xref: /linux-6.15/include/linux/netdevice.h (revision 4e97d521)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <[email protected]>
13  *		Corey Minyard <[email protected]>
14  *		Donald J. Becker, <[email protected]>
15  *		Alan Cox, <[email protected]>
16  *		Bjorn Ekwall. <[email protected]>
17  *              Pekka Riikonen <[email protected]>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 
44 #include <linux/netdev_features.h>
45 #include <linux/neighbour.h>
46 #include <linux/netdevice_xmit.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <uapi/linux/netdev.h>
51 #include <linux/hashtable.h>
52 #include <linux/rbtree.h>
53 #include <net/net_trackers.h>
54 #include <net/net_debug.h>
55 #include <net/dropreason-core.h>
56 
57 struct netpoll_info;
58 struct device;
59 struct ethtool_ops;
60 struct kernel_hwtstamp_config;
61 struct phy_device;
62 struct dsa_port;
63 struct ip_tunnel_parm_kern;
64 struct macsec_context;
65 struct macsec_ops;
66 struct netdev_name_node;
67 struct sd_flow_limit;
68 struct sfp_bus;
69 /* 802.11 specific */
70 struct wireless_dev;
71 /* 802.15.4 specific */
72 struct wpan_dev;
73 struct mpls_dev;
74 /* UDP Tunnel offloads */
75 struct udp_tunnel_info;
76 struct udp_tunnel_nic_info;
77 struct udp_tunnel_nic;
78 struct bpf_prog;
79 struct xdp_buff;
80 struct xdp_frame;
81 struct xdp_metadata_ops;
82 struct xdp_md;
83 struct ethtool_netdev_state;
84 
85 typedef u32 xdp_features_t;
86 
87 void synchronize_net(void);
88 void netdev_set_default_ethtool_ops(struct net_device *dev,
89 				    const struct ethtool_ops *ops);
90 void netdev_sw_irq_coalesce_default_on(struct net_device *dev);
91 
92 /* Backlog congestion levels */
93 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
94 #define NET_RX_DROP		1	/* packet dropped */
95 
96 #define MAX_NEST_DEV 8
97 
98 /*
99  * Transmit return codes: transmit return codes originate from three different
100  * namespaces:
101  *
102  * - qdisc return codes
103  * - driver transmit return codes
104  * - errno values
105  *
106  * Drivers are allowed to return any one of those in their hard_start_xmit()
107  * function. Real network devices commonly used with qdiscs should only return
108  * the driver transmit return codes though - when qdiscs are used, the actual
109  * transmission happens asynchronously, so the value is not propagated to
110  * higher layers. Virtual network devices transmit synchronously; in this case
111  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
112  * others are propagated to higher layers.
113  */
114 
115 /* qdisc ->enqueue() return codes. */
116 #define NET_XMIT_SUCCESS	0x00
117 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
118 #define NET_XMIT_CN		0x02	/* congestion notification	*/
119 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
120 
121 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
122  * indicates that the device will soon be dropping packets, or already drops
123  * some packets of the same priority; prompting us to send less aggressively. */
124 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
125 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
126 
127 /* Driver transmit return codes */
128 #define NETDEV_TX_MASK		0xf0
129 
130 enum netdev_tx {
131 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
132 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
133 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
134 };
135 typedef enum netdev_tx netdev_tx_t;
136 
137 /*
138  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
139  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
140  */
141 static inline bool dev_xmit_complete(int rc)
142 {
143 	/*
144 	 * Positive cases with an skb consumed by a driver:
145 	 * - successful transmission (rc == NETDEV_TX_OK)
146 	 * - error while transmitting (rc < 0)
147 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
148 	 */
149 	if (likely(rc < NET_XMIT_MASK))
150 		return true;
151 
152 	return false;
153 }
154 
155 /*
156  *	Compute the worst-case header length according to the protocols
157  *	used.
158  */
159 
160 #if defined(CONFIG_HYPERV_NET)
161 # define LL_MAX_HEADER 128
162 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
163 # if defined(CONFIG_MAC80211_MESH)
164 #  define LL_MAX_HEADER 128
165 # else
166 #  define LL_MAX_HEADER 96
167 # endif
168 #else
169 # define LL_MAX_HEADER 32
170 #endif
171 
172 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
173     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
174 #define MAX_HEADER LL_MAX_HEADER
175 #else
176 #define MAX_HEADER (LL_MAX_HEADER + 48)
177 #endif
178 
179 /*
180  *	Old network device statistics. Fields are native words
181  *	(unsigned long) so they can be read and written atomically.
182  */
183 
184 #define NET_DEV_STAT(FIELD)			\
185 	union {					\
186 		unsigned long FIELD;		\
187 		atomic_long_t __##FIELD;	\
188 	}
189 
190 struct net_device_stats {
191 	NET_DEV_STAT(rx_packets);
192 	NET_DEV_STAT(tx_packets);
193 	NET_DEV_STAT(rx_bytes);
194 	NET_DEV_STAT(tx_bytes);
195 	NET_DEV_STAT(rx_errors);
196 	NET_DEV_STAT(tx_errors);
197 	NET_DEV_STAT(rx_dropped);
198 	NET_DEV_STAT(tx_dropped);
199 	NET_DEV_STAT(multicast);
200 	NET_DEV_STAT(collisions);
201 	NET_DEV_STAT(rx_length_errors);
202 	NET_DEV_STAT(rx_over_errors);
203 	NET_DEV_STAT(rx_crc_errors);
204 	NET_DEV_STAT(rx_frame_errors);
205 	NET_DEV_STAT(rx_fifo_errors);
206 	NET_DEV_STAT(rx_missed_errors);
207 	NET_DEV_STAT(tx_aborted_errors);
208 	NET_DEV_STAT(tx_carrier_errors);
209 	NET_DEV_STAT(tx_fifo_errors);
210 	NET_DEV_STAT(tx_heartbeat_errors);
211 	NET_DEV_STAT(tx_window_errors);
212 	NET_DEV_STAT(rx_compressed);
213 	NET_DEV_STAT(tx_compressed);
214 };
215 #undef NET_DEV_STAT
216 
217 /* per-cpu stats, allocated on demand.
218  * Try to fit them in a single cache line, for dev_get_stats() sake.
219  */
220 struct net_device_core_stats {
221 	unsigned long	rx_dropped;
222 	unsigned long	tx_dropped;
223 	unsigned long	rx_nohandler;
224 	unsigned long	rx_otherhost_dropped;
225 } __aligned(4 * sizeof(unsigned long));
226 
227 #include <linux/cache.h>
228 #include <linux/skbuff.h>
229 
230 struct neighbour;
231 struct neigh_parms;
232 struct sk_buff;
233 
234 struct netdev_hw_addr {
235 	struct list_head	list;
236 	struct rb_node		node;
237 	unsigned char		addr[MAX_ADDR_LEN];
238 	unsigned char		type;
239 #define NETDEV_HW_ADDR_T_LAN		1
240 #define NETDEV_HW_ADDR_T_SAN		2
241 #define NETDEV_HW_ADDR_T_UNICAST	3
242 #define NETDEV_HW_ADDR_T_MULTICAST	4
243 	bool			global_use;
244 	int			sync_cnt;
245 	int			refcount;
246 	int			synced;
247 	struct rcu_head		rcu_head;
248 };
249 
250 struct netdev_hw_addr_list {
251 	struct list_head	list;
252 	int			count;
253 
254 	/* Auxiliary tree for faster lookup on addition and deletion */
255 	struct rb_root		tree;
256 };
257 
258 #define netdev_hw_addr_list_count(l) ((l)->count)
259 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
260 #define netdev_hw_addr_list_for_each(ha, l) \
261 	list_for_each_entry(ha, &(l)->list, list)
262 
263 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
264 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
265 #define netdev_for_each_uc_addr(ha, dev) \
266 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
267 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
268 	netdev_for_each_uc_addr((_ha), (_dev)) \
269 		if ((_ha)->sync_cnt)
270 
271 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
272 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
273 #define netdev_for_each_mc_addr(ha, dev) \
274 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
275 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
276 	netdev_for_each_mc_addr((_ha), (_dev)) \
277 		if ((_ha)->sync_cnt)
278 
279 struct hh_cache {
280 	unsigned int	hh_len;
281 	seqlock_t	hh_lock;
282 
283 	/* cached hardware header; allow for machine alignment needs.        */
284 #define HH_DATA_MOD	16
285 #define HH_DATA_OFF(__len) \
286 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
287 #define HH_DATA_ALIGN(__len) \
288 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
289 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
290 };
291 
292 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
293  * Alternative is:
294  *   dev->hard_header_len ? (dev->hard_header_len +
295  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
296  *
297  * We could use other alignment values, but we must maintain the
298  * relationship HH alignment <= LL alignment.
299  */
300 #define LL_RESERVED_SPACE(dev) \
301 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
302 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
303 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
304 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
305 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
306 
307 struct header_ops {
308 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
309 			   unsigned short type, const void *daddr,
310 			   const void *saddr, unsigned int len);
311 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
312 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
313 	void	(*cache_update)(struct hh_cache *hh,
314 				const struct net_device *dev,
315 				const unsigned char *haddr);
316 	bool	(*validate)(const char *ll_header, unsigned int len);
317 	__be16	(*parse_protocol)(const struct sk_buff *skb);
318 };
319 
320 /* These flag bits are private to the generic network queueing
321  * layer; they may not be explicitly referenced by any other
322  * code.
323  */
324 
325 enum netdev_state_t {
326 	__LINK_STATE_START,
327 	__LINK_STATE_PRESENT,
328 	__LINK_STATE_NOCARRIER,
329 	__LINK_STATE_LINKWATCH_PENDING,
330 	__LINK_STATE_DORMANT,
331 	__LINK_STATE_TESTING,
332 };
333 
334 struct gro_list {
335 	struct list_head	list;
336 	int			count;
337 };
338 
339 /*
340  * size of gro hash buckets, must less than bit number of
341  * napi_struct::gro_bitmask
342  */
343 #define GRO_HASH_BUCKETS	8
344 
345 /*
346  * Structure for NAPI scheduling similar to tasklet but with weighting
347  */
348 struct napi_struct {
349 	/* The poll_list must only be managed by the entity which
350 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
351 	 * whoever atomically sets that bit can add this napi_struct
352 	 * to the per-CPU poll_list, and whoever clears that bit
353 	 * can remove from the list right before clearing the bit.
354 	 */
355 	struct list_head	poll_list;
356 
357 	unsigned long		state;
358 	int			weight;
359 	int			defer_hard_irqs_count;
360 	unsigned long		gro_bitmask;
361 	int			(*poll)(struct napi_struct *, int);
362 #ifdef CONFIG_NETPOLL
363 	/* CPU actively polling if netpoll is configured */
364 	int			poll_owner;
365 #endif
366 	/* CPU on which NAPI has been scheduled for processing */
367 	int			list_owner;
368 	struct net_device	*dev;
369 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
370 	struct sk_buff		*skb;
371 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
372 	int			rx_count; /* length of rx_list */
373 	unsigned int		napi_id;
374 	struct hrtimer		timer;
375 	struct task_struct	*thread;
376 	/* control-path-only fields follow */
377 	struct list_head	dev_list;
378 	struct hlist_node	napi_hash_node;
379 	int			irq;
380 };
381 
382 enum {
383 	NAPI_STATE_SCHED,		/* Poll is scheduled */
384 	NAPI_STATE_MISSED,		/* reschedule a napi */
385 	NAPI_STATE_DISABLE,		/* Disable pending */
386 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
387 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
388 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
389 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
390 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
391 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
392 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
393 };
394 
395 enum {
396 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
397 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
398 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
399 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
400 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
401 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
402 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
403 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
404 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
405 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
406 };
407 
408 enum gro_result {
409 	GRO_MERGED,
410 	GRO_MERGED_FREE,
411 	GRO_HELD,
412 	GRO_NORMAL,
413 	GRO_CONSUMED,
414 };
415 typedef enum gro_result gro_result_t;
416 
417 /*
418  * enum rx_handler_result - Possible return values for rx_handlers.
419  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
420  * further.
421  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
422  * case skb->dev was changed by rx_handler.
423  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
424  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
425  *
426  * rx_handlers are functions called from inside __netif_receive_skb(), to do
427  * special processing of the skb, prior to delivery to protocol handlers.
428  *
429  * Currently, a net_device can only have a single rx_handler registered. Trying
430  * to register a second rx_handler will return -EBUSY.
431  *
432  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
433  * To unregister a rx_handler on a net_device, use
434  * netdev_rx_handler_unregister().
435  *
436  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
437  * do with the skb.
438  *
439  * If the rx_handler consumed the skb in some way, it should return
440  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
441  * the skb to be delivered in some other way.
442  *
443  * If the rx_handler changed skb->dev, to divert the skb to another
444  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
445  * new device will be called if it exists.
446  *
447  * If the rx_handler decides the skb should be ignored, it should return
448  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
449  * are registered on exact device (ptype->dev == skb->dev).
450  *
451  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
452  * delivered, it should return RX_HANDLER_PASS.
453  *
454  * A device without a registered rx_handler will behave as if rx_handler
455  * returned RX_HANDLER_PASS.
456  */
457 
458 enum rx_handler_result {
459 	RX_HANDLER_CONSUMED,
460 	RX_HANDLER_ANOTHER,
461 	RX_HANDLER_EXACT,
462 	RX_HANDLER_PASS,
463 };
464 typedef enum rx_handler_result rx_handler_result_t;
465 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
466 
467 void __napi_schedule(struct napi_struct *n);
468 void __napi_schedule_irqoff(struct napi_struct *n);
469 
470 static inline bool napi_disable_pending(struct napi_struct *n)
471 {
472 	return test_bit(NAPI_STATE_DISABLE, &n->state);
473 }
474 
475 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
476 {
477 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
478 }
479 
480 /**
481  * napi_is_scheduled - test if NAPI is scheduled
482  * @n: NAPI context
483  *
484  * This check is "best-effort". With no locking implemented,
485  * a NAPI can be scheduled or terminate right after this check
486  * and produce not precise results.
487  *
488  * NAPI_STATE_SCHED is an internal state, napi_is_scheduled
489  * should not be used normally and napi_schedule should be
490  * used instead.
491  *
492  * Use only if the driver really needs to check if a NAPI
493  * is scheduled for example in the context of delayed timer
494  * that can be skipped if a NAPI is already scheduled.
495  *
496  * Return True if NAPI is scheduled, False otherwise.
497  */
498 static inline bool napi_is_scheduled(struct napi_struct *n)
499 {
500 	return test_bit(NAPI_STATE_SCHED, &n->state);
501 }
502 
503 bool napi_schedule_prep(struct napi_struct *n);
504 
505 /**
506  *	napi_schedule - schedule NAPI poll
507  *	@n: NAPI context
508  *
509  * Schedule NAPI poll routine to be called if it is not already
510  * running.
511  * Return true if we schedule a NAPI or false if not.
512  * Refer to napi_schedule_prep() for additional reason on why
513  * a NAPI might not be scheduled.
514  */
515 static inline bool napi_schedule(struct napi_struct *n)
516 {
517 	if (napi_schedule_prep(n)) {
518 		__napi_schedule(n);
519 		return true;
520 	}
521 
522 	return false;
523 }
524 
525 /**
526  *	napi_schedule_irqoff - schedule NAPI poll
527  *	@n: NAPI context
528  *
529  * Variant of napi_schedule(), assuming hard irqs are masked.
530  */
531 static inline void napi_schedule_irqoff(struct napi_struct *n)
532 {
533 	if (napi_schedule_prep(n))
534 		__napi_schedule_irqoff(n);
535 }
536 
537 /**
538  * napi_complete_done - NAPI processing complete
539  * @n: NAPI context
540  * @work_done: number of packets processed
541  *
542  * Mark NAPI processing as complete. Should only be called if poll budget
543  * has not been completely consumed.
544  * Prefer over napi_complete().
545  * Return false if device should avoid rearming interrupts.
546  */
547 bool napi_complete_done(struct napi_struct *n, int work_done);
548 
549 static inline bool napi_complete(struct napi_struct *n)
550 {
551 	return napi_complete_done(n, 0);
552 }
553 
554 int dev_set_threaded(struct net_device *dev, bool threaded);
555 
556 /**
557  *	napi_disable - prevent NAPI from scheduling
558  *	@n: NAPI context
559  *
560  * Stop NAPI from being scheduled on this context.
561  * Waits till any outstanding processing completes.
562  */
563 void napi_disable(struct napi_struct *n);
564 
565 void napi_enable(struct napi_struct *n);
566 
567 /**
568  *	napi_synchronize - wait until NAPI is not running
569  *	@n: NAPI context
570  *
571  * Wait until NAPI is done being scheduled on this context.
572  * Waits till any outstanding processing completes but
573  * does not disable future activations.
574  */
575 static inline void napi_synchronize(const struct napi_struct *n)
576 {
577 	if (IS_ENABLED(CONFIG_SMP))
578 		while (test_bit(NAPI_STATE_SCHED, &n->state))
579 			msleep(1);
580 	else
581 		barrier();
582 }
583 
584 /**
585  *	napi_if_scheduled_mark_missed - if napi is running, set the
586  *	NAPIF_STATE_MISSED
587  *	@n: NAPI context
588  *
589  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
590  * NAPI is scheduled.
591  **/
592 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
593 {
594 	unsigned long val, new;
595 
596 	val = READ_ONCE(n->state);
597 	do {
598 		if (val & NAPIF_STATE_DISABLE)
599 			return true;
600 
601 		if (!(val & NAPIF_STATE_SCHED))
602 			return false;
603 
604 		new = val | NAPIF_STATE_MISSED;
605 	} while (!try_cmpxchg(&n->state, &val, new));
606 
607 	return true;
608 }
609 
610 enum netdev_queue_state_t {
611 	__QUEUE_STATE_DRV_XOFF,
612 	__QUEUE_STATE_STACK_XOFF,
613 	__QUEUE_STATE_FROZEN,
614 };
615 
616 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
617 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
618 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
619 
620 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
621 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
622 					QUEUE_STATE_FROZEN)
623 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
624 					QUEUE_STATE_FROZEN)
625 
626 /*
627  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
628  * netif_tx_* functions below are used to manipulate this flag.  The
629  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
630  * queue independently.  The netif_xmit_*stopped functions below are called
631  * to check if the queue has been stopped by the driver or stack (either
632  * of the XOFF bits are set in the state).  Drivers should not need to call
633  * netif_xmit*stopped functions, they should only be using netif_tx_*.
634  */
635 
636 struct netdev_queue {
637 /*
638  * read-mostly part
639  */
640 	struct net_device	*dev;
641 	netdevice_tracker	dev_tracker;
642 
643 	struct Qdisc __rcu	*qdisc;
644 	struct Qdisc __rcu	*qdisc_sleeping;
645 #ifdef CONFIG_SYSFS
646 	struct kobject		kobj;
647 #endif
648 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
649 	int			numa_node;
650 #endif
651 	unsigned long		tx_maxrate;
652 	/*
653 	 * Number of TX timeouts for this queue
654 	 * (/sys/class/net/DEV/Q/trans_timeout)
655 	 */
656 	atomic_long_t		trans_timeout;
657 
658 	/* Subordinate device that the queue has been assigned to */
659 	struct net_device	*sb_dev;
660 #ifdef CONFIG_XDP_SOCKETS
661 	struct xsk_buff_pool    *pool;
662 #endif
663 	/* NAPI instance for the queue
664 	 * Readers and writers must hold RTNL
665 	 */
666 	struct napi_struct      *napi;
667 /*
668  * write-mostly part
669  */
670 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
671 	int			xmit_lock_owner;
672 	/*
673 	 * Time (in jiffies) of last Tx
674 	 */
675 	unsigned long		trans_start;
676 
677 	unsigned long		state;
678 
679 #ifdef CONFIG_BQL
680 	struct dql		dql;
681 #endif
682 } ____cacheline_aligned_in_smp;
683 
684 extern int sysctl_fb_tunnels_only_for_init_net;
685 extern int sysctl_devconf_inherit_init_net;
686 
687 /*
688  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
689  *                                     == 1 : For initns only
690  *                                     == 2 : For none.
691  */
692 static inline bool net_has_fallback_tunnels(const struct net *net)
693 {
694 #if IS_ENABLED(CONFIG_SYSCTL)
695 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
696 
697 	return !fb_tunnels_only_for_init_net ||
698 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
699 #else
700 	return true;
701 #endif
702 }
703 
704 static inline int net_inherit_devconf(void)
705 {
706 #if IS_ENABLED(CONFIG_SYSCTL)
707 	return READ_ONCE(sysctl_devconf_inherit_init_net);
708 #else
709 	return 0;
710 #endif
711 }
712 
713 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
714 {
715 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
716 	return q->numa_node;
717 #else
718 	return NUMA_NO_NODE;
719 #endif
720 }
721 
722 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
723 {
724 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
725 	q->numa_node = node;
726 #endif
727 }
728 
729 #ifdef CONFIG_RFS_ACCEL
730 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
731 			 u16 filter_id);
732 #endif
733 
734 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
735 enum xps_map_type {
736 	XPS_CPUS = 0,
737 	XPS_RXQS,
738 	XPS_MAPS_MAX,
739 };
740 
741 #ifdef CONFIG_XPS
742 /*
743  * This structure holds an XPS map which can be of variable length.  The
744  * map is an array of queues.
