xref: /linux-6.15/include/linux/netdevice.h (revision 4c452f7e)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <[email protected]>
13  *		Corey Minyard <[email protected]>
14  *		Donald J. Becker, <[email protected]>
15  *		Alan Cox, <[email protected]>
16  *		Bjorn Ekwall. <[email protected]>
17  *              Pekka Riikonen <[email protected]>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <linux/netdev_features.h>
44 #include <linux/neighbour.h>
45 #include <linux/netdevice_xmit.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <uapi/linux/netdev.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 #include <net/net_debug.h>
54 #include <net/dropreason-core.h>
55 #include <net/neighbour_tables.h>
56 
57 struct netpoll_info;
58 struct device;
59 struct ethtool_ops;
60 struct kernel_hwtstamp_config;
61 struct phy_device;
62 struct dsa_port;
63 struct ip_tunnel_parm_kern;
64 struct macsec_context;
65 struct macsec_ops;
66 struct netdev_name_node;
67 struct sd_flow_limit;
68 struct sfp_bus;
69 /* 802.11 specific */
70 struct wireless_dev;
71 /* 802.15.4 specific */
72 struct wpan_dev;
73 struct mpls_dev;
74 /* UDP Tunnel offloads */
75 struct udp_tunnel_info;
76 struct udp_tunnel_nic_info;
77 struct udp_tunnel_nic;
78 struct bpf_prog;
79 struct xdp_buff;
80 struct xdp_frame;
81 struct xdp_metadata_ops;
82 struct xdp_md;
83 struct ethtool_netdev_state;
84 struct phy_link_topology;
85 
86 typedef u32 xdp_features_t;
87 
88 void synchronize_net(void);
89 void netdev_set_default_ethtool_ops(struct net_device *dev,
90 				    const struct ethtool_ops *ops);
91 void netdev_sw_irq_coalesce_default_on(struct net_device *dev);
92 
93 /* Backlog congestion levels */
94 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
95 #define NET_RX_DROP		1	/* packet dropped */
96 
97 #define MAX_NEST_DEV 8
98 
99 /*
100  * Transmit return codes: transmit return codes originate from three different
101  * namespaces:
102  *
103  * - qdisc return codes
104  * - driver transmit return codes
105  * - errno values
106  *
107  * Drivers are allowed to return any one of those in their hard_start_xmit()
108  * function. Real network devices commonly used with qdiscs should only return
109  * the driver transmit return codes though - when qdiscs are used, the actual
110  * transmission happens asynchronously, so the value is not propagated to
111  * higher layers. Virtual network devices transmit synchronously; in this case
112  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
113  * others are propagated to higher layers.
114  */
115 
116 /* qdisc ->enqueue() return codes. */
117 #define NET_XMIT_SUCCESS	0x00
118 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
119 #define NET_XMIT_CN		0x02	/* congestion notification	*/
120 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
121 
122 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
123  * indicates that the device will soon be dropping packets, or already drops
124  * some packets of the same priority; prompting us to send less aggressively. */
125 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
126 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
127 
128 /* Driver transmit return codes */
129 #define NETDEV_TX_MASK		0xf0
130 
131 enum netdev_tx {
132 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
133 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
134 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
135 };
136 typedef enum netdev_tx netdev_tx_t;
137 
138 /*
139  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
140  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
141  */
142 static inline bool dev_xmit_complete(int rc)
143 {
144 	/*
145 	 * Positive cases with an skb consumed by a driver:
146 	 * - successful transmission (rc == NETDEV_TX_OK)
147 	 * - error while transmitting (rc < 0)
148 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
149 	 */
150 	if (likely(rc < NET_XMIT_MASK))
151 		return true;
152 
153 	return false;
154 }
155 
156 /*
157  *	Compute the worst-case header length according to the protocols
158  *	used.
159  */
160 
161 #if defined(CONFIG_HYPERV_NET)
162 # define LL_MAX_HEADER 128
163 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
164 # if defined(CONFIG_MAC80211_MESH)
165 #  define LL_MAX_HEADER 128
166 # else
167 #  define LL_MAX_HEADER 96
168 # endif
169 #else
170 # define LL_MAX_HEADER 32
171 #endif
172 
173 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
174     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
175 #define MAX_HEADER LL_MAX_HEADER
176 #else
177 #define MAX_HEADER (LL_MAX_HEADER + 48)
178 #endif
179 
180 /*
181  *	Old network device statistics. Fields are native words
182  *	(unsigned long) so they can be read and written atomically.
183  */
184 
185 #define NET_DEV_STAT(FIELD)			\
186 	union {					\
187 		unsigned long FIELD;		\
188 		atomic_long_t __##FIELD;	\
189 	}
190 
191 struct net_device_stats {
192 	NET_DEV_STAT(rx_packets);
193 	NET_DEV_STAT(tx_packets);
194 	NET_DEV_STAT(rx_bytes);
195 	NET_DEV_STAT(tx_bytes);
196 	NET_DEV_STAT(rx_errors);
197 	NET_DEV_STAT(tx_errors);
198 	NET_DEV_STAT(rx_dropped);
199 	NET_DEV_STAT(tx_dropped);
200 	NET_DEV_STAT(multicast);
201 	NET_DEV_STAT(collisions);
202 	NET_DEV_STAT(rx_length_errors);
203 	NET_DEV_STAT(rx_over_errors);
204 	NET_DEV_STAT(rx_crc_errors);
205 	NET_DEV_STAT(rx_frame_errors);
206 	NET_DEV_STAT(rx_fifo_errors);
207 	NET_DEV_STAT(rx_missed_errors);
208 	NET_DEV_STAT(tx_aborted_errors);
209 	NET_DEV_STAT(tx_carrier_errors);
210 	NET_DEV_STAT(tx_fifo_errors);
211 	NET_DEV_STAT(tx_heartbeat_errors);
212 	NET_DEV_STAT(tx_window_errors);
213 	NET_DEV_STAT(rx_compressed);
214 	NET_DEV_STAT(tx_compressed);
215 };
216 #undef NET_DEV_STAT
217 
218 /* per-cpu stats, allocated on demand.
219  * Try to fit them in a single cache line, for dev_get_stats() sake.
220  */
221 struct net_device_core_stats {
222 	unsigned long	rx_dropped;
223 	unsigned long	tx_dropped;
224 	unsigned long	rx_nohandler;
225 	unsigned long	rx_otherhost_dropped;
226 } __aligned(4 * sizeof(unsigned long));
227 
228 #include <linux/cache.h>
229 #include <linux/skbuff.h>
230 
231 struct neighbour;
232 struct neigh_parms;
233 struct sk_buff;
234 
235 struct netdev_hw_addr {
236 	struct list_head	list;
237 	struct rb_node		node;
238 	unsigned char		addr[MAX_ADDR_LEN];
239 	unsigned char		type;
240 #define NETDEV_HW_ADDR_T_LAN		1
241 #define NETDEV_HW_ADDR_T_SAN		2
242 #define NETDEV_HW_ADDR_T_UNICAST	3
243 #define NETDEV_HW_ADDR_T_MULTICAST	4
244 	bool			global_use;
245 	int			sync_cnt;
246 	int			refcount;
247 	int			synced;
248 	struct rcu_head		rcu_head;
249 };
250 
251 struct netdev_hw_addr_list {
252 	struct list_head	list;
253 	int			count;
254 
255 	/* Auxiliary tree for faster lookup on addition and deletion */
256 	struct rb_root		tree;
257 };
258 
259 #define netdev_hw_addr_list_count(l) ((l)->count)
260 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
261 #define netdev_hw_addr_list_for_each(ha, l) \
262 	list_for_each_entry(ha, &(l)->list, list)
263 
264 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
265 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
266 #define netdev_for_each_uc_addr(ha, dev) \
267 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
268 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
269 	netdev_for_each_uc_addr((_ha), (_dev)) \
270 		if ((_ha)->sync_cnt)
271 
272 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
273 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
274 #define netdev_for_each_mc_addr(ha, dev) \
275 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
276 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
277 	netdev_for_each_mc_addr((_ha), (_dev)) \
278 		if ((_ha)->sync_cnt)
279 
280 struct hh_cache {
281 	unsigned int	hh_len;
282 	seqlock_t	hh_lock;
283 
284 	/* cached hardware header; allow for machine alignment needs.        */
285 #define HH_DATA_MOD	16
286 #define HH_DATA_OFF(__len) \
287 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
288 #define HH_DATA_ALIGN(__len) \
289 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
290 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
291 };
292 
293 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
294  * Alternative is:
295  *   dev->hard_header_len ? (dev->hard_header_len +
296  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
297  *
298  * We could use other alignment values, but we must maintain the
299  * relationship HH alignment <= LL alignment.
300  */
301 #define LL_RESERVED_SPACE(dev) \
302 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
303 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
304 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
305 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
306 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
307 
308 struct header_ops {
309 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
310 			   unsigned short type, const void *daddr,
311 			   const void *saddr, unsigned int len);
312 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
313 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
314 	void	(*cache_update)(struct hh_cache *hh,
315 				const struct net_device *dev,
316 				const unsigned char *haddr);
317 	bool	(*validate)(const char *ll_header, unsigned int len);
318 	__be16	(*parse_protocol)(const struct sk_buff *skb);
319 };
320 
321 /* These flag bits are private to the generic network queueing
322  * layer; they may not be explicitly referenced by any other
323  * code.
324  */
325 
326 enum netdev_state_t {
327 	__LINK_STATE_START,
328 	__LINK_STATE_PRESENT,
329 	__LINK_STATE_NOCARRIER,
330 	__LINK_STATE_LINKWATCH_PENDING,
331 	__LINK_STATE_DORMANT,
332 	__LINK_STATE_TESTING,
333 };
334 
335 struct gro_list {
336 	struct list_head	list;
337 	int			count;
338 };
339 
340 /*
341  * size of gro hash buckets, must less than bit number of
342  * napi_struct::gro_bitmask
343  */
344 #define GRO_HASH_BUCKETS	8
345 
346 /*
347  * Structure for per-NAPI config
348  */
349 struct napi_config {
350 	u64 gro_flush_timeout;
351 	u64 irq_suspend_timeout;
352 	u32 defer_hard_irqs;
353 	unsigned int napi_id;
354 };
355 
356 /*
357  * Structure for NAPI scheduling similar to tasklet but with weighting
358  */
359 struct napi_struct {
360 	/* The poll_list must only be managed by the entity which
361 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
362 	 * whoever atomically sets that bit can add this napi_struct
363 	 * to the per-CPU poll_list, and whoever clears that bit
364 	 * can remove from the list right before clearing the bit.
365 	 */
366 	struct list_head	poll_list;
367 
368 	unsigned long		state;
369 	int			weight;
370 	u32			defer_hard_irqs_count;
371 	unsigned long		gro_bitmask;
372 	int			(*poll)(struct napi_struct *, int);
373 #ifdef CONFIG_NETPOLL
374 	/* CPU actively polling if netpoll is configured */
375 	int			poll_owner;
376 #endif
377 	/* CPU on which NAPI has been scheduled for processing */
378 	int			list_owner;
379 	struct net_device	*dev;
380 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
381 	struct sk_buff		*skb;
382 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
383 	int			rx_count; /* length of rx_list */
384 	unsigned int		napi_id;
385 	struct hrtimer		timer;
386 	struct task_struct	*thread;
387 	unsigned long		gro_flush_timeout;
388 	unsigned long		irq_suspend_timeout;
389 	u32			defer_hard_irqs;
390 	/* control-path-only fields follow */
391 	struct list_head	dev_list;
392 	struct hlist_node	napi_hash_node;
393 	int			irq;
394 	int			index;
395 	struct napi_config	*config;
396 };
397 
398 enum {
399 	NAPI_STATE_SCHED,		/* Poll is scheduled */
400 	NAPI_STATE_MISSED,		/* reschedule a napi */
401 	NAPI_STATE_DISABLE,		/* Disable pending */
402 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
403 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
404 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
405 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
406 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
407 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
408 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
409 };
410 
411 enum {
412 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
413 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
414 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
415 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
416 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
417 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
418 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
419 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
420 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
421 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
422 };
423 
424 enum gro_result {
425 	GRO_MERGED,
426 	GRO_MERGED_FREE,
427 	GRO_HELD,
428 	GRO_NORMAL,
429 	GRO_CONSUMED,
430 };
431 typedef enum gro_result gro_result_t;
432 
433 /*
434  * enum rx_handler_result - Possible return values for rx_handlers.
435  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
436  * further.
437  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
438  * case skb->dev was changed by rx_handler.
439  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
440  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
441  *
442  * rx_handlers are functions called from inside __netif_receive_skb(), to do
443  * special processing of the skb, prior to delivery to protocol handlers.
444  *
445  * Currently, a net_device can only have a single rx_handler registered. Trying
446  * to register a second rx_handler will return -EBUSY.
