xref: /linux-6.15/include/linux/netdevice.h (revision 4e485d06)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <[email protected]>
12  *		Corey Minyard <[email protected]>
13  *		Donald J. Becker, <[email protected]>
14  *		Alan Cox, <[email protected]>
15  *		Bjorn Ekwall. <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/workqueue.h>
39 #include <linux/dynamic_queue_limits.h>
40 
41 #include <linux/ethtool.h>
42 #include <net/net_namespace.h>
43 #ifdef CONFIG_DCB
44 #include <net/dcbnl.h>
45 #endif
46 #include <net/netprio_cgroup.h>
47 #include <net/xdp.h>
48 
49 #include <linux/netdev_features.h>
50 #include <linux/neighbour.h>
51 #include <uapi/linux/netdevice.h>
52 #include <uapi/linux/if_bonding.h>
53 #include <uapi/linux/pkt_cls.h>
54 #include <linux/hashtable.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 struct dsa_port;
60 
61 struct sfp_bus;
62 /* 802.11 specific */
63 struct wireless_dev;
64 /* 802.15.4 specific */
65 struct wpan_dev;
66 struct mpls_dev;
67 /* UDP Tunnel offloads */
68 struct udp_tunnel_info;
69 struct bpf_prog;
70 struct xdp_buff;
71 
72 void netdev_set_default_ethtool_ops(struct net_device *dev,
73 				    const struct ethtool_ops *ops);
74 
75 /* Backlog congestion levels */
76 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
77 #define NET_RX_DROP		1	/* packet dropped */
78 
79 /*
80  * Transmit return codes: transmit return codes originate from three different
81  * namespaces:
82  *
83  * - qdisc return codes
84  * - driver transmit return codes
85  * - errno values
86  *
87  * Drivers are allowed to return any one of those in their hard_start_xmit()
88  * function. Real network devices commonly used with qdiscs should only return
89  * the driver transmit return codes though - when qdiscs are used, the actual
90  * transmission happens asynchronously, so the value is not propagated to
91  * higher layers. Virtual network devices transmit synchronously; in this case
92  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
93  * others are propagated to higher layers.
94  */
95 
96 /* qdisc ->enqueue() return codes. */
97 #define NET_XMIT_SUCCESS	0x00
98 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
99 #define NET_XMIT_CN		0x02	/* congestion notification	*/
100 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
101 
102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
103  * indicates that the device will soon be dropping packets, or already drops
104  * some packets of the same priority; prompting us to send less aggressively. */
105 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
106 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
107 
108 /* Driver transmit return codes */
109 #define NETDEV_TX_MASK		0xf0
110 
111 enum netdev_tx {
112 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
113 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
114 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
115 };
116 typedef enum netdev_tx netdev_tx_t;
117 
118 /*
119  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121  */
122 static inline bool dev_xmit_complete(int rc)
123 {
124 	/*
125 	 * Positive cases with an skb consumed by a driver:
126 	 * - successful transmission (rc == NETDEV_TX_OK)
127 	 * - error while transmitting (rc < 0)
128 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 	 */
130 	if (likely(rc < NET_XMIT_MASK))
131 		return true;
132 
133 	return false;
134 }
135 
136 /*
137  *	Compute the worst-case header length according to the protocols
138  *	used.
139  */
140 
141 #if defined(CONFIG_HYPERV_NET)
142 # define LL_MAX_HEADER 128
143 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
144 # if defined(CONFIG_MAC80211_MESH)
145 #  define LL_MAX_HEADER 128
146 # else
147 #  define LL_MAX_HEADER 96
148 # endif
149 #else
150 # define LL_MAX_HEADER 32
151 #endif
152 
153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
154     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
155 #define MAX_HEADER LL_MAX_HEADER
156 #else
157 #define MAX_HEADER (LL_MAX_HEADER + 48)
158 #endif
159 
160 /*
161  *	Old network device statistics. Fields are native words
162  *	(unsigned long) so they can be read and written atomically.
163  */
164 
165 struct net_device_stats {
166 	unsigned long	rx_packets;
167 	unsigned long	tx_packets;
168 	unsigned long	rx_bytes;
169 	unsigned long	tx_bytes;
170 	unsigned long	rx_errors;
171 	unsigned long	tx_errors;
172 	unsigned long	rx_dropped;
173 	unsigned long	tx_dropped;
174 	unsigned long	multicast;
175 	unsigned long	collisions;
176 	unsigned long	rx_length_errors;
177 	unsigned long	rx_over_errors;
178 	unsigned long	rx_crc_errors;
179 	unsigned long	rx_frame_errors;
180 	unsigned long	rx_fifo_errors;
181 	unsigned long	rx_missed_errors;
182 	unsigned long	tx_aborted_errors;
183 	unsigned long	tx_carrier_errors;
184 	unsigned long	tx_fifo_errors;
185 	unsigned long	tx_heartbeat_errors;
186 	unsigned long	tx_window_errors;
187 	unsigned long	rx_compressed;
188 	unsigned long	tx_compressed;
189 };
190 
191 
192 #include <linux/cache.h>
193 #include <linux/skbuff.h>
194 
195 #ifdef CONFIG_RPS
196 #include <linux/static_key.h>
197 extern struct static_key rps_needed;
198 extern struct static_key rfs_needed;
199 #endif
200 
201 struct neighbour;
202 struct neigh_parms;
203 struct sk_buff;
204 
205 struct netdev_hw_addr {
206 	struct list_head	list;
207 	unsigned char		addr[MAX_ADDR_LEN];
208 	unsigned char		type;
209 #define NETDEV_HW_ADDR_T_LAN		1
210 #define NETDEV_HW_ADDR_T_SAN		2
211 #define NETDEV_HW_ADDR_T_SLAVE		3
212 #define NETDEV_HW_ADDR_T_UNICAST	4
213 #define NETDEV_HW_ADDR_T_MULTICAST	5
214 	bool			global_use;
215 	int			sync_cnt;
216 	int			refcount;
217 	int			synced;
218 	struct rcu_head		rcu_head;
219 };
220 
221 struct netdev_hw_addr_list {
222 	struct list_head	list;
223 	int			count;
224 };
225 
226 #define netdev_hw_addr_list_count(l) ((l)->count)
227 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
228 #define netdev_hw_addr_list_for_each(ha, l) \
229 	list_for_each_entry(ha, &(l)->list, list)
230 
231 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
232 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
233 #define netdev_for_each_uc_addr(ha, dev) \
234 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
235 
236 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
237 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
238 #define netdev_for_each_mc_addr(ha, dev) \
239 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
240 
241 struct hh_cache {
242 	unsigned int	hh_len;
243 	seqlock_t	hh_lock;
244 
245 	/* cached hardware header; allow for machine alignment needs.        */
246 #define HH_DATA_MOD	16
247 #define HH_DATA_OFF(__len) \
248 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
249 #define HH_DATA_ALIGN(__len) \
250 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
251 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
252 };
253 
254 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
255  * Alternative is:
256  *   dev->hard_header_len ? (dev->hard_header_len +
257  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
258  *
259  * We could use other alignment values, but we must maintain the
260  * relationship HH alignment <= LL alignment.
261  */
262 #define LL_RESERVED_SPACE(dev) \
263 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
265 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
266 
267 struct header_ops {
268 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
269 			   unsigned short type, const void *daddr,
270 			   const void *saddr, unsigned int len);
271 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
272 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
273 	void	(*cache_update)(struct hh_cache *hh,
274 				const struct net_device *dev,
275 				const unsigned char *haddr);
276 	bool	(*validate)(const char *ll_header, unsigned int len);
277 };
278 
279 /* These flag bits are private to the generic network queueing
280  * layer; they may not be explicitly referenced by any other
281  * code.
282  */
283 
284 enum netdev_state_t {
285 	__LINK_STATE_START,
286 	__LINK_STATE_PRESENT,
287 	__LINK_STATE_NOCARRIER,
288 	__LINK_STATE_LINKWATCH_PENDING,
289 	__LINK_STATE_DORMANT,
290 };
291 
292 
293 /*
294  * This structure holds boot-time configured netdevice settings. They
295  * are then used in the device probing.
296  */
297 struct netdev_boot_setup {
298 	char name[IFNAMSIZ];
299 	struct ifmap map;
300 };
301 #define NETDEV_BOOT_SETUP_MAX 8
302 
303 int __init netdev_boot_setup(char *str);
304 
305 /*
306  * Structure for NAPI scheduling similar to tasklet but with weighting
307  */
308 #define GRO_HASH_BUCKETS	8
309 struct napi_struct {
310 	/* The poll_list must only be managed by the entity which
311 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
312 	 * whoever atomically sets that bit can add this napi_struct
313 	 * to the per-CPU poll_list, and whoever clears that bit
314 	 * can remove from the list right before clearing the bit.
315 	 */
316 	struct list_head	poll_list;
317 
318 	unsigned long		state;
319 	int			weight;
320 	unsigned int		gro_count;
321 	int			(*poll)(struct napi_struct *, int);
322 #ifdef CONFIG_NETPOLL
323 	int			poll_owner;
324 #endif
325 	struct net_device	*dev;
326 	struct list_head	gro_hash[GRO_HASH_BUCKETS];
327 	struct sk_buff		*skb;
328 	struct hrtimer		timer;
329 	struct list_head	dev_list;
330 	struct hlist_node	napi_hash_node;
331 	unsigned int		napi_id;
332 };
333 
334 enum {
335 	NAPI_STATE_SCHED,	/* Poll is scheduled */
336 	NAPI_STATE_MISSED,	/* reschedule a napi */
337 	NAPI_STATE_DISABLE,	/* Disable pending */
338 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
339 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
340 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
341 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
342 };
343 
344 enum {
345 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
346 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
347 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
348 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
349 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
350 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
351 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
352 };
353 
354 enum gro_result {
355 	GRO_MERGED,
356 	GRO_MERGED_FREE,
357 	GRO_HELD,
358 	GRO_NORMAL,
359 	GRO_DROP,
360 	GRO_CONSUMED,
361 };
362 typedef enum gro_result gro_result_t;
363 
364 /*
365  * enum rx_handler_result - Possible return values for rx_handlers.
366  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
367  * further.
368  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
369  * case skb->dev was changed by rx_handler.
370  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
371  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
372  *
373  * rx_handlers are functions called from inside __netif_receive_skb(), to do
374  * special processing of the skb, prior to delivery to protocol handlers.
375  *
376  * Currently, a net_device can only have a single rx_handler registered. Trying
377  * to register a second rx_handler will return -EBUSY.
378  *
379  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
380  * To unregister a rx_handler on a net_device, use
381  * netdev_rx_handler_unregister().
382  *
383  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
384  * do with the skb.
385  *
386  * If the rx_handler consumed the skb in some way, it should return
387  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
388  * the skb to be delivered in some other way.
389  *
390  * If the rx_handler changed skb->dev, to divert the skb to another
391  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
392  * new device will be called if it exists.
393  *
394  * If the rx_handler decides the skb should be ignored, it should return
395  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
396  * are registered on exact device (ptype->dev == skb->dev).
397  *
398  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
399  * delivered, it should return RX_HANDLER_PASS.
400  *
401  * A device without a registered rx_handler will behave as if rx_handler
402  * returned RX_HANDLER_PASS.
403  */
404 
405 enum rx_handler_result {
406 	RX_HANDLER_CONSUMED,
407 	RX_HANDLER_ANOTHER,
408 	RX_HANDLER_EXACT,
409 	RX_HANDLER_PASS,
410 };
411 typedef enum rx_handler_result rx_handler_result_t;
412 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
413 
414 void __napi_schedule(struct napi_struct *n);
415 void __napi_schedule_irqoff(struct napi_struct *n);
416 
417 static inline bool napi_disable_pending(struct napi_struct *n)
418 {
419 	return test_bit(NAPI_STATE_DISABLE, &n->state);
420 }
421 
422 bool napi_schedule_prep(struct napi_struct *n);
423 
424 /**
425  *	napi_schedule - schedule NAPI poll
426  *	@n: NAPI context
427  *
428  * Schedule NAPI poll routine to be called if it is not already
429  * running.
430  */
431 static inline void napi_schedule(struct napi_struct *n)
432 {
433 	if (napi_schedule_prep(n))
434 		__napi_schedule(n);
435 }
436 
437 /**
438  *	napi_schedule_irqoff - schedule NAPI poll
439  *	@n: NAPI context
440  *
441  * Variant of napi_schedule(), assuming hard irqs are masked.
442  */
443 static inline void napi_schedule_irqoff(struct napi_struct *n)
444 {
445 	if (napi_schedule_prep(n))
446 		__napi_schedule_irqoff(n);
447 }
448 
449 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
450 static inline bool napi_reschedule(struct napi_struct *napi)
451 {
452 	if (napi_schedule_prep(napi)) {
453 		__napi_schedule(napi);
454 		return true;
455 	}
456 	return false;
457 }
458 
459 bool napi_complete_done(struct napi_struct *n, int work_done);
460 /**
461  *	napi_complete - NAPI processing complete
462  *	@n: NAPI context
463  *
464  * Mark NAPI processing as complete.
465  * Consider using napi_complete_done() instead.
466  * Return false if device should avoid rearming interrupts.
467  */
468 static inline bool napi_complete(struct napi_struct *n)
469 {
470 	return napi_complete_done(n, 0);
471 }
472 
473 /**
474  *	napi_hash_del - remove a NAPI from global table
475  *	@napi: NAPI context
476  *
477  * Warning: caller must observe RCU grace period
478  * before freeing memory containing @napi, if
479  * this function returns true.
480  * Note: core networking stack automatically calls it
481  * from netif_napi_del().
482  * Drivers might want to call this helper to combine all
483  * the needed RCU grace periods into a single one.
484  */
485 bool napi_hash_del(struct napi_struct *napi);
486 
487 /**
488  *	napi_disable - prevent NAPI from scheduling
489  *	@n: NAPI context
490  *
491  * Stop NAPI from being scheduled on this context.
492  * Waits till any outstanding processing completes.
493  */
494 void napi_disable(struct napi_struct *n);
495 
496 /**
497  *	napi_enable - enable NAPI scheduling
498  *	@n: NAPI context
499  *
500  * Resume NAPI from being scheduled on this context.
501  * Must be paired with napi_disable.
502  */
503 static inline void napi_enable(struct napi_struct *n)
504 {
505 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
506 	smp_mb__before_atomic();
507 	clear_bit(NAPI_STATE_SCHED, &n->state);
508 	clear_bit(NAPI_STATE_NPSVC, &n->state);
509 }
510 
511 /**
512  *	napi_synchronize - wait until NAPI is not running
513  *	@n: NAPI context
514  *
515  * Wait until NAPI is done being scheduled on this context.
516  * Waits till any outstanding processing completes but
517  * does not disable future activations.
518  */
519 static inline void napi_synchronize(const struct napi_struct *n)
520 {
521 	if (IS_ENABLED(CONFIG_SMP))
522 		while (test_bit(NAPI_STATE_SCHED, &n->state))
523 			msleep(1);
524 	else
525 		barrier();
526 }
527 
528 enum netdev_queue_state_t {
529 	__QUEUE_STATE_DRV_XOFF,
530 	__QUEUE_STATE_STACK_XOFF,
531 	__QUEUE_STATE_FROZEN,
532 };
533 
534 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
535 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
536 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
537 
538 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
539 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
540 					QUEUE_STATE_FROZEN)
541 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
542 					QUEUE_STATE_FROZEN)
543 
544 /*
545  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
546  * netif_tx_* functions below are used to manipulate this flag.  The
547  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
548  * queue independently.  The netif_xmit_*stopped functions below are called
549  * to check if the queue has been stopped by the driver or stack (either
550  * of the XOFF bits are set in the state).  Drivers should not need to call
551  * netif_xmit*stopped functions, they should only be using netif_tx_*.
552  */
553 
554 struct netdev_queue {
555 /*
556  * read-mostly part
557  */
558 	struct net_device	*dev;
559 	struct Qdisc __rcu	*qdisc;
560 	struct Qdisc		*qdisc_sleeping;
561 #ifdef CONFIG_SYSFS
562 	struct kobject		kobj;
563 #endif
564 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
565 	int			numa_node;
566 #endif
567 	unsigned long		tx_maxrate;
568 	/*
569 	 * Number of TX timeouts for this queue
570 	 * (/sys/class/net/DEV/Q/trans_timeout)
571 	 */
572 	unsigned long		trans_timeout;
573 /*
574  * write-mostly part
575  */
576 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
577 	int			xmit_lock_owner;
578 	/*
579 	 * Time (in jiffies) of last Tx
580 	 */
581 	unsigned long		trans_start;
582 
583 	unsigned long		state;
584 
585 #ifdef CONFIG_BQL
586 	struct dql		dql;
587 #endif
588 } ____cacheline_aligned_in_smp;
589 
590 extern int sysctl_fb_tunnels_only_for_init_net;
591 
592 static inline bool net_has_fallback_tunnels(const struct net *net)
593 {
594 	return net == &init_net ||
595 	       !IS_ENABLED(CONFIG_SYSCTL) ||
596 	       !sysctl_fb_tunnels_only_for_init_net;
597 }
598 
599 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
600 {
601 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
602 	return q->numa_node;
603 #else
604 	return NUMA_NO_NODE;
605 #endif
606 }
607 
608 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
609 {
610 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
611 	q->numa_node = node;
612 #endif
613 }
614 
615 #ifdef CONFIG_RPS
616 /*
617  * This structure holds an RPS map which can be of variable length.  The
618  * map is an array of CPUs.
619  */
620 struct rps_map {
621 	unsigned int len;
622 	struct rcu_head rcu;
623 	u16 cpus[0];
624 };
625 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
626 
627 /*
628  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
629  * tail pointer for that CPU's input queue at the time of last enqueue, and
630  * a hardware filter index.
631  */
632 struct rps_dev_flow {
633 	u16 cpu;
634 	u16 filter;
635 	unsigned int last_qtail;
636 };
637 #define RPS_NO_FILTER 0xffff
638 
639 /*
640  * The rps_dev_flow_table structure contains a table of flow mappings.