745  */
746 struct xps_map {
747 	unsigned int len;
748 	unsigned int alloc_len;
749 	struct rcu_head rcu;
750 	u16 queues[];
751 };
752 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
753 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
754        - sizeof(struct xps_map)) / sizeof(u16))
755 
756 /*
757  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
758  *
759  * We keep track of the number of cpus/rxqs used when the struct is allocated,
760  * in nr_ids. This will help not accessing out-of-bound memory.
761  *
762  * We keep track of the number of traffic classes used when the struct is
763  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
764  * not crossing its upper bound, as the original dev->num_tc can be updated in
765  * the meantime.
766  */
767 struct xps_dev_maps {
768 	struct rcu_head rcu;
769 	unsigned int nr_ids;
770 	s16 num_tc;
771 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
772 };
773 
774 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
775 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
776 
777 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
778 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
779 
780 #endif /* CONFIG_XPS */
781 
782 #define TC_MAX_QUEUE	16
783 #define TC_BITMASK	15
784 /* HW offloaded queuing disciplines txq count and offset maps */
785 struct netdev_tc_txq {
786 	u16 count;
787 	u16 offset;
788 };
789 
790 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
791 /*
792  * This structure is to hold information about the device
793  * configured to run FCoE protocol stack.
794  */
795 struct netdev_fcoe_hbainfo {
796 	char	manufacturer[64];
797 	char	serial_number[64];
798 	char	hardware_version[64];
799 	char	driver_version[64];
800 	char	optionrom_version[64];
801 	char	firmware_version[64];
802 	char	model[256];
803 	char	model_description[256];
804 };
805 #endif
806 
807 #define MAX_PHYS_ITEM_ID_LEN 32
808 
809 /* This structure holds a unique identifier to identify some
810  * physical item (port for example) used by a netdevice.
811  */
812 struct netdev_phys_item_id {
813 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
814 	unsigned char id_len;
815 };
816 
817 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
818 					    struct netdev_phys_item_id *b)
819 {
820 	return a->id_len == b->id_len &&
821 	       memcmp(a->id, b->id, a->id_len) == 0;
822 }
823 
824 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
825 				       struct sk_buff *skb,
826 				       struct net_device *sb_dev);
827 
828 enum net_device_path_type {
829 	DEV_PATH_ETHERNET = 0,
830 	DEV_PATH_VLAN,
831 	DEV_PATH_BRIDGE,
832 	DEV_PATH_PPPOE,
833 	DEV_PATH_DSA,
834 	DEV_PATH_MTK_WDMA,
835 };
836 
837 struct net_device_path {
838 	enum net_device_path_type	type;
839 	const struct net_device		*dev;
840 	union {
841 		struct {
842 			u16		id;
843 			__be16		proto;
844 			u8		h_dest[ETH_ALEN];
845 		} encap;
846 		struct {
847 			enum {
848 				DEV_PATH_BR_VLAN_KEEP,
849 				DEV_PATH_BR_VLAN_TAG,
850 				DEV_PATH_BR_VLAN_UNTAG,
851 				DEV_PATH_BR_VLAN_UNTAG_HW,
852 			}		vlan_mode;
853 			u16		vlan_id;
854 			__be16		vlan_proto;
855 		} bridge;
856 		struct {
857 			int port;
858 			u16 proto;
859 		} dsa;
860 		struct {
861 			u8 wdma_idx;
862 			u8 queue;
863 			u16 wcid;
864 			u8 bss;
865 			u8 amsdu;
866 		} mtk_wdma;
867 	};
868 };
869 
870 #define NET_DEVICE_PATH_STACK_MAX	5
871 #define NET_DEVICE_PATH_VLAN_MAX	2
872 
873 struct net_device_path_stack {
874 	int			num_paths;
875 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
876 };
877 
878 struct net_device_path_ctx {
879 	const struct net_device *dev;
880 	u8			daddr[ETH_ALEN];
881 
882 	int			num_vlans;
883 	struct {
884 		u16		id;
885 		__be16		proto;
886 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
887 };
888 
889 enum tc_setup_type {
890 	TC_QUERY_CAPS,
891 	TC_SETUP_QDISC_MQPRIO,
892 	TC_SETUP_CLSU32,
893 	TC_SETUP_CLSFLOWER,
894 	TC_SETUP_CLSMATCHALL,
895 	TC_SETUP_CLSBPF,
896 	TC_SETUP_BLOCK,
897 	TC_SETUP_QDISC_CBS,
898 	TC_SETUP_QDISC_RED,
899 	TC_SETUP_QDISC_PRIO,
900 	TC_SETUP_QDISC_MQ,
901 	TC_SETUP_QDISC_ETF,
902 	TC_SETUP_ROOT_QDISC,
903 	TC_SETUP_QDISC_GRED,
904 	TC_SETUP_QDISC_TAPRIO,
905 	TC_SETUP_FT,
906 	TC_SETUP_QDISC_ETS,
907 	TC_SETUP_QDISC_TBF,
908 	TC_SETUP_QDISC_FIFO,
909 	TC_SETUP_QDISC_HTB,
910 	TC_SETUP_ACT,
911 };
912 
913 /* These structures hold the attributes of bpf state that are being passed
914  * to the netdevice through the bpf op.
915  */
916 enum bpf_netdev_command {
917 	/* Set or clear a bpf program used in the earliest stages of packet
918 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
919 	 * is responsible for calling bpf_prog_put on any old progs that are
920 	 * stored. In case of error, the callee need not release the new prog
921 	 * reference, but on success it takes ownership and must bpf_prog_put
922 	 * when it is no longer used.
923 	 */
924 	XDP_SETUP_PROG,
925 	XDP_SETUP_PROG_HW,
926 	/* BPF program for offload callbacks, invoked at program load time. */
927 	BPF_OFFLOAD_MAP_ALLOC,
928 	BPF_OFFLOAD_MAP_FREE,
929 	XDP_SETUP_XSK_POOL,
930 };
931 
932 struct bpf_prog_offload_ops;
933 struct netlink_ext_ack;
934 struct xdp_umem;
935 struct xdp_dev_bulk_queue;
936 struct bpf_xdp_link;
937 
938 enum bpf_xdp_mode {
939 	XDP_MODE_SKB = 0,
940 	XDP_MODE_DRV = 1,
941 	XDP_MODE_HW = 2,
942 	__MAX_XDP_MODE
943 };
944 
945 struct bpf_xdp_entity {
946 	struct bpf_prog *prog;
947 	struct bpf_xdp_link *link;
948 };
949 
950 struct netdev_bpf {
951 	enum bpf_netdev_command command;
952 	union {
953 		/* XDP_SETUP_PROG */
954 		struct {
955 			u32 flags;
956 			struct bpf_prog *prog;
957 			struct netlink_ext_ack *extack;
958 		};
959 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
960 		struct {
961 			struct bpf_offloaded_map *offmap;
962 		};
963 		/* XDP_SETUP_XSK_POOL */
964 		struct {
965 			struct xsk_buff_pool *pool;
966 			u16 queue_id;
967 		} xsk;
968 	};
969 };
970 
971 /* Flags for ndo_xsk_wakeup. */
972 #define XDP_WAKEUP_RX (1 << 0)
973 #define XDP_WAKEUP_TX (1 << 1)
974 
975 #ifdef CONFIG_XFRM_OFFLOAD
976 struct xfrmdev_ops {
977 	int	(*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack);
978 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
979 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
980 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
981 				       struct xfrm_state *x);
982 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
983 	void	(*xdo_dev_state_update_stats) (struct xfrm_state *x);
984 	int	(*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack);
985 	void	(*xdo_dev_policy_delete) (struct xfrm_policy *x);
986 	void	(*xdo_dev_policy_free) (struct xfrm_policy *x);
987 };
988 #endif
989 
990 struct dev_ifalias {
991 	struct rcu_head rcuhead;
992 	char ifalias[];
993 };
994 
995 struct devlink;
996 struct tlsdev_ops;
997 
998 struct netdev_net_notifier {
999 	struct list_head list;
1000 	struct notifier_block *nb;
1001 };
1002 
1003 /*
1004  * This structure defines the management hooks for network devices.
1005  * The following hooks can be defined; unless noted otherwise, they are
1006  * optional and can be filled with a null pointer.
1007  *
1008  * int (*ndo_init)(struct net_device *dev);
1009  *     This function is called once when a network device is registered.
1010  *     The network device can use this for any late stage initialization
1011  *     or semantic validation. It can fail with an error code which will
1012  *     be propagated back to register_netdev.
1013  *
1014  * void (*ndo_uninit)(struct net_device *dev);
1015  *     This function is called when device is unregistered or when registration
1016  *     fails. It is not called if init fails.
1017  *
1018  * int (*ndo_open)(struct net_device *dev);
1019  *     This function is called when a network device transitions to the up
1020  *     state.
1021  *
1022  * int (*ndo_stop)(struct net_device *dev);
1023  *     This function is called when a network device transitions to the down
1024  *     state.
1025  *
1026  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1027  *                               struct net_device *dev);
1028  *	Called when a packet needs to be transmitted.
1029  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1030  *	the queue before that can happen; it's for obsolete devices and weird
1031  *	corner cases, but the stack really does a non-trivial amount
1032  *	of useless work if you return NETDEV_TX_BUSY.
1033  *	Required; cannot be NULL.
1034  *
1035  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1036  *					   struct net_device *dev
1037  *					   netdev_features_t features);
1038  *	Called by core transmit path to determine if device is capable of
1039  *	performing offload operations on a given packet. This is to give
1040  *	the device an opportunity to implement any restrictions that cannot
1041  *	be otherwise expressed by feature flags. The check is called with
1042  *	the set of features that the stack has calculated and it returns
1043  *	those the driver believes to be appropriate.
1044  *
1045  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1046  *                         struct net_device *sb_dev);
1047  *	Called to decide which queue to use when device supports multiple
1048  *	transmit queues.
1049  *
1050  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1051  *	This function is called to allow device receiver to make
1052  *	changes to configuration when multicast or promiscuous is enabled.
1053  *
1054  * void (*ndo_set_rx_mode)(struct net_device *dev);
1055  *	This function is called device changes address list filtering.
1056  *	If driver handles unicast address filtering, it should set
1057  *	IFF_UNICAST_FLT in its priv_flags.
1058  *
1059  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1060  *	This function  is called when the Media Access Control address
1061  *	needs to be changed. If this interface is not defined, the
1062  *	MAC address can not be changed.
1063  *
1064  * int (*ndo_validate_addr)(struct net_device *dev);
1065  *	Test if Media Access Control address is valid for the device.
1066  *
1067  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1068  *	Old-style ioctl entry point. This is used internally by the
1069  *	appletalk and ieee802154 subsystems but is no longer called by
1070  *	the device ioctl handler.
1071  *
1072  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1073  *	Used by the bonding driver for its device specific ioctls:
1074  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1075  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1076  *
1077  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1078  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1079  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1080  *
1081  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1082  *	Used to set network devices bus interface parameters. This interface
1083  *	is retained for legacy reasons; new devices should use the bus
1084  *	interface (PCI) for low level management.
1085  *
1086  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1087  *	Called when a user wants to change the Maximum Transfer Unit
1088  *	of a device.
1089  *
1090  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1091  *	Callback used when the transmitter has not made any progress
1092  *	for dev->watchdog ticks.
1093  *
1094  * void (*ndo_get_stats64)(struct net_device *dev,
1095  *                         struct rtnl_link_stats64 *storage);
1096  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1097  *	Called when a user wants to get the network device usage
1098  *	statistics. Drivers must do one of the following:
1099  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1100  *	   rtnl_link_stats64 structure passed by the caller.
1101  *	2. Define @ndo_get_stats to update a net_device_stats structure
1102  *	   (which should normally be dev->stats) and return a pointer to
1103  *	   it. The structure may be changed asynchronously only if each
1104  *	   field is written atomically.
1105  *	3. Update dev->stats asynchronously and atomically, and define
1106  *	   neither operation.
1107  *
1108  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1109  *	Return true if this device supports offload stats of this attr_id.
1110  *
1111  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1112  *	void *attr_data)
1113  *	Get statistics for offload operations by attr_id. Write it into the
1114  *	attr_data pointer.
1115  *
1116  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1117  *	If device supports VLAN filtering this function is called when a
1118  *	VLAN id is registered.
1119  *
1120  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1121  *	If device supports VLAN filtering this function is called when a
1122  *	VLAN id is unregistered.
1123  *
1124  * void (*ndo_poll_controller)(struct net_device *dev);
1125  *
1126  *	SR-IOV management functions.
1127  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1128  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1129  *			  u8 qos, __be16 proto);
1130  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1131  *			  int max_tx_rate);
1132  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1133  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1134  * int (*ndo_get_vf_config)(struct net_device *dev,
1135  *			    int vf, struct ifla_vf_info *ivf);
1136  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1137  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1138  *			  struct nlattr *port[]);
1139  *
1140  *      Enable or disable the VF ability to query its RSS Redirection Table and
1141  *      Hash Key. This is needed since on some devices VF share this information
1142  *      with PF and querying it may introduce a theoretical security risk.
1143  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1144  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1145  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1146  *		       void *type_data);
1147  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1148  *	This is always called from the stack with the rtnl lock held and netif
1149  *	tx queues stopped. This allows the netdevice to perform queue
1150  *	management safely.
1151  *
1152  *	Fiber Channel over Ethernet (FCoE) offload functions.
1153  * int (*ndo_fcoe_enable)(struct net_device *dev);
1154  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1155  *	so the underlying device can perform whatever needed configuration or
1156  *	initialization to support acceleration of FCoE traffic.
1157  *
1158  * int (*ndo_fcoe_disable)(struct net_device *dev);
1159  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1160  *	so the underlying device can perform whatever needed clean-ups to
1161  *	stop supporting acceleration of FCoE traffic.
1162  *
1163  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1164  *			     struct scatterlist *sgl, unsigned int sgc);
1165  *	Called when the FCoE Initiator wants to initialize an I/O that
1166  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1167  *	perform necessary setup and returns 1 to indicate the device is set up
1168  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1169  *
1170  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1171  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1172  *	indicated by the FC exchange id 'xid', so the underlying device can
1173  *	clean up and reuse resources for later DDP requests.
1174  *
1175  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1176  *			      struct scatterlist *sgl, unsigned int sgc);
1177  *	Called when the FCoE Target wants to initialize an I/O that
1178  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1179  *	perform necessary setup and returns 1 to indicate the device is set up
1180  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1181  *
1182  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1183  *			       struct netdev_fcoe_hbainfo *hbainfo);
1184  *	Called when the FCoE Protocol stack wants information on the underlying
1185  *	device. This information is utilized by the FCoE protocol stack to
1186  *	register attributes with Fiber Channel management service as per the
1187  *	FC-GS Fabric Device Management Information(FDMI) specification.
1188  *
1189  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1190  *	Called when the underlying device wants to override default World Wide
1191  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1192  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1193  *	protocol stack to use.
1194  *
1195  *	RFS acceleration.
1196  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1197  *			    u16 rxq_index, u32 flow_id);
1198  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1199  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1200  *	Return the filter ID on success, or a negative error code.
1201  *
1202  *	Slave management functions (for bridge, bonding, etc).
1203  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1204  *	Called to make another netdev an underling.
1205  *
1206  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1207  *	Called to release previously enslaved netdev.
1208  *
1209  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1210  *					    struct sk_buff *skb,
1211  *					    bool all_slaves);
1212  *	Get the xmit slave of master device. If all_slaves is true, function
1213  *	assume all the slaves can transmit.
1214  *
1215  *      Feature/offload setting functions.
1216  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1217  *		netdev_features_t features);
1218  *	Adjusts the requested feature flags according to device-specific
1219  *	constraints, and returns the resulting flags. Must not modify
1220  *	the device state.
1221  *
1222  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1223  *	Called to update device configuration to new features. Passed
1224  *	feature set might be less than what was returned by ndo_fix_features()).
1225  *	Must return >0 or -errno if it changed dev->features itself.
1226  *
1227  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1228  *		      struct net_device *dev,
1229  *		      const unsigned char *addr, u16 vid, u16 flags,
1230  *		      struct netlink_ext_ack *extack);
1231  *	Adds an FDB entry to dev for addr.
1232  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1233  *		      struct net_device *dev,
1234  *		      const unsigned char *addr, u16 vid)
1235  *	Deletes the FDB entry from dev coresponding to addr.
1236  * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev,
1237  *			   struct netlink_ext_ack *extack);
1238  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1239  *		       struct net_device *dev, struct net_device *filter_dev,
1240  *		       int *idx)
1241  *	Used to add FDB entries to dump requests. Implementers should add
1242  *	entries to skb and update idx with the number of entries.
1243  *
1244  * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[],
1245  *		      u16 nlmsg_flags, struct netlink_ext_ack *extack);
1246  *	Adds an MDB entry to dev.
1247  * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[],
1248  *		      struct netlink_ext_ack *extack);
1249  *	Deletes the MDB entry from dev.
1250  * int (*ndo_mdb_del_bulk)(struct net_device *dev, struct nlattr *tb[],
1251  *			   struct netlink_ext_ack *extack);
1252  *	Bulk deletes MDB entries from dev.
1253  * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb,
1254  *		       struct netlink_callback *cb);
1255  *	Dumps MDB entries from dev. The first argument (marker) in the netlink
1256  *	callback is used by core rtnetlink code.
1257  *
1258  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1259  *			     u16 flags, struct netlink_ext_ack *extack)
1260  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1261  *			     struct net_device *dev, u32 filter_mask,
1262  *			     int nlflags)
1263  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1264  *			     u16 flags);
1265  *
1266  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1267  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1268  *	which do not represent real hardware may define this to allow their
1269  *	userspace components to manage their virtual carrier state. Devices
1270  *	that determine carrier state from physical hardware properties (eg
1271  *	network cables) or protocol-dependent mechanisms (eg
1272  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1273  *
1274  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1275  *			       struct netdev_phys_item_id *ppid);
1276  *	Called to get ID of physical port of this device. If driver does
1277  *	not implement this, it is assumed that the hw is not able to have
1278  *	multiple net devices on single physical port.
1279  *
1280  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1281  *				 struct netdev_phys_item_id *ppid)
1282  *	Called to get the parent ID of the physical port of this device.
1283  *
1284  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1285  *				 struct net_device *dev)
1286  *	Called by upper layer devices to accelerate switching or other
1287  *	station functionality into hardware. 'pdev is the lowerdev
1288  *	to use for the offload and 'dev' is the net device that will
1289  *	back the offload. Returns a pointer to the private structure
1290  *	the upper layer will maintain.
1291  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1292  *	Called by upper layer device to delete the station created
1293  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1294  *	the station and priv is the structure returned by the add
1295  *	operation.
1296  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1297  *			     int queue_index, u32 maxrate);
1298  *	Called when a user wants to set a max-rate limitation of specific
1299  *	TX queue.
1300  * int (*ndo_get_iflink)(const struct net_device *dev);
1301  *	Called to get the iflink value of this device.
1302  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1303  *	This function is used to get egress tunnel information for given skb.
1304  *	This is useful for retrieving outer tunnel header parameters while
1305  *	sampling packet.
1306  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1307  *	This function is used to specify the headroom that the skb must
1308  *	consider when allocation skb during packet reception. Setting
1309  *	appropriate rx headroom value allows avoiding skb head copy on
1310  *	forward. Setting a negative value resets the rx headroom to the
1311  *	default value.
1312  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1313  *	This function is used to set or query state related to XDP on the
1314  *	netdevice and manage BPF offload. See definition of
1315  *	enum bpf_netdev_command for details.
1316  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1317  *			u32 flags);
1318  *	This function is used to submit @n XDP packets for transmit on a
1319  *	netdevice. Returns number of frames successfully transmitted, frames
1320  *	that got dropped are freed/returned via xdp_return_frame().
1321  *	Returns negative number, means general error invoking ndo, meaning
1322  *	no frames were xmit'ed and core-caller will free all frames.
1323  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1324  *					        struct xdp_buff *xdp);
1325  *      Get the xmit slave of master device based on the xdp_buff.
1326  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1327  *      This function is used to wake up the softirq, ksoftirqd or kthread
1328  *	responsible for sending and/or receiving packets on a specific
1329  *	queue id bound to an AF_XDP socket. The flags field specifies if
1330  *	only RX, only Tx, or both should be woken up using the flags
1331  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1332  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm_kern *p,
1333  *			 int cmd);
1334  *	Add, change, delete or get information on an IPv4 tunnel.
1335  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1336  *	If a device is paired with a peer device, return the peer instance.
1337  *	The caller must be under RCU read context.