447  *
448  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
449  * To unregister a rx_handler on a net_device, use
450  * netdev_rx_handler_unregister().
451  *
452  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
453  * do with the skb.
454  *
455  * If the rx_handler consumed the skb in some way, it should return
456  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
457  * the skb to be delivered in some other way.
458  *
459  * If the rx_handler changed skb->dev, to divert the skb to another
460  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
461  * new device will be called if it exists.
462  *
463  * If the rx_handler decides the skb should be ignored, it should return
464  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
465  * are registered on exact device (ptype->dev == skb->dev).
466  *
467  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
468  * delivered, it should return RX_HANDLER_PASS.
469  *
470  * A device without a registered rx_handler will behave as if rx_handler
471  * returned RX_HANDLER_PASS.
472  */
473 
474 enum rx_handler_result {
475 	RX_HANDLER_CONSUMED,
476 	RX_HANDLER_ANOTHER,
477 	RX_HANDLER_EXACT,
478 	RX_HANDLER_PASS,
479 };
480 typedef enum rx_handler_result rx_handler_result_t;
481 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
482 
483 void __napi_schedule(struct napi_struct *n);
484 void __napi_schedule_irqoff(struct napi_struct *n);
485 
486 static inline bool napi_disable_pending(struct napi_struct *n)
487 {
488 	return test_bit(NAPI_STATE_DISABLE, &n->state);
489 }
490 
491 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
492 {
493 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
494 }
495 
496 /**
497  * napi_is_scheduled - test if NAPI is scheduled
498  * @n: NAPI context
499  *
500  * This check is "best-effort". With no locking implemented,
501  * a NAPI can be scheduled or terminate right after this check
502  * and produce not precise results.
503  *
504  * NAPI_STATE_SCHED is an internal state, napi_is_scheduled
505  * should not be used normally and napi_schedule should be
506  * used instead.
507  *
508  * Use only if the driver really needs to check if a NAPI
509  * is scheduled for example in the context of delayed timer
510  * that can be skipped if a NAPI is already scheduled.
511  *
512  * Return True if NAPI is scheduled, False otherwise.
513  */
514 static inline bool napi_is_scheduled(struct napi_struct *n)
515 {
516 	return test_bit(NAPI_STATE_SCHED, &n->state);
517 }
518 
519 bool napi_schedule_prep(struct napi_struct *n);
520 
521 /**
522  *	napi_schedule - schedule NAPI poll
523  *	@n: NAPI context
524  *
525  * Schedule NAPI poll routine to be called if it is not already
526  * running.
527  * Return true if we schedule a NAPI or false if not.
528  * Refer to napi_schedule_prep() for additional reason on why
529  * a NAPI might not be scheduled.
530  */
531 static inline bool napi_schedule(struct napi_struct *n)
532 {
533 	if (napi_schedule_prep(n)) {
534 		__napi_schedule(n);
535 		return true;
536 	}
537 
538 	return false;
539 }
540 
541 /**
542  *	napi_schedule_irqoff - schedule NAPI poll
543  *	@n: NAPI context
544  *
545  * Variant of napi_schedule(), assuming hard irqs are masked.
546  */
547 static inline void napi_schedule_irqoff(struct napi_struct *n)
548 {
549 	if (napi_schedule_prep(n))
550 		__napi_schedule_irqoff(n);
551 }
552 
553 /**
554  * napi_complete_done - NAPI processing complete
555  * @n: NAPI context
556  * @work_done: number of packets processed
557  *
558  * Mark NAPI processing as complete. Should only be called if poll budget
559  * has not been completely consumed.
560  * Prefer over napi_complete().
561  * Return false if device should avoid rearming interrupts.
562  */
563 bool napi_complete_done(struct napi_struct *n, int work_done);
564 
565 static inline bool napi_complete(struct napi_struct *n)
566 {
567 	return napi_complete_done(n, 0);
568 }
569 
570 int dev_set_threaded(struct net_device *dev, bool threaded);
571 
572 /**
573  *	napi_disable - prevent NAPI from scheduling
574  *	@n: NAPI context
575  *
576  * Stop NAPI from being scheduled on this context.
577  * Waits till any outstanding processing completes.
578  */
579 void napi_disable(struct napi_struct *n);
580 
581 void napi_enable(struct napi_struct *n);
582 
583 /**
584  *	napi_synchronize - wait until NAPI is not running
585  *	@n: NAPI context
586  *
587  * Wait until NAPI is done being scheduled on this context.
588  * Waits till any outstanding processing completes but
589  * does not disable future activations.
590  */
591 static inline void napi_synchronize(const struct napi_struct *n)
592 {
593 	if (IS_ENABLED(CONFIG_SMP))
594 		while (test_bit(NAPI_STATE_SCHED, &n->state))
595 			msleep(1);
596 	else
597 		barrier();
598 }
599 
600 /**
601  *	napi_if_scheduled_mark_missed - if napi is running, set the
602  *	NAPIF_STATE_MISSED
603  *	@n: NAPI context
604  *
605  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
606  * NAPI is scheduled.
607  **/
608 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
609 {
610 	unsigned long val, new;
611 
612 	val = READ_ONCE(n->state);
613 	do {
614 		if (val & NAPIF_STATE_DISABLE)
615 			return true;
616 
617 		if (!(val & NAPIF_STATE_SCHED))
618 			return false;
619 
620 		new = val | NAPIF_STATE_MISSED;
621 	} while (!try_cmpxchg(&n->state, &val, new));
622 
623 	return true;
624 }
625 
626 enum netdev_queue_state_t {
627 	__QUEUE_STATE_DRV_XOFF,
628 	__QUEUE_STATE_STACK_XOFF,
629 	__QUEUE_STATE_FROZEN,
630 };
631 
632 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
633 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
634 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
635 
636 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
637 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
638 					QUEUE_STATE_FROZEN)
639 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
640 					QUEUE_STATE_FROZEN)
641 
642 /*
643  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
644  * netif_tx_* functions below are used to manipulate this flag.  The
645  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
646  * queue independently.  The netif_xmit_*stopped functions below are called
647  * to check if the queue has been stopped by the driver or stack (either
648  * of the XOFF bits are set in the state).  Drivers should not need to call
649  * netif_xmit*stopped functions, they should only be using netif_tx_*.
650  */
651 
652 struct netdev_queue {
653 /*
654  * read-mostly part
655  */
656 	struct net_device	*dev;
657 	netdevice_tracker	dev_tracker;
658 
659 	struct Qdisc __rcu	*qdisc;
660 	struct Qdisc __rcu	*qdisc_sleeping;
661 #ifdef CONFIG_SYSFS
662 	struct kobject		kobj;
663 #endif
664 	unsigned long		tx_maxrate;
665 	/*
666 	 * Number of TX timeouts for this queue
667 	 * (/sys/class/net/DEV/Q/trans_timeout)
668 	 */
669 	atomic_long_t		trans_timeout;
670 
671 	/* Subordinate device that the queue has been assigned to */
672 	struct net_device	*sb_dev;
673 #ifdef CONFIG_XDP_SOCKETS
674 	struct xsk_buff_pool    *pool;
675 #endif
676 
677 /*
678  * write-mostly part
679  */
680 #ifdef CONFIG_BQL
681 	struct dql		dql;
682 #endif
683 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
684 	int			xmit_lock_owner;
685 	/*
686 	 * Time (in jiffies) of last Tx
687 	 */
688 	unsigned long		trans_start;
689 
690 	unsigned long		state;
691 
692 /*
693  * slow- / control-path part
694  */
695 	/* NAPI instance for the queue
696 	 * Readers and writers must hold RTNL
697 	 */
698 	struct napi_struct	*napi;
699 
700 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
701 	int			numa_node;
702 #endif
703 } ____cacheline_aligned_in_smp;
704 
705 extern int sysctl_fb_tunnels_only_for_init_net;
706 extern int sysctl_devconf_inherit_init_net;
707 
708 /*
709  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
710  *                                     == 1 : For initns only
711  *                                     == 2 : For none.
712  */
713 static inline bool net_has_fallback_tunnels(const struct net *net)
714 {
715 #if IS_ENABLED(CONFIG_SYSCTL)
716 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
717 
718 	return !fb_tunnels_only_for_init_net ||
719 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
720 #else
721 	return true;
722 #endif
723 }
724 
725 static inline int net_inherit_devconf(void)
726 {
727 #if IS_ENABLED(CONFIG_SYSCTL)
728 	return READ_ONCE(sysctl_devconf_inherit_init_net);
729 #else
730 	return 0;
731 #endif
732 }
733 
734 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
735 {
736 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
737 	return q->numa_node;
738 #else
739 	return NUMA_NO_NODE;
740 #endif
741 }
742 
743 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
744 {
745 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
746 	q->numa_node = node;
747 #endif
748 }
749 
750 #ifdef CONFIG_RFS_ACCEL
751 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
752 			 u16 filter_id);
753 #endif
754 
755 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
756 enum xps_map_type {
757 	XPS_CPUS = 0,
758 	XPS_RXQS,
759 	XPS_MAPS_MAX,
760 };
761 
762 #ifdef CONFIG_XPS
763 /*
764  * This structure holds an XPS map which can be of variable length.  The
765  * map is an array of queues.
766  */
767 struct xps_map {
768 	unsigned int len;
769 	unsigned int alloc_len;
770 	struct rcu_head rcu;
771 	u16 queues[];
772 };
773 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
774 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
775        - sizeof(struct xps_map)) / sizeof(u16))
776 
777 /*
778  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
779  *
780  * We keep track of the number of cpus/rxqs used when the struct is allocated,
781  * in nr_ids. This will help not accessing out-of-bound memory.
782  *
783  * We keep track of the number of traffic classes used when the struct is
784  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
785  * not crossing its upper bound, as the original dev->num_tc can be updated in
786  * the meantime.
787  */
788 struct xps_dev_maps {
789 	struct rcu_head rcu;
790 	unsigned int nr_ids;
791 	s16 num_tc;
792 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
793 };
794 
795 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
796 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
797 
798 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
799 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
800 
801 #endif /* CONFIG_XPS */
802 
803 #define TC_MAX_QUEUE	16
804 #define TC_BITMASK	15
805 /* HW offloaded queuing disciplines txq count and offset maps */
806 struct netdev_tc_txq {
807 	u16 count;
808 	u16 offset;
809 };
810 
811 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
812 /*
813  * This structure is to hold information about the device
814  * configured to run FCoE protocol stack.
815  */
816 struct netdev_fcoe_hbainfo {
817 	char	manufacturer[64];
818 	char	serial_number[64];
819 	char	hardware_version[64];
820 	char	driver_version[64];
821 	char	optionrom_version[64];
822 	char	firmware_version[64];
823 	char	model[256];
824 	char	model_description[256];
825 };
826 #endif
827 
828 #define MAX_PHYS_ITEM_ID_LEN 32
829 
830 /* This structure holds a unique identifier to identify some
831  * physical item (port for example) used by a netdevice.
832  */
833 struct netdev_phys_item_id {
834 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
835 	unsigned char id_len;
836 };
837 
838 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
839 					    struct netdev_phys_item_id *b)
840 {
841 	return a->id_len == b->id_len &&
842 	       memcmp(a->id, b->id, a->id_len) == 0;
843 }
844 
845 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
846 				       struct sk_buff *skb,
847 				       struct net_device *sb_dev);
848 
849 enum net_device_path_type {
850 	DEV_PATH_ETHERNET = 0,
851 	DEV_PATH_VLAN,
852 	DEV_PATH_BRIDGE,
853 	DEV_PATH_PPPOE,
854 	DEV_PATH_DSA,
855 	DEV_PATH_MTK_WDMA,
856 };
857 
858 struct net_device_path {
859 	enum net_device_path_type	type;
860 	const struct net_device		*dev;
861 	union {
862 		struct {
863 			u16		id;
864 			__be16		proto;
865 			u8		h_dest[ETH_ALEN];
866 		} encap;
867 		struct {
868 			enum {
869 				DEV_PATH_BR_VLAN_KEEP,
870 				DEV_PATH_BR_VLAN_TAG,
871 				DEV_PATH_BR_VLAN_UNTAG,
872 				DEV_PATH_BR_VLAN_UNTAG_HW,
873 			}		vlan_mode;
874 			u16		vlan_id;
875 			__be16		vlan_proto;
876 		} bridge;
877 		struct {
878 			int port;
879 			u16 proto;
880 		} dsa;
881 		struct {
882 			u8 wdma_idx;
883 			u8 queue;
884 			u16 wcid;
885 			u8 bss;
886 			u8 amsdu;
887 		} mtk_wdma;
888 	};
889 };
890 
891 #define NET_DEVICE_PATH_STACK_MAX	5
892 #define NET_DEVICE_PATH_VLAN_MAX	2
893 
894 struct net_device_path_stack {
895 	int			num_paths;
896 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
897 };
898 
899 struct net_device_path_ctx {
900 	const struct net_device *dev;
901 	u8			daddr[ETH_ALEN];
902 
903 	int			num_vlans;
904 	struct {
905 		u16		id;
906 		__be16		proto;
907 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
908 };
909 
910 enum tc_setup_type {
911 	TC_QUERY_CAPS,
912 	TC_SETUP_QDISC_MQPRIO,
913 	TC_SETUP_CLSU32,
914 	TC_SETUP_CLSFLOWER,
915 	TC_SETUP_CLSMATCHALL,
916 	TC_SETUP_CLSBPF,
917 	TC_SETUP_BLOCK,
918 	TC_SETUP_QDISC_CBS,
919 	TC_SETUP_QDISC_RED,
920 	TC_SETUP_QDISC_PRIO,
921 	TC_SETUP_QDISC_MQ,
922 	TC_SETUP_QDISC_ETF,
923 	TC_SETUP_ROOT_QDISC,
924 	TC_SETUP_QDISC_GRED,
925 	TC_SETUP_QDISC_TAPRIO,
926 	TC_SETUP_FT,
927 	TC_SETUP_QDISC_ETS,
928 	TC_SETUP_QDISC_TBF,
929 	TC_SETUP_QDISC_FIFO,
930 	TC_SETUP_QDISC_HTB,
931 	TC_SETUP_ACT,
932 };
933 
934 /* These structures hold the attributes of bpf state that are being passed
935  * to the netdevice through the bpf op.