641  */
642 struct rps_dev_flow_table {
643 	unsigned int mask;
644 	struct rcu_head rcu;
645 	struct rps_dev_flow flows[0];
646 };
647 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
648     ((_num) * sizeof(struct rps_dev_flow)))
649 
650 /*
651  * The rps_sock_flow_table contains mappings of flows to the last CPU
652  * on which they were processed by the application (set in recvmsg).
653  * Each entry is a 32bit value. Upper part is the high-order bits
654  * of flow hash, lower part is CPU number.
655  * rps_cpu_mask is used to partition the space, depending on number of
656  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
657  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
658  * meaning we use 32-6=26 bits for the hash.
659  */
660 struct rps_sock_flow_table {
661 	u32	mask;
662 
663 	u32	ents[0] ____cacheline_aligned_in_smp;
664 };
665 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
666 
667 #define RPS_NO_CPU 0xffff
668 
669 extern u32 rps_cpu_mask;
670 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
671 
672 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
673 					u32 hash)
674 {
675 	if (table && hash) {
676 		unsigned int index = hash & table->mask;
677 		u32 val = hash & ~rps_cpu_mask;
678 
679 		/* We only give a hint, preemption can change CPU under us */
680 		val |= raw_smp_processor_id();
681 
682 		if (table->ents[index] != val)
683 			table->ents[index] = val;
684 	}
685 }
686 
687 #ifdef CONFIG_RFS_ACCEL
688 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
689 			 u16 filter_id);
690 #endif
691 #endif /* CONFIG_RPS */
692 
693 /* This structure contains an instance of an RX queue. */
694 struct netdev_rx_queue {
695 #ifdef CONFIG_RPS
696 	struct rps_map __rcu		*rps_map;
697 	struct rps_dev_flow_table __rcu	*rps_flow_table;
698 #endif
699 	struct kobject			kobj;
700 	struct net_device		*dev;
701 	struct xdp_rxq_info		xdp_rxq;
702 } ____cacheline_aligned_in_smp;
703 
704 /*
705  * RX queue sysfs structures and functions.
706  */
707 struct rx_queue_attribute {
708 	struct attribute attr;
709 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
710 	ssize_t (*store)(struct netdev_rx_queue *queue,
711 			 const char *buf, size_t len);
712 };
713 
714 #ifdef CONFIG_XPS
715 /*
716  * This structure holds an XPS map which can be of variable length.  The
717  * map is an array of queues.
718  */
719 struct xps_map {
720 	unsigned int len;
721 	unsigned int alloc_len;
722 	struct rcu_head rcu;
723 	u16 queues[0];
724 };
725 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
726 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
727        - sizeof(struct xps_map)) / sizeof(u16))
728 
729 /*
730  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
731  */
732 struct xps_dev_maps {
733 	struct rcu_head rcu;
734 	struct xps_map __rcu *cpu_map[0];
735 };
736 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +		\
737 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
738 #endif /* CONFIG_XPS */
739 
740 #define TC_MAX_QUEUE	16
741 #define TC_BITMASK	15
742 /* HW offloaded queuing disciplines txq count and offset maps */
743 struct netdev_tc_txq {
744 	u16 count;
745 	u16 offset;
746 };
747 
748 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
749 /*
750  * This structure is to hold information about the device
751  * configured to run FCoE protocol stack.
752  */
753 struct netdev_fcoe_hbainfo {
754 	char	manufacturer[64];
755 	char	serial_number[64];
756 	char	hardware_version[64];
757 	char	driver_version[64];
758 	char	optionrom_version[64];
759 	char	firmware_version[64];
760 	char	model[256];
761 	char	model_description[256];
762 };
763 #endif
764 
765 #define MAX_PHYS_ITEM_ID_LEN 32
766 
767 /* This structure holds a unique identifier to identify some
768  * physical item (port for example) used by a netdevice.
769  */
770 struct netdev_phys_item_id {
771 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
772 	unsigned char id_len;
773 };
774 
775 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
776 					    struct netdev_phys_item_id *b)
777 {
778 	return a->id_len == b->id_len &&
779 	       memcmp(a->id, b->id, a->id_len) == 0;
780 }
781 
782 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
783 				       struct sk_buff *skb);
784 
785 enum tc_setup_type {
786 	TC_SETUP_QDISC_MQPRIO,
787 	TC_SETUP_CLSU32,
788 	TC_SETUP_CLSFLOWER,
789 	TC_SETUP_CLSMATCHALL,
790 	TC_SETUP_CLSBPF,
791 	TC_SETUP_BLOCK,
792 	TC_SETUP_QDISC_CBS,
793 	TC_SETUP_QDISC_RED,
794 	TC_SETUP_QDISC_PRIO,
795 	TC_SETUP_QDISC_MQ,
796 };
797 
798 /* These structures hold the attributes of bpf state that are being passed
799  * to the netdevice through the bpf op.
800  */
801 enum bpf_netdev_command {
802 	/* Set or clear a bpf program used in the earliest stages of packet
803 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
804 	 * is responsible for calling bpf_prog_put on any old progs that are
805 	 * stored. In case of error, the callee need not release the new prog
806 	 * reference, but on success it takes ownership and must bpf_prog_put
807 	 * when it is no longer used.
808 	 */
809 	XDP_SETUP_PROG,
810 	XDP_SETUP_PROG_HW,
811 	/* Check if a bpf program is set on the device.  The callee should
812 	 * set @prog_attached to one of XDP_ATTACHED_* values, note that "true"
813 	 * is equivalent to XDP_ATTACHED_DRV.
814 	 */
815 	XDP_QUERY_PROG,
816 	/* BPF program for offload callbacks, invoked at program load time. */
817 	BPF_OFFLOAD_VERIFIER_PREP,
818 	BPF_OFFLOAD_TRANSLATE,
819 	BPF_OFFLOAD_DESTROY,
820 	BPF_OFFLOAD_MAP_ALLOC,
821 	BPF_OFFLOAD_MAP_FREE,
822 	XDP_QUERY_XSK_UMEM,
823 	XDP_SETUP_XSK_UMEM,
824 };
825 
826 struct bpf_prog_offload_ops;
827 struct netlink_ext_ack;
828 struct xdp_umem;
829 
830 struct netdev_bpf {
831 	enum bpf_netdev_command command;
832 	union {
833 		/* XDP_SETUP_PROG */
834 		struct {
835 			u32 flags;
836 			struct bpf_prog *prog;
837 			struct netlink_ext_ack *extack;
838 		};
839 		/* XDP_QUERY_PROG */
840 		struct {
841 			u8 prog_attached;
842 			u32 prog_id;
843 			/* flags with which program was installed */
844 			u32 prog_flags;
845 		};
846 		/* BPF_OFFLOAD_VERIFIER_PREP */
847 		struct {
848 			struct bpf_prog *prog;
849 			const struct bpf_prog_offload_ops *ops; /* callee set */
850 		} verifier;
851 		/* BPF_OFFLOAD_TRANSLATE, BPF_OFFLOAD_DESTROY */
852 		struct {
853 			struct bpf_prog *prog;
854 		} offload;
855 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
856 		struct {
857 			struct bpf_offloaded_map *offmap;
858 		};
859 		/* XDP_SETUP_XSK_UMEM */
860 		struct {
861 			struct xdp_umem *umem;
862 			u16 queue_id;
863 		} xsk;
864 	};
865 };
866 
867 #ifdef CONFIG_XFRM_OFFLOAD
868 struct xfrmdev_ops {
869 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
870 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
871 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
872 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
873 				       struct xfrm_state *x);
874 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
875 };
876 #endif
877 
878 #if IS_ENABLED(CONFIG_TLS_DEVICE)
879 enum tls_offload_ctx_dir {
880 	TLS_OFFLOAD_CTX_DIR_RX,
881 	TLS_OFFLOAD_CTX_DIR_TX,
882 };
883 
884 struct tls_crypto_info;
885 struct tls_context;
886 
887 struct tlsdev_ops {
888 	int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
889 			   enum tls_offload_ctx_dir direction,
890 			   struct tls_crypto_info *crypto_info,
891 			   u32 start_offload_tcp_sn);
892 	void (*tls_dev_del)(struct net_device *netdev,
893 			    struct tls_context *ctx,
894 			    enum tls_offload_ctx_dir direction);
895 };
896 #endif
897 
898 struct dev_ifalias {
899 	struct rcu_head rcuhead;
900 	char ifalias[];
901 };
902 
903 /*
904  * This structure defines the management hooks for network devices.
905  * The following hooks can be defined; unless noted otherwise, they are
906  * optional and can be filled with a null pointer.
907  *
908  * int (*ndo_init)(struct net_device *dev);
909  *     This function is called once when a network device is registered.
910  *     The network device can use this for any late stage initialization
911  *     or semantic validation. It can fail with an error code which will
912  *     be propagated back to register_netdev.
913  *
914  * void (*ndo_uninit)(struct net_device *dev);
915  *     This function is called when device is unregistered or when registration
916  *     fails. It is not called if init fails.
917  *
918  * int (*ndo_open)(struct net_device *dev);
919  *     This function is called when a network device transitions to the up
920  *     state.
921  *
922  * int (*ndo_stop)(struct net_device *dev);
923  *     This function is called when a network device transitions to the down
924  *     state.
925  *
926  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
927  *                               struct net_device *dev);
928  *	Called when a packet needs to be transmitted.
929  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
930  *	the queue before that can happen; it's for obsolete devices and weird
931  *	corner cases, but the stack really does a non-trivial amount
932  *	of useless work if you return NETDEV_TX_BUSY.
933  *	Required; cannot be NULL.
934  *
935  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
936  *					   struct net_device *dev
937  *					   netdev_features_t features);
938  *	Called by core transmit path to determine if device is capable of
939  *	performing offload operations on a given packet. This is to give
940  *	the device an opportunity to implement any restrictions that cannot
941  *	be otherwise expressed by feature flags. The check is called with
942  *	the set of features that the stack has calculated and it returns
943  *	those the driver believes to be appropriate.
944  *
945  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
946  *                         void *accel_priv, select_queue_fallback_t fallback);
947  *	Called to decide which queue to use when device supports multiple
948  *	transmit queues.
949  *
950  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
951  *	This function is called to allow device receiver to make
952  *	changes to configuration when multicast or promiscuous is enabled.
953  *
954  * void (*ndo_set_rx_mode)(struct net_device *dev);
955  *	This function is called device changes address list filtering.
956  *	If driver handles unicast address filtering, it should set
957  *	IFF_UNICAST_FLT in its priv_flags.
958  *
959  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
960  *	This function  is called when the Media Access Control address
961  *	needs to be changed. If this interface is not defined, the
962  *	MAC address can not be changed.
963  *
964  * int (*ndo_validate_addr)(struct net_device *dev);
965  *	Test if Media Access Control address is valid for the device.
966  *
967  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
968  *	Called when a user requests an ioctl which can't be handled by
969  *	the generic interface code. If not defined ioctls return
970  *	not supported error code.
971  *
972  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
973  *	Used to set network devices bus interface parameters. This interface
974  *	is retained for legacy reasons; new devices should use the bus
975  *	interface (PCI) for low level management.
976  *
977  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
978  *	Called when a user wants to change the Maximum Transfer Unit
979  *	of a device.
980  *
981  * void (*ndo_tx_timeout)(struct net_device *dev);
982  *	Callback used when the transmitter has not made any progress
983  *	for dev->watchdog ticks.
984  *
985  * void (*ndo_get_stats64)(struct net_device *dev,
986  *                         struct rtnl_link_stats64 *storage);
987  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
988  *	Called when a user wants to get the network device usage
989  *	statistics. Drivers must do one of the following:
990  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
991  *	   rtnl_link_stats64 structure passed by the caller.
992  *	2. Define @ndo_get_stats to update a net_device_stats structure
993  *	   (which should normally be dev->stats) and return a pointer to
994  *	   it. The structure may be changed asynchronously only if each
995  *	   field is written atomically.
996  *	3. Update dev->stats asynchronously and atomically, and define
997  *	   neither operation.
998  *
999  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1000  *	Return true if this device supports offload stats of this attr_id.
1001  *
1002  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1003  *	void *attr_data)
1004  *	Get statistics for offload operations by attr_id. Write it into the
1005  *	attr_data pointer.
1006  *
1007  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1008  *	If device supports VLAN filtering this function is called when a
1009  *	VLAN id is registered.
1010  *
1011  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1012  *	If device supports VLAN filtering this function is called when a
1013  *	VLAN id is unregistered.
1014  *
1015  * void (*ndo_poll_controller)(struct net_device *dev);
1016  *
1017  *	SR-IOV management functions.
1018  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1019  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1020  *			  u8 qos, __be16 proto);
1021  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1022  *			  int max_tx_rate);
1023  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1024  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1025  * int (*ndo_get_vf_config)(struct net_device *dev,
1026  *			    int vf, struct ifla_vf_info *ivf);
1027  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1028  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1029  *			  struct nlattr *port[]);
1030  *
1031  *      Enable or disable the VF ability to query its RSS Redirection Table and
1032  *      Hash Key. This is needed since on some devices VF share this information
1033  *      with PF and querying it may introduce a theoretical security risk.
1034  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1035  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1036  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1037  *		       void *type_data);
1038  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1039  *	This is always called from the stack with the rtnl lock held and netif
1040  *	tx queues stopped. This allows the netdevice to perform queue
1041  *	management safely.
1042  *
1043  *	Fiber Channel over Ethernet (FCoE) offload functions.
1044  * int (*ndo_fcoe_enable)(struct net_device *dev);
1045  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1046  *	so the underlying device can perform whatever needed configuration or
1047  *	initialization to support acceleration of FCoE traffic.
1048  *
1049  * int (*ndo_fcoe_disable)(struct net_device *dev);
1050  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1051  *	so the underlying device can perform whatever needed clean-ups to
1052  *	stop supporting acceleration of FCoE traffic.
1053  *
1054  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1055  *			     struct scatterlist *sgl, unsigned int sgc);
1056  *	Called when the FCoE Initiator wants to initialize an I/O that
1057  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1058  *	perform necessary setup and returns 1 to indicate the device is set up
1059  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1060  *
1061  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1062  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1063  *	indicated by the FC exchange id 'xid', so the underlying device can
1064  *	clean up and reuse resources for later DDP requests.
1065  *
1066  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1067  *			      struct scatterlist *sgl, unsigned int sgc);
1068  *	Called when the FCoE Target wants to initialize an I/O that
1069  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1070  *	perform necessary setup and returns 1 to indicate the device is set up
1071  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1072  *
1073  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1074  *			       struct netdev_fcoe_hbainfo *hbainfo);
1075  *	Called when the FCoE Protocol stack wants information on the underlying
1076  *	device. This information is utilized by the FCoE protocol stack to
1077  *	register attributes with Fiber Channel management service as per the
1078  *	FC-GS Fabric Device Management Information(FDMI) specification.
1079  *
1080  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1081  *	Called when the underlying device wants to override default World Wide
1082  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1083  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1084  *	protocol stack to use.
1085  *
1086  *	RFS acceleration.
1087  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1088  *			    u16 rxq_index, u32 flow_id);
1089  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1090  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1091  *	Return the filter ID on success, or a negative error code.
1092  *
1093  *	Slave management functions (for bridge, bonding, etc).
1094  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1095  *	Called to make another netdev an underling.
1096  *
1097  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1098  *	Called to release previously enslaved netdev.
1099  *
1100  *      Feature/offload setting functions.
1101  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1102  *		netdev_features_t features);
1103  *	Adjusts the requested feature flags according to device-specific
1104  *	constraints, and returns the resulting flags. Must not modify
1105  *	the device state.
1106  *
1107  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1108  *	Called to update device configuration to new features. Passed
1109  *	feature set might be less than what was returned by ndo_fix_features()).
1110  *	Must return >0 or -errno if it changed dev->features itself.
1111  *
1112  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1113  *		      struct net_device *dev,
1114  *		      const unsigned char *addr, u16 vid, u16 flags)
1115  *	Adds an FDB entry to dev for addr.
1116  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1117  *		      struct net_device *dev,
1118  *		      const unsigned char *addr, u16 vid)
1119  *	Deletes the FDB entry from dev coresponding to addr.
1120  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1121  *		       struct net_device *dev, struct net_device *filter_dev,
1122  *		       int *idx)
1123  *	Used to add FDB entries to dump requests. Implementers should add
1124  *	entries to skb and update idx with the number of entries.
1125  *
1126  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1127  *			     u16 flags)
1128  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1129  *			     struct net_device *dev, u32 filter_mask,
1130  *			     int nlflags)
1131  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1132  *			     u16 flags);
1133  *
1134  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1135  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1136  *	which do not represent real hardware may define this to allow their
1137  *	userspace components to manage their virtual carrier state. Devices
1138  *	that determine carrier state from physical hardware properties (eg
1139  *	network cables) or protocol-dependent mechanisms (eg
1140  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1141  *
1142  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1143  *			       struct netdev_phys_item_id *ppid);
1144  *	Called to get ID of physical port of this device. If driver does
1145  *	not implement this, it is assumed that the hw is not able to have
1146  *	multiple net devices on single physical port.
1147  *
1148  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1149  *			      struct udp_tunnel_info *ti);
1150  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1151  *	address family that a UDP tunnel is listnening to. It is called only
1152  *	when a new port starts listening. The operation is protected by the
1153  *	RTNL.
1154  *
1155  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1156  *			      struct udp_tunnel_info *ti);
1157  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1158  *	address family that the UDP tunnel is not listening to anymore. The
1159  *	operation is protected by the RTNL.
1160  *
1161  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1162  *				 struct net_device *dev)
1163  *	Called by upper layer devices to accelerate switching or other
1164  *	station functionality into hardware. 'pdev is the lowerdev
1165  *	to use for the offload and 'dev' is the net device that will
1166  *	back the offload. Returns a pointer to the private structure
1167  *	the upper layer will maintain.
1168  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1169  *	Called by upper layer device to delete the station created
1170  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1171  *	the station and priv is the structure returned by the add
1172  *	operation.