1338  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1339  *     Get the forwarding path to reach the real device from the HW destination address
1340  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1341  *			     const struct skb_shared_hwtstamps *hwtstamps,
1342  *			     bool cycles);
1343  *	Get hardware timestamp based on normal/adjustable time or free running
1344  *	cycle counter. This function is required if physical clock supports a
1345  *	free running cycle counter.
1346  *
1347  * int (*ndo_hwtstamp_get)(struct net_device *dev,
1348  *			   struct kernel_hwtstamp_config *kernel_config);
1349  *	Get the currently configured hardware timestamping parameters for the
1350  *	NIC device.
1351  *
1352  * int (*ndo_hwtstamp_set)(struct net_device *dev,
1353  *			   struct kernel_hwtstamp_config *kernel_config,
1354  *			   struct netlink_ext_ack *extack);
1355  *	Change the hardware timestamping parameters for NIC device.
1356  */
1357 struct net_device_ops {
1358 	int			(*ndo_init)(struct net_device *dev);
1359 	void			(*ndo_uninit)(struct net_device *dev);
1360 	int			(*ndo_open)(struct net_device *dev);
1361 	int			(*ndo_stop)(struct net_device *dev);
1362 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1363 						  struct net_device *dev);
1364 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1365 						      struct net_device *dev,
1366 						      netdev_features_t features);
1367 	u16			(*ndo_select_queue)(struct net_device *dev,
1368 						    struct sk_buff *skb,
1369 						    struct net_device *sb_dev);
1370 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1371 						       int flags);
1372 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1373 	int			(*ndo_set_mac_address)(struct net_device *dev,
1374 						       void *addr);
1375 	int			(*ndo_validate_addr)(struct net_device *dev);
1376 	int			(*ndo_do_ioctl)(struct net_device *dev,
1377 					        struct ifreq *ifr, int cmd);
1378 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1379 						 struct ifreq *ifr, int cmd);
1380 	int			(*ndo_siocbond)(struct net_device *dev,
1381 						struct ifreq *ifr, int cmd);
1382 	int			(*ndo_siocwandev)(struct net_device *dev,
1383 						  struct if_settings *ifs);
1384 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1385 						      struct ifreq *ifr,
1386 						      void __user *data, int cmd);
1387 	int			(*ndo_set_config)(struct net_device *dev,
1388 					          struct ifmap *map);
1389 	int			(*ndo_change_mtu)(struct net_device *dev,
1390 						  int new_mtu);
1391 	int			(*ndo_neigh_setup)(struct net_device *dev,
1392 						   struct neigh_parms *);
1393 	void			(*ndo_tx_timeout) (struct net_device *dev,
1394 						   unsigned int txqueue);
1395 
1396 	void			(*ndo_get_stats64)(struct net_device *dev,
1397 						   struct rtnl_link_stats64 *storage);
1398 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1399 	int			(*ndo_get_offload_stats)(int attr_id,
1400 							 const struct net_device *dev,
1401 							 void *attr_data);
1402 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1403 
1404 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1405 						       __be16 proto, u16 vid);
1406 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1407 						        __be16 proto, u16 vid);
1408 #ifdef CONFIG_NET_POLL_CONTROLLER
1409 	void                    (*ndo_poll_controller)(struct net_device *dev);
1410 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1411 						     struct netpoll_info *info);
1412 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1413 #endif
1414 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1415 						  int queue, u8 *mac);
1416 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1417 						   int queue, u16 vlan,
1418 						   u8 qos, __be16 proto);
1419 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1420 						   int vf, int min_tx_rate,
1421 						   int max_tx_rate);
1422 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1423 						       int vf, bool setting);
1424 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1425 						    int vf, bool setting);
1426 	int			(*ndo_get_vf_config)(struct net_device *dev,
1427 						     int vf,
1428 						     struct ifla_vf_info *ivf);
1429 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1430 							 int vf, int link_state);
1431 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1432 						    int vf,
1433 						    struct ifla_vf_stats
1434 						    *vf_stats);
1435 	int			(*ndo_set_vf_port)(struct net_device *dev,
1436 						   int vf,
1437 						   struct nlattr *port[]);
1438 	int			(*ndo_get_vf_port)(struct net_device *dev,
1439 						   int vf, struct sk_buff *skb);
1440 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1441 						   int vf,
1442 						   struct ifla_vf_guid *node_guid,
1443 						   struct ifla_vf_guid *port_guid);
1444 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1445 						   int vf, u64 guid,
1446 						   int guid_type);
1447 	int			(*ndo_set_vf_rss_query_en)(
1448 						   struct net_device *dev,
1449 						   int vf, bool setting);
1450 	int			(*ndo_setup_tc)(struct net_device *dev,
1451 						enum tc_setup_type type,
1452 						void *type_data);
1453 #if IS_ENABLED(CONFIG_FCOE)
1454 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1455 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1456 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1457 						      u16 xid,
1458 						      struct scatterlist *sgl,
1459 						      unsigned int sgc);
1460 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1461 						     u16 xid);
1462 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1463 						       u16 xid,
1464 						       struct scatterlist *sgl,
1465 						       unsigned int sgc);
1466 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1467 							struct netdev_fcoe_hbainfo *hbainfo);
1468 #endif
1469 
1470 #if IS_ENABLED(CONFIG_LIBFCOE)
1471 #define NETDEV_FCOE_WWNN 0
1472 #define NETDEV_FCOE_WWPN 1
1473 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1474 						    u64 *wwn, int type);
1475 #endif
1476 
1477 #ifdef CONFIG_RFS_ACCEL
1478 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1479 						     const struct sk_buff *skb,
1480 						     u16 rxq_index,
1481 						     u32 flow_id);
1482 #endif
1483 	int			(*ndo_add_slave)(struct net_device *dev,
1484 						 struct net_device *slave_dev,
1485 						 struct netlink_ext_ack *extack);
1486 	int			(*ndo_del_slave)(struct net_device *dev,
1487 						 struct net_device *slave_dev);
1488 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1489 						      struct sk_buff *skb,
1490 						      bool all_slaves);
1491 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1492 							struct sock *sk);
1493 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1494 						    netdev_features_t features);
1495 	int			(*ndo_set_features)(struct net_device *dev,
1496 						    netdev_features_t features);
1497 	int			(*ndo_neigh_construct)(struct net_device *dev,
1498 						       struct neighbour *n);
1499 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1500 						     struct neighbour *n);
1501 
1502 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1503 					       struct nlattr *tb[],
1504 					       struct net_device *dev,
1505 					       const unsigned char *addr,
1506 					       u16 vid,
1507 					       u16 flags,
1508 					       struct netlink_ext_ack *extack);
1509 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1510 					       struct nlattr *tb[],
1511 					       struct net_device *dev,
1512 					       const unsigned char *addr,
1513 					       u16 vid, struct netlink_ext_ack *extack);
1514 	int			(*ndo_fdb_del_bulk)(struct nlmsghdr *nlh,
1515 						    struct net_device *dev,
1516 						    struct netlink_ext_ack *extack);
1517 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1518 						struct netlink_callback *cb,
1519 						struct net_device *dev,
1520 						struct net_device *filter_dev,
1521 						int *idx);
1522 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1523 					       struct nlattr *tb[],
1524 					       struct net_device *dev,
1525 					       const unsigned char *addr,
1526 					       u16 vid, u32 portid, u32 seq,
1527 					       struct netlink_ext_ack *extack);
1528 	int			(*ndo_mdb_add)(struct net_device *dev,
1529 					       struct nlattr *tb[],
1530 					       u16 nlmsg_flags,
1531 					       struct netlink_ext_ack *extack);
1532 	int			(*ndo_mdb_del)(struct net_device *dev,
1533 					       struct nlattr *tb[],
1534 					       struct netlink_ext_ack *extack);
1535 	int			(*ndo_mdb_del_bulk)(struct net_device *dev,
1536 						    struct nlattr *tb[],
1537 						    struct netlink_ext_ack *extack);
1538 	int			(*ndo_mdb_dump)(struct net_device *dev,
1539 						struct sk_buff *skb,
1540 						struct netlink_callback *cb);
1541 	int			(*ndo_mdb_get)(struct net_device *dev,
1542 					       struct nlattr *tb[], u32 portid,
1543 					       u32 seq,
1544 					       struct netlink_ext_ack *extack);
1545 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1546 						      struct nlmsghdr *nlh,
1547 						      u16 flags,
1548 						      struct netlink_ext_ack *extack);
1549 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1550 						      u32 pid, u32 seq,
1551 						      struct net_device *dev,
1552 						      u32 filter_mask,
1553 						      int nlflags);
1554 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1555 						      struct nlmsghdr *nlh,
1556 						      u16 flags);
1557 	int			(*ndo_change_carrier)(struct net_device *dev,
1558 						      bool new_carrier);
1559 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1560 							struct netdev_phys_item_id *ppid);
1561 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1562 							  struct netdev_phys_item_id *ppid);
1563 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1564 							  char *name, size_t len);
1565 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1566 							struct net_device *dev);
1567 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1568 							void *priv);
1569 
1570 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1571 						      int queue_index,
1572 						      u32 maxrate);
1573 	int			(*ndo_get_iflink)(const struct net_device *dev);
1574 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1575 						       struct sk_buff *skb);
1576 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1577 						       int needed_headroom);
1578 	int			(*ndo_bpf)(struct net_device *dev,
1579 					   struct netdev_bpf *bpf);
1580 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1581 						struct xdp_frame **xdp,
1582 						u32 flags);
1583 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1584 							  struct xdp_buff *xdp);
1585 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1586 						  u32 queue_id, u32 flags);
1587 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1588 						  struct ip_tunnel_parm_kern *p,
1589 						  int cmd);
1590 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1591 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1592                                                          struct net_device_path *path);
1593 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1594 						  const struct skb_shared_hwtstamps *hwtstamps,
1595 						  bool cycles);
1596 	int			(*ndo_hwtstamp_get)(struct net_device *dev,
1597 						    struct kernel_hwtstamp_config *kernel_config);
1598 	int			(*ndo_hwtstamp_set)(struct net_device *dev,
1599 						    struct kernel_hwtstamp_config *kernel_config,
1600 						    struct netlink_ext_ack *extack);
1601 };
1602 
1603 /**
1604  * enum netdev_priv_flags - &struct net_device priv_flags
1605  *
1606  * These are the &struct net_device, they are only set internally
1607  * by drivers and used in the kernel. These flags are invisible to
1608  * userspace; this means that the order of these flags can change
1609  * during any kernel release.
1610  *
1611  * You should have a pretty good reason to be extending these flags.
1612  *
1613  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1614  * @IFF_EBRIDGE: Ethernet bridging device
1615  * @IFF_BONDING: bonding master or slave
1616  * @IFF_ISATAP: ISATAP interface (RFC4214)
1617  * @IFF_WAN_HDLC: WAN HDLC device
1618  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1619  *	release skb->dst
1620  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1621  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1622  * @IFF_MACVLAN_PORT: device used as macvlan port
1623  * @IFF_BRIDGE_PORT: device used as bridge port
1624  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1625  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1626  * @IFF_UNICAST_FLT: Supports unicast filtering
1627  * @IFF_TEAM_PORT: device used as team port
1628  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1629  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1630  *	change when it's running
1631  * @IFF_MACVLAN: Macvlan device
1632  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1633  *	underlying stacked devices
1634  * @IFF_L3MDEV_MASTER: device is an L3 master device
1635  * @IFF_NO_QUEUE: device can run without qdisc attached
1636  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1637  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1638  * @IFF_TEAM: device is a team device
1639  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1640  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1641  *	entity (i.e. the master device for bridged veth)
1642  * @IFF_MACSEC: device is a MACsec device
1643  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1644  * @IFF_FAILOVER: device is a failover master device
1645  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1646  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1647  * @IFF_NO_ADDRCONF: prevent ipv6 addrconf
1648  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1649  *	skb_headlen(skb) == 0 (data starts from frag0)
1650  * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1651  * @IFF_SEE_ALL_HWTSTAMP_REQUESTS: device wants to see calls to
1652  *	ndo_hwtstamp_set() for all timestamp requests regardless of source,
1653  *	even if those aren't HWTSTAMP_SOURCE_NETDEV.
1654  */
1655 enum netdev_priv_flags {
1656 	IFF_802_1Q_VLAN			= 1<<0,
1657 	IFF_EBRIDGE			= 1<<1,
1658 	IFF_BONDING			= 1<<2,
1659 	IFF_ISATAP			= 1<<3,
1660 	IFF_WAN_HDLC			= 1<<4,
1661 	IFF_XMIT_DST_RELEASE		= 1<<5,
1662 	IFF_DONT_BRIDGE			= 1<<6,
1663 	IFF_DISABLE_NETPOLL		= 1<<7,
1664 	IFF_MACVLAN_PORT		= 1<<8,
1665 	IFF_BRIDGE_PORT			= 1<<9,
1666 	IFF_OVS_DATAPATH		= 1<<10,
1667 	IFF_TX_SKB_SHARING		= 1<<11,
1668 	IFF_UNICAST_FLT			= 1<<12,
1669 	IFF_TEAM_PORT			= 1<<13,
1670 	IFF_SUPP_NOFCS			= 1<<14,
1671 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1672 	IFF_MACVLAN			= 1<<16,
1673 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1674 	IFF_L3MDEV_MASTER		= 1<<18,
1675 	IFF_NO_QUEUE			= 1<<19,
1676 	IFF_OPENVSWITCH			= 1<<20,
1677 	IFF_L3MDEV_SLAVE		= 1<<21,
1678 	IFF_TEAM			= 1<<22,
1679 	IFF_RXFH_CONFIGURED		= 1<<23,
1680 	IFF_PHONY_HEADROOM		= 1<<24,
1681 	IFF_MACSEC			= 1<<25,
1682 	IFF_NO_RX_HANDLER		= 1<<26,
1683 	IFF_FAILOVER			= 1<<27,
1684 	IFF_FAILOVER_SLAVE		= 1<<28,
1685 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1686 	IFF_NO_ADDRCONF			= BIT_ULL(30),
1687 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1688 	IFF_CHANGE_PROTO_DOWN		= BIT_ULL(32),
1689 	IFF_SEE_ALL_HWTSTAMP_REQUESTS	= BIT_ULL(33),
1690 };
1691 
1692 /* Specifies the type of the struct net_device::ml_priv pointer */
1693 enum netdev_ml_priv_type {
1694 	ML_PRIV_NONE,
1695 	ML_PRIV_CAN,
1696 };
1697 
1698 enum netdev_stat_type {
1699 	NETDEV_PCPU_STAT_NONE,
1700 	NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */
1701 	NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */
1702 	NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */
1703 };
1704 
1705 enum netdev_reg_state {
1706 	NETREG_UNINITIALIZED = 0,
1707 	NETREG_REGISTERED,	/* completed register_netdevice */
1708 	NETREG_UNREGISTERING,	/* called unregister_netdevice */
1709 	NETREG_UNREGISTERED,	/* completed unregister todo */
1710 	NETREG_RELEASED,	/* called free_netdev */
1711 	NETREG_DUMMY,		/* dummy device for NAPI poll */
1712 };
1713 
1714 /**
1715  *	struct net_device - The DEVICE structure.
1716  *
1717  *	Actually, this whole structure is a big mistake.  It mixes I/O
1718  *	data with strictly "high-level" data, and it has to know about
1719  *	almost every data structure used in the INET module.
1720  *
1721  *	@name:	This is the first field of the "visible" part of this structure
1722  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1723  *		of the interface.
1724  *
1725  *	@name_node:	Name hashlist node
1726  *	@ifalias:	SNMP alias
1727  *	@mem_end:	Shared memory end
1728  *	@mem_start:	Shared memory start
1729  *	@base_addr:	Device I/O address
1730  *	@irq:		Device IRQ number
1731  *
1732  *	@state:		Generic network queuing layer state, see netdev_state_t
1733  *	@dev_list:	The global list of network devices
1734  *	@napi_list:	List entry used for polling NAPI devices
1735  *	@unreg_list:	List entry  when we are unregistering the
1736  *			device; see the function unregister_netdev
1737  *	@close_list:	List entry used when we are closing the device
1738  *	@ptype_all:     Device-specific packet handlers for all protocols
1739  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1740  *
1741  *	@adj_list:	Directly linked devices, like slaves for bonding
1742  *	@features:	Currently active device features
1743  *	@hw_features:	User-changeable features
1744  *
1745  *	@wanted_features:	User-requested features
1746  *	@vlan_features:		Mask of features inheritable by VLAN devices
1747  *
1748  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1749  *				This field indicates what encapsulation
1750  *				offloads the hardware is capable of doing,
1751  *				and drivers will need to set them appropriately.
1752  *
1753  *	@mpls_features:	Mask of features inheritable by MPLS
1754  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1755  *
1756  *	@ifindex:	interface index
1757  *	@group:		The group the device belongs to
1758  *
1759  *	@stats:		Statistics struct, which was left as a legacy, use
1760  *			rtnl_link_stats64 instead
1761  *
1762  *	@core_stats:	core networking counters,
1763  *			do not use this in drivers
1764  *	@carrier_up_count:	Number of times the carrier has been up
1765  *	@carrier_down_count:	Number of times the carrier has been down
1766  *
1767  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1768  *				instead of ioctl,
1769  *				see <net/iw_handler.h> for details.
1770  *	@wireless_data:	Instance data managed by the core of wireless extensions
1771  *
1772  *	@netdev_ops:	Includes several pointers to callbacks,
1773  *			if one wants to override the ndo_*() functions
1774  *	@xdp_metadata_ops:	Includes pointers to XDP metadata callbacks.
1775  *	@xsk_tx_metadata_ops:	Includes pointers to AF_XDP TX metadata callbacks.
1776  *	@ethtool_ops:	Management operations
1777  *	@l3mdev_ops:	Layer 3 master device operations
1778  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1779  *			discovery handling. Necessary for e.g. 6LoWPAN.
1780  *	@xfrmdev_ops:	Transformation offload operations
1781  *	@tlsdev_ops:	Transport Layer Security offload operations
1782  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1783  *			of Layer 2 headers.
1784  *
1785  *	@flags:		Interface flags (a la BSD)
1786  *	@xdp_features:	XDP capability supported by the device
1787  *	@priv_flags:	Like 'flags' but invisible to userspace,
1788  *			see if.h for the definitions
1789  *	@gflags:	Global flags ( kept as legacy )
1790  *	@priv_len:	Size of the ->priv flexible array
1791  *	@priv:		Flexible array containing private data
1792  *	@operstate:	RFC2863 operstate
1793  *	@link_mode:	Mapping policy to operstate
1794  *	@if_port:	Selectable AUI, TP, ...
1795  *	@dma:		DMA channel
1796  *	@mtu:		Interface MTU value
1797  *	@min_mtu:	Interface Minimum MTU value
1798  *	@max_mtu:	Interface Maximum MTU value
1799  *	@type:		Interface hardware type
1800  *	@hard_header_len: Maximum hardware header length.
1801  *	@min_header_len:  Minimum hardware header length
1802  *
1803  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1804  *			  cases can this be guaranteed
1805  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1806  *			  cases can this be guaranteed. Some cases also use
1807  *			  LL_MAX_HEADER instead to allocate the skb
1808  *
1809  *	interface address info:
1810  *
1811  * 	@perm_addr:		Permanent hw address
1812  * 	@addr_assign_type:	Hw address assignment type
1813  * 	@addr_len:		Hardware address length
1814  *	@upper_level:		Maximum depth level of upper devices.
1815  *	@lower_level:		Maximum depth level of lower devices.
1816  *	@neigh_priv_len:	Used in neigh_alloc()
1817  * 	@dev_id:		Used to differentiate devices that share
1818  * 				the same link layer address
1819  * 	@dev_port:		Used to differentiate devices that share
1820  * 				the same function
1821  *	@addr_list_lock:	XXX: need comments on this one
1822  *	@name_assign_type:	network interface name assignment type
1823  *	@uc_promisc:		Counter that indicates promiscuous mode
1824  *				has been enabled due to the need to listen to
1825  *				additional unicast addresses in a device that
1826  *				does not implement ndo_set_rx_mode()
1827  *	@uc:			unicast mac addresses
1828  *	@mc:			multicast mac addresses
1829  *	@dev_addrs:		list of device hw addresses
1830  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1831  *	@promiscuity:		Number of times the NIC is told to work in
1832  *				promiscuous mode; if it becomes 0 the NIC will
1833  *				exit promiscuous mode
1834  *	@allmulti:		Counter, enables or disables allmulticast mode
1835  *
1836  *	@vlan_info:	VLAN info
1837  *	@dsa_ptr:	dsa specific data
1838  *	@tipc_ptr:	TIPC specific data
1839  *	@atalk_ptr:	AppleTalk link
1840  *	@ip_ptr:	IPv4 specific data
1841  *	@ip6_ptr:	IPv6 specific data
1842  *	@ax25_ptr:	AX.25 specific data
1843  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1844  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1845  *			 device struct
1846  *	@mpls_ptr:	mpls_dev struct pointer
1847  *	@mctp_ptr:	MCTP specific data
1848  *
1849  *	@dev_addr:	Hw address (before bcast,
1850  *			because most packets are unicast)
1851  *
1852  *	@_rx:			Array of RX queues
1853  *	@num_rx_queues:		Number of RX queues
1854  *				allocated at register_netdev() time
1855  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1856  *	@xdp_prog:		XDP sockets filter program pointer
1857  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1858  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1859  *				allow to avoid NIC hard IRQ, on busy queues.