936  */
937 enum bpf_netdev_command {
938 	/* Set or clear a bpf program used in the earliest stages of packet
939 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
940 	 * is responsible for calling bpf_prog_put on any old progs that are
941 	 * stored. In case of error, the callee need not release the new prog
942 	 * reference, but on success it takes ownership and must bpf_prog_put
943 	 * when it is no longer used.
944 	 */
945 	XDP_SETUP_PROG,
946 	XDP_SETUP_PROG_HW,
947 	/* BPF program for offload callbacks, invoked at program load time. */
948 	BPF_OFFLOAD_MAP_ALLOC,
949 	BPF_OFFLOAD_MAP_FREE,
950 	XDP_SETUP_XSK_POOL,
951 };
952 
953 struct bpf_prog_offload_ops;
954 struct netlink_ext_ack;
955 struct xdp_umem;
956 struct xdp_dev_bulk_queue;
957 struct bpf_xdp_link;
958 
959 enum bpf_xdp_mode {
960 	XDP_MODE_SKB = 0,
961 	XDP_MODE_DRV = 1,
962 	XDP_MODE_HW = 2,
963 	__MAX_XDP_MODE
964 };
965 
966 struct bpf_xdp_entity {
967 	struct bpf_prog *prog;
968 	struct bpf_xdp_link *link;
969 };
970 
971 struct netdev_bpf {
972 	enum bpf_netdev_command command;
973 	union {
974 		/* XDP_SETUP_PROG */
975 		struct {
976 			u32 flags;
977 			struct bpf_prog *prog;
978 			struct netlink_ext_ack *extack;
979 		};
980 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
981 		struct {
982 			struct bpf_offloaded_map *offmap;
983 		};
984 		/* XDP_SETUP_XSK_POOL */
985 		struct {
986 			struct xsk_buff_pool *pool;
987 			u16 queue_id;
988 		} xsk;
989 	};
990 };
991 
992 /* Flags for ndo_xsk_wakeup. */
993 #define XDP_WAKEUP_RX (1 << 0)
994 #define XDP_WAKEUP_TX (1 << 1)
995 
996 #ifdef CONFIG_XFRM_OFFLOAD
997 struct xfrmdev_ops {
998 	int	(*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack);
999 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
1000 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
1001 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1002 				       struct xfrm_state *x);
1003 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1004 	void	(*xdo_dev_state_update_stats) (struct xfrm_state *x);
1005 	int	(*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack);
1006 	void	(*xdo_dev_policy_delete) (struct xfrm_policy *x);
1007 	void	(*xdo_dev_policy_free) (struct xfrm_policy *x);
1008 };
1009 #endif
1010 
1011 struct dev_ifalias {
1012 	struct rcu_head rcuhead;
1013 	char ifalias[];
1014 };
1015 
1016 struct devlink;
1017 struct tlsdev_ops;
1018 
1019 struct netdev_net_notifier {
1020 	struct list_head list;
1021 	struct notifier_block *nb;
1022 };
1023 
1024 /*
1025  * This structure defines the management hooks for network devices.
1026  * The following hooks can be defined; unless noted otherwise, they are
1027  * optional and can be filled with a null pointer.
1028  *
1029  * int (*ndo_init)(struct net_device *dev);
1030  *     This function is called once when a network device is registered.
1031  *     The network device can use this for any late stage initialization
1032  *     or semantic validation. It can fail with an error code which will
1033  *     be propagated back to register_netdev.
1034  *
1035  * void (*ndo_uninit)(struct net_device *dev);
1036  *     This function is called when device is unregistered or when registration
1037  *     fails. It is not called if init fails.
1038  *
1039  * int (*ndo_open)(struct net_device *dev);
1040  *     This function is called when a network device transitions to the up
1041  *     state.
1042  *
1043  * int (*ndo_stop)(struct net_device *dev);
1044  *     This function is called when a network device transitions to the down
1045  *     state.
1046  *
1047  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1048  *                               struct net_device *dev);
1049  *	Called when a packet needs to be transmitted.
1050  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1051  *	the queue before that can happen; it's for obsolete devices and weird
1052  *	corner cases, but the stack really does a non-trivial amount
1053  *	of useless work if you return NETDEV_TX_BUSY.
1054  *	Required; cannot be NULL.
1055  *
1056  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1057  *					   struct net_device *dev
1058  *					   netdev_features_t features);
1059  *	Called by core transmit path to determine if device is capable of
1060  *	performing offload operations on a given packet. This is to give
1061  *	the device an opportunity to implement any restrictions that cannot
1062  *	be otherwise expressed by feature flags. The check is called with
1063  *	the set of features that the stack has calculated and it returns
1064  *	those the driver believes to be appropriate.
1065  *
1066  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1067  *                         struct net_device *sb_dev);
1068  *	Called to decide which queue to use when device supports multiple
1069  *	transmit queues.
1070  *
1071  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1072  *	This function is called to allow device receiver to make
1073  *	changes to configuration when multicast or promiscuous is enabled.
1074  *
1075  * void (*ndo_set_rx_mode)(struct net_device *dev);
1076  *	This function is called device changes address list filtering.
1077  *	If driver handles unicast address filtering, it should set
1078  *	IFF_UNICAST_FLT in its priv_flags.
1079  *
1080  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1081  *	This function  is called when the Media Access Control address
1082  *	needs to be changed. If this interface is not defined, the
1083  *	MAC address can not be changed.
1084  *
1085  * int (*ndo_validate_addr)(struct net_device *dev);
1086  *	Test if Media Access Control address is valid for the device.
1087  *
1088  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1089  *	Old-style ioctl entry point. This is used internally by the
1090  *	appletalk and ieee802154 subsystems but is no longer called by
1091  *	the device ioctl handler.
1092  *
1093  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1094  *	Used by the bonding driver for its device specific ioctls:
1095  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1096  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1097  *
1098  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1099  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1100  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1101  *
1102  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1103  *	Used to set network devices bus interface parameters. This interface
1104  *	is retained for legacy reasons; new devices should use the bus
1105  *	interface (PCI) for low level management.
1106  *
1107  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1108  *	Called when a user wants to change the Maximum Transfer Unit
1109  *	of a device.
1110  *
1111  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1112  *	Callback used when the transmitter has not made any progress
1113  *	for dev->watchdog ticks.
1114  *
1115  * void (*ndo_get_stats64)(struct net_device *dev,
1116  *                         struct rtnl_link_stats64 *storage);
1117  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1118  *	Called when a user wants to get the network device usage
1119  *	statistics. Drivers must do one of the following:
1120  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1121  *	   rtnl_link_stats64 structure passed by the caller.
1122  *	2. Define @ndo_get_stats to update a net_device_stats structure
1123  *	   (which should normally be dev->stats) and return a pointer to
1124  *	   it. The structure may be changed asynchronously only if each
1125  *	   field is written atomically.
1126  *	3. Update dev->stats asynchronously and atomically, and define
1127  *	   neither operation.
1128  *
1129  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1130  *	Return true if this device supports offload stats of this attr_id.
1131  *
1132  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1133  *	void *attr_data)
1134  *	Get statistics for offload operations by attr_id. Write it into the
1135  *	attr_data pointer.
1136  *
1137  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1138  *	If device supports VLAN filtering this function is called when a
1139  *	VLAN id is registered.
1140  *
1141  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1142  *	If device supports VLAN filtering this function is called when a
1143  *	VLAN id is unregistered.
1144  *
1145  * void (*ndo_poll_controller)(struct net_device *dev);
1146  *
1147  *	SR-IOV management functions.
1148  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1149  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1150  *			  u8 qos, __be16 proto);
1151  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1152  *			  int max_tx_rate);
1153  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1154  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1155  * int (*ndo_get_vf_config)(struct net_device *dev,
1156  *			    int vf, struct ifla_vf_info *ivf);
1157  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1158  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1159  *			  struct nlattr *port[]);
1160  *
1161  *      Enable or disable the VF ability to query its RSS Redirection Table and
1162  *      Hash Key. This is needed since on some devices VF share this information
1163  *      with PF and querying it may introduce a theoretical security risk.
1164  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1165  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1166  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1167  *		       void *type_data);
1168  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1169  *	This is always called from the stack with the rtnl lock held and netif
1170  *	tx queues stopped. This allows the netdevice to perform queue
1171  *	management safely.
1172  *
1173  *	Fiber Channel over Ethernet (FCoE) offload functions.
1174  * int (*ndo_fcoe_enable)(struct net_device *dev);
1175  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1176  *	so the underlying device can perform whatever needed configuration or
1177  *	initialization to support acceleration of FCoE traffic.
1178  *
1179  * int (*ndo_fcoe_disable)(struct net_device *dev);
1180  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1181  *	so the underlying device can perform whatever needed clean-ups to
1182  *	stop supporting acceleration of FCoE traffic.
1183  *
1184  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1185  *			     struct scatterlist *sgl, unsigned int sgc);
1186  *	Called when the FCoE Initiator wants to initialize an I/O that
1187  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1188  *	perform necessary setup and returns 1 to indicate the device is set up
1189  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1190  *
1191  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1192  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1193  *	indicated by the FC exchange id 'xid', so the underlying device can
1194  *	clean up and reuse resources for later DDP requests.
1195  *
1196  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1197  *			      struct scatterlist *sgl, unsigned int sgc);
1198  *	Called when the FCoE Target wants to initialize an I/O that
1199  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1200  *	perform necessary setup and returns 1 to indicate the device is set up
1201  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1202  *
1203  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1204  *			       struct netdev_fcoe_hbainfo *hbainfo);
1205  *	Called when the FCoE Protocol stack wants information on the underlying
1206  *	device. This information is utilized by the FCoE protocol stack to
1207  *	register attributes with Fiber Channel management service as per the
1208  *	FC-GS Fabric Device Management Information(FDMI) specification.
1209  *
1210  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1211  *	Called when the underlying device wants to override default World Wide
1212  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1213  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1214  *	protocol stack to use.
1215  *
1216  *	RFS acceleration.
1217  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1218  *			    u16 rxq_index, u32 flow_id);
1219  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1220  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1221  *	Return the filter ID on success, or a negative error code.
1222  *
1223  *	Slave management functions (for bridge, bonding, etc).
1224  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1225  *	Called to make another netdev an underling.
1226  *
1227  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1228  *	Called to release previously enslaved netdev.
1229  *
1230  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1231  *					    struct sk_buff *skb,
1232  *					    bool all_slaves);
1233  *	Get the xmit slave of master device. If all_slaves is true, function
1234  *	assume all the slaves can transmit.
1235  *
1236  *      Feature/offload setting functions.
1237  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1238  *		netdev_features_t features);
1239  *	Adjusts the requested feature flags according to device-specific
1240  *	constraints, and returns the resulting flags. Must not modify
1241  *	the device state.
1242  *
1243  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1244  *	Called to update device configuration to new features. Passed
1245  *	feature set might be less than what was returned by ndo_fix_features()).
1246  *	Must return >0 or -errno if it changed dev->features itself.
1247  *
1248  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1249  *		      struct net_device *dev,
1250  *		      const unsigned char *addr, u16 vid, u16 flags,
1251  *		      struct netlink_ext_ack *extack);
1252  *	Adds an FDB entry to dev for addr.
1253  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1254  *		      struct net_device *dev,
1255  *		      const unsigned char *addr, u16 vid)
1256  *	Deletes the FDB entry from dev corresponding to addr.