1173  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1174  *			     int queue_index, u32 maxrate);
1175  *	Called when a user wants to set a max-rate limitation of specific
1176  *	TX queue.
1177  * int (*ndo_get_iflink)(const struct net_device *dev);
1178  *	Called to get the iflink value of this device.
1179  * void (*ndo_change_proto_down)(struct net_device *dev,
1180  *				 bool proto_down);
1181  *	This function is used to pass protocol port error state information
1182  *	to the switch driver. The switch driver can react to the proto_down
1183  *      by doing a phys down on the associated switch port.
1184  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1185  *	This function is used to get egress tunnel information for given skb.
1186  *	This is useful for retrieving outer tunnel header parameters while
1187  *	sampling packet.
1188  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1189  *	This function is used to specify the headroom that the skb must
1190  *	consider when allocation skb during packet reception. Setting
1191  *	appropriate rx headroom value allows avoiding skb head copy on
1192  *	forward. Setting a negative value resets the rx headroom to the
1193  *	default value.
1194  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1195  *	This function is used to set or query state related to XDP on the
1196  *	netdevice and manage BPF offload. See definition of
1197  *	enum bpf_netdev_command for details.
1198  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1199  *			u32 flags);
1200  *	This function is used to submit @n XDP packets for transmit on a
1201  *	netdevice. Returns number of frames successfully transmitted, frames
1202  *	that got dropped are freed/returned via xdp_return_frame().
1203  *	Returns negative number, means general error invoking ndo, meaning
1204  *	no frames were xmit'ed and core-caller will free all frames.
1205  */
1206 struct net_device_ops {
1207 	int			(*ndo_init)(struct net_device *dev);
1208 	void			(*ndo_uninit)(struct net_device *dev);
1209 	int			(*ndo_open)(struct net_device *dev);
1210 	int			(*ndo_stop)(struct net_device *dev);
1211 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1212 						  struct net_device *dev);
1213 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1214 						      struct net_device *dev,
1215 						      netdev_features_t features);
1216 	u16			(*ndo_select_queue)(struct net_device *dev,
1217 						    struct sk_buff *skb,
1218 						    void *accel_priv,
1219 						    select_queue_fallback_t fallback);
1220 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1221 						       int flags);
1222 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1223 	int			(*ndo_set_mac_address)(struct net_device *dev,
1224 						       void *addr);
1225 	int			(*ndo_validate_addr)(struct net_device *dev);
1226 	int			(*ndo_do_ioctl)(struct net_device *dev,
1227 					        struct ifreq *ifr, int cmd);
1228 	int			(*ndo_set_config)(struct net_device *dev,
1229 					          struct ifmap *map);
1230 	int			(*ndo_change_mtu)(struct net_device *dev,
1231 						  int new_mtu);
1232 	int			(*ndo_neigh_setup)(struct net_device *dev,
1233 						   struct neigh_parms *);
1234 	void			(*ndo_tx_timeout) (struct net_device *dev);
1235 
1236 	void			(*ndo_get_stats64)(struct net_device *dev,
1237 						   struct rtnl_link_stats64 *storage);
1238 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1239 	int			(*ndo_get_offload_stats)(int attr_id,
1240 							 const struct net_device *dev,
1241 							 void *attr_data);
1242 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1243 
1244 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1245 						       __be16 proto, u16 vid);
1246 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1247 						        __be16 proto, u16 vid);
1248 #ifdef CONFIG_NET_POLL_CONTROLLER
1249 	void                    (*ndo_poll_controller)(struct net_device *dev);
1250 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1251 						     struct netpoll_info *info);
1252 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1253 #endif
1254 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1255 						  int queue, u8 *mac);
1256 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1257 						   int queue, u16 vlan,
1258 						   u8 qos, __be16 proto);
1259 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1260 						   int vf, int min_tx_rate,
1261 						   int max_tx_rate);
1262 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1263 						       int vf, bool setting);
1264 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1265 						    int vf, bool setting);
1266 	int			(*ndo_get_vf_config)(struct net_device *dev,
1267 						     int vf,
1268 						     struct ifla_vf_info *ivf);
1269 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1270 							 int vf, int link_state);
1271 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1272 						    int vf,
1273 						    struct ifla_vf_stats
1274 						    *vf_stats);
1275 	int			(*ndo_set_vf_port)(struct net_device *dev,
1276 						   int vf,
1277 						   struct nlattr *port[]);
1278 	int			(*ndo_get_vf_port)(struct net_device *dev,
1279 						   int vf, struct sk_buff *skb);
1280 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1281 						   int vf, u64 guid,
1282 						   int guid_type);
1283 	int			(*ndo_set_vf_rss_query_en)(
1284 						   struct net_device *dev,
1285 						   int vf, bool setting);
1286 	int			(*ndo_setup_tc)(struct net_device *dev,
1287 						enum tc_setup_type type,
1288 						void *type_data);
1289 #if IS_ENABLED(CONFIG_FCOE)
1290 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1291 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1292 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1293 						      u16 xid,
1294 						      struct scatterlist *sgl,
1295 						      unsigned int sgc);
1296 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1297 						     u16 xid);
1298 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1299 						       u16 xid,
1300 						       struct scatterlist *sgl,
1301 						       unsigned int sgc);
1302 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1303 							struct netdev_fcoe_hbainfo *hbainfo);
1304 #endif
1305 
1306 #if IS_ENABLED(CONFIG_LIBFCOE)
1307 #define NETDEV_FCOE_WWNN 0
1308 #define NETDEV_FCOE_WWPN 1
1309 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1310 						    u64 *wwn, int type);
1311 #endif
1312 
1313 #ifdef CONFIG_RFS_ACCEL
1314 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1315 						     const struct sk_buff *skb,
1316 						     u16 rxq_index,
1317 						     u32 flow_id);
1318 #endif
1319 	int			(*ndo_add_slave)(struct net_device *dev,
1320 						 struct net_device *slave_dev,
1321 						 struct netlink_ext_ack *extack);
1322 	int			(*ndo_del_slave)(struct net_device *dev,
1323 						 struct net_device *slave_dev);
1324 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1325 						    netdev_features_t features);
1326 	int			(*ndo_set_features)(struct net_device *dev,
1327 						    netdev_features_t features);
1328 	int			(*ndo_neigh_construct)(struct net_device *dev,
1329 						       struct neighbour *n);
1330 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1331 						     struct neighbour *n);
1332 
1333 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1334 					       struct nlattr *tb[],
1335 					       struct net_device *dev,
1336 					       const unsigned char *addr,
1337 					       u16 vid,
1338 					       u16 flags);
1339 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1340 					       struct nlattr *tb[],
1341 					       struct net_device *dev,
1342 					       const unsigned char *addr,
1343 					       u16 vid);
1344 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1345 						struct netlink_callback *cb,
1346 						struct net_device *dev,
1347 						struct net_device *filter_dev,
1348 						int *idx);
1349 
1350 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1351 						      struct nlmsghdr *nlh,
1352 						      u16 flags);
1353 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1354 						      u32 pid, u32 seq,
1355 						      struct net_device *dev,
1356 						      u32 filter_mask,
1357 						      int nlflags);
1358 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1359 						      struct nlmsghdr *nlh,
1360 						      u16 flags);
1361 	int			(*ndo_change_carrier)(struct net_device *dev,
1362 						      bool new_carrier);
1363 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1364 							struct netdev_phys_item_id *ppid);
1365 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1366 							  char *name, size_t len);
1367 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1368 						      struct udp_tunnel_info *ti);
1369 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1370 						      struct udp_tunnel_info *ti);
1371 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1372 							struct net_device *dev);
1373 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1374 							void *priv);
1375 
1376 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1377 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1378 						      int queue_index,
1379 						      u32 maxrate);
1380 	int			(*ndo_get_iflink)(const struct net_device *dev);
1381 	int			(*ndo_change_proto_down)(struct net_device *dev,
1382 							 bool proto_down);
1383 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1384 						       struct sk_buff *skb);
1385 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1386 						       int needed_headroom);
1387 	int			(*ndo_bpf)(struct net_device *dev,
1388 					   struct netdev_bpf *bpf);
1389 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1390 						struct xdp_frame **xdp,
1391 						u32 flags);
1392 	int			(*ndo_xsk_async_xmit)(struct net_device *dev,
1393 						      u32 queue_id);
1394 };
1395 
1396 /**
1397  * enum net_device_priv_flags - &struct net_device priv_flags
1398  *
1399  * These are the &struct net_device, they are only set internally
1400  * by drivers and used in the kernel. These flags are invisible to
1401  * userspace; this means that the order of these flags can change
1402  * during any kernel release.
1403  *
1404  * You should have a pretty good reason to be extending these flags.
1405  *
1406  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1407  * @IFF_EBRIDGE: Ethernet bridging device
1408  * @IFF_BONDING: bonding master or slave
1409  * @IFF_ISATAP: ISATAP interface (RFC4214)
1410  * @IFF_WAN_HDLC: WAN HDLC device
1411  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1412  *	release skb->dst
1413  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1414  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1415  * @IFF_MACVLAN_PORT: device used as macvlan port
1416  * @IFF_BRIDGE_PORT: device used as bridge port
1417  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1418  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1419  * @IFF_UNICAST_FLT: Supports unicast filtering
1420  * @IFF_TEAM_PORT: device used as team port
1421  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1422  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1423  *	change when it's running
1424  * @IFF_MACVLAN: Macvlan device
1425  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1426  *	underlying stacked devices
1427  * @IFF_L3MDEV_MASTER: device is an L3 master device
1428  * @IFF_NO_QUEUE: device can run without qdisc attached
1429  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1430  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1431  * @IFF_TEAM: device is a team device
1432  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1433  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1434  *	entity (i.e. the master device for bridged veth)
1435  * @IFF_MACSEC: device is a MACsec device
1436  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1437  * @IFF_FAILOVER: device is a failover master device
1438  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1439  */
1440 enum netdev_priv_flags {
1441 	IFF_802_1Q_VLAN			= 1<<0,
1442 	IFF_EBRIDGE			= 1<<1,
1443 	IFF_BONDING			= 1<<2,
1444 	IFF_ISATAP			= 1<<3,
1445 	IFF_WAN_HDLC			= 1<<4,
1446 	IFF_XMIT_DST_RELEASE		= 1<<5,
1447 	IFF_DONT_BRIDGE			= 1<<6,
1448 	IFF_DISABLE_NETPOLL		= 1<<7,
1449 	IFF_MACVLAN_PORT		= 1<<8,
1450 	IFF_BRIDGE_PORT			= 1<<9,
1451 	IFF_OVS_DATAPATH		= 1<<10,
1452 	IFF_TX_SKB_SHARING		= 1<<11,
1453 	IFF_UNICAST_FLT			= 1<<12,
1454 	IFF_TEAM_PORT			= 1<<13,
1455 	IFF_SUPP_NOFCS			= 1<<14,
1456 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1457 	IFF_MACVLAN			= 1<<16,
1458 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1459 	IFF_L3MDEV_MASTER		= 1<<18,
1460 	IFF_NO_QUEUE			= 1<<19,
1461 	IFF_OPENVSWITCH			= 1<<20,
1462 	IFF_L3MDEV_SLAVE		= 1<<21,
1463 	IFF_TEAM			= 1<<22,
1464 	IFF_RXFH_CONFIGURED		= 1<<23,
1465 	IFF_PHONY_HEADROOM		= 1<<24,
1466 	IFF_MACSEC			= 1<<25,
1467 	IFF_NO_RX_HANDLER		= 1<<26,
1468 	IFF_FAILOVER			= 1<<27,
1469 	IFF_FAILOVER_SLAVE		= 1<<28,
1470 };
1471 
1472 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1473 #define IFF_EBRIDGE			IFF_EBRIDGE
1474 #define IFF_BONDING			IFF_BONDING
1475 #define IFF_ISATAP			IFF_ISATAP
1476 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1477 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1478 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1479 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1480 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1481 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1482 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1483 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1484 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1485 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1486 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1487 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1488 #define IFF_MACVLAN			IFF_MACVLAN
1489 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1490 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1491 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1492 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1493 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1494 #define IFF_TEAM			IFF_TEAM
1495 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1496 #define IFF_MACSEC			IFF_MACSEC
1497 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1498 #define IFF_FAILOVER			IFF_FAILOVER
1499 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1500 
1501 /**
1502  *	struct net_device - The DEVICE structure.
1503  *
1504  *	Actually, this whole structure is a big mistake.  It mixes I/O
1505  *	data with strictly "high-level" data, and it has to know about
1506  *	almost every data structure used in the INET module.
1507  *
1508  *	@name:	This is the first field of the "visible" part of this structure
1509  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1510  *		of the interface.
1511  *
1512  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1513  *	@ifalias:	SNMP alias
1514  *	@mem_end:	Shared memory end
1515  *	@mem_start:	Shared memory start
1516  *	@base_addr:	Device I/O address
1517  *	@irq:		Device IRQ number
1518  *
1519  *	@state:		Generic network queuing layer state, see netdev_state_t
1520  *	@dev_list:	The global list of network devices
1521  *	@napi_list:	List entry used for polling NAPI devices
1522  *	@unreg_list:	List entry  when we are unregistering the
1523  *			device; see the function unregister_netdev
1524  *	@close_list:	List entry used when we are closing the device
1525  *	@ptype_all:     Device-specific packet handlers for all protocols
1526  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1527  *
1528  *	@adj_list:	Directly linked devices, like slaves for bonding
1529  *	@features:	Currently active device features
1530  *	@hw_features:	User-changeable features
1531  *
1532  *	@wanted_features:	User-requested features
1533  *	@vlan_features:		Mask of features inheritable by VLAN devices
1534  *
1535  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1536  *				This field indicates what encapsulation
1537  *				offloads the hardware is capable of doing,
1538  *				and drivers will need to set them appropriately.
1539  *
1540  *	@mpls_features:	Mask of features inheritable by MPLS
1541  *
1542  *	@ifindex:	interface index
1543  *	@group:		The group the device belongs to
1544  *
1545  *	@stats:		Statistics struct, which was left as a legacy, use
1546  *			rtnl_link_stats64 instead
1547  *
1548  *	@rx_dropped:	Dropped packets by core network,
1549  *			do not use this in drivers
1550  *	@tx_dropped:	Dropped packets by core network,
1551  *			do not use this in drivers
1552  *	@rx_nohandler:	nohandler dropped packets by core network on
1553  *			inactive devices, do not use this in drivers
1554  *	@carrier_up_count:	Number of times the carrier has been up
1555  *	@carrier_down_count:	Number of times the carrier has been down
1556  *
1557  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1558  *				instead of ioctl,
1559  *				see <net/iw_handler.h> for details.
1560  *	@wireless_data:	Instance data managed by the core of wireless extensions
1561  *
1562  *	@netdev_ops:	Includes several pointers to callbacks,
1563  *			if one wants to override the ndo_*() functions
1564  *	@ethtool_ops:	Management operations
1565  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1566  *			discovery handling. Necessary for e.g. 6LoWPAN.
1567  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1568  *			of Layer 2 headers.
1569  *
1570  *	@flags:		Interface flags (a la BSD)
1571  *	@priv_flags:	Like 'flags' but invisible to userspace,
1572  *			see if.h for the definitions
1573  *	@gflags:	Global flags ( kept as legacy )
1574  *	@padded:	How much padding added by alloc_netdev()
1575  *	@operstate:	RFC2863 operstate
1576  *	@link_mode:	Mapping policy to operstate
1577  *	@if_port:	Selectable AUI, TP, ...
1578  *	@dma:		DMA channel
1579  *	@mtu:		Interface MTU value
1580  *	@min_mtu:	Interface Minimum MTU value
1581  *	@max_mtu:	Interface Maximum MTU value
1582  *	@type:		Interface hardware type
1583  *	@hard_header_len: Maximum hardware header length.
1584  *	@min_header_len:  Minimum hardware header length
1585  *
1586  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1587  *			  cases can this be guaranteed
1588  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1589  *			  cases can this be guaranteed. Some cases also use
1590  *			  LL_MAX_HEADER instead to allocate the skb
1591  *
1592  *	interface address info:
1593  *
1594  * 	@perm_addr:		Permanent hw address
1595  * 	@addr_assign_type:	Hw address assignment type
1596  * 	@addr_len:		Hardware address length
1597  *	@neigh_priv_len:	Used in neigh_alloc()
1598  * 	@dev_id:		Used to differentiate devices that share
1599  * 				the same link layer address
1600  * 	@dev_port:		Used to differentiate devices that share
1601  * 				the same function
1602  *	@addr_list_lock:	XXX: need comments on this one
1603  *	@uc_promisc:		Counter that indicates promiscuous mode
1604  *				has been enabled due to the need to listen to
1605  *				additional unicast addresses in a device that
1606  *				does not implement ndo_set_rx_mode()
1607  *	@uc:			unicast mac addresses
1608  *	@mc:			multicast mac addresses
1609  *	@dev_addrs:		list of device hw addresses
1610  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1611  *	@promiscuity:		Number of times the NIC is told to work in
1612  *				promiscuous mode; if it becomes 0 the NIC will
1613  *				exit promiscuous mode
1614  *	@allmulti:		Counter, enables or disables allmulticast mode
1615  *
1616  *	@vlan_info:	VLAN info
1617  *	@dsa_ptr:	dsa specific data
1618  *	@tipc_ptr:	TIPC specific data
1619  *	@atalk_ptr:	AppleTalk link
1620  *	@ip_ptr:	IPv4 specific data
1621  *	@dn_ptr:	DECnet specific data
1622  *	@ip6_ptr:	IPv6 specific data
1623  *	@ax25_ptr:	AX.25 specific data
1624  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1625  *
1626  *	@dev_addr:	Hw address (before bcast,
1627  *			because most packets are unicast)
1628  *
1629  *	@_rx:			Array of RX queues
1630  *	@num_rx_queues:		Number of RX queues
1631  *				allocated at register_netdev() time
1632  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1633  *
1634  *	@rx_handler:		handler for received packets
1635  *	@rx_handler_data: 	XXX: need comments on this one
1636  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1637  *				ingress processing
1638  *	@ingress_queue:		XXX: need comments on this one
1639  *	@broadcast:		hw bcast address
1640  *
1641  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1642  *			indexed by RX queue number. Assigned by driver.