1860  *
1861  *	@rx_handler:		handler for received packets
1862  *	@rx_handler_data: 	XXX: need comments on this one
1863  *	@tcx_ingress:		BPF & clsact qdisc specific data for ingress processing
1864  *	@ingress_queue:		XXX: need comments on this one
1865  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1866  *	@broadcast:		hw bcast address
1867  *
1868  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1869  *			indexed by RX queue number. Assigned by driver.
1870  *			This must only be set if the ndo_rx_flow_steer
1871  *			operation is defined
1872  *	@index_hlist:		Device index hash chain
1873  *
1874  *	@_tx:			Array of TX queues
1875  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1876  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1877  *	@qdisc:			Root qdisc from userspace point of view
1878  *	@tx_queue_len:		Max frames per queue allowed
1879  *	@tx_global_lock: 	XXX: need comments on this one
1880  *	@xdp_bulkq:		XDP device bulk queue
1881  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1882  *
1883  *	@xps_maps:	XXX: need comments on this one
1884  *	@tcx_egress:		BPF & clsact qdisc specific data for egress processing
1885  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1886  *	@qdisc_hash:		qdisc hash table
1887  *	@watchdog_timeo:	Represents the timeout that is used by
1888  *				the watchdog (see dev_watchdog())
1889  *	@watchdog_timer:	List of timers
1890  *
1891  *	@proto_down_reason:	reason a netdev interface is held down
1892  *	@pcpu_refcnt:		Number of references to this device
1893  *	@dev_refcnt:		Number of references to this device
1894  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1895  *	@todo_list:		Delayed register/unregister
1896  *	@link_watch_list:	XXX: need comments on this one
1897  *
1898  *	@reg_state:		Register/unregister state machine
1899  *	@dismantle:		Device is going to be freed
1900  *	@rtnl_link_state:	This enum represents the phases of creating
1901  *				a new link
1902  *
1903  *	@needs_free_netdev:	Should unregister perform free_netdev?
1904  *	@priv_destructor:	Called from unregister
1905  *	@npinfo:		XXX: need comments on this one
1906  * 	@nd_net:		Network namespace this network device is inside
1907  *
1908  * 	@ml_priv:	Mid-layer private
1909  *	@ml_priv_type:  Mid-layer private type
1910  *
1911  *	@pcpu_stat_type:	Type of device statistics which the core should
1912  *				allocate/free: none, lstats, tstats, dstats. none
1913  *				means the driver is handling statistics allocation/
1914  *				freeing internally.
1915  *	@lstats:		Loopback statistics: packets, bytes
1916  *	@tstats:		Tunnel statistics: RX/TX packets, RX/TX bytes
1917  *	@dstats:		Dummy statistics: RX/TX/drop packets, RX/TX bytes
1918  *
1919  *	@garp_port:	GARP
1920  *	@mrp_port:	MRP
1921  *
1922  *	@dm_private:	Drop monitor private
1923  *
1924  *	@dev:		Class/net/name entry
1925  *	@sysfs_groups:	Space for optional device, statistics and wireless
1926  *			sysfs groups
1927  *
1928  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1929  *	@rtnl_link_ops:	Rtnl_link_ops
1930  *	@stat_ops:	Optional ops for queue-aware statistics
1931  *	@queue_mgmt_ops:	Optional ops for queue management
1932  *
1933  *	@gso_max_size:	Maximum size of generic segmentation offload
1934  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
1935  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1936  *			NIC for GSO
1937  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
1938  * 	@gso_ipv4_max_size:	Maximum size of generic segmentation offload,
1939  * 				for IPv4.
1940  *
1941  *	@dcbnl_ops:	Data Center Bridging netlink ops
1942  *	@num_tc:	Number of traffic classes in the net device
1943  *	@tc_to_txq:	XXX: need comments on this one
1944  *	@prio_tc_map:	XXX: need comments on this one
1945  *
1946  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1947  *
1948  *	@priomap:	XXX: need comments on this one
1949  *	@phydev:	Physical device may attach itself
1950  *			for hardware timestamping
1951  *	@sfp_bus:	attached &struct sfp_bus structure.
1952  *
1953  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1954  *
1955  *	@proto_down:	protocol port state information can be sent to the
1956  *			switch driver and used to set the phys state of the
1957  *			switch port.
1958  *
1959  *	@threaded:	napi threaded mode is enabled
1960  *
1961  *	@net_notifier_list:	List of per-net netdev notifier block
1962  *				that follow this device when it is moved
1963  *				to another network namespace.
1964  *
1965  *	@macsec_ops:    MACsec offloading ops
1966  *
1967  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1968  *				offload capabilities of the device
1969  *	@udp_tunnel_nic:	UDP tunnel offload state
1970  *	@ethtool:	ethtool related state
1971  *	@xdp_state:		stores info on attached XDP BPF programs
1972  *
1973  *	@nested_level:	Used as a parameter of spin_lock_nested() of
1974  *			dev->addr_list_lock.
1975  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1976  *			keep a list of interfaces to be deleted.
1977  *	@gro_max_size:	Maximum size of aggregated packet in generic
1978  *			receive offload (GRO)
1979  * 	@gro_ipv4_max_size:	Maximum size of aggregated packet in generic
1980  * 				receive offload (GRO), for IPv4.
1981  *	@xdp_zc_max_segs:	Maximum number of segments supported by AF_XDP
1982  *				zero copy driver
1983  *
1984  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
1985  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
1986  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
1987  *	@dev_registered_tracker:	tracker for reference held while
1988  *					registered
1989  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
1990  *
1991  *	@devlink_port:	Pointer to related devlink port structure.
1992  *			Assigned by a driver before netdev registration using
1993  *			SET_NETDEV_DEVLINK_PORT macro. This pointer is static
1994  *			during the time netdevice is registered.
1995  *
1996  *	@dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem,
1997  *		   where the clock is recovered.
1998  *
1999  *	FIXME: cleanup struct net_device such that network protocol info
2000  *	moves out.
2001  */
2002 
2003 struct net_device {
2004 	/* Cacheline organization can be found documented in
2005 	 * Documentation/networking/net_cachelines/net_device.rst.
2006 	 * Please update the document when adding new fields.
2007 	 */
2008 
2009 	/* TX read-mostly hotpath */
2010 	__cacheline_group_begin(net_device_read_tx);
2011 	unsigned long long	priv_flags;
2012 	const struct net_device_ops *netdev_ops;
2013 	const struct header_ops *header_ops;
2014 	struct netdev_queue	*_tx;
2015 	netdev_features_t	gso_partial_features;
2016 	unsigned int		real_num_tx_queues;
2017 	unsigned int		gso_max_size;
2018 	unsigned int		gso_ipv4_max_size;
2019 	u16			gso_max_segs;
2020 	s16			num_tc;
2021 	/* Note : dev->mtu is often read without holding a lock.
2022 	 * Writers usually hold RTNL.
2023 	 * It is recommended to use READ_ONCE() to annotate the reads,
2024 	 * and to use WRITE_ONCE() to annotate the writes.
2025 	 */
2026 	unsigned int		mtu;
2027 	unsigned short		needed_headroom;
2028 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2029 #ifdef CONFIG_XPS
2030 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2031 #endif
2032 #ifdef CONFIG_NETFILTER_EGRESS
2033 	struct nf_hook_entries __rcu *nf_hooks_egress;
2034 #endif
2035 #ifdef CONFIG_NET_XGRESS
2036 	struct bpf_mprog_entry __rcu *tcx_egress;
2037 #endif
2038 	__cacheline_group_end(net_device_read_tx);
2039 
2040 	/* TXRX read-mostly hotpath */
2041 	__cacheline_group_begin(net_device_read_txrx);
2042 	union {
2043 		struct pcpu_lstats __percpu		*lstats;
2044 		struct pcpu_sw_netstats __percpu	*tstats;
2045 		struct pcpu_dstats __percpu		*dstats;
2046 	};
2047 	unsigned long		state;
2048 	unsigned int		flags;
2049 	unsigned short		hard_header_len;
2050 	netdev_features_t	features;
2051 	struct inet6_dev __rcu	*ip6_ptr;
2052 	__cacheline_group_end(net_device_read_txrx);
2053 
2054 	/* RX read-mostly hotpath */
2055 	__cacheline_group_begin(net_device_read_rx);
2056 	struct bpf_prog __rcu	*xdp_prog;
2057 	struct list_head	ptype_specific;
2058 	int			ifindex;
2059 	unsigned int		real_num_rx_queues;
2060 	struct netdev_rx_queue	*_rx;
2061 	unsigned long		gro_flush_timeout;
2062 	int			napi_defer_hard_irqs;
2063 	unsigned int		gro_max_size;
2064 	unsigned int		gro_ipv4_max_size;
2065 	rx_handler_func_t __rcu	*rx_handler;
2066 	void __rcu		*rx_handler_data;
2067 	possible_net_t			nd_net;
2068 #ifdef CONFIG_NETPOLL
2069 	struct netpoll_info __rcu	*npinfo;
2070 #endif
2071 #ifdef CONFIG_NET_XGRESS
2072 	struct bpf_mprog_entry __rcu *tcx_ingress;
2073 #endif
2074 	__cacheline_group_end(net_device_read_rx);
2075 
2076 	char			name[IFNAMSIZ];
2077 	struct netdev_name_node	*name_node;
2078 	struct dev_ifalias	__rcu *ifalias;
2079 	/*
2080 	 *	I/O specific fields
2081 	 *	FIXME: Merge these and struct ifmap into one
2082 	 */
2083 	unsigned long		mem_end;
2084 	unsigned long		mem_start;
2085 	unsigned long		base_addr;
2086 
2087 	/*
2088 	 *	Some hardware also needs these fields (state,dev_list,
2089 	 *	napi_list,unreg_list,close_list) but they are not
2090 	 *	part of the usual set specified in Space.c.
2091 	 */
2092 
2093 
2094 	struct list_head	dev_list;
2095 	struct list_head	napi_list;
2096 	struct list_head	unreg_list;
2097 	struct list_head	close_list;
2098 	struct list_head	ptype_all;
2099 
2100 	struct {
2101 		struct list_head upper;
2102 		struct list_head lower;
2103 	} adj_list;
2104 
2105 	/* Read-mostly cache-line for fast-path access */
2106 	xdp_features_t		xdp_features;
2107 	const struct xdp_metadata_ops *xdp_metadata_ops;
2108 	const struct xsk_tx_metadata_ops *xsk_tx_metadata_ops;
2109 	unsigned short		gflags;
2110 
2111 	unsigned short		needed_tailroom;
2112 
2113 	netdev_features_t	hw_features;
2114 	netdev_features_t	wanted_features;
2115 	netdev_features_t	vlan_features;
2116 	netdev_features_t	hw_enc_features;
2117 	netdev_features_t	mpls_features;
2118 
2119 	unsigned int		min_mtu;
2120 	unsigned int		max_mtu;
2121 	unsigned short		type;
2122 	unsigned char		min_header_len;
2123 	unsigned char		name_assign_type;
2124 
2125 	int			group;
2126 
2127 	struct net_device_stats	stats; /* not used by modern drivers */
2128 
2129 	struct net_device_core_stats __percpu *core_stats;
2130 
2131 	/* Stats to monitor link on/off, flapping */
2132 	atomic_t		carrier_up_count;
2133 	atomic_t		carrier_down_count;
2134 
2135 #ifdef CONFIG_WIRELESS_EXT
2136 	const struct iw_handler_def *wireless_handlers;
2137 	struct iw_public_data	*wireless_data;
2138 #endif
2139 	const struct ethtool_ops *ethtool_ops;
2140 #ifdef CONFIG_NET_L3_MASTER_DEV
2141 	const struct l3mdev_ops	*l3mdev_ops;
2142 #endif
2143 #if IS_ENABLED(CONFIG_IPV6)
2144 	const struct ndisc_ops *ndisc_ops;
2145 #endif
2146 
2147 #ifdef CONFIG_XFRM_OFFLOAD
2148 	const struct xfrmdev_ops *xfrmdev_ops;
2149 #endif
2150 
2151 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2152 	const struct tlsdev_ops *tlsdev_ops;
2153 #endif
2154 
2155 	unsigned int		operstate;
2156 	unsigned char		link_mode;
2157 
2158 	unsigned char		if_port;
2159 	unsigned char		dma;
2160 
2161 	/* Interface address info. */
2162 	unsigned char		perm_addr[MAX_ADDR_LEN];
2163 	unsigned char		addr_assign_type;
2164 	unsigned char		addr_len;
2165 	unsigned char		upper_level;
2166 	unsigned char		lower_level;
2167 
2168 	unsigned short		neigh_priv_len;
2169 	unsigned short          dev_id;
2170 	unsigned short          dev_port;
2171 	int			irq;
2172 	u32			priv_len;
2173 
2174 	spinlock_t		addr_list_lock;
2175 
2176 	struct netdev_hw_addr_list	uc;
2177 	struct netdev_hw_addr_list	mc;
2178 	struct netdev_hw_addr_list	dev_addrs;
2179 
2180 #ifdef CONFIG_SYSFS
2181 	struct kset		*queues_kset;
2182 #endif
2183 #ifdef CONFIG_LOCKDEP
2184 	struct list_head	unlink_list;
2185 #endif
2186 	unsigned int		promiscuity;
2187 	unsigned int		allmulti;
2188 	bool			uc_promisc;
2189 #ifdef CONFIG_LOCKDEP
2190 	unsigned char		nested_level;
2191 #endif
2192 
2193 
2194 	/* Protocol-specific pointers */
2195 	struct in_device __rcu	*ip_ptr;
2196 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2197 	struct vlan_info __rcu	*vlan_info;
2198 #endif
2199 #if IS_ENABLED(CONFIG_NET_DSA)
2200 	struct dsa_port		*dsa_ptr;
2201 #endif
2202 #if IS_ENABLED(CONFIG_TIPC)
2203 	struct tipc_bearer __rcu *tipc_ptr;
2204 #endif
2205 #if IS_ENABLED(CONFIG_ATALK)
2206 	void 			*atalk_ptr;
2207 #endif
2208 #if IS_ENABLED(CONFIG_AX25)
2209 	void			*ax25_ptr;
2210 #endif
2211 #if IS_ENABLED(CONFIG_CFG80211)
2212 	struct wireless_dev	*ieee80211_ptr;
2213 #endif
2214 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2215 	struct wpan_dev		*ieee802154_ptr;
2216 #endif
2217 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2218 	struct mpls_dev __rcu	*mpls_ptr;
2219 #endif
2220 #if IS_ENABLED(CONFIG_MCTP)
2221 	struct mctp_dev __rcu	*mctp_ptr;
2222 #endif
2223 
2224 /*
2225  * Cache lines mostly used on receive path (including eth_type_trans())
2226  */
2227 	/* Interface address info used in eth_type_trans() */
2228 	const unsigned char	*dev_addr;
2229 
2230 	unsigned int		num_rx_queues;
2231 #define GRO_LEGACY_MAX_SIZE	65536u
2232 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2233  * and shinfo->gso_segs is a 16bit field.
2234  */
2235 #define GRO_MAX_SIZE		(8 * 65535u)
2236 	unsigned int		xdp_zc_max_segs;
2237 	struct netdev_queue __rcu *ingress_queue;
2238 #ifdef CONFIG_NETFILTER_INGRESS
2239 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2240 #endif
2241 
2242 	unsigned char		broadcast[MAX_ADDR_LEN];
2243 #ifdef CONFIG_RFS_ACCEL
2244 	struct cpu_rmap		*rx_cpu_rmap;
2245 #endif
2246 	struct hlist_node	index_hlist;
2247 
2248 /*
2249  * Cache lines mostly used on transmit path
2250  */
2251 	unsigned int		num_tx_queues;
2252 	struct Qdisc __rcu	*qdisc;
2253 	unsigned int		tx_queue_len;
2254 	spinlock_t		tx_global_lock;
2255 
2256 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2257 
2258 #ifdef CONFIG_NET_SCHED
2259 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2260 #endif
2261 	/* These may be needed for future network-power-down code. */
2262 	struct timer_list	watchdog_timer;
2263 	int			watchdog_timeo;
2264 
2265 	u32                     proto_down_reason;
2266 
2267 	struct list_head	todo_list;
2268 
2269 #ifdef CONFIG_PCPU_DEV_REFCNT
2270 	int __percpu		*pcpu_refcnt;
2271 #else
2272 	refcount_t		dev_refcnt;
2273 #endif
2274 	struct ref_tracker_dir	refcnt_tracker;
2275 
2276 	struct list_head	link_watch_list;
2277 
2278 	u8 reg_state;
2279 
2280 	bool dismantle;
2281 
2282 	enum {
2283 		RTNL_LINK_INITIALIZED,
2284 		RTNL_LINK_INITIALIZING,
2285 	} rtnl_link_state:16;
2286 
2287 	bool needs_free_netdev;
2288 	void (*priv_destructor)(struct net_device *dev);
2289 
2290 	/* mid-layer private */
2291 	void				*ml_priv;
2292 	enum netdev_ml_priv_type	ml_priv_type;
2293 
2294 	enum netdev_stat_type		pcpu_stat_type:8;
2295 
2296 #if IS_ENABLED(CONFIG_GARP)
2297 	struct garp_port __rcu	*garp_port;
2298 #endif
2299 #if IS_ENABLED(CONFIG_MRP)
2300 	struct mrp_port __rcu	*mrp_port;
2301 #endif
2302 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2303 	struct dm_hw_stat_delta __rcu *dm_private;
2304 #endif
2305 	struct device		dev;
2306 	const struct attribute_group *sysfs_groups[4];
2307 	const struct attribute_group *sysfs_rx_queue_group;
2308 
2309 	const struct rtnl_link_ops *rtnl_link_ops;
2310 
2311 	const struct netdev_stat_ops *stat_ops;
2312 
2313 	const struct netdev_queue_mgmt_ops *queue_mgmt_ops;
2314 
2315 	/* for setting kernel sock attribute on TCP connection setup */
2316 #define GSO_MAX_SEGS		65535u
2317 #define GSO_LEGACY_MAX_SIZE	65536u
2318 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2319  * and shinfo->gso_segs is a 16bit field.
2320  */
2321 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2322 
2323 #define TSO_LEGACY_MAX_SIZE	65536
2324 #define TSO_MAX_SIZE		UINT_MAX
2325 	unsigned int		tso_max_size;
2326 #define TSO_MAX_SEGS		U16_MAX
2327 	u16			tso_max_segs;
2328 
2329 #ifdef CONFIG_DCB
2330 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2331 #endif
2332 	u8			prio_tc_map[TC_BITMASK + 1];
2333 
2334 #if IS_ENABLED(CONFIG_FCOE)
2335 	unsigned int		fcoe_ddp_xid;
2336 #endif
2337 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2338 	struct netprio_map __rcu *priomap;
2339 #endif
2340 	struct phy_device	*phydev;
2341 	struct sfp_bus		*sfp_bus;
2342 	struct lock_class_key	*qdisc_tx_busylock;
2343 	bool			proto_down;
2344 	bool			threaded;
2345 
2346 	struct list_head	net_notifier_list;
2347 
2348 #if IS_ENABLED(CONFIG_MACSEC)
2349 	/* MACsec management functions */
2350 	const struct macsec_ops *macsec_ops;
2351 #endif
2352 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2353 	struct udp_tunnel_nic	*udp_tunnel_nic;
2354 
2355 	struct ethtool_netdev_state *ethtool;
2356 
2357 	/* protected by rtnl_lock */
2358 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2359 
2360 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2361 	netdevice_tracker	linkwatch_dev_tracker;
2362 	netdevice_tracker	watchdog_dev_tracker;
2363 	netdevice_tracker	dev_registered_tracker;
2364 	struct rtnl_hw_stats64	*offload_xstats_l3;
2365 
2366 	struct devlink_port	*devlink_port;
2367 
2368 #if IS_ENABLED(CONFIG_DPLL)
2369 	struct dpll_pin	__rcu	*dpll_pin;
2370 #endif
2371 #if IS_ENABLED(CONFIG_PAGE_POOL)
2372 	/** @page_pools: page pools created for this netdevice */
2373 	struct hlist_head	page_pools;
2374 #endif
2375 
2376 	/** @irq_moder: dim parameters used if IS_ENABLED(CONFIG_DIMLIB). */
2377 	struct dim_irq_moder	*irq_moder;
2378 
2379 	u8			priv[] ____cacheline_aligned
2380 				       __counted_by(priv_len);
2381 } ____cacheline_aligned;
2382 #define to_net_dev(d) container_of(d, struct net_device, dev)
2383 
2384 /*
2385  * Driver should use this to assign devlink port instance to a netdevice
2386  * before it registers the netdevice. Therefore devlink_port is static
2387  * during the netdev lifetime after it is registered.