1257  * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev,
1258  *			   struct netlink_ext_ack *extack);
1259  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1260  *		       struct net_device *dev, struct net_device *filter_dev,
1261  *		       int *idx)
1262  *	Used to add FDB entries to dump requests. Implementers should add
1263  *	entries to skb and update idx with the number of entries.
1264  *
1265  * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[],
1266  *		      u16 nlmsg_flags, struct netlink_ext_ack *extack);
1267  *	Adds an MDB entry to dev.
1268  * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[],
1269  *		      struct netlink_ext_ack *extack);
1270  *	Deletes the MDB entry from dev.
1271  * int (*ndo_mdb_del_bulk)(struct net_device *dev, struct nlattr *tb[],
1272  *			   struct netlink_ext_ack *extack);
1273  *	Bulk deletes MDB entries from dev.
1274  * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb,
1275  *		       struct netlink_callback *cb);
1276  *	Dumps MDB entries from dev. The first argument (marker) in the netlink
1277  *	callback is used by core rtnetlink code.
1278  *
1279  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1280  *			     u16 flags, struct netlink_ext_ack *extack)
1281  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1282  *			     struct net_device *dev, u32 filter_mask,
1283  *			     int nlflags)
1284  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1285  *			     u16 flags);
1286  *
1287  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1288  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1289  *	which do not represent real hardware may define this to allow their
1290  *	userspace components to manage their virtual carrier state. Devices
1291  *	that determine carrier state from physical hardware properties (eg
1292  *	network cables) or protocol-dependent mechanisms (eg
1293  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1294  *
1295  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1296  *			       struct netdev_phys_item_id *ppid);
1297  *	Called to get ID of physical port of this device. If driver does
1298  *	not implement this, it is assumed that the hw is not able to have
1299  *	multiple net devices on single physical port.
1300  *
1301  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1302  *				 struct netdev_phys_item_id *ppid)
1303  *	Called to get the parent ID of the physical port of this device.
1304  *
1305  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1306  *				 struct net_device *dev)
1307  *	Called by upper layer devices to accelerate switching or other
1308  *	station functionality into hardware. 'pdev is the lowerdev
1309  *	to use for the offload and 'dev' is the net device that will
1310  *	back the offload. Returns a pointer to the private structure
1311  *	the upper layer will maintain.
1312  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1313  *	Called by upper layer device to delete the station created
1314  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1315  *	the station and priv is the structure returned by the add
1316  *	operation.
1317  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1318  *			     int queue_index, u32 maxrate);
1319  *	Called when a user wants to set a max-rate limitation of specific
1320  *	TX queue.
1321  * int (*ndo_get_iflink)(const struct net_device *dev);
1322  *	Called to get the iflink value of this device.
1323  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1324  *	This function is used to get egress tunnel information for given skb.
1325  *	This is useful for retrieving outer tunnel header parameters while
1326  *	sampling packet.
1327  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1328  *	This function is used to specify the headroom that the skb must
1329  *	consider when allocation skb during packet reception. Setting
1330  *	appropriate rx headroom value allows avoiding skb head copy on
1331  *	forward. Setting a negative value resets the rx headroom to the
1332  *	default value.
1333  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1334  *	This function is used to set or query state related to XDP on the
1335  *	netdevice and manage BPF offload. See definition of
1336  *	enum bpf_netdev_command for details.
1337  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1338  *			u32 flags);
1339  *	This function is used to submit @n XDP packets for transmit on a
1340  *	netdevice. Returns number of frames successfully transmitted, frames
1341  *	that got dropped are freed/returned via xdp_return_frame().
1342  *	Returns negative number, means general error invoking ndo, meaning
1343  *	no frames were xmit'ed and core-caller will free all frames.
1344  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1345  *					        struct xdp_buff *xdp);
1346  *      Get the xmit slave of master device based on the xdp_buff.
1347  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1348  *      This function is used to wake up the softirq, ksoftirqd or kthread
1349  *	responsible for sending and/or receiving packets on a specific
1350  *	queue id bound to an AF_XDP socket. The flags field specifies if
1351  *	only RX, only Tx, or both should be woken up using the flags
1352  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1353  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm_kern *p,
1354  *			 int cmd);
1355  *	Add, change, delete or get information on an IPv4 tunnel.
1356  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1357  *	If a device is paired with a peer device, return the peer instance.
1358  *	The caller must be under RCU read context.
1359  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1360  *     Get the forwarding path to reach the real device from the HW destination address
1361  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1362  *			     const struct skb_shared_hwtstamps *hwtstamps,
1363  *			     bool cycles);
1364  *	Get hardware timestamp based on normal/adjustable time or free running
1365  *	cycle counter. This function is required if physical clock supports a
1366  *	free running cycle counter.
1367  *
1368  * int (*ndo_hwtstamp_get)(struct net_device *dev,
1369  *			   struct kernel_hwtstamp_config *kernel_config);
1370  *	Get the currently configured hardware timestamping parameters for the
1371  *	NIC device.
1372  *
1373  * int (*ndo_hwtstamp_set)(struct net_device *dev,
1374  *			   struct kernel_hwtstamp_config *kernel_config,
1375  *			   struct netlink_ext_ack *extack);
1376  *	Change the hardware timestamping parameters for NIC device.
1377  */
1378 struct net_device_ops {
1379 	int			(*ndo_init)(struct net_device *dev);
1380 	void			(*ndo_uninit)(struct net_device *dev);
1381 	int			(*ndo_open)(struct net_device *dev);
1382 	int			(*ndo_stop)(struct net_device *dev);
1383 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1384 						  struct net_device *dev);
1385 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1386 						      struct net_device *dev,
1387 						      netdev_features_t features);
1388 	u16			(*ndo_select_queue)(struct net_device *dev,
1389 						    struct sk_buff *skb,
1390 						    struct net_device *sb_dev);
1391 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1392 						       int flags);
1393 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1394 	int			(*ndo_set_mac_address)(struct net_device *dev,
1395 						       void *addr);
1396 	int			(*ndo_validate_addr)(struct net_device *dev);
1397 	int			(*ndo_do_ioctl)(struct net_device *dev,
1398 					        struct ifreq *ifr, int cmd);
1399 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1400 						 struct ifreq *ifr, int cmd);
1401 	int			(*ndo_siocbond)(struct net_device *dev,
1402 						struct ifreq *ifr, int cmd);
1403 	int			(*ndo_siocwandev)(struct net_device *dev,
1404 						  struct if_settings *ifs);
1405 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1406 						      struct ifreq *ifr,
1407 						      void __user *data, int cmd);
1408 	int			(*ndo_set_config)(struct net_device *dev,
1409 					          struct ifmap *map);
1410 	int			(*ndo_change_mtu)(struct net_device *dev,
1411 						  int new_mtu);
1412 	int			(*ndo_neigh_setup)(struct net_device *dev,
1413 						   struct neigh_parms *);
1414 	void			(*ndo_tx_timeout) (struct net_device *dev,
1415 						   unsigned int txqueue);
1416 
1417 	void			(*ndo_get_stats64)(struct net_device *dev,
1418 						   struct rtnl_link_stats64 *storage);
1419 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1420 	int			(*ndo_get_offload_stats)(int attr_id,
1421 							 const struct net_device *dev,
1422 							 void *attr_data);
1423 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1424 
1425 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1426 						       __be16 proto, u16 vid);
1427 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1428 						        __be16 proto, u16 vid);
1429 #ifdef CONFIG_NET_POLL_CONTROLLER
1430 	void                    (*ndo_poll_controller)(struct net_device *dev);
1431 	int			(*ndo_netpoll_setup)(struct net_device *dev);
1432 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1433 #endif
1434 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1435 						  int queue, u8 *mac);
1436 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1437 						   int queue, u16 vlan,
1438 						   u8 qos, __be16 proto);
1439 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1440 						   int vf, int min_tx_rate,
1441 						   int max_tx_rate);
1442 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1443 						       int vf, bool setting);
1444 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1445 						    int vf, bool setting);
1446 	int			(*ndo_get_vf_config)(struct net_device *dev,
1447 						     int vf,
1448 						     struct ifla_vf_info *ivf);
1449 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1450 							 int vf, int link_state);
1451 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1452 						    int vf,
1453 						    struct ifla_vf_stats
1454 						    *vf_stats);
1455 	int			(*ndo_set_vf_port)(struct net_device *dev,
1456 						   int vf,
1457 						   struct nlattr *port[]);
1458 	int			(*ndo_get_vf_port)(struct net_device *dev,
1459 						   int vf, struct sk_buff *skb);
1460 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1461 						   int vf,
1462 						   struct ifla_vf_guid *node_guid,
1463 						   struct ifla_vf_guid *port_guid);
1464 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1465 						   int vf, u64 guid,
1466 						   int guid_type);
1467 	int			(*ndo_set_vf_rss_query_en)(
1468 						   struct net_device *dev,
1469 						   int vf, bool setting);
1470 	int			(*ndo_setup_tc)(struct net_device *dev,
1471 						enum tc_setup_type type,
1472 						void *type_data);
1473 #if IS_ENABLED(CONFIG_FCOE)
1474 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1475 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1476 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1477 						      u16 xid,
1478 						      struct scatterlist *sgl,
1479 						      unsigned int sgc);
1480 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1481 						     u16 xid);
1482 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1483 						       u16 xid,
1484 						       struct scatterlist *sgl,
1485 						       unsigned int sgc);
1486 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1487 							struct netdev_fcoe_hbainfo *hbainfo);
1488 #endif
1489 
1490 #if IS_ENABLED(CONFIG_LIBFCOE)
1491 #define NETDEV_FCOE_WWNN 0
1492 #define NETDEV_FCOE_WWPN 1
1493 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1494 						    u64 *wwn, int type);
1495 #endif
1496 
1497 #ifdef CONFIG_RFS_ACCEL
1498 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1499 						     const struct sk_buff *skb,
1500 						     u16 rxq_index,
1501 						     u32 flow_id);
1502 #endif
1503 	int			(*ndo_add_slave)(struct net_device *dev,
1504 						 struct net_device *slave_dev,
1505 						 struct netlink_ext_ack *extack);
1506 	int			(*ndo_del_slave)(struct net_device *dev,
1507 						 struct net_device *slave_dev);
1508 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1509 						      struct sk_buff *skb,
1510 						      bool all_slaves);
1511 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1512 							struct sock *sk);
1513 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1514 						    netdev_features_t features);
1515 	int			(*ndo_set_features)(struct net_device *dev,
1516 						    netdev_features_t features);
1517 	int			(*ndo_neigh_construct)(struct net_device *dev,
1518 						       struct neighbour *n);
1519 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1520 						     struct neighbour *n);
1521 
1522 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1523 					       struct nlattr *tb[],
1524 					       struct net_device *dev,
1525 					       const unsigned char *addr,
1526 					       u16 vid,
1527 					       u16 flags,
1528 					       struct netlink_ext_ack *extack);
1529 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1530 					       struct nlattr *tb[],
1531 					       struct net_device *dev,
1532 					       const unsigned char *addr,
1533 					       u16 vid, struct netlink_ext_ack *extack);
1534 	int			(*ndo_fdb_del_bulk)(struct nlmsghdr *nlh,
1535 						    struct net_device *dev,
1536 						    struct netlink_ext_ack *extack);
1537 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1538 						struct netlink_callback *cb,
1539 						struct net_device *dev,
1540 						struct net_device *filter_dev,
1541 						int *idx);
1542 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1543 					       struct nlattr *tb[],
1544 					       struct net_device *dev,
1545 					       const unsigned char *addr,
1546 					       u16 vid, u32 portid, u32 seq,
1547 					       struct netlink_ext_ack *extack);
1548 	int			(*ndo_mdb_add)(struct net_device *dev,
1549 					       struct nlattr *tb[],
1550 					       u16 nlmsg_flags,
1551 					       struct netlink_ext_ack *extack);
1552 	int			(*ndo_mdb_del)(struct net_device *dev,
1553 					       struct nlattr *tb[],
1554 					       struct netlink_ext_ack *extack);
1555 	int			(*ndo_mdb_del_bulk)(struct net_device *dev,
1556 						    struct nlattr *tb[],
1557 						    struct netlink_ext_ack *extack);
1558 	int			(*ndo_mdb_dump)(struct net_device *dev,
1559 						struct sk_buff *skb,
1560 						struct netlink_callback *cb);
1561 	int			(*ndo_mdb_get)(struct net_device *dev,
1562 					       struct nlattr *tb[], u32 portid,
1563 					       u32 seq,
1564 					       struct netlink_ext_ack *extack);
1565 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1566 						      struct nlmsghdr *nlh,
1567 						      u16 flags,
1568 						      struct netlink_ext_ack *extack);
1569 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1570 						      u32 pid, u32 seq,
1571 						      struct net_device *dev,
1572 						      u32 filter_mask,
1573 						      int nlflags);
1574 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1575 						      struct nlmsghdr *nlh,
1576 						      u16 flags);
1577 	int			(*ndo_change_carrier)(struct net_device *dev,
1578 						      bool new_carrier);
1579 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1580 							struct netdev_phys_item_id *ppid);
1581 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1582 							  struct netdev_phys_item_id *ppid);
1583 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1584 							  char *name, size_t len);
1585 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1586 							struct net_device *dev);
1587 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1588 							void *priv);
1589 
1590 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1591 						      int queue_index,
1592 						      u32 maxrate);
1593 	int			(*ndo_get_iflink)(const struct net_device *dev);
1594 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1595 						       struct sk_buff *skb);
1596 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1597 						       int needed_headroom);
1598 	int			(*ndo_bpf)(struct net_device *dev,
1599 					   struct netdev_bpf *bpf);
1600 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1601 						struct xdp_frame **xdp,
1602 						u32 flags);
1603 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1604 							  struct xdp_buff *xdp);
1605 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1606 						  u32 queue_id, u32 flags);
1607 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1608 						  struct ip_tunnel_parm_kern *p,
1609 						  int cmd);
1610 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1611 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1612                                                          struct net_device_path *path);
1613 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1614 						  const struct skb_shared_hwtstamps *hwtstamps,
1615 						  bool cycles);
1616 	int			(*ndo_hwtstamp_get)(struct net_device *dev,
1617 						    struct kernel_hwtstamp_config *kernel_config);
1618 	int			(*ndo_hwtstamp_set)(struct net_device *dev,
1619 						    struct kernel_hwtstamp_config *kernel_config,
1620 						    struct netlink_ext_ack *extack);
1621 
1622 #if IS_ENABLED(CONFIG_NET_SHAPER)
1623 	/**
1624 	 * @net_shaper_ops: Device shaping offload operations
1625 	 * see include/net/net_shapers.h
1626 	 */
1627 	const struct net_shaper_ops *net_shaper_ops;
1628 #endif
1629 };
1630 
1631 /**
1632  * enum netdev_priv_flags - &struct net_device priv_flags
1633  *
1634  * These are the &struct net_device, they are only set internally
1635  * by drivers and used in the kernel. These flags are invisible to
1636  * userspace; this means that the order of these flags can change
1637  * during any kernel release.
