654 655 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table, 656 u32 hash) 657 { 658 if (table && hash) 659 table->ents[hash & table->mask] = RPS_NO_CPU; 660 } 661 662 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 663 664 #ifdef CONFIG_RFS_ACCEL 665 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 666 u32 flow_id, u16 filter_id); 667 #endif 668 669 /* This structure contains an instance of an RX queue. */ 670 struct netdev_rx_queue { 671 struct rps_map __rcu *rps_map; 672 struct rps_dev_flow_table __rcu *rps_flow_table; 673 struct kobject kobj; 674 struct net_device *dev; 675 } ____cacheline_aligned_in_smp; 676 #endif /* CONFIG_RPS */ 677 678 #ifdef CONFIG_XPS 679 /* 680 * This structure holds an XPS map which can be of variable length. The 681 * map is an array of queues. 682 */ 683 struct xps_map { 684 unsigned int len; 685 unsigned int alloc_len; 686 struct rcu_head rcu; 687 u16 queues[0]; 688 }; 689 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 690 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \ 691 / sizeof(u16)) 692 693 /* 694 * This structure holds all XPS maps for device. Maps are indexed by CPU. 695 */ 696 struct xps_dev_maps { 697 struct rcu_head rcu; 698 struct xps_map __rcu *cpu_map[0]; 699 }; 700 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 701 (nr_cpu_ids * sizeof(struct xps_map *))) 702 #endif /* CONFIG_XPS */ 703 704 #define TC_MAX_QUEUE 16 705 #define TC_BITMASK 15 706 /* HW offloaded queuing disciplines txq count and offset maps */ 707 struct netdev_tc_txq { 708 u16 count; 709 u16 offset; 710 }; 711 712 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 713 /* 714 * This structure is to hold information about the device 715 * configured to run FCoE protocol stack. 716 */ 717 struct netdev_fcoe_hbainfo { 718 char manufacturer[64]; 719 char serial_number[64]; 720 char hardware_version[64]; 721 char driver_version[64]; 722 char optionrom_version[64]; 723 char firmware_version[64]; 724 char model[256]; 725 char model_description[256]; 726 }; 727 #endif 728 729 /* 730 * This structure defines the management hooks for network devices. 731 * The following hooks can be defined; unless noted otherwise, they are 732 * optional and can be filled with a null pointer. 733 * 734 * int (*ndo_init)(struct net_device *dev); 735 * This function is called once when network device is registered. 736 * The network device can use this to any late stage initializaton 737 * or semantic validattion. It can fail with an error code which will 738 * be propogated back to register_netdev 739 * 740 * void (*ndo_uninit)(struct net_device *dev); 741 * This function is called when device is unregistered or when registration 742 * fails. It is not called if init fails. 743 * 744 * int (*ndo_open)(struct net_device *dev); 745 * This function is called when network device transistions to the up 746 * state. 747 * 748 * int (*ndo_stop)(struct net_device *dev); 749 * This function is called when network device transistions to the down 750 * state. 751 * 752 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 753 * struct net_device *dev); 754 * Called when a packet needs to be transmitted. 755 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY. 756 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) 757 * Required can not be NULL. 758 * 759 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb); 760 * Called to decide which queue to when device supports multiple 761 * transmit queues. 762 * 763 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 764 * This function is called to allow device receiver to make 765 * changes to configuration when multicast or promiscious is enabled. 766 * 767 * void (*ndo_set_rx_mode)(struct net_device *dev); 768 * This function is called device changes address list filtering. 769 * If driver handles unicast address filtering, it should set 770 * IFF_UNICAST_FLT to its priv_flags. 771 * 772 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 773 * This function is called when the Media Access Control address 774 * needs to be changed. If this interface is not defined, the 775 * mac address can not be changed. 776 * 777 * int (*ndo_validate_addr)(struct net_device *dev); 778 * Test if Media Access Control address is valid for the device. 779 * 780 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 781 * Called when a user request an ioctl which can't be handled by 782 * the generic interface code. If not defined ioctl's return 783 * not supported error code. 784 * 785 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 786 * Used to set network devices bus interface parameters. This interface 787 * is retained for legacy reason, new devices should use the bus 788 * interface (PCI) for low level management. 789 * 790 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 791 * Called when a user wants to change the Maximum Transfer Unit 792 * of a device. If not defined, any request to change MTU will 793 * will return an error. 794 * 795 * void (*ndo_tx_timeout)(struct net_device *dev); 796 * Callback uses when the transmitter has not made any progress 797 * for dev->watchdog ticks. 798 * 799 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 800 * struct rtnl_link_stats64 *storage); 801 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 802 * Called when a user wants to get the network device usage 803 * statistics. Drivers must do one of the following: 804 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 805 * rtnl_link_stats64 structure passed by the caller. 806 * 2. Define @ndo_get_stats to update a net_device_stats structure 807 * (which should normally be dev->stats) and return a pointer to 808 * it. The structure may be changed asynchronously only if each 809 * field is written atomically. 810 * 3. Update dev->stats asynchronously and atomically, and define 811 * neither operation. 812 * 813 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid); 814 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 815 * this function is called when a VLAN id is registered. 816 * 817 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid); 818 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 819 * this function is called when a VLAN id is unregistered. 820 * 821 * void (*ndo_poll_controller)(struct net_device *dev); 822 * 823 * SR-IOV management functions. 824 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 825 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 826 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate); 827 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 828 * int (*ndo_get_vf_config)(struct net_device *dev, 829 * int vf, struct ifla_vf_info *ivf); 830 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 831 * struct nlattr *port[]); 832 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 833 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 834 * Called to setup 'tc' number of traffic classes in the net device. This 835 * is always called from the stack with the rtnl lock held and netif tx 836 * queues stopped. This allows the netdevice to perform queue management 837 * safely. 838 * 839 * Fiber Channel over Ethernet (FCoE) offload functions. 840 * int (*ndo_fcoe_enable)(struct net_device *dev); 841 * Called when the FCoE protocol stack wants to start using LLD for FCoE 842 * so the underlying device can perform whatever needed configuration or 843 * initialization to support acceleration of FCoE traffic. 844 * 845 * int (*ndo_fcoe_disable)(struct net_device *dev); 846 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 847 * so the underlying device can perform whatever needed clean-ups to 848 * stop supporting acceleration of FCoE traffic. 849 * 850 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 851 * struct scatterlist *sgl, unsigned int sgc); 852 * Called when the FCoE Initiator wants to initialize an I/O that 853 * is a possible candidate for Direct Data Placement (DDP). The LLD can 854 * perform necessary setup and returns 1 to indicate the device is set up 855 * successfully to perform DDP on this I/O, otherwise this returns 0. 856 * 857 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 858 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 859 * indicated by the FC exchange id 'xid', so the underlying device can 860 * clean up and reuse resources for later DDP requests. 861 * 862 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 863 * struct scatterlist *sgl, unsigned int sgc); 864 * Called when the FCoE Target wants to initialize an I/O that 865 * is a possible candidate for Direct Data Placement (DDP). The LLD can 866 * perform necessary setup and returns 1 to indicate the device is set up 867 * successfully to perform DDP on this I/O, otherwise this returns 0. 868 * 869 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 870 * struct netdev_fcoe_hbainfo *hbainfo); 871 * Called when the FCoE Protocol stack wants information on the underlying 872 * device. This information is utilized by the FCoE protocol stack to 873 * register attributes with Fiber Channel management service as per the 874 * FC-GS Fabric Device Management Information(FDMI) specification. 