1643  *			This must only be set if the ndo_rx_flow_steer
1644  *			operation is defined
1645  *	@index_hlist:		Device index hash chain
1646  *
1647  *	@_tx:			Array of TX queues
1648  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1649  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1650  *	@qdisc:			Root qdisc from userspace point of view
1651  *	@tx_queue_len:		Max frames per queue allowed
1652  *	@tx_global_lock: 	XXX: need comments on this one
1653  *
1654  *	@xps_maps:	XXX: need comments on this one
1655  *	@miniq_egress:		clsact qdisc specific data for
1656  *				egress processing
1657  *	@watchdog_timeo:	Represents the timeout that is used by
1658  *				the watchdog (see dev_watchdog())
1659  *	@watchdog_timer:	List of timers
1660  *
1661  *	@pcpu_refcnt:		Number of references to this device
1662  *	@todo_list:		Delayed register/unregister
1663  *	@link_watch_list:	XXX: need comments on this one
1664  *
1665  *	@reg_state:		Register/unregister state machine
1666  *	@dismantle:		Device is going to be freed
1667  *	@rtnl_link_state:	This enum represents the phases of creating
1668  *				a new link
1669  *
1670  *	@needs_free_netdev:	Should unregister perform free_netdev?
1671  *	@priv_destructor:	Called from unregister
1672  *	@npinfo:		XXX: need comments on this one
1673  * 	@nd_net:		Network namespace this network device is inside
1674  *
1675  * 	@ml_priv:	Mid-layer private
1676  * 	@lstats:	Loopback statistics
1677  * 	@tstats:	Tunnel statistics
1678  * 	@dstats:	Dummy statistics
1679  * 	@vstats:	Virtual ethernet statistics
1680  *
1681  *	@garp_port:	GARP
1682  *	@mrp_port:	MRP
1683  *
1684  *	@dev:		Class/net/name entry
1685  *	@sysfs_groups:	Space for optional device, statistics and wireless
1686  *			sysfs groups
1687  *
1688  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1689  *	@rtnl_link_ops:	Rtnl_link_ops
1690  *
1691  *	@gso_max_size:	Maximum size of generic segmentation offload
1692  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1693  *			NIC for GSO
1694  *
1695  *	@dcbnl_ops:	Data Center Bridging netlink ops
1696  *	@num_tc:	Number of traffic classes in the net device
1697  *	@tc_to_txq:	XXX: need comments on this one
1698  *	@prio_tc_map:	XXX: need comments on this one
1699  *
1700  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1701  *
1702  *	@priomap:	XXX: need comments on this one
1703  *	@phydev:	Physical device may attach itself
1704  *			for hardware timestamping
1705  *	@sfp_bus:	attached &struct sfp_bus structure.
1706  *
1707  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1708  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1709  *
1710  *	@proto_down:	protocol port state information can be sent to the
1711  *			switch driver and used to set the phys state of the
1712  *			switch port.
1713  *
1714  *	FIXME: cleanup struct net_device such that network protocol info
1715  *	moves out.
1716  */
1717 
1718 struct net_device {
1719 	char			name[IFNAMSIZ];
1720 	struct hlist_node	name_hlist;
1721 	struct dev_ifalias	__rcu *ifalias;
1722 	/*
1723 	 *	I/O specific fields
1724 	 *	FIXME: Merge these and struct ifmap into one
1725 	 */
1726 	unsigned long		mem_end;
1727 	unsigned long		mem_start;
1728 	unsigned long		base_addr;
1729 	int			irq;
1730 
1731 	/*
1732 	 *	Some hardware also needs these fields (state,dev_list,
1733 	 *	napi_list,unreg_list,close_list) but they are not
1734 	 *	part of the usual set specified in Space.c.
1735 	 */
1736 
1737 	unsigned long		state;
1738 
1739 	struct list_head	dev_list;
1740 	struct list_head	napi_list;
1741 	struct list_head	unreg_list;
1742 	struct list_head	close_list;
1743 	struct list_head	ptype_all;
1744 	struct list_head	ptype_specific;
1745 
1746 	struct {
1747 		struct list_head upper;
1748 		struct list_head lower;
1749 	} adj_list;
1750 
1751 	netdev_features_t	features;
1752 	netdev_features_t	hw_features;
1753 	netdev_features_t	wanted_features;
1754 	netdev_features_t	vlan_features;
1755 	netdev_features_t	hw_enc_features;
1756 	netdev_features_t	mpls_features;
1757 	netdev_features_t	gso_partial_features;
1758 
1759 	int			ifindex;
1760 	int			group;
1761 
1762 	struct net_device_stats	stats;
1763 
1764 	atomic_long_t		rx_dropped;
1765 	atomic_long_t		tx_dropped;
1766 	atomic_long_t		rx_nohandler;
1767 
1768 	/* Stats to monitor link on/off, flapping */
1769 	atomic_t		carrier_up_count;
1770 	atomic_t		carrier_down_count;
1771 
1772 #ifdef CONFIG_WIRELESS_EXT
1773 	const struct iw_handler_def *wireless_handlers;
1774 	struct iw_public_data	*wireless_data;
1775 #endif
1776 	const struct net_device_ops *netdev_ops;
1777 	const struct ethtool_ops *ethtool_ops;
1778 #ifdef CONFIG_NET_SWITCHDEV
1779 	const struct switchdev_ops *switchdev_ops;
1780 #endif
1781 #ifdef CONFIG_NET_L3_MASTER_DEV
1782 	const struct l3mdev_ops	*l3mdev_ops;
1783 #endif
1784 #if IS_ENABLED(CONFIG_IPV6)
1785 	const struct ndisc_ops *ndisc_ops;
1786 #endif
1787 
1788 #ifdef CONFIG_XFRM_OFFLOAD
1789 	const struct xfrmdev_ops *xfrmdev_ops;
1790 #endif
1791 
1792 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1793 	const struct tlsdev_ops *tlsdev_ops;
1794 #endif
1795 
1796 	const struct header_ops *header_ops;
1797 
1798 	unsigned int		flags;
1799 	unsigned int		priv_flags;
1800 
1801 	unsigned short		gflags;
1802 	unsigned short		padded;
1803 
1804 	unsigned char		operstate;
1805 	unsigned char		link_mode;
1806 
1807 	unsigned char		if_port;
1808 	unsigned char		dma;
1809 
1810 	unsigned int		mtu;
1811 	unsigned int		min_mtu;
1812 	unsigned int		max_mtu;
1813 	unsigned short		type;
1814 	unsigned short		hard_header_len;
1815 	unsigned char		min_header_len;
1816 
1817 	unsigned short		needed_headroom;
1818 	unsigned short		needed_tailroom;
1819 
1820 	/* Interface address info. */
1821 	unsigned char		perm_addr[MAX_ADDR_LEN];
1822 	unsigned char		addr_assign_type;
1823 	unsigned char		addr_len;
1824 	unsigned short		neigh_priv_len;
1825 	unsigned short          dev_id;
1826 	unsigned short          dev_port;
1827 	spinlock_t		addr_list_lock;
1828 	unsigned char		name_assign_type;
1829 	bool			uc_promisc;
1830 	struct netdev_hw_addr_list	uc;
1831 	struct netdev_hw_addr_list	mc;
1832 	struct netdev_hw_addr_list	dev_addrs;
1833 
1834 #ifdef CONFIG_SYSFS
1835 	struct kset		*queues_kset;
1836 #endif
1837 	unsigned int		promiscuity;
1838 	unsigned int		allmulti;
1839 
1840 
1841 	/* Protocol-specific pointers */
1842 
1843 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1844 	struct vlan_info __rcu	*vlan_info;
1845 #endif
1846 #if IS_ENABLED(CONFIG_NET_DSA)
1847 	struct dsa_port		*dsa_ptr;
1848 #endif
1849 #if IS_ENABLED(CONFIG_TIPC)
1850 	struct tipc_bearer __rcu *tipc_ptr;
1851 #endif
1852 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1853 	void 			*atalk_ptr;
1854 #endif
1855 	struct in_device __rcu	*ip_ptr;
1856 #if IS_ENABLED(CONFIG_DECNET)
1857 	struct dn_dev __rcu     *dn_ptr;
1858 #endif
1859 	struct inet6_dev __rcu	*ip6_ptr;
1860 #if IS_ENABLED(CONFIG_AX25)
1861 	void			*ax25_ptr;
1862 #endif
1863 	struct wireless_dev	*ieee80211_ptr;
1864 	struct wpan_dev		*ieee802154_ptr;
1865 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1866 	struct mpls_dev __rcu	*mpls_ptr;
1867 #endif
1868 
1869 /*
1870  * Cache lines mostly used on receive path (including eth_type_trans())
1871  */
1872 	/* Interface address info used in eth_type_trans() */
1873 	unsigned char		*dev_addr;
1874 
1875 	struct netdev_rx_queue	*_rx;
1876 	unsigned int		num_rx_queues;
1877 	unsigned int		real_num_rx_queues;
1878 
1879 	struct bpf_prog __rcu	*xdp_prog;
1880 	unsigned long		gro_flush_timeout;
1881 	rx_handler_func_t __rcu	*rx_handler;
1882 	void __rcu		*rx_handler_data;
1883 
1884 #ifdef CONFIG_NET_CLS_ACT
1885 	struct mini_Qdisc __rcu	*miniq_ingress;
1886 #endif
1887 	struct netdev_queue __rcu *ingress_queue;
1888 #ifdef CONFIG_NETFILTER_INGRESS
1889 	struct nf_hook_entries __rcu *nf_hooks_ingress;
1890 #endif
1891 
1892 	unsigned char		broadcast[MAX_ADDR_LEN];
1893 #ifdef CONFIG_RFS_ACCEL
1894 	struct cpu_rmap		*rx_cpu_rmap;
1895 #endif
1896 	struct hlist_node	index_hlist;
1897 
1898 /*
1899  * Cache lines mostly used on transmit path
1900  */
1901 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1902 	unsigned int		num_tx_queues;
1903 	unsigned int		real_num_tx_queues;
1904 	struct Qdisc		*qdisc;
1905 #ifdef CONFIG_NET_SCHED
1906 	DECLARE_HASHTABLE	(qdisc_hash, 4);
1907 #endif
1908 	unsigned int		tx_queue_len;
1909 	spinlock_t		tx_global_lock;
1910 	int			watchdog_timeo;
1911 
1912 #ifdef CONFIG_XPS
1913 	struct xps_dev_maps __rcu *xps_maps;
1914 #endif
1915 #ifdef CONFIG_NET_CLS_ACT
1916 	struct mini_Qdisc __rcu	*miniq_egress;
1917 #endif
1918 
1919 	/* These may be needed for future network-power-down code. */
1920 	struct timer_list	watchdog_timer;
1921 
1922 	int __percpu		*pcpu_refcnt;
1923 	struct list_head	todo_list;
1924 
1925 	struct list_head	link_watch_list;
1926 
1927 	enum { NETREG_UNINITIALIZED=0,
1928 	       NETREG_REGISTERED,	/* completed register_netdevice */
1929 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1930 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1931 	       NETREG_RELEASED,		/* called free_netdev */
1932 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1933 	} reg_state:8;
1934 
1935 	bool dismantle;
1936 
1937 	enum {
1938 		RTNL_LINK_INITIALIZED,
1939 		RTNL_LINK_INITIALIZING,
1940 	} rtnl_link_state:16;
1941 
1942 	bool needs_free_netdev;
1943 	void (*priv_destructor)(struct net_device *dev);
1944 
1945 #ifdef CONFIG_NETPOLL
1946 	struct netpoll_info __rcu	*npinfo;
1947 #endif
1948 
1949 	possible_net_t			nd_net;
1950 
1951 	/* mid-layer private */
1952 	union {
1953 		void					*ml_priv;
1954 		struct pcpu_lstats __percpu		*lstats;
1955 		struct pcpu_sw_netstats __percpu	*tstats;
1956 		struct pcpu_dstats __percpu		*dstats;
1957 		struct pcpu_vstats __percpu		*vstats;
1958 	};
1959 
1960 #if IS_ENABLED(CONFIG_GARP)
1961 	struct garp_port __rcu	*garp_port;
1962 #endif
1963 #if IS_ENABLED(CONFIG_MRP)
1964 	struct mrp_port __rcu	*mrp_port;
1965 #endif
1966 
1967 	struct device		dev;
1968 	const struct attribute_group *sysfs_groups[4];
1969 	const struct attribute_group *sysfs_rx_queue_group;
1970 
1971 	const struct rtnl_link_ops *rtnl_link_ops;
1972 
1973 	/* for setting kernel sock attribute on TCP connection setup */
1974 #define GSO_MAX_SIZE		65536
1975 	unsigned int		gso_max_size;
1976 #define GSO_MAX_SEGS		65535
1977 	u16			gso_max_segs;
1978 
1979 #ifdef CONFIG_DCB
1980 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1981 #endif
1982 	u8			num_tc;
1983 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
1984 	u8			prio_tc_map[TC_BITMASK + 1];
1985 
1986 #if IS_ENABLED(CONFIG_FCOE)
1987 	unsigned int		fcoe_ddp_xid;
1988 #endif
1989 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1990 	struct netprio_map __rcu *priomap;
1991 #endif
1992 	struct phy_device	*phydev;
1993 	struct sfp_bus		*sfp_bus;
1994 	struct lock_class_key	*qdisc_tx_busylock;
1995 	struct lock_class_key	*qdisc_running_key;
1996 	bool			proto_down;
1997 };
1998 #define to_net_dev(d) container_of(d, struct net_device, dev)
1999 
2000 static inline bool netif_elide_gro(const struct net_device *dev)
2001 {
2002 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2003 		return true;
2004 	return false;
2005 }
2006 
2007 #define	NETDEV_ALIGN		32
2008 
2009 static inline
2010 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2011 {
2012 	return dev->prio_tc_map[prio & TC_BITMASK];
2013 }
2014 
2015 static inline
2016 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2017 {
2018 	if (tc >= dev->num_tc)
2019 		return -EINVAL;
2020 
2021 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2022 	return 0;
2023 }
2024 
2025 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2026 void netdev_reset_tc(struct net_device *dev);
2027 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2028 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2029 
2030 static inline
2031 int netdev_get_num_tc(struct net_device *dev)
2032 {
2033 	return dev->num_tc;
2034 }
2035 
2036 static inline
2037 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2038 					 unsigned int index)
2039 {
2040 	return &dev->_tx[index];
2041 }
2042 
2043 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2044 						    const struct sk_buff *skb)
2045 {
2046 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2047 }
2048 
2049 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2050 					    void (*f)(struct net_device *,
2051 						      struct netdev_queue *,
2052 						      void *),
2053 					    void *arg)
2054 {
2055 	unsigned int i;
2056 
2057 	for (i = 0; i < dev->num_tx_queues; i++)
2058 		f(dev, &dev->_tx[i], arg);
2059 }
2060 
2061 #define netdev_lockdep_set_classes(dev)				\
2062 {								\
2063 	static struct lock_class_key qdisc_tx_busylock_key;	\
2064 	static struct lock_class_key qdisc_running_key;		\
2065 	static struct lock_class_key qdisc_xmit_lock_key;	\
2066 	static struct lock_class_key dev_addr_list_lock_key;	\
2067 	unsigned int i;						\
2068 								\
2069 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2070 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2071 	lockdep_set_class(&(dev)->addr_list_lock,		\
2072 			  &dev_addr_list_lock_key); 		\
2073 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2074 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2075 				  &qdisc_xmit_lock_key);	\
2076 }
2077 
2078 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2079 				    struct sk_buff *skb,
2080 				    void *accel_priv);
2081 
2082 /* returns the headroom that the master device needs to take in account
2083  * when forwarding to this dev
2084  */
2085 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2086 {
2087 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2088 }
2089 
2090 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2091 {
2092 	if (dev->netdev_ops->ndo_set_rx_headroom)
2093 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2094 }
2095 
2096 /* set the device rx headroom to the dev's default */
2097 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2098 {
2099 	netdev_set_rx_headroom(dev, -1);
2100 }
2101 
2102 /*
2103  * Net namespace inlines
2104  */
2105 static inline
2106 struct net *dev_net(const struct net_device *dev)
2107 {
2108 	return read_pnet(&dev->nd_net);
2109 }
2110 
2111 static inline
2112 void dev_net_set(struct net_device *dev, struct net *net)
2113 {
2114 	write_pnet(&dev->nd_net, net);
2115 }
2116 
2117 /**
2118  *	netdev_priv - access network device private data
2119  *	@dev: network device
2120  *
2121  * Get network device private data
2122  */
2123 static inline void *netdev_priv(const struct net_device *dev)
2124 {
2125 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2126 }
2127 
2128 /* Set the sysfs physical device reference for the network logical device
2129  * if set prior to registration will cause a symlink during initialization.
2130  */
2131 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2132 
2133 /* Set the sysfs device type for the network logical device to allow
2134  * fine-grained identification of different network device types. For
2135  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2136  */
2137 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2138 
2139 /* Default NAPI poll() weight
2140  * Device drivers are strongly advised to not use bigger value
2141  */
2142 #define NAPI_POLL_WEIGHT 64
2143 
2144 /**
2145  *	netif_napi_add - initialize a NAPI context
2146  *	@dev:  network device
2147  *	@napi: NAPI context
2148  *	@poll: polling function
2149  *	@weight: default weight
2150  *
2151  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2152  * *any* of the other NAPI-related functions.
2153  */
2154 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2155 		    int (*poll)(struct napi_struct *, int), int weight);
2156 
2157 /**
2158  *	netif_tx_napi_add - initialize a NAPI context
2159  *	@dev:  network device
2160  *	@napi: NAPI context
2161  *	@poll: polling function
2162  *	@weight: default weight
2163  *
2164  * This variant of netif_napi_add() should be used from drivers using NAPI
2165  * to exclusively poll a TX queue.