1638  *
1639  * You should add bitfield booleans after either net_device::priv_flags
1640  * (hotpath) or ::threaded (slowpath) instead of extending these flags.
1641  *
1642  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1643  * @IFF_EBRIDGE: Ethernet bridging device
1644  * @IFF_BONDING: bonding master or slave
1645  * @IFF_ISATAP: ISATAP interface (RFC4214)
1646  * @IFF_WAN_HDLC: WAN HDLC device
1647  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1648  *	release skb->dst
1649  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1650  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1651  * @IFF_MACVLAN_PORT: device used as macvlan port
1652  * @IFF_BRIDGE_PORT: device used as bridge port
1653  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1654  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1655  * @IFF_UNICAST_FLT: Supports unicast filtering
1656  * @IFF_TEAM_PORT: device used as team port
1657  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1658  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1659  *	change when it's running
1660  * @IFF_MACVLAN: Macvlan device
1661  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1662  *	underlying stacked devices
1663  * @IFF_L3MDEV_MASTER: device is an L3 master device
1664  * @IFF_NO_QUEUE: device can run without qdisc attached
1665  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1666  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1667  * @IFF_TEAM: device is a team device
1668  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1669  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1670  *	entity (i.e. the master device for bridged veth)
1671  * @IFF_MACSEC: device is a MACsec device
1672  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1673  * @IFF_FAILOVER: device is a failover master device
1674  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1675  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1676  * @IFF_NO_ADDRCONF: prevent ipv6 addrconf
1677  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1678  *	skb_headlen(skb) == 0 (data starts from frag0)
1679  */
1680 enum netdev_priv_flags {
1681 	IFF_802_1Q_VLAN			= 1<<0,
1682 	IFF_EBRIDGE			= 1<<1,
1683 	IFF_BONDING			= 1<<2,
1684 	IFF_ISATAP			= 1<<3,
1685 	IFF_WAN_HDLC			= 1<<4,
1686 	IFF_XMIT_DST_RELEASE		= 1<<5,
1687 	IFF_DONT_BRIDGE			= 1<<6,
1688 	IFF_DISABLE_NETPOLL		= 1<<7,
1689 	IFF_MACVLAN_PORT		= 1<<8,
1690 	IFF_BRIDGE_PORT			= 1<<9,
1691 	IFF_OVS_DATAPATH		= 1<<10,
1692 	IFF_TX_SKB_SHARING		= 1<<11,
1693 	IFF_UNICAST_FLT			= 1<<12,
1694 	IFF_TEAM_PORT			= 1<<13,
1695 	IFF_SUPP_NOFCS			= 1<<14,
1696 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1697 	IFF_MACVLAN			= 1<<16,
1698 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1699 	IFF_L3MDEV_MASTER		= 1<<18,
1700 	IFF_NO_QUEUE			= 1<<19,
1701 	IFF_OPENVSWITCH			= 1<<20,
1702 	IFF_L3MDEV_SLAVE		= 1<<21,
1703 	IFF_TEAM			= 1<<22,
1704 	IFF_RXFH_CONFIGURED		= 1<<23,
1705 	IFF_PHONY_HEADROOM		= 1<<24,
1706 	IFF_MACSEC			= 1<<25,
1707 	IFF_NO_RX_HANDLER		= 1<<26,
1708 	IFF_FAILOVER			= 1<<27,
1709 	IFF_FAILOVER_SLAVE		= 1<<28,
1710 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1711 	IFF_NO_ADDRCONF			= BIT_ULL(30),
1712 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1713 };
1714 
1715 /* Specifies the type of the struct net_device::ml_priv pointer */
1716 enum netdev_ml_priv_type {
1717 	ML_PRIV_NONE,
1718 	ML_PRIV_CAN,
1719 };
1720 
1721 enum netdev_stat_type {
1722 	NETDEV_PCPU_STAT_NONE,
1723 	NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */
1724 	NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */
1725 	NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */
1726 };
1727 
1728 enum netdev_reg_state {
1729 	NETREG_UNINITIALIZED = 0,
1730 	NETREG_REGISTERED,	/* completed register_netdevice */
1731 	NETREG_UNREGISTERING,	/* called unregister_netdevice */
1732 	NETREG_UNREGISTERED,	/* completed unregister todo */
1733 	NETREG_RELEASED,	/* called free_netdev */
1734 	NETREG_DUMMY,		/* dummy device for NAPI poll */
1735 };
1736 
1737 /**
1738  *	struct net_device - The DEVICE structure.
1739  *
1740  *	Actually, this whole structure is a big mistake.  It mixes I/O
1741  *	data with strictly "high-level" data, and it has to know about
1742  *	almost every data structure used in the INET module.
1743  *
1744  *	@priv_flags:	flags invisible to userspace defined as bits, see
1745  *			enum netdev_priv_flags for the definitions
1746  *	@lltx:		device supports lockless Tx. Deprecated for real HW
1747  *			drivers. Mainly used by logical interfaces, such as
1748  *			bonding and tunnels
1749  *
1750  *	@name:	This is the first field of the "visible" part of this structure
1751  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1752  *		of the interface.
1753  *
1754  *	@name_node:	Name hashlist node
1755  *	@ifalias:	SNMP alias
1756  *	@mem_end:	Shared memory end
1757  *	@mem_start:	Shared memory start
1758  *	@base_addr:	Device I/O address
1759  *	@irq:		Device IRQ number
1760  *
1761  *	@state:		Generic network queuing layer state, see netdev_state_t
1762  *	@dev_list:	The global list of network devices
1763  *	@napi_list:	List entry used for polling NAPI devices
1764  *	@unreg_list:	List entry  when we are unregistering the
1765  *			device; see the function unregister_netdev
1766  *	@close_list:	List entry used when we are closing the device
1767  *	@ptype_all:     Device-specific packet handlers for all protocols
1768  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1769  *
1770  *	@adj_list:	Directly linked devices, like slaves for bonding
1771  *	@features:	Currently active device features
1772  *	@hw_features:	User-changeable features
1773  *
1774  *	@wanted_features:	User-requested features
1775  *	@vlan_features:		Mask of features inheritable by VLAN devices
1776  *
1777  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1778  *				This field indicates what encapsulation
1779  *				offloads the hardware is capable of doing,
1780  *				and drivers will need to set them appropriately.
1781  *
1782  *	@mpls_features:	Mask of features inheritable by MPLS
1783  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1784  *
1785  *	@ifindex:	interface index
1786  *	@group:		The group the device belongs to
1787  *
1788  *	@stats:		Statistics struct, which was left as a legacy, use
1789  *			rtnl_link_stats64 instead
1790  *
1791  *	@core_stats:	core networking counters,
1792  *			do not use this in drivers
1793  *	@carrier_up_count:	Number of times the carrier has been up
1794  *	@carrier_down_count:	Number of times the carrier has been down
1795  *
1796  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1797  *				instead of ioctl,
1798  *				see <net/iw_handler.h> for details.
1799  *
1800  *	@netdev_ops:	Includes several pointers to callbacks,
1801  *			if one wants to override the ndo_*() functions
1802  *	@xdp_metadata_ops:	Includes pointers to XDP metadata callbacks.
1803  *	@xsk_tx_metadata_ops:	Includes pointers to AF_XDP TX metadata callbacks.
1804  *	@ethtool_ops:	Management operations
1805  *	@l3mdev_ops:	Layer 3 master device operations
1806  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1807  *			discovery handling. Necessary for e.g. 6LoWPAN.
1808  *	@xfrmdev_ops:	Transformation offload operations
1809  *	@tlsdev_ops:	Transport Layer Security offload operations
1810  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1811  *			of Layer 2 headers.
1812  *
1813  *	@flags:		Interface flags (a la BSD)
1814  *	@xdp_features:	XDP capability supported by the device
1815  *	@gflags:	Global flags ( kept as legacy )
1816  *	@priv_len:	Size of the ->priv flexible array
1817  *	@priv:		Flexible array containing private data
1818  *	@operstate:	RFC2863 operstate
1819  *	@link_mode:	Mapping policy to operstate
1820  *	@if_port:	Selectable AUI, TP, ...
1821  *	@dma:		DMA channel
1822  *	@mtu:		Interface MTU value
1823  *	@min_mtu:	Interface Minimum MTU value
1824  *	@max_mtu:	Interface Maximum MTU value
1825  *	@type:		Interface hardware type
1826  *	@hard_header_len: Maximum hardware header length.
1827  *	@min_header_len:  Minimum hardware header length
1828  *
1829  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1830  *			  cases can this be guaranteed
1831  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1832  *			  cases can this be guaranteed. Some cases also use
1833  *			  LL_MAX_HEADER instead to allocate the skb
1834  *
1835  *	interface address info:
1836  *
1837  * 	@perm_addr:		Permanent hw address
1838  * 	@addr_assign_type:	Hw address assignment type
1839  * 	@addr_len:		Hardware address length
1840  *	@upper_level:		Maximum depth level of upper devices.
1841  *	@lower_level:		Maximum depth level of lower devices.
1842  *	@neigh_priv_len:	Used in neigh_alloc()
1843  * 	@dev_id:		Used to differentiate devices that share
1844  * 				the same link layer address
1845  * 	@dev_port:		Used to differentiate devices that share
1846  * 				the same function
1847  *	@addr_list_lock:	XXX: need comments on this one
1848  *	@name_assign_type:	network interface name assignment type
1849  *	@uc_promisc:		Counter that indicates promiscuous mode
1850  *				has been enabled due to the need to listen to
1851  *				additional unicast addresses in a device that
1852  *				does not implement ndo_set_rx_mode()
1853  *	@uc:			unicast mac addresses
1854  *	@mc:			multicast mac addresses
1855  *	@dev_addrs:		list of device hw addresses
1856  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1857  *	@promiscuity:		Number of times the NIC is told to work in
1858  *				promiscuous mode; if it becomes 0 the NIC will
1859  *				exit promiscuous mode
1860  *	@allmulti:		Counter, enables or disables allmulticast mode
1861  *
1862  *	@vlan_info:	VLAN info
1863  *	@dsa_ptr:	dsa specific data
1864  *	@tipc_ptr:	TIPC specific data
1865  *	@atalk_ptr:	AppleTalk link
1866  *	@ip_ptr:	IPv4 specific data
1867  *	@ip6_ptr:	IPv6 specific data
1868  *	@ax25_ptr:	AX.25 specific data
1869  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1870  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1871  *			 device struct
1872  *	@mpls_ptr:	mpls_dev struct pointer
1873  *	@mctp_ptr:	MCTP specific data
1874  *
1875  *	@dev_addr:	Hw address (before bcast,
1876  *			because most packets are unicast)
1877  *
1878  *	@_rx:			Array of RX queues
1879  *	@num_rx_queues:		Number of RX queues
1880  *				allocated at register_netdev() time
1881  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1882  *	@xdp_prog:		XDP sockets filter program pointer
1883  *
1884  *	@rx_handler:		handler for received packets
1885  *	@rx_handler_data: 	XXX: need comments on this one
1886  *	@tcx_ingress:		BPF & clsact qdisc specific data for ingress processing
1887  *	@ingress_queue:		XXX: need comments on this one
1888  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1889  *	@broadcast:		hw bcast address
1890  *
1891  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1892  *			indexed by RX queue number. Assigned by driver.
