xref: /linux-6.15/include/linux/netdevice.h (revision 4eb7ae7a)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <[email protected]>
13  *		Corey Minyard <[email protected]>
14  *		Donald J. Becker, <[email protected]>
15  *		Alan Cox, <[email protected]>
16  *		Bjorn Ekwall. <[email protected]>
17  *              Pekka Riikonen <[email protected]>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <linux/ethtool.h>
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 
52 struct netpoll_info;
53 struct device;
54 struct phy_device;
55 struct dsa_port;
56 
57 struct sfp_bus;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* 802.15.4 specific */
61 struct wpan_dev;
62 struct mpls_dev;
63 /* UDP Tunnel offloads */
64 struct udp_tunnel_info;
65 struct bpf_prog;
66 struct xdp_buff;
67 
68 void netdev_set_default_ethtool_ops(struct net_device *dev,
69 				    const struct ethtool_ops *ops);
70 
71 /* Backlog congestion levels */
72 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
73 #define NET_RX_DROP		1	/* packet dropped */
74 
75 /*
76  * Transmit return codes: transmit return codes originate from three different
77  * namespaces:
78  *
79  * - qdisc return codes
80  * - driver transmit return codes
81  * - errno values
82  *
83  * Drivers are allowed to return any one of those in their hard_start_xmit()
84  * function. Real network devices commonly used with qdiscs should only return
85  * the driver transmit return codes though - when qdiscs are used, the actual
86  * transmission happens asynchronously, so the value is not propagated to
87  * higher layers. Virtual network devices transmit synchronously; in this case
88  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
89  * others are propagated to higher layers.
90  */
91 
92 /* qdisc ->enqueue() return codes. */
93 #define NET_XMIT_SUCCESS	0x00
94 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
95 #define NET_XMIT_CN		0x02	/* congestion notification	*/
96 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
97 
98 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
99  * indicates that the device will soon be dropping packets, or already drops
100  * some packets of the same priority; prompting us to send less aggressively. */
101 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
102 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
103 
104 /* Driver transmit return codes */
105 #define NETDEV_TX_MASK		0xf0
106 
107 enum netdev_tx {
108 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
109 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
110 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
111 };
112 typedef enum netdev_tx netdev_tx_t;
113 
114 /*
115  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
116  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
117  */
118 static inline bool dev_xmit_complete(int rc)
119 {
120 	/*
121 	 * Positive cases with an skb consumed by a driver:
122 	 * - successful transmission (rc == NETDEV_TX_OK)
123 	 * - error while transmitting (rc < 0)
124 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
125 	 */
126 	if (likely(rc < NET_XMIT_MASK))
127 		return true;
128 
129 	return false;
130 }
131 
132 /*
133  *	Compute the worst-case header length according to the protocols
134  *	used.
135  */
136 
137 #if defined(CONFIG_HYPERV_NET)
138 # define LL_MAX_HEADER 128
139 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
140 # if defined(CONFIG_MAC80211_MESH)
141 #  define LL_MAX_HEADER 128
142 # else
143 #  define LL_MAX_HEADER 96
144 # endif
145 #else
146 # define LL_MAX_HEADER 32
147 #endif
148 
149 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
150     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
151 #define MAX_HEADER LL_MAX_HEADER
152 #else
153 #define MAX_HEADER (LL_MAX_HEADER + 48)
154 #endif
155 
156 /*
157  *	Old network device statistics. Fields are native words
158  *	(unsigned long) so they can be read and written atomically.
159  */
160 
161 struct net_device_stats {
162 	unsigned long	rx_packets;
163 	unsigned long	tx_packets;
164 	unsigned long	rx_bytes;
165 	unsigned long	tx_bytes;
166 	unsigned long	rx_errors;
167 	unsigned long	tx_errors;
168 	unsigned long	rx_dropped;
169 	unsigned long	tx_dropped;
170 	unsigned long	multicast;
171 	unsigned long	collisions;
172 	unsigned long	rx_length_errors;
173 	unsigned long	rx_over_errors;
174 	unsigned long	rx_crc_errors;
175 	unsigned long	rx_frame_errors;
176 	unsigned long	rx_fifo_errors;
177 	unsigned long	rx_missed_errors;
178 	unsigned long	tx_aborted_errors;
179 	unsigned long	tx_carrier_errors;
180 	unsigned long	tx_fifo_errors;
181 	unsigned long	tx_heartbeat_errors;
182 	unsigned long	tx_window_errors;
183 	unsigned long	rx_compressed;
184 	unsigned long	tx_compressed;
185 };
186 
187 
188 #include <linux/cache.h>
189 #include <linux/skbuff.h>
190 
191 #ifdef CONFIG_RPS
192 #include <linux/static_key.h>
193 extern struct static_key_false rps_needed;
194 extern struct static_key_false rfs_needed;
195 #endif
196 
197 struct neighbour;
198 struct neigh_parms;
199 struct sk_buff;
200 
201 struct netdev_hw_addr {
202 	struct list_head	list;
203 	unsigned char		addr[MAX_ADDR_LEN];
204 	unsigned char		type;
205 #define NETDEV_HW_ADDR_T_LAN		1
206 #define NETDEV_HW_ADDR_T_SAN		2
207 #define NETDEV_HW_ADDR_T_SLAVE		3
208 #define NETDEV_HW_ADDR_T_UNICAST	4
209 #define NETDEV_HW_ADDR_T_MULTICAST	5
210 	bool			global_use;
211 	int			sync_cnt;
212 	int			refcount;
213 	int			synced;
214 	struct rcu_head		rcu_head;
215 };
216 
217 struct netdev_hw_addr_list {
218 	struct list_head	list;
219 	int			count;
220 };
221 
222 #define netdev_hw_addr_list_count(l) ((l)->count)
223 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
224 #define netdev_hw_addr_list_for_each(ha, l) \
225 	list_for_each_entry(ha, &(l)->list, list)
226 
227 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
228 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
229 #define netdev_for_each_uc_addr(ha, dev) \
230 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
231 
232 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
233 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
234 #define netdev_for_each_mc_addr(ha, dev) \
235 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
236 
237 struct hh_cache {
238 	unsigned int	hh_len;
239 	seqlock_t	hh_lock;
240 
241 	/* cached hardware header; allow for machine alignment needs.        */
242 #define HH_DATA_MOD	16
243 #define HH_DATA_OFF(__len) \
244 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
245 #define HH_DATA_ALIGN(__len) \
246 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
247 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
248 };
249 
250 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
251  * Alternative is:
252  *   dev->hard_header_len ? (dev->hard_header_len +
253  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
254  *
255  * We could use other alignment values, but we must maintain the
256  * relationship HH alignment <= LL alignment.
257  */
258 #define LL_RESERVED_SPACE(dev) \
259 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
260 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
261 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 
263 struct header_ops {
264 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
265 			   unsigned short type, const void *daddr,
266 			   const void *saddr, unsigned int len);
267 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
268 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
269 	void	(*cache_update)(struct hh_cache *hh,
270 				const struct net_device *dev,
271 				const unsigned char *haddr);
272 	bool	(*validate)(const char *ll_header, unsigned int len);
273 	__be16	(*parse_protocol)(const struct sk_buff *skb);
274 };
275 
276 /* These flag bits are private to the generic network queueing
277  * layer; they may not be explicitly referenced by any other
278  * code.
279  */
280 
281 enum netdev_state_t {
282 	__LINK_STATE_START,
283 	__LINK_STATE_PRESENT,
284 	__LINK_STATE_NOCARRIER,
285 	__LINK_STATE_LINKWATCH_PENDING,
286 	__LINK_STATE_DORMANT,
287 };
288 
289 
290 /*
291  * This structure holds boot-time configured netdevice settings. They
292  * are then used in the device probing.
293  */
294 struct netdev_boot_setup {
295 	char name[IFNAMSIZ];
296 	struct ifmap map;
297 };
298 #define NETDEV_BOOT_SETUP_MAX 8
299 
300 int __init netdev_boot_setup(char *str);
301 
302 struct gro_list {
303 	struct list_head	list;
304 	int			count;
305 };
306 
307 /*
308  * size of gro hash buckets, must less than bit number of
309  * napi_struct::gro_bitmask
310  */
311 #define GRO_HASH_BUCKETS	8
312 
313 /*
314  * Structure for NAPI scheduling similar to tasklet but with weighting
315  */
316 struct napi_struct {
317 	/* The poll_list must only be managed by the entity which
318 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
319 	 * whoever atomically sets that bit can add this napi_struct
320 	 * to the per-CPU poll_list, and whoever clears that bit
321 	 * can remove from the list right before clearing the bit.
322 	 */
323 	struct list_head	poll_list;
324 
325 	unsigned long		state;
326 	int			weight;
327 	unsigned long		gro_bitmask;
328 	int			(*poll)(struct napi_struct *, int);
329 #ifdef CONFIG_NETPOLL
330 	int			poll_owner;
331 #endif
332 	struct net_device	*dev;
333 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
334 	struct sk_buff		*skb;
335 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
336 	int			rx_count; /* length of rx_list */
337 	struct hrtimer		timer;
338 	struct list_head	dev_list;
339 	struct hlist_node	napi_hash_node;
340 	unsigned int		napi_id;
341 };
342 
343 enum {
344 	NAPI_STATE_SCHED,	/* Poll is scheduled */
345 	NAPI_STATE_MISSED,	/* reschedule a napi */
346 	NAPI_STATE_DISABLE,	/* Disable pending */
347 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
348 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
349 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
350 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
351 };
352 
353 enum {
354 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
355 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
356 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
357 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
358 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
359 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
360 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
361 };
362 
363 enum gro_result {
364 	GRO_MERGED,
365 	GRO_MERGED_FREE,
366 	GRO_HELD,
367 	GRO_NORMAL,
368 	GRO_DROP,
369 	GRO_CONSUMED,
370 };
371 typedef enum gro_result gro_result_t;
372 
373 /*
374  * enum rx_handler_result - Possible return values for rx_handlers.
375  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
376  * further.
377  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
378  * case skb->dev was changed by rx_handler.
379  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
380  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
381  *
382  * rx_handlers are functions called from inside __netif_receive_skb(), to do
383  * special processing of the skb, prior to delivery to protocol handlers.
384  *
385  * Currently, a net_device can only have a single rx_handler registered. Trying
386  * to register a second rx_handler will return -EBUSY.
387  *
388  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
389  * To unregister a rx_handler on a net_device, use
390  * netdev_rx_handler_unregister().
391  *
392  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
393  * do with the skb.
394  *
395  * If the rx_handler consumed the skb in some way, it should return
396  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
397  * the skb to be delivered in some other way.
398  *
399  * If the rx_handler changed skb->dev, to divert the skb to another
400  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
401  * new device will be called if it exists.
402  *
403  * If the rx_handler decides the skb should be ignored, it should return
404  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
405  * are registered on exact device (ptype->dev == skb->dev).
406  *
407  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
408  * delivered, it should return RX_HANDLER_PASS.
409  *
410  * A device without a registered rx_handler will behave as if rx_handler
411  * returned RX_HANDLER_PASS.
412  */
413 
414 enum rx_handler_result {
415 	RX_HANDLER_CONSUMED,
416 	RX_HANDLER_ANOTHER,
417 	RX_HANDLER_EXACT,
418 	RX_HANDLER_PASS,
419 };
420 typedef enum rx_handler_result rx_handler_result_t;
421 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
422 
423 void __napi_schedule(struct napi_struct *n);
424 void __napi_schedule_irqoff(struct napi_struct *n);
425 
426 static inline bool napi_disable_pending(struct napi_struct *n)
427 {
428 	return test_bit(NAPI_STATE_DISABLE, &n->state);
429 }
430 
431 bool napi_schedule_prep(struct napi_struct *n);
432 
433 /**
434  *	napi_schedule - schedule NAPI poll
435  *	@n: NAPI context
436  *
437  * Schedule NAPI poll routine to be called if it is not already
438  * running.
439  */
440 static inline void napi_schedule(struct napi_struct *n)
441 {
442 	if (napi_schedule_prep(n))
443 		__napi_schedule(n);
444 }
445 
446 /**
447  *	napi_schedule_irqoff - schedule NAPI poll
448  *	@n: NAPI context
449  *
450  * Variant of napi_schedule(), assuming hard irqs are masked.
451  */
452 static inline void napi_schedule_irqoff(struct napi_struct *n)
453 {
454 	if (napi_schedule_prep(n))
455 		__napi_schedule_irqoff(n);
456 }
457 
458 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
459 static inline bool napi_reschedule(struct napi_struct *napi)
460 {
461 	if (napi_schedule_prep(napi)) {
462 		__napi_schedule(napi);
463 		return true;
464 	}
465 	return false;
466 }
467 
468 bool napi_complete_done(struct napi_struct *n, int work_done);
469 /**
470  *	napi_complete - NAPI processing complete
471  *	@n: NAPI context
472  *
473  * Mark NAPI processing as complete.
474  * Consider using napi_complete_done() instead.
475  * Return false if device should avoid rearming interrupts.
476  */
477 static inline bool napi_complete(struct napi_struct *n)
478 {
479 	return napi_complete_done(n, 0);
480 }
481 
482 /**
483  *	napi_hash_del - remove a NAPI from global table
484  *	@napi: NAPI context
485  *
486  * Warning: caller must observe RCU grace period
487  * before freeing memory containing @napi, if
488  * this function returns true.
489  * Note: core networking stack automatically calls it
490  * from netif_napi_del().
491  * Drivers might want to call this helper to combine all
492  * the needed RCU grace periods into a single one.
493  */
494 bool napi_hash_del(struct napi_struct *napi);
495 
496 /**
497  *	napi_disable - prevent NAPI from scheduling
498  *	@n: NAPI context
499  *
500  * Stop NAPI from being scheduled on this context.
501  * Waits till any outstanding processing completes.
502  */
503 void napi_disable(struct napi_struct *n);
504 
505 /**
506  *	napi_enable - enable NAPI scheduling
507  *	@n: NAPI context
508  *
509  * Resume NAPI from being scheduled on this context.
510  * Must be paired with napi_disable.
511  */
512 static inline void napi_enable(struct napi_struct *n)
513 {
514 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
515 	smp_mb__before_atomic();
516 	clear_bit(NAPI_STATE_SCHED, &n->state);
517 	clear_bit(NAPI_STATE_NPSVC, &n->state);
518 }
519 
520 /**
521  *	napi_synchronize - wait until NAPI is not running
522  *	@n: NAPI context
523  *
524  * Wait until NAPI is done being scheduled on this context.
525  * Waits till any outstanding processing completes but
526  * does not disable future activations.
527  */
528 static inline void napi_synchronize(const struct napi_struct *n)
529 {
530 	if (IS_ENABLED(CONFIG_SMP))
531 		while (test_bit(NAPI_STATE_SCHED, &n->state))
532 			msleep(1);
533 	else
534 		barrier();
535 }
536 
537 /**
538  *	napi_if_scheduled_mark_missed - if napi is running, set the
539  *	NAPIF_STATE_MISSED
540  *	@n: NAPI context
541  *
542  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
543  * NAPI is scheduled.
544  **/
545 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
546 {
547 	unsigned long val, new;
548 
549 	do {
550 		val = READ_ONCE(n->state);
551 		if (val & NAPIF_STATE_DISABLE)
552 			return true;
553 
554 		if (!(val & NAPIF_STATE_SCHED))
555 			return false;
556 
557 		new = val | NAPIF_STATE_MISSED;
558 	} while (cmpxchg(&n->state, val, new) != val);
559 
560 	return true;
561 }
562 
563 enum netdev_queue_state_t {
564 	__QUEUE_STATE_DRV_XOFF,
565 	__QUEUE_STATE_STACK_XOFF,
566 	__QUEUE_STATE_FROZEN,
567 };
568 
569 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
570 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
571 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
572 
573 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
574 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
575 					QUEUE_STATE_FROZEN)
576 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
577 					QUEUE_STATE_FROZEN)
578 
579 /*
580  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
581  * netif_tx_* functions below are used to manipulate this flag.  The
582  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
583  * queue independently.  The netif_xmit_*stopped functions below are called
584  * to check if the queue has been stopped by the driver or stack (either
585  * of the XOFF bits are set in the state).  Drivers should not need to call
586  * netif_xmit*stopped functions, they should only be using netif_tx_*.
587  */
588 
589 struct netdev_queue {
590 /*
591  * read-mostly part
592  */
593 	struct net_device	*dev;
594 	struct Qdisc __rcu	*qdisc;
595 	struct Qdisc		*qdisc_sleeping;
596 #ifdef CONFIG_SYSFS
597 	struct kobject		kobj;
598 #endif
599 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
600 	int			numa_node;
601 #endif
602 	unsigned long		tx_maxrate;
603 	/*
604 	 * Number of TX timeouts for this queue
605 	 * (/sys/class/net/DEV/Q/trans_timeout)
606 	 */
607 	unsigned long		trans_timeout;
608 
609 	/* Subordinate device that the queue has been assigned to */
610 	struct net_device	*sb_dev;
611 #ifdef CONFIG_XDP_SOCKETS
612 	struct xdp_umem         *umem;
613 #endif
614 /*
615  * write-mostly part
616  */
617 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
618 	int			xmit_lock_owner;
619 	/*
620 	 * Time (in jiffies) of last Tx
621 	 */
622 	unsigned long		trans_start;
623 
624 	unsigned long		state;
625 
626 #ifdef CONFIG_BQL
627 	struct dql		dql;
628 #endif
629 } ____cacheline_aligned_in_smp;
630 
631 extern int sysctl_fb_tunnels_only_for_init_net;
632 extern int sysctl_devconf_inherit_init_net;
633 
634 static inline bool net_has_fallback_tunnels(const struct net *net)
635 {
636 	return net == &init_net ||
637 	       !IS_ENABLED(CONFIG_SYSCTL) ||
638 	       !sysctl_fb_tunnels_only_for_init_net;
639 }
640 
641 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
642 {
643 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
644 	return q->numa_node;
645 #else
646 	return NUMA_NO_NODE;
647 #endif
648 }
649 
650 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
651 {
652 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
653 	q->numa_node = node;
654 #endif
655 }
656 
657 #ifdef CONFIG_RPS
658 /*
659  * This structure holds an RPS map which can be of variable length.  The
660  * map is an array of CPUs.
661  */
662 struct rps_map {
663 	unsigned int len;
664 	struct rcu_head rcu;
665 	u16 cpus[0];
666 };
667 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
668 
669 /*
670  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
671  * tail pointer for that CPU's input queue at the time of last enqueue, and
672  * a hardware filter index.
673  */
674 struct rps_dev_flow {
675 	u16 cpu;
676 	u16 filter;
677 	unsigned int last_qtail;
678 };
679 #define RPS_NO_FILTER 0xffff
680 
681 /*
682  * The rps_dev_flow_table structure contains a table of flow mappings.
683  */
684 struct rps_dev_flow_table {
685 	unsigned int mask;
686 	struct rcu_head rcu;
687 	struct rps_dev_flow flows[0];
688 };
689 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
690     ((_num) * sizeof(struct rps_dev_flow)))
691 
692 /*
693  * The rps_sock_flow_table contains mappings of flows to the last CPU
694  * on which they were processed by the application (set in recvmsg).
695  * Each entry is a 32bit value. Upper part is the high-order bits
696  * of flow hash, lower part is CPU number.
697  * rps_cpu_mask is used to partition the space, depending on number of
698  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
699  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
700  * meaning we use 32-6=26 bits for the hash.
701  */
702 struct rps_sock_flow_table {
703 	u32	mask;
704 
705 	u32	ents[0] ____cacheline_aligned_in_smp;
706 };
707 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
708 
709 #define RPS_NO_CPU 0xffff
710 
711 extern u32 rps_cpu_mask;
712 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
713 
714 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
715 					u32 hash)
716 {
717 	if (table && hash) {
718 		unsigned int index = hash & table->mask;
719 		u32 val = hash & ~rps_cpu_mask;
720 
721 		/* We only give a hint, preemption can change CPU under us */
722 		val |= raw_smp_processor_id();
723 
724 		if (table->ents[index] != val)
725 			table->ents[index] = val;
726 	}
727 }
728 
729 #ifdef CONFIG_RFS_ACCEL
730 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
731 			 u16 filter_id);
732 #endif
733 #endif /* CONFIG_RPS */
734 
735 /* This structure contains an instance of an RX queue. */
736 struct netdev_rx_queue {
737 #ifdef CONFIG_RPS
738 	struct rps_map __rcu		*rps_map;
739 	struct rps_dev_flow_table __rcu	*rps_flow_table;
740 #endif
741 	struct kobject			kobj;
742 	struct net_device		*dev;
743 	struct xdp_rxq_info		xdp_rxq;
744 #ifdef CONFIG_XDP_SOCKETS
745 	struct xdp_umem                 *umem;
746 #endif
747 } ____cacheline_aligned_in_smp;
748 
749 /*
750  * RX queue sysfs structures and functions.
751  */
752 struct rx_queue_attribute {
753 	struct attribute attr;
754 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
755 	ssize_t (*store)(struct netdev_rx_queue *queue,
756 			 const char *buf, size_t len);
757 };
758 
759 #ifdef CONFIG_XPS
760 /*
761  * This structure holds an XPS map which can be of variable length.  The
762  * map is an array of queues.
763  */
764 struct xps_map {
765 	unsigned int len;
766 	unsigned int alloc_len;
767 	struct rcu_head rcu;
768 	u16 queues[0];
769 };
770 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
771 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
772        - sizeof(struct xps_map)) / sizeof(u16))
773 
774 /*
775  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
776  */
777 struct xps_dev_maps {
778 	struct rcu_head rcu;
779 	struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */
780 };
781 
782 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
783 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
784 
785 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
786 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
787 
788 #endif /* CONFIG_XPS */
789 
790 #define TC_MAX_QUEUE	16
791 #define TC_BITMASK	15
792 /* HW offloaded queuing disciplines txq count and offset maps */
793 struct netdev_tc_txq {
794 	u16 count;
795 	u16 offset;
796 };
797 
798 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
799 /*
800  * This structure is to hold information about the device
801  * configured to run FCoE protocol stack.
802  */
803 struct netdev_fcoe_hbainfo {
804 	char	manufacturer[64];
805 	char	serial_number[64];
806 	char	hardware_version[64];
807 	char	driver_version[64];
808 	char	optionrom_version[64];
809 	char	firmware_version[64];
810 	char	model[256];
811 	char	model_description[256];
812 };
813 #endif
814 
815 #define MAX_PHYS_ITEM_ID_LEN 32
816 
817 /* This structure holds a unique identifier to identify some
818  * physical item (port for example) used by a netdevice.
819  */
820 struct netdev_phys_item_id {
821 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
822 	unsigned char id_len;
823 };
824 
825 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
826 					    struct netdev_phys_item_id *b)
827 {
828 	return a->id_len == b->id_len &&
829 	       memcmp(a->id, b->id, a->id_len) == 0;
830 }
831 
832 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
833 				       struct sk_buff *skb,
834 				       struct net_device *sb_dev);
835 
836 enum tc_setup_type {
837 	TC_SETUP_QDISC_MQPRIO,
838 	TC_SETUP_CLSU32,
839 	TC_SETUP_CLSFLOWER,
840 	TC_SETUP_CLSMATCHALL,
841 	TC_SETUP_CLSBPF,
842 	TC_SETUP_BLOCK,
843 	TC_SETUP_QDISC_CBS,
844 	TC_SETUP_QDISC_RED,
845 	TC_SETUP_QDISC_PRIO,
846 	TC_SETUP_QDISC_MQ,
847 	TC_SETUP_QDISC_ETF,
848 	TC_SETUP_ROOT_QDISC,
849 	TC_SETUP_QDISC_GRED,
850 	TC_SETUP_QDISC_TAPRIO,
851 	TC_SETUP_FT,
852 	TC_SETUP_QDISC_ETS,
853 };
854 
855 /* These structures hold the attributes of bpf state that are being passed
856  * to the netdevice through the bpf op.
857  */
858 enum bpf_netdev_command {
859 	/* Set or clear a bpf program used in the earliest stages of packet
860 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
861 	 * is responsible for calling bpf_prog_put on any old progs that are
862 	 * stored. In case of error, the callee need not release the new prog
863 	 * reference, but on success it takes ownership and must bpf_prog_put
864 	 * when it is no longer used.
865 	 */
866 	XDP_SETUP_PROG,
867 	XDP_SETUP_PROG_HW,
868 	XDP_QUERY_PROG,
869 	XDP_QUERY_PROG_HW,
870 	/* BPF program for offload callbacks, invoked at program load time. */
871 	BPF_OFFLOAD_MAP_ALLOC,
872 	BPF_OFFLOAD_MAP_FREE,
873 	XDP_SETUP_XSK_UMEM,
874 };
875 
876 struct bpf_prog_offload_ops;
877 struct netlink_ext_ack;
878 struct xdp_umem;
879 
880 struct netdev_bpf {
881 	enum bpf_netdev_command command;
882 	union {
883 		/* XDP_SETUP_PROG */
884 		struct {
885 			u32 flags;
886 			struct bpf_prog *prog;
887 			struct netlink_ext_ack *extack;
888 		};
889 		/* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
890 		struct {
891 			u32 prog_id;
892 			/* flags with which program was installed */
893 			u32 prog_flags;
894 		};
895 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
896 		struct {
897 			struct bpf_offloaded_map *offmap;
898 		};
899 		/* XDP_SETUP_XSK_UMEM */
900 		struct {
901 			struct xdp_umem *umem;
902 			u16 queue_id;
903 		} xsk;
904 	};
905 };
906 
907 /* Flags for ndo_xsk_wakeup. */
908 #define XDP_WAKEUP_RX (1 << 0)
909 #define XDP_WAKEUP_TX (1 << 1)
910 
911 #ifdef CONFIG_XFRM_OFFLOAD
912 struct xfrmdev_ops {
913 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
914 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
915 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
916 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
917 				       struct xfrm_state *x);
918 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
919 };
920 #endif
921 
922 struct dev_ifalias {
923 	struct rcu_head rcuhead;
924 	char ifalias[];
925 };
926 
927 struct devlink;
928 struct tlsdev_ops;
929 
930 struct netdev_name_node {
931 	struct hlist_node hlist;
932 	struct list_head list;
933 	struct net_device *dev;
934 	const char *name;
935 };
936 
937 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
938 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
939 
940 /*
941  * This structure defines the management hooks for network devices.
942  * The following hooks can be defined; unless noted otherwise, they are
943  * optional and can be filled with a null pointer.
944  *
945  * int (*ndo_init)(struct net_device *dev);
946  *     This function is called once when a network device is registered.
947  *     The network device can use this for any late stage initialization
948  *     or semantic validation. It can fail with an error code which will
949  *     be propagated back to register_netdev.
950  *
951  * void (*ndo_uninit)(struct net_device *dev);
952  *     This function is called when device is unregistered or when registration
953  *     fails. It is not called if init fails.
954  *
955  * int (*ndo_open)(struct net_device *dev);
956  *     This function is called when a network device transitions to the up
957  *     state.
958  *
959  * int (*ndo_stop)(struct net_device *dev);
960  *     This function is called when a network device transitions to the down
961  *     state.
962  *
963  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
964  *                               struct net_device *dev);
965  *	Called when a packet needs to be transmitted.
966  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
967  *	the queue before that can happen; it's for obsolete devices and weird
968  *	corner cases, but the stack really does a non-trivial amount
969  *	of useless work if you return NETDEV_TX_BUSY.
970  *	Required; cannot be NULL.
971  *
972  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
973  *					   struct net_device *dev
974  *					   netdev_features_t features);
975  *	Called by core transmit path to determine if device is capable of
976  *	performing offload operations on a given packet. This is to give
977  *	the device an opportunity to implement any restrictions that cannot
978  *	be otherwise expressed by feature flags. The check is called with
979  *	the set of features that the stack has calculated and it returns
980  *	those the driver believes to be appropriate.
981  *
982  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
983  *                         struct net_device *sb_dev);
984  *	Called to decide which queue to use when device supports multiple
985  *	transmit queues.
986  *
987  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
988  *	This function is called to allow device receiver to make
989  *	changes to configuration when multicast or promiscuous is enabled.
990  *
991  * void (*ndo_set_rx_mode)(struct net_device *dev);
992  *	This function is called device changes address list filtering.
993  *	If driver handles unicast address filtering, it should set
994  *	IFF_UNICAST_FLT in its priv_flags.
995  *
996  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
997  *	This function  is called when the Media Access Control address
998  *	needs to be changed. If this interface is not defined, the
999  *	MAC address can not be changed.
1000  *
1001  * int (*ndo_validate_addr)(struct net_device *dev);
1002  *	Test if Media Access Control address is valid for the device.
1003  *
1004  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1005  *	Called when a user requests an ioctl which can't be handled by
1006  *	the generic interface code. If not defined ioctls return
1007  *	not supported error code.
1008  *
1009  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1010  *	Used to set network devices bus interface parameters. This interface
1011  *	is retained for legacy reasons; new devices should use the bus
1012  *	interface (PCI) for low level management.
1013  *
1014  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1015  *	Called when a user wants to change the Maximum Transfer Unit
1016  *	of a device.
1017  *
1018  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1019  *	Callback used when the transmitter has not made any progress
1020  *	for dev->watchdog ticks.
1021  *
1022  * void (*ndo_get_stats64)(struct net_device *dev,
1023  *                         struct rtnl_link_stats64 *storage);
1024  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1025  *	Called when a user wants to get the network device usage
1026  *	statistics. Drivers must do one of the following:
1027  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1028  *	   rtnl_link_stats64 structure passed by the caller.
1029  *	2. Define @ndo_get_stats to update a net_device_stats structure
1030  *	   (which should normally be dev->stats) and return a pointer to
1031  *	   it. The structure may be changed asynchronously only if each
1032  *	   field is written atomically.
1033  *	3. Update dev->stats asynchronously and atomically, and define
1034  *	   neither operation.
1035  *
1036  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1037  *	Return true if this device supports offload stats of this attr_id.
1038  *
1039  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1040  *	void *attr_data)
1041  *	Get statistics for offload operations by attr_id. Write it into the
1042  *	attr_data pointer.
1043  *
1044  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1045  *	If device supports VLAN filtering this function is called when a
1046  *	VLAN id is registered.
1047  *
1048  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1049  *	If device supports VLAN filtering this function is called when a
1050  *	VLAN id is unregistered.
1051  *
1052  * void (*ndo_poll_controller)(struct net_device *dev);
1053  *
1054  *	SR-IOV management functions.
1055  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1056  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1057  *			  u8 qos, __be16 proto);
1058  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1059  *			  int max_tx_rate);
1060  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1061  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1062  * int (*ndo_get_vf_config)(struct net_device *dev,
1063  *			    int vf, struct ifla_vf_info *ivf);
1064  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1065  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1066  *			  struct nlattr *port[]);
1067  *
1068  *      Enable or disable the VF ability to query its RSS Redirection Table and
1069  *      Hash Key. This is needed since on some devices VF share this information
1070  *      with PF and querying it may introduce a theoretical security risk.
1071  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1072  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1073  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1074  *		       void *type_data);
1075  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1076  *	This is always called from the stack with the rtnl lock held and netif
1077  *	tx queues stopped. This allows the netdevice to perform queue
1078  *	management safely.
1079  *
1080  *	Fiber Channel over Ethernet (FCoE) offload functions.
1081  * int (*ndo_fcoe_enable)(struct net_device *dev);
1082  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1083  *	so the underlying device can perform whatever needed configuration or
1084  *	initialization to support acceleration of FCoE traffic.
1085  *
1086  * int (*ndo_fcoe_disable)(struct net_device *dev);
1087  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1088  *	so the underlying device can perform whatever needed clean-ups to
1089  *	stop supporting acceleration of FCoE traffic.
1090  *
1091  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1092  *			     struct scatterlist *sgl, unsigned int sgc);
1093  *	Called when the FCoE Initiator wants to initialize an I/O that
1094  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1095  *	perform necessary setup and returns 1 to indicate the device is set up
1096  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1097  *
1098  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1099  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1100  *	indicated by the FC exchange id 'xid', so the underlying device can
1101  *	clean up and reuse resources for later DDP requests.
1102  *
1103  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1104  *			      struct scatterlist *sgl, unsigned int sgc);
1105  *	Called when the FCoE Target wants to initialize an I/O that
1106  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1107  *	perform necessary setup and returns 1 to indicate the device is set up
1108  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1109  *
1110  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1111  *			       struct netdev_fcoe_hbainfo *hbainfo);
1112  *	Called when the FCoE Protocol stack wants information on the underlying
1113  *	device. This information is utilized by the FCoE protocol stack to
1114  *	register attributes with Fiber Channel management service as per the
1115  *	FC-GS Fabric Device Management Information(FDMI) specification.
1116  *
1117  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1118  *	Called when the underlying device wants to override default World Wide
1119  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1120  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1121  *	protocol stack to use.
1122  *
1123  *	RFS acceleration.
1124  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1125  *			    u16 rxq_index, u32 flow_id);
1126  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1127  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1128  *	Return the filter ID on success, or a negative error code.
1129  *
1130  *	Slave management functions (for bridge, bonding, etc).
1131  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1132  *	Called to make another netdev an underling.
1133  *
1134  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1135  *	Called to release previously enslaved netdev.
1136  *
1137  *      Feature/offload setting functions.
1138  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1139  *		netdev_features_t features);
1140  *	Adjusts the requested feature flags according to device-specific
1141  *	constraints, and returns the resulting flags. Must not modify
1142  *	the device state.
1143  *
1144  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1145  *	Called to update device configuration to new features. Passed
1146  *	feature set might be less than what was returned by ndo_fix_features()).
1147  *	Must return >0 or -errno if it changed dev->features itself.
1148  *
1149  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1150  *		      struct net_device *dev,
1151  *		      const unsigned char *addr, u16 vid, u16 flags,
1152  *		      struct netlink_ext_ack *extack);
1153  *	Adds an FDB entry to dev for addr.
1154  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1155  *		      struct net_device *dev,
1156  *		      const unsigned char *addr, u16 vid)
1157  *	Deletes the FDB entry from dev coresponding to addr.
1158  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1159  *		       struct net_device *dev, struct net_device *filter_dev,
1160  *		       int *idx)
1161  *	Used to add FDB entries to dump requests. Implementers should add
1162  *	entries to skb and update idx with the number of entries.
1163  *
1164  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1165  *			     u16 flags, struct netlink_ext_ack *extack)
1166  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1167  *			     struct net_device *dev, u32 filter_mask,
1168  *			     int nlflags)
1169  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1170  *			     u16 flags);
1171  *
1172  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1173  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1174  *	which do not represent real hardware may define this to allow their
1175  *	userspace components to manage their virtual carrier state. Devices
1176  *	that determine carrier state from physical hardware properties (eg
1177  *	network cables) or protocol-dependent mechanisms (eg
1178  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1179  *
1180  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1181  *			       struct netdev_phys_item_id *ppid);
1182  *	Called to get ID of physical port of this device. If driver does
1183  *	not implement this, it is assumed that the hw is not able to have
1184  *	multiple net devices on single physical port.
1185  *
1186  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1187  *				 struct netdev_phys_item_id *ppid)
1188  *	Called to get the parent ID of the physical port of this device.
1189  *
1190  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1191  *			      struct udp_tunnel_info *ti);
1192  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1193  *	address family that a UDP tunnel is listnening to. It is called only
1194  *	when a new port starts listening. The operation is protected by the
1195  *	RTNL.
1196  *
1197  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1198  *			      struct udp_tunnel_info *ti);
1199  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1200  *	address family that the UDP tunnel is not listening to anymore. The
1201  *	operation is protected by the RTNL.
1202  *
1203  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1204  *				 struct net_device *dev)
1205  *	Called by upper layer devices to accelerate switching or other
1206  *	station functionality into hardware. 'pdev is the lowerdev
1207  *	to use for the offload and 'dev' is the net device that will
1208  *	back the offload. Returns a pointer to the private structure
1209  *	the upper layer will maintain.
1210  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1211  *	Called by upper layer device to delete the station created
1212  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1213  *	the station and priv is the structure returned by the add
1214  *	operation.
1215  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1216  *			     int queue_index, u32 maxrate);
1217  *	Called when a user wants to set a max-rate limitation of specific
1218  *	TX queue.
1219  * int (*ndo_get_iflink)(const struct net_device *dev);
1220  *	Called to get the iflink value of this device.
1221  * void (*ndo_change_proto_down)(struct net_device *dev,
1222  *				 bool proto_down);
1223  *	This function is used to pass protocol port error state information
1224  *	to the switch driver. The switch driver can react to the proto_down
1225  *      by doing a phys down on the associated switch port.
1226  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1227  *	This function is used to get egress tunnel information for given skb.
1228  *	This is useful for retrieving outer tunnel header parameters while
1229  *	sampling packet.
1230  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1231  *	This function is used to specify the headroom that the skb must
1232  *	consider when allocation skb during packet reception. Setting
1233  *	appropriate rx headroom value allows avoiding skb head copy on
1234  *	forward. Setting a negative value resets the rx headroom to the
1235  *	default value.
1236  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1237  *	This function is used to set or query state related to XDP on the
1238  *	netdevice and manage BPF offload. See definition of
1239  *	enum bpf_netdev_command for details.
1240  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1241  *			u32 flags);
1242  *	This function is used to submit @n XDP packets for transmit on a
1243  *	netdevice. Returns number of frames successfully transmitted, frames
1244  *	that got dropped are freed/returned via xdp_return_frame().
1245  *	Returns negative number, means general error invoking ndo, meaning
1246  *	no frames were xmit'ed and core-caller will free all frames.
1247  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1248  *      This function is used to wake up the softirq, ksoftirqd or kthread
1249  *	responsible for sending and/or receiving packets on a specific
1250  *	queue id bound to an AF_XDP socket. The flags field specifies if
1251  *	only RX, only Tx, or both should be woken up using the flags
1252  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1253  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1254  *	Get devlink port instance associated with a given netdev.
1255  *	Called with a reference on the netdevice and devlink locks only,
1256  *	rtnl_lock is not held.
1257  */
1258 struct net_device_ops {
1259 	int			(*ndo_init)(struct net_device *dev);
1260 	void			(*ndo_uninit)(struct net_device *dev);
1261 	int			(*ndo_open)(struct net_device *dev);
1262 	int			(*ndo_stop)(struct net_device *dev);
1263 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1264 						  struct net_device *dev);
1265 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1266 						      struct net_device *dev,
1267 						      netdev_features_t features);
1268 	u16			(*ndo_select_queue)(struct net_device *dev,
1269 						    struct sk_buff *skb,
1270 						    struct net_device *sb_dev);
1271 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1272 						       int flags);
1273 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1274 	int			(*ndo_set_mac_address)(struct net_device *dev,
1275 						       void *addr);
1276 	int			(*ndo_validate_addr)(struct net_device *dev);
1277 	int			(*ndo_do_ioctl)(struct net_device *dev,
1278 					        struct ifreq *ifr, int cmd);
1279 	int			(*ndo_set_config)(struct net_device *dev,
1280 					          struct ifmap *map);
1281 	int			(*ndo_change_mtu)(struct net_device *dev,
1282 						  int new_mtu);
1283 	int			(*ndo_neigh_setup)(struct net_device *dev,
1284 						   struct neigh_parms *);
1285 	void			(*ndo_tx_timeout) (struct net_device *dev,
1286 						   unsigned int txqueue);
1287 
1288 	void			(*ndo_get_stats64)(struct net_device *dev,
1289 						   struct rtnl_link_stats64 *storage);
1290 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1291 	int			(*ndo_get_offload_stats)(int attr_id,
1292 							 const struct net_device *dev,
1293 							 void *attr_data);
1294 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1295 
1296 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1297 						       __be16 proto, u16 vid);
1298 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1299 						        __be16 proto, u16 vid);
1300 #ifdef CONFIG_NET_POLL_CONTROLLER
1301 	void                    (*ndo_poll_controller)(struct net_device *dev);
1302 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1303 						     struct netpoll_info *info);
1304 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1305 #endif
1306 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1307 						  int queue, u8 *mac);
1308 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1309 						   int queue, u16 vlan,
1310 						   u8 qos, __be16 proto);
1311 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1312 						   int vf, int min_tx_rate,
1313 						   int max_tx_rate);
1314 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1315 						       int vf, bool setting);
1316 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1317 						    int vf, bool setting);
1318 	int			(*ndo_get_vf_config)(struct net_device *dev,
1319 						     int vf,
1320 						     struct ifla_vf_info *ivf);
1321 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1322 							 int vf, int link_state);
1323 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1324 						    int vf,
1325 						    struct ifla_vf_stats
1326 						    *vf_stats);
1327 	int			(*ndo_set_vf_port)(struct net_device *dev,
1328 						   int vf,
1329 						   struct nlattr *port[]);
1330 	int			(*ndo_get_vf_port)(struct net_device *dev,
1331 						   int vf, struct sk_buff *skb);
1332 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1333 						   int vf,
1334 						   struct ifla_vf_guid *node_guid,
1335 						   struct ifla_vf_guid *port_guid);
1336 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1337 						   int vf, u64 guid,
1338 						   int guid_type);
1339 	int			(*ndo_set_vf_rss_query_en)(
1340 						   struct net_device *dev,
1341 						   int vf, bool setting);
1342 	int			(*ndo_setup_tc)(struct net_device *dev,
1343 						enum tc_setup_type type,
1344 						void *type_data);
1345 #if IS_ENABLED(CONFIG_FCOE)
1346 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1347 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1348 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1349 						      u16 xid,
1350 						      struct scatterlist *sgl,
1351 						      unsigned int sgc);
1352 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1353 						     u16 xid);
1354 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1355 						       u16 xid,
1356 						       struct scatterlist *sgl,
1357 						       unsigned int sgc);
1358 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1359 							struct netdev_fcoe_hbainfo *hbainfo);
1360 #endif
1361 
1362 #if IS_ENABLED(CONFIG_LIBFCOE)
1363 #define NETDEV_FCOE_WWNN 0
1364 #define NETDEV_FCOE_WWPN 1
1365 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1366 						    u64 *wwn, int type);
1367 #endif
1368 
1369 #ifdef CONFIG_RFS_ACCEL
1370 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1371 						     const struct sk_buff *skb,
1372 						     u16 rxq_index,
1373 						     u32 flow_id);
1374 #endif
1375 	int			(*ndo_add_slave)(struct net_device *dev,
1376 						 struct net_device *slave_dev,
1377 						 struct netlink_ext_ack *extack);
1378 	int			(*ndo_del_slave)(struct net_device *dev,
1379 						 struct net_device *slave_dev);
1380 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1381 						    netdev_features_t features);
1382 	int			(*ndo_set_features)(struct net_device *dev,
1383 						    netdev_features_t features);
1384 	int			(*ndo_neigh_construct)(struct net_device *dev,
1385 						       struct neighbour *n);
1386 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1387 						     struct neighbour *n);
1388 
1389 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1390 					       struct nlattr *tb[],
1391 					       struct net_device *dev,
1392 					       const unsigned char *addr,
1393 					       u16 vid,
1394 					       u16 flags,
1395 					       struct netlink_ext_ack *extack);
1396 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1397 					       struct nlattr *tb[],
1398 					       struct net_device *dev,
1399 					       const unsigned char *addr,
1400 					       u16 vid);
1401 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1402 						struct netlink_callback *cb,
1403 						struct net_device *dev,
1404 						struct net_device *filter_dev,
1405 						int *idx);
1406 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1407 					       struct nlattr *tb[],
1408 					       struct net_device *dev,
1409 					       const unsigned char *addr,
1410 					       u16 vid, u32 portid, u32 seq,
1411 					       struct netlink_ext_ack *extack);
1412 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1413 						      struct nlmsghdr *nlh,
1414 						      u16 flags,
1415 						      struct netlink_ext_ack *extack);
1416 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1417 						      u32 pid, u32 seq,
1418 						      struct net_device *dev,
1419 						      u32 filter_mask,
1420 						      int nlflags);
1421 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1422 						      struct nlmsghdr *nlh,
1423 						      u16 flags);
1424 	int			(*ndo_change_carrier)(struct net_device *dev,
1425 						      bool new_carrier);
1426 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1427 							struct netdev_phys_item_id *ppid);
1428 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1429 							  struct netdev_phys_item_id *ppid);
1430 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1431 							  char *name, size_t len);
1432 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1433 						      struct udp_tunnel_info *ti);
1434 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1435 						      struct udp_tunnel_info *ti);
1436 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1437 							struct net_device *dev);
1438 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1439 							void *priv);
1440 
1441 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1442 						      int queue_index,
1443 						      u32 maxrate);
1444 	int			(*ndo_get_iflink)(const struct net_device *dev);
1445 	int			(*ndo_change_proto_down)(struct net_device *dev,
1446 							 bool proto_down);
1447 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1448 						       struct sk_buff *skb);
1449 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1450 						       int needed_headroom);
1451 	int			(*ndo_bpf)(struct net_device *dev,
1452 					   struct netdev_bpf *bpf);
1453 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1454 						struct xdp_frame **xdp,
1455 						u32 flags);
1456 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1457 						  u32 queue_id, u32 flags);
1458 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1459 };
1460 
1461 /**
1462  * enum net_device_priv_flags - &struct net_device priv_flags
1463  *
1464  * These are the &struct net_device, they are only set internally
1465  * by drivers and used in the kernel. These flags are invisible to
1466  * userspace; this means that the order of these flags can change
1467  * during any kernel release.
1468  *
1469  * You should have a pretty good reason to be extending these flags.
1470  *
1471  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1472  * @IFF_EBRIDGE: Ethernet bridging device
1473  * @IFF_BONDING: bonding master or slave
1474  * @IFF_ISATAP: ISATAP interface (RFC4214)
1475  * @IFF_WAN_HDLC: WAN HDLC device
1476  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1477  *	release skb->dst
1478  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1479  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1480  * @IFF_MACVLAN_PORT: device used as macvlan port
1481  * @IFF_BRIDGE_PORT: device used as bridge port
1482  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1483  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1484  * @IFF_UNICAST_FLT: Supports unicast filtering
1485  * @IFF_TEAM_PORT: device used as team port
1486  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1487  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1488  *	change when it's running
1489  * @IFF_MACVLAN: Macvlan device
1490  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1491  *	underlying stacked devices
1492  * @IFF_L3MDEV_MASTER: device is an L3 master device
1493  * @IFF_NO_QUEUE: device can run without qdisc attached
1494  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1495  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1496  * @IFF_TEAM: device is a team device
1497  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1498  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1499  *	entity (i.e. the master device for bridged veth)
1500  * @IFF_MACSEC: device is a MACsec device
1501  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1502  * @IFF_FAILOVER: device is a failover master device
1503  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1504  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1505  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1506  */
1507 enum netdev_priv_flags {
1508 	IFF_802_1Q_VLAN			= 1<<0,
1509 	IFF_EBRIDGE			= 1<<1,
1510 	IFF_BONDING			= 1<<2,
1511 	IFF_ISATAP			= 1<<3,
1512 	IFF_WAN_HDLC			= 1<<4,
1513 	IFF_XMIT_DST_RELEASE		= 1<<5,
1514 	IFF_DONT_BRIDGE			= 1<<6,
1515 	IFF_DISABLE_NETPOLL		= 1<<7,
1516 	IFF_MACVLAN_PORT		= 1<<8,
1517 	IFF_BRIDGE_PORT			= 1<<9,
1518 	IFF_OVS_DATAPATH		= 1<<10,
1519 	IFF_TX_SKB_SHARING		= 1<<11,
1520 	IFF_UNICAST_FLT			= 1<<12,
1521 	IFF_TEAM_PORT			= 1<<13,
1522 	IFF_SUPP_NOFCS			= 1<<14,
1523 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1524 	IFF_MACVLAN			= 1<<16,
1525 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1526 	IFF_L3MDEV_MASTER		= 1<<18,
1527 	IFF_NO_QUEUE			= 1<<19,
1528 	IFF_OPENVSWITCH			= 1<<20,
1529 	IFF_L3MDEV_SLAVE		= 1<<21,
1530 	IFF_TEAM			= 1<<22,
1531 	IFF_RXFH_CONFIGURED		= 1<<23,
1532 	IFF_PHONY_HEADROOM		= 1<<24,
1533 	IFF_MACSEC			= 1<<25,
1534 	IFF_NO_RX_HANDLER		= 1<<26,
1535 	IFF_FAILOVER			= 1<<27,
1536 	IFF_FAILOVER_SLAVE		= 1<<28,
1537 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1538 	IFF_LIVE_RENAME_OK		= 1<<30,
1539 };
1540 
1541 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1542 #define IFF_EBRIDGE			IFF_EBRIDGE
1543 #define IFF_BONDING			IFF_BONDING
1544 #define IFF_ISATAP			IFF_ISATAP
1545 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1546 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1547 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1548 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1549 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1550 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1551 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1552 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1553 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1554 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1555 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1556 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1557 #define IFF_MACVLAN			IFF_MACVLAN
1558 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1559 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1560 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1561 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1562 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1563 #define IFF_TEAM			IFF_TEAM
1564 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1565 #define IFF_MACSEC			IFF_MACSEC
1566 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1567 #define IFF_FAILOVER			IFF_FAILOVER
1568 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1569 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1570 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1571 
1572 /**
1573  *	struct net_device - The DEVICE structure.
1574  *
1575  *	Actually, this whole structure is a big mistake.  It mixes I/O
1576  *	data with strictly "high-level" data, and it has to know about
1577  *	almost every data structure used in the INET module.
1578  *
1579  *	@name:	This is the first field of the "visible" part of this structure
1580  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1581  *		of the interface.
1582  *
1583  *	@name_node:	Name hashlist node
1584  *	@ifalias:	SNMP alias
1585  *	@mem_end:	Shared memory end
1586  *	@mem_start:	Shared memory start
1587  *	@base_addr:	Device I/O address
1588  *	@irq:		Device IRQ number
1589  *
1590  *	@state:		Generic network queuing layer state, see netdev_state_t
1591  *	@dev_list:	The global list of network devices
1592  *	@napi_list:	List entry used for polling NAPI devices
1593  *	@unreg_list:	List entry  when we are unregistering the
1594  *			device; see the function unregister_netdev
1595  *	@close_list:	List entry used when we are closing the device
1596  *	@ptype_all:     Device-specific packet handlers for all protocols
1597  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1598  *
1599  *	@adj_list:	Directly linked devices, like slaves for bonding
1600  *	@features:	Currently active device features
1601  *	@hw_features:	User-changeable features
1602  *
1603  *	@wanted_features:	User-requested features
1604  *	@vlan_features:		Mask of features inheritable by VLAN devices
1605  *
1606  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1607  *				This field indicates what encapsulation
1608  *				offloads the hardware is capable of doing,
1609  *				and drivers will need to set them appropriately.
1610  *
1611  *	@mpls_features:	Mask of features inheritable by MPLS
1612  *
1613  *	@ifindex:	interface index
1614  *	@group:		The group the device belongs to
1615  *
1616  *	@stats:		Statistics struct, which was left as a legacy, use
1617  *			rtnl_link_stats64 instead
1618  *
1619  *	@rx_dropped:	Dropped packets by core network,
1620  *			do not use this in drivers
1621  *	@tx_dropped:	Dropped packets by core network,
1622  *			do not use this in drivers
1623  *	@rx_nohandler:	nohandler dropped packets by core network on
1624  *			inactive devices, do not use this in drivers
1625  *	@carrier_up_count:	Number of times the carrier has been up
1626  *	@carrier_down_count:	Number of times the carrier has been down
1627  *
1628  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1629  *				instead of ioctl,
1630  *				see <net/iw_handler.h> for details.
1631  *	@wireless_data:	Instance data managed by the core of wireless extensions
1632  *
1633  *	@netdev_ops:	Includes several pointers to callbacks,
1634  *			if one wants to override the ndo_*() functions
1635  *	@ethtool_ops:	Management operations
1636  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1637  *			discovery handling. Necessary for e.g. 6LoWPAN.
1638  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1639  *			of Layer 2 headers.
1640  *
1641  *	@flags:		Interface flags (a la BSD)
1642  *	@priv_flags:	Like 'flags' but invisible to userspace,
1643  *			see if.h for the definitions
1644  *	@gflags:	Global flags ( kept as legacy )
1645  *	@padded:	How much padding added by alloc_netdev()
1646  *	@operstate:	RFC2863 operstate
1647  *	@link_mode:	Mapping policy to operstate
1648  *	@if_port:	Selectable AUI, TP, ...
1649  *	@dma:		DMA channel
1650  *	@mtu:		Interface MTU value
1651  *	@min_mtu:	Interface Minimum MTU value
1652  *	@max_mtu:	Interface Maximum MTU value
1653  *	@type:		Interface hardware type
1654  *	@hard_header_len: Maximum hardware header length.
1655  *	@min_header_len:  Minimum hardware header length
1656  *
1657  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1658  *			  cases can this be guaranteed
1659  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1660  *			  cases can this be guaranteed. Some cases also use
1661  *			  LL_MAX_HEADER instead to allocate the skb
1662  *
1663  *	interface address info:
1664  *
1665  * 	@perm_addr:		Permanent hw address
1666  * 	@addr_assign_type:	Hw address assignment type
1667  * 	@addr_len:		Hardware address length
1668  *	@upper_level:		Maximum depth level of upper devices.
1669  *	@lower_level:		Maximum depth level of lower devices.
1670  *	@neigh_priv_len:	Used in neigh_alloc()
1671  * 	@dev_id:		Used to differentiate devices that share
1672  * 				the same link layer address
1673  * 	@dev_port:		Used to differentiate devices that share
1674  * 				the same function
1675  *	@addr_list_lock:	XXX: need comments on this one
1676  *	@uc_promisc:		Counter that indicates promiscuous mode
1677  *				has been enabled due to the need to listen to
1678  *				additional unicast addresses in a device that
1679  *				does not implement ndo_set_rx_mode()
1680  *	@uc:			unicast mac addresses
1681  *	@mc:			multicast mac addresses
1682  *	@dev_addrs:		list of device hw addresses
1683  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1684  *	@promiscuity:		Number of times the NIC is told to work in
1685  *				promiscuous mode; if it becomes 0 the NIC will
1686  *				exit promiscuous mode
1687  *	@allmulti:		Counter, enables or disables allmulticast mode
1688  *
1689  *	@vlan_info:	VLAN info
1690  *	@dsa_ptr:	dsa specific data
1691  *	@tipc_ptr:	TIPC specific data
1692  *	@atalk_ptr:	AppleTalk link
1693  *	@ip_ptr:	IPv4 specific data
1694  *	@dn_ptr:	DECnet specific data
1695  *	@ip6_ptr:	IPv6 specific data
1696  *	@ax25_ptr:	AX.25 specific data
1697  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1698  *
1699  *	@dev_addr:	Hw address (before bcast,
1700  *			because most packets are unicast)
1701  *
1702  *	@_rx:			Array of RX queues
1703  *	@num_rx_queues:		Number of RX queues
1704  *				allocated at register_netdev() time
1705  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1706  *
1707  *	@rx_handler:		handler for received packets
1708  *	@rx_handler_data: 	XXX: need comments on this one
1709  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1710  *				ingress processing
1711  *	@ingress_queue:		XXX: need comments on this one
1712  *	@broadcast:		hw bcast address
1713  *
1714  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1715  *			indexed by RX queue number. Assigned by driver.
1716  *			This must only be set if the ndo_rx_flow_steer
1717  *			operation is defined
1718  *	@index_hlist:		Device index hash chain
1719  *
1720  *	@_tx:			Array of TX queues
1721  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1722  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1723  *	@qdisc:			Root qdisc from userspace point of view
1724  *	@tx_queue_len:		Max frames per queue allowed
1725  *	@tx_global_lock: 	XXX: need comments on this one
1726  *
1727  *	@xps_maps:	XXX: need comments on this one
1728  *	@miniq_egress:		clsact qdisc specific data for
1729  *				egress processing
1730  *	@watchdog_timeo:	Represents the timeout that is used by
1731  *				the watchdog (see dev_watchdog())
1732  *	@watchdog_timer:	List of timers
1733  *
1734  *	@pcpu_refcnt:		Number of references to this device
1735  *	@todo_list:		Delayed register/unregister
1736  *	@link_watch_list:	XXX: need comments on this one
1737  *
1738  *	@reg_state:		Register/unregister state machine
1739  *	@dismantle:		Device is going to be freed
1740  *	@rtnl_link_state:	This enum represents the phases of creating
1741  *				a new link
1742  *
1743  *	@needs_free_netdev:	Should unregister perform free_netdev?
1744  *	@priv_destructor:	Called from unregister
1745  *	@npinfo:		XXX: need comments on this one
1746  * 	@nd_net:		Network namespace this network device is inside
1747  *
1748  * 	@ml_priv:	Mid-layer private
1749  * 	@lstats:	Loopback statistics
1750  * 	@tstats:	Tunnel statistics
1751  * 	@dstats:	Dummy statistics
1752  * 	@vstats:	Virtual ethernet statistics
1753  *
1754  *	@garp_port:	GARP
1755  *	@mrp_port:	MRP
1756  *
1757  *	@dev:		Class/net/name entry
1758  *	@sysfs_groups:	Space for optional device, statistics and wireless
1759  *			sysfs groups
1760  *
1761  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1762  *	@rtnl_link_ops:	Rtnl_link_ops
1763  *
1764  *	@gso_max_size:	Maximum size of generic segmentation offload
1765  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1766  *			NIC for GSO
1767  *
1768  *	@dcbnl_ops:	Data Center Bridging netlink ops
1769  *	@num_tc:	Number of traffic classes in the net device
1770  *	@tc_to_txq:	XXX: need comments on this one
1771  *	@prio_tc_map:	XXX: need comments on this one
1772  *
1773  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1774  *
1775  *	@priomap:	XXX: need comments on this one
1776  *	@phydev:	Physical device may attach itself
1777  *			for hardware timestamping
1778  *	@sfp_bus:	attached &struct sfp_bus structure.
1779  *	@qdisc_tx_busylock_key: lockdep class annotating Qdisc->busylock
1780 				spinlock
1781  *	@qdisc_running_key:	lockdep class annotating Qdisc->running seqcount
1782  *	@qdisc_xmit_lock_key:	lockdep class annotating
1783  *				netdev_queue->_xmit_lock spinlock
1784  *	@addr_list_lock_key:	lockdep class annotating
1785  *				net_device->addr_list_lock spinlock
1786  *
1787  *	@proto_down:	protocol port state information can be sent to the
1788  *			switch driver and used to set the phys state of the
1789  *			switch port.
1790  *
1791  *	@wol_enabled:	Wake-on-LAN is enabled
1792  *
1793  *	FIXME: cleanup struct net_device such that network protocol info
1794  *	moves out.
1795  */
1796 
1797 struct net_device {
1798 	char			name[IFNAMSIZ];
1799 	struct netdev_name_node	*name_node;
1800 	struct dev_ifalias	__rcu *ifalias;
1801 	/*
1802 	 *	I/O specific fields
1803 	 *	FIXME: Merge these and struct ifmap into one
1804 	 */
1805 	unsigned long		mem_end;
1806 	unsigned long		mem_start;
1807 	unsigned long		base_addr;
1808 	int			irq;
1809 
1810 	/*
1811 	 *	Some hardware also needs these fields (state,dev_list,
1812 	 *	napi_list,unreg_list,close_list) but they are not
1813 	 *	part of the usual set specified in Space.c.
1814 	 */
1815 
1816 	unsigned long		state;
1817 
1818 	struct list_head	dev_list;
1819 	struct list_head	napi_list;
1820 	struct list_head	unreg_list;
1821 	struct list_head	close_list;
1822 	struct list_head	ptype_all;
1823 	struct list_head	ptype_specific;
1824 
1825 	struct {
1826 		struct list_head upper;
1827 		struct list_head lower;
1828 	} adj_list;
1829 
1830 	netdev_features_t	features;
1831 	netdev_features_t	hw_features;
1832 	netdev_features_t	wanted_features;
1833 	netdev_features_t	vlan_features;
1834 	netdev_features_t	hw_enc_features;
1835 	netdev_features_t	mpls_features;
1836 	netdev_features_t	gso_partial_features;
1837 
1838 	int			ifindex;
1839 	int			group;
1840 
1841 	struct net_device_stats	stats;
1842 
1843 	atomic_long_t		rx_dropped;
1844 	atomic_long_t		tx_dropped;
1845 	atomic_long_t		rx_nohandler;
1846 
1847 	/* Stats to monitor link on/off, flapping */
1848 	atomic_t		carrier_up_count;
1849 	atomic_t		carrier_down_count;
1850 
1851 #ifdef CONFIG_WIRELESS_EXT
1852 	const struct iw_handler_def *wireless_handlers;
1853 	struct iw_public_data	*wireless_data;
1854 #endif
1855 	const struct net_device_ops *netdev_ops;
1856 	const struct ethtool_ops *ethtool_ops;
1857 #ifdef CONFIG_NET_L3_MASTER_DEV
1858 	const struct l3mdev_ops	*l3mdev_ops;
1859 #endif
1860 #if IS_ENABLED(CONFIG_IPV6)
1861 	const struct ndisc_ops *ndisc_ops;
1862 #endif
1863 
1864 #ifdef CONFIG_XFRM_OFFLOAD
1865 	const struct xfrmdev_ops *xfrmdev_ops;
1866 #endif
1867 
1868 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1869 	const struct tlsdev_ops *tlsdev_ops;
1870 #endif
1871 
1872 	const struct header_ops *header_ops;
1873 
1874 	unsigned int		flags;
1875 	unsigned int		priv_flags;
1876 
1877 	unsigned short		gflags;
1878 	unsigned short		padded;
1879 
1880 	unsigned char		operstate;
1881 	unsigned char		link_mode;
1882 
1883 	unsigned char		if_port;
1884 	unsigned char		dma;
1885 
1886 	/* Note : dev->mtu is often read without holding a lock.
1887 	 * Writers usually hold RTNL.
1888 	 * It is recommended to use READ_ONCE() to annotate the reads,
1889 	 * and to use WRITE_ONCE() to annotate the writes.
1890 	 */
1891 	unsigned int		mtu;
1892 	unsigned int		min_mtu;
1893 	unsigned int		max_mtu;
1894 	unsigned short		type;
1895 	unsigned short		hard_header_len;
1896 	unsigned char		min_header_len;
1897 
1898 	unsigned short		needed_headroom;
1899 	unsigned short		needed_tailroom;
1900 
1901 	/* Interface address info. */
1902 	unsigned char		perm_addr[MAX_ADDR_LEN];
1903 	unsigned char		addr_assign_type;
1904 	unsigned char		addr_len;
1905 	unsigned char		upper_level;
1906 	unsigned char		lower_level;
1907 	unsigned short		neigh_priv_len;
1908 	unsigned short          dev_id;
1909 	unsigned short          dev_port;
1910 	spinlock_t		addr_list_lock;
1911 	unsigned char		name_assign_type;
1912 	bool			uc_promisc;
1913 	struct netdev_hw_addr_list	uc;
1914 	struct netdev_hw_addr_list	mc;
1915 	struct netdev_hw_addr_list	dev_addrs;
1916 
1917 #ifdef CONFIG_SYSFS
1918 	struct kset		*queues_kset;
1919 #endif
1920 	unsigned int		promiscuity;
1921 	unsigned int		allmulti;
1922 
1923 
1924 	/* Protocol-specific pointers */
1925 
1926 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1927 	struct vlan_info __rcu	*vlan_info;
1928 #endif
1929 #if IS_ENABLED(CONFIG_NET_DSA)
1930 	struct dsa_port		*dsa_ptr;
1931 #endif
1932 #if IS_ENABLED(CONFIG_TIPC)
1933 	struct tipc_bearer __rcu *tipc_ptr;
1934 #endif
1935 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1936 	void 			*atalk_ptr;
1937 #endif
1938 	struct in_device __rcu	*ip_ptr;
1939 #if IS_ENABLED(CONFIG_DECNET)
1940 	struct dn_dev __rcu     *dn_ptr;
1941 #endif
1942 	struct inet6_dev __rcu	*ip6_ptr;
1943 #if IS_ENABLED(CONFIG_AX25)
1944 	void			*ax25_ptr;
1945 #endif
1946 	struct wireless_dev	*ieee80211_ptr;
1947 	struct wpan_dev		*ieee802154_ptr;
1948 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1949 	struct mpls_dev __rcu	*mpls_ptr;
1950 #endif
1951 
1952 /*
1953  * Cache lines mostly used on receive path (including eth_type_trans())
1954  */
1955 	/* Interface address info used in eth_type_trans() */
1956 	unsigned char		*dev_addr;
1957 
1958 	struct netdev_rx_queue	*_rx;
1959 	unsigned int		num_rx_queues;
1960 	unsigned int		real_num_rx_queues;
1961 
1962 	struct bpf_prog __rcu	*xdp_prog;
1963 	unsigned long		gro_flush_timeout;
1964 	rx_handler_func_t __rcu	*rx_handler;
1965 	void __rcu		*rx_handler_data;
1966 
1967 #ifdef CONFIG_NET_CLS_ACT
1968 	struct mini_Qdisc __rcu	*miniq_ingress;
1969 #endif
1970 	struct netdev_queue __rcu *ingress_queue;
1971 #ifdef CONFIG_NETFILTER_INGRESS
1972 	struct nf_hook_entries __rcu *nf_hooks_ingress;
1973 #endif
1974 
1975 	unsigned char		broadcast[MAX_ADDR_LEN];
1976 #ifdef CONFIG_RFS_ACCEL
1977 	struct cpu_rmap		*rx_cpu_rmap;
1978 #endif
1979 	struct hlist_node	index_hlist;
1980 
1981 /*
1982  * Cache lines mostly used on transmit path
1983  */
1984 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1985 	unsigned int		num_tx_queues;
1986 	unsigned int		real_num_tx_queues;
1987 	struct Qdisc		*qdisc;
1988 #ifdef CONFIG_NET_SCHED
1989 	DECLARE_HASHTABLE	(qdisc_hash, 4);
1990 #endif
1991 	unsigned int		tx_queue_len;
1992 	spinlock_t		tx_global_lock;
1993 	int			watchdog_timeo;
1994 
1995 #ifdef CONFIG_XPS
1996 	struct xps_dev_maps __rcu *xps_cpus_map;
1997 	struct xps_dev_maps __rcu *xps_rxqs_map;
1998 #endif
1999 #ifdef CONFIG_NET_CLS_ACT
2000 	struct mini_Qdisc __rcu	*miniq_egress;
2001 #endif
2002 
2003 	/* These may be needed for future network-power-down code. */
2004 	struct timer_list	watchdog_timer;
2005 
2006 	int __percpu		*pcpu_refcnt;
2007 	struct list_head	todo_list;
2008 
2009 	struct list_head	link_watch_list;
2010 
2011 	enum { NETREG_UNINITIALIZED=0,
2012 	       NETREG_REGISTERED,	/* completed register_netdevice */
2013 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2014 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2015 	       NETREG_RELEASED,		/* called free_netdev */
2016 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2017 	} reg_state:8;
2018 
2019 	bool dismantle;
2020 
2021 	enum {
2022 		RTNL_LINK_INITIALIZED,
2023 		RTNL_LINK_INITIALIZING,
2024 	} rtnl_link_state:16;
2025 
2026 	bool needs_free_netdev;
2027 	void (*priv_destructor)(struct net_device *dev);
2028 
2029 #ifdef CONFIG_NETPOLL
2030 	struct netpoll_info __rcu	*npinfo;
2031 #endif
2032 
2033 	possible_net_t			nd_net;
2034 
2035 	/* mid-layer private */
2036 	union {
2037 		void					*ml_priv;
2038 		struct pcpu_lstats __percpu		*lstats;
2039 		struct pcpu_sw_netstats __percpu	*tstats;
2040 		struct pcpu_dstats __percpu		*dstats;
2041 	};
2042 
2043 #if IS_ENABLED(CONFIG_GARP)
2044 	struct garp_port __rcu	*garp_port;
2045 #endif
2046 #if IS_ENABLED(CONFIG_MRP)
2047 	struct mrp_port __rcu	*mrp_port;
2048 #endif
2049 
2050 	struct device		dev;
2051 	const struct attribute_group *sysfs_groups[4];
2052 	const struct attribute_group *sysfs_rx_queue_group;
2053 
2054 	const struct rtnl_link_ops *rtnl_link_ops;
2055 
2056 	/* for setting kernel sock attribute on TCP connection setup */
2057 #define GSO_MAX_SIZE		65536
2058 	unsigned int		gso_max_size;
2059 #define GSO_MAX_SEGS		65535
2060 	u16			gso_max_segs;
2061 
2062 #ifdef CONFIG_DCB
2063 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2064 #endif
2065 	s16			num_tc;
2066 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2067 	u8			prio_tc_map[TC_BITMASK + 1];
2068 
2069 #if IS_ENABLED(CONFIG_FCOE)
2070 	unsigned int		fcoe_ddp_xid;
2071 #endif
2072 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2073 	struct netprio_map __rcu *priomap;
2074 #endif
2075 	struct phy_device	*phydev;
2076 	struct sfp_bus		*sfp_bus;
2077 	struct lock_class_key	qdisc_tx_busylock_key;
2078 	struct lock_class_key	qdisc_running_key;
2079 	struct lock_class_key	qdisc_xmit_lock_key;
2080 	struct lock_class_key	addr_list_lock_key;
2081 	bool			proto_down;
2082 	unsigned		wol_enabled:1;
2083 };
2084 #define to_net_dev(d) container_of(d, struct net_device, dev)
2085 
2086 static inline bool netif_elide_gro(const struct net_device *dev)
2087 {
2088 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2089 		return true;
2090 	return false;
2091 }
2092 
2093 #define	NETDEV_ALIGN		32
2094 
2095 static inline
2096 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2097 {
2098 	return dev->prio_tc_map[prio & TC_BITMASK];
2099 }
2100 
2101 static inline
2102 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2103 {
2104 	if (tc >= dev->num_tc)
2105 		return -EINVAL;
2106 
2107 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2108 	return 0;
2109 }
2110 
2111 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2112 void netdev_reset_tc(struct net_device *dev);
2113 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2114 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2115 
2116 static inline
2117 int netdev_get_num_tc(struct net_device *dev)
2118 {
2119 	return dev->num_tc;
2120 }
2121 
2122 void netdev_unbind_sb_channel(struct net_device *dev,
2123 			      struct net_device *sb_dev);
2124 int netdev_bind_sb_channel_queue(struct net_device *dev,
2125 				 struct net_device *sb_dev,
2126 				 u8 tc, u16 count, u16 offset);
2127 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2128 static inline int netdev_get_sb_channel(struct net_device *dev)
2129 {
2130 	return max_t(int, -dev->num_tc, 0);
2131 }
2132 
2133 static inline
2134 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2135 					 unsigned int index)
2136 {
2137 	return &dev->_tx[index];
2138 }
2139 
2140 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2141 						    const struct sk_buff *skb)
2142 {
2143 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2144 }
2145 
2146 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2147 					    void (*f)(struct net_device *,
2148 						      struct netdev_queue *,
2149 						      void *),
2150 					    void *arg)
2151 {
2152 	unsigned int i;
2153 
2154 	for (i = 0; i < dev->num_tx_queues; i++)
2155 		f(dev, &dev->_tx[i], arg);
2156 }
2157 
2158 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2159 		     struct net_device *sb_dev);
2160 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2161 					 struct sk_buff *skb,
2162 					 struct net_device *sb_dev);
2163 
2164 /* returns the headroom that the master device needs to take in account
2165  * when forwarding to this dev
2166  */
2167 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2168 {
2169 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2170 }
2171 
2172 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2173 {
2174 	if (dev->netdev_ops->ndo_set_rx_headroom)
2175 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2176 }
2177 
2178 /* set the device rx headroom to the dev's default */
2179 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2180 {
2181 	netdev_set_rx_headroom(dev, -1);
2182 }
2183 
2184 /*
2185  * Net namespace inlines
2186  */
2187 static inline
2188 struct net *dev_net(const struct net_device *dev)
2189 {
2190 	return read_pnet(&dev->nd_net);
2191 }
2192 
2193 static inline
2194 void dev_net_set(struct net_device *dev, struct net *net)
2195 {
2196 	write_pnet(&dev->nd_net, net);
2197 }
2198 
2199 /**
2200  *	netdev_priv - access network device private data
2201  *	@dev: network device
2202  *
2203  * Get network device private data
2204  */
2205 static inline void *netdev_priv(const struct net_device *dev)
2206 {
2207 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2208 }
2209 
2210 /* Set the sysfs physical device reference for the network logical device
2211  * if set prior to registration will cause a symlink during initialization.
2212  */
2213 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2214 
2215 /* Set the sysfs device type for the network logical device to allow
2216  * fine-grained identification of different network device types. For
2217  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2218  */
2219 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2220 
2221 /* Default NAPI poll() weight
2222  * Device drivers are strongly advised to not use bigger value
2223  */
2224 #define NAPI_POLL_WEIGHT 64
2225 
2226 /**
2227  *	netif_napi_add - initialize a NAPI context
2228  *	@dev:  network device
2229  *	@napi: NAPI context
2230  *	@poll: polling function
2231  *	@weight: default weight
2232  *
2233  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2234  * *any* of the other NAPI-related functions.
2235  */
2236 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2237 		    int (*poll)(struct napi_struct *, int), int weight);
2238 
2239 /**
2240  *	netif_tx_napi_add - initialize a NAPI context
2241  *	@dev:  network device
2242  *	@napi: NAPI context
2243  *	@poll: polling function
2244  *	@weight: default weight
2245  *
2246  * This variant of netif_napi_add() should be used from drivers using NAPI
2247  * to exclusively poll a TX queue.
2248  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2249  */
2250 static inline void netif_tx_napi_add(struct net_device *dev,
2251 				     struct napi_struct *napi,
2252 				     int (*poll)(struct napi_struct *, int),
2253 				     int weight)
2254 {
2255 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2256 	netif_napi_add(dev, napi, poll, weight);
2257 }
2258 
2259 /**
2260  *  netif_napi_del - remove a NAPI context
2261  *  @napi: NAPI context
2262  *
2263  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2264  */
2265 void netif_napi_del(struct napi_struct *napi);
2266 
2267 struct napi_gro_cb {
2268 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2269 	void	*frag0;
2270 
2271 	/* Length of frag0. */
2272 	unsigned int frag0_len;
2273 
2274 	/* This indicates where we are processing relative to skb->data. */
2275 	int	data_offset;
2276 
2277 	/* This is non-zero if the packet cannot be merged with the new skb. */
2278 	u16	flush;
2279 
2280 	/* Save the IP ID here and check when we get to the transport layer */
2281 	u16	flush_id;
2282 
2283 	/* Number of segments aggregated. */
2284 	u16	count;
2285 
2286 	/* Start offset for remote checksum offload */
2287 	u16	gro_remcsum_start;
2288 
2289 	/* jiffies when first packet was created/queued */
2290 	unsigned long age;
2291 
2292 	/* Used in ipv6_gro_receive() and foo-over-udp */
2293 	u16	proto;
2294 
2295 	/* This is non-zero if the packet may be of the same flow. */
2296 	u8	same_flow:1;
2297 
2298 	/* Used in tunnel GRO receive */
2299 	u8	encap_mark:1;
2300 
2301 	/* GRO checksum is valid */
2302 	u8	csum_valid:1;
2303 
2304 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2305 	u8	csum_cnt:3;
2306 
2307 	/* Free the skb? */
2308 	u8	free:2;
2309 #define NAPI_GRO_FREE		  1
2310 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2311 
2312 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2313 	u8	is_ipv6:1;
2314 
2315 	/* Used in GRE, set in fou/gue_gro_receive */
2316 	u8	is_fou:1;
2317 
2318 	/* Used to determine if flush_id can be ignored */
2319 	u8	is_atomic:1;
2320 
2321 	/* Number of gro_receive callbacks this packet already went through */
2322 	u8 recursion_counter:4;
2323 
2324 	/* 1 bit hole */
2325 
2326 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2327 	__wsum	csum;
2328 
2329 	/* used in skb_gro_receive() slow path */
2330 	struct sk_buff *last;
2331 };
2332 
2333 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2334 
2335 #define GRO_RECURSION_LIMIT 15
2336 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2337 {
2338 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2339 }
2340 
2341 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2342 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2343 					       struct list_head *head,
2344 					       struct sk_buff *skb)
2345 {
2346 	if (unlikely(gro_recursion_inc_test(skb))) {
2347 		NAPI_GRO_CB(skb)->flush |= 1;
2348 		return NULL;
2349 	}
2350 
2351 	return cb(head, skb);
2352 }
2353 
2354 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2355 					    struct sk_buff *);
2356 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2357 						  struct sock *sk,
2358 						  struct list_head *head,
2359 						  struct sk_buff *skb)
2360 {
2361 	if (unlikely(gro_recursion_inc_test(skb))) {
2362 		NAPI_GRO_CB(skb)->flush |= 1;
2363 		return NULL;
2364 	}
2365 
2366 	return cb(sk, head, skb);
2367 }
2368 
2369 struct packet_type {
2370 	__be16			type;	/* This is really htons(ether_type). */
2371 	bool			ignore_outgoing;
2372 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2373 	int			(*func) (struct sk_buff *,
2374 					 struct net_device *,
2375 					 struct packet_type *,
2376 					 struct net_device *);
2377 	void			(*list_func) (struct list_head *,
2378 					      struct packet_type *,
2379 					      struct net_device *);
2380 	bool			(*id_match)(struct packet_type *ptype,
2381 					    struct sock *sk);
2382 	void			*af_packet_priv;
2383 	struct list_head	list;
2384 };
2385 
2386 struct offload_callbacks {
2387 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2388 						netdev_features_t features);
2389 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2390 						struct sk_buff *skb);
2391 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2392 };
2393 
2394 struct packet_offload {
2395 	__be16			 type;	/* This is really htons(ether_type). */
2396 	u16			 priority;
2397 	struct offload_callbacks callbacks;
2398 	struct list_head	 list;
2399 };
2400 
2401 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2402 struct pcpu_sw_netstats {
2403 	u64     rx_packets;
2404 	u64     rx_bytes;
2405 	u64     tx_packets;
2406 	u64     tx_bytes;
2407 	struct u64_stats_sync   syncp;
2408 } __aligned(4 * sizeof(u64));
2409 
2410 struct pcpu_lstats {
2411 	u64_stats_t packets;
2412 	u64_stats_t bytes;
2413 	struct u64_stats_sync syncp;
2414 } __aligned(2 * sizeof(u64));
2415 
2416 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2417 
2418 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2419 {
2420 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2421 
2422 	u64_stats_update_begin(&lstats->syncp);
2423 	u64_stats_add(&lstats->bytes, len);
2424 	u64_stats_inc(&lstats->packets);
2425 	u64_stats_update_end(&lstats->syncp);
2426 }
2427 
2428 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2429 ({									\
2430 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2431 	if (pcpu_stats)	{						\
2432 		int __cpu;						\
2433 		for_each_possible_cpu(__cpu) {				\
2434 			typeof(type) *stat;				\
2435 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2436 			u64_stats_init(&stat->syncp);			\
2437 		}							\
2438 	}								\
2439 	pcpu_stats;							\
2440 })
2441 
2442 #define netdev_alloc_pcpu_stats(type)					\
2443 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2444 
2445 enum netdev_lag_tx_type {
2446 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2447 	NETDEV_LAG_TX_TYPE_RANDOM,
2448 	NETDEV_LAG_TX_TYPE_BROADCAST,
2449 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2450 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2451 	NETDEV_LAG_TX_TYPE_HASH,
2452 };
2453 
2454 enum netdev_lag_hash {
2455 	NETDEV_LAG_HASH_NONE,
2456 	NETDEV_LAG_HASH_L2,
2457 	NETDEV_LAG_HASH_L34,
2458 	NETDEV_LAG_HASH_L23,
2459 	NETDEV_LAG_HASH_E23,
2460 	NETDEV_LAG_HASH_E34,
2461 	NETDEV_LAG_HASH_UNKNOWN,
2462 };
2463 
2464 struct netdev_lag_upper_info {
2465 	enum netdev_lag_tx_type tx_type;
2466 	enum netdev_lag_hash hash_type;
2467 };
2468 
2469 struct netdev_lag_lower_state_info {
2470 	u8 link_up : 1,
2471 	   tx_enabled : 1;
2472 };
2473 
2474 #include <linux/notifier.h>
2475 
2476 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2477  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2478  * adding new types.
2479  */
2480 enum netdev_cmd {
2481 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2482 	NETDEV_DOWN,
2483 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2484 				   detected a hardware crash and restarted
2485 				   - we can use this eg to kick tcp sessions
2486 				   once done */
2487 	NETDEV_CHANGE,		/* Notify device state change */
2488 	NETDEV_REGISTER,
2489 	NETDEV_UNREGISTER,
2490 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2491 	NETDEV_CHANGEADDR,	/* notify after the address change */
2492 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2493 	NETDEV_GOING_DOWN,
2494 	NETDEV_CHANGENAME,
2495 	NETDEV_FEAT_CHANGE,
2496 	NETDEV_BONDING_FAILOVER,
2497 	NETDEV_PRE_UP,
2498 	NETDEV_PRE_TYPE_CHANGE,
2499 	NETDEV_POST_TYPE_CHANGE,
2500 	NETDEV_POST_INIT,
2501 	NETDEV_RELEASE,
2502 	NETDEV_NOTIFY_PEERS,
2503 	NETDEV_JOIN,
2504 	NETDEV_CHANGEUPPER,
2505 	NETDEV_RESEND_IGMP,
2506 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2507 	NETDEV_CHANGEINFODATA,
2508 	NETDEV_BONDING_INFO,
2509 	NETDEV_PRECHANGEUPPER,
2510 	NETDEV_CHANGELOWERSTATE,
2511 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2512 	NETDEV_UDP_TUNNEL_DROP_INFO,
2513 	NETDEV_CHANGE_TX_QUEUE_LEN,
2514 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2515 	NETDEV_CVLAN_FILTER_DROP_INFO,
2516 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2517 	NETDEV_SVLAN_FILTER_DROP_INFO,
2518 };
2519 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2520 
2521 int register_netdevice_notifier(struct notifier_block *nb);
2522 int unregister_netdevice_notifier(struct notifier_block *nb);
2523 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2524 int unregister_netdevice_notifier_net(struct net *net,
2525 				      struct notifier_block *nb);
2526 
2527 struct netdev_notifier_info {
2528 	struct net_device	*dev;
2529 	struct netlink_ext_ack	*extack;
2530 };
2531 
2532 struct netdev_notifier_info_ext {
2533 	struct netdev_notifier_info info; /* must be first */
2534 	union {
2535 		u32 mtu;
2536 	} ext;
2537 };
2538 
2539 struct netdev_notifier_change_info {
2540 	struct netdev_notifier_info info; /* must be first */
2541 	unsigned int flags_changed;
2542 };
2543 
2544 struct netdev_notifier_changeupper_info {
2545 	struct netdev_notifier_info info; /* must be first */
2546 	struct net_device *upper_dev; /* new upper dev */
2547 	bool master; /* is upper dev master */
2548 	bool linking; /* is the notification for link or unlink */
2549 	void *upper_info; /* upper dev info */
2550 };
2551 
2552 struct netdev_notifier_changelowerstate_info {
2553 	struct netdev_notifier_info info; /* must be first */
2554 	void *lower_state_info; /* is lower dev state */
2555 };
2556 
2557 struct netdev_notifier_pre_changeaddr_info {
2558 	struct netdev_notifier_info info; /* must be first */
2559 	const unsigned char *dev_addr;
2560 };
2561 
2562 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2563 					     struct net_device *dev)
2564 {
2565 	info->dev = dev;
2566 	info->extack = NULL;
2567 }
2568 
2569 static inline struct net_device *
2570 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2571 {
2572 	return info->dev;
2573 }
2574 
2575 static inline struct netlink_ext_ack *
2576 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2577 {
2578 	return info->extack;
2579 }
2580 
2581 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2582 
2583 
2584 extern rwlock_t				dev_base_lock;		/* Device list lock */
2585 
2586 #define for_each_netdev(net, d)		\
2587 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2588 #define for_each_netdev_reverse(net, d)	\
2589 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2590 #define for_each_netdev_rcu(net, d)		\
2591 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2592 #define for_each_netdev_safe(net, d, n)	\
2593 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2594 #define for_each_netdev_continue(net, d)		\
2595 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2596 #define for_each_netdev_continue_reverse(net, d)		\
2597 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2598 						     dev_list)
2599 #define for_each_netdev_continue_rcu(net, d)		\
2600 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2601 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2602 		for_each_netdev_rcu(&init_net, slave)	\
2603 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2604 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2605 
2606 static inline struct net_device *next_net_device(struct net_device *dev)
2607 {
2608 	struct list_head *lh;
2609 	struct net *net;
2610 
2611 	net = dev_net(dev);
2612 	lh = dev->dev_list.next;
2613 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2614 }
2615 
2616 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2617 {
2618 	struct list_head *lh;
2619 	struct net *net;
2620 
2621 	net = dev_net(dev);
2622 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2623 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2624 }
2625 
2626 static inline struct net_device *first_net_device(struct net *net)
2627 {
2628 	return list_empty(&net->dev_base_head) ? NULL :
2629 		net_device_entry(net->dev_base_head.next);
2630 }
2631 
2632 static inline struct net_device *first_net_device_rcu(struct net *net)
2633 {
2634 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2635 
2636 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2637 }
2638 
2639 int netdev_boot_setup_check(struct net_device *dev);
2640 unsigned long netdev_boot_base(const char *prefix, int unit);
2641 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2642 				       const char *hwaddr);
2643 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2644 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2645 void dev_add_pack(struct packet_type *pt);
2646 void dev_remove_pack(struct packet_type *pt);
2647 void __dev_remove_pack(struct packet_type *pt);
2648 void dev_add_offload(struct packet_offload *po);
2649 void dev_remove_offload(struct packet_offload *po);
2650 
2651 int dev_get_iflink(const struct net_device *dev);
2652 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2653 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2654 				      unsigned short mask);
2655 struct net_device *dev_get_by_name(struct net *net, const char *name);
2656 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2657 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2658 int dev_alloc_name(struct net_device *dev, const char *name);
2659 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2660 void dev_close(struct net_device *dev);
2661 void dev_close_many(struct list_head *head, bool unlink);
2662 void dev_disable_lro(struct net_device *dev);
2663 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2664 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2665 		     struct net_device *sb_dev);
2666 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2667 		       struct net_device *sb_dev);
2668 int dev_queue_xmit(struct sk_buff *skb);
2669 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2670 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2671 int register_netdevice(struct net_device *dev);
2672 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2673 void unregister_netdevice_many(struct list_head *head);
2674 static inline void unregister_netdevice(struct net_device *dev)
2675 {
2676 	unregister_netdevice_queue(dev, NULL);
2677 }
2678 
2679 int netdev_refcnt_read(const struct net_device *dev);
2680 void free_netdev(struct net_device *dev);
2681 void netdev_freemem(struct net_device *dev);
2682 void synchronize_net(void);
2683 int init_dummy_netdev(struct net_device *dev);
2684 
2685 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2686 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2687 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2688 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2689 int netdev_get_name(struct net *net, char *name, int ifindex);
2690 int dev_restart(struct net_device *dev);
2691 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2692 
2693 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2694 {
2695 	return NAPI_GRO_CB(skb)->data_offset;
2696 }
2697 
2698 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2699 {
2700 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2701 }
2702 
2703 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2704 {
2705 	NAPI_GRO_CB(skb)->data_offset += len;
2706 }
2707 
2708 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2709 					unsigned int offset)
2710 {
2711 	return NAPI_GRO_CB(skb)->frag0 + offset;
2712 }
2713 
2714 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2715 {
2716 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2717 }
2718 
2719 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2720 {
2721 	NAPI_GRO_CB(skb)->frag0 = NULL;
2722 	NAPI_GRO_CB(skb)->frag0_len = 0;
2723 }
2724 
2725 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2726 					unsigned int offset)
2727 {
2728 	if (!pskb_may_pull(skb, hlen))
2729 		return NULL;
2730 
2731 	skb_gro_frag0_invalidate(skb);
2732 	return skb->data + offset;
2733 }
2734 
2735 static inline void *skb_gro_network_header(struct sk_buff *skb)
2736 {
2737 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2738 	       skb_network_offset(skb);
2739 }
2740 
2741 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2742 					const void *start, unsigned int len)
2743 {
2744 	if (NAPI_GRO_CB(skb)->csum_valid)
2745 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2746 						  csum_partial(start, len, 0));
2747 }
2748 
2749 /* GRO checksum functions. These are logical equivalents of the normal
2750  * checksum functions (in skbuff.h) except that they operate on the GRO
2751  * offsets and fields in sk_buff.
2752  */
2753 
2754 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2755 
2756 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2757 {
2758 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2759 }
2760 
2761 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2762 						      bool zero_okay,
2763 						      __sum16 check)
2764 {
2765 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2766 		skb_checksum_start_offset(skb) <
2767 		 skb_gro_offset(skb)) &&
2768 		!skb_at_gro_remcsum_start(skb) &&
2769 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2770 		(!zero_okay || check));
2771 }
2772 
2773 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2774 							   __wsum psum)
2775 {
2776 	if (NAPI_GRO_CB(skb)->csum_valid &&
2777 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2778 		return 0;
2779 
2780 	NAPI_GRO_CB(skb)->csum = psum;
2781 
2782 	return __skb_gro_checksum_complete(skb);
2783 }
2784 
2785 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2786 {
2787 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2788 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2789 		NAPI_GRO_CB(skb)->csum_cnt--;
2790 	} else {
2791 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2792 		 * verified a new top level checksum or an encapsulated one
2793 		 * during GRO. This saves work if we fallback to normal path.
2794 		 */
2795 		__skb_incr_checksum_unnecessary(skb);
2796 	}
2797 }
2798 
2799 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2800 				    compute_pseudo)			\
2801 ({									\
2802 	__sum16 __ret = 0;						\
2803 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2804 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2805 				compute_pseudo(skb, proto));		\
2806 	if (!__ret)							\
2807 		skb_gro_incr_csum_unnecessary(skb);			\
2808 	__ret;								\
2809 })
2810 
2811 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2812 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2813 
2814 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2815 					     compute_pseudo)		\
2816 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2817 
2818 #define skb_gro_checksum_simple_validate(skb)				\
2819 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2820 
2821 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2822 {
2823 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2824 		!NAPI_GRO_CB(skb)->csum_valid);
2825 }
2826 
2827 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2828 					      __sum16 check, __wsum pseudo)
2829 {
2830 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2831 	NAPI_GRO_CB(skb)->csum_valid = 1;
2832 }
2833 
2834 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2835 do {									\
2836 	if (__skb_gro_checksum_convert_check(skb))			\
2837 		__skb_gro_checksum_convert(skb, check,			\
2838 					   compute_pseudo(skb, proto));	\
2839 } while (0)
2840 
2841 struct gro_remcsum {
2842 	int offset;
2843 	__wsum delta;
2844 };
2845 
2846 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2847 {
2848 	grc->offset = 0;
2849 	grc->delta = 0;
2850 }
2851 
2852 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2853 					    unsigned int off, size_t hdrlen,
2854 					    int start, int offset,
2855 					    struct gro_remcsum *grc,
2856 					    bool nopartial)
2857 {
2858 	__wsum delta;
2859 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2860 
2861 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2862 
2863 	if (!nopartial) {
2864 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2865 		return ptr;
2866 	}
2867 
2868 	ptr = skb_gro_header_fast(skb, off);
2869 	if (skb_gro_header_hard(skb, off + plen)) {
2870 		ptr = skb_gro_header_slow(skb, off + plen, off);
2871 		if (!ptr)
2872 			return NULL;
2873 	}
2874 
2875 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2876 			       start, offset);
2877 
2878 	/* Adjust skb->csum since we changed the packet */
2879 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2880 
2881 	grc->offset = off + hdrlen + offset;
2882 	grc->delta = delta;
2883 
2884 	return ptr;
2885 }
2886 
2887 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2888 					   struct gro_remcsum *grc)
2889 {
2890 	void *ptr;
2891 	size_t plen = grc->offset + sizeof(u16);
2892 
2893 	if (!grc->delta)
2894 		return;
2895 
2896 	ptr = skb_gro_header_fast(skb, grc->offset);
2897 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2898 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2899 		if (!ptr)
2900 			return;
2901 	}
2902 
2903 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2904 }
2905 
2906 #ifdef CONFIG_XFRM_OFFLOAD
2907 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2908 {
2909 	if (PTR_ERR(pp) != -EINPROGRESS)
2910 		NAPI_GRO_CB(skb)->flush |= flush;
2911 }
2912 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2913 					       struct sk_buff *pp,
2914 					       int flush,
2915 					       struct gro_remcsum *grc)
2916 {
2917 	if (PTR_ERR(pp) != -EINPROGRESS) {
2918 		NAPI_GRO_CB(skb)->flush |= flush;
2919 		skb_gro_remcsum_cleanup(skb, grc);
2920 		skb->remcsum_offload = 0;
2921 	}
2922 }
2923 #else
2924 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2925 {
2926 	NAPI_GRO_CB(skb)->flush |= flush;
2927 }
2928 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2929 					       struct sk_buff *pp,
2930 					       int flush,
2931 					       struct gro_remcsum *grc)
2932 {
2933 	NAPI_GRO_CB(skb)->flush |= flush;
2934 	skb_gro_remcsum_cleanup(skb, grc);
2935 	skb->remcsum_offload = 0;
2936 }
2937 #endif
2938 
2939 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2940 				  unsigned short type,
2941 				  const void *daddr, const void *saddr,
2942 				  unsigned int len)
2943 {
2944 	if (!dev->header_ops || !dev->header_ops->create)
2945 		return 0;
2946 
2947 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2948 }
2949 
2950 static inline int dev_parse_header(const struct sk_buff *skb,
2951 				   unsigned char *haddr)
2952 {
2953 	const struct net_device *dev = skb->dev;
2954 
2955 	if (!dev->header_ops || !dev->header_ops->parse)
2956 		return 0;
2957 	return dev->header_ops->parse(skb, haddr);
2958 }
2959 
2960 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
2961 {
2962 	const struct net_device *dev = skb->dev;
2963 
2964 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
2965 		return 0;
2966 	return dev->header_ops->parse_protocol(skb);
2967 }
2968 
2969 /* ll_header must have at least hard_header_len allocated */
2970 static inline bool dev_validate_header(const struct net_device *dev,
2971 				       char *ll_header, int len)
2972 {
2973 	if (likely(len >= dev->hard_header_len))
2974 		return true;
2975 	if (len < dev->min_header_len)
2976 		return false;
2977 
2978 	if (capable(CAP_SYS_RAWIO)) {
2979 		memset(ll_header + len, 0, dev->hard_header_len - len);
2980 		return true;
2981 	}
2982 
2983 	if (dev->header_ops && dev->header_ops->validate)
2984 		return dev->header_ops->validate(ll_header, len);
2985 
2986 	return false;
2987 }
2988 
2989 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
2990 			   int len, int size);
2991 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2992 static inline int unregister_gifconf(unsigned int family)
2993 {
2994 	return register_gifconf(family, NULL);
2995 }
2996 
2997 #ifdef CONFIG_NET_FLOW_LIMIT
2998 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2999 struct sd_flow_limit {
3000 	u64			count;
3001 	unsigned int		num_buckets;
3002 	unsigned int		history_head;
3003 	u16			history[FLOW_LIMIT_HISTORY];
3004 	u8			buckets[];
3005 };
3006 
3007 extern int netdev_flow_limit_table_len;
3008 #endif /* CONFIG_NET_FLOW_LIMIT */
3009 
3010 /*
3011  * Incoming packets are placed on per-CPU queues
3012  */
3013 struct softnet_data {
3014 	struct list_head	poll_list;
3015 	struct sk_buff_head	process_queue;
3016 
3017 	/* stats */
3018 	unsigned int		processed;
3019 	unsigned int		time_squeeze;
3020 	unsigned int		received_rps;
3021 #ifdef CONFIG_RPS
3022 	struct softnet_data	*rps_ipi_list;
3023 #endif
3024 #ifdef CONFIG_NET_FLOW_LIMIT
3025 	struct sd_flow_limit __rcu *flow_limit;
3026 #endif
3027 	struct Qdisc		*output_queue;
3028 	struct Qdisc		**output_queue_tailp;
3029 	struct sk_buff		*completion_queue;
3030 #ifdef CONFIG_XFRM_OFFLOAD
3031 	struct sk_buff_head	xfrm_backlog;
3032 #endif
3033 	/* written and read only by owning cpu: */
3034 	struct {
3035 		u16 recursion;
3036 		u8  more;
3037 	} xmit;
3038 #ifdef CONFIG_RPS
3039 	/* input_queue_head should be written by cpu owning this struct,
3040 	 * and only read by other cpus. Worth using a cache line.
3041 	 */
3042 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3043 
3044 	/* Elements below can be accessed between CPUs for RPS/RFS */
3045 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3046 	struct softnet_data	*rps_ipi_next;
3047 	unsigned int		cpu;
3048 	unsigned int		input_queue_tail;
3049 #endif
3050 	unsigned int		dropped;
3051 	struct sk_buff_head	input_pkt_queue;
3052 	struct napi_struct	backlog;
3053 
3054 };
3055 
3056 static inline void input_queue_head_incr(struct softnet_data *sd)
3057 {
3058 #ifdef CONFIG_RPS
3059 	sd->input_queue_head++;
3060 #endif
3061 }
3062 
3063 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3064 					      unsigned int *qtail)
3065 {
3066 #ifdef CONFIG_RPS
3067 	*qtail = ++sd->input_queue_tail;
3068 #endif
3069 }
3070 
3071 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3072 
3073 static inline int dev_recursion_level(void)
3074 {
3075 	return this_cpu_read(softnet_data.xmit.recursion);
3076 }
3077 
3078 #define XMIT_RECURSION_LIMIT	10
3079 static inline bool dev_xmit_recursion(void)
3080 {
3081 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3082 			XMIT_RECURSION_LIMIT);
3083 }
3084 
3085 static inline void dev_xmit_recursion_inc(void)
3086 {
3087 	__this_cpu_inc(softnet_data.xmit.recursion);
3088 }
3089 
3090 static inline void dev_xmit_recursion_dec(void)
3091 {
3092 	__this_cpu_dec(softnet_data.xmit.recursion);
3093 }
3094 
3095 void __netif_schedule(struct Qdisc *q);
3096 void netif_schedule_queue(struct netdev_queue *txq);
3097 
3098 static inline void netif_tx_schedule_all(struct net_device *dev)
3099 {
3100 	unsigned int i;
3101 
3102 	for (i = 0; i < dev->num_tx_queues; i++)
3103 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3104 }
3105 
3106 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3107 {
3108 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3109 }
3110 
3111 /**
3112  *	netif_start_queue - allow transmit
3113  *	@dev: network device
3114  *
3115  *	Allow upper layers to call the device hard_start_xmit routine.
3116  */
3117 static inline void netif_start_queue(struct net_device *dev)
3118 {
3119 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3120 }
3121 
3122 static inline void netif_tx_start_all_queues(struct net_device *dev)
3123 {
3124 	unsigned int i;
3125 
3126 	for (i = 0; i < dev->num_tx_queues; i++) {
3127 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3128 		netif_tx_start_queue(txq);
3129 	}
3130 }
3131 
3132 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3133 
3134 /**
3135  *	netif_wake_queue - restart transmit
3136  *	@dev: network device
3137  *
3138  *	Allow upper layers to call the device hard_start_xmit routine.
3139  *	Used for flow control when transmit resources are available.
3140  */
3141 static inline void netif_wake_queue(struct net_device *dev)
3142 {
3143 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3144 }
3145 
3146 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3147 {
3148 	unsigned int i;
3149 
3150 	for (i = 0; i < dev->num_tx_queues; i++) {
3151 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3152 		netif_tx_wake_queue(txq);
3153 	}
3154 }
3155 
3156 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3157 {
3158 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3159 }
3160 
3161 /**
3162  *	netif_stop_queue - stop transmitted packets
3163  *	@dev: network device
3164  *
3165  *	Stop upper layers calling the device hard_start_xmit routine.
3166  *	Used for flow control when transmit resources are unavailable.
3167  */
3168 static inline void netif_stop_queue(struct net_device *dev)
3169 {
3170 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3171 }
3172 
3173 void netif_tx_stop_all_queues(struct net_device *dev);
3174 void netdev_update_lockdep_key(struct net_device *dev);
3175 
3176 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3177 {
3178 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3179 }
3180 
3181 /**
3182  *	netif_queue_stopped - test if transmit queue is flowblocked
3183  *	@dev: network device
3184  *
3185  *	Test if transmit queue on device is currently unable to send.
3186  */
3187 static inline bool netif_queue_stopped(const struct net_device *dev)
3188 {
3189 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3190 }
3191 
3192 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3193 {
3194 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3195 }
3196 
3197 static inline bool
3198 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3199 {
3200 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3201 }
3202 
3203 static inline bool
3204 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3205 {
3206 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3207 }
3208 
3209 /**
3210  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3211  *	@dev_queue: pointer to transmit queue
3212  *
3213  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3214  * to give appropriate hint to the CPU.
3215  */
3216 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3217 {
3218 #ifdef CONFIG_BQL
3219 	prefetchw(&dev_queue->dql.num_queued);
3220 #endif
3221 }
3222 
3223 /**
3224  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3225  *	@dev_queue: pointer to transmit queue
3226  *
3227  * BQL enabled drivers might use this helper in their TX completion path,
3228  * to give appropriate hint to the CPU.
3229  */
3230 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3231 {
3232 #ifdef CONFIG_BQL
3233 	prefetchw(&dev_queue->dql.limit);
3234 #endif
3235 }
3236 
3237 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3238 					unsigned int bytes)
3239 {
3240 #ifdef CONFIG_BQL
3241 	dql_queued(&dev_queue->dql, bytes);
3242 
3243 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3244 		return;
3245 
3246 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3247 
3248 	/*
3249 	 * The XOFF flag must be set before checking the dql_avail below,
3250 	 * because in netdev_tx_completed_queue we update the dql_completed
3251 	 * before checking the XOFF flag.
3252 	 */
3253 	smp_mb();
3254 
3255 	/* check again in case another CPU has just made room avail */
3256 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3257 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3258 #endif
3259 }
3260 
3261 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3262  * that they should not test BQL status themselves.
3263  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3264  * skb of a batch.
3265  * Returns true if the doorbell must be used to kick the NIC.
3266  */
3267 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3268 					  unsigned int bytes,
3269 					  bool xmit_more)
3270 {
3271 	if (xmit_more) {
3272 #ifdef CONFIG_BQL
3273 		dql_queued(&dev_queue->dql, bytes);
3274 #endif
3275 		return netif_tx_queue_stopped(dev_queue);
3276 	}
3277 	netdev_tx_sent_queue(dev_queue, bytes);
3278 	return true;
3279 }
3280 
3281 /**
3282  * 	netdev_sent_queue - report the number of bytes queued to hardware
3283  * 	@dev: network device
3284  * 	@bytes: number of bytes queued to the hardware device queue
3285  *
3286  * 	Report the number of bytes queued for sending/completion to the network
3287  * 	device hardware queue. @bytes should be a good approximation and should
3288  * 	exactly match netdev_completed_queue() @bytes
3289  */
3290 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3291 {
3292 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3293 }
3294 
3295 static inline bool __netdev_sent_queue(struct net_device *dev,
3296 				       unsigned int bytes,
3297 				       bool xmit_more)
3298 {
3299 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3300 				      xmit_more);
3301 }
3302 
3303 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3304 					     unsigned int pkts, unsigned int bytes)
3305 {
3306 #ifdef CONFIG_BQL
3307 	if (unlikely(!bytes))
3308 		return;
3309 
3310 	dql_completed(&dev_queue->dql, bytes);
3311 
3312 	/*
3313 	 * Without the memory barrier there is a small possiblity that
3314 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3315 	 * be stopped forever
3316 	 */
3317 	smp_mb();
3318 
3319 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3320 		return;
3321 
3322 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3323 		netif_schedule_queue(dev_queue);
3324 #endif
3325 }
3326 
3327 /**
3328  * 	netdev_completed_queue - report bytes and packets completed by device
3329  * 	@dev: network device
3330  * 	@pkts: actual number of packets sent over the medium
3331  * 	@bytes: actual number of bytes sent over the medium
3332  *
3333  * 	Report the number of bytes and packets transmitted by the network device
3334  * 	hardware queue over the physical medium, @bytes must exactly match the
3335  * 	@bytes amount passed to netdev_sent_queue()
3336  */
3337 static inline void netdev_completed_queue(struct net_device *dev,
3338 					  unsigned int pkts, unsigned int bytes)
3339 {
3340 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3341 }
3342 
3343 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3344 {
3345 #ifdef CONFIG_BQL
3346 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3347 	dql_reset(&q->dql);
3348 #endif
3349 }
3350 
3351 /**
3352  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3353  * 	@dev_queue: network device
3354  *
3355  * 	Reset the bytes and packet count of a network device and clear the
3356  * 	software flow control OFF bit for this network device
3357  */
3358 static inline void netdev_reset_queue(struct net_device *dev_queue)
3359 {
3360 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3361 }
3362 
3363 /**
3364  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3365  * 	@dev: network device
3366  * 	@queue_index: given tx queue index
3367  *
3368  * 	Returns 0 if given tx queue index >= number of device tx queues,
3369  * 	otherwise returns the originally passed tx queue index.
3370  */
3371 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3372 {
3373 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3374 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3375 				     dev->name, queue_index,
3376 				     dev->real_num_tx_queues);
3377 		return 0;
3378 	}
3379 
3380 	return queue_index;
3381 }
3382 
3383 /**
3384  *	netif_running - test if up
3385  *	@dev: network device
3386  *
3387  *	Test if the device has been brought up.
3388  */
3389 static inline bool netif_running(const struct net_device *dev)
3390 {
3391 	return test_bit(__LINK_STATE_START, &dev->state);
3392 }
3393 
3394 /*
3395  * Routines to manage the subqueues on a device.  We only need start,
3396  * stop, and a check if it's stopped.  All other device management is
3397  * done at the overall netdevice level.
3398  * Also test the device if we're multiqueue.
3399  */
3400 
3401 /**
3402  *	netif_start_subqueue - allow sending packets on subqueue
3403  *	@dev: network device
3404  *	@queue_index: sub queue index
3405  *
3406  * Start individual transmit queue of a device with multiple transmit queues.
3407  */
3408 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3409 {
3410 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3411 
3412 	netif_tx_start_queue(txq);
3413 }
3414 
3415 /**
3416  *	netif_stop_subqueue - stop sending packets on subqueue
3417  *	@dev: network device
3418  *	@queue_index: sub queue index
3419  *
3420  * Stop individual transmit queue of a device with multiple transmit queues.
3421  */
3422 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3423 {
3424 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3425 	netif_tx_stop_queue(txq);
3426 }
3427 
3428 /**
3429  *	netif_subqueue_stopped - test status of subqueue
3430  *	@dev: network device
3431  *	@queue_index: sub queue index
3432  *
3433  * Check individual transmit queue of a device with multiple transmit queues.
3434  */
3435 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3436 					    u16 queue_index)
3437 {
3438 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3439 
3440 	return netif_tx_queue_stopped(txq);
3441 }
3442 
3443 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3444 					  struct sk_buff *skb)
3445 {
3446 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3447 }
3448 
3449 /**
3450  *	netif_wake_subqueue - allow sending packets on subqueue
3451  *	@dev: network device
3452  *	@queue_index: sub queue index
3453  *
3454  * Resume individual transmit queue of a device with multiple transmit queues.
3455  */
3456 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3457 {
3458 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3459 
3460 	netif_tx_wake_queue(txq);
3461 }
3462 
3463 #ifdef CONFIG_XPS
3464 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3465 			u16 index);
3466 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3467 			  u16 index, bool is_rxqs_map);
3468 
3469 /**
3470  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3471  *	@j: CPU/Rx queue index
3472  *	@mask: bitmask of all cpus/rx queues
3473  *	@nr_bits: number of bits in the bitmask
3474  *
3475  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3476  */
3477 static inline bool netif_attr_test_mask(unsigned long j,
3478 					const unsigned long *mask,
3479 					unsigned int nr_bits)
3480 {
3481 	cpu_max_bits_warn(j, nr_bits);
3482 	return test_bit(j, mask);
3483 }
3484 
3485 /**
3486  *	netif_attr_test_online - Test for online CPU/Rx queue
3487  *	@j: CPU/Rx queue index
3488  *	@online_mask: bitmask for CPUs/Rx queues that are online
3489  *	@nr_bits: number of bits in the bitmask
3490  *
3491  * Returns true if a CPU/Rx queue is online.
3492  */
3493 static inline bool netif_attr_test_online(unsigned long j,
3494 					  const unsigned long *online_mask,
3495 					  unsigned int nr_bits)
3496 {
3497 	cpu_max_bits_warn(j, nr_bits);
3498 
3499 	if (online_mask)
3500 		return test_bit(j, online_mask);
3501 
3502 	return (j < nr_bits);
3503 }
3504 
3505 /**
3506  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3507  *	@n: CPU/Rx queue index
3508  *	@srcp: the cpumask/Rx queue mask pointer
3509  *	@nr_bits: number of bits in the bitmask
3510  *
3511  * Returns >= nr_bits if no further CPUs/Rx queues set.
3512  */
3513 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3514 					       unsigned int nr_bits)
3515 {
3516 	/* -1 is a legal arg here. */
3517 	if (n != -1)
3518 		cpu_max_bits_warn(n, nr_bits);
3519 
3520 	if (srcp)
3521 		return find_next_bit(srcp, nr_bits, n + 1);
3522 
3523 	return n + 1;
3524 }
3525 
3526 /**
3527  *	netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p
3528  *	@n: CPU/Rx queue index
3529  *	@src1p: the first CPUs/Rx queues mask pointer
3530  *	@src2p: the second CPUs/Rx queues mask pointer
3531  *	@nr_bits: number of bits in the bitmask
3532  *
3533  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3534  */
3535 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3536 					  const unsigned long *src2p,
3537 					  unsigned int nr_bits)
3538 {
3539 	/* -1 is a legal arg here. */
3540 	if (n != -1)
3541 		cpu_max_bits_warn(n, nr_bits);
3542 
3543 	if (src1p && src2p)
3544 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3545 	else if (src1p)
3546 		return find_next_bit(src1p, nr_bits, n + 1);
3547 	else if (src2p)
3548 		return find_next_bit(src2p, nr_bits, n + 1);
3549 
3550 	return n + 1;
3551 }
3552 #else
3553 static inline int netif_set_xps_queue(struct net_device *dev,
3554 				      const struct cpumask *mask,
3555 				      u16 index)
3556 {
3557 	return 0;
3558 }
3559 
3560 static inline int __netif_set_xps_queue(struct net_device *dev,
3561 					const unsigned long *mask,
3562 					u16 index, bool is_rxqs_map)
3563 {
3564 	return 0;
3565 }
3566 #endif
3567 
3568 /**
3569  *	netif_is_multiqueue - test if device has multiple transmit queues
3570  *	@dev: network device
3571  *
3572  * Check if device has multiple transmit queues
3573  */
3574 static inline bool netif_is_multiqueue(const struct net_device *dev)
3575 {
3576 	return dev->num_tx_queues > 1;
3577 }
3578 
3579 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3580 
3581 #ifdef CONFIG_SYSFS
3582 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3583 #else
3584 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3585 						unsigned int rxqs)
3586 {
3587 	dev->real_num_rx_queues = rxqs;
3588 	return 0;
3589 }
3590 #endif
3591 
3592 static inline struct netdev_rx_queue *
3593 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3594 {
3595 	return dev->_rx + rxq;
3596 }
3597 
3598 #ifdef CONFIG_SYSFS
3599 static inline unsigned int get_netdev_rx_queue_index(
3600 		struct netdev_rx_queue *queue)
3601 {
3602 	struct net_device *dev = queue->dev;
3603 	int index = queue - dev->_rx;
3604 
3605 	BUG_ON(index >= dev->num_rx_queues);
3606 	return index;
3607 }
3608 #endif
3609 
3610 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3611 int netif_get_num_default_rss_queues(void);
3612 
3613 enum skb_free_reason {
3614 	SKB_REASON_CONSUMED,
3615 	SKB_REASON_DROPPED,
3616 };
3617 
3618 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3619 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3620 
3621 /*
3622  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3623  * interrupt context or with hardware interrupts being disabled.
3624  * (in_irq() || irqs_disabled())
3625  *
3626  * We provide four helpers that can be used in following contexts :
3627  *
3628  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3629  *  replacing kfree_skb(skb)
3630  *
3631  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3632  *  Typically used in place of consume_skb(skb) in TX completion path
3633  *
3634  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3635  *  replacing kfree_skb(skb)
3636  *
3637  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3638  *  and consumed a packet. Used in place of consume_skb(skb)
3639  */
3640 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3641 {
3642 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3643 }
3644 
3645 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3646 {
3647 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3648 }
3649 
3650 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3651 {
3652 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3653 }
3654 
3655 static inline void dev_consume_skb_any(struct sk_buff *skb)
3656 {
3657 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3658 }
3659 
3660 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3661 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3662 int netif_rx(struct sk_buff *skb);
3663 int netif_rx_ni(struct sk_buff *skb);
3664 int netif_receive_skb(struct sk_buff *skb);
3665 int netif_receive_skb_core(struct sk_buff *skb);
3666 void netif_receive_skb_list(struct list_head *head);
3667 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3668 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3669 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3670 gro_result_t napi_gro_frags(struct napi_struct *napi);
3671 struct packet_offload *gro_find_receive_by_type(__be16 type);
3672 struct packet_offload *gro_find_complete_by_type(__be16 type);
3673 
3674 static inline void napi_free_frags(struct napi_struct *napi)
3675 {
3676 	kfree_skb(napi->skb);
3677 	napi->skb = NULL;
3678 }
3679 
3680 bool netdev_is_rx_handler_busy(struct net_device *dev);
3681 int netdev_rx_handler_register(struct net_device *dev,
3682 			       rx_handler_func_t *rx_handler,
3683 			       void *rx_handler_data);
3684 void netdev_rx_handler_unregister(struct net_device *dev);
3685 
3686 bool dev_valid_name(const char *name);
3687 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3688 		bool *need_copyout);
3689 int dev_ifconf(struct net *net, struct ifconf *, int);
3690 int dev_ethtool(struct net *net, struct ifreq *);
3691 unsigned int dev_get_flags(const struct net_device *);
3692 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3693 		       struct netlink_ext_ack *extack);
3694 int dev_change_flags(struct net_device *dev, unsigned int flags,
3695 		     struct netlink_ext_ack *extack);
3696 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3697 			unsigned int gchanges);
3698 int dev_change_name(struct net_device *, const char *);
3699 int dev_set_alias(struct net_device *, const char *, size_t);
3700 int dev_get_alias(const struct net_device *, char *, size_t);
3701 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3702 int __dev_set_mtu(struct net_device *, int);
3703 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3704 		    struct netlink_ext_ack *extack);
3705 int dev_set_mtu(struct net_device *, int);
3706 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3707 void dev_set_group(struct net_device *, int);
3708 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3709 			      struct netlink_ext_ack *extack);
3710 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3711 			struct netlink_ext_ack *extack);
3712 int dev_change_carrier(struct net_device *, bool new_carrier);
3713 int dev_get_phys_port_id(struct net_device *dev,
3714 			 struct netdev_phys_item_id *ppid);
3715 int dev_get_phys_port_name(struct net_device *dev,
3716 			   char *name, size_t len);
3717 int dev_get_port_parent_id(struct net_device *dev,
3718 			   struct netdev_phys_item_id *ppid, bool recurse);
3719 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3720 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3721 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3722 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3723 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3724 				    struct netdev_queue *txq, int *ret);
3725 
3726 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3727 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3728 		      int fd, u32 flags);
3729 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3730 		    enum bpf_netdev_command cmd);
3731 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3732 
3733 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3734 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3735 bool is_skb_forwardable(const struct net_device *dev,
3736 			const struct sk_buff *skb);
3737 
3738 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3739 					       struct sk_buff *skb)
3740 {
3741 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3742 	    unlikely(!is_skb_forwardable(dev, skb))) {
3743 		atomic_long_inc(&dev->rx_dropped);
3744 		kfree_skb(skb);
3745 		return NET_RX_DROP;
3746 	}
3747 
3748 	skb_scrub_packet(skb, true);
3749 	skb->priority = 0;
3750 	return 0;
3751 }
3752 
3753 bool dev_nit_active(struct net_device *dev);
3754 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3755 
3756 extern int		netdev_budget;
3757 extern unsigned int	netdev_budget_usecs;
3758 
3759 /* Called by rtnetlink.c:rtnl_unlock() */
3760 void netdev_run_todo(void);
3761 
3762 /**
3763  *	dev_put - release reference to device
3764  *	@dev: network device
3765  *
3766  * Release reference to device to allow it to be freed.
3767  */
3768 static inline void dev_put(struct net_device *dev)
3769 {
3770 	this_cpu_dec(*dev->pcpu_refcnt);
3771 }
3772 
3773 /**
3774  *	dev_hold - get reference to device
3775  *	@dev: network device
3776  *
3777  * Hold reference to device to keep it from being freed.
3778  */
3779 static inline void dev_hold(struct net_device *dev)
3780 {
3781 	this_cpu_inc(*dev->pcpu_refcnt);
3782 }
3783 
3784 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3785  * and _off may be called from IRQ context, but it is caller
3786  * who is responsible for serialization of these calls.
3787  *
3788  * The name carrier is inappropriate, these functions should really be
3789  * called netif_lowerlayer_*() because they represent the state of any
3790  * kind of lower layer not just hardware media.
3791  */
3792 
3793 void linkwatch_init_dev(struct net_device *dev);
3794 void linkwatch_fire_event(struct net_device *dev);
3795 void linkwatch_forget_dev(struct net_device *dev);
3796 
3797 /**
3798  *	netif_carrier_ok - test if carrier present
3799  *	@dev: network device
3800  *
3801  * Check if carrier is present on device
3802  */
3803 static inline bool netif_carrier_ok(const struct net_device *dev)
3804 {
3805 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3806 }
3807 
3808 unsigned long dev_trans_start(struct net_device *dev);
3809 
3810 void __netdev_watchdog_up(struct net_device *dev);
3811 
3812 void netif_carrier_on(struct net_device *dev);
3813 
3814 void netif_carrier_off(struct net_device *dev);
3815 
3816 /**
3817  *	netif_dormant_on - mark device as dormant.
3818  *	@dev: network device
3819  *
3820  * Mark device as dormant (as per RFC2863).
3821  *
3822  * The dormant state indicates that the relevant interface is not
3823  * actually in a condition to pass packets (i.e., it is not 'up') but is
3824  * in a "pending" state, waiting for some external event.  For "on-
3825  * demand" interfaces, this new state identifies the situation where the
3826  * interface is waiting for events to place it in the up state.
3827  */
3828 static inline void netif_dormant_on(struct net_device *dev)
3829 {
3830 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3831 		linkwatch_fire_event(dev);
3832 }
3833 
3834 /**
3835  *	netif_dormant_off - set device as not dormant.
3836  *	@dev: network device
3837  *
3838  * Device is not in dormant state.
3839  */
3840 static inline void netif_dormant_off(struct net_device *dev)
3841 {
3842 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3843 		linkwatch_fire_event(dev);
3844 }
3845 
3846 /**
3847  *	netif_dormant - test if device is dormant
3848  *	@dev: network device
3849  *
3850  * Check if device is dormant.
3851  */
3852 static inline bool netif_dormant(const struct net_device *dev)
3853 {
3854 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3855 }
3856 
3857 
3858 /**
3859  *	netif_oper_up - test if device is operational
3860  *	@dev: network device
3861  *
3862  * Check if carrier is operational
3863  */
3864 static inline bool netif_oper_up(const struct net_device *dev)
3865 {
3866 	return (dev->operstate == IF_OPER_UP ||
3867 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3868 }
3869 
3870 /**
3871  *	netif_device_present - is device available or removed
3872  *	@dev: network device
3873  *
3874  * Check if device has not been removed from system.
3875  */
3876 static inline bool netif_device_present(struct net_device *dev)
3877 {
3878 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3879 }
3880 
3881 void netif_device_detach(struct net_device *dev);
3882 
3883 void netif_device_attach(struct net_device *dev);
3884 
3885 /*
3886  * Network interface message level settings
3887  */
3888 
3889 enum {
3890 	NETIF_MSG_DRV		= 0x0001,
3891 	NETIF_MSG_PROBE		= 0x0002,
3892 	NETIF_MSG_LINK		= 0x0004,
3893 	NETIF_MSG_TIMER		= 0x0008,
3894 	NETIF_MSG_IFDOWN	= 0x0010,
3895 	NETIF_MSG_IFUP		= 0x0020,
3896 	NETIF_MSG_RX_ERR	= 0x0040,
3897 	NETIF_MSG_TX_ERR	= 0x0080,
3898 	NETIF_MSG_TX_QUEUED	= 0x0100,
3899 	NETIF_MSG_INTR		= 0x0200,
3900 	NETIF_MSG_TX_DONE	= 0x0400,
3901 	NETIF_MSG_RX_STATUS	= 0x0800,
3902 	NETIF_MSG_PKTDATA	= 0x1000,
3903 	NETIF_MSG_HW		= 0x2000,
3904 	NETIF_MSG_WOL		= 0x4000,
3905 };
3906 
3907 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3908 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3909 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3910 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3911 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3912 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3913 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3914 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3915 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3916 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3917 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3918 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3919 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3920 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3921 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3922 
3923 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3924 {
3925 	/* use default */
3926 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3927 		return default_msg_enable_bits;
3928 	if (debug_value == 0)	/* no output */
3929 		return 0;
3930 	/* set low N bits */
3931 	return (1U << debug_value) - 1;
3932 }
3933 
3934 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3935 {
3936 	spin_lock(&txq->_xmit_lock);
3937 	txq->xmit_lock_owner = cpu;
3938 }
3939 
3940 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3941 {
3942 	__acquire(&txq->_xmit_lock);
3943 	return true;
3944 }
3945 
3946 static inline void __netif_tx_release(struct netdev_queue *txq)
3947 {
3948 	__release(&txq->_xmit_lock);
3949 }
3950 
3951 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3952 {
3953 	spin_lock_bh(&txq->_xmit_lock);
3954 	txq->xmit_lock_owner = smp_processor_id();
3955 }
3956 
3957 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3958 {
3959 	bool ok = spin_trylock(&txq->_xmit_lock);
3960 	if (likely(ok))
3961 		txq->xmit_lock_owner = smp_processor_id();
3962 	return ok;
3963 }
3964 
3965 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3966 {
3967 	txq->xmit_lock_owner = -1;
3968 	spin_unlock(&txq->_xmit_lock);
3969 }
3970 
3971 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3972 {
3973 	txq->xmit_lock_owner = -1;
3974 	spin_unlock_bh(&txq->_xmit_lock);
3975 }
3976 
3977 static inline void txq_trans_update(struct netdev_queue *txq)
3978 {
3979 	if (txq->xmit_lock_owner != -1)
3980 		txq->trans_start = jiffies;
3981 }
3982 
3983 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3984 static inline void netif_trans_update(struct net_device *dev)
3985 {
3986 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3987 
3988 	if (txq->trans_start != jiffies)
3989 		txq->trans_start = jiffies;
3990 }
3991 
3992 /**
3993  *	netif_tx_lock - grab network device transmit lock
3994  *	@dev: network device
3995  *
3996  * Get network device transmit lock
3997  */
3998 static inline void netif_tx_lock(struct net_device *dev)
3999 {
4000 	unsigned int i;
4001 	int cpu;
4002 
4003 	spin_lock(&dev->tx_global_lock);
4004 	cpu = smp_processor_id();
4005 	for (i = 0; i < dev->num_tx_queues; i++) {
4006 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4007 
4008 		/* We are the only thread of execution doing a
4009 		 * freeze, but we have to grab the _xmit_lock in
4010 		 * order to synchronize with threads which are in
4011 		 * the ->hard_start_xmit() handler and already
4012 		 * checked the frozen bit.
4013 		 */
4014 		__netif_tx_lock(txq, cpu);
4015 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4016 		__netif_tx_unlock(txq);
4017 	}
4018 }
4019 
4020 static inline void netif_tx_lock_bh(struct net_device *dev)
4021 {
4022 	local_bh_disable();
4023 	netif_tx_lock(dev);
4024 }
4025 
4026 static inline void netif_tx_unlock(struct net_device *dev)
4027 {
4028 	unsigned int i;
4029 
4030 	for (i = 0; i < dev->num_tx_queues; i++) {
4031 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4032 
4033 		/* No need to grab the _xmit_lock here.  If the
4034 		 * queue is not stopped for another reason, we
4035 		 * force a schedule.
4036 		 */
4037 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4038 		netif_schedule_queue(txq);
4039 	}
4040 	spin_unlock(&dev->tx_global_lock);
4041 }
4042 
4043 static inline void netif_tx_unlock_bh(struct net_device *dev)
4044 {
4045 	netif_tx_unlock(dev);
4046 	local_bh_enable();
4047 }
4048 
4049 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4050 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4051 		__netif_tx_lock(txq, cpu);		\
4052 	} else {					\
4053 		__netif_tx_acquire(txq);		\
4054 	}						\
4055 }
4056 
4057 #define HARD_TX_TRYLOCK(dev, txq)			\
4058 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4059 		__netif_tx_trylock(txq) :		\
4060 		__netif_tx_acquire(txq))
4061 
4062 #define HARD_TX_UNLOCK(dev, txq) {			\
4063 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4064 		__netif_tx_unlock(txq);			\
4065 	} else {					\
4066 		__netif_tx_release(txq);		\
4067 	}						\
4068 }
4069 
4070 static inline void netif_tx_disable(struct net_device *dev)
4071 {
4072 	unsigned int i;
4073 	int cpu;
4074 
4075 	local_bh_disable();
4076 	cpu = smp_processor_id();
4077 	for (i = 0; i < dev->num_tx_queues; i++) {
4078 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4079 
4080 		__netif_tx_lock(txq, cpu);
4081 		netif_tx_stop_queue(txq);
4082 		__netif_tx_unlock(txq);
4083 	}
4084 	local_bh_enable();
4085 }
4086 
4087 static inline void netif_addr_lock(struct net_device *dev)
4088 {
4089 	spin_lock(&dev->addr_list_lock);
4090 }
4091 
4092 static inline void netif_addr_lock_bh(struct net_device *dev)
4093 {
4094 	spin_lock_bh(&dev->addr_list_lock);
4095 }
4096 
4097 static inline void netif_addr_unlock(struct net_device *dev)
4098 {
4099 	spin_unlock(&dev->addr_list_lock);
4100 }
4101 
4102 static inline void netif_addr_unlock_bh(struct net_device *dev)
4103 {
4104 	spin_unlock_bh(&dev->addr_list_lock);
4105 }
4106 
4107 /*
4108  * dev_addrs walker. Should be used only for read access. Call with
4109  * rcu_read_lock held.
4110  */
4111 #define for_each_dev_addr(dev, ha) \
4112 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4113 
4114 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4115 
4116 void ether_setup(struct net_device *dev);
4117 
4118 /* Support for loadable net-drivers */
4119 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4120 				    unsigned char name_assign_type,
4121 				    void (*setup)(struct net_device *),
4122 				    unsigned int txqs, unsigned int rxqs);
4123 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4124 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4125 
4126 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4127 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4128 			 count)
4129 
4130 int register_netdev(struct net_device *dev);
4131 void unregister_netdev(struct net_device *dev);
4132 
4133 /* General hardware address lists handling functions */
4134 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4135 		   struct netdev_hw_addr_list *from_list, int addr_len);
4136 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4137 		      struct netdev_hw_addr_list *from_list, int addr_len);
4138 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4139 		       struct net_device *dev,
4140 		       int (*sync)(struct net_device *, const unsigned char *),
4141 		       int (*unsync)(struct net_device *,
4142 				     const unsigned char *));
4143 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4144 			   struct net_device *dev,
4145 			   int (*sync)(struct net_device *,
4146 				       const unsigned char *, int),
4147 			   int (*unsync)(struct net_device *,
4148 					 const unsigned char *, int));
4149 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4150 			      struct net_device *dev,
4151 			      int (*unsync)(struct net_device *,
4152 					    const unsigned char *, int));
4153 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4154 			  struct net_device *dev,
4155 			  int (*unsync)(struct net_device *,
4156 					const unsigned char *));
4157 void __hw_addr_init(struct netdev_hw_addr_list *list);
4158 
4159 /* Functions used for device addresses handling */
4160 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4161 		 unsigned char addr_type);
4162 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4163 		 unsigned char addr_type);
4164 void dev_addr_flush(struct net_device *dev);
4165 int dev_addr_init(struct net_device *dev);
4166 
4167 /* Functions used for unicast addresses handling */
4168 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4169 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4170 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4171 int dev_uc_sync(struct net_device *to, struct net_device *from);
4172 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4173 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4174 void dev_uc_flush(struct net_device *dev);
4175 void dev_uc_init(struct net_device *dev);
4176 
4177 /**
4178  *  __dev_uc_sync - Synchonize device's unicast list
4179  *  @dev:  device to sync
4180  *  @sync: function to call if address should be added
4181  *  @unsync: function to call if address should be removed
4182  *
4183  *  Add newly added addresses to the interface, and release
4184  *  addresses that have been deleted.
4185  */
4186 static inline int __dev_uc_sync(struct net_device *dev,
4187 				int (*sync)(struct net_device *,
4188 					    const unsigned char *),
4189 				int (*unsync)(struct net_device *,
4190 					      const unsigned char *))
4191 {
4192 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4193 }
4194 
4195 /**
4196  *  __dev_uc_unsync - Remove synchronized addresses from device
4197  *  @dev:  device to sync
4198  *  @unsync: function to call if address should be removed
4199  *
4200  *  Remove all addresses that were added to the device by dev_uc_sync().
4201  */
4202 static inline void __dev_uc_unsync(struct net_device *dev,
4203 				   int (*unsync)(struct net_device *,
4204 						 const unsigned char *))
4205 {
4206 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4207 }
4208 
4209 /* Functions used for multicast addresses handling */
4210 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4211 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4212 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4213 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4214 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4215 int dev_mc_sync(struct net_device *to, struct net_device *from);
4216 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4217 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4218 void dev_mc_flush(struct net_device *dev);
4219 void dev_mc_init(struct net_device *dev);
4220 
4221 /**
4222  *  __dev_mc_sync - Synchonize device's multicast list
4223  *  @dev:  device to sync
4224  *  @sync: function to call if address should be added
4225  *  @unsync: function to call if address should be removed
4226  *
4227  *  Add newly added addresses to the interface, and release
4228  *  addresses that have been deleted.
4229  */
4230 static inline int __dev_mc_sync(struct net_device *dev,
4231 				int (*sync)(struct net_device *,
4232 					    const unsigned char *),
4233 				int (*unsync)(struct net_device *,
4234 					      const unsigned char *))
4235 {
4236 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4237 }
4238 
4239 /**
4240  *  __dev_mc_unsync - Remove synchronized addresses from device
4241  *  @dev:  device to sync
4242  *  @unsync: function to call if address should be removed
4243  *
4244  *  Remove all addresses that were added to the device by dev_mc_sync().
4245  */
4246 static inline void __dev_mc_unsync(struct net_device *dev,
4247 				   int (*unsync)(struct net_device *,
4248 						 const unsigned char *))
4249 {
4250 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4251 }
4252 
4253 /* Functions used for secondary unicast and multicast support */
4254 void dev_set_rx_mode(struct net_device *dev);
4255 void __dev_set_rx_mode(struct net_device *dev);
4256 int dev_set_promiscuity(struct net_device *dev, int inc);
4257 int dev_set_allmulti(struct net_device *dev, int inc);
4258 void netdev_state_change(struct net_device *dev);
4259 void netdev_notify_peers(struct net_device *dev);
4260 void netdev_features_change(struct net_device *dev);
4261 /* Load a device via the kmod */
4262 void dev_load(struct net *net, const char *name);
4263 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4264 					struct rtnl_link_stats64 *storage);
4265 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4266 			     const struct net_device_stats *netdev_stats);
4267 
4268 extern int		netdev_max_backlog;
4269 extern int		netdev_tstamp_prequeue;
4270 extern int		weight_p;
4271 extern int		dev_weight_rx_bias;
4272 extern int		dev_weight_tx_bias;
4273 extern int		dev_rx_weight;
4274 extern int		dev_tx_weight;
4275 extern int		gro_normal_batch;
4276 
4277 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4278 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4279 						     struct list_head **iter);
4280 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4281 						     struct list_head **iter);
4282 
4283 /* iterate through upper list, must be called under RCU read lock */
4284 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4285 	for (iter = &(dev)->adj_list.upper, \
4286 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4287 	     updev; \
4288 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4289 
4290 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4291 				  int (*fn)(struct net_device *upper_dev,
4292 					    void *data),
4293 				  void *data);
4294 
4295 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4296 				  struct net_device *upper_dev);
4297 
4298 bool netdev_has_any_upper_dev(struct net_device *dev);
4299 
4300 void *netdev_lower_get_next_private(struct net_device *dev,
4301 				    struct list_head **iter);
4302 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4303 					struct list_head **iter);
4304 
4305 #define netdev_for_each_lower_private(dev, priv, iter) \
4306 	for (iter = (dev)->adj_list.lower.next, \
4307 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4308 	     priv; \
4309 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4310 
4311 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4312 	for (iter = &(dev)->adj_list.lower, \
4313 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4314 	     priv; \
4315 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4316 
4317 void *netdev_lower_get_next(struct net_device *dev,
4318 				struct list_head **iter);
4319 
4320 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4321 	for (iter = (dev)->adj_list.lower.next, \
4322 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4323 	     ldev; \
4324 	     ldev = netdev_lower_get_next(dev, &(iter)))
4325 
4326 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
4327 					     struct list_head **iter);
4328 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
4329 						 struct list_head **iter);
4330 
4331 int netdev_walk_all_lower_dev(struct net_device *dev,
4332 			      int (*fn)(struct net_device *lower_dev,
4333 					void *data),
4334 			      void *data);
4335 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4336 				  int (*fn)(struct net_device *lower_dev,
4337 					    void *data),
4338 				  void *data);
4339 
4340 void *netdev_adjacent_get_private(struct list_head *adj_list);
4341 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4342 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4343 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4344 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4345 			  struct netlink_ext_ack *extack);
4346 int netdev_master_upper_dev_link(struct net_device *dev,
4347 				 struct net_device *upper_dev,
4348 				 void *upper_priv, void *upper_info,
4349 				 struct netlink_ext_ack *extack);
4350 void netdev_upper_dev_unlink(struct net_device *dev,
4351 			     struct net_device *upper_dev);
4352 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4353 				   struct net_device *new_dev,
4354 				   struct net_device *dev,
4355 				   struct netlink_ext_ack *extack);
4356 void netdev_adjacent_change_commit(struct net_device *old_dev,
4357 				   struct net_device *new_dev,
4358 				   struct net_device *dev);
4359 void netdev_adjacent_change_abort(struct net_device *old_dev,
4360 				  struct net_device *new_dev,
4361 				  struct net_device *dev);
4362 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4363 void *netdev_lower_dev_get_private(struct net_device *dev,
4364 				   struct net_device *lower_dev);
4365 void netdev_lower_state_changed(struct net_device *lower_dev,
4366 				void *lower_state_info);
4367 
4368 /* RSS keys are 40 or 52 bytes long */
4369 #define NETDEV_RSS_KEY_LEN 52
4370 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4371 void netdev_rss_key_fill(void *buffer, size_t len);
4372 
4373 int skb_checksum_help(struct sk_buff *skb);
4374 int skb_crc32c_csum_help(struct sk_buff *skb);
4375 int skb_csum_hwoffload_help(struct sk_buff *skb,
4376 			    const netdev_features_t features);
4377 
4378 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4379 				  netdev_features_t features, bool tx_path);
4380 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4381 				    netdev_features_t features);
4382 
4383 struct netdev_bonding_info {
4384 	ifslave	slave;
4385 	ifbond	master;
4386 };
4387 
4388 struct netdev_notifier_bonding_info {
4389 	struct netdev_notifier_info info; /* must be first */
4390 	struct netdev_bonding_info  bonding_info;
4391 };
4392 
4393 void netdev_bonding_info_change(struct net_device *dev,
4394 				struct netdev_bonding_info *bonding_info);
4395 
4396 static inline
4397 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4398 {
4399 	return __skb_gso_segment(skb, features, true);
4400 }
4401 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4402 
4403 static inline bool can_checksum_protocol(netdev_features_t features,
4404 					 __be16 protocol)
4405 {
4406 	if (protocol == htons(ETH_P_FCOE))
4407 		return !!(features & NETIF_F_FCOE_CRC);
4408 
4409 	/* Assume this is an IP checksum (not SCTP CRC) */
4410 
4411 	if (features & NETIF_F_HW_CSUM) {
4412 		/* Can checksum everything */
4413 		return true;
4414 	}
4415 
4416 	switch (protocol) {
4417 	case htons(ETH_P_IP):
4418 		return !!(features & NETIF_F_IP_CSUM);
4419 	case htons(ETH_P_IPV6):
4420 		return !!(features & NETIF_F_IPV6_CSUM);
4421 	default:
4422 		return false;
4423 	}
4424 }
4425 
4426 #ifdef CONFIG_BUG
4427 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4428 #else
4429 static inline void netdev_rx_csum_fault(struct net_device *dev,
4430 					struct sk_buff *skb)
4431 {
4432 }
4433 #endif
4434 /* rx skb timestamps */
4435 void net_enable_timestamp(void);
4436 void net_disable_timestamp(void);
4437 
4438 #ifdef CONFIG_PROC_FS
4439 int __init dev_proc_init(void);
4440 #else
4441 #define dev_proc_init() 0
4442 #endif
4443 
4444 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4445 					      struct sk_buff *skb, struct net_device *dev,
4446 					      bool more)
4447 {
4448 	__this_cpu_write(softnet_data.xmit.more, more);
4449 	return ops->ndo_start_xmit(skb, dev);
4450 }
4451 
4452 static inline bool netdev_xmit_more(void)
4453 {
4454 	return __this_cpu_read(softnet_data.xmit.more);
4455 }
4456 
4457 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4458 					    struct netdev_queue *txq, bool more)
4459 {
4460 	const struct net_device_ops *ops = dev->netdev_ops;
4461 	netdev_tx_t rc;
4462 
4463 	rc = __netdev_start_xmit(ops, skb, dev, more);
4464 	if (rc == NETDEV_TX_OK)
4465 		txq_trans_update(txq);
4466 
4467 	return rc;
4468 }
4469 
4470 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4471 				const void *ns);
4472 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4473 				 const void *ns);
4474 
4475 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4476 {
4477 	return netdev_class_create_file_ns(class_attr, NULL);
4478 }
4479 
4480 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4481 {
4482 	netdev_class_remove_file_ns(class_attr, NULL);
4483 }
4484 
4485 extern const struct kobj_ns_type_operations net_ns_type_operations;
4486 
4487 const char *netdev_drivername(const struct net_device *dev);
4488 
4489 void linkwatch_run_queue(void);
4490 
4491 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4492 							  netdev_features_t f2)
4493 {
4494 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4495 		if (f1 & NETIF_F_HW_CSUM)
4496 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4497 		else
4498 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4499 	}
4500 
4501 	return f1 & f2;
4502 }
4503 
4504 static inline netdev_features_t netdev_get_wanted_features(
4505 	struct net_device *dev)
4506 {
4507 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4508 }
4509 netdev_features_t netdev_increment_features(netdev_features_t all,
4510 	netdev_features_t one, netdev_features_t mask);
4511 
4512 /* Allow TSO being used on stacked device :
4513  * Performing the GSO segmentation before last device
4514  * is a performance improvement.
4515  */
4516 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4517 							netdev_features_t mask)
4518 {
4519 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4520 }
4521 
4522 int __netdev_update_features(struct net_device *dev);
4523 void netdev_update_features(struct net_device *dev);
4524 void netdev_change_features(struct net_device *dev);
4525 
4526 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4527 					struct net_device *dev);
4528 
4529 netdev_features_t passthru_features_check(struct sk_buff *skb,
4530 					  struct net_device *dev,
4531 					  netdev_features_t features);
4532 netdev_features_t netif_skb_features(struct sk_buff *skb);
4533 
4534 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4535 {
4536 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4537 
4538 	/* check flags correspondence */
4539 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4540 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4541 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4542 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4543 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4544 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4545 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4546 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4547 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4548 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4549 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4550 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4551 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4552 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4553 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4554 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4555 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4556 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4557 
4558 	return (features & feature) == feature;
4559 }
4560 
4561 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4562 {
4563 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4564 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4565 }
4566 
4567 static inline bool netif_needs_gso(struct sk_buff *skb,
4568 				   netdev_features_t features)
4569 {
4570 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4571 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4572 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4573 }
4574 
4575 static inline void netif_set_gso_max_size(struct net_device *dev,
4576 					  unsigned int size)
4577 {
4578 	dev->gso_max_size = size;
4579 }
4580 
4581 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4582 					int pulled_hlen, u16 mac_offset,
4583 					int mac_len)
4584 {
4585 	skb->protocol = protocol;
4586 	skb->encapsulation = 1;
4587 	skb_push(skb, pulled_hlen);
4588 	skb_reset_transport_header(skb);
4589 	skb->mac_header = mac_offset;
4590 	skb->network_header = skb->mac_header + mac_len;
4591 	skb->mac_len = mac_len;
4592 }
4593 
4594 static inline bool netif_is_macsec(const struct net_device *dev)
4595 {
4596 	return dev->priv_flags & IFF_MACSEC;
4597 }
4598 
4599 static inline bool netif_is_macvlan(const struct net_device *dev)
4600 {
4601 	return dev->priv_flags & IFF_MACVLAN;
4602 }
4603 
4604 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4605 {
4606 	return dev->priv_flags & IFF_MACVLAN_PORT;
4607 }
4608 
4609 static inline bool netif_is_bond_master(const struct net_device *dev)
4610 {
4611 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4612 }
4613 
4614 static inline bool netif_is_bond_slave(const struct net_device *dev)
4615 {
4616 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4617 }
4618 
4619 static inline bool netif_supports_nofcs(struct net_device *dev)
4620 {
4621 	return dev->priv_flags & IFF_SUPP_NOFCS;
4622 }
4623 
4624 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4625 {
4626 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4627 }
4628 
4629 static inline bool netif_is_l3_master(const struct net_device *dev)
4630 {
4631 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4632 }
4633 
4634 static inline bool netif_is_l3_slave(const struct net_device *dev)
4635 {
4636 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4637 }
4638 
4639 static inline bool netif_is_bridge_master(const struct net_device *dev)
4640 {
4641 	return dev->priv_flags & IFF_EBRIDGE;
4642 }
4643 
4644 static inline bool netif_is_bridge_port(const struct net_device *dev)
4645 {
4646 	return dev->priv_flags & IFF_BRIDGE_PORT;
4647 }
4648 
4649 static inline bool netif_is_ovs_master(const struct net_device *dev)
4650 {
4651 	return dev->priv_flags & IFF_OPENVSWITCH;
4652 }
4653 
4654 static inline bool netif_is_ovs_port(const struct net_device *dev)
4655 {
4656 	return dev->priv_flags & IFF_OVS_DATAPATH;
4657 }
4658 
4659 static inline bool netif_is_team_master(const struct net_device *dev)
4660 {
4661 	return dev->priv_flags & IFF_TEAM;
4662 }
4663 
4664 static inline bool netif_is_team_port(const struct net_device *dev)
4665 {
4666 	return dev->priv_flags & IFF_TEAM_PORT;
4667 }
4668 
4669 static inline bool netif_is_lag_master(const struct net_device *dev)
4670 {
4671 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4672 }
4673 
4674 static inline bool netif_is_lag_port(const struct net_device *dev)
4675 {
4676 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4677 }
4678 
4679 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4680 {
4681 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4682 }
4683 
4684 static inline bool netif_is_failover(const struct net_device *dev)
4685 {
4686 	return dev->priv_flags & IFF_FAILOVER;
4687 }
4688 
4689 static inline bool netif_is_failover_slave(const struct net_device *dev)
4690 {
4691 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4692 }
4693 
4694 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4695 static inline void netif_keep_dst(struct net_device *dev)
4696 {
4697 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4698 }
4699 
4700 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4701 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4702 {
4703 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4704 	return dev->priv_flags & IFF_MACSEC;
4705 }
4706 
4707 extern struct pernet_operations __net_initdata loopback_net_ops;
4708 
4709 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4710 
4711 /* netdev_printk helpers, similar to dev_printk */
4712 
4713 static inline const char *netdev_name(const struct net_device *dev)
4714 {
4715 	if (!dev->name[0] || strchr(dev->name, '%'))
4716 		return "(unnamed net_device)";
4717 	return dev->name;
4718 }
4719 
4720 static inline bool netdev_unregistering(const struct net_device *dev)
4721 {
4722 	return dev->reg_state == NETREG_UNREGISTERING;
4723 }
4724 
4725 static inline const char *netdev_reg_state(const struct net_device *dev)
4726 {
4727 	switch (dev->reg_state) {
4728 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4729 	case NETREG_REGISTERED: return "";
4730 	case NETREG_UNREGISTERING: return " (unregistering)";
4731 	case NETREG_UNREGISTERED: return " (unregistered)";
4732 	case NETREG_RELEASED: return " (released)";
4733 	case NETREG_DUMMY: return " (dummy)";
4734 	}
4735 
4736 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4737 	return " (unknown)";
4738 }
4739 
4740 __printf(3, 4) __cold
4741 void netdev_printk(const char *level, const struct net_device *dev,
4742 		   const char *format, ...);
4743 __printf(2, 3) __cold
4744 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4745 __printf(2, 3) __cold
4746 void netdev_alert(const struct net_device *dev, const char *format, ...);
4747 __printf(2, 3) __cold
4748 void netdev_crit(const struct net_device *dev, const char *format, ...);
4749 __printf(2, 3) __cold
4750 void netdev_err(const struct net_device *dev, const char *format, ...);
4751 __printf(2, 3) __cold
4752 void netdev_warn(const struct net_device *dev, const char *format, ...);
4753 __printf(2, 3) __cold
4754 void netdev_notice(const struct net_device *dev, const char *format, ...);
4755 __printf(2, 3) __cold
4756 void netdev_info(const struct net_device *dev, const char *format, ...);
4757 
4758 #define netdev_level_once(level, dev, fmt, ...)			\
4759 do {								\
4760 	static bool __print_once __read_mostly;			\
4761 								\
4762 	if (!__print_once) {					\
4763 		__print_once = true;				\
4764 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4765 	}							\
4766 } while (0)
4767 
4768 #define netdev_emerg_once(dev, fmt, ...) \
4769 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4770 #define netdev_alert_once(dev, fmt, ...) \
4771 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4772 #define netdev_crit_once(dev, fmt, ...) \
4773 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4774 #define netdev_err_once(dev, fmt, ...) \
4775 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4776 #define netdev_warn_once(dev, fmt, ...) \
4777 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4778 #define netdev_notice_once(dev, fmt, ...) \
4779 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4780 #define netdev_info_once(dev, fmt, ...) \
4781 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4782 
4783 #define MODULE_ALIAS_NETDEV(device) \
4784 	MODULE_ALIAS("netdev-" device)
4785 
4786 #if defined(CONFIG_DYNAMIC_DEBUG)
4787 #define netdev_dbg(__dev, format, args...)			\
4788 do {								\
4789 	dynamic_netdev_dbg(__dev, format, ##args);		\
4790 } while (0)
4791 #elif defined(DEBUG)
4792 #define netdev_dbg(__dev, format, args...)			\
4793 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4794 #else
4795 #define netdev_dbg(__dev, format, args...)			\
4796 ({								\
4797 	if (0)							\
4798 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4799 })
4800 #endif
4801 
4802 #if defined(VERBOSE_DEBUG)
4803 #define netdev_vdbg	netdev_dbg
4804 #else
4805 
4806 #define netdev_vdbg(dev, format, args...)			\
4807 ({								\
4808 	if (0)							\
4809 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4810 	0;							\
4811 })
4812 #endif
4813 
4814 /*
4815  * netdev_WARN() acts like dev_printk(), but with the key difference
4816  * of using a WARN/WARN_ON to get the message out, including the
4817  * file/line information and a backtrace.
4818  */
4819 #define netdev_WARN(dev, format, args...)			\
4820 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4821 	     netdev_reg_state(dev), ##args)
4822 
4823 #define netdev_WARN_ONCE(dev, format, args...)				\
4824 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4825 		  netdev_reg_state(dev), ##args)
4826 
4827 /* netif printk helpers, similar to netdev_printk */
4828 
4829 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4830 do {					  			\
4831 	if (netif_msg_##type(priv))				\
4832 		netdev_printk(level, (dev), fmt, ##args);	\
4833 } while (0)
4834 
4835 #define netif_level(level, priv, type, dev, fmt, args...)	\
4836 do {								\
4837 	if (netif_msg_##type(priv))				\
4838 		netdev_##level(dev, fmt, ##args);		\
4839 } while (0)
4840 
4841 #define netif_emerg(priv, type, dev, fmt, args...)		\
4842 	netif_level(emerg, priv, type, dev, fmt, ##args)
4843 #define netif_alert(priv, type, dev, fmt, args...)		\
4844 	netif_level(alert, priv, type, dev, fmt, ##args)
4845 #define netif_crit(priv, type, dev, fmt, args...)		\
4846 	netif_level(crit, priv, type, dev, fmt, ##args)
4847 #define netif_err(priv, type, dev, fmt, args...)		\
4848 	netif_level(err, priv, type, dev, fmt, ##args)
4849 #define netif_warn(priv, type, dev, fmt, args...)		\
4850 	netif_level(warn, priv, type, dev, fmt, ##args)
4851 #define netif_notice(priv, type, dev, fmt, args...)		\
4852 	netif_level(notice, priv, type, dev, fmt, ##args)
4853 #define netif_info(priv, type, dev, fmt, args...)		\
4854 	netif_level(info, priv, type, dev, fmt, ##args)
4855 
4856 #if defined(CONFIG_DYNAMIC_DEBUG)
4857 #define netif_dbg(priv, type, netdev, format, args...)		\
4858 do {								\
4859 	if (netif_msg_##type(priv))				\
4860 		dynamic_netdev_dbg(netdev, format, ##args);	\
4861 } while (0)
4862 #elif defined(DEBUG)
4863 #define netif_dbg(priv, type, dev, format, args...)		\
4864 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4865 #else
4866 #define netif_dbg(priv, type, dev, format, args...)			\
4867 ({									\
4868 	if (0)								\
4869 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4870 	0;								\
4871 })
4872 #endif
4873 
4874 /* if @cond then downgrade to debug, else print at @level */
4875 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4876 	do {                                                              \
4877 		if (cond)                                                 \
4878 			netif_dbg(priv, type, netdev, fmt, ##args);       \
4879 		else                                                      \
4880 			netif_ ## level(priv, type, netdev, fmt, ##args); \
4881 	} while (0)
4882 
4883 #if defined(VERBOSE_DEBUG)
4884 #define netif_vdbg	netif_dbg
4885 #else
4886 #define netif_vdbg(priv, type, dev, format, args...)		\
4887 ({								\
4888 	if (0)							\
4889 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4890 	0;							\
4891 })
4892 #endif
4893 
4894 /*
4895  *	The list of packet types we will receive (as opposed to discard)
4896  *	and the routines to invoke.
4897  *
4898  *	Why 16. Because with 16 the only overlap we get on a hash of the
4899  *	low nibble of the protocol value is RARP/SNAP/X.25.
4900  *
4901  *		0800	IP
4902  *		0001	802.3
4903  *		0002	AX.25
4904  *		0004	802.2
4905  *		8035	RARP
4906  *		0005	SNAP
4907  *		0805	X.25
4908  *		0806	ARP
4909  *		8137	IPX
4910  *		0009	Localtalk
4911  *		86DD	IPv6
4912  */
4913 #define PTYPE_HASH_SIZE	(16)
4914 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4915 
4916 extern struct net_device *blackhole_netdev;
4917 
4918 #endif	/* _LINUX_NETDEVICE_H */
4919