2166  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2167  */
2168 static inline void netif_tx_napi_add(struct net_device *dev,
2169 				     struct napi_struct *napi,
2170 				     int (*poll)(struct napi_struct *, int),
2171 				     int weight)
2172 {
2173 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2174 	netif_napi_add(dev, napi, poll, weight);
2175 }
2176 
2177 /**
2178  *  netif_napi_del - remove a NAPI context
2179  *  @napi: NAPI context
2180  *
2181  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2182  */
2183 void netif_napi_del(struct napi_struct *napi);
2184 
2185 struct napi_gro_cb {
2186 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2187 	void	*frag0;
2188 
2189 	/* Length of frag0. */
2190 	unsigned int frag0_len;
2191 
2192 	/* This indicates where we are processing relative to skb->data. */
2193 	int	data_offset;
2194 
2195 	/* This is non-zero if the packet cannot be merged with the new skb. */
2196 	u16	flush;
2197 
2198 	/* Save the IP ID here and check when we get to the transport layer */
2199 	u16	flush_id;
2200 
2201 	/* Number of segments aggregated. */
2202 	u16	count;
2203 
2204 	/* Start offset for remote checksum offload */
2205 	u16	gro_remcsum_start;
2206 
2207 	/* jiffies when first packet was created/queued */
2208 	unsigned long age;
2209 
2210 	/* Used in ipv6_gro_receive() and foo-over-udp */
2211 	u16	proto;
2212 
2213 	/* This is non-zero if the packet may be of the same flow. */
2214 	u8	same_flow:1;
2215 
2216 	/* Used in tunnel GRO receive */
2217 	u8	encap_mark:1;
2218 
2219 	/* GRO checksum is valid */
2220 	u8	csum_valid:1;
2221 
2222 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2223 	u8	csum_cnt:3;
2224 
2225 	/* Free the skb? */
2226 	u8	free:2;
2227 #define NAPI_GRO_FREE		  1
2228 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2229 
2230 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2231 	u8	is_ipv6:1;
2232 
2233 	/* Used in GRE, set in fou/gue_gro_receive */
2234 	u8	is_fou:1;
2235 
2236 	/* Used to determine if flush_id can be ignored */
2237 	u8	is_atomic:1;
2238 
2239 	/* Number of gro_receive callbacks this packet already went through */
2240 	u8 recursion_counter:4;
2241 
2242 	/* 1 bit hole */
2243 
2244 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2245 	__wsum	csum;
2246 
2247 	/* used in skb_gro_receive() slow path */
2248 	struct sk_buff *last;
2249 };
2250 
2251 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2252 
2253 #define GRO_RECURSION_LIMIT 15
2254 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2255 {
2256 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2257 }
2258 
2259 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2260 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2261 					       struct list_head *head,
2262 					       struct sk_buff *skb)
2263 {
2264 	if (unlikely(gro_recursion_inc_test(skb))) {
2265 		NAPI_GRO_CB(skb)->flush |= 1;
2266 		return NULL;
2267 	}
2268 
2269 	return cb(head, skb);
2270 }
2271 
2272 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2273 					    struct sk_buff *);
2274 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2275 						  struct sock *sk,
2276 						  struct list_head *head,
2277 						  struct sk_buff *skb)
2278 {
2279 	if (unlikely(gro_recursion_inc_test(skb))) {
2280 		NAPI_GRO_CB(skb)->flush |= 1;
2281 		return NULL;
2282 	}
2283 
2284 	return cb(sk, head, skb);
2285 }
2286 
2287 struct packet_type {
2288 	__be16			type;	/* This is really htons(ether_type). */
2289 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2290 	int			(*func) (struct sk_buff *,
2291 					 struct net_device *,
2292 					 struct packet_type *,
2293 					 struct net_device *);
2294 	bool			(*id_match)(struct packet_type *ptype,
2295 					    struct sock *sk);
2296 	void			*af_packet_priv;
2297 	struct list_head	list;
2298 };
2299 
2300 struct offload_callbacks {
2301 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2302 						netdev_features_t features);
2303 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2304 						struct sk_buff *skb);
2305 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2306 };
2307 
2308 struct packet_offload {
2309 	__be16			 type;	/* This is really htons(ether_type). */
2310 	u16			 priority;
2311 	struct offload_callbacks callbacks;
2312 	struct list_head	 list;
2313 };
2314 
2315 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2316 struct pcpu_sw_netstats {
2317 	u64     rx_packets;
2318 	u64     rx_bytes;
2319 	u64     tx_packets;
2320 	u64     tx_bytes;
2321 	struct u64_stats_sync   syncp;
2322 };
2323 
2324 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2325 ({									\
2326 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2327 	if (pcpu_stats)	{						\
2328 		int __cpu;						\
2329 		for_each_possible_cpu(__cpu) {				\
2330 			typeof(type) *stat;				\
2331 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2332 			u64_stats_init(&stat->syncp);			\
2333 		}							\
2334 	}								\
2335 	pcpu_stats;							\
2336 })
2337 
2338 #define netdev_alloc_pcpu_stats(type)					\
2339 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2340 
2341 enum netdev_lag_tx_type {
2342 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2343 	NETDEV_LAG_TX_TYPE_RANDOM,
2344 	NETDEV_LAG_TX_TYPE_BROADCAST,
2345 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2346 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2347 	NETDEV_LAG_TX_TYPE_HASH,
2348 };
2349 
2350 enum netdev_lag_hash {
2351 	NETDEV_LAG_HASH_NONE,
2352 	NETDEV_LAG_HASH_L2,
2353 	NETDEV_LAG_HASH_L34,
2354 	NETDEV_LAG_HASH_L23,
2355 	NETDEV_LAG_HASH_E23,
2356 	NETDEV_LAG_HASH_E34,
2357 	NETDEV_LAG_HASH_UNKNOWN,
2358 };
2359 
2360 struct netdev_lag_upper_info {
2361 	enum netdev_lag_tx_type tx_type;
2362 	enum netdev_lag_hash hash_type;
2363 };
2364 
2365 struct netdev_lag_lower_state_info {
2366 	u8 link_up : 1,
2367 	   tx_enabled : 1;
2368 };
2369 
2370 #include <linux/notifier.h>
2371 
2372 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2373  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2374  * adding new types.
2375  */
2376 enum netdev_cmd {
2377 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2378 	NETDEV_DOWN,
2379 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2380 				   detected a hardware crash and restarted
2381 				   - we can use this eg to kick tcp sessions
2382 				   once done */
2383 	NETDEV_CHANGE,		/* Notify device state change */
2384 	NETDEV_REGISTER,
2385 	NETDEV_UNREGISTER,
2386 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2387 	NETDEV_CHANGEADDR,
2388 	NETDEV_GOING_DOWN,
2389 	NETDEV_CHANGENAME,
2390 	NETDEV_FEAT_CHANGE,
2391 	NETDEV_BONDING_FAILOVER,
2392 	NETDEV_PRE_UP,
2393 	NETDEV_PRE_TYPE_CHANGE,
2394 	NETDEV_POST_TYPE_CHANGE,
2395 	NETDEV_POST_INIT,
2396 	NETDEV_RELEASE,
2397 	NETDEV_NOTIFY_PEERS,
2398 	NETDEV_JOIN,
2399 	NETDEV_CHANGEUPPER,
2400 	NETDEV_RESEND_IGMP,
2401 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2402 	NETDEV_CHANGEINFODATA,
2403 	NETDEV_BONDING_INFO,
2404 	NETDEV_PRECHANGEUPPER,
2405 	NETDEV_CHANGELOWERSTATE,
2406 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2407 	NETDEV_UDP_TUNNEL_DROP_INFO,
2408 	NETDEV_CHANGE_TX_QUEUE_LEN,
2409 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2410 	NETDEV_CVLAN_FILTER_DROP_INFO,
2411 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2412 	NETDEV_SVLAN_FILTER_DROP_INFO,
2413 };
2414 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2415 
2416 int register_netdevice_notifier(struct notifier_block *nb);
2417 int unregister_netdevice_notifier(struct notifier_block *nb);
2418 
2419 struct netdev_notifier_info {
2420 	struct net_device	*dev;
2421 	struct netlink_ext_ack	*extack;
2422 };
2423 
2424 struct netdev_notifier_change_info {
2425 	struct netdev_notifier_info info; /* must be first */
2426 	unsigned int flags_changed;
2427 };
2428 
2429 struct netdev_notifier_changeupper_info {
2430 	struct netdev_notifier_info info; /* must be first */
2431 	struct net_device *upper_dev; /* new upper dev */
2432 	bool master; /* is upper dev master */
2433 	bool linking; /* is the notification for link or unlink */
2434 	void *upper_info; /* upper dev info */
2435 };
2436 
2437 struct netdev_notifier_changelowerstate_info {
2438 	struct netdev_notifier_info info; /* must be first */
2439 	void *lower_state_info; /* is lower dev state */
2440 };
2441 
2442 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2443 					     struct net_device *dev)
2444 {
2445 	info->dev = dev;
2446 	info->extack = NULL;
2447 }
2448 
2449 static inline struct net_device *
2450 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2451 {
2452 	return info->dev;
2453 }
2454 
2455 static inline struct netlink_ext_ack *
2456 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2457 {
2458 	return info->extack;
2459 }
2460 
2461 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2462 
2463 
2464 extern rwlock_t				dev_base_lock;		/* Device list lock */
2465 
2466 #define for_each_netdev(net, d)		\
2467 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2468 #define for_each_netdev_reverse(net, d)	\
2469 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2470 #define for_each_netdev_rcu(net, d)		\
2471 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2472 #define for_each_netdev_safe(net, d, n)	\
2473 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2474 #define for_each_netdev_continue(net, d)		\
2475 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2476 #define for_each_netdev_continue_rcu(net, d)		\
2477 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2478 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2479 		for_each_netdev_rcu(&init_net, slave)	\
2480 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2481 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2482 
2483 static inline struct net_device *next_net_device(struct net_device *dev)
2484 {
2485 	struct list_head *lh;
2486 	struct net *net;
2487 
2488 	net = dev_net(dev);
2489 	lh = dev->dev_list.next;
2490 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2491 }
2492 
2493 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2494 {
2495 	struct list_head *lh;
2496 	struct net *net;
2497 
2498 	net = dev_net(dev);
2499 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2500 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2501 }
2502 
2503 static inline struct net_device *first_net_device(struct net *net)
2504 {
2505 	return list_empty(&net->dev_base_head) ? NULL :
2506 		net_device_entry(net->dev_base_head.next);
2507 }
2508 
2509 static inline struct net_device *first_net_device_rcu(struct net *net)
2510 {
2511 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2512 
2513 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2514 }
2515 
2516 int netdev_boot_setup_check(struct net_device *dev);
2517 unsigned long netdev_boot_base(const char *prefix, int unit);
2518 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2519 				       const char *hwaddr);
2520 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2521 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2522 void dev_add_pack(struct packet_type *pt);
2523 void dev_remove_pack(struct packet_type *pt);
2524 void __dev_remove_pack(struct packet_type *pt);
2525 void dev_add_offload(struct packet_offload *po);
2526 void dev_remove_offload(struct packet_offload *po);
2527 
2528 int dev_get_iflink(const struct net_device *dev);
2529 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2530 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2531 				      unsigned short mask);
2532 struct net_device *dev_get_by_name(struct net *net, const char *name);
2533 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2534 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2535 int dev_alloc_name(struct net_device *dev, const char *name);
2536 int dev_open(struct net_device *dev);
2537 void dev_close(struct net_device *dev);
2538 void dev_close_many(struct list_head *head, bool unlink);
2539 void dev_disable_lro(struct net_device *dev);
2540 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2541 int dev_queue_xmit(struct sk_buff *skb);
2542 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2543 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2544 int register_netdevice(struct net_device *dev);
2545 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2546 void unregister_netdevice_many(struct list_head *head);
2547 static inline void unregister_netdevice(struct net_device *dev)
2548 {
2549 	unregister_netdevice_queue(dev, NULL);
2550 }
2551 
2552 int netdev_refcnt_read(const struct net_device *dev);
2553 void free_netdev(struct net_device *dev);
2554 void netdev_freemem(struct net_device *dev);
2555 void synchronize_net(void);
2556 int init_dummy_netdev(struct net_device *dev);
2557 
2558 DECLARE_PER_CPU(int, xmit_recursion);
2559 #define XMIT_RECURSION_LIMIT	10
2560 
2561 static inline int dev_recursion_level(void)
2562 {
2563 	return this_cpu_read(xmit_recursion);
2564 }
2565 
2566 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2567 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2568 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2569 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2570 int netdev_get_name(struct net *net, char *name, int ifindex);
2571 int dev_restart(struct net_device *dev);
2572 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2573 
2574 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2575 {
2576 	return NAPI_GRO_CB(skb)->data_offset;
2577 }
2578 
2579 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2580 {
2581 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2582 }
2583 
2584 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2585 {
2586 	NAPI_GRO_CB(skb)->data_offset += len;
2587 }
2588 
2589 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2590 					unsigned int offset)
2591 {
2592 	return NAPI_GRO_CB(skb)->frag0 + offset;
2593 }
2594 
2595 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2596 {
2597 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2598 }
2599 
2600 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2601 {
2602 	NAPI_GRO_CB(skb)->frag0 = NULL;
2603 	NAPI_GRO_CB(skb)->frag0_len = 0;
2604 }
2605 
2606 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2607 					unsigned int offset)
2608 {
2609 	if (!pskb_may_pull(skb, hlen))
2610 		return NULL;
2611 
2612 	skb_gro_frag0_invalidate(skb);
2613 	return skb->data + offset;
2614 }
2615 
2616 static inline void *skb_gro_network_header(struct sk_buff *skb)
2617 {
2618 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2619 	       skb_network_offset(skb);
2620 }
2621 
2622 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2623 					const void *start, unsigned int len)
2624 {
2625 	if (NAPI_GRO_CB(skb)->csum_valid)
2626 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2627 						  csum_partial(start, len, 0));
2628 }
2629 
2630 /* GRO checksum functions. These are logical equivalents of the normal
2631  * checksum functions (in skbuff.h) except that they operate on the GRO
2632  * offsets and fields in sk_buff.
2633  */
2634 
2635 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2636 
2637 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2638 {
2639 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2640 }
2641 
2642 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2643 						      bool zero_okay,
2644 						      __sum16 check)
2645 {
2646 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2647 		skb_checksum_start_offset(skb) <
2648 		 skb_gro_offset(skb)) &&
2649 		!skb_at_gro_remcsum_start(skb) &&
2650 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2651 		(!zero_okay || check));
2652 }
2653 
2654 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2655 							   __wsum psum)
2656 {
2657 	if (NAPI_GRO_CB(skb)->csum_valid &&
2658 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2659 		return 0;
2660 
2661 	NAPI_GRO_CB(skb)->csum = psum;
2662 
2663 	return __skb_gro_checksum_complete(skb);
2664 }
2665 
2666 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2667 {
2668 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2669 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2670 		NAPI_GRO_CB(skb)->csum_cnt--;
2671 	} else {
2672 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2673 		 * verified a new top level checksum or an encapsulated one
2674 		 * during GRO. This saves work if we fallback to normal path.