2388  */
2389 #define SET_NETDEV_DEVLINK_PORT(dev, port)			\
2390 ({								\
2391 	WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED);	\
2392 	((dev)->devlink_port = (port));				\
2393 })
2394 
2395 static inline bool netif_elide_gro(const struct net_device *dev)
2396 {
2397 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2398 		return true;
2399 	return false;
2400 }
2401 
2402 #define	NETDEV_ALIGN		32
2403 
2404 static inline
2405 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2406 {
2407 	return dev->prio_tc_map[prio & TC_BITMASK];
2408 }
2409 
2410 static inline
2411 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2412 {
2413 	if (tc >= dev->num_tc)
2414 		return -EINVAL;
2415 
2416 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2417 	return 0;
2418 }
2419 
2420 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2421 void netdev_reset_tc(struct net_device *dev);
2422 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2423 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2424 
2425 static inline
2426 int netdev_get_num_tc(struct net_device *dev)
2427 {
2428 	return dev->num_tc;
2429 }
2430 
2431 static inline void net_prefetch(void *p)
2432 {
2433 	prefetch(p);
2434 #if L1_CACHE_BYTES < 128
2435 	prefetch((u8 *)p + L1_CACHE_BYTES);
2436 #endif
2437 }
2438 
2439 static inline void net_prefetchw(void *p)
2440 {
2441 	prefetchw(p);
2442 #if L1_CACHE_BYTES < 128
2443 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2444 #endif
2445 }
2446 
2447 void netdev_unbind_sb_channel(struct net_device *dev,
2448 			      struct net_device *sb_dev);
2449 int netdev_bind_sb_channel_queue(struct net_device *dev,
2450 				 struct net_device *sb_dev,
2451 				 u8 tc, u16 count, u16 offset);
2452 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2453 static inline int netdev_get_sb_channel(struct net_device *dev)
2454 {
2455 	return max_t(int, -dev->num_tc, 0);
2456 }
2457 
2458 static inline
2459 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2460 					 unsigned int index)
2461 {
2462 	DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues);
2463 	return &dev->_tx[index];
2464 }
2465 
2466 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2467 						    const struct sk_buff *skb)
2468 {
2469 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2470 }
2471 
2472 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2473 					    void (*f)(struct net_device *,
2474 						      struct netdev_queue *,
2475 						      void *),
2476 					    void *arg)
2477 {
2478 	unsigned int i;
2479 
2480 	for (i = 0; i < dev->num_tx_queues; i++)
2481 		f(dev, &dev->_tx[i], arg);
2482 }
2483 
2484 #define netdev_lockdep_set_classes(dev)				\
2485 {								\
2486 	static struct lock_class_key qdisc_tx_busylock_key;	\
2487 	static struct lock_class_key qdisc_xmit_lock_key;	\
2488 	static struct lock_class_key dev_addr_list_lock_key;	\
2489 	unsigned int i;						\
2490 								\
2491 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2492 	lockdep_set_class(&(dev)->addr_list_lock,		\
2493 			  &dev_addr_list_lock_key);		\
2494 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2495 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2496 				  &qdisc_xmit_lock_key);	\
2497 }
2498 
2499 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2500 		     struct net_device *sb_dev);
2501 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2502 					 struct sk_buff *skb,
2503 					 struct net_device *sb_dev);
2504 
2505 /* returns the headroom that the master device needs to take in account
2506  * when forwarding to this dev
2507  */
2508 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2509 {
2510 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2511 }
2512 
2513 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2514 {
2515 	if (dev->netdev_ops->ndo_set_rx_headroom)
2516 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2517 }
2518 
2519 /* set the device rx headroom to the dev's default */
2520 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2521 {
2522 	netdev_set_rx_headroom(dev, -1);
2523 }
2524 
2525 static inline void *netdev_get_ml_priv(struct net_device *dev,
2526 				       enum netdev_ml_priv_type type)
2527 {
2528 	if (dev->ml_priv_type != type)
2529 		return NULL;
2530 
2531 	return dev->ml_priv;
2532 }
2533 
2534 static inline void netdev_set_ml_priv(struct net_device *dev,
2535 				      void *ml_priv,
2536 				      enum netdev_ml_priv_type type)
2537 {
2538 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2539 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2540 	     dev->ml_priv_type, type);
2541 	WARN(!dev->ml_priv_type && dev->ml_priv,
2542 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2543 
2544 	dev->ml_priv = ml_priv;
2545 	dev->ml_priv_type = type;
2546 }
2547 
2548 /*
2549  * Net namespace inlines
2550  */
2551 static inline
2552 struct net *dev_net(const struct net_device *dev)
2553 {
2554 	return read_pnet(&dev->nd_net);
2555 }
2556 
2557 static inline
2558 void dev_net_set(struct net_device *dev, struct net *net)
2559 {
2560 	write_pnet(&dev->nd_net, net);
2561 }
2562 
2563 /**
2564  *	netdev_priv - access network device private data
2565  *	@dev: network device
2566  *
2567  * Get network device private data
2568  */
2569 static inline void *netdev_priv(const struct net_device *dev)
2570 {
2571 	return (void *)dev->priv;
2572 }
2573 
2574 /* Set the sysfs physical device reference for the network logical device
2575  * if set prior to registration will cause a symlink during initialization.
2576  */
2577 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2578 
2579 /* Set the sysfs device type for the network logical device to allow
2580  * fine-grained identification of different network device types. For
2581  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2582  */
2583 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2584 
2585 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
2586 			  enum netdev_queue_type type,
2587 			  struct napi_struct *napi);
2588 
2589 static inline void netif_napi_set_irq(struct napi_struct *napi, int irq)
2590 {
2591 	napi->irq = irq;
2592 }
2593 
2594 /* Default NAPI poll() weight
2595  * Device drivers are strongly advised to not use bigger value
2596  */
2597 #define NAPI_POLL_WEIGHT 64
2598 
2599 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2600 			   int (*poll)(struct napi_struct *, int), int weight);
2601 
2602 /**
2603  * netif_napi_add() - initialize a NAPI context
2604  * @dev:  network device
2605  * @napi: NAPI context
2606  * @poll: polling function
2607  *
2608  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2609  * *any* of the other NAPI-related functions.
2610  */
2611 static inline void
2612 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2613 	       int (*poll)(struct napi_struct *, int))
2614 {
2615 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2616 }
2617 
2618 static inline void
2619 netif_napi_add_tx_weight(struct net_device *dev,
2620 			 struct napi_struct *napi,
2621 			 int (*poll)(struct napi_struct *, int),
2622 			 int weight)
2623 {
2624 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2625 	netif_napi_add_weight(dev, napi, poll, weight);
2626 }
2627 
2628 /**
2629  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2630  * @dev:  network device
2631  * @napi: NAPI context
2632  * @poll: polling function
2633  *
2634  * This variant of netif_napi_add() should be used from drivers using NAPI
2635  * to exclusively poll a TX queue.
2636  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2637  */
2638 static inline void netif_napi_add_tx(struct net_device *dev,
2639 				     struct napi_struct *napi,
2640 				     int (*poll)(struct napi_struct *, int))
2641 {
2642 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2643 }
2644 
2645 /**
2646  *  __netif_napi_del - remove a NAPI context
2647  *  @napi: NAPI context
2648  *
2649  * Warning: caller must observe RCU grace period before freeing memory
2650  * containing @napi. Drivers might want to call this helper to combine
2651  * all the needed RCU grace periods into a single one.
2652  */
2653 void __netif_napi_del(struct napi_struct *napi);
2654 
2655 /**
2656  *  netif_napi_del - remove a NAPI context
2657  *  @napi: NAPI context
2658  *
2659  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2660  */
2661 static inline void netif_napi_del(struct napi_struct *napi)
2662 {
2663 	__netif_napi_del(napi);
2664 	synchronize_net();
2665 }
2666 
2667 struct packet_type {
2668 	__be16			type;	/* This is really htons(ether_type). */
2669 	bool			ignore_outgoing;
2670 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2671 	netdevice_tracker	dev_tracker;
2672 	int			(*func) (struct sk_buff *,
2673 					 struct net_device *,
2674 					 struct packet_type *,
2675 					 struct net_device *);
2676 	void			(*list_func) (struct list_head *,
2677 					      struct packet_type *,
2678 					      struct net_device *);
2679 	bool			(*id_match)(struct packet_type *ptype,
2680 					    struct sock *sk);
2681 	struct net		*af_packet_net;
2682 	void			*af_packet_priv;
2683 	struct list_head	list;
2684 };
2685 
2686 struct offload_callbacks {
2687 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2688 						netdev_features_t features);
2689 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2690 						struct sk_buff *skb);
2691 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2692 };
2693 
2694 struct packet_offload {
2695 	__be16			 type;	/* This is really htons(ether_type). */
2696 	u16			 priority;
2697 	struct offload_callbacks callbacks;
2698 	struct list_head	 list;
2699 };
2700 
2701 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2702 struct pcpu_sw_netstats {
2703 	u64_stats_t		rx_packets;
2704 	u64_stats_t		rx_bytes;
2705 	u64_stats_t		tx_packets;
2706 	u64_stats_t		tx_bytes;
2707 	struct u64_stats_sync   syncp;
2708 } __aligned(4 * sizeof(u64));
2709 
2710 struct pcpu_dstats {
2711 	u64_stats_t		rx_packets;
2712 	u64_stats_t		rx_bytes;
2713 	u64_stats_t		rx_drops;
2714 	u64_stats_t		tx_packets;
2715 	u64_stats_t		tx_bytes;
2716 	u64_stats_t		tx_drops;
2717 	struct u64_stats_sync	syncp;
2718 } __aligned(8 * sizeof(u64));
2719 
2720 struct pcpu_lstats {
2721 	u64_stats_t packets;
2722 	u64_stats_t bytes;
2723 	struct u64_stats_sync syncp;
2724 } __aligned(2 * sizeof(u64));
2725 
2726 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2727 
2728 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2729 {
2730 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2731 
2732 	u64_stats_update_begin(&tstats->syncp);
2733 	u64_stats_add(&tstats->rx_bytes, len);
2734 	u64_stats_inc(&tstats->rx_packets);
2735 	u64_stats_update_end(&tstats->syncp);
2736 }
2737 
2738 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2739 					  unsigned int packets,
2740 					  unsigned int len)
2741 {
2742 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2743 
2744 	u64_stats_update_begin(&tstats->syncp);
2745 	u64_stats_add(&tstats->tx_bytes, len);
2746 	u64_stats_add(&tstats->tx_packets, packets);
2747 	u64_stats_update_end(&tstats->syncp);
2748 }
2749 
2750 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2751 {
2752 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2753 
2754 	u64_stats_update_begin(&lstats->syncp);
2755 	u64_stats_add(&lstats->bytes, len);
2756 	u64_stats_inc(&lstats->packets);
2757 	u64_stats_update_end(&lstats->syncp);
2758 }
2759 
2760 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2761 ({									\
2762 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2763 	if (pcpu_stats)	{						\
2764 		int __cpu;						\
2765 		for_each_possible_cpu(__cpu) {				\
2766 			typeof(type) *stat;				\
2767 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2768 			u64_stats_init(&stat->syncp);			\
2769 		}							\
2770 	}								\
2771 	pcpu_stats;							\
2772 })
2773 
2774 #define netdev_alloc_pcpu_stats(type)					\
2775 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2776 
2777 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2778 ({									\
2779 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2780 	if (pcpu_stats) {						\
2781 		int __cpu;						\
2782 		for_each_possible_cpu(__cpu) {				\
2783 			typeof(type) *stat;				\
2784 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2785 			u64_stats_init(&stat->syncp);			\
2786 		}							\
2787 	}								\
2788 	pcpu_stats;							\
2789 })
2790 
2791 enum netdev_lag_tx_type {
2792 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2793 	NETDEV_LAG_TX_TYPE_RANDOM,
2794 	NETDEV_LAG_TX_TYPE_BROADCAST,
2795 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2796 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2797 	NETDEV_LAG_TX_TYPE_HASH,
2798 };
2799 
2800 enum netdev_lag_hash {
2801 	NETDEV_LAG_HASH_NONE,
2802 	NETDEV_LAG_HASH_L2,
2803 	NETDEV_LAG_HASH_L34,
2804 	NETDEV_LAG_HASH_L23,
2805 	NETDEV_LAG_HASH_E23,
2806 	NETDEV_LAG_HASH_E34,
2807 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2808 	NETDEV_LAG_HASH_UNKNOWN,
2809 };
2810 
2811 struct netdev_lag_upper_info {
2812 	enum netdev_lag_tx_type tx_type;
2813 	enum netdev_lag_hash hash_type;
2814 };
2815 
2816 struct netdev_lag_lower_state_info {
2817 	u8 link_up : 1,
2818 	   tx_enabled : 1;
2819 };
2820 
2821 #include <linux/notifier.h>
2822 
2823 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2824  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2825  * adding new types.
2826  */
2827 enum netdev_cmd {
2828 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2829 	NETDEV_DOWN,
2830 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2831 				   detected a hardware crash and restarted
2832 				   - we can use this eg to kick tcp sessions
2833 				   once done */
2834 	NETDEV_CHANGE,		/* Notify device state change */
2835 	NETDEV_REGISTER,
2836 	NETDEV_UNREGISTER,
2837 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2838 	NETDEV_CHANGEADDR,	/* notify after the address change */
2839 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2840 	NETDEV_GOING_DOWN,
2841 	NETDEV_CHANGENAME,
2842 	NETDEV_FEAT_CHANGE,
2843 	NETDEV_BONDING_FAILOVER,
2844 	NETDEV_PRE_UP,
2845 	NETDEV_PRE_TYPE_CHANGE,
2846 	NETDEV_POST_TYPE_CHANGE,
2847 	NETDEV_POST_INIT,
2848 	NETDEV_PRE_UNINIT,
2849 	NETDEV_RELEASE,
2850 	NETDEV_NOTIFY_PEERS,
2851 	NETDEV_JOIN,
2852 	NETDEV_CHANGEUPPER,
2853 	NETDEV_RESEND_IGMP,
2854 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2855 	NETDEV_CHANGEINFODATA,
2856 	NETDEV_BONDING_INFO,
2857 	NETDEV_PRECHANGEUPPER,
2858 	NETDEV_CHANGELOWERSTATE,
2859 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2860 	NETDEV_UDP_TUNNEL_DROP_INFO,
2861 	NETDEV_CHANGE_TX_QUEUE_LEN,
2862 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2863 	NETDEV_CVLAN_FILTER_DROP_INFO,
2864 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2865 	NETDEV_SVLAN_FILTER_DROP_INFO,
2866 	NETDEV_OFFLOAD_XSTATS_ENABLE,
2867 	NETDEV_OFFLOAD_XSTATS_DISABLE,
2868 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2869 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2870 	NETDEV_XDP_FEAT_CHANGE,
2871 };
2872 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2873 
2874 int register_netdevice_notifier(struct notifier_block *nb);
2875 int unregister_netdevice_notifier(struct notifier_block *nb);
2876 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2877 int unregister_netdevice_notifier_net(struct net *net,
2878 				      struct notifier_block *nb);
2879 int register_netdevice_notifier_dev_net(struct net_device *dev,
2880 					struct notifier_block *nb,
2881 					struct netdev_net_notifier *nn);
2882 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2883 					  struct notifier_block *nb,
2884 					  struct netdev_net_notifier *nn);
2885 
2886 struct netdev_notifier_info {
2887 	struct net_device	*dev;
2888 	struct netlink_ext_ack	*extack;
2889 };
2890 
2891 struct netdev_notifier_info_ext {
2892 	struct netdev_notifier_info info; /* must be first */
2893 	union {
2894 		u32 mtu;
2895 	} ext;
2896 };
2897 
2898 struct netdev_notifier_change_info {
2899 	struct netdev_notifier_info info; /* must be first */
2900 	unsigned int flags_changed;
2901 };
2902 
2903 struct netdev_notifier_changeupper_info {
2904 	struct netdev_notifier_info info; /* must be first */
2905 	struct net_device *upper_dev; /* new upper dev */
2906 	bool master; /* is upper dev master */
2907 	bool linking; /* is the notification for link or unlink */
2908 	void *upper_info; /* upper dev info */
2909 };
2910 
2911 struct netdev_notifier_changelowerstate_info {
2912 	struct netdev_notifier_info info; /* must be first */
2913 	void *lower_state_info; /* is lower dev state */
2914 };
2915 
2916 struct netdev_notifier_pre_changeaddr_info {
2917 	struct netdev_notifier_info info; /* must be first */
2918 	const unsigned char *dev_addr;
2919 };
2920 
2921 enum netdev_offload_xstats_type {
2922 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
2923 };
2924 
2925 struct netdev_notifier_offload_xstats_info {
2926 	struct netdev_notifier_info info; /* must be first */
2927 	enum netdev_offload_xstats_type type;
2928 
2929 	union {
2930 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
2931 		struct netdev_notifier_offload_xstats_rd *report_delta;
2932 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
2933 		struct netdev_notifier_offload_xstats_ru *report_used;
2934 	};
2935 };
2936 
2937 int netdev_offload_xstats_enable(struct net_device *dev,
2938 				 enum netdev_offload_xstats_type type,
2939 				 struct netlink_ext_ack *extack);
2940 int netdev_offload_xstats_disable(struct net_device *dev,
2941 				  enum netdev_offload_xstats_type type);
2942 bool netdev_offload_xstats_enabled(const struct net_device *dev,
2943 				   enum netdev_offload_xstats_type type);
2944 int netdev_offload_xstats_get(struct net_device *dev,
2945 			      enum netdev_offload_xstats_type type,
2946 			      struct rtnl_hw_stats64 *stats, bool *used,
2947 			      struct netlink_ext_ack *extack);
2948 void
2949 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
2950 				   const struct rtnl_hw_stats64 *stats);
2951 void
2952 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
2953 void netdev_offload_xstats_push_delta(struct net_device *dev,
2954 				      enum netdev_offload_xstats_type type,
2955 				      const struct rtnl_hw_stats64 *stats);
2956 
2957 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2958 					     struct net_device *dev)
2959 {
2960 	info->dev = dev;
2961 	info->extack = NULL;
2962 }
2963 
2964 static inline struct net_device *
2965 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2966 {
2967 	return info->dev;
2968 }
2969 
2970 static inline struct netlink_ext_ack *
2971 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2972 {
2973 	return info->extack;
2974 }
2975 
2976 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2977 int call_netdevice_notifiers_info(unsigned long val,
2978 				  struct netdev_notifier_info *info);
2979 
2980 #define for_each_netdev(net, d)		\
2981 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2982 #define for_each_netdev_reverse(net, d)	\
2983 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2984 #define for_each_netdev_rcu(net, d)		\
2985 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2986 #define for_each_netdev_safe(net, d, n)	\
2987 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2988 #define for_each_netdev_continue(net, d)		\
2989 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2990 #define for_each_netdev_continue_reverse(net, d)		\
2991 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2992 						     dev_list)
2993 #define for_each_netdev_continue_rcu(net, d)		\
2994 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2995 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2996 		for_each_netdev_rcu(&init_net, slave)	\
2997 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2998 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2999 
3000 #define for_each_netdev_dump(net, d, ifindex)				\
3001 	for (; (d = xa_find(&(net)->dev_by_index, &ifindex,		\
3002 			    ULONG_MAX, XA_PRESENT)); ifindex++)
3003 
3004 static inline struct net_device *next_net_device(struct net_device *dev)
3005 {
3006 	struct list_head *lh;
3007 	struct net *net;
3008 
3009 	net = dev_net(dev);
3010 	lh = dev->dev_list.next;
3011 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3012 }
3013 
3014 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
3015 {
3016 	struct list_head *lh;
3017 	struct net *net;
3018 
3019 	net = dev_net(dev);
3020 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
3021 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3022 }
3023 
3024 static inline struct net_device *first_net_device(struct net *net)
3025 {
3026 	return list_empty(&net->dev_base_head) ? NULL :
3027 		net_device_entry(net->dev_base_head.next);
3028 }
3029 
3030 static inline struct net_device *first_net_device_rcu(struct net *net)
3031 {
3032 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
3033 
3034 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3035 }
3036 
3037 int netdev_boot_setup_check(struct net_device *dev);
3038 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3039 				       const char *hwaddr);
3040 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
3041 void dev_add_pack(struct packet_type *pt);
3042 void dev_remove_pack(struct packet_type *pt);
3043 void __dev_remove_pack(struct packet_type *pt);
3044 void dev_add_offload(struct packet_offload *po);
3045 void dev_remove_offload(struct packet_offload *po);
3046 
3047 int dev_get_iflink(const struct net_device *dev);
3048 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3049 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3050 			  struct net_device_path_stack *stack);
3051 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3052 				      unsigned short mask);
3053 struct net_device *dev_get_by_name(struct net *net, const char *name);
3054 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3055 struct net_device *__dev_get_by_name(struct net *net, const char *name);
3056 bool netdev_name_in_use(struct net *net, const char *name);
3057 int dev_alloc_name(struct net_device *dev, const char *name);
3058 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3059 void dev_close(struct net_device *dev);
3060 void dev_close_many(struct list_head *head, bool unlink);
3061 void dev_disable_lro(struct net_device *dev);
3062 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3063 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3064 		     struct net_device *sb_dev);
3065 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3066 		       struct net_device *sb_dev);
3067 
3068 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3069 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3070 
3071 static inline int dev_queue_xmit(struct sk_buff *skb)
3072 {
3073 	return __dev_queue_xmit(skb, NULL);
3074 }
3075 
3076 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3077 				       struct net_device *sb_dev)
3078 {
3079 	return __dev_queue_xmit(skb, sb_dev);
3080 }
3081 
3082 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3083 {
3084 	int ret;
3085 
3086 	ret = __dev_direct_xmit(skb, queue_id);
3087 	if (!dev_xmit_complete(ret))
3088 		kfree_skb(skb);
3089 	return ret;
3090 }
3091 
3092 int register_netdevice(struct net_device *dev);
3093 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3094 void unregister_netdevice_many(struct list_head *head);
3095 static inline void unregister_netdevice(struct net_device *dev)
3096 {
3097 	unregister_netdevice_queue(dev, NULL);
3098 }
3099 
3100 int netdev_refcnt_read(const struct net_device *dev);
3101 void free_netdev(struct net_device *dev);
3102 void init_dummy_netdev(struct net_device *dev);
3103 
3104 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3105 					 struct sk_buff *skb,
3106 					 bool all_slaves);
3107 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3108 					    struct sock *sk);
3109 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3110 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3111 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
3112 				       netdevice_tracker *tracker, gfp_t gfp);
3113 struct net_device *netdev_get_by_name(struct net *net, const char *name,
3114 				      netdevice_tracker *tracker, gfp_t gfp);
3115 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3116 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3117 void netdev_copy_name(struct net_device *dev, char *name);
3118 
3119 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3120 				  unsigned short type,
3121 				  const void *daddr, const void *saddr,
3122 				  unsigned int len)
3123 {
3124 	if (!dev->header_ops || !dev->header_ops->create)
3125 		return 0;
3126 
3127 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3128 }
3129 
3130 static inline int dev_parse_header(const struct sk_buff *skb,
3131 				   unsigned char *haddr)
3132 {
3133 	const struct net_device *dev = skb->dev;
3134 
3135 	if (!dev->header_ops || !dev->header_ops->parse)
3136 		return 0;
3137 	return dev->header_ops->parse(skb, haddr);
3138 }
3139 
3140 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3141 {
3142 	const struct net_device *dev = skb->dev;
3143 
3144 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3145 		return 0;
3146 	return dev->header_ops->parse_protocol(skb);
3147 }
3148 
3149 /* ll_header must have at least hard_header_len allocated */
3150 static inline bool dev_validate_header(const struct net_device *dev,
3151 				       char *ll_header, int len)
3152 {
3153 	if (likely(len >= dev->hard_header_len))
3154 		return true;
3155 	if (len < dev->min_header_len)
3156 		return false;
3157 
3158 	if (capable(CAP_SYS_RAWIO)) {
3159 		memset(ll_header + len, 0, dev->hard_header_len - len);
3160 		return true;
3161 	}
3162 
3163 	if (dev->header_ops && dev->header_ops->validate)
3164 		return dev->header_ops->validate(ll_header, len);
3165 
3166 	return false;
3167 }
3168 
3169 static inline bool dev_has_header(const struct net_device *dev)
3170 {
3171 	return dev->header_ops && dev->header_ops->create;
3172 }
3173 
3174 /*
3175  * Incoming packets are placed on per-CPU queues
3176  */
3177 struct softnet_data {
3178 	struct list_head	poll_list;
3179 	struct sk_buff_head	process_queue;
3180 	local_lock_t		process_queue_bh_lock;
3181 
3182 	/* stats */
3183 	unsigned int		processed;
3184 	unsigned int		time_squeeze;
3185 #ifdef CONFIG_RPS
3186 	struct softnet_data	*rps_ipi_list;
3187 #endif
3188 
3189 	unsigned int		received_rps;
3190 	bool			in_net_rx_action;
3191 	bool			in_napi_threaded_poll;
3192 
3193 #ifdef CONFIG_NET_FLOW_LIMIT
3194 	struct sd_flow_limit __rcu *flow_limit;
3195 #endif
3196 	struct Qdisc		*output_queue;
3197 	struct Qdisc		**output_queue_tailp;
3198 	struct sk_buff		*completion_queue;
3199 #ifdef CONFIG_XFRM_OFFLOAD
3200 	struct sk_buff_head	xfrm_backlog;
3201 #endif
3202 	/* written and read only by owning cpu: */
3203 	struct netdev_xmit xmit;
3204 #ifdef CONFIG_RPS
3205 	/* input_queue_head should be written by cpu owning this struct,
3206 	 * and only read by other cpus. Worth using a cache line.