1893  *			This must only be set if the ndo_rx_flow_steer
1894  *			operation is defined
1895  *	@index_hlist:		Device index hash chain
1896  *
1897  *	@_tx:			Array of TX queues
1898  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1899  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1900  *	@qdisc:			Root qdisc from userspace point of view
1901  *	@tx_queue_len:		Max frames per queue allowed
1902  *	@tx_global_lock: 	XXX: need comments on this one
1903  *	@xdp_bulkq:		XDP device bulk queue
1904  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1905  *
1906  *	@xps_maps:	XXX: need comments on this one
1907  *	@tcx_egress:		BPF & clsact qdisc specific data for egress processing
1908  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1909  *	@qdisc_hash:		qdisc hash table
1910  *	@watchdog_timeo:	Represents the timeout that is used by
1911  *				the watchdog (see dev_watchdog())
1912  *	@watchdog_timer:	List of timers
1913  *
1914  *	@proto_down_reason:	reason a netdev interface is held down
1915  *	@pcpu_refcnt:		Number of references to this device
1916  *	@dev_refcnt:		Number of references to this device
1917  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1918  *	@todo_list:		Delayed register/unregister
1919  *	@link_watch_list:	XXX: need comments on this one
1920  *
1921  *	@reg_state:		Register/unregister state machine
1922  *	@dismantle:		Device is going to be freed
1923  *	@rtnl_link_state:	This enum represents the phases of creating
1924  *				a new link
1925  *
1926  *	@needs_free_netdev:	Should unregister perform free_netdev?
1927  *	@priv_destructor:	Called from unregister
1928  *	@npinfo:		XXX: need comments on this one
1929  * 	@nd_net:		Network namespace this network device is inside
1930  *
1931  * 	@ml_priv:	Mid-layer private
1932  *	@ml_priv_type:  Mid-layer private type
1933  *
1934  *	@pcpu_stat_type:	Type of device statistics which the core should
1935  *				allocate/free: none, lstats, tstats, dstats. none
1936  *				means the driver is handling statistics allocation/
1937  *				freeing internally.
1938  *	@lstats:		Loopback statistics: packets, bytes
1939  *	@tstats:		Tunnel statistics: RX/TX packets, RX/TX bytes
1940  *	@dstats:		Dummy statistics: RX/TX/drop packets, RX/TX bytes
1941  *
1942  *	@garp_port:	GARP
1943  *	@mrp_port:	MRP
1944  *
1945  *	@dm_private:	Drop monitor private
1946  *
1947  *	@dev:		Class/net/name entry
1948  *	@sysfs_groups:	Space for optional device, statistics and wireless
1949  *			sysfs groups
1950  *
1951  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1952  *	@rtnl_link_ops:	Rtnl_link_ops
1953  *	@stat_ops:	Optional ops for queue-aware statistics
1954  *	@queue_mgmt_ops:	Optional ops for queue management
1955  *
1956  *	@gso_max_size:	Maximum size of generic segmentation offload
1957  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
1958  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1959  *			NIC for GSO
1960  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
1961  * 	@gso_ipv4_max_size:	Maximum size of generic segmentation offload,
1962  * 				for IPv4.
1963  *
1964  *	@dcbnl_ops:	Data Center Bridging netlink ops
1965  *	@num_tc:	Number of traffic classes in the net device
1966  *	@tc_to_txq:	XXX: need comments on this one
1967  *	@prio_tc_map:	XXX: need comments on this one
1968  *
1969  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1970  *
1971  *	@priomap:	XXX: need comments on this one
1972  *	@link_topo:	Physical link topology tracking attached PHYs
1973  *	@phydev:	Physical device may attach itself
1974  *			for hardware timestamping
1975  *	@sfp_bus:	attached &struct sfp_bus structure.
1976  *
1977  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1978  *
1979  *	@proto_down:	protocol port state information can be sent to the
1980  *			switch driver and used to set the phys state of the
1981  *			switch port.
1982  *
1983  *	@threaded:	napi threaded mode is enabled
1984  *
1985  *	@see_all_hwtstamp_requests: device wants to see calls to
1986  *			ndo_hwtstamp_set() for all timestamp requests
1987  *			regardless of source, even if those aren't
1988  *			HWTSTAMP_SOURCE_NETDEV
1989  *	@change_proto_down: device supports setting carrier via IFLA_PROTO_DOWN
1990  *	@netns_local: interface can't change network namespaces
1991  *	@fcoe_mtu:	device supports maximum FCoE MTU, 2158 bytes
1992  *
1993  *	@net_notifier_list:	List of per-net netdev notifier block
1994  *				that follow this device when it is moved
1995  *				to another network namespace.
1996  *
1997  *	@macsec_ops:    MACsec offloading ops
1998  *
1999  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
2000  *				offload capabilities of the device
2001  *	@udp_tunnel_nic:	UDP tunnel offload state
2002  *	@ethtool:	ethtool related state
2003  *	@xdp_state:		stores info on attached XDP BPF programs
2004  *
2005  *	@nested_level:	Used as a parameter of spin_lock_nested() of
2006  *			dev->addr_list_lock.
2007  *	@unlink_list:	As netif_addr_lock() can be called recursively,
2008  *			keep a list of interfaces to be deleted.
2009  *	@gro_max_size:	Maximum size of aggregated packet in generic
2010  *			receive offload (GRO)
2011  * 	@gro_ipv4_max_size:	Maximum size of aggregated packet in generic
2012  * 				receive offload (GRO), for IPv4.
2013  *	@xdp_zc_max_segs:	Maximum number of segments supported by AF_XDP
2014  *				zero copy driver
2015  *
2016  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
2017  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
2018  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
2019  *	@dev_registered_tracker:	tracker for reference held while
2020  *					registered
2021  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
2022  *
2023  *	@devlink_port:	Pointer to related devlink port structure.
2024  *			Assigned by a driver before netdev registration using
2025  *			SET_NETDEV_DEVLINK_PORT macro. This pointer is static
2026  *			during the time netdevice is registered.
2027  *
2028  *	@dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem,
2029  *		   where the clock is recovered.
2030  *
2031  *	@max_pacing_offload_horizon: max EDT offload horizon in nsec.
2032  *	@napi_config: An array of napi_config structures containing per-NAPI
2033  *		      settings.
2034  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
2035  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
2036  *				allow to avoid NIC hard IRQ, on busy queues.
2037  *
2038  *	@neighbours:	List heads pointing to this device's neighbours'
2039  *			dev_list, one per address-family.
2040  *
2041  *	FIXME: cleanup struct net_device such that network protocol info
2042  *	moves out.
2043  */
2044 
2045 struct net_device {
2046 	/* Cacheline organization can be found documented in
2047 	 * Documentation/networking/net_cachelines/net_device.rst.
2048 	 * Please update the document when adding new fields.
2049 	 */
2050 
2051 	/* TX read-mostly hotpath */
2052 	__cacheline_group_begin(net_device_read_tx);
2053 	struct_group(priv_flags_fast,
2054 		unsigned long		priv_flags:32;
2055 		unsigned long		lltx:1;
2056 	);
2057 	const struct net_device_ops *netdev_ops;
2058 	const struct header_ops *header_ops;
2059 	struct netdev_queue	*_tx;
2060 	netdev_features_t	gso_partial_features;
2061 	unsigned int		real_num_tx_queues;
2062 	unsigned int		gso_max_size;
2063 	unsigned int		gso_ipv4_max_size;
2064 	u16			gso_max_segs;
2065 	s16			num_tc;
2066 	/* Note : dev->mtu is often read without holding a lock.
2067 	 * Writers usually hold RTNL.
2068 	 * It is recommended to use READ_ONCE() to annotate the reads,
2069 	 * and to use WRITE_ONCE() to annotate the writes.
2070 	 */
2071 	unsigned int		mtu;
2072 	unsigned short		needed_headroom;
2073 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2074 #ifdef CONFIG_XPS
2075 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2076 #endif
2077 #ifdef CONFIG_NETFILTER_EGRESS
2078 	struct nf_hook_entries __rcu *nf_hooks_egress;
2079 #endif
2080 #ifdef CONFIG_NET_XGRESS
2081 	struct bpf_mprog_entry __rcu *tcx_egress;
2082 #endif
2083 	__cacheline_group_end(net_device_read_tx);
2084 
2085 	/* TXRX read-mostly hotpath */
2086 	__cacheline_group_begin(net_device_read_txrx);
2087 	union {
2088 		struct pcpu_lstats __percpu		*lstats;
2089 		struct pcpu_sw_netstats __percpu	*tstats;
2090 		struct pcpu_dstats __percpu		*dstats;
2091 	};
2092 	unsigned long		state;
2093 	unsigned int		flags;
2094 	unsigned short		hard_header_len;
2095 	netdev_features_t	features;
2096 	struct inet6_dev __rcu	*ip6_ptr;
2097 	__cacheline_group_end(net_device_read_txrx);
2098 
2099 	/* RX read-mostly hotpath */
2100 	__cacheline_group_begin(net_device_read_rx);
2101 	struct bpf_prog __rcu	*xdp_prog;
2102 	struct list_head	ptype_specific;
2103 	int			ifindex;
2104 	unsigned int		real_num_rx_queues;
2105 	struct netdev_rx_queue	*_rx;
2106 	unsigned int		gro_max_size;
2107 	unsigned int		gro_ipv4_max_size;
2108 	rx_handler_func_t __rcu	*rx_handler;
2109 	void __rcu		*rx_handler_data;
2110 	possible_net_t			nd_net;
2111 #ifdef CONFIG_NETPOLL
2112 	struct netpoll_info __rcu	*npinfo;
2113 #endif
2114 #ifdef CONFIG_NET_XGRESS
2115 	struct bpf_mprog_entry __rcu *tcx_ingress;
2116 #endif
2117 	__cacheline_group_end(net_device_read_rx);
2118 
2119 	char			name[IFNAMSIZ];
2120 	struct netdev_name_node	*name_node;
2121 	struct dev_ifalias	__rcu *ifalias;
2122 	/*
2123 	 *	I/O specific fields
2124 	 *	FIXME: Merge these and struct ifmap into one
2125 	 */
2126 	unsigned long		mem_end;
2127 	unsigned long		mem_start;
2128 	unsigned long		base_addr;
2129 
2130 	/*
2131 	 *	Some hardware also needs these fields (state,dev_list,
2132 	 *	napi_list,unreg_list,close_list) but they are not
2133 	 *	part of the usual set specified in Space.c.