2675 		 */
2676 		__skb_incr_checksum_unnecessary(skb);
2677 	}
2678 }
2679 
2680 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2681 				    compute_pseudo)			\
2682 ({									\
2683 	__sum16 __ret = 0;						\
2684 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2685 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2686 				compute_pseudo(skb, proto));		\
2687 	if (!__ret)							\
2688 		skb_gro_incr_csum_unnecessary(skb);			\
2689 	__ret;								\
2690 })
2691 
2692 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2693 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2694 
2695 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2696 					     compute_pseudo)		\
2697 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2698 
2699 #define skb_gro_checksum_simple_validate(skb)				\
2700 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2701 
2702 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2703 {
2704 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2705 		!NAPI_GRO_CB(skb)->csum_valid);
2706 }
2707 
2708 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2709 					      __sum16 check, __wsum pseudo)
2710 {
2711 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2712 	NAPI_GRO_CB(skb)->csum_valid = 1;
2713 }
2714 
2715 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2716 do {									\
2717 	if (__skb_gro_checksum_convert_check(skb))			\
2718 		__skb_gro_checksum_convert(skb, check,			\
2719 					   compute_pseudo(skb, proto));	\
2720 } while (0)
2721 
2722 struct gro_remcsum {
2723 	int offset;
2724 	__wsum delta;
2725 };
2726 
2727 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2728 {
2729 	grc->offset = 0;
2730 	grc->delta = 0;
2731 }
2732 
2733 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2734 					    unsigned int off, size_t hdrlen,
2735 					    int start, int offset,
2736 					    struct gro_remcsum *grc,
2737 					    bool nopartial)
2738 {
2739 	__wsum delta;
2740 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2741 
2742 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2743 
2744 	if (!nopartial) {
2745 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2746 		return ptr;
2747 	}
2748 
2749 	ptr = skb_gro_header_fast(skb, off);
2750 	if (skb_gro_header_hard(skb, off + plen)) {
2751 		ptr = skb_gro_header_slow(skb, off + plen, off);
2752 		if (!ptr)
2753 			return NULL;
2754 	}
2755 
2756 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2757 			       start, offset);
2758 
2759 	/* Adjust skb->csum since we changed the packet */
2760 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2761 
2762 	grc->offset = off + hdrlen + offset;
2763 	grc->delta = delta;
2764 
2765 	return ptr;
2766 }
2767 
2768 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2769 					   struct gro_remcsum *grc)
2770 {
2771 	void *ptr;
2772 	size_t plen = grc->offset + sizeof(u16);
2773 
2774 	if (!grc->delta)
2775 		return;
2776 
2777 	ptr = skb_gro_header_fast(skb, grc->offset);
2778 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2779 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2780 		if (!ptr)
2781 			return;
2782 	}
2783 
2784 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2785 }
2786 
2787 #ifdef CONFIG_XFRM_OFFLOAD
2788 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2789 {
2790 	if (PTR_ERR(pp) != -EINPROGRESS)
2791 		NAPI_GRO_CB(skb)->flush |= flush;
2792 }
2793 #else
2794 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2795 {
2796 	NAPI_GRO_CB(skb)->flush |= flush;
2797 }
2798 #endif
2799 
2800 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2801 				  unsigned short type,
2802 				  const void *daddr, const void *saddr,
2803 				  unsigned int len)
2804 {
2805 	if (!dev->header_ops || !dev->header_ops->create)
2806 		return 0;
2807 
2808 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2809 }
2810 
2811 static inline int dev_parse_header(const struct sk_buff *skb,
2812 				   unsigned char *haddr)
2813 {
2814 	const struct net_device *dev = skb->dev;
2815 
2816 	if (!dev->header_ops || !dev->header_ops->parse)
2817 		return 0;
2818 	return dev->header_ops->parse(skb, haddr);
2819 }
2820 
2821 /* ll_header must have at least hard_header_len allocated */
2822 static inline bool dev_validate_header(const struct net_device *dev,
2823 				       char *ll_header, int len)
2824 {
2825 	if (likely(len >= dev->hard_header_len))
2826 		return true;
2827 	if (len < dev->min_header_len)
2828 		return false;
2829 
2830 	if (capable(CAP_SYS_RAWIO)) {
2831 		memset(ll_header + len, 0, dev->hard_header_len - len);
2832 		return true;
2833 	}
2834 
2835 	if (dev->header_ops && dev->header_ops->validate)
2836 		return dev->header_ops->validate(ll_header, len);
2837 
2838 	return false;
2839 }
2840 
2841 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
2842 			   int len, int size);
2843 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2844 static inline int unregister_gifconf(unsigned int family)
2845 {
2846 	return register_gifconf(family, NULL);
2847 }
2848 
2849 #ifdef CONFIG_NET_FLOW_LIMIT
2850 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2851 struct sd_flow_limit {
2852 	u64			count;
2853 	unsigned int		num_buckets;
2854 	unsigned int		history_head;
2855 	u16			history[FLOW_LIMIT_HISTORY];
2856 	u8			buckets[];
2857 };
2858 
2859 extern int netdev_flow_limit_table_len;
2860 #endif /* CONFIG_NET_FLOW_LIMIT */
2861 
2862 /*
2863  * Incoming packets are placed on per-CPU queues
2864  */
2865 struct softnet_data {
2866 	struct list_head	poll_list;
2867 	struct sk_buff_head	process_queue;
2868 
2869 	/* stats */
2870 	unsigned int		processed;
2871 	unsigned int		time_squeeze;
2872 	unsigned int		received_rps;
2873 #ifdef CONFIG_RPS
2874 	struct softnet_data	*rps_ipi_list;
2875 #endif
2876 #ifdef CONFIG_NET_FLOW_LIMIT
2877 	struct sd_flow_limit __rcu *flow_limit;
2878 #endif
2879 	struct Qdisc		*output_queue;
2880 	struct Qdisc		**output_queue_tailp;
2881 	struct sk_buff		*completion_queue;
2882 #ifdef CONFIG_XFRM_OFFLOAD
2883 	struct sk_buff_head	xfrm_backlog;
2884 #endif
2885 #ifdef CONFIG_RPS
2886 	/* input_queue_head should be written by cpu owning this struct,
2887 	 * and only read by other cpus. Worth using a cache line.
2888 	 */
2889 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
2890 
2891 	/* Elements below can be accessed between CPUs for RPS/RFS */
2892 	call_single_data_t	csd ____cacheline_aligned_in_smp;
2893 	struct softnet_data	*rps_ipi_next;
2894 	unsigned int		cpu;
2895 	unsigned int		input_queue_tail;
2896 #endif
2897 	unsigned int		dropped;
2898 	struct sk_buff_head	input_pkt_queue;
2899 	struct napi_struct	backlog;
2900 
2901 };
2902 
2903 static inline void input_queue_head_incr(struct softnet_data *sd)
2904 {
2905 #ifdef CONFIG_RPS
2906 	sd->input_queue_head++;
2907 #endif
2908 }
2909 
2910 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2911 					      unsigned int *qtail)
2912 {
2913 #ifdef CONFIG_RPS
2914 	*qtail = ++sd->input_queue_tail;
2915 #endif
2916 }
2917 
2918 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2919 
2920 void __netif_schedule(struct Qdisc *q);
2921 void netif_schedule_queue(struct netdev_queue *txq);
2922 
2923 static inline void netif_tx_schedule_all(struct net_device *dev)
2924 {
2925 	unsigned int i;
2926 
2927 	for (i = 0; i < dev->num_tx_queues; i++)
2928 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2929 }
2930 
2931 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2932 {
2933 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2934 }
2935 
2936 /**
2937  *	netif_start_queue - allow transmit
2938  *	@dev: network device
2939  *
2940  *	Allow upper layers to call the device hard_start_xmit routine.
2941  */
2942 static inline void netif_start_queue(struct net_device *dev)
2943 {
2944 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2945 }
2946 
2947 static inline void netif_tx_start_all_queues(struct net_device *dev)
2948 {
2949 	unsigned int i;
2950 
2951 	for (i = 0; i < dev->num_tx_queues; i++) {
2952 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2953 		netif_tx_start_queue(txq);
2954 	}
2955 }
2956 
2957 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2958 
2959 /**
2960  *	netif_wake_queue - restart transmit
2961  *	@dev: network device
2962  *
2963  *	Allow upper layers to call the device hard_start_xmit routine.
2964  *	Used for flow control when transmit resources are available.
2965  */
2966 static inline void netif_wake_queue(struct net_device *dev)
2967 {
2968 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2969 }
2970 
2971 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2972 {
2973 	unsigned int i;
2974 
2975 	for (i = 0; i < dev->num_tx_queues; i++) {
2976 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2977 		netif_tx_wake_queue(txq);
2978 	}
2979 }
2980 
2981 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2982 {
2983 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2984 }
2985 
2986 /**
2987  *	netif_stop_queue - stop transmitted packets
2988  *	@dev: network device
2989  *
2990  *	Stop upper layers calling the device hard_start_xmit routine.
2991  *	Used for flow control when transmit resources are unavailable.
2992  */
2993 static inline void netif_stop_queue(struct net_device *dev)
2994 {
2995 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2996 }
2997 
2998 void netif_tx_stop_all_queues(struct net_device *dev);
2999 
3000 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3001 {
3002 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3003 }
3004 
3005 /**
3006  *	netif_queue_stopped - test if transmit queue is flowblocked
3007  *	@dev: network device
3008  *
3009  *	Test if transmit queue on device is currently unable to send.
3010  */
3011 static inline bool netif_queue_stopped(const struct net_device *dev)
3012 {
3013 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3014 }
3015 
3016 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3017 {
3018 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3019 }
3020 
3021 static inline bool
3022 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3023 {
3024 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3025 }
3026 
3027 static inline bool
3028 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3029 {
3030 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3031 }
3032 
3033 /**
3034  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3035  *	@dev_queue: pointer to transmit queue
3036  *
3037  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3038  * to give appropriate hint to the CPU.
3039  */
3040 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3041 {
3042 #ifdef CONFIG_BQL
3043 	prefetchw(&dev_queue->dql.num_queued);
3044 #endif
3045 }
3046 
3047 /**
3048  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3049  *	@dev_queue: pointer to transmit queue
3050  *
3051  * BQL enabled drivers might use this helper in their TX completion path,
3052  * to give appropriate hint to the CPU.
3053  */
3054 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3055 {
3056 #ifdef CONFIG_BQL
3057 	prefetchw(&dev_queue->dql.limit);
3058 #endif
3059 }
3060 
3061 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3062 					unsigned int bytes)
3063 {
3064 #ifdef CONFIG_BQL
3065 	dql_queued(&dev_queue->dql, bytes);
3066 
3067 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3068 		return;
3069 
3070 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3071 
3072 	/*
3073 	 * The XOFF flag must be set before checking the dql_avail below,
3074 	 * because in netdev_tx_completed_queue we update the dql_completed
3075 	 * before checking the XOFF flag.
3076 	 */
3077 	smp_mb();
3078 
3079 	/* check again in case another CPU has just made room avail */
3080 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3081 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3082 #endif
3083 }
3084 
3085 /**
3086  * 	netdev_sent_queue - report the number of bytes queued to hardware
3087  * 	@dev: network device
3088  * 	@bytes: number of bytes queued to the hardware device queue
3089  *
3090  * 	Report the number of bytes queued for sending/completion to the network
3091  * 	device hardware queue. @bytes should be a good approximation and should
3092  * 	exactly match netdev_completed_queue() @bytes
3093  */
3094 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3095 {
3096 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3097 }
3098 
3099 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3100 					     unsigned int pkts, unsigned int bytes)
3101 {
3102 #ifdef CONFIG_BQL
3103 	if (unlikely(!bytes))
3104 		return;
3105 
3106 	dql_completed(&dev_queue->dql, bytes);
3107 
3108 	/*
3109 	 * Without the memory barrier there is a small possiblity that
3110 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3111 	 * be stopped forever
3112 	 */
3113 	smp_mb();
3114 
3115 	if (dql_avail(&dev_queue->dql) < 0)
3116 		return;
3117 
3118 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3119 		netif_schedule_queue(dev_queue);
3120 #endif
3121 }
3122 
3123 /**
3124  * 	netdev_completed_queue - report bytes and packets completed by device
3125  * 	@dev: network device
3126  * 	@pkts: actual number of packets sent over the medium
3127  * 	@bytes: actual number of bytes sent over the medium
3128  *
3129  * 	Report the number of bytes and packets transmitted by the network device
3130  * 	hardware queue over the physical medium, @bytes must exactly match the
3131  * 	@bytes amount passed to netdev_sent_queue()
3132  */
3133 static inline void netdev_completed_queue(struct net_device *dev,
3134 					  unsigned int pkts, unsigned int bytes)
3135 {
3136 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3137 }
3138 
3139 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3140 {
3141 #ifdef CONFIG_BQL
3142 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3143 	dql_reset(&q->dql);
3144 #endif
3145 }
3146 
3147 /**
3148  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3149  * 	@dev_queue: network device
3150  *
3151  * 	Reset the bytes and packet count of a network device and clear the
3152  * 	software flow control OFF bit for this network device
3153  */
3154 static inline void netdev_reset_queue(struct net_device *dev_queue)
3155 {
3156 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3157 }
3158 
3159 /**
3160  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3161  * 	@dev: network device
3162  * 	@queue_index: given tx queue index
3163  *
3164  * 	Returns 0 if given tx queue index >= number of device tx queues,
3165  * 	otherwise returns the originally passed tx queue index.
3166  */
3167 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3168 {
3169 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3170 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3171 				     dev->name, queue_index,
3172 				     dev->real_num_tx_queues);
3173 		return 0;
3174 	}
3175 
3176 	return queue_index;
3177 }
3178 
3179 /**
3180  *	netif_running - test if up
3181  *	@dev: network device
3182  *
3183  *	Test if the device has been brought up.
3184  */
3185 static inline bool netif_running(const struct net_device *dev)
3186 {
3187 	return test_bit(__LINK_STATE_START, &dev->state);
3188 }
3189 
3190 /*
3191  * Routines to manage the subqueues on a device.  We only need start,
3192  * stop, and a check if it's stopped.  All other device management is
3193  * done at the overall netdevice level.
3194  * Also test the device if we're multiqueue.
3195  */
3196 
3197 /**
3198  *	netif_start_subqueue - allow sending packets on subqueue
3199  *	@dev: network device
3200  *	@queue_index: sub queue index
3201  *
3202  * Start individual transmit queue of a device with multiple transmit queues.
3203  */
3204 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3205 {
3206 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3207 
3208 	netif_tx_start_queue(txq);
3209 }
3210 
3211 /**
3212  *	netif_stop_subqueue - stop sending packets on subqueue
3213  *	@dev: network device
3214  *	@queue_index: sub queue index
3215  *
3216  * Stop individual transmit queue of a device with multiple transmit queues.
3217  */
3218 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3219 {
3220 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3221 	netif_tx_stop_queue(txq);
3222 }
3223 
3224 /**
3225  *	netif_subqueue_stopped - test status of subqueue
3226  *	@dev: network device
3227  *	@queue_index: sub queue index
3228  *
3229  * Check individual transmit queue of a device with multiple transmit queues.
3230  */
3231 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3232 					    u16 queue_index)
3233 {
3234 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3235 
3236 	return netif_tx_queue_stopped(txq);
3237 }
3238 
3239 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3240 					  struct sk_buff *skb)
3241 {
3242 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3243 }
3244 
3245 /**
3246  *	netif_wake_subqueue - allow sending packets on subqueue
3247  *	@dev: network device
3248  *	@queue_index: sub queue index
3249  *
3250  * Resume individual transmit queue of a device with multiple transmit queues.
3251  */
3252 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3253 {
3254 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3255 
3256 	netif_tx_wake_queue(txq);
3257 }
3258 
3259 #ifdef CONFIG_XPS
3260 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3261 			u16 index);
3262 #else
3263 static inline int netif_set_xps_queue(struct net_device *dev,
3264 				      const struct cpumask *mask,
3265 				      u16 index)
3266 {
3267 	return 0;
3268 }
3269 #endif
3270 
3271 /**
3272  *	netif_is_multiqueue - test if device has multiple transmit queues
3273  *	@dev: network device
3274  *
3275  * Check if device has multiple transmit queues
3276  */
3277 static inline bool netif_is_multiqueue(const struct net_device *dev)
3278 {
3279 	return dev->num_tx_queues > 1;
3280 }
3281 
3282 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3283 
3284 #ifdef CONFIG_SYSFS
3285 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3286 #else
3287 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3288 						unsigned int rxq)
3289 {
3290 	return 0;
3291 }
3292 #endif
3293 
3294 static inline struct netdev_rx_queue *
3295 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3296 {
3297 	return dev->_rx + rxq;
3298 }
3299 
3300 #ifdef CONFIG_SYSFS
3301 static inline unsigned int get_netdev_rx_queue_index(
3302 		struct netdev_rx_queue *queue)
3303 {
3304 	struct net_device *dev = queue->dev;
3305 	int index = queue - dev->_rx;
3306 
3307 	BUG_ON(index >= dev->num_rx_queues);
3308 	return index;
3309 }
3310 #endif
3311 
3312 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3313 int netif_get_num_default_rss_queues(void);
3314 
3315 enum skb_free_reason {
3316 	SKB_REASON_CONSUMED,
3317 	SKB_REASON_DROPPED,
3318 };
3319 
3320 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3321 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3322 
3323 /*
3324  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3325  * interrupt context or with hardware interrupts being disabled.
3326  * (in_irq() || irqs_disabled())
3327  *
3328  * We provide four helpers that can be used in following contexts :
3329  *
3330  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3331  *  replacing kfree_skb(skb)
3332  *
3333  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3334  *  Typically used in place of consume_skb(skb) in TX completion path
3335  *
3336  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3337  *  replacing kfree_skb(skb)
3338  *
3339  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3340  *  and consumed a packet. Used in place of consume_skb(skb)
3341  */
3342 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3343 {
3344 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3345 }
3346 
3347 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3348 {
3349 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3350 }
3351 
3352 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3353 {
3354 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3355 }
3356 
3357 static inline void dev_consume_skb_any(struct sk_buff *skb)
3358 {
3359 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3360 }
3361 
3362 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3363 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3364 int netif_rx(struct sk_buff *skb);
3365 int netif_rx_ni(struct sk_buff *skb);
3366 int netif_receive_skb(struct sk_buff *skb);
3367 int netif_receive_skb_core(struct sk_buff *skb);
3368 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3369 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3370 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3371 gro_result_t napi_gro_frags(struct napi_struct *napi);
3372 struct packet_offload *gro_find_receive_by_type(__be16 type);
3373 struct packet_offload *gro_find_complete_by_type(__be16 type);
3374 
3375 static inline void napi_free_frags(struct napi_struct *napi)
3376 {
3377 	kfree_skb(napi->skb);
3378 	napi->skb = NULL;
3379 }
3380 
3381 bool netdev_is_rx_handler_busy(struct net_device *dev);
3382 int netdev_rx_handler_register(struct net_device *dev,
3383 			       rx_handler_func_t *rx_handler,
3384 			       void *rx_handler_data);
3385 void netdev_rx_handler_unregister(struct net_device *dev);
3386 
3387 bool dev_valid_name(const char *name);
3388 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3389 		bool *need_copyout);
3390 int dev_ifconf(struct net *net, struct ifconf *, int);
3391 int dev_ethtool(struct net *net, struct ifreq *);
3392 unsigned int dev_get_flags(const struct net_device *);
3393 int __dev_change_flags(struct net_device *, unsigned int flags);
3394 int dev_change_flags(struct net_device *, unsigned int);
3395 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3396 			unsigned int gchanges);
3397 int dev_change_name(struct net_device *, const char *);
3398 int dev_set_alias(struct net_device *, const char *, size_t);
3399 int dev_get_alias(const struct net_device *, char *, size_t);
3400 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3401 int __dev_set_mtu(struct net_device *, int);
3402 int dev_set_mtu(struct net_device *, int);
3403 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3404 void dev_set_group(struct net_device *, int);
3405 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3406 int dev_change_carrier(struct net_device *, bool new_carrier);
3407 int dev_get_phys_port_id(struct net_device *dev,
3408 			 struct netdev_phys_item_id *ppid);
3409 int dev_get_phys_port_name(struct net_device *dev,
3410 			   char *name, size_t len);
3411 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3412 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3413 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3414 				    struct netdev_queue *txq, int *ret);
3415 
3416 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3417 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3418 		      int fd, u32 flags);
3419 void __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3420 		     struct netdev_bpf *xdp);
3421 
3422 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3423 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3424 bool is_skb_forwardable(const struct net_device *dev,
3425 			const struct sk_buff *skb);
3426 
3427 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3428 					       struct sk_buff *skb)
3429 {
3430 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3431 	    unlikely(!is_skb_forwardable(dev, skb))) {
3432 		atomic_long_inc(&dev->rx_dropped);
3433 		kfree_skb(skb);
3434 		return NET_RX_DROP;
3435 	}
3436 
3437 	skb_scrub_packet(skb, true);
3438 	skb->priority = 0;
3439 	return 0;
3440 }
3441 
3442 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3443 
3444 extern int		netdev_budget;
3445 extern unsigned int	netdev_budget_usecs;
3446 
3447 /* Called by rtnetlink.c:rtnl_unlock() */
3448 void netdev_run_todo(void);
3449 
3450 /**
3451  *	dev_put - release reference to device
3452  *	@dev: network device
3453  *
3454  * Release reference to device to allow it to be freed.