875 * 876 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 877 * Called when the underlying device wants to override default World Wide 878 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 879 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 880 * protocol stack to use. 881 * 882 * RFS acceleration. 883 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 884 * u16 rxq_index, u32 flow_id); 885 * Set hardware filter for RFS. rxq_index is the target queue index; 886 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 887 * Return the filter ID on success, or a negative error code. 888 * 889 * Slave management functions (for bridge, bonding, etc). User should 890 * call netdev_set_master() to set dev->master properly. 891 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 892 * Called to make another netdev an underling. 893 * 894 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 895 * Called to release previously enslaved netdev. 896 * 897 * Feature/offload setting functions. 898 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 899 * netdev_features_t features); 900 * Adjusts the requested feature flags according to device-specific 901 * constraints, and returns the resulting flags. Must not modify 902 * the device state. 903 * 904 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 905 * Called to update device configuration to new features. Passed 906 * feature set might be less than what was returned by ndo_fix_features()). 907 * Must return >0 or -errno if it changed dev->features itself. 908 * 909 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct net_device *dev, 910 * unsigned char *addr, u16 flags) 911 * Adds an FDB entry to dev for addr. 912 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct net_device *dev, 913 * unsigned char *addr) 914 * Deletes the FDB entry from dev coresponding to addr. 915 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 916 * struct net_device *dev, int idx) 917 * Used to add FDB entries to dump requests. Implementers should add 918 * entries to skb and update idx with the number of entries. 919 */ 920 struct net_device_ops { 921 int (*ndo_init)(struct net_device *dev); 922 void (*ndo_uninit)(struct net_device *dev); 923 int (*ndo_open)(struct net_device *dev); 924 int (*ndo_stop)(struct net_device *dev); 925 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb, 926 struct net_device *dev); 927 u16 (*ndo_select_queue)(struct net_device *dev, 928 struct sk_buff *skb); 929 void (*ndo_change_rx_flags)(struct net_device *dev, 930 int flags); 931 void (*ndo_set_rx_mode)(struct net_device *dev); 932 int (*ndo_set_mac_address)(struct net_device *dev, 933 void *addr); 934 int (*ndo_validate_addr)(struct net_device *dev); 935 int (*ndo_do_ioctl)(struct net_device *dev, 936 struct ifreq *ifr, int cmd); 937 int (*ndo_set_config)(struct net_device *dev, 938 struct ifmap *map); 939 int (*ndo_change_mtu)(struct net_device *dev, 940 int new_mtu); 941 int (*ndo_neigh_setup)(struct net_device *dev, 942 struct neigh_parms *); 943 void (*ndo_tx_timeout) (struct net_device *dev); 944 945 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 946 struct rtnl_link_stats64 *storage); 947 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 948 949 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 950 unsigned short vid); 951 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 952 unsigned short vid); 953 #ifdef CONFIG_NET_POLL_CONTROLLER 954 void (*ndo_poll_controller)(struct net_device *dev); 955 int (*ndo_netpoll_setup)(struct net_device *dev, 956 struct netpoll_info *info); 957 void (*ndo_netpoll_cleanup)(struct net_device *dev); 958 #endif 959 int (*ndo_set_vf_mac)(struct net_device *dev, 960 int queue, u8 *mac); 961 int (*ndo_set_vf_vlan)(struct net_device *dev, 962 int queue, u16 vlan, u8 qos); 963 int (*ndo_set_vf_tx_rate)(struct net_device *dev, 964 int vf, int rate); 965 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 966 int vf, bool setting); 967 int (*ndo_get_vf_config)(struct net_device *dev, 968 int vf, 969 struct ifla_vf_info *ivf); 970 int (*ndo_set_vf_port)(struct net_device *dev, 971 int vf, 972 struct nlattr *port[]); 973 int (*ndo_get_vf_port)(struct net_device *dev, 974 int vf, struct sk_buff *skb); 975 int (*ndo_setup_tc)(struct net_device *dev, u8 tc); 976 #if IS_ENABLED(CONFIG_FCOE) 977 int (*ndo_fcoe_enable)(struct net_device *dev); 978 int (*ndo_fcoe_disable)(struct net_device *dev); 979 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 980 u16 xid, 981 struct scatterlist *sgl, 982 unsigned int sgc); 983 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 984 u16 xid); 985 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 986 u16 xid, 987 struct scatterlist *sgl, 988 unsigned int sgc); 989 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 990 struct netdev_fcoe_hbainfo *hbainfo); 991 #endif 992 993 #if IS_ENABLED(CONFIG_LIBFCOE) 994 #define NETDEV_FCOE_WWNN 0 995 #define NETDEV_FCOE_WWPN 1 996 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 997 u64 *wwn, int type); 998 #endif 999 1000 #ifdef CONFIG_RFS_ACCEL 1001 int (*ndo_rx_flow_steer)(struct net_device *dev, 1002 const struct sk_buff *skb, 1003 u16 rxq_index, 1004 u32 flow_id); 1005 #endif 1006 int (*ndo_add_slave)(struct net_device *dev, 1007 struct net_device *slave_dev); 1008 int (*ndo_del_slave)(struct net_device *dev, 1009 struct net_device *slave_dev); 1010 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1011 netdev_features_t features); 1012 int (*ndo_set_features)(struct net_device *dev, 1013 netdev_features_t features); 1014 int (*ndo_neigh_construct)(struct neighbour *n); 1015 void (*ndo_neigh_destroy)(struct neighbour *n); 1016 1017 int (*ndo_fdb_add)(struct ndmsg *ndm, 1018 struct net_device *dev, 1019 unsigned char *addr, 1020 u16 flags); 1021 int (*ndo_fdb_del)(struct ndmsg *ndm, 1022 struct net_device *dev, 1023 unsigned char *addr); 1024 int (*ndo_fdb_dump)(struct sk_buff *skb, 1025 struct netlink_callback *cb, 1026 struct net_device *dev, 1027 int idx); 1028 }; 1029 1030 /* 1031 * The DEVICE structure. 1032 * Actually, this whole structure is a big mistake. It mixes I/O 1033 * data with strictly "high-level" data, and it has to know about 1034 * almost every data structure used in the INET module. 1035 * 1036 * FIXME: cleanup struct net_device such that network protocol info 1037 * moves out. 1038 */ 1039 1040 struct net_device { 1041 1042 /* 1043 * This is the first field of the "visible" part of this structure 1044 * (i.e. as seen by users in the "Space.c" file). It is the name 1045 * of the interface. 1046 */ 1047 char name[IFNAMSIZ]; 1048 1049 struct pm_qos_request pm_qos_req; 1050 1051 /* device name hash chain */ 1052 struct hlist_node name_hlist; 1053 /* snmp alias */ 1054 char *ifalias; 1055 1056 /* 1057 * I/O specific fields 1058 * FIXME: Merge these and struct ifmap into one 1059 */ 1060 unsigned long mem_end; /* shared mem end */ 1061 unsigned long mem_start; /* shared mem start */ 1062 unsigned long base_addr; /* device I/O address */ 1063 unsigned int irq; /* device IRQ number */ 1064 1065 /* 1066 * Some hardware also needs these fields, but they are not 1067 * part of the usual set specified in Space.c. 1068 */ 1069 1070 unsigned long state; 1071 1072 struct list_head dev_list; 1073 struct list_head napi_list; 1074 struct list_head unreg_list; 1075 1076 /* currently active device features */ 1077 netdev_features_t features; 1078 /* user-changeable features */ 1079 netdev_features_t hw_features; 1080 /* user-requested features */ 1081 netdev_features_t wanted_features; 1082 /* mask of features inheritable by VLAN devices */ 1083 netdev_features_t vlan_features; 1084 1085 /* Interface index. Unique device identifier */ 1086 int ifindex; 1087 int iflink; 1088 1089 struct net_device_stats stats; 1090 atomic_long_t rx_dropped; /* dropped packets by core network 1091 * Do not use this in drivers. 1092 */ 1093 1094 #ifdef CONFIG_WIRELESS_EXT 1095 /* List of functions to handle Wireless Extensions (instead of ioctl). 1096 * See <net/iw_handler.h> for details. Jean II */ 1097 const struct iw_handler_def * wireless_handlers; 1098 /* Instance data managed by the core of Wireless Extensions. */ 1099 struct iw_public_data * wireless_data; 1100 #endif 1101 /* Management operations */ 1102 const struct net_device_ops *netdev_ops; 1103 const struct ethtool_ops *ethtool_ops; 1104 1105 /* Hardware header description */ 1106 const struct header_ops *header_ops; 1107 1108 unsigned int flags; /* interface flags (a la BSD) */ 1109 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. 1110 * See if.h for definitions. */ 1111 unsigned short gflags; 1112 unsigned short padded; /* How much padding added by alloc_netdev() */ 1113 1114 unsigned char operstate; /* RFC2863 operstate */ 1115 unsigned char link_mode; /* mapping policy to operstate */ 1116 1117 unsigned char if_port; /* Selectable AUI, TP,..