3207 	 */
3208 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3209 
3210 	/* Elements below can be accessed between CPUs for RPS/RFS */
3211 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3212 	struct softnet_data	*rps_ipi_next;
3213 	unsigned int		cpu;
3214 	unsigned int		input_queue_tail;
3215 #endif
3216 	struct sk_buff_head	input_pkt_queue;
3217 	struct napi_struct	backlog;
3218 
3219 	atomic_t		dropped ____cacheline_aligned_in_smp;
3220 
3221 	/* Another possibly contended cache line */
3222 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3223 	int			defer_count;
3224 	int			defer_ipi_scheduled;
3225 	struct sk_buff		*defer_list;
3226 	call_single_data_t	defer_csd;
3227 };
3228 
3229 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3230 
3231 #ifndef CONFIG_PREEMPT_RT
3232 static inline int dev_recursion_level(void)
3233 {
3234 	return this_cpu_read(softnet_data.xmit.recursion);
3235 }
3236 #else
3237 static inline int dev_recursion_level(void)
3238 {
3239 	return current->net_xmit.recursion;
3240 }
3241 
3242 #endif
3243 
3244 void __netif_schedule(struct Qdisc *q);
3245 void netif_schedule_queue(struct netdev_queue *txq);
3246 
3247 static inline void netif_tx_schedule_all(struct net_device *dev)
3248 {
3249 	unsigned int i;
3250 
3251 	for (i = 0; i < dev->num_tx_queues; i++)
3252 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3253 }
3254 
3255 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3256 {
3257 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3258 }
3259 
3260 /**
3261  *	netif_start_queue - allow transmit
3262  *	@dev: network device
3263  *
3264  *	Allow upper layers to call the device hard_start_xmit routine.
3265  */
3266 static inline void netif_start_queue(struct net_device *dev)
3267 {
3268 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3269 }
3270 
3271 static inline void netif_tx_start_all_queues(struct net_device *dev)
3272 {
3273 	unsigned int i;
3274 
3275 	for (i = 0; i < dev->num_tx_queues; i++) {
3276 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3277 		netif_tx_start_queue(txq);
3278 	}
3279 }
3280 
3281 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3282 
3283 /**
3284  *	netif_wake_queue - restart transmit
3285  *	@dev: network device
3286  *
3287  *	Allow upper layers to call the device hard_start_xmit routine.
3288  *	Used for flow control when transmit resources are available.
3289  */
3290 static inline void netif_wake_queue(struct net_device *dev)
3291 {
3292 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3293 }
3294 
3295 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3296 {
3297 	unsigned int i;
3298 
3299 	for (i = 0; i < dev->num_tx_queues; i++) {
3300 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3301 		netif_tx_wake_queue(txq);
3302 	}
3303 }
3304 
3305 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3306 {
3307 	/* Must be an atomic op see netif_txq_try_stop() */
3308 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3309 }
3310 
3311 /**
3312  *	netif_stop_queue - stop transmitted packets
3313  *	@dev: network device
3314  *
3315  *	Stop upper layers calling the device hard_start_xmit routine.
3316  *	Used for flow control when transmit resources are unavailable.
3317  */
3318 static inline void netif_stop_queue(struct net_device *dev)
3319 {
3320 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3321 }
3322 
3323 void netif_tx_stop_all_queues(struct net_device *dev);
3324 
3325 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3326 {
3327 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3328 }
3329 
3330 /**
3331  *	netif_queue_stopped - test if transmit queue is flowblocked
3332  *	@dev: network device
3333  *
3334  *	Test if transmit queue on device is currently unable to send.
3335  */
3336 static inline bool netif_queue_stopped(const struct net_device *dev)
3337 {
3338 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3339 }
3340 
3341 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3342 {
3343 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3344 }
3345 
3346 static inline bool
3347 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3348 {
3349 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3350 }
3351 
3352 static inline bool
3353 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3354 {
3355 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3356 }
3357 
3358 /**
3359  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3360  *	@dev_queue: pointer to transmit queue
3361  *	@min_limit: dql minimum limit
3362  *
3363  * Forces xmit_more() to return true until the minimum threshold
3364  * defined by @min_limit is reached (or until the tx queue is
3365  * empty). Warning: to be use with care, misuse will impact the
3366  * latency.
3367  */
3368 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3369 						  unsigned int min_limit)
3370 {
3371 #ifdef CONFIG_BQL
3372 	dev_queue->dql.min_limit = min_limit;
3373 #endif
3374 }
3375 
3376 static inline int netdev_queue_dql_avail(const struct netdev_queue *txq)
3377 {
3378 #ifdef CONFIG_BQL
3379 	/* Non-BQL migrated drivers will return 0, too. */
3380 	return dql_avail(&txq->dql);
3381 #else
3382 	return 0;
3383 #endif
3384 }
3385 
3386 /**
3387  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3388  *	@dev_queue: pointer to transmit queue
3389  *
3390  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3391  * to give appropriate hint to the CPU.
3392  */
3393 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3394 {
3395 #ifdef CONFIG_BQL
3396 	prefetchw(&dev_queue->dql.num_queued);
3397 #endif
3398 }
3399 
3400 /**
3401  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3402  *	@dev_queue: pointer to transmit queue
3403  *
3404  * BQL enabled drivers might use this helper in their TX completion path,
3405  * to give appropriate hint to the CPU.
3406  */
3407 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3408 {
3409 #ifdef CONFIG_BQL
3410 	prefetchw(&dev_queue->dql.limit);
3411 #endif
3412 }
3413 
3414 /**
3415  *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3416  *	@dev_queue: network device queue
3417  *	@bytes: number of bytes queued to the device queue
3418  *
3419  *	Report the number of bytes queued for sending/completion to the network
3420  *	device hardware queue. @bytes should be a good approximation and should
3421  *	exactly match netdev_completed_queue() @bytes.
3422  *	This is typically called once per packet, from ndo_start_xmit().
3423  */
3424 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3425 					unsigned int bytes)
3426 {
3427 #ifdef CONFIG_BQL
3428 	dql_queued(&dev_queue->dql, bytes);
3429 
3430 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3431 		return;
3432 
3433 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3434 
3435 	/*
3436 	 * The XOFF flag must be set before checking the dql_avail below,
3437 	 * because in netdev_tx_completed_queue we update the dql_completed
3438 	 * before checking the XOFF flag.
3439 	 */
3440 	smp_mb();
3441 
3442 	/* check again in case another CPU has just made room avail */
3443 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3444 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3445 #endif
3446 }
3447 
3448 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3449  * that they should not test BQL status themselves.
3450  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3451  * skb of a batch.
3452  * Returns true if the doorbell must be used to kick the NIC.
3453  */
3454 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3455 					  unsigned int bytes,
3456 					  bool xmit_more)
3457 {
3458 	if (xmit_more) {
3459 #ifdef CONFIG_BQL
3460 		dql_queued(&dev_queue->dql, bytes);
3461 #endif
3462 		return netif_tx_queue_stopped(dev_queue);
3463 	}
3464 	netdev_tx_sent_queue(dev_queue, bytes);
3465 	return true;
3466 }
3467 
3468 /**
3469  *	netdev_sent_queue - report the number of bytes queued to hardware
3470  *	@dev: network device
3471  *	@bytes: number of bytes queued to the hardware device queue
3472  *
3473  *	Report the number of bytes queued for sending/completion to the network
3474  *	device hardware queue#0. @bytes should be a good approximation and should
3475  *	exactly match netdev_completed_queue() @bytes.
3476  *	This is typically called once per packet, from ndo_start_xmit().
3477  */
3478 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3479 {
3480 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3481 }
3482 
3483 static inline bool __netdev_sent_queue(struct net_device *dev,
3484 				       unsigned int bytes,
3485 				       bool xmit_more)
3486 {
3487 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3488 				      xmit_more);
3489 }
3490 
3491 /**
3492  *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3493  *	@dev_queue: network device queue
3494  *	@pkts: number of packets (currently ignored)
3495  *	@bytes: number of bytes dequeued from the device queue
3496  *
3497  *	Must be called at most once per TX completion round (and not per
3498  *	individual packet), so that BQL can adjust its limits appropriately.
3499  */
3500 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3501 					     unsigned int pkts, unsigned int bytes)
3502 {
3503 #ifdef CONFIG_BQL
3504 	if (unlikely(!bytes))
3505 		return;
3506 
3507 	dql_completed(&dev_queue->dql, bytes);
3508 
3509 	/*
3510 	 * Without the memory barrier there is a small possiblity that
3511 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3512 	 * be stopped forever
3513 	 */
3514 	smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */
3515 
3516 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3517 		return;
3518 
3519 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3520 		netif_schedule_queue(dev_queue);
3521 #endif
3522 }
3523 
3524 /**
3525  * 	netdev_completed_queue - report bytes and packets completed by device
3526  * 	@dev: network device
3527  * 	@pkts: actual number of packets sent over the medium
3528  * 	@bytes: actual number of bytes sent over the medium
3529  *
3530  * 	Report the number of bytes and packets transmitted by the network device
3531  * 	hardware queue over the physical medium, @bytes must exactly match the
3532  * 	@bytes amount passed to netdev_sent_queue()
3533  */
3534 static inline void netdev_completed_queue(struct net_device *dev,
3535 					  unsigned int pkts, unsigned int bytes)
3536 {
3537 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3538 }
3539 
3540 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3541 {
3542 #ifdef CONFIG_BQL
3543 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3544 	dql_reset(&q->dql);
3545 #endif
3546 }
3547 
3548 /**
3549  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3550  * 	@dev_queue: network device
3551  *
3552  * 	Reset the bytes and packet count of a network device and clear the
3553  * 	software flow control OFF bit for this network device
3554  */
3555 static inline void netdev_reset_queue(struct net_device *dev_queue)
3556 {
3557 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3558 }
3559 
3560 /**
3561  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3562  * 	@dev: network device
3563  * 	@queue_index: given tx queue index
3564  *
3565  * 	Returns 0 if given tx queue index >= number of device tx queues,
3566  * 	otherwise returns the originally passed tx queue index.
3567  */
3568 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3569 {
3570 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3571 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3572 				     dev->name, queue_index,
3573 				     dev->real_num_tx_queues);
3574 		return 0;
3575 	}
3576 
3577 	return queue_index;
3578 }
3579 
3580 /**
3581  *	netif_running - test if up
3582  *	@dev: network device
3583  *
3584  *	Test if the device has been brought up.
3585  */
3586 static inline bool netif_running(const struct net_device *dev)
3587 {
3588 	return test_bit(__LINK_STATE_START, &dev->state);
3589 }
3590 
3591 /*
3592  * Routines to manage the subqueues on a device.  We only need start,
3593  * stop, and a check if it's stopped.  All other device management is
3594  * done at the overall netdevice level.
3595  * Also test the device if we're multiqueue.
3596  */
3597 
3598 /**
3599  *	netif_start_subqueue - allow sending packets on subqueue
3600  *	@dev: network device
3601  *	@queue_index: sub queue index
3602  *
3603  * Start individual transmit queue of a device with multiple transmit queues.
3604  */
3605 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3606 {
3607 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3608 
3609 	netif_tx_start_queue(txq);
3610 }
3611 
3612 /**
3613  *	netif_stop_subqueue - stop sending packets on subqueue
3614  *	@dev: network device
3615  *	@queue_index: sub queue index
3616  *
3617  * Stop individual transmit queue of a device with multiple transmit queues.
3618  */
3619 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3620 {
3621 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3622 	netif_tx_stop_queue(txq);
3623 }
3624 
3625 /**
3626  *	__netif_subqueue_stopped - test status of subqueue
3627  *	@dev: network device
3628  *	@queue_index: sub queue index
3629  *
3630  * Check individual transmit queue of a device with multiple transmit queues.
3631  */
3632 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3633 					    u16 queue_index)
3634 {
3635 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3636 
3637 	return netif_tx_queue_stopped(txq);
3638 }
3639 
3640 /**
3641  *	netif_subqueue_stopped - test status of subqueue
3642  *	@dev: network device
3643  *	@skb: sub queue buffer pointer
3644  *
3645  * Check individual transmit queue of a device with multiple transmit queues.
3646  */
3647 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3648 					  struct sk_buff *skb)
3649 {
3650 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3651 }
3652 
3653 /**
3654  *	netif_wake_subqueue - allow sending packets on subqueue
3655  *	@dev: network device
3656  *	@queue_index: sub queue index
3657  *
3658  * Resume individual transmit queue of a device with multiple transmit queues.
3659  */
3660 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3661 {
3662 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3663 
3664 	netif_tx_wake_queue(txq);
3665 }
3666 
3667 #ifdef CONFIG_XPS
3668 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3669 			u16 index);
3670 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3671 			  u16 index, enum xps_map_type type);
3672 
3673 /**
3674  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3675  *	@j: CPU/Rx queue index
3676  *	@mask: bitmask of all cpus/rx queues
3677  *	@nr_bits: number of bits in the bitmask
3678  *
3679  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3680  */
3681 static inline bool netif_attr_test_mask(unsigned long j,
3682 					const unsigned long *mask,
3683 					unsigned int nr_bits)
3684 {
3685 	cpu_max_bits_warn(j, nr_bits);
3686 	return test_bit(j, mask);
3687 }
3688 
3689 /**
3690  *	netif_attr_test_online - Test for online CPU/Rx queue
3691  *	@j: CPU/Rx queue index
3692  *	@online_mask: bitmask for CPUs/Rx queues that are online
3693  *	@nr_bits: number of bits in the bitmask
3694  *
3695  * Returns true if a CPU/Rx queue is online.
3696  */
3697 static inline bool netif_attr_test_online(unsigned long j,
3698 					  const unsigned long *online_mask,
3699 					  unsigned int nr_bits)
3700 {
3701 	cpu_max_bits_warn(j, nr_bits);
3702 
3703 	if (online_mask)
3704 		return test_bit(j, online_mask);
3705 
3706 	return (j < nr_bits);
3707 }
3708 
3709 /**
3710  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3711  *	@n: CPU/Rx queue index
3712  *	@srcp: the cpumask/Rx queue mask pointer
3713  *	@nr_bits: number of bits in the bitmask
3714  *
3715  * Returns >= nr_bits if no further CPUs/Rx queues set.
3716  */
3717 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3718 					       unsigned int nr_bits)
3719 {
3720 	/* -1 is a legal arg here. */
3721 	if (n != -1)
3722 		cpu_max_bits_warn(n, nr_bits);
3723 
3724 	if (srcp)
3725 		return find_next_bit(srcp, nr_bits, n + 1);
3726 
3727 	return n + 1;
3728 }
3729 
3730 /**
3731  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3732  *	@n: CPU/Rx queue index
3733  *	@src1p: the first CPUs/Rx queues mask pointer
3734  *	@src2p: the second CPUs/Rx queues mask pointer
3735  *	@nr_bits: number of bits in the bitmask
3736  *
3737  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3738  */
3739 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3740 					  const unsigned long *src2p,
3741 					  unsigned int nr_bits)
3742 {
3743 	/* -1 is a legal arg here. */
3744 	if (n != -1)
3745 		cpu_max_bits_warn(n, nr_bits);
3746 
3747 	if (src1p && src2p)
3748 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3749 	else if (src1p)
3750 		return find_next_bit(src1p, nr_bits, n + 1);
3751 	else if (src2p)
3752 		return find_next_bit(src2p, nr_bits, n + 1);
3753 
3754 	return n + 1;
3755 }
3756 #else
3757 static inline int netif_set_xps_queue(struct net_device *dev,
3758 				      const struct cpumask *mask,
3759 				      u16 index)
3760 {
3761 	return 0;
3762 }
3763 
3764 static inline int __netif_set_xps_queue(struct net_device *dev,
3765 					const unsigned long *mask,
3766 					u16 index, enum xps_map_type type)
3767 {
3768 	return 0;
3769 }
3770 #endif
3771 
3772 /**
3773  *	netif_is_multiqueue - test if device has multiple transmit queues
3774  *	@dev: network device
3775  *
3776  * Check if device has multiple transmit queues
3777  */
3778 static inline bool netif_is_multiqueue(const struct net_device *dev)
3779 {
3780 	return dev->num_tx_queues > 1;
3781 }
3782 
3783 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3784 
3785 #ifdef CONFIG_SYSFS
3786 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3787 #else
3788 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3789 						unsigned int rxqs)
3790 {
3791 	dev->real_num_rx_queues = rxqs;
3792 	return 0;
3793 }
3794 #endif
3795 int netif_set_real_num_queues(struct net_device *dev,
3796 			      unsigned int txq, unsigned int rxq);
3797 
3798 int netif_get_num_default_rss_queues(void);
3799 
3800 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3801 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3802 
3803 /*
3804  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3805  * interrupt context or with hardware interrupts being disabled.