3455  */
3456 static inline void dev_put(struct net_device *dev)
3457 {
3458 	this_cpu_dec(*dev->pcpu_refcnt);
3459 }
3460 
3461 /**
3462  *	dev_hold - get reference to device
3463  *	@dev: network device
3464  *
3465  * Hold reference to device to keep it from being freed.
3466  */
3467 static inline void dev_hold(struct net_device *dev)
3468 {
3469 	this_cpu_inc(*dev->pcpu_refcnt);
3470 }
3471 
3472 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3473  * and _off may be called from IRQ context, but it is caller
3474  * who is responsible for serialization of these calls.
3475  *
3476  * The name carrier is inappropriate, these functions should really be
3477  * called netif_lowerlayer_*() because they represent the state of any
3478  * kind of lower layer not just hardware media.
3479  */
3480 
3481 void linkwatch_init_dev(struct net_device *dev);
3482 void linkwatch_fire_event(struct net_device *dev);
3483 void linkwatch_forget_dev(struct net_device *dev);
3484 
3485 /**
3486  *	netif_carrier_ok - test if carrier present
3487  *	@dev: network device
3488  *
3489  * Check if carrier is present on device
3490  */
3491 static inline bool netif_carrier_ok(const struct net_device *dev)
3492 {
3493 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3494 }
3495 
3496 unsigned long dev_trans_start(struct net_device *dev);
3497 
3498 void __netdev_watchdog_up(struct net_device *dev);
3499 
3500 void netif_carrier_on(struct net_device *dev);
3501 
3502 void netif_carrier_off(struct net_device *dev);
3503 
3504 /**
3505  *	netif_dormant_on - mark device as dormant.
3506  *	@dev: network device
3507  *
3508  * Mark device as dormant (as per RFC2863).
3509  *
3510  * The dormant state indicates that the relevant interface is not
3511  * actually in a condition to pass packets (i.e., it is not 'up') but is
3512  * in a "pending" state, waiting for some external event.  For "on-
3513  * demand" interfaces, this new state identifies the situation where the
3514  * interface is waiting for events to place it in the up state.
3515  */
3516 static inline void netif_dormant_on(struct net_device *dev)
3517 {
3518 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3519 		linkwatch_fire_event(dev);
3520 }
3521 
3522 /**
3523  *	netif_dormant_off - set device as not dormant.
3524  *	@dev: network device
3525  *
3526  * Device is not in dormant state.
3527  */
3528 static inline void netif_dormant_off(struct net_device *dev)
3529 {
3530 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3531 		linkwatch_fire_event(dev);
3532 }
3533 
3534 /**
3535  *	netif_dormant - test if device is dormant
3536  *	@dev: network device
3537  *
3538  * Check if device is dormant.
3539  */
3540 static inline bool netif_dormant(const struct net_device *dev)
3541 {
3542 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3543 }
3544 
3545 
3546 /**
3547  *	netif_oper_up - test if device is operational
3548  *	@dev: network device
3549  *
3550  * Check if carrier is operational
3551  */
3552 static inline bool netif_oper_up(const struct net_device *dev)
3553 {
3554 	return (dev->operstate == IF_OPER_UP ||
3555 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3556 }
3557 
3558 /**
3559  *	netif_device_present - is device available or removed
3560  *	@dev: network device
3561  *
3562  * Check if device has not been removed from system.
3563  */
3564 static inline bool netif_device_present(struct net_device *dev)
3565 {
3566 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3567 }
3568 
3569 void netif_device_detach(struct net_device *dev);
3570 
3571 void netif_device_attach(struct net_device *dev);
3572 
3573 /*
3574  * Network interface message level settings
3575  */
3576 
3577 enum {
3578 	NETIF_MSG_DRV		= 0x0001,
3579 	NETIF_MSG_PROBE		= 0x0002,
3580 	NETIF_MSG_LINK		= 0x0004,
3581 	NETIF_MSG_TIMER		= 0x0008,
3582 	NETIF_MSG_IFDOWN	= 0x0010,
3583 	NETIF_MSG_IFUP		= 0x0020,
3584 	NETIF_MSG_RX_ERR	= 0x0040,
3585 	NETIF_MSG_TX_ERR	= 0x0080,
3586 	NETIF_MSG_TX_QUEUED	= 0x0100,
3587 	NETIF_MSG_INTR		= 0x0200,
3588 	NETIF_MSG_TX_DONE	= 0x0400,
3589 	NETIF_MSG_RX_STATUS	= 0x0800,
3590 	NETIF_MSG_PKTDATA	= 0x1000,
3591 	NETIF_MSG_HW		= 0x2000,
3592 	NETIF_MSG_WOL		= 0x4000,
3593 };
3594 
3595 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3596 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3597 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3598 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3599 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3600 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3601 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3602 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3603 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3604 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3605 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3606 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3607 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3608 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3609 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3610 
3611 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3612 {
3613 	/* use default */
3614 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3615 		return default_msg_enable_bits;
3616 	if (debug_value == 0)	/* no output */
3617 		return 0;
3618 	/* set low N bits */
3619 	return (1 << debug_value) - 1;
3620 }
3621 
3622 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3623 {
3624 	spin_lock(&txq->_xmit_lock);
3625 	txq->xmit_lock_owner = cpu;
3626 }
3627 
3628 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3629 {
3630 	__acquire(&txq->_xmit_lock);
3631 	return true;
3632 }
3633 
3634 static inline void __netif_tx_release(struct netdev_queue *txq)
3635 {
3636 	__release(&txq->_xmit_lock);
3637 }
3638 
3639 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3640 {
3641 	spin_lock_bh(&txq->_xmit_lock);
3642 	txq->xmit_lock_owner = smp_processor_id();
3643 }
3644 
3645 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3646 {
3647 	bool ok = spin_trylock(&txq->_xmit_lock);
3648 	if (likely(ok))
3649 		txq->xmit_lock_owner = smp_processor_id();
3650 	return ok;
3651 }
3652 
3653 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3654 {
3655 	txq->xmit_lock_owner = -1;
3656 	spin_unlock(&txq->_xmit_lock);
3657 }
3658 
3659 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3660 {
3661 	txq->xmit_lock_owner = -1;
3662 	spin_unlock_bh(&txq->_xmit_lock);
3663 }
3664 
3665 static inline void txq_trans_update(struct netdev_queue *txq)
3666 {
3667 	if (txq->xmit_lock_owner != -1)
3668 		txq->trans_start = jiffies;
3669 }
3670 
3671 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3672 static inline void netif_trans_update(struct net_device *dev)
3673 {
3674 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3675 
3676 	if (txq->trans_start != jiffies)
3677 		txq->trans_start = jiffies;
3678 }
3679 
3680 /**
3681  *	netif_tx_lock - grab network device transmit lock
3682  *	@dev: network device
3683  *
3684  * Get network device transmit lock
3685  */
3686 static inline void netif_tx_lock(struct net_device *dev)
3687 {
3688 	unsigned int i;
3689 	int cpu;
3690 
3691 	spin_lock(&dev->tx_global_lock);
3692 	cpu = smp_processor_id();
3693 	for (i = 0; i < dev->num_tx_queues; i++) {
3694 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3695 
3696 		/* We are the only thread of execution doing a
3697 		 * freeze, but we have to grab the _xmit_lock in
3698 		 * order to synchronize with threads which are in
3699 		 * the ->hard_start_xmit() handler and already
3700 		 * checked the frozen bit.
3701 		 */
3702 		__netif_tx_lock(txq, cpu);
3703 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3704 		__netif_tx_unlock(txq);
3705 	}
3706 }
3707 
3708 static inline void netif_tx_lock_bh(struct net_device *dev)
3709 {
3710 	local_bh_disable();
3711 	netif_tx_lock(dev);
3712 }
3713 
3714 static inline void netif_tx_unlock(struct net_device *dev)
3715 {
3716 	unsigned int i;
3717 
3718 	for (i = 0; i < dev->num_tx_queues; i++) {
3719 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3720 
3721 		/* No need to grab the _xmit_lock here.  If the
3722 		 * queue is not stopped for another reason, we
3723 		 * force a schedule.
3724 		 */
3725 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3726 		netif_schedule_queue(txq);
3727 	}
3728 	spin_unlock(&dev->tx_global_lock);
3729 }
3730 
3731 static inline void netif_tx_unlock_bh(struct net_device *dev)
3732 {
3733 	netif_tx_unlock(dev);
3734 	local_bh_enable();
3735 }
3736 
3737 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3738 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3739 		__netif_tx_lock(txq, cpu);		\
3740 	} else {					\
3741 		__netif_tx_acquire(txq);		\
3742 	}						\
3743 }
3744 
3745 #define HARD_TX_TRYLOCK(dev, txq)			\
3746 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3747 		__netif_tx_trylock(txq) :		\
3748 		__netif_tx_acquire(txq))
3749 
3750 #define HARD_TX_UNLOCK(dev, txq) {			\
3751 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3752 		__netif_tx_unlock(txq);			\
3753 	} else {					\
3754 		__netif_tx_release(txq);		\
3755 	}						\
3756 }
3757 
3758 static inline void netif_tx_disable(struct net_device *dev)
3759 {
3760 	unsigned int i;
3761 	int cpu;
3762 
3763 	local_bh_disable();
3764 	cpu = smp_processor_id();
3765 	for (i = 0; i < dev->num_tx_queues; i++) {
3766 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3767 
3768 		__netif_tx_lock(txq, cpu);
3769 		netif_tx_stop_queue(txq);
3770 		__netif_tx_unlock(txq);
3771 	}
3772 	local_bh_enable();
3773 }
3774 
3775 static inline void netif_addr_lock(struct net_device *dev)
3776 {
3777 	spin_lock(&dev->addr_list_lock);
3778 }
3779 
3780 static inline void netif_addr_lock_nested(struct net_device *dev)
3781 {
3782 	int subclass = SINGLE_DEPTH_NESTING;
3783 
3784 	if (dev->netdev_ops->ndo_get_lock_subclass)
3785 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3786 
3787 	spin_lock_nested(&dev->addr_list_lock, subclass);
3788 }
3789 
3790 static inline void netif_addr_lock_bh(struct net_device *dev)
3791 {
3792 	spin_lock_bh(&dev->addr_list_lock);
3793 }
3794 
3795 static inline void netif_addr_unlock(struct net_device *dev)
3796 {
3797 	spin_unlock(&dev->addr_list_lock);
3798 }
3799 
3800 static inline void netif_addr_unlock_bh(struct net_device *dev)
3801 {
3802 	spin_unlock_bh(&dev->addr_list_lock);
3803 }
3804 
3805 /*
3806  * dev_addrs walker. Should be used only for read access. Call with
3807  * rcu_read_lock held.
3808  */
3809 #define for_each_dev_addr(dev, ha) \
3810 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3811 
3812 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3813 
3814 void ether_setup(struct net_device *dev);
3815 
3816 /* Support for loadable net-drivers */
3817 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3818 				    unsigned char name_assign_type,
3819 				    void (*setup)(struct net_device *),
3820 				    unsigned int txqs, unsigned int rxqs);
3821 int dev_get_valid_name(struct net *net, struct net_device *dev,
3822 		       const char *name);
3823 
3824 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3825 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3826 
3827 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3828 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3829 			 count)
3830 
3831 int register_netdev(struct net_device *dev);
3832 void unregister_netdev(struct net_device *dev);
3833 
3834 /* General hardware address lists handling functions */
3835 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3836 		   struct netdev_hw_addr_list *from_list, int addr_len);
3837 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3838 		      struct netdev_hw_addr_list *from_list, int addr_len);
3839 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3840 		       struct net_device *dev,
3841 		       int (*sync)(struct net_device *, const unsigned char *),
3842 		       int (*unsync)(struct net_device *,
3843 				     const unsigned char *));
3844 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3845 			  struct net_device *dev,
3846 			  int (*unsync)(struct net_device *,
3847 					const unsigned char *));
3848 void __hw_addr_init(struct netdev_hw_addr_list *list);
3849 
3850 /* Functions used for device addresses handling */
3851 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3852 		 unsigned char addr_type);
3853 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3854 		 unsigned char addr_type);
3855 void dev_addr_flush(struct net_device *dev);
3856 int dev_addr_init(struct net_device *dev);
3857 
3858 /* Functions used for unicast addresses handling */
3859 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3860 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3861 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3862 int dev_uc_sync(struct net_device *to, struct net_device *from);
3863 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3864 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3865 void dev_uc_flush(struct net_device *dev);
3866 void dev_uc_init(struct net_device *dev);
3867 
3868 /**
3869  *  __dev_uc_sync - Synchonize device's unicast list
3870  *  @dev:  device to sync
3871  *  @sync: function to call if address should be added
3872  *  @unsync: function to call if address should be removed
3873  *
3874  *  Add newly added addresses to the interface, and release
3875  *  addresses that have been deleted.
3876  */
3877 static inline int __dev_uc_sync(struct net_device *dev,
3878 				int (*sync)(struct net_device *,
3879 					    const unsigned char *),
3880 				int (*unsync)(struct net_device *,
3881 					      const unsigned char *))
3882 {
3883 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3884 }
3885 
3886 /**
3887  *  __dev_uc_unsync - Remove synchronized addresses from device
3888  *  @dev:  device to sync
3889  *  @unsync: function to call if address should be removed
3890  *
3891  *  Remove all addresses that were added to the device by dev_uc_sync().
3892  */
3893 static inline void __dev_uc_unsync(struct net_device *dev,
3894 				   int (*unsync)(struct net_device *,
3895 						 const unsigned char *))
3896 {
3897 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3898 }
3899 
3900 /* Functions used for multicast addresses handling */
3901 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3902 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3903 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3904 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3905 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3906 int dev_mc_sync(struct net_device *to, struct net_device *from);
3907 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3908 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3909 void dev_mc_flush(struct net_device *dev);
3910 void dev_mc_init(struct net_device *dev);
3911 
3912 /**
3913  *  __dev_mc_sync - Synchonize device's multicast list
3914  *  @dev:  device to sync
3915  *  @sync: function to call if address should be added
3916  *  @unsync: function to call if address should be removed
3917  *
3918  *  Add newly added addresses to the interface, and release
3919  *  addresses that have been deleted.
3920  */
3921 static inline int __dev_mc_sync(struct net_device *dev,
3922 				int (*sync)(struct net_device *,
3923 					    const unsigned char *),
3924 				int (*unsync)(struct net_device *,
3925 					      const unsigned char *))
3926 {
3927 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3928 }
3929 
3930 /**
3931  *  __dev_mc_unsync - Remove synchronized addresses from device
3932  *  @dev:  device to sync
3933  *  @unsync: function to call if address should be removed
3934  *
3935  *  Remove all addresses that were added to the device by dev_mc_sync().
3936  */
3937 static inline void __dev_mc_unsync(struct net_device *dev,
3938 				   int (*unsync)(struct net_device *,
3939 						 const unsigned char *))
3940 {
3941 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3942 }
3943 
3944 /* Functions used for secondary unicast and multicast support */
3945 void dev_set_rx_mode(struct net_device *dev);
3946 void __dev_set_rx_mode(struct net_device *dev);
3947 int dev_set_promiscuity(struct net_device *dev, int inc);
3948 int dev_set_allmulti(struct net_device *dev, int inc);
3949 void netdev_state_change(struct net_device *dev);
3950 void netdev_notify_peers(struct net_device *dev);
3951 void netdev_features_change(struct net_device *dev);
3952 /* Load a device via the kmod */
3953 void dev_load(struct net *net, const char *name);
3954 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3955 					struct rtnl_link_stats64 *storage);
3956 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3957 			     const struct net_device_stats *netdev_stats);
3958 
3959 extern int		netdev_max_backlog;
3960 extern int		netdev_tstamp_prequeue;
3961 extern int		weight_p;
3962 extern int		dev_weight_rx_bias;
3963 extern int		dev_weight_tx_bias;
3964 extern int		dev_rx_weight;
3965 extern int		dev_tx_weight;
3966 
3967 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3968 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3969 						     struct list_head **iter);
3970 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3971 						     struct list_head **iter);
3972 
3973 /* iterate through upper list, must be called under RCU read lock */
3974 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3975 	for (iter = &(dev)->adj_list.upper, \
3976 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3977 	     updev; \
3978 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3979 
3980 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
3981 				  int (*fn)(struct net_device *upper_dev,
3982 					    void *data),
3983 				  void *data);
3984 
3985 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
3986 				  struct net_device *upper_dev);
3987 
3988 bool netdev_has_any_upper_dev(struct net_device *dev);
3989 
3990 void *netdev_lower_get_next_private(struct net_device *dev,
3991 				    struct list_head **iter);
3992 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3993 					struct list_head **iter);
3994 
3995 #define netdev_for_each_lower_private(dev, priv, iter) \
3996 	for (iter = (dev)->adj_list.lower.next, \
3997 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3998 	     priv; \
3999 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4000 
4001 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4002 	for (iter = &(dev)->adj_list.lower, \
4003 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4004 	     priv; \
4005 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4006 
4007 void *netdev_lower_get_next(struct net_device *dev,
4008 				struct list_head **iter);
4009 
4010 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4011 	for (iter = (dev)->adj_list.lower.next, \
4012 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4013 	     ldev; \
4014 	     ldev = netdev_lower_get_next(dev, &(iter)))
4015 
4016 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
4017 					     struct list_head **iter);
4018 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
4019 						 struct list_head **iter);
4020 
4021 int netdev_walk_all_lower_dev(struct net_device *dev,
4022 			      int (*fn)(struct net_device *lower_dev,
4023 					void *data),
4024 			      void *data);
4025 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4026 				  int (*fn)(struct net_device *lower_dev,
4027 					    void *data),
4028 				  void *data);
4029 
4030 void *netdev_adjacent_get_private(struct list_head *adj_list);
4031 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4032 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4033 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4034 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4035 			  struct netlink_ext_ack *extack);
4036 int netdev_master_upper_dev_link(struct net_device *dev,
4037 				 struct net_device *upper_dev,
4038 				 void *upper_priv, void *upper_info,
4039 				 struct netlink_ext_ack *extack);
4040 void netdev_upper_dev_unlink(struct net_device *dev,
4041 			     struct net_device *upper_dev);
4042 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4043 void *netdev_lower_dev_get_private(struct net_device *dev,
4044 				   struct net_device *lower_dev);
4045 void netdev_lower_state_changed(struct net_device *lower_dev,
4046 				void *lower_state_info);
4047 
4048 /* RSS keys are 40 or 52 bytes long */
4049 #define NETDEV_RSS_KEY_LEN 52
4050 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4051 void netdev_rss_key_fill(void *buffer, size_t len);
4052 
4053 int dev_get_nest_level(struct net_device *dev);
4054 int skb_checksum_help(struct sk_buff *skb);
4055 int skb_crc32c_csum_help(struct sk_buff *skb);
4056 int skb_csum_hwoffload_help(struct sk_buff *skb,
4057 			    const netdev_features_t features);
4058 
4059 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4060 				  netdev_features_t features, bool tx_path);
4061 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4062 				    netdev_features_t features);
4063 
4064 struct netdev_bonding_info {
4065 	ifslave	slave;
4066 	ifbond	master;
4067 };
4068 
4069 struct netdev_notifier_bonding_info {
4070 	struct netdev_notifier_info info; /* must be first */
4071 	struct netdev_bonding_info  bonding_info;
4072 };
4073 
4074 void netdev_bonding_info_change(struct net_device *dev,
4075 				struct netdev_bonding_info *bonding_info);
4076 
4077 static inline
4078 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4079 {
4080 	return __skb_gso_segment(skb, features, true);
4081 }
4082 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4083 
4084 static inline bool can_checksum_protocol(netdev_features_t features,
4085 					 __be16 protocol)
4086 {
4087 	if (protocol == htons(ETH_P_FCOE))
4088 		return !!(features & NETIF_F_FCOE_CRC);
4089 
4090 	/* Assume this is an IP checksum (not SCTP CRC) */
4091 
4092 	if (features & NETIF_F_HW_CSUM) {
4093 		/* Can checksum everything */
4094 		return true;
4095 	}
4096 
4097 	switch (protocol) {
4098 	case htons(ETH_P_IP):
4099 		return !!(features & NETIF_F_IP_CSUM);
4100 	case htons(ETH_P_IPV6):
4101 		return !!(features & NETIF_F_IPV6_CSUM);
4102 	default:
4103 		return false;
4104 	}
4105 }
4106 
4107 #ifdef CONFIG_BUG
4108 void netdev_rx_csum_fault(struct net_device *dev);
4109 #else
4110 static inline void netdev_rx_csum_fault(struct net_device *dev)
4111 {
4112 }
4113 #endif
4114 /* rx skb timestamps */
4115 void net_enable_timestamp(void);
4116 void net_disable_timestamp(void);
4117 
4118 #ifdef CONFIG_PROC_FS
4119 int __init dev_proc_init(void);
4120 #else
4121 #define dev_proc_init() 0
4122 #endif
4123 
4124 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4125 					      struct sk_buff *skb, struct net_device *dev,
4126 					      bool more)
4127 {
4128 	skb->xmit_more = more ? 1 : 0;
4129 	return ops->ndo_start_xmit(skb, dev);
4130 }
4131 
4132 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4133 					    struct netdev_queue *txq, bool more)
4134 {
4135 	const struct net_device_ops *ops = dev->netdev_ops;
4136 	int rc;
4137 
4138 	rc = __netdev_start_xmit(ops, skb, dev, more);
4139 	if (rc == NETDEV_TX_OK)
4140 		txq_trans_update(txq);
4141 
4142 	return rc;
4143 }
4144 
4145 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4146 				const void *ns);
4147 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4148 				 const void *ns);
4149 
4150 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4151 {
4152 	return netdev_class_create_file_ns(class_attr, NULL);
4153 }
4154 
4155 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4156 {
4157 	netdev_class_remove_file_ns(class_attr, NULL);
4158 }
4159 
4160 extern const struct kobj_ns_type_operations net_ns_type_operations;
4161 
4162 const char *netdev_drivername(const struct net_device *dev);
4163 
4164 void linkwatch_run_queue(void);
4165 
4166 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4167 							  netdev_features_t f2)
4168 {
4169 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4170 		if (f1 & NETIF_F_HW_CSUM)
4171 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4172 		else
4173 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4174 	}
4175 
4176 	return f1 & f2;
4177 }
4178 
4179 static inline netdev_features_t netdev_get_wanted_features(
4180 	struct net_device *dev)
4181 {
4182 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4183 }
4184 netdev_features_t netdev_increment_features(netdev_features_t all,
4185 	netdev_features_t one, netdev_features_t mask);
4186 
4187 /* Allow TSO being used on stacked device :
4188  * Performing the GSO segmentation before last device
4189  * is a performance improvement.
4190  */
4191 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4192 							netdev_features_t mask)
4193 {
4194 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4195 }
4196 
4197 int __netdev_update_features(struct net_device *dev);
4198 void netdev_update_features(struct net_device *dev);
4199 void netdev_change_features(struct net_device *dev);
4200 
4201 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4202 					struct net_device *dev);
4203 
4204 netdev_features_t passthru_features_check(struct sk_buff *skb,
4205 					  struct net_device *dev,
4206 					  netdev_features_t features);
4207 netdev_features_t netif_skb_features(struct sk_buff *skb);
4208 
4209 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4210 {
4211 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4212 
4213 	/* check flags correspondence */
4214 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4215 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4216 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4217 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4218 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4219 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4220 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4221 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4222 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4223 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4224 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4225 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4226 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4227 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4228 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4229 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4230 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4231 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4232 
4233 	return (features & feature) == feature;
4234 }
4235 
4236 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4237 {
4238 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4239 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4240 }
4241 
4242 static inline bool netif_needs_gso(struct sk_buff *skb,
4243 				   netdev_features_t features)
4244 {
4245 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4246 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4247 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4248 }
4249 
4250 static inline void netif_set_gso_max_size(struct net_device *dev,
4251 					  unsigned int size)
4252 {
4253 	dev->gso_max_size = size;
4254 }
4255 
4256 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4257 					int pulled_hlen, u16 mac_offset,
4258 					int mac_len)
4259 {
4260 	skb->protocol = protocol;
4261 	skb->encapsulation = 1;
4262 	skb_push(skb, pulled_hlen);
4263 	skb_reset_transport_header(skb);
4264 	skb->mac_header = mac_offset;
4265 	skb->network_header = skb->mac_header + mac_len;
4266 	skb->mac_len = mac_len;
4267 }
4268 
4269 static inline bool netif_is_macsec(const struct net_device *dev)
4270 {
4271 	return dev->priv_flags & IFF_MACSEC;
4272 }
4273 
4274 static inline bool netif_is_macvlan(const struct net_device *dev)
4275 {
4276 	return dev->priv_flags & IFF_MACVLAN;
4277 }
4278 
4279 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4280 {
4281 	return dev->priv_flags & IFF_MACVLAN_PORT;
4282 }
4283 
4284 static inline bool netif_is_bond_master(const struct net_device *dev)
4285 {
4286 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4287 }
4288 
4289 static inline bool netif_is_bond_slave(const struct net_device *dev)
4290 {
4291 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4292 }
4293 
4294 static inline bool netif_supports_nofcs(struct net_device *dev)
4295 {
4296 	return dev->priv_flags & IFF_SUPP_NOFCS;
4297 }
4298 
4299 static inline bool netif_is_l3_master(const struct net_device *dev)
4300 {
4301 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4302 }
4303 
4304 static inline bool netif_is_l3_slave(const struct net_device *dev)
4305 {
4306 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4307 }
4308 
4309 static inline bool netif_is_bridge_master(const struct net_device *dev)
4310 {
4311 	return dev->priv_flags & IFF_EBRIDGE;
4312 }
4313 
4314 static inline bool netif_is_bridge_port(const struct net_device *dev)
4315 {
4316 	return dev->priv_flags & IFF_BRIDGE_PORT;
4317 }
4318 
4319 static inline bool netif_is_ovs_master(const struct net_device *dev)
4320 {
4321 	return dev->priv_flags & IFF_OPENVSWITCH;
4322 }
4323 
4324 static inline bool netif_is_ovs_port(const struct net_device *dev)
4325 {
4326 	return dev->priv_flags & IFF_OVS_DATAPATH;
4327 }
4328 
4329 static inline bool netif_is_team_master(const struct net_device *dev)
4330 {
4331 	return dev->priv_flags & IFF_TEAM;
4332 }
4333 
4334 static inline bool netif_is_team_port(const struct net_device *dev)
4335 {
4336 	return dev->priv_flags & IFF_TEAM_PORT;
4337 }
4338 
4339 static inline bool netif_is_lag_master(const struct net_device *dev)
4340 {
4341 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4342 }
4343 
4344 static inline bool netif_is_lag_port(const struct net_device *dev)
4345 {
4346 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4347 }
4348 
4349 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4350 {
4351 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4352 }
4353 
4354 static inline bool netif_is_failover(const struct net_device *dev)
4355 {
4356 	return dev->priv_flags & IFF_FAILOVER;
4357 }
4358 
4359 static inline bool netif_is_failover_slave(const struct net_device *dev)
4360 {
4361 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4362 }
4363 
4364 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4365 static inline void netif_keep_dst(struct net_device *dev)
4366 {
4367 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4368 }
4369 
4370 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4371 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4372 {
4373 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4374 	return dev->priv_flags & IFF_MACSEC;
4375 }
4376 
4377 extern struct pernet_operations __net_initdata loopback_net_ops;
4378 
4379 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4380 
4381 /* netdev_printk helpers, similar to dev_printk */
4382 
4383 static inline const char *netdev_name(const struct net_device *dev)
4384 {
4385 	if (!dev->name[0] || strchr(dev->name, '%'))
4386 		return "(unnamed net_device)";
4387 	return dev->name;
4388 }
4389 
4390 static inline bool netdev_unregistering(const struct net_device *dev)
4391 {
4392 	return dev->reg_state == NETREG_UNREGISTERING;
4393 }
4394 
4395 static inline const char *netdev_reg_state(const struct net_device *dev)
4396 {
4397 	switch (dev->reg_state) {
4398 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4399 	case NETREG_REGISTERED: return "";
4400 	case NETREG_UNREGISTERING: return " (unregistering)";
4401 	case NETREG_UNREGISTERED: return " (unregistered)";
4402 	case NETREG_RELEASED: return " (released)";
4403 	case NETREG_DUMMY: return " (dummy)";
4404 	}
4405 
4406 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4407 	return " (unknown)";
4408 }
4409 
4410 __printf(3, 4)
4411 void netdev_printk(const char *level, const struct net_device *dev,
4412 		   const char *format, ...);
4413 __printf(2, 3)
4414 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4415 __printf(2, 3)
4416 void netdev_alert(const struct net_device *dev, const char *format, ...);
4417 __printf(2, 3)
4418 void netdev_crit(const struct net_device *dev, const char *format, ...);
4419 __printf(2, 3)
4420 void netdev_err(const struct net_device *dev, const char *format, ...);
4421 __printf(2, 3)
4422 void netdev_warn(const struct net_device *dev, const char *format, ...);
4423 __printf(2, 3)
4424 void netdev_notice(const struct net_device *dev, const char *format, ...);
4425 __printf(2, 3)
4426 void netdev_info(const struct net_device *dev, const char *format, ...);
4427 
4428 #define netdev_level_once(level, dev, fmt, ...)			\
4429 do {								\
4430 	static bool __print_once __read_mostly;			\
4431 								\
4432 	if (!__print_once) {					\
4433 		__print_once = true;				\
4434 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4435 	}							\
4436 } while (0)
4437 
4438 #define netdev_emerg_once(dev, fmt, ...) \
4439 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4440 #define netdev_alert_once(dev, fmt, ...) \
4441 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4442 #define netdev_crit_once(dev, fmt, ...) \
4443 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4444 #define netdev_err_once(dev, fmt, ...) \
4445 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4446 #define netdev_warn_once(dev, fmt, ...) \
4447 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4448 #define netdev_notice_once(dev, fmt, ...) \
4449 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4450 #define netdev_info_once(dev, fmt, ...) \
4451 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4452 
4453 #define MODULE_ALIAS_NETDEV(device) \
4454 	MODULE_ALIAS("netdev-" device)
4455 
4456 #if defined(CONFIG_DYNAMIC_DEBUG)
4457 #define netdev_dbg(__dev, format, args...)			\
4458 do {								\
4459 	dynamic_netdev_dbg(__dev, format, ##args);		\
4460 } while (0)
4461 #elif defined(DEBUG)
4462 #define netdev_dbg(__dev, format, args...)			\
4463 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4464 #else
4465 #define netdev_dbg(__dev, format, args...)			\
4466 ({								\
4467 	if (0)							\
4468 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4469 })
4470 #endif
4471 
4472 #if defined(VERBOSE_DEBUG)
4473 #define netdev_vdbg	netdev_dbg
4474 #else
4475 
4476 #define netdev_vdbg(dev, format, args...)			\
4477 ({								\
4478 	if (0)							\
4479 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4480 	0;							\
4481 })
4482 #endif
4483 
4484 /*
4485  * netdev_WARN() acts like dev_printk(), but with the key difference
4486  * of using a WARN/WARN_ON to get the message out, including the
4487  * file/line information and a backtrace.
4488  */
4489 #define netdev_WARN(dev, format, args...)			\
4490 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4491 	     netdev_reg_state(dev), ##args)
4492 
4493 #define netdev_WARN_ONCE(dev, format, args...)				\
4494 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4495 		  netdev_reg_state(dev), ##args)
4496 
4497 /* netif printk helpers, similar to netdev_printk */
4498 
4499 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4500 do {					  			\
4501 	if (netif_msg_##type(priv))				\
4502 		netdev_printk(level, (dev), fmt, ##args);	\
4503 } while (0)
4504 
4505 #define netif_level(level, priv, type, dev, fmt, args...)	\
4506 do {								\
4507 	if (netif_msg_##type(priv))				\
4508 		netdev_##level(dev, fmt, ##args);		\
4509 } while (0)
4510 
4511 #define netif_emerg(priv, type, dev, fmt, args...)		\
4512 	netif_level(emerg, priv, type, dev, fmt, ##args)
4513 #define netif_alert(priv, type, dev, fmt, args...)		\
4514 	netif_level(alert, priv, type, dev, fmt, ##args)
4515 #define netif_crit(priv, type, dev, fmt, args...)		\
4516 	netif_level(crit, priv, type, dev, fmt, ##args)
4517 #define netif_err(priv, type, dev, fmt, args...)		\
4518 	netif_level(err, priv, type, dev, fmt, ##args)
4519 #define netif_warn(priv, type, dev, fmt, args...)		\
4520 	netif_level(warn, priv, type, dev, fmt, ##args)
4521 #define netif_notice(priv, type, dev, fmt, args...)		\
4522 	netif_level(notice, priv, type, dev, fmt, ##args)
4523 #define netif_info(priv, type, dev, fmt, args...)		\
4524 	netif_level(info, priv, type, dev, fmt, ##args)
4525 
4526 #if defined(CONFIG_DYNAMIC_DEBUG)
4527 #define netif_dbg(priv, type, netdev, format, args...)		\
4528 do {								\
4529 	if (netif_msg_##type(priv))				\
4530 		dynamic_netdev_dbg(netdev, format, ##args);	\
4531 } while (0)
4532 #elif defined(DEBUG)
4533 #define netif_dbg(priv, type, dev, format, args...)		\
4534 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4535 #else
4536 #define netif_dbg(priv, type, dev, format, args...)			\
4537 ({									\
4538 	if (0)								\
4539 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4540 	0;								\
4541 })
4542 #endif
4543 
4544 /* if @cond then downgrade to debug, else print at @level */
4545 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4546 	do {                                                              \
4547 		if (cond)                                                 \
4548 			netif_dbg(priv, type, netdev, fmt, ##args);       \
4549 		else                                                      \
4550 			netif_ ## level(priv, type, netdev, fmt, ##args); \
4551 	} while (0)
4552 
4553 #if defined(VERBOSE_DEBUG)
4554 #define netif_vdbg	netif_dbg
4555 #else
4556 #define netif_vdbg(priv, type, dev, format, args...)		\
4557 ({								\
4558 	if (0)							\
4559 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4560 	0;							\
4561 })
4562 #endif
4563 
4564 /*
4565  *	The list of packet types we will receive (as opposed to discard)
4566  *	and the routines to invoke.
4567  *
4568  *	Why 16. Because with 16 the only overlap we get on a hash of the
4569  *	low nibble of the protocol value is RARP/SNAP/X.25.
4570  *
4571  *		0800	IP
4572  *		0001	802.3
4573  *		0002	AX.25
4574  *		0004	802.2
4575  *		8035	RARP
4576  *		0005	SNAP
4577  *		0805	X.25
4578  *		0806	ARP
4579  *		8137	IPX
4580  *		0009	Localtalk
4581  *		86DD	IPv6
4582  */
4583 #define PTYPE_HASH_SIZE	(16)
4584 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4585 
4586 #endif	/* _LINUX_NETDEVICE_H */
4587