2134 	 */
2135 
2136 
2137 	struct list_head	dev_list;
2138 	struct list_head	napi_list;
2139 	struct list_head	unreg_list;
2140 	struct list_head	close_list;
2141 	struct list_head	ptype_all;
2142 
2143 	struct {
2144 		struct list_head upper;
2145 		struct list_head lower;
2146 	} adj_list;
2147 
2148 	/* Read-mostly cache-line for fast-path access */
2149 	xdp_features_t		xdp_features;
2150 	const struct xdp_metadata_ops *xdp_metadata_ops;
2151 	const struct xsk_tx_metadata_ops *xsk_tx_metadata_ops;
2152 	unsigned short		gflags;
2153 
2154 	unsigned short		needed_tailroom;
2155 
2156 	netdev_features_t	hw_features;
2157 	netdev_features_t	wanted_features;
2158 	netdev_features_t	vlan_features;
2159 	netdev_features_t	hw_enc_features;
2160 	netdev_features_t	mpls_features;
2161 
2162 	unsigned int		min_mtu;
2163 	unsigned int		max_mtu;
2164 	unsigned short		type;
2165 	unsigned char		min_header_len;
2166 	unsigned char		name_assign_type;
2167 
2168 	int			group;
2169 
2170 	struct net_device_stats	stats; /* not used by modern drivers */
2171 
2172 	struct net_device_core_stats __percpu *core_stats;
2173 
2174 	/* Stats to monitor link on/off, flapping */
2175 	atomic_t		carrier_up_count;
2176 	atomic_t		carrier_down_count;
2177 
2178 #ifdef CONFIG_WIRELESS_EXT
2179 	const struct iw_handler_def *wireless_handlers;
2180 #endif
2181 	const struct ethtool_ops *ethtool_ops;
2182 #ifdef CONFIG_NET_L3_MASTER_DEV
2183 	const struct l3mdev_ops	*l3mdev_ops;
2184 #endif
2185 #if IS_ENABLED(CONFIG_IPV6)
2186 	const struct ndisc_ops *ndisc_ops;
2187 #endif
2188 
2189 #ifdef CONFIG_XFRM_OFFLOAD
2190 	const struct xfrmdev_ops *xfrmdev_ops;
2191 #endif
2192 
2193 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2194 	const struct tlsdev_ops *tlsdev_ops;
2195 #endif
2196 
2197 	unsigned int		operstate;
2198 	unsigned char		link_mode;
2199 
2200 	unsigned char		if_port;
2201 	unsigned char		dma;
2202 
2203 	/* Interface address info. */
2204 	unsigned char		perm_addr[MAX_ADDR_LEN];
2205 	unsigned char		addr_assign_type;
2206 	unsigned char		addr_len;
2207 	unsigned char		upper_level;
2208 	unsigned char		lower_level;
2209 
2210 	unsigned short		neigh_priv_len;
2211 	unsigned short          dev_id;
2212 	unsigned short          dev_port;
2213 	int			irq;
2214 	u32			priv_len;
2215 
2216 	spinlock_t		addr_list_lock;
2217 
2218 	struct netdev_hw_addr_list	uc;
2219 	struct netdev_hw_addr_list	mc;
2220 	struct netdev_hw_addr_list	dev_addrs;
2221 
2222 #ifdef CONFIG_SYSFS
2223 	struct kset		*queues_kset;
2224 #endif
2225 #ifdef CONFIG_LOCKDEP
2226 	struct list_head	unlink_list;
2227 #endif
2228 	unsigned int		promiscuity;
2229 	unsigned int		allmulti;
2230 	bool			uc_promisc;
2231 #ifdef CONFIG_LOCKDEP
2232 	unsigned char		nested_level;
2233 #endif
2234 
2235 
2236 	/* Protocol-specific pointers */
2237 	struct in_device __rcu	*ip_ptr;
2238 	/** @fib_nh_head: nexthops associated with this netdev */
2239 	struct hlist_head	fib_nh_head;
2240 
2241 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2242 	struct vlan_info __rcu	*vlan_info;
2243 #endif
2244 #if IS_ENABLED(CONFIG_NET_DSA)
2245 	struct dsa_port		*dsa_ptr;
2246 #endif
2247 #if IS_ENABLED(CONFIG_TIPC)
2248 	struct tipc_bearer __rcu *tipc_ptr;
2249 #endif
2250 #if IS_ENABLED(CONFIG_ATALK)
2251 	void 			*atalk_ptr;
2252 #endif
2253 #if IS_ENABLED(CONFIG_AX25)
2254 	void			*ax25_ptr;
2255 #endif
2256 #if IS_ENABLED(CONFIG_CFG80211)
2257 	struct wireless_dev	*ieee80211_ptr;
2258 #endif
2259 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2260 	struct wpan_dev		*ieee802154_ptr;
2261 #endif
2262 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2263 	struct mpls_dev __rcu	*mpls_ptr;
2264 #endif
2265 #if IS_ENABLED(CONFIG_MCTP)
2266 	struct mctp_dev __rcu	*mctp_ptr;
2267 #endif
2268 
2269 /*
2270  * Cache lines mostly used on receive path (including eth_type_trans())
2271  */
2272 	/* Interface address info used in eth_type_trans() */
2273 	const unsigned char	*dev_addr;
2274 
2275 	unsigned int		num_rx_queues;
2276 #define GRO_LEGACY_MAX_SIZE	65536u
2277 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2278  * and shinfo->gso_segs is a 16bit field.
2279  */
2280 #define GRO_MAX_SIZE		(8 * 65535u)
2281 	unsigned int		xdp_zc_max_segs;
2282 	struct netdev_queue __rcu *ingress_queue;
2283 #ifdef CONFIG_NETFILTER_INGRESS
2284 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2285 #endif
2286 
2287 	unsigned char		broadcast[MAX_ADDR_LEN];
2288 #ifdef CONFIG_RFS_ACCEL
2289 	struct cpu_rmap		*rx_cpu_rmap;
2290 #endif
2291 	struct hlist_node	index_hlist;
2292 
2293 /*
2294  * Cache lines mostly used on transmit path
2295  */
2296 	unsigned int		num_tx_queues;
2297 	struct Qdisc __rcu	*qdisc;
2298 	unsigned int		tx_queue_len;
2299 	spinlock_t		tx_global_lock;
2300 
2301 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2302 
2303 #ifdef CONFIG_NET_SCHED
2304 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2305 #endif
2306 	/* These may be needed for future network-power-down code. */
2307 	struct timer_list	watchdog_timer;
2308 	int			watchdog_timeo;
2309 
2310 	u32                     proto_down_reason;
2311 
2312 	struct list_head	todo_list;
2313 
2314 #ifdef CONFIG_PCPU_DEV_REFCNT
2315 	int __percpu		*pcpu_refcnt;
2316 #else
2317 	refcount_t		dev_refcnt;
2318 #endif
2319 	struct ref_tracker_dir	refcnt_tracker;
2320 
2321 	struct list_head	link_watch_list;
2322 
2323 	u8 reg_state;
2324 
2325 	bool dismantle;
2326 
2327 	enum {
2328 		RTNL_LINK_INITIALIZED,
2329 		RTNL_LINK_INITIALIZING,
2330 	} rtnl_link_state:16;
2331 
2332 	bool needs_free_netdev;
2333 	void (*priv_destructor)(struct net_device *dev);
2334 
2335 	/* mid-layer private */
2336 	void				*ml_priv;
2337 	enum netdev_ml_priv_type	ml_priv_type;
2338 
2339 	enum netdev_stat_type		pcpu_stat_type:8;
2340 
2341 #if IS_ENABLED(CONFIG_GARP)
2342 	struct garp_port __rcu	*garp_port;
2343 #endif
2344 #if IS_ENABLED(CONFIG_MRP)
2345 	struct mrp_port __rcu	*mrp_port;
2346 #endif
2347 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2348 	struct dm_hw_stat_delta __rcu *dm_private;
2349 #endif
2350 	struct device		dev;
2351 	const struct attribute_group *sysfs_groups[4];
2352 	const struct attribute_group *sysfs_rx_queue_group;
2353 
2354 	const struct rtnl_link_ops *rtnl_link_ops;
2355 
2356 	const struct netdev_stat_ops *stat_ops;
2357 
2358 	const struct netdev_queue_mgmt_ops *queue_mgmt_ops;
2359 
2360 	/* for setting kernel sock attribute on TCP connection setup */
2361 #define GSO_MAX_SEGS		65535u
2362 #define GSO_LEGACY_MAX_SIZE	65536u
2363 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2364  * and shinfo->gso_segs is a 16bit field.
2365  */
2366 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2367 
2368 #define TSO_LEGACY_MAX_SIZE	65536
2369 #define TSO_MAX_SIZE		UINT_MAX
2370 	unsigned int		tso_max_size;
2371 #define TSO_MAX_SEGS		U16_MAX
2372 	u16			tso_max_segs;
2373 
2374 #ifdef CONFIG_DCB
2375 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2376 #endif
2377 	u8			prio_tc_map[TC_BITMASK + 1];
2378 
2379 #if IS_ENABLED(CONFIG_FCOE)
2380 	unsigned int		fcoe_ddp_xid;
2381 #endif
2382 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2383 	struct netprio_map __rcu *priomap;
2384 #endif
2385 	struct phy_link_topology	*link_topo;
2386 	struct phy_device	*phydev;
2387 	struct sfp_bus		*sfp_bus;
2388 	struct lock_class_key	*qdisc_tx_busylock;
2389 	bool			proto_down;
2390 	bool			threaded;
2391 
2392 	/* priv_flags_slow, ungrouped to save space */
2393 	unsigned long		see_all_hwtstamp_requests:1;
2394 	unsigned long		change_proto_down:1;
2395 	unsigned long		netns_local:1;
2396 	unsigned long		fcoe_mtu:1;
2397 
2398 	struct list_head	net_notifier_list;
2399 
2400 #if IS_ENABLED(CONFIG_MACSEC)
2401 	/* MACsec management functions */
2402 	const struct macsec_ops *macsec_ops;
2403 #endif
2404 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2405 	struct udp_tunnel_nic	*udp_tunnel_nic;
2406 
2407 	struct ethtool_netdev_state *ethtool;
2408 
2409 	/* protected by rtnl_lock */
2410 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2411 
2412 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2413 	netdevice_tracker	linkwatch_dev_tracker;
2414 	netdevice_tracker	watchdog_dev_tracker;
2415 	netdevice_tracker	dev_registered_tracker;
2416 	struct rtnl_hw_stats64	*offload_xstats_l3;
2417 
2418 	struct devlink_port	*devlink_port;
2419 
2420 #if IS_ENABLED(CONFIG_DPLL)
2421 	struct dpll_pin	__rcu	*dpll_pin;
2422 #endif
2423 #if IS_ENABLED(CONFIG_PAGE_POOL)
2424 	/** @page_pools: page pools created for this netdevice */
2425 	struct hlist_head	page_pools;
2426 #endif
2427 
2428 	/** @irq_moder: dim parameters used if IS_ENABLED(CONFIG_DIMLIB). */
2429 	struct dim_irq_moder	*irq_moder;
2430 
2431 	u64			max_pacing_offload_horizon;
2432 	struct napi_config	*napi_config;
2433 	unsigned long		gro_flush_timeout;
2434 	u32			napi_defer_hard_irqs;
2435 
2436 	/**
2437 	 * @lock: protects @net_shaper_hierarchy, feel free to use for other
2438 	 * netdev-scope protection. Ordering: take after rtnl_lock.
2439 	 */
2440 	struct mutex		lock;
2441 
2442 #if IS_ENABLED(CONFIG_NET_SHAPER)
2443 	/**
2444 	 * @net_shaper_hierarchy: data tracking the current shaper status
2445 	 *  see include/net/net_shapers.h
2446 	 */
2447 	struct net_shaper_hierarchy *net_shaper_hierarchy;
2448 #endif
2449 
2450 	struct hlist_head neighbours[NEIGH_NR_TABLES];
2451 
2452 	u8			priv[] ____cacheline_aligned
2453 				       __counted_by(priv_len);
2454 } ____cacheline_aligned;
2455 #define to_net_dev(d) container_of(d, struct net_device, dev)
2456 
2457 /*
2458  * Driver should use this to assign devlink port instance to a netdevice
2459  * before it registers the netdevice. Therefore devlink_port is static
2460  * during the netdev lifetime after it is registered.