3806  * (in_hardirq() || irqs_disabled())
3807  *
3808  * We provide four helpers that can be used in following contexts :
3809  *
3810  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3811  *  replacing kfree_skb(skb)
3812  *
3813  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3814  *  Typically used in place of consume_skb(skb) in TX completion path
3815  *
3816  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3817  *  replacing kfree_skb(skb)
3818  *
3819  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3820  *  and consumed a packet. Used in place of consume_skb(skb)
3821  */
3822 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3823 {
3824 	dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3825 }
3826 
3827 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3828 {
3829 	dev_kfree_skb_irq_reason(skb, SKB_CONSUMED);
3830 }
3831 
3832 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3833 {
3834 	dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3835 }
3836 
3837 static inline void dev_consume_skb_any(struct sk_buff *skb)
3838 {
3839 	dev_kfree_skb_any_reason(skb, SKB_CONSUMED);
3840 }
3841 
3842 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3843 			     struct bpf_prog *xdp_prog);
3844 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3845 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb);
3846 int netif_rx(struct sk_buff *skb);
3847 int __netif_rx(struct sk_buff *skb);
3848 
3849 int netif_receive_skb(struct sk_buff *skb);
3850 int netif_receive_skb_core(struct sk_buff *skb);
3851 void netif_receive_skb_list_internal(struct list_head *head);
3852 void netif_receive_skb_list(struct list_head *head);
3853 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3854 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3855 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3856 void napi_get_frags_check(struct napi_struct *napi);
3857 gro_result_t napi_gro_frags(struct napi_struct *napi);
3858 
3859 static inline void napi_free_frags(struct napi_struct *napi)
3860 {
3861 	kfree_skb(napi->skb);
3862 	napi->skb = NULL;
3863 }
3864 
3865 bool netdev_is_rx_handler_busy(struct net_device *dev);
3866 int netdev_rx_handler_register(struct net_device *dev,
3867 			       rx_handler_func_t *rx_handler,
3868 			       void *rx_handler_data);
3869 void netdev_rx_handler_unregister(struct net_device *dev);
3870 
3871 bool dev_valid_name(const char *name);
3872 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3873 {
3874 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3875 }
3876 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3877 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3878 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3879 		void __user *data, bool *need_copyout);
3880 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3881 int generic_hwtstamp_get_lower(struct net_device *dev,
3882 			       struct kernel_hwtstamp_config *kernel_cfg);
3883 int generic_hwtstamp_set_lower(struct net_device *dev,
3884 			       struct kernel_hwtstamp_config *kernel_cfg,
3885 			       struct netlink_ext_ack *extack);
3886 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3887 unsigned int dev_get_flags(const struct net_device *);
3888 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3889 		       struct netlink_ext_ack *extack);
3890 int dev_change_flags(struct net_device *dev, unsigned int flags,
3891 		     struct netlink_ext_ack *extack);
3892 int dev_set_alias(struct net_device *, const char *, size_t);
3893 int dev_get_alias(const struct net_device *, char *, size_t);
3894 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3895 			       const char *pat, int new_ifindex);
3896 static inline
3897 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3898 			     const char *pat)
3899 {
3900 	return __dev_change_net_namespace(dev, net, pat, 0);
3901 }
3902 int __dev_set_mtu(struct net_device *, int);
3903 int dev_set_mtu(struct net_device *, int);
3904 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3905 			      struct netlink_ext_ack *extack);
3906 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3907 			struct netlink_ext_ack *extack);
3908 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3909 			     struct netlink_ext_ack *extack);
3910 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3911 int dev_get_port_parent_id(struct net_device *dev,
3912 			   struct netdev_phys_item_id *ppid, bool recurse);
3913 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3914 
3915 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3916 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3917 				    struct netdev_queue *txq, int *ret);
3918 
3919 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3920 u8 dev_xdp_prog_count(struct net_device *dev);
3921 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3922 
3923 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3924 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3925 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3926 bool is_skb_forwardable(const struct net_device *dev,
3927 			const struct sk_buff *skb);
3928 
3929 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3930 						 const struct sk_buff *skb,
3931 						 const bool check_mtu)
3932 {
3933 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3934 	unsigned int len;
3935 
3936 	if (!(dev->flags & IFF_UP))
3937 		return false;
3938 
3939 	if (!check_mtu)
3940 		return true;
3941 
3942 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3943 	if (skb->len <= len)
3944 		return true;
3945 
3946 	/* if TSO is enabled, we don't care about the length as the packet
3947 	 * could be forwarded without being segmented before
3948 	 */
3949 	if (skb_is_gso(skb))
3950 		return true;
3951 
3952 	return false;
3953 }
3954 
3955 void netdev_core_stats_inc(struct net_device *dev, u32 offset);
3956 
3957 #define DEV_CORE_STATS_INC(FIELD)						\
3958 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
3959 {										\
3960 	netdev_core_stats_inc(dev,						\
3961 			offsetof(struct net_device_core_stats, FIELD));		\
3962 }
3963 DEV_CORE_STATS_INC(rx_dropped)
3964 DEV_CORE_STATS_INC(tx_dropped)
3965 DEV_CORE_STATS_INC(rx_nohandler)
3966 DEV_CORE_STATS_INC(rx_otherhost_dropped)
3967 #undef DEV_CORE_STATS_INC
3968 
3969 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3970 					       struct sk_buff *skb,
3971 					       const bool check_mtu)
3972 {
3973 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3974 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
3975 		dev_core_stats_rx_dropped_inc(dev);
3976 		kfree_skb(skb);
3977 		return NET_RX_DROP;
3978 	}
3979 
3980 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
3981 	skb->priority = 0;
3982 	return 0;
3983 }
3984 
3985 bool dev_nit_active(struct net_device *dev);
3986 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3987 
3988 static inline void __dev_put(struct net_device *dev)
3989 {
3990 	if (dev) {
3991 #ifdef CONFIG_PCPU_DEV_REFCNT
3992 		this_cpu_dec(*dev->pcpu_refcnt);
3993 #else
3994 		refcount_dec(&dev->dev_refcnt);
3995 #endif
3996 	}
3997 }
3998 
3999 static inline void __dev_hold(struct net_device *dev)
4000 {
4001 	if (dev) {
4002 #ifdef CONFIG_PCPU_DEV_REFCNT
4003 		this_cpu_inc(*dev->pcpu_refcnt);
4004 #else
4005 		refcount_inc(&dev->dev_refcnt);
4006 #endif
4007 	}
4008 }
4009 
4010 static inline void __netdev_tracker_alloc(struct net_device *dev,
4011 					  netdevice_tracker *tracker,
4012 					  gfp_t gfp)
4013 {
4014 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4015 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4016 #endif
4017 }
4018 
4019 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4020  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4021  */
4022 static inline void netdev_tracker_alloc(struct net_device *dev,
4023 					netdevice_tracker *tracker, gfp_t gfp)
4024 {
4025 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4026 	refcount_dec(&dev->refcnt_tracker.no_tracker);
4027 	__netdev_tracker_alloc(dev, tracker, gfp);
4028 #endif
4029 }
4030 
4031 static inline void netdev_tracker_free(struct net_device *dev,
4032 				       netdevice_tracker *tracker)
4033 {
4034 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4035 	ref_tracker_free(&dev->refcnt_tracker, tracker);
4036 #endif
4037 }
4038 
4039 static inline void netdev_hold(struct net_device *dev,
4040 			       netdevice_tracker *tracker, gfp_t gfp)
4041 {
4042 	if (dev) {
4043 		__dev_hold(dev);
4044 		__netdev_tracker_alloc(dev, tracker, gfp);
4045 	}
4046 }
4047 
4048 static inline void netdev_put(struct net_device *dev,
4049 			      netdevice_tracker *tracker)
4050 {
4051 	if (dev) {
4052 		netdev_tracker_free(dev, tracker);
4053 		__dev_put(dev);
4054 	}
4055 }
4056 
4057 /**
4058  *	dev_hold - get reference to device
4059  *	@dev: network device
4060  *
4061  * Hold reference to device to keep it from being freed.
4062  * Try using netdev_hold() instead.
4063  */
4064 static inline void dev_hold(struct net_device *dev)
4065 {
4066 	netdev_hold(dev, NULL, GFP_ATOMIC);
4067 }
4068 
4069 /**
4070  *	dev_put - release reference to device
4071  *	@dev: network device
4072  *
4073  * Release reference to device to allow it to be freed.
4074  * Try using netdev_put() instead.
4075  */
4076 static inline void dev_put(struct net_device *dev)
4077 {
4078 	netdev_put(dev, NULL);
4079 }
4080 
4081 DEFINE_FREE(dev_put, struct net_device *, if (_T) dev_put(_T))
4082 
4083 static inline void netdev_ref_replace(struct net_device *odev,
4084 				      struct net_device *ndev,
4085 				      netdevice_tracker *tracker,
4086 				      gfp_t gfp)
4087 {
4088 	if (odev)
4089 		netdev_tracker_free(odev, tracker);
4090 
4091 	__dev_hold(ndev);
4092 	__dev_put(odev);
4093 
4094 	if (ndev)
4095 		__netdev_tracker_alloc(ndev, tracker, gfp);
4096 }
4097 
4098 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4099  * and _off may be called from IRQ context, but it is caller
4100  * who is responsible for serialization of these calls.
4101  *
4102  * The name carrier is inappropriate, these functions should really be
4103  * called netif_lowerlayer_*() because they represent the state of any
4104  * kind of lower layer not just hardware media.
4105  */
4106 void linkwatch_fire_event(struct net_device *dev);
4107 
4108 /**
4109  * linkwatch_sync_dev - sync linkwatch for the given device
4110  * @dev: network device to sync linkwatch for
4111  *
4112  * Sync linkwatch for the given device, removing it from the
4113  * pending work list (if queued).
4114  */
4115 void linkwatch_sync_dev(struct net_device *dev);
4116 
4117 /**
4118  *	netif_carrier_ok - test if carrier present
4119  *	@dev: network device
4120  *
4121  * Check if carrier is present on device
4122  */
4123 static inline bool netif_carrier_ok(const struct net_device *dev)
4124 {
4125 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4126 }
4127 
4128 unsigned long dev_trans_start(struct net_device *dev);
4129 
4130 void __netdev_watchdog_up(struct net_device *dev);
4131 
4132 void netif_carrier_on(struct net_device *dev);
4133 void netif_carrier_off(struct net_device *dev);
4134 void netif_carrier_event(struct net_device *dev);
4135 
4136 /**
4137  *	netif_dormant_on - mark device as dormant.
4138  *	@dev: network device
4139  *
4140  * Mark device as dormant (as per RFC2863).
4141  *
4142  * The dormant state indicates that the relevant interface is not
4143  * actually in a condition to pass packets (i.e., it is not 'up') but is
4144  * in a "pending" state, waiting for some external event.  For "on-
4145  * demand" interfaces, this new state identifies the situation where the
4146  * interface is waiting for events to place it in the up state.
4147  */
4148 static inline void netif_dormant_on(struct net_device *dev)
4149 {
4150 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4151 		linkwatch_fire_event(dev);
4152 }
4153 
4154 /**
4155  *	netif_dormant_off - set device as not dormant.
4156  *	@dev: network device
4157  *
4158  * Device is not in dormant state.
4159  */
4160 static inline void netif_dormant_off(struct net_device *dev)
4161 {
4162 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4163 		linkwatch_fire_event(dev);
4164 }
4165 
4166 /**
4167  *	netif_dormant - test if device is dormant
4168  *	@dev: network device
4169  *
4170  * Check if device is dormant.
4171  */
4172 static inline bool netif_dormant(const struct net_device *dev)
4173 {
4174 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4175 }
4176 
4177 
4178 /**
4179  *	netif_testing_on - mark device as under test.
4180  *	@dev: network device
4181  *
4182  * Mark device as under test (as per RFC2863).
4183  *
4184  * The testing state indicates that some test(s) must be performed on
4185  * the interface. After completion, of the test, the interface state
4186  * will change to up, dormant, or down, as appropriate.
4187  */
4188 static inline void netif_testing_on(struct net_device *dev)
4189 {
4190 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4191 		linkwatch_fire_event(dev);
4192 }
4193 
4194 /**
4195  *	netif_testing_off - set device as not under test.
4196  *	@dev: network device
4197  *
4198  * Device is not in testing state.
4199  */
4200 static inline void netif_testing_off(struct net_device *dev)
4201 {
4202 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4203 		linkwatch_fire_event(dev);
4204 }
4205 
4206 /**
4207  *	netif_testing - test if device is under test
4208  *	@dev: network device
4209  *
4210  * Check if device is under test
4211  */
4212 static inline bool netif_testing(const struct net_device *dev)
4213 {
4214 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4215 }
4216 
4217 
4218 /**
4219  *	netif_oper_up - test if device is operational
4220  *	@dev: network device
4221  *
4222  * Check if carrier is operational
4223  */
4224 static inline bool netif_oper_up(const struct net_device *dev)
4225 {
4226 	unsigned int operstate = READ_ONCE(dev->operstate);
4227 
4228 	return	operstate == IF_OPER_UP ||
4229 		operstate == IF_OPER_UNKNOWN /* backward compat */;
4230 }
4231 
4232 /**
4233  *	netif_device_present - is device available or removed
4234  *	@dev: network device
4235  *
4236  * Check if device has not been removed from system.
4237  */
4238 static inline bool netif_device_present(const struct net_device *dev)
4239 {
4240 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4241 }
4242 
4243 void netif_device_detach(struct net_device *dev);
4244 
4245 void netif_device_attach(struct net_device *dev);
4246 
4247 /*
4248  * Network interface message level settings
4249  */
4250 
4251 enum {
4252 	NETIF_MSG_DRV_BIT,
4253 	NETIF_MSG_PROBE_BIT,
4254 	NETIF_MSG_LINK_BIT,
4255 	NETIF_MSG_TIMER_BIT,
4256 	NETIF_MSG_IFDOWN_BIT,
4257 	NETIF_MSG_IFUP_BIT,
4258 	NETIF_MSG_RX_ERR_BIT,
4259 	NETIF_MSG_TX_ERR_BIT,
4260 	NETIF_MSG_TX_QUEUED_BIT,
4261 	NETIF_MSG_INTR_BIT,
4262 	NETIF_MSG_TX_DONE_BIT,
4263 	NETIF_MSG_RX_STATUS_BIT,
4264 	NETIF_MSG_PKTDATA_BIT,
4265 	NETIF_MSG_HW_BIT,
4266 	NETIF_MSG_WOL_BIT,
4267 
4268 	/* When you add a new bit above, update netif_msg_class_names array
4269 	 * in net/ethtool/common.c
4270 	 */
4271 	NETIF_MSG_CLASS_COUNT,
4272 };
4273 /* Both ethtool_ops interface and internal driver implementation use u32 */
4274 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4275 
4276 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4277 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4278 
4279 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4280 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4281 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4282 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4283 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4284 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4285 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4286 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4287 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4288 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4289 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4290 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4291 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4292 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4293 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4294 
4295 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4296 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4297 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4298 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4299 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4300 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4301 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4302 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4303 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4304 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4305 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4306 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4307 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4308 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4309 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4310 
4311 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4312 {
4313 	/* use default */
4314 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4315 		return default_msg_enable_bits;
4316 	if (debug_value == 0)	/* no output */
4317 		return 0;
4318 	/* set low N bits */
4319 	return (1U << debug_value) - 1;
4320 }
4321 
4322 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4323 {
4324 	spin_lock(&txq->_xmit_lock);
4325 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4326 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4327 }
4328 
4329 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4330 {
4331 	__acquire(&txq->_xmit_lock);
4332 	return true;
4333 }
4334 
4335 static inline void __netif_tx_release(struct netdev_queue *txq)
4336 {
4337 	__release(&txq->_xmit_lock);
4338 }
4339 
4340 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4341 {
4342 	spin_lock_bh(&txq->_xmit_lock);
4343 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4344 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4345 }
4346 
4347 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4348 {
4349 	bool ok = spin_trylock(&txq->_xmit_lock);
4350 
4351 	if (likely(ok)) {
4352 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4353 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4354 	}
4355 	return ok;
4356 }
4357 
4358 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4359 {
4360 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4361 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4362 	spin_unlock(&txq->_xmit_lock);
4363 }
4364 
4365 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4366 {
4367 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4368 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4369 	spin_unlock_bh(&txq->_xmit_lock);
4370 }
4371 
4372 /*
4373  * txq->trans_start can be read locklessly from dev_watchdog()
4374  */
4375 static inline void txq_trans_update(struct netdev_queue *txq)
4376 {
4377 	if (txq->xmit_lock_owner != -1)
4378 		WRITE_ONCE(txq->trans_start, jiffies);
4379 }
4380 
4381 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4382 {
4383 	unsigned long now = jiffies;
4384 
4385 	if (READ_ONCE(txq->trans_start) != now)
4386 		WRITE_ONCE(txq->trans_start, now);
4387 }
4388 
4389 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4390 static inline void netif_trans_update(struct net_device *dev)
4391 {
4392 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4393 
4394 	txq_trans_cond_update(txq);
4395 }
4396 
4397 /**
4398  *	netif_tx_lock - grab network device transmit lock
4399  *	@dev: network device
4400  *
4401  * Get network device transmit lock
4402  */
4403 void netif_tx_lock(struct net_device *dev);
4404 
4405 static inline void netif_tx_lock_bh(struct net_device *dev)
4406 {
4407 	local_bh_disable();
4408 	netif_tx_lock(dev);
4409 }
4410 
4411 void netif_tx_unlock(struct net_device *dev);
4412 
4413 static inline void netif_tx_unlock_bh(struct net_device *dev)
4414 {
4415 	netif_tx_unlock(dev);
4416 	local_bh_enable();
4417 }
4418 
4419 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4420 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4421 		__netif_tx_lock(txq, cpu);		\
4422 	} else {					\
4423 		__netif_tx_acquire(txq);		\
4424 	}						\
4425 }
4426 
4427 #define HARD_TX_TRYLOCK(dev, txq)			\
4428 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4429 		__netif_tx_trylock(txq) :		\
4430 		__netif_tx_acquire(txq))
4431 
4432 #define HARD_TX_UNLOCK(dev, txq) {			\
4433 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4434 		__netif_tx_unlock(txq);			\
4435 	} else {					\
4436 		__netif_tx_release(txq);		\
4437 	}						\
4438 }
4439 
4440 static inline void netif_tx_disable(struct net_device *dev)
4441 {
4442 	unsigned int i;
4443 	int cpu;
4444 
4445 	local_bh_disable();
4446 	cpu = smp_processor_id();
4447 	spin_lock(&dev->tx_global_lock);
4448 	for (i = 0; i < dev->num_tx_queues; i++) {
4449 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4450 
4451 		__netif_tx_lock(txq, cpu);
4452 		netif_tx_stop_queue(txq);
4453 		__netif_tx_unlock(txq);
4454 	}
4455 	spin_unlock(&dev->tx_global_lock);
4456 	local_bh_enable();
4457 }
4458 
4459 static inline void netif_addr_lock(struct net_device *dev)
4460 {
4461 	unsigned char nest_level = 0;
4462 
4463 #ifdef CONFIG_LOCKDEP
4464 	nest_level = dev->nested_level;
4465 #endif
4466 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4467 }
4468 
4469 static inline void netif_addr_lock_bh(struct net_device *dev)
4470 {
4471 	unsigned char nest_level = 0;
4472 
4473 #ifdef CONFIG_LOCKDEP
4474 	nest_level = dev->nested_level;
4475 #endif
4476 	local_bh_disable();
4477 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4478 }
4479 
4480 static inline void netif_addr_unlock(struct net_device *dev)
4481 {
4482 	spin_unlock(&dev->addr_list_lock);
4483 }
4484 
4485 static inline void netif_addr_unlock_bh(struct net_device *dev)
4486 {
4487 	spin_unlock_bh(&dev->addr_list_lock);
4488 }
4489 
4490 /*
4491  * dev_addrs walker. Should be used only for read access. Call with
4492  * rcu_read_lock held.