*/ 1118 unsigned char dma; /* DMA channel */ 1119 1120 unsigned int mtu; /* interface MTU value */ 1121 unsigned short type; /* interface hardware type */ 1122 unsigned short hard_header_len; /* hardware hdr length */ 1123 1124 /* extra head- and tailroom the hardware may need, but not in all cases 1125 * can this be guaranteed, especially tailroom. Some cases also use 1126 * LL_MAX_HEADER instead to allocate the skb. 1127 */ 1128 unsigned short needed_headroom; 1129 unsigned short needed_tailroom; 1130 1131 /* Interface address info. */ 1132 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */ 1133 unsigned char addr_assign_type; /* hw address assignment type */ 1134 unsigned char addr_len; /* hardware address length */ 1135 unsigned char neigh_priv_len; 1136 unsigned short dev_id; /* for shared network cards */ 1137 1138 spinlock_t addr_list_lock; 1139 struct netdev_hw_addr_list uc; /* Unicast mac addresses */ 1140 struct netdev_hw_addr_list mc; /* Multicast mac addresses */ 1141 bool uc_promisc; 1142 unsigned int promiscuity; 1143 unsigned int allmulti; 1144 1145 1146 /* Protocol specific pointers */ 1147 1148 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1149 struct vlan_info __rcu *vlan_info; /* VLAN info */ 1150 #endif 1151 #if IS_ENABLED(CONFIG_NET_DSA) 1152 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */ 1153 #endif 1154 void *atalk_ptr; /* AppleTalk link */ 1155 struct in_device __rcu *ip_ptr; /* IPv4 specific data */ 1156 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */ 1157 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */ 1158 void *ax25_ptr; /* AX.25 specific data */ 1159 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data, 1160 assign before registering */ 1161 1162 /* 1163 * Cache lines mostly used on receive path (including eth_type_trans()) 1164 */ 1165 unsigned long last_rx; /* Time of last Rx 1166 * This should not be set in 1167 * drivers, unless really needed, 1168 * because network stack (bonding) 1169 * use it if/when necessary, to 1170 * avoid dirtying this cache line. 1171 */ 1172 1173 struct net_device *master; /* Pointer to master device of a group, 1174 * which this device is member of. 1175 */ 1176 1177 /* Interface address info used in eth_type_trans() */ 1178 unsigned char *dev_addr; /* hw address, (before bcast 1179 because most packets are 1180 unicast) */ 1181 1182 struct netdev_hw_addr_list dev_addrs; /* list of device 1183 hw addresses */ 1184 1185 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */ 1186 1187 #ifdef CONFIG_SYSFS 1188 struct kset *queues_kset; 1189 #endif 1190 1191 #ifdef CONFIG_RPS 1192 struct netdev_rx_queue *_rx; 1193 1194 /* Number of RX queues allocated at register_netdev() time */ 1195 unsigned int num_rx_queues; 1196 1197 /* Number of RX queues currently active in device */ 1198 unsigned int real_num_rx_queues; 1199 1200 #ifdef CONFIG_RFS_ACCEL 1201 /* CPU reverse-mapping for RX completion interrupts, indexed 1202 * by RX queue number. Assigned by driver. This must only be 1203 * set if the ndo_rx_flow_steer operation is defined. */ 1204 struct cpu_rmap *rx_cpu_rmap; 1205 #endif 1206 #endif 1207 1208 rx_handler_func_t __rcu *rx_handler; 1209 void __rcu *rx_handler_data; 1210 1211 struct netdev_queue __rcu *ingress_queue; 1212 1213 /* 1214 * Cache lines mostly used on transmit path 1215 */ 1216 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1217 1218 /* Number of TX queues allocated at alloc_netdev_mq() time */ 1219 unsigned int num_tx_queues; 1220 1221 /* Number of TX queues currently active in device */ 1222 unsigned int real_num_tx_queues; 1223 1224 /* root qdisc from userspace point of view */ 1225 struct Qdisc *qdisc; 1226 1227 unsigned long tx_queue_len; /* Max frames per queue allowed */ 1228 spinlock_t tx_global_lock; 1229 1230 #ifdef CONFIG_XPS 1231 struct xps_dev_maps __rcu *xps_maps; 1232 #endif 1233 1234 /* These may be needed for future network-power-down code. */ 1235 1236 /* 1237 * trans_start here is expensive for high speed devices on SMP, 1238 * please use netdev_queue->trans_start instead. 1239 */ 1240 unsigned long trans_start; /* Time (in jiffies) of last Tx */ 1241 1242 int watchdog_timeo; /* used by dev_watchdog() */ 1243 struct timer_list watchdog_timer; 1244 1245 /* Number of references to this device */ 1246 int __percpu *pcpu_refcnt; 1247 1248 /* delayed register/unregister */ 1249 struct list_head todo_list; 1250 /* device index hash chain */ 1251 struct hlist_node index_hlist; 1252 1253 struct list_head link_watch_list; 1254 1255 /* register/unregister state machine */ 1256 enum { NETREG_UNINITIALIZED=0, 1257 NETREG_REGISTERED, /* completed register_netdevice */ 1258 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1259 NETREG_UNREGISTERED, /* completed unregister todo */ 1260 NETREG_RELEASED, /* called free_netdev */ 1261 NETREG_DUMMY, /* dummy device for NAPI poll */ 1262 } reg_state:8; 1263 1264 bool dismantle; /* device is going do be freed */ 1265 1266 enum { 1267 RTNL_LINK_INITIALIZED, 1268 RTNL_LINK_INITIALIZING, 1269 } rtnl_link_state:16; 1270 1271 /* Called from unregister, can be used to call free_netdev */ 1272 void (*destructor)(struct net_device *dev); 1273 1274 #ifdef CONFIG_NETPOLL 1275 struct netpoll_info *npinfo; 1276 #endif 1277 1278 #ifdef CONFIG_NET_NS 1279 /* Network namespace this network device is inside */ 1280 struct net *nd_net; 1281 #endif 1282 1283 /* mid-layer private */ 1284 union { 1285 void *ml_priv; 1286 struct pcpu_lstats __percpu *lstats; /* loopback stats */ 1287 struct pcpu_tstats __percpu *tstats; /* tunnel stats */ 1288 struct pcpu_dstats __percpu *dstats; /* dummy stats */ 1289 }; 1290 /* GARP */ 1291 struct garp_port __rcu *garp_port; 1292 1293 /* class/net/name entry */ 1294 struct device dev; 1295 /* space for optional device, statistics, and wireless sysfs groups */ 1296 const struct attribute_group *sysfs_groups[4]; 1297 1298 /* rtnetlink link ops */ 1299 const struct rtnl_link_ops *rtnl_link_ops; 1300 1301 /* for setting kernel sock attribute on TCP connection setup */ 1302 #define GSO_MAX_SIZE 65536 1303 unsigned int gso_max_size; 1304 1305 #ifdef CONFIG_DCB 1306 /* Data Center Bridging netlink ops */ 1307 const struct dcbnl_rtnl_ops *dcbnl_ops; 1308 #endif 1309 u8 num_tc; 1310 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1311 u8 prio_tc_map[TC_BITMASK + 1]; 1312 1313 #if IS_ENABLED(CONFIG_FCOE) 1314 /* max exchange id for FCoE LRO by ddp */ 1315 unsigned int fcoe_ddp_xid; 1316 #endif 1317 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 1318 struct netprio_map __rcu *priomap; 1319 #endif 1320 /* phy device may attach itself for hardware timestamping */ 1321 struct phy_device *phydev; 1322 1323 /* group the device belongs to */ 1324 int group; 1325 }; 1326 #define to_net_dev(d) container_of(d, struct net_device, dev) 1327 1328 #define NETDEV_ALIGN 32 1329 1330 static inline 1331 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1332 { 1333 return dev->prio_tc_map[prio & TC_BITMASK]; 1334 } 1335 1336 static inline 1337 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1338 { 1339 if (tc >= dev->num_tc) 1340 return -EINVAL; 1341 1342 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1343 return 0; 1344 } 1345 1346 static inline 1347 void netdev_reset_tc(struct net_device *dev) 1348 { 1349 dev->num_tc = 0; 1350 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 1351 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 1352 } 1353 1354 static inline 1355 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 1356 { 1357 if (tc >= dev->num_tc) 1358 return -EINVAL; 1359 1360 dev->tc_to_txq[tc].count = count; 1361 dev->tc_to_txq[tc].offset = offset; 1362 return 0; 1363 } 1364 1365 static inline 1366 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 1367 { 1368 if (num_tc > TC_MAX_QUEUE) 1369 return -EINVAL; 1370 1371 dev->num_tc = num_tc; 1372 return 0; 1373 } 1374 1375 static inline 1376 int netdev_get_num_tc(struct net_device *dev) 1377 { 1378 return dev->num_tc; 1379 } 1380 1381 static inline 1382 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1383 unsigned int index) 1384 { 1385 return &dev->_tx[index]; 1386 } 1387 1388 static inline void netdev_for_each_tx_queue(struct net_device *dev, 1389 void (*f)(struct net_device *, 1390 struct netdev_queue *, 1391 void *), 1392 void *arg) 1393 { 1394 unsigned int i; 1395 1396 for (i = 0; i < dev->num_tx_queues; i++) 1397 f(dev, &dev->_tx[i], arg); 1398 } 1399 1400 /* 1401 * Net namespace inlines 1402 */ 1403 static inline 1404 struct net *dev_net(const struct net_device *dev) 1405 { 1406 return read_pnet(&dev->nd_net); 1407 } 1408 1409 static inline 1410 void dev_net_set(struct net_device *dev, struct net *net) 1411 { 1412 #ifdef CONFIG_NET_NS 1413 release_net(dev->nd_net); 1414 dev->nd_net = hold_net(net); 1415 #endif 1416 } 1417 1418 static inline bool netdev_uses_dsa_tags(struct net_device *dev) 1419 { 1420 #ifdef CONFIG_NET_DSA_TAG_DSA 1421 if (dev->dsa_ptr != NULL) 1422 return dsa_uses_dsa_tags(dev->dsa_ptr); 1423 #endif 1424 1425 return 0; 1426 } 1427 1428 static inline bool netdev_uses_trailer_tags(struct net_device *dev) 1429 { 1430 #ifdef CONFIG_NET_DSA_TAG_TRAILER 1431 if (dev->dsa_ptr != NULL) 1432 return dsa_uses_trailer_tags(dev->dsa_ptr); 1433 #endif 1434 1435 return 0; 1436 } 1437 1438 /** 1439 * netdev_priv - access network device private data 1440 * @dev: network device 1441 * 1442 * Get network device private data 1443 */ 1444 static inline void *netdev_priv(const struct net_device *dev) 1445 { 1446 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 1447 } 1448 1449 /* Set the sysfs physical device reference for the network logical device 1450 * if set prior to registration will cause a symlink during initialization. 