2461  */
2462 #define SET_NETDEV_DEVLINK_PORT(dev, port)			\
2463 ({								\
2464 	WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED);	\
2465 	((dev)->devlink_port = (port));				\
2466 })
2467 
2468 static inline bool netif_elide_gro(const struct net_device *dev)
2469 {
2470 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2471 		return true;
2472 	return false;
2473 }
2474 
2475 #define	NETDEV_ALIGN		32
2476 
2477 static inline
2478 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2479 {
2480 	return dev->prio_tc_map[prio & TC_BITMASK];
2481 }
2482 
2483 static inline
2484 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2485 {
2486 	if (tc >= dev->num_tc)
2487 		return -EINVAL;
2488 
2489 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2490 	return 0;
2491 }
2492 
2493 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2494 void netdev_reset_tc(struct net_device *dev);
2495 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2496 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2497 
2498 static inline
2499 int netdev_get_num_tc(struct net_device *dev)
2500 {
2501 	return dev->num_tc;
2502 }
2503 
2504 static inline void net_prefetch(void *p)
2505 {
2506 	prefetch(p);
2507 #if L1_CACHE_BYTES < 128
2508 	prefetch((u8 *)p + L1_CACHE_BYTES);
2509 #endif
2510 }
2511 
2512 static inline void net_prefetchw(void *p)
2513 {
2514 	prefetchw(p);
2515 #if L1_CACHE_BYTES < 128
2516 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2517 #endif
2518 }
2519 
2520 void netdev_unbind_sb_channel(struct net_device *dev,
2521 			      struct net_device *sb_dev);
2522 int netdev_bind_sb_channel_queue(struct net_device *dev,
2523 				 struct net_device *sb_dev,
2524 				 u8 tc, u16 count, u16 offset);
2525 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2526 static inline int netdev_get_sb_channel(struct net_device *dev)
2527 {
2528 	return max_t(int, -dev->num_tc, 0);
2529 }
2530 
2531 static inline
2532 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2533 					 unsigned int index)
2534 {
2535 	DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues);
2536 	return &dev->_tx[index];
2537 }
2538 
2539 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2540 						    const struct sk_buff *skb)
2541 {
2542 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2543 }
2544 
2545 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2546 					    void (*f)(struct net_device *,
2547 						      struct netdev_queue *,
2548 						      void *),
2549 					    void *arg)
2550 {
2551 	unsigned int i;
2552 
2553 	for (i = 0; i < dev->num_tx_queues; i++)
2554 		f(dev, &dev->_tx[i], arg);
2555 }
2556 
2557 #define netdev_lockdep_set_classes(dev)				\
2558 {								\
2559 	static struct lock_class_key qdisc_tx_busylock_key;	\
2560 	static struct lock_class_key qdisc_xmit_lock_key;	\
2561 	static struct lock_class_key dev_addr_list_lock_key;	\
2562 	unsigned int i;						\
2563 								\
2564 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2565 	lockdep_set_class(&(dev)->addr_list_lock,		\
2566 			  &dev_addr_list_lock_key);		\
2567 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2568 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2569 				  &qdisc_xmit_lock_key);	\
2570 }
2571 
2572 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2573 		     struct net_device *sb_dev);
2574 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2575 					 struct sk_buff *skb,
2576 					 struct net_device *sb_dev);
2577 
2578 /* returns the headroom that the master device needs to take in account
2579  * when forwarding to this dev
2580  */
2581 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2582 {
2583 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2584 }
2585 
2586 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2587 {
2588 	if (dev->netdev_ops->ndo_set_rx_headroom)
2589 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2590 }
2591 
2592 /* set the device rx headroom to the dev's default */
2593 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2594 {
2595 	netdev_set_rx_headroom(dev, -1);
2596 }
2597 
2598 static inline void *netdev_get_ml_priv(struct net_device *dev,
2599 				       enum netdev_ml_priv_type type)
2600 {
2601 	if (dev->ml_priv_type != type)
2602 		return NULL;
2603 
2604 	return dev->ml_priv;
2605 }
2606 
2607 static inline void netdev_set_ml_priv(struct net_device *dev,
2608 				      void *ml_priv,
2609 				      enum netdev_ml_priv_type type)
2610 {
2611 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2612 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2613 	     dev->ml_priv_type, type);
2614 	WARN(!dev->ml_priv_type && dev->ml_priv,
2615 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2616 
2617 	dev->ml_priv = ml_priv;
2618 	dev->ml_priv_type = type;
2619 }
2620 
2621 /*
2622  * Net namespace inlines
2623  */
2624 static inline
2625 struct net *dev_net(const struct net_device *dev)
2626 {
2627 	return read_pnet(&dev->nd_net);
2628 }
2629 
2630 static inline
2631 void dev_net_set(struct net_device *dev, struct net *net)
2632 {
2633 	write_pnet(&dev->nd_net, net);
2634 }
2635 
2636 /**
2637  *	netdev_priv - access network device private data
2638  *	@dev: network device
2639  *
2640  * Get network device private data
2641  */
2642 static inline void *netdev_priv(const struct net_device *dev)
2643 {
2644 	return (void *)dev->priv;
2645 }
2646 
2647 /* Set the sysfs physical device reference for the network logical device
2648  * if set prior to registration will cause a symlink during initialization.
2649  */
2650 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2651 
2652 /* Set the sysfs device type for the network logical device to allow
2653  * fine-grained identification of different network device types. For
2654  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2655  */
2656 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2657 
2658 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
2659 			  enum netdev_queue_type type,
2660 			  struct napi_struct *napi);
2661 
2662 static inline void netif_napi_set_irq(struct napi_struct *napi, int irq)
2663 {
2664 	napi->irq = irq;
2665 }
2666 
2667 /* Default NAPI poll() weight
2668  * Device drivers are strongly advised to not use bigger value
2669  */
2670 #define NAPI_POLL_WEIGHT 64
2671 
2672 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2673 			   int (*poll)(struct napi_struct *, int), int weight);
2674 
2675 /**
2676  * netif_napi_add() - initialize a NAPI context
2677  * @dev:  network device
2678  * @napi: NAPI context
2679  * @poll: polling function
2680  *
2681  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2682  * *any* of the other NAPI-related functions.
2683  */
2684 static inline void
2685 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2686 	       int (*poll)(struct napi_struct *, int))
2687 {
2688 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2689 }
2690 
2691 static inline void
2692 netif_napi_add_tx_weight(struct net_device *dev,
2693 			 struct napi_struct *napi,
2694 			 int (*poll)(struct napi_struct *, int),
2695 			 int weight)
2696 {
2697 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2698 	netif_napi_add_weight(dev, napi, poll, weight);
2699 }
2700 
2701 /**
2702  * netif_napi_add_config - initialize a NAPI context with persistent config
2703  * @dev: network device
2704  * @napi: NAPI context
2705  * @poll: polling function
2706  * @index: the NAPI index
2707  */
2708 static inline void
2709 netif_napi_add_config(struct net_device *dev, struct napi_struct *napi,
2710 		      int (*poll)(struct napi_struct *, int), int index)
2711 {
2712 	napi->index = index;
2713 	napi->config = &dev->napi_config[index];
2714 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2715 }
2716 
2717 /**
2718  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2719  * @dev:  network device
2720  * @napi: NAPI context
2721  * @poll: polling function
2722  *
2723  * This variant of netif_napi_add() should be used from drivers using NAPI
2724  * to exclusively poll a TX queue.
2725  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2726  */
2727 static inline void netif_napi_add_tx(struct net_device *dev,
2728 				     struct napi_struct *napi,
2729 				     int (*poll)(struct napi_struct *, int))
2730 {
2731 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2732 }
2733 
2734 /**
2735  *  __netif_napi_del - remove a NAPI context
2736  *  @napi: NAPI context
2737  *
2738  * Warning: caller must observe RCU grace period before freeing memory
2739  * containing @napi. Drivers might want to call this helper to combine
2740  * all the needed RCU grace periods into a single one.
2741  */
2742 void __netif_napi_del(struct napi_struct *napi);
2743 
2744 /**
2745  *  netif_napi_del - remove a NAPI context
2746  *  @napi: NAPI context
2747  *
2748  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2749  */
2750 static inline void netif_napi_del(struct napi_struct *napi)
2751 {
2752 	__netif_napi_del(napi);
2753 	synchronize_net();
2754 }
2755 
2756 struct packet_type {
2757 	__be16			type;	/* This is really htons(ether_type). */
2758 	bool			ignore_outgoing;
2759 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2760 	netdevice_tracker	dev_tracker;
2761 	int			(*func) (struct sk_buff *,
2762 					 struct net_device *,
2763 					 struct packet_type *,
2764 					 struct net_device *);
2765 	void			(*list_func) (struct list_head *,
2766 					      struct packet_type *,
2767 					      struct net_device *);
2768 	bool			(*id_match)(struct packet_type *ptype,
2769 					    struct sock *sk);
2770 	struct net		*af_packet_net;
2771 	void			*af_packet_priv;
2772 	struct list_head	list;
2773 };
2774 
2775 struct offload_callbacks {
2776 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2777 						netdev_features_t features);
2778 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2779 						struct sk_buff *skb);
2780 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2781 };
2782 
2783 struct packet_offload {
2784 	__be16			 type;	/* This is really htons(ether_type). */
2785 	u16			 priority;
2786 	struct offload_callbacks callbacks;
2787 	struct list_head	 list;
2788 };
2789 
2790 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2791 struct pcpu_sw_netstats {
2792 	u64_stats_t		rx_packets;
2793 	u64_stats_t		rx_bytes;
2794 	u64_stats_t		tx_packets;
2795 	u64_stats_t		tx_bytes;
2796 	struct u64_stats_sync   syncp;
2797 } __aligned(4 * sizeof(u64));
2798 
2799 struct pcpu_dstats {
2800 	u64_stats_t		rx_packets;
2801 	u64_stats_t		rx_bytes;
2802 	u64_stats_t		rx_drops;
2803 	u64_stats_t		tx_packets;
2804 	u64_stats_t		tx_bytes;
2805 	u64_stats_t		tx_drops;
2806 	struct u64_stats_sync	syncp;
2807 } __aligned(8 * sizeof(u64));
2808 
2809 struct pcpu_lstats {
2810 	u64_stats_t packets;
2811 	u64_stats_t bytes;
2812 	struct u64_stats_sync syncp;
2813 } __aligned(2 * sizeof(u64));
2814 
2815 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2816 
2817 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2818 {
2819 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2820 
2821 	u64_stats_update_begin(&tstats->syncp);
2822 	u64_stats_add(&tstats->rx_bytes, len);
2823 	u64_stats_inc(&tstats->rx_packets);
2824 	u64_stats_update_end(&tstats->syncp);
2825 }
2826 
2827 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2828 					  unsigned int packets,
2829 					  unsigned int len)
2830 {
2831 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2832 
2833 	u64_stats_update_begin(&tstats->syncp);
2834 	u64_stats_add(&tstats->tx_bytes, len);
2835 	u64_stats_add(&tstats->tx_packets, packets);
2836 	u64_stats_update_end(&tstats->syncp);
2837 }
2838 
2839 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2840 {
2841 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2842 
2843 	u64_stats_update_begin(&lstats->syncp);
2844 	u64_stats_add(&lstats->bytes, len);
2845 	u64_stats_inc(&lstats->packets);
2846 	u64_stats_update_end(&lstats->syncp);
2847 }
2848 
2849 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2850 ({									\
2851 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2852 	if (pcpu_stats)	{						\
2853 		int __cpu;						\
2854 		for_each_possible_cpu(__cpu) {				\
2855 			typeof(type) *stat;				\
2856 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2857 			u64_stats_init(&stat->syncp);			\
2858 		}							\
2859 	}								\
2860 	pcpu_stats;							\
2861 })
2862 
2863 #define netdev_alloc_pcpu_stats(type)					\
2864 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2865 
2866 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2867 ({									\
2868 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2869 	if (pcpu_stats) {						\
2870 		int __cpu;						\
2871 		for_each_possible_cpu(__cpu) {				\
2872 			typeof(type) *stat;				\
2873 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2874 			u64_stats_init(&stat->syncp);			\
2875 		}							\
2876 	}								\
2877 	pcpu_stats;							\
2878 })
2879 
2880 enum netdev_lag_tx_type {
2881 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2882 	NETDEV_LAG_TX_TYPE_RANDOM,
2883 	NETDEV_LAG_TX_TYPE_BROADCAST,
2884 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2885 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2886 	NETDEV_LAG_TX_TYPE_HASH,
2887 };
2888 
2889 enum netdev_lag_hash {
2890 	NETDEV_LAG_HASH_NONE,
2891 	NETDEV_LAG_HASH_L2,
2892 	NETDEV_LAG_HASH_L34,
2893 	NETDEV_LAG_HASH_L23,
2894 	NETDEV_LAG_HASH_E23,
2895 	NETDEV_LAG_HASH_E34,
2896 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2897 	NETDEV_LAG_HASH_UNKNOWN,
2898 };
2899 
2900 struct netdev_lag_upper_info {
2901 	enum netdev_lag_tx_type tx_type;
2902 	enum netdev_lag_hash hash_type;
2903 };
2904 
2905 struct netdev_lag_lower_state_info {
2906 	u8 link_up : 1,
2907 	   tx_enabled : 1;
2908 };
2909 
2910 #include <linux/notifier.h>
2911 
2912 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2913  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2914  * adding new types.
2915  */
2916 enum netdev_cmd {
2917 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2918 	NETDEV_DOWN,
2919 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2920 				   detected a hardware crash and restarted
2921 				   - we can use this eg to kick tcp sessions
2922 				   once done */
2923 	NETDEV_CHANGE,		/* Notify device state change */
2924 	NETDEV_REGISTER,
2925 	NETDEV_UNREGISTER,
2926 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2927 	NETDEV_CHANGEADDR,	/* notify after the address change */
2928 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2929 	NETDEV_GOING_DOWN,
2930 	NETDEV_CHANGENAME,
2931 	NETDEV_FEAT_CHANGE,
2932 	NETDEV_BONDING_FAILOVER,
2933 	NETDEV_PRE_UP,
2934 	NETDEV_PRE_TYPE_CHANGE,
2935 	NETDEV_POST_TYPE_CHANGE,
2936 	NETDEV_POST_INIT,
2937 	NETDEV_PRE_UNINIT,
2938 	NETDEV_RELEASE,
2939 	NETDEV_NOTIFY_PEERS,
2940 	NETDEV_JOIN,
2941 	NETDEV_CHANGEUPPER,
2942 	NETDEV_RESEND_IGMP,
2943 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2944 	NETDEV_CHANGEINFODATA,
2945 	NETDEV_BONDING_INFO,
2946 	NETDEV_PRECHANGEUPPER,
2947 	NETDEV_CHANGELOWERSTATE,
2948 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2949 	NETDEV_UDP_TUNNEL_DROP_INFO,
2950 	NETDEV_CHANGE_TX_QUEUE_LEN,
2951 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2952 	NETDEV_CVLAN_FILTER_DROP_INFO,
2953 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2954 	NETDEV_SVLAN_FILTER_DROP_INFO,
2955 	NETDEV_OFFLOAD_XSTATS_ENABLE,
2956 	NETDEV_OFFLOAD_XSTATS_DISABLE,
2