4493  */
4494 #define for_each_dev_addr(dev, ha) \
4495 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4496 
4497 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4498 
4499 void ether_setup(struct net_device *dev);
4500 
4501 /* Allocate dummy net_device */
4502 struct net_device *alloc_netdev_dummy(int sizeof_priv);
4503 
4504 /* Support for loadable net-drivers */
4505 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4506 				    unsigned char name_assign_type,
4507 				    void (*setup)(struct net_device *),
4508 				    unsigned int txqs, unsigned int rxqs);
4509 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4510 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4511 
4512 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4513 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4514 			 count)
4515 
4516 int register_netdev(struct net_device *dev);
4517 void unregister_netdev(struct net_device *dev);
4518 
4519 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4520 
4521 /* General hardware address lists handling functions */
4522 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4523 		   struct netdev_hw_addr_list *from_list, int addr_len);
4524 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4525 		      struct netdev_hw_addr_list *from_list, int addr_len);
4526 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4527 		       struct net_device *dev,
4528 		       int (*sync)(struct net_device *, const unsigned char *),
4529 		       int (*unsync)(struct net_device *,
4530 				     const unsigned char *));
4531 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4532 			   struct net_device *dev,
4533 			   int (*sync)(struct net_device *,
4534 				       const unsigned char *, int),
4535 			   int (*unsync)(struct net_device *,
4536 					 const unsigned char *, int));
4537 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4538 			      struct net_device *dev,
4539 			      int (*unsync)(struct net_device *,
4540 					    const unsigned char *, int));
4541 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4542 			  struct net_device *dev,
4543 			  int (*unsync)(struct net_device *,
4544 					const unsigned char *));
4545 void __hw_addr_init(struct netdev_hw_addr_list *list);
4546 
4547 /* Functions used for device addresses handling */
4548 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4549 		  const void *addr, size_t len);
4550 
4551 static inline void
4552 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4553 {
4554 	dev_addr_mod(dev, 0, addr, len);
4555 }
4556 
4557 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4558 {
4559 	__dev_addr_set(dev, addr, dev->addr_len);
4560 }
4561 
4562 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4563 		 unsigned char addr_type);
4564 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4565 		 unsigned char addr_type);
4566 
4567 /* Functions used for unicast addresses handling */
4568 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4569 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4570 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4571 int dev_uc_sync(struct net_device *to, struct net_device *from);
4572 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4573 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4574 void dev_uc_flush(struct net_device *dev);
4575 void dev_uc_init(struct net_device *dev);
4576 
4577 /**
4578  *  __dev_uc_sync - Synchonize device's unicast list
4579  *  @dev:  device to sync
4580  *  @sync: function to call if address should be added
4581  *  @unsync: function to call if address should be removed
4582  *
4583  *  Add newly added addresses to the interface, and release
4584  *  addresses that have been deleted.
4585  */
4586 static inline int __dev_uc_sync(struct net_device *dev,
4587 				int (*sync)(struct net_device *,
4588 					    const unsigned char *),
4589 				int (*unsync)(struct net_device *,
4590 					      const unsigned char *))
4591 {
4592 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4593 }
4594 
4595 /**
4596  *  __dev_uc_unsync - Remove synchronized addresses from device
4597  *  @dev:  device to sync
4598  *  @unsync: function to call if address should be removed
4599  *
4600  *  Remove all addresses that were added to the device by dev_uc_sync().
4601  */
4602 static inline void __dev_uc_unsync(struct net_device *dev,
4603 				   int (*unsync)(struct net_device *,
4604 						 const unsigned char *))
4605 {
4606 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4607 }
4608 
4609 /* Functions used for multicast addresses handling */
4610 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4611 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4612 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4613 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4614 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4615 int dev_mc_sync(struct net_device *to, struct net_device *from);
4616 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4617 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4618 void dev_mc_flush(struct net_device *dev);
4619 void dev_mc_init(struct net_device *dev);
4620 
4621 /**
4622  *  __dev_mc_sync - Synchonize device's multicast list
4623  *  @dev:  device to sync
4624  *  @sync: function to call if address should be added
4625  *  @unsync: function to call if address should be removed
4626  *
4627  *  Add newly added addresses to the interface, and release
4628  *  addresses that have been deleted.
4629  */
4630 static inline int __dev_mc_sync(struct net_device *dev,
4631 				int (*sync)(struct net_device *,
4632 					    const unsigned char *),
4633 				int (*unsync)(struct net_device *,
4634 					      const unsigned char *))
4635 {
4636 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4637 }
4638 
4639 /**
4640  *  __dev_mc_unsync - Remove synchronized addresses from device
4641  *  @dev:  device to sync
4642  *  @unsync: function to call if address should be removed
4643  *
4644  *  Remove all addresses that were added to the device by dev_mc_sync().
4645  */
4646 static inline void __dev_mc_unsync(struct net_device *dev,
4647 				   int (*unsync)(struct net_device *,
4648 						 const unsigned char *))
4649 {
4650 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4651 }
4652 
4653 /* Functions used for secondary unicast and multicast support */
4654 void dev_set_rx_mode(struct net_device *dev);
4655 int dev_set_promiscuity(struct net_device *dev, int inc);
4656 int dev_set_allmulti(struct net_device *dev, int inc);
4657 void netdev_state_change(struct net_device *dev);
4658 void __netdev_notify_peers(struct net_device *dev);
4659 void netdev_notify_peers(struct net_device *dev);
4660 void netdev_features_change(struct net_device *dev);
4661 /* Load a device via the kmod */
4662 void dev_load(struct net *net, const char *name);
4663 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4664 					struct rtnl_link_stats64 *storage);
4665 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4666 			     const struct net_device_stats *netdev_stats);
4667 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4668 			   const struct pcpu_sw_netstats __percpu *netstats);
4669 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4670 
4671 enum {
4672 	NESTED_SYNC_IMM_BIT,
4673 	NESTED_SYNC_TODO_BIT,
4674 };
4675 
4676 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4677 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4678 
4679 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4680 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4681 
4682 struct netdev_nested_priv {
4683 	unsigned char flags;
4684 	void *data;
4685 };
4686 
4687 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4688 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4689 						     struct list_head **iter);
4690 
4691 /* iterate through upper list, must be called under RCU read lock */
4692 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4693 	for (iter = &(dev)->adj_list.upper, \
4694 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4695 	     updev; \
4696 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4697 
4698 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4699 				  int (*fn)(struct net_device *upper_dev,
4700 					    struct netdev_nested_priv *priv),
4701 				  struct netdev_nested_priv *priv);
4702 
4703 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4704 				  struct net_device *upper_dev);
4705 
4706 bool netdev_has_any_upper_dev(struct net_device *dev);
4707 
4708 void *netdev_lower_get_next_private(struct net_device *dev,
4709 				    struct list_head **iter);
4710 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4711 					struct list_head **iter);
4712 
4713 #define netdev_for_each_lower_private(dev, priv, iter) \
4714 	for (iter = (dev)->adj_list.lower.next, \
4715 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4716 	     priv; \
4717 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4718 
4719 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4720 	for (iter = &(dev)->adj_list.lower, \
4721 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4722 	     priv; \
4723 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4724 
4725 void *netdev_lower_get_next(struct net_device *dev,
4726 				struct list_head **iter);
4727 
4728 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4729 	for (iter = (dev)->adj_list.lower.next, \
4730 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4731 	     ldev; \
4732 	     ldev = netdev_lower_get_next(dev, &(iter)))
4733 
4734 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4735 					     struct list_head **iter);
4736 int netdev_walk_all_lower_dev(struct net_device *dev,
4737 			      int (*fn)(struct net_device *lower_dev,
4738 					struct netdev_nested_priv *priv),
4739 			      struct netdev_nested_priv *priv);
4740 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4741 				  int (*fn)(struct net_device *lower_dev,
4742 					    struct netdev_nested_priv *priv),
4743 				  struct netdev_nested_priv *priv);
4744 
4745 void *netdev_adjacent_get_private(struct list_head *adj_list);
4746 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4747 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4748 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4749 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4750 			  struct netlink_ext_ack *extack);
4751 int netdev_master_upper_dev_link(struct net_device *dev,
4752 				 struct net_device *upper_dev,
4753 				 void *upper_priv, void *upper_info,
4754 				 struct netlink_ext_ack *extack);
4755 void netdev_upper_dev_unlink(struct net_device *dev,
4756 			     struct net_device *upper_dev);
4757 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4758 				   struct net_device *new_dev,
4759 				   struct net_device *dev,
4760 				   struct netlink_ext_ack *extack);
4761 void netdev_adjacent_change_commit(struct net_device *old_dev,
4762 				   struct net_device *new_dev,
4763 				   struct net_device *dev);
4764 void netdev_adjacent_change_abort(struct net_device *old_dev,
4765 				  struct net_device *new_dev,
4766 				  struct net_device *dev);
4767 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4768 void *netdev_lower_dev_get_private(struct net_device *dev,
4769 				   struct net_device *lower_dev);
4770 void netdev_lower_state_changed(struct net_device *lower_dev,
4771 				void *lower_state_info);
4772 
4773 /* RSS keys are 40 or 52 bytes long */
4774 #define NETDEV_RSS_KEY_LEN 52
4775 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4776 void netdev_rss_key_fill(void *buffer, size_t len);
4777 
4778 int skb_checksum_help(struct sk_buff *skb);
4779 int skb_crc32c_csum_help(struct sk_buff *skb);
4780 int skb_csum_hwoffload_help(struct sk_buff *skb,
4781 			    const netdev_features_t features);
4782 
4783 struct netdev_bonding_info {
4784 	ifslave	slave;
4785 	ifbond	master;
4786 };
4787 
4788 struct netdev_notifier_bonding_info {
4789 	struct netdev_notifier_info info; /* must be first */
4790 	struct netdev_bonding_info  bonding_info;
4791 };
4792 
4793 void netdev_bonding_info_change(struct net_device *dev,
4794 				struct netdev_bonding_info *bonding_info);
4795 
4796 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4797 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4798 #else
4799 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4800 				  const void *data)
4801 {
4802 }
4803 #endif
4804 
4805 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4806 
4807 static inline bool can_checksum_protocol(netdev_features_t features,
4808 					 __be16 protocol)
4809 {
4810 	if (protocol == htons(ETH_P_FCOE))
4811 		return !!(features & NETIF_F_FCOE_CRC);
4812 
4813 	/* Assume this is an IP checksum (not SCTP CRC) */
4814 
4815 	if (features & NETIF_F_HW_CSUM) {
4816 		/* Can checksum everything */
4817 		return true;
4818 	}
4819 
4820 	switch (protocol) {
4821 	case htons(ETH_P_IP):
4822 		return !!(features & NETIF_F_IP_CSUM);
4823 	case htons(ETH_P_IPV6):
4824 		return !!(features & NETIF_F_IPV6_CSUM);
4825 	default:
4826 		return false;
4827 	}
4828 }
4829 
4830 #ifdef CONFIG_BUG
4831 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4832 #else
4833 static inline void netdev_rx_csum_fault(struct net_device *dev,
4834 					struct sk_buff *skb)
4835 {
4836 }
4837 #endif
4838 /* rx skb timestamps */
4839 void net_enable_timestamp(void);
4840 void net_disable_timestamp(void);
4841 
4842 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4843 					const struct skb_shared_hwtstamps *hwtstamps,
4844 					bool cycles)
4845 {
4846 	const struct net_device_ops *ops = dev->netdev_ops;
4847 
4848 	if (ops->ndo_get_tstamp)
4849 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4850 
4851 	return hwtstamps->hwtstamp;
4852 }
4853 
4854 #ifndef CONFIG_PREEMPT_RT
4855 static inline void netdev_xmit_set_more(bool more)
4856 {
4857 	__this_cpu_write(softnet_data.xmit.more, more);
4858 }
4859 
4860 static inline bool netdev_xmit_more(void)
4861 {
4862 	return __this_cpu_read(softnet_data.xmit.more);
4863 }
4864 #else
4865 static inline void netdev_xmit_set_more(bool more)
4866 {
4867 	current->net_xmit.more = more;
4868 }
4869 
4870 static inline bool netdev_xmit_more(void)
4871 {
4872 	return current->net_xmit.more;
4873 }
4874 #endif
4875 
4876 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4877 					      struct sk_buff *skb, struct net_device *dev,
4878 					      bool more)
4879 {
4880 	netdev_xmit_set_more(more);
4881 	return ops->ndo_start_xmit(skb, dev);
4882 }
4883 
4884 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4885 					    struct netdev_queue *txq, bool more)
4886 {
4887 	const struct net_device_ops *ops = dev->netdev_ops;
4888 	netdev_tx_t rc;
4889 
4890 	rc = __netdev_start_xmit(ops, skb, dev, more);
4891 	if (rc == NETDEV_TX_OK)
4892 		txq_trans_update(txq);
4893 
4894 	return rc;
4895 }
4896 
4897 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4898 				const void *ns);
4899 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4900 				 const void *ns);
4901 
4902 extern const struct kobj_ns_type_operations net_ns_type_operations;
4903 
4904 const char *netdev_drivername(const struct net_device *dev);
4905 
4906 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4907 							  netdev_features_t f2)
4908 {
4909 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4910 		if (f1 & NETIF_F_HW_CSUM)
4911 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4912 		else
4913 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4914 	}
4915 
4916 	return f1 & f2;
4917 }
4918 
4919 static inline netdev_features_t netdev_get_wanted_features(
4920 	struct net_device *dev)
4921 {
4922 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4923 }
4924 netdev_features_t netdev_increment_features(netdev_features_t all,
4925 	netdev_features_t one, netdev_features_t mask);
4926 
4927 /* Allow TSO being used on stacked device :
4928  * Performing the GSO segmentation before last device
4929  * is a performance improvement.
4930  */
4931 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4932 							netdev_features_t mask)
4933 {
4934 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4935 }
4936 
4937 int __netdev_update_features(struct net_device *dev);
4938 void netdev_update_features(struct net_device *dev);
4939 void netdev_change_features(struct net_device *dev);
4940 
4941 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4942 					struct net_device *dev);
4943 
4944 netdev_features_t passthru_features_check(struct sk_buff *skb,
4945 					  struct net_device *dev,
4946 					  netdev_features_t features);
4947 netdev_features_t netif_skb_features(struct sk_buff *skb);
4948 void skb_warn_bad_offload(const struct sk_buff *skb);
4949 
4950 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4951 {
4952 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4953 
4954 	/* check flags correspondence */
4955 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4956 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4957 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4958 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4959 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4960 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4961 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4962 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4963 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4964 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4965 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4966 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4967 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4968 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4969 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4970 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4971 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4972 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4973 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4974 
4975 	return (features & feature) == feature;
4976 }
4977 
4978 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4979 {
4980 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4981 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4982 }
4983 
4984 static inline bool netif_needs_gso(struct sk_buff *skb,
4985 				   netdev_features_t features)
4986 {
4987 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4988 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4989 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4990 }
4991 
4992 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
4993 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
4994 void netif_inherit_tso_max(struct net_device *to,
4995 			   const struct net_device *from);
4996 
4997 static inline bool netif_is_macsec(const struct net_device *dev)
4998 {
4999 	return dev->priv_flags & IFF_MACSEC;
5000 }
5001 
5002 static inline bool netif_is_macvlan(const struct net_device *dev)
5003 {
5004 	return dev->priv_flags & IFF_MACVLAN;
5005 }
5006 
5007 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5008 {
5009 	return dev->priv_flags & IFF_MACVLAN_PORT;
5010 }
5011 
5012 static inline bool netif_is_bond_master(const struct net_device *dev)
5013 {
5014 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5015 }
5016 
5017 static inline bool netif_is_bond_slave(const struct net_device *dev)
5018 {
5019 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5020 }
5021 
5022 static inline bool netif_supports_nofcs(struct net_device *dev)
5023 {
5024 	return dev->priv_flags & IFF_SUPP_NOFCS;
5025 }
5026 
5027 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5028 {
5029 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5030 }
5031 
5032 static inline bool netif_is_l3_master(const struct net_device *dev)
5033 {
5034 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5035 }
5036 
5037 static inline bool netif_is_l3_slave(const struct net_device *dev)
5038 {
5039 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5040 }
5041 
5042 static inline int dev_sdif(const struct net_device *dev)
5043 {
5044 #ifdef CONFIG_NET_L3_MASTER_DEV
5045 	if (netif_is_l3_slave(dev))
5046 		return dev->ifindex;
5047 #endif
5048 	return 0;
5049 }
5050 
5051 static inline bool netif_is_bridge_master(const struct net_device *dev)
5052 {
5053 	return dev->priv_flags & IFF_EBRIDGE;
5054 }
5055 
5056 static inline bool netif_is_bridge_port(const struct net_device *dev)
5057 {
5058 	return dev->priv_flags & IFF_BRIDGE_PORT;
5059 }
5060 
5061 static inline bool netif_is_ovs_master(const struct net_device *dev)
5062 {
5063 	return dev->priv_flags & IFF_OPENVSWITCH;
5064 }
5065 
5066 static inline bool netif_is_ovs_port(const struct net_device *dev)
5067 {
5068 	return dev->priv_flags & IFF_OVS_DATAPATH;
5069 }
5070 
5071 static inline bool netif_is_any_bridge_master(const struct net_device *dev)
5072 {
5073 	return netif_is_bridge_master(dev) || netif_is_ovs_master(dev);
5074 }
5075 
5076 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5077 {
5078 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5079 }
5080 
5081 static inline bool netif_is_team_master(const struct net_device *dev)
5082 {
5083 	return dev->priv_flags & IFF_TEAM;
5084 }
5085 
5086 static inline bool netif_is_team_port(const struct net_device *dev)
5087 {
5088 	return dev->priv_flags & IFF_TEAM_PORT;
5089 }
5090 
5091 static inline bool netif_is_lag_master(const struct net_device *dev)
5092 {
5093 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5094 }
5095 
5096 static inline bool netif_is_lag_port(const struct net_device *dev)
5097 {
5098 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5099 }
5100 
5101 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5102 {
5103 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5104 }
5105 
5106 static inline bool netif_is_failover(const struct net_device *dev)
5107 {
5108 	return dev->priv_flags & IFF_FAILOVER;
5109 }
5110 
5111 static inline bool netif_is_failover_slave(const struct net_device *dev)
5112 {
5113 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5114 }
5115 
5116 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5117 static inline void netif_keep_dst(struct net_device *dev)
5118 {
5119 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5120 }
5121 
5122 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5123 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5124 {
5125 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5126 	return netif_is_macsec(dev);
5127 }
5128 
5129 extern struct pernet_operations __net_initdata loopback_net_ops;
5130 
5131 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5132 
5133 /* netdev_printk helpers, similar to dev_printk */
5134 
5135 static inline const char *netdev_name(const struct net_device *dev)
5136 {
5137 	if (!dev->name[0] || strchr(dev->name, '%'))
5138 		return "(unnamed net_device)";
5139 	return dev->name;
5140 }
5141 
5142 static inline const char *netdev_reg_state(const struct net_device *dev)
5143 {
5144 	u8 reg_state = READ_ONCE(dev->reg_state);
5145 
5146 	switch (reg_state) {
5147 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5148 	case NETREG_REGISTERED: return "";
5149 	case NETREG_UNREGISTERING: return " (unregistering)";
5150 	case NETREG_UNREGISTERED: return " (unregistered)";
5151 	case NETREG_RELEASED: return " (released)";
5152 	case NETREG_DUMMY: return " (dummy)";
5153 	}
5154 
5155 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, reg_state);
5156 	return " (unknown)";
5157 }
5158 
5159 #define MODULE_ALIAS_NETDEV(device) \
5160 	MODULE_ALIAS("netdev-" device)
5161 
5162 /*
5163  * netdev_WARN() acts like dev_printk(), but with the key difference
5164  * of using a WARN/WARN_ON to get the message out, including the
5165  * file/line information and a backtrace.
5166  */
5167 #define netdev_WARN(dev, format, args...)			\
5168 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5169 	     netdev_reg_state(dev), ##args)
5170 
5171 #define netdev_WARN_ONCE(dev, format, args...)				\
5172 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5173 		  netdev_reg_state(dev), ##args)
5174 
5175 /*
5176  *	The list of packet types we will receive (as opposed to discard)
5177  *	and the routines to invoke.
5178  *
5179  *	Why 16. Because with 16 the only overlap we get on a hash of the
5180  *	low nibble of the protocol value is RARP/SNAP/X.25.
5181  *
5182  *		0800	IP
5183  *		0001	802.3
5184  *		0002	AX.25
5185  *		0004	802.2
5186  *		8035	RARP
5187  *		0005	SNAP
5188  *		0805	X.25
5189  *		0806	ARP
5190  *		8137	IPX
5191  *		0009	Localtalk
5192  *		86DD	IPv6
5193  */
5194 #define PTYPE_HASH_SIZE	(16)
5195 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5196 
5197 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5198 
5199 extern struct net_device *blackhole_netdev;
5200 
5201 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5202 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5203 #define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
5204 		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5205 #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD)
5206 
5207 #endif	/* _LINUX_NETDEVICE_H */
5208