1451 */ 1452 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 1453 1454 /* Set the sysfs device type for the network logical device to allow 1455 * fin grained indentification of different network device types. For 1456 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc. 1457 */ 1458 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 1459 1460 /** 1461 * netif_napi_add - initialize a napi context 1462 * @dev: network device 1463 * @napi: napi context 1464 * @poll: polling function 1465 * @weight: default weight 1466 * 1467 * netif_napi_add() must be used to initialize a napi context prior to calling 1468 * *any* of the other napi related functions. 1469 */ 1470 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 1471 int (*poll)(struct napi_struct *, int), int weight); 1472 1473 /** 1474 * netif_napi_del - remove a napi context 1475 * @napi: napi context 1476 * 1477 * netif_napi_del() removes a napi context from the network device napi list 1478 */ 1479 void netif_napi_del(struct napi_struct *napi); 1480 1481 struct napi_gro_cb { 1482 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 1483 void *frag0; 1484 1485 /* Length of frag0. */ 1486 unsigned int frag0_len; 1487 1488 /* This indicates where we are processing relative to skb->data. */ 1489 int data_offset; 1490 1491 /* This is non-zero if the packet may be of the same flow. */ 1492 int same_flow; 1493 1494 /* This is non-zero if the packet cannot be merged with the new skb. */ 1495 int flush; 1496 1497 /* Number of segments aggregated. */ 1498 int count; 1499 1500 /* Free the skb? */ 1501 int free; 1502 #define NAPI_GRO_FREE 1 1503 #define NAPI_GRO_FREE_STOLEN_HEAD 2 1504 }; 1505 1506 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 1507 1508 struct packet_type { 1509 __be16 type; /* This is really htons(ether_type). */ 1510 struct net_device *dev; /* NULL is wildcarded here */ 1511 int (*func) (struct sk_buff *, 1512 struct net_device *, 1513 struct packet_type *, 1514 struct net_device *); 1515 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 1516 netdev_features_t features); 1517 int (*gso_send_check)(struct sk_buff *skb); 1518 struct sk_buff **(*gro_receive)(struct sk_buff **head, 1519 struct sk_buff *skb); 1520 int (*gro_complete)(struct sk_buff *skb); 1521 void *af_packet_priv; 1522 struct list_head list; 1523 }; 1524 1525 #include <linux/notifier.h> 1526 1527 /* netdevice notifier chain. Please remember to update the rtnetlink 1528 * notification exclusion list in rtnetlink_event() when adding new 1529 * types. 1530 */ 1531 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 1532 #define NETDEV_DOWN 0x0002 1533 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 1534 detected a hardware crash and restarted 1535 - we can use this eg to kick tcp sessions 1536 once done */ 1537 #define NETDEV_CHANGE 0x0004 /* Notify device state change */ 1538 #define NETDEV_REGISTER 0x0005 1539 #define NETDEV_UNREGISTER 0x0006 1540 #define NETDEV_CHANGEMTU 0x0007 1541 #define NETDEV_CHANGEADDR 0x0008 1542 #define NETDEV_GOING_DOWN 0x0009 1543 #define NETDEV_CHANGENAME 0x000A 1544 #define NETDEV_FEAT_CHANGE 0x000B 1545 #define NETDEV_BONDING_FAILOVER 0x000C 1546 #define NETDEV_PRE_UP 0x000D 1547 #define NETDEV_PRE_TYPE_CHANGE 0x000E 1548 #define NETDEV_POST_TYPE_CHANGE 0x000F 1549 #define NETDEV_POST_INIT 0x0010 1550 #define NETDEV_UNREGISTER_BATCH 0x0011 1551 #define NETDEV_RELEASE 0x0012 1552 #define NETDEV_NOTIFY_PEERS 0x0013 1553 #define NETDEV_JOIN 0x0014 1554 1555 extern int register_netdevice_notifier(struct notifier_block *nb); 1556 extern int unregister_netdevice_notifier(struct notifier_block *nb); 1557 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 1558 1559 1560 extern rwlock_t dev_base_lock; /* Device list lock */ 1561 1562 1563 #define for_each_netdev(net, d) \ 1564 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 1565 #define for_each_netdev_reverse(net, d) \ 1566 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 1567 #define for_each_netdev_rcu(net, d) \ 1568 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 1569 #define for_each_netdev_safe(net, d, n) \ 1570 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 1571 #define for_each_netdev_continue(net, d) \ 1572 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 1573 #define for_each_netdev_continue_rcu(net, d) \ 1574 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 1575 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 1576 1577 static inline struct net_device *next_net_device(struct net_device *dev) 1578 { 1579 struct list_head *lh; 1580 struct net *net; 1581 1582 net = dev_net(dev); 1583 lh = dev->dev_list.next; 1584 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1585 } 1586 1587 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 1588 { 1589 struct list_head *lh; 1590 struct net *net; 1591 1592 net = dev_net(dev); 1593 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 1594 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1595 } 1596 1597 static inline struct net_device *first_net_device(struct net *net) 1598 { 1599 return list_empty(&net->dev_base_head) ? NULL : 1600 net_device_entry(net->dev_base_head.next); 1601 } 1602 1603 static inline struct net_device *first_net_device_rcu(struct net *net) 1604 { 1605 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 1606 1607 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1608 } 1609 1610 extern int netdev_boot_setup_check(struct net_device *dev); 1611 extern unsigned long netdev_boot_base(const char *prefix, int unit); 1612 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1613 const char *hwaddr); 1614 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 1615 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 1616 extern void dev_add_pack(struct packet_type *pt); 1617 extern void dev_remove_pack(struct packet_type *pt); 1618 extern void __dev_remove_pack(struct packet_type *pt); 1619 1620 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags, 1621 unsigned short mask); 1622 extern struct net_device *dev_get_by_name(struct net *net, const char *name); 1623 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 1624 extern struct net_device *__dev_get_by_name(struct net *net, const char *name); 1625 extern int dev_alloc_name(struct net_device *dev, const char *name); 1626 extern int dev_open(struct net_device *dev); 1627 extern int dev_close(struct net_device *dev); 1628 extern void dev_disable_lro(struct net_device *dev); 1629 extern int dev_queue_xmit(struct sk_buff *skb); 1630 extern int register_netdevice(struct net_device *dev); 1631 extern void unregister_netdevice_queue(struct net_device *dev, 1632 struct list_head *head); 1633 extern void unregister_netdevice_many(struct list_head *head); 1634 static inline void unregister_netdevice(struct net_device *dev) 1635 { 1636 unregister_netdevice_queue(dev, NULL); 1637 } 1638 1639 extern int netdev_refcnt_read(const struct net_device *dev); 1640 extern void free_netdev(struct net_device *dev); 1641 extern void synchronize_net(void); 1642 extern int init_dummy_netdev(struct net_device *dev); 1643 extern void netdev_resync_ops(struct net_device *dev); 1644 1645 extern struct net_device *dev_get_by_index(struct net *net, int ifindex); 1646 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex); 1647 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 1648 extern int dev_restart(struct net_device *dev); 1649 #ifdef CONFIG_NETPOLL_TRAP 1650 extern int netpoll_trap(void); 1651 #endif 1652 extern int skb_gro_receive(struct sk_buff **head, 1653 struct sk_buff *skb); 1654 extern void skb_gro_reset_offset(struct sk_buff *skb); 1655 1656 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 1657 { 1658 return NAPI_GRO_CB(skb)->data_offset; 1659 } 1660 1661 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 1662 { 1663 return skb->len - NAPI_GRO_CB(skb)->data_offset; 1664 } 1665 1666 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 1667 { 1668 NAPI_GRO_CB(skb)->data_offset += len; 1669 } 1670 1671 static inline void *skb_gro_header_fast(struct sk_buff *skb, 1672 unsigned int offset) 1673 { 1674 return NAPI_GRO_CB(skb)->frag0 + offset; 1675 } 1676 1677 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 1678 { 1679 return NAPI_GRO_CB(skb)->frag0_len < hlen; 1680 } 1681 1682 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 1683 unsigned int offset) 1684 { 1685 if (!pskb_may_pull(skb, hlen)) 1686 return NULL; 1687 1688 NAPI_GRO_CB(skb)->frag0 = NULL; 1689 NAPI_GRO_CB(skb)->frag0_len = 0; 1690 return skb->data + offset; 1691 } 1692 1693 static inline void *skb_gro_mac_header(struct sk_buff *skb) 1694 { 1695 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb); 1696 } 1697 1698 static inline void *skb_gro_network_header(struct sk_buff *skb) 1699 { 1700 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 1701 skb_network_offset(skb); 1702 } 1703 1704 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 1705 unsigned short type, 1706 const void *daddr, const void *saddr, 1707 unsigned int len) 1708 { 1709 if (!dev->header_ops || !dev->header_ops->create) 1710 return 0; 1711 1712 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 1713 } 1714 1715 static inline int dev_parse_header(const struct sk_buff *skb, 1716 unsigned char *haddr) 1717 { 1718 const struct net_device *dev = skb->dev; 1719 1720 if (!dev->header_ops || !dev->header_ops->parse) 1721 return 0; 1722 return dev->header_ops->parse(skb, haddr); 1723 } 1724 1725 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 1726 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf); 1727 static inline int unregister_gifconf(unsigned int family) 1728 { 1729 return register_gifconf(family, NULL); 1730 } 1731 1732 /* 1733 * Incoming packets are placed on per-cpu queues 1734 */ 1735 struct softnet_data { 1736 struct Qdisc *output_queue; 1737 struct Qdisc **output_queue_tailp; 1738 struct list_head poll_list; 1739 struct sk_buff *completion_queue; 1740 struct sk_buff_head process_queue; 1741 1742 /* stats */ 1743 unsigned int processed; 1744 unsigned int time_squeeze; 1745 unsigned int cpu_collision; 1746 unsigned int received_rps; 1747 1748 #ifdef CONFIG_RPS 1749 struct softnet_data *rps_ipi_list; 1750 1751 /* Elements below can be accessed between CPUs for RPS */ 1752 struct call_single_data csd ____cacheline_aligned_in_smp; 1753 struct softnet_data *rps_ipi_next; 1754 unsigned int cpu; 1755 unsigned int input_queue_head; 1756 unsigned int input_queue_tail; 1757 #endif 1758 unsigned int dropped; 1759 struct sk_buff_head input_pkt_queue; 1760 struct napi_struct backlog; 1761 }; 1762 1763 static inline void input_queue_head_incr(struct softnet_data *sd) 1764 { 1765 #ifdef CONFIG_RPS 1766 sd->input_queue_head++; 1767 #endif 1768 } 1769 1770 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 1771 unsigned int *qtail) 1772 { 1773 #ifdef CONFIG_RPS 1774 *qtail = ++sd->input_queue_tail; 1775 #endif 1776 } 1777 1778 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 1779 1780 extern void __netif_schedule(struct Qdisc *q); 1781 1782 static inline void netif_schedule_queue(struct netdev_queue *txq) 1783 { 1784 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) 1785 __netif_schedule(txq->qdisc); 1786 } 1787 1788 static inline void netif_tx_schedule_all(struct net_device *dev) 1789 { 1790 unsigned int i; 1791 1792 for (i = 0; i < dev->num_tx_queues; i++) 1793 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 1794 } 1795 1796 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 1797 { 1798 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 1799 } 1800 1801 /** 1802 * netif_start_queue - allow transmit 1803 * @dev: network device 1804 * 1805 * Allow upper layers to call the device hard_start_xmit routine. 1806 */ 1807 static inline void netif_start_queue(struct net_device *dev) 1808 { 1809 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 1810 } 1811 1812 static inline void netif_tx_start_all_queues(struct net_device *dev) 1813 { 1814 unsigned int i; 1815 1816 for (i = 0; i < dev->num_tx_queues; i++) { 1817 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1818 netif_tx_start_queue(txq); 1819 } 1820 } 1821 1822 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue) 1823 { 1824 #ifdef CONFIG_NETPOLL_TRAP 1825 if (netpoll_trap()) { 1826 netif_tx_start_queue(dev_queue); 1827 return; 1828 } 1829 #endif 1830 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) 1831 __netif_schedule(dev_queue->qdisc); 1832 } 1833 1834 /** 1835 * netif_wake_queue - restart transmit 1836 * @dev: network device 1837 * 1838 * Allow upper layers to call the device hard_start_xmit routine. 1839 * Used for flow control when transmit resources are available. 1840 */ 1841 static inline void netif_wake_queue(struct net_device *dev) 1842 { 1843 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 1844 } 1845 1846 static inline void netif_tx_wake_all_queues(struct net_device *dev) 1847 { 1848 unsigned int i; 1849 1850 for (i = 0; i < dev->num_tx_queues; i++) { 1851 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1852 netif_tx_wake_queue(txq); 1853 } 1854 } 1855 1856 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 1857 { 1858 if (WARN_ON(!dev_queue)) { 1859 pr_info("netif_stop_queue() cannot be called before register_netdev()\n"); 1860 return; 1861 } 1862 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 1863 } 1864 1865 /** 1866 * netif_stop_queue - stop transmitted packets 1867 * @dev: network device 1868 * 1869 * Stop upper layers calling the device hard_start_xmit routine. 1870 * Used for flow control when transmit resources are unavailable. 1871 */ 1872 static inline void netif_stop_queue(struct net_device *dev) 1873 { 1874 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 1875 } 1876 1877 static inline void netif_tx_stop_all_queues(struct net_device *dev) 1878 { 1879 unsigned int i; 1880 1881 for (i = 0; i < dev->num_tx_queues; i++) { 1882 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1883 netif_tx_stop_queue(txq); 1884 } 1885 } 1886 1887 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 1888 { 1889 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 1890 } 1891 1892 /** 1893 * netif_queue_stopped - test if transmit queue is flowblocked 1894 * @dev: network device 1895 * 1896 * Test if transmit queue on device is currently unable to send. 1897 */ 1898 static inline bool netif_queue_stopped(const struct net_device *dev) 1899 { 1900 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 1901 } 1902 1903 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 1904 { 1905 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 1906 } 1907 1908 static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 1909 { 1910 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 1911 } 1912 1913 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 1914 unsigned int bytes) 1915 { 1916 #ifdef CONFIG_BQL 1917 dql_queued(&dev_queue->dql, bytes); 1918 1919 if (likely(dql_avail(&dev_queue->dql) >= 0)) 1920 return; 1921 1922 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 1923 1924 /* 1925 * The XOFF flag must be set before checking the dql_avail below, 1926 * because in netdev_tx_completed_queue we update the dql_completed 1927 * before checking the XOFF flag. 1928 */ 1929 smp_mb(); 1930 1931 /* check again in case another CPU has just made room avail */ 1932 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 1933 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 1934 #endif 1935 } 1936 1937 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 1938 { 1939 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 1940 } 1941 1942 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 1943 unsigned int pkts, unsigned int bytes) 1944 { 1945 #ifdef CONFIG_BQL 1946 if (unlikely(!bytes)) 1947 return; 1948 1949 dql_completed(&dev_queue->dql, bytes); 1950 1951 /* 1952 * Without the memory barrier there is a small possiblity that 1953 * netdev_tx_sent_queue will miss the update and cause the queue to 1954 * be stopped forever 1955 */ 1956 smp_mb(); 1957 1958 if (dql_avail(&dev_queue->dql) < 0) 1959 return; 1960 1961 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 1962 netif_schedule_queue(dev_queue); 1963 #endif 1964 } 1965 1966 static inline void netdev_completed_queue(struct net_device *dev, 1967 unsigned int pkts, unsigned int bytes) 1968 { 1969 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 1970 } 1971 1972 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 1973 { 1974 #ifdef CONFIG_BQL 1975 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 1976 dql_reset(&q->dql); 1977 #endif 1978 } 1979 1980 static inline void netdev_reset_queue(struct net_device *dev_queue) 1981 { 1982 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 1983 } 1984 1985 /** 1986 * netif_running - test if up 1987 * @dev: network device 1988 * 1989 * Test if the device has been brought up. 1990 */ 1991 static inline bool netif_running(const struct net_device *dev) 1992 { 1993 return test_bit(__LINK_STATE_START, &dev->state); 1994 } 1995 1996 /* 1997 * Routines to manage the subqueues on a device. We only need start 1998 * stop, and a check if it's stopped. All other device management is 1999 * done at the overall netdevice level. 2000 * Also test the device if we're multiqueue. 2001 */ 2002 2003 /** 2004 * netif_start_subqueue - allow sending packets on subqueue 2005 * @dev: network device 2006 * @queue_index: sub queue index 2007 * 2008 * Start individual transmit queue of a device with multiple transmit queues. 2009 */ 2010 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 2011 { 2012 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2013 2014 netif_tx_start_queue(txq); 2015 } 2016 2017 /** 2018 * netif_stop_subqueue - stop sending packets on subqueue 2019 * @dev: network device 2020 * @queue_index: sub queue index 2021 * 2022 * Stop individual transmit queue of a device with multiple transmit queues. 2023 */ 2024 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 2025 { 2026 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2027 #ifdef CONFIG_NETPOLL_TRAP 2028 if (netpoll_trap()) 2029 return; 2030 #endif 2031 netif_tx_stop_queue(txq); 2032 } 2033 2034 /** 2035 * netif_subqueue_stopped - test status of subqueue 2036 * @dev: network device 2037 * @queue_index: sub queue index 2038 * 2039 * Check individual transmit queue of a device with multiple transmit queues. 2040 */ 2041 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 2042 u16 queue_index) 2043 { 2044 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2045 2046 return netif_tx_queue_stopped(txq); 2047 } 2048 2049 static inline bool netif_subqueue_stopped(const struct net_device *dev, 2050 struct sk_buff *skb) 2051 { 2052 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 2053 } 2054 2055 /** 2056 * netif_wake_subqueue - allow sending packets on subqueue 2057 * @dev: network device 2058 * @queue_index: sub queue index 2059 * 2060 * Resume individual transmit queue of a device with multiple transmit queues. 2061 */ 2062 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2063 { 2064 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2065 #ifdef CONFIG_NETPOLL_TRAP 2066 if (netpoll_trap()) 2067 return; 2068 #endif 2069 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) 2070 __netif_schedule(txq->qdisc); 2071 } 2072 2073 /* 2074 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 2075 * as a distribution range limit for the returned value. 2076 */ 2077 static inline u16 skb_tx_hash(const struct net_device *dev, 2078 const struct sk_buff *skb) 2079 { 2080 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 2081 } 2082 2083 /** 2084 * netif_is_multiqueue - test if device has multiple transmit queues 2085 * @dev: network device 2086 * 2087 * Check if device has multiple transmit queues 2088 */ 2089 static inline bool netif_is_multiqueue(const struct net_device *dev) 2090 { 2091 return dev->num_tx_queues > 1; 2092 } 2093 2094 extern int netif_set_real_num_tx_queues(struct net_device *dev, 2095 unsigned int txq); 2096 2097 #ifdef CONFIG_RPS 2098 extern int netif_set_real_num_rx_queues(struct net_device *dev, 2099 unsigned int rxq); 2100 #else 2101 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 2102 unsigned int rxq) 2103 { 2104 return 0; 2105 } 2106 #endif 2107 2108 static inline int netif_copy_real_num_queues(struct net_device *to_dev, 2109 const struct net_device *from_dev) 2110 { 2111 netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues); 2112 #ifdef CONFIG_RPS 2113 return netif_set_real_num_rx_queues(to_dev, 2114 from_dev->real_num_rx_queues); 2115 #else 2116 return 0; 2117 #endif 2118 } 2119 2120 /* Use this variant when it is known for sure that it 2121 * is executing from hardware interrupt context or with hardware interrupts 2122 * disabled. 2123 */ 2124 extern void dev_kfree_skb_irq(struct sk_buff *skb); 2125 2126 /* Use this variant in places where it could be invoked 2127 * from either hardware interrupt or other context, with hardware interrupts 2128 * either disabled or enabled. 2129 */ 2130 extern void dev_kfree_skb_any(struct sk_buff *skb); 2131 2132 extern int netif_rx(struct sk_buff *skb); 2133 extern int netif_rx_ni(struct sk_buff *skb); 2134 extern int netif_receive_skb(struct sk_buff *skb); 2135 extern gro_result_t dev_gro_receive(struct napi_struct *napi, 2136 struct sk_buff *skb); 2137 extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb); 2138 extern gro_result_t napi_gro_receive(struct napi_struct *napi, 2139 struct sk_buff *skb); 2140 extern void napi_gro_flush(struct napi_struct *napi); 2141 extern struct sk_buff * napi_get_frags(struct napi_struct *napi); 2142 extern gro_result_t napi_frags_finish(struct napi_struct *napi, 2143 struct sk_buff *skb, 2144 gro_result_t ret); 2145 extern gro_result_t napi_gro_frags(struct napi_struct *napi); 2146 2147 static inline void napi_free_frags(struct napi_struct *napi) 2148 { 2149 kfree_skb(napi->skb); 2150 napi->skb = NULL; 2151 } 2152 2153 extern int netdev_rx_handler_register(struct net_device *dev, 2154 rx_handler_func_t *rx_handler, 2155 void *rx_handler_data); 2156 extern void netdev_rx_handler_unregister(struct net_device *dev); 2157 2158 extern bool dev_valid_name(const char *name); 2159 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 2160 extern int dev_ethtool(struct net *net, struct ifreq *); 2161 extern unsigned int dev_get_flags(const struct net_device *); 2162 extern int __dev_change_flags(struct net_device *, unsigned int flags); 2163 extern int dev_change_flags(struct net_device *, unsigned int); 2164 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags); 2165 extern int dev_change_name(struct net_device *, const char *); 2166 extern int dev_set_alias(struct net_device *, const char *, size_t); 2167 extern int dev_change_net_namespace(struct net_device *, 2168 struct net *, const char *); 2169 extern int dev_set_mtu(struct net_device *, int); 2170 extern void dev_set_group(struct net_device *, int); 2171 extern int dev_set_mac_address(struct net_device *, 2172 struct sockaddr *); 2173 extern int dev_hard_start_xmit(struct sk_buff *skb, 2174 struct net_device *dev, 2175 struct netdev_queue *txq); 2176 extern int dev_forward_skb(struct net_device *dev, 2177 struct sk_buff *skb); 2178 2179 extern int netdev_budget; 2180 2181 /* Called by rtnetlink.c:rtnl_unlock() */ 2182 extern void netdev_run_todo(void); 2183 2184 /** 2185 * dev_put - release reference to device 2186 * @dev: network device 2187 * 2188 * Release reference to device to allow it to be freed. 2189 */ 2190 static inline void dev_put(struct net_device *dev) 2191 { 2192 this_cpu_dec(*dev->pcpu_refcnt); 2193 } 2194 2195 /** 2196 * dev_hold - get reference to device 2197 * @dev: network device 2198 * 2199 * Hold reference to device to keep it from being freed. 2200 */ 2201 static inline void dev_hold(struct net_device *dev) 2202 { 2203 this_cpu_inc(*dev->pcpu_refcnt); 2204 } 2205 2206 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 2207 * and _off may be called from IRQ context, but it is caller 2208 * who is responsible for serialization of these calls. 2209 * 2210 * The name carrier is inappropriate, these functions should really be 2211 * called netif_lowerlayer_*() because they represent the state of any 2212 * kind of lower layer not just hardware media. 2213 */ 2214 2215 extern void linkwatch_fire_event(struct net_device *dev); 2216 extern void linkwatch_forget_dev(struct net_device *dev); 2217 2218 /** 2219 * netif_carrier_ok - test if carrier present 2220 * @dev: network device 2221 * 2222 * Check if carrier is present on device 2223 */ 2224 static inline bool netif_carrier_ok(const struct net_device *dev) 2225 { 2226 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 2227 } 2228 2229 extern unsigned long dev_trans_start(struct net_device *dev); 2230 2231 extern void __netdev_watchdog_up(struct net_device *dev); 2232 2233 extern void netif_carrier_on(struct net_device *dev); 2234 2235 extern void netif_carrier_off(struct net_device *dev); 2236 2237 extern void netif_notify_peers(struct net_device *dev); 2238 2239 /** 2240 * netif_dormant_on - mark device as dormant. 2241 * @dev: network device 2242 * 2243 * Mark device as dormant (as per RFC2863). 2244 * 2245 * The dormant state indicates that the relevant interface is not 2246 * actually in a condition to pass packets (i.e., it is not 'up') but is 2247 * in a "pending" state, waiting for some external event. For "on- 2248 * demand" interfaces, this new state identifies the situation where the 2249 * interface is waiting for events to place it in the up state. 2250 * 2251 */ 2252 static inline void netif_dormant_on(struct net_device *dev) 2253 { 2254 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 2255 linkwatch_fire_event(dev); 2256 } 2257 2258 /** 2259 * netif_dormant_off - set device as not dormant. 2260 * @dev: network device 2261 * 2262 * Device is not in dormant state. 2263 */ 2264 static inline void netif_dormant_off(struct net_device *dev) 2265 { 2266 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 2267 linkwatch_fire_event(dev); 2268 } 2269 2270 /** 2271 * netif_dormant - test if carrier present 2272 * @dev: network device 2273 * 2274 * Check if carrier is present on device 2275 */ 2276 static inline bool netif_dormant(const struct net_device *dev) 2277 { 2278 return test_bit(__LINK_STATE_DORMANT, &dev->state); 2279 } 2280 2281 2282 /** 2283 * netif_oper_up - test if device is operational 2284 * @dev: network device 2285 * 2286 * Check if carrier is operational 2287 */ 2288 static inline bool netif_oper_up(const struct net_device *dev) 2289 { 2290 return (dev->operstate == IF_OPER_UP || 2291 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 2292 } 2293 2294 /** 2295 * netif_device_present - is device available or removed 2296 * @dev: network device 2297 * 2298 * Check if device has not been removed from system. 2299 */ 2300 static inline bool netif_device_present(struct net_device *dev) 2301 { 2302 return test_bit(__LINK_STATE_PRESENT, &dev->state); 2303 } 2304 2305 extern void netif_device_detach(struct net_device *dev); 2306 2307 extern void netif_device_attach(struct net_device *dev); 2308 2309 /* 2310 * Network interface message level settings 2311 */ 2312 2313 enum { 2314 NETIF_MSG_DRV = 0x0001, 2315 NETIF_MSG_PROBE = 0x0002, 2316 NETIF_MSG_LINK = 0x0004, 2317 NETIF_MSG_TIMER = 0x0008, 2318 NETIF_MSG_IFDOWN = 0x0010, 2319 NETIF_MSG_IFUP = 0x0020, 2320 NETIF_MSG_RX_ERR = 0x0040, 2321 NETIF_MSG_TX_ERR = 0x0080, 2322 NETIF_MSG_TX_QUEUED = 0x0100, 2323 NETIF_MSG_INTR = 0x0200, 2324 NETIF_MSG_TX_DONE = 0x0400, 2325 NETIF_MSG_RX_STATUS = 0x0800, 2326 NETIF_MSG_PKTDATA = 0x1000, 2327 NETIF_MSG_HW = 0x2000, 2328 NETIF_MSG_WOL = 0x4000, 2329 }; 2330 2331 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 2332 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 2333 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 2334 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 2335 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 2336 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 2337 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 2338 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 2339 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 2340 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 2341 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 2342 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 2343 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 2344 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 2345 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 2346 2347 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 2348 { 2349 /* use default */ 2350 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 2351 return default_msg_enable_bits; 2352 if (debug_value == 0) /* no output */ 2353 return 0; 2354 /* set low N bits */ 2355 return (1 << debug_value) - 1; 2356 } 2357 2358 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 2359 { 2360 spin_lock(&txq->_xmit_lock); 2361 txq->xmit_lock_owner = cpu; 2362 } 2363 2364 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 2365 { 2366 spin_lock_bh(&txq->_xmit_lock); 2367 txq->xmit_lock_owner = smp_processor_id(); 2368 } 2369 2370 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 2371 { 2372 bool ok = spin_trylock(&txq->_xmit_lock); 2373 if (likely(ok)) 2374 txq->xmit_lock_owner = smp_processor_id(); 2375 return ok; 2376 } 2377 2378 static inline void __netif_tx_unlock(struct netdev_queue *txq) 2379 { 2380 txq->xmit_lock_owner = -1; 2381 spin_unlock(&txq->_xmit_lock); 2382 } 2383 2384 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 2385 { 2386 txq->xmit_lock_owner = -1; 2387 spin_unlock_bh(&txq->_xmit_lock); 2388 } 2389 2390 static inline void txq_trans_update(struct netdev_queue *txq) 2391 { 2392 if (txq->xmit_lock_owner != -1) 2393 txq->trans_start = jiffies; 2394 } 2395 2396 /** 2397 * netif_tx_lock - grab network device transmit lock 2398 * @dev: network device 2399 * 2400 * Get network device transmit lock 2401 */ 2402 static inline void netif_tx_lock(struct net_device *dev) 2403 { 2404 unsigned int i; 2405 int cpu; 2406 2407 spin_lock(&dev->tx_global_lock); 2408 cpu = smp_processor_id(); 2409 for (i = 0; i < dev->num_tx_queues; i++) { 2410 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2411 2412 /* We are the only thread of execution doing a 2413 * freeze, but we have to grab the _xmit_lock in 2414 * order to synchronize with threads which are in 2415 * the ->hard_start_xmit() handler and already 2416 * checked the frozen bit. 2417 */ 2418 __netif_tx_lock(txq, cpu); 2419 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 2420 __netif_tx_unlock(txq); 2421 } 2422 } 2423 2424 static inline void netif_tx_lock_bh(struct net_device *dev) 2425 { 2426 local_bh_disable(); 2427 netif_tx_lock(dev); 2428 } 2429 2430 static inline void netif_tx_unlock(struct net_device *dev) 2431 { 2432 unsigned int i; 2433 2434 for (i = 0; i < dev->num_tx_queues; i++) { 2435 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2436 2437 /* No need to grab the _xmit_lock here. If the 2438 * queue is not stopped for another reason, we 2439 * force a schedule. 2440 */ 2441 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 2442 netif_schedule_queue(txq); 2443 } 2444 spin_unlock(&dev->tx_global_lock); 2445 } 2446 2447 static inline void netif_tx_unlock_bh(struct net_device *dev) 2448 { 2449 netif_tx_unlock(dev); 2450 local_bh_enable(); 2451 } 2452 2453 #define HARD_TX_LOCK(dev, txq, cpu) { \ 2454 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2455 __netif_tx_lock(txq, cpu); \ 2456 } \ 2457 } 2458 2459 #define HARD_TX_UNLOCK(dev, txq) { \ 2460 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2461 __netif_tx_unlock(txq); \ 2462 } \ 2463 } 2464 2465 static inline void netif_tx_disable(struct net_device *dev) 2466 { 2467 unsigned int i; 2468 int cpu; 2469 2470 local_bh_disable(); 2471 cpu = smp_processor_id(); 2472 for (i = 0; i < dev->num_tx_queues; i++) { 2473 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2474 2475 __netif_tx_lock(txq, cpu); 2476 netif_tx_stop_queue(txq); 2477 __netif_tx_unlock(txq); 2478 } 2479 local_bh_enable(); 2480 } 2481 2482 static inline void netif_addr_lock(struct net_device *dev) 2483 { 2484 spin_lock(&dev->addr_list_lock); 2485 } 2486 2487 static inline void netif_addr_lock_nested(struct net_device *dev) 2488 { 2489 spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING); 2490 } 2491 2492 static inline void netif_addr_lock_bh(struct net_device *dev) 2493 { 2494 spin_lock_bh(&dev->addr_list_lock); 2495 } 2496 2497 static inline void netif_addr_unlock(struct net_device *dev) 2498 { 2499 spin_unlock(&dev->addr_list_lock); 2500 } 2501 2502 static inline void netif_addr_unlock_bh(struct net_device *dev) 2503 { 2504 spin_unlock_bh(&dev->addr_list_lock); 2505 } 2506 2507 /* 2508 * dev_addrs walker. Should be used only for read access. Call with 2509 * rcu_read_lock held. 2510 */ 2511 #define for_each_dev_addr(dev, ha) \ 2512 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 2513 2514 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 2515 2516 extern void ether_setup(struct net_device *dev); 2517 2518 /* Support for loadable net-drivers */ 2519 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 2520 void (*setup)(struct net_device *), 2521 unsigned int txqs, unsigned int rxqs); 2522 #define alloc_netdev(sizeof_priv, name, setup) \ 2523 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1) 2524 2525 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \ 2526 alloc_netdev_mqs(sizeof_priv, name, setup, count, count) 2527 2528 extern int register_netdev(struct net_device *dev); 2529 extern void unregister_netdev(struct net_device *dev); 2530 2531 /* General hardware address lists handling functions */ 2532 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list, 2533 struct netdev_hw_addr_list *from_list, 2534 int addr_len, unsigned char addr_type); 2535 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list, 2536 struct netdev_hw_addr_list *from_list, 2537 int addr_len, unsigned char addr_type); 2538 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 2539 struct netdev_hw_addr_list *from_list, 2540 int addr_len); 2541 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 2542 struct netdev_hw_addr_list *from_list, 2543 int addr_len); 2544 extern void __hw_addr_flush(struct netdev_hw_addr_list *list); 2545 extern void __hw_addr_init(struct netdev_hw_addr_list *list); 2546 2547 /* Functions used for device addresses handling */ 2548 extern int dev_addr_add(struct net_device *dev, unsigned char *addr, 2549 unsigned char addr_type); 2550 extern int dev_addr_del(struct net_device *dev, unsigned char *addr, 2551 unsigned char addr_type); 2552 extern int dev_addr_add_multiple(struct net_device *to_dev, 2553 struct net_device *from_dev, 2554 unsigned char addr_type); 2555 extern int dev_addr_del_multiple(struct net_device *to_dev, 2556 struct net_device *from_dev, 2557 unsigned char addr_type); 2558 extern void dev_addr_flush(struct net_device *dev); 2559 extern int dev_addr_init(struct net_device *dev); 2560 2561 /* Functions used for unicast addresses handling */ 2562 extern int dev_uc_add(struct net_device *dev, unsigned char *addr); 2563 extern int dev_uc_add_excl(struct net_device *dev, unsigned char *addr); 2564 extern int dev_uc_del(struct net_device *dev, unsigned char *addr); 2565 extern int dev_uc_sync(struct net_device *to, struct net_device *from); 2566 extern void dev_uc_unsync(struct net_device *to, struct net_device *from); 2567 extern void dev_uc_flush(struct net_device *dev); 2568 extern void dev_uc_init(struct net_device *dev); 2569 2570 /* Functions used for multicast addresses handling */ 2571 extern int dev_mc_add(struct net_device *dev, unsigned char *addr); 2572 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr); 2573 extern int dev_mc_add_excl(struct net_device *dev, unsigned char *addr); 2574 extern int dev_mc_del(struct net_device *dev, unsigned char *addr); 2575 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr); 2576 extern int dev_mc_sync(struct net_device *to, struct net_device *from); 2577 extern void dev_mc_unsync(struct net_device *to, struct net_device *from); 2578 extern void dev_mc_flush(struct net_device *dev); 2579 extern void dev_mc_init(struct net_device *dev); 2580 2581 /* Functions used for secondary unicast and multicast support */ 2582 extern void dev_set_rx_mode(struct net_device *dev); 2583 extern void __dev_set_rx_mode(struct net_device *dev); 2584 extern int dev_set_promiscuity(struct net_device *dev, int inc); 2585 extern int dev_set_allmulti(struct net_device *dev, int inc); 2586 extern void netdev_state_change(struct net_device *dev); 2587 extern int netdev_bonding_change(struct net_device *dev, 2588 unsigned long event); 2589 extern void netdev_features_change(struct net_device *dev); 2590 /* Load a device via the kmod */ 2591 extern void dev_load(struct net *net, const char *name); 2592 extern void dev_mcast_init(void); 2593 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 2594 struct rtnl_link_stats64 *storage); 2595 extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 2596 const struct net_device_stats *netdev_stats); 2597 2598 extern int netdev_max_backlog; 2599 extern int netdev_tstamp_prequeue; 2600 extern int weight_p; 2601 extern int bpf_jit_enable; 2602 extern int netdev_set_master(struct net_device *dev, struct net_device *master); 2603 extern int netdev_set_bond_master(struct net_device *dev, 2604 struct net_device *master); 2605 extern int skb_checksum_help(struct sk_buff *skb); 2606 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, 2607 netdev_features_t features); 2608 #ifdef CONFIG_BUG 2609 extern void netdev_rx_csum_fault(struct net_device *dev); 2610 #else 2611 static inline void netdev_rx_csum_fault(struct net_device *dev) 2612 { 2613 } 2614 #endif 2615 /* rx skb timestamps */ 2616 extern void net_enable_timestamp(void); 2617 extern void net_disable_timestamp(void); 2618 2619 #ifdef CONFIG_PROC_FS 2620 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos); 2621 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos); 2622 extern void dev_seq_stop(struct seq_file *seq, void *v); 2623 #endif 2624 2625 extern int netdev_class_create_file(struct class_attribute *class_attr); 2626 extern void netdev_class_remove_file(struct class_attribute *class_attr); 2627 2628 extern struct kobj_ns_type_operations net_ns_type_operations; 2629 2630 extern const char *netdev_drivername(const struct net_device *dev); 2631 2632 extern void linkwatch_run_queue(void); 2633 2634 static inline netdev_features_t netdev_get_wanted_features( 2635 struct net_device *dev) 2636 { 2637 return (dev->features & ~dev->hw_features) | dev->wanted_features; 2638 } 2639 netdev_features_t netdev_increment_features(netdev_features_t all, 2640 netdev_features_t one, netdev_features_t mask); 2641 int __netdev_update_features(struct net_device *dev); 2642 void netdev_update_features(struct net_device *dev); 2643 void netdev_change_features(struct net_device *dev); 2644 2645 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 2646 struct net_device *dev); 2647 2648 netdev_features_t netif_skb_features(struct sk_buff *skb); 2649 2650 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 2651 { 2652 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT; 2653 2654 /* check flags correspondence */ 2655 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 2656 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 2657 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 2658 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 2659 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 2660 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 2661 2662 return (features & feature) == feature; 2663 } 2664 2665 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 2666 { 2667 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 2668 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 2669 } 2670 2671 static inline bool netif_needs_gso(struct sk_buff *skb, 2672 netdev_features_t features) 2673 { 2674 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 2675 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 2676 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 2677 } 2678 2679 static inline void netif_set_gso_max_size(struct net_device *dev, 2680 unsigned int size) 2681 { 2682 dev->gso_max_size = size; 2683 } 2684 2685 static inline bool netif_is_bond_slave(struct net_device *dev) 2686 { 2687 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 2688 } 2689 2690 static inline bool netif_supports_nofcs(struct net_device *dev) 2691 { 2692 return dev->priv_flags & IFF_SUPP_NOFCS; 2693 } 2694 2695 extern struct pernet_operations __net_initdata loopback_net_ops; 2696 2697 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 2698 2699 /* netdev_printk helpers, similar to dev_printk */ 2700 2701 static inline const char *netdev_name(const struct net_device *dev) 2702 { 2703 if (dev->reg_state != NETREG_REGISTERED) 2704 return "(unregistered net_device)"; 2705 return dev->name; 2706 } 2707 2708 extern int __netdev_printk(const char *level, const struct net_device *dev, 2709 struct va_format *vaf); 2710 2711 extern __printf(3, 4) 2712 int netdev_printk(const char *level, const struct net_device *dev, 2713 const char *format, ...); 2714 extern __printf(2, 3) 2715 int netdev_emerg(const struct net_device *dev, const char *format, ...); 2716 extern __printf(2, 3) 2717 int netdev_alert(const struct net_device *dev, const char *format, ...); 2718 extern __printf(2, 3) 2719 int netdev_crit(const struct net_device *dev, const char *format, ...); 2720 extern __printf(2, 3) 2721 int netdev_err(const struct net_device *dev, const char *format, ...); 2722 extern __printf(2, 3) 2723 int netdev_warn(const struct net_device *dev, const char *format, ...); 2724 extern __printf(2, 3) 2725 int netdev_notice(const struct net_device *dev, const char *format, ...); 2726 extern __printf(2, 3) 2727 int netdev_info(const struct net_device *dev, const char *format, ...); 2728 2729 #define MODULE_ALIAS_NETDEV(device) \ 2730 MODULE_ALIAS("netdev-" device) 2731 2732 #if defined(CONFIG_DYNAMIC_DEBUG) 2733 #define netdev_dbg(__dev, format, args...) \ 2734 do { \ 2735 dynamic_netdev_dbg(__dev, format, ##args); \ 2736 } while (0) 2737 #elif defined(DEBUG) 2738 #define netdev_dbg(__dev, format, args...) \ 2739 netdev_printk(KERN_DEBUG, __dev, format, ##args) 2740 #else 2741 #define netdev_dbg(__dev, format, args...) \ 2742 ({ \ 2743 if (0) \ 2744 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 2745 0; \ 2746 }) 2747 #endif 2748 2749 #if defined(VERBOSE_DEBUG) 2750 #define netdev_vdbg netdev_dbg 2751 #else 2752 2753 #define netdev_vdbg(dev, format, args...) \ 2754 ({ \ 2755 if (0) \ 2756 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 2757 0; \ 2758 }) 2759 #endif 2760 2761 /* 2762 * netdev_WARN() acts like dev_printk(), but with the key difference 2763 * of using a WARN/WARN_ON to get the message out, including the 2764 * file/line information and a backtrace. 2765 */ 2766 #define netdev_WARN(dev, format, args...) \ 2767 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args); 2768 2769 /* netif printk helpers, similar to netdev_printk */ 2770 2771 #define netif_printk(priv, type, level, dev, fmt, args...) \ 2772 do { \ 2773 if (netif_msg_##type(priv)) \ 2774 netdev_printk(level, (dev), fmt, ##args); \ 2775 } while (0) 2776 2777 #define netif_level(level, priv, type, dev, fmt, args...) \ 2778 do { \ 2779 if (netif_msg_##type(priv)) \ 2780 netdev_##level(dev, fmt, ##args); \ 2781 } while (0) 2782 2783 #define netif_emerg(priv, type, dev, fmt, args...) \ 2784 netif_level(emerg, priv, type, dev, fmt, ##args) 2785 #define netif_alert(priv, type, dev, fmt, args...) \ 2786 netif_level(alert, priv, type, dev, fmt, ##args) 2787 #define netif_crit(priv, type, dev, fmt, args...) \ 2788 netif_level(crit, priv, type, dev, fmt, ##args) 2789 #define netif_err(priv, type, dev, fmt, args...) \ 2790 netif_level(err, priv, type, dev, fmt, ##args) 2791 #define netif_warn(priv, type, dev, fmt, args...) \ 2792 netif_level(warn, priv, type, dev, fmt, ##args) 2793 #define netif_notice(priv, type, dev, fmt, args...) \ 2794 netif_level(notice, priv, type, dev, fmt, ##args) 2795 #define netif_info(priv, type, dev, fmt, args...) \ 2796 netif_level(info, priv, type, dev, fmt, ##args) 2797 2798 #if defined(DEBUG) 2799 #define netif_dbg(priv, type, dev, format, args...) \ 2800 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 2801 #elif defined(CONFIG_DYNAMIC_DEBUG) 2802 #define netif_dbg(priv, type, netdev, format, args...) \ 2803 do { \ 2804 if (netif_msg_##type(priv)) \ 2805 dynamic_netdev_dbg(netdev, format, ##args); \ 2806 } while (0) 2807 #else 2808 #define netif_dbg(priv, type, dev, format, args...) \ 2809 ({ \ 2810 if (0) \ 2811 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2812 0; \ 2813 }) 2814 #endif 2815 2816 #if defined(VERBOSE_DEBUG) 2817 #define netif_vdbg netif_dbg 2818 #else 2819 #define netif_vdbg(priv, type, dev, format, args...) \ 2820 ({ \ 2821 if (0) \ 2822 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2823 0; \ 2824 }) 2825 #endif 2826 2827 #endif /* __KERNEL__ */ 2828 2829 #endif /* _LINUX_NETDEVICE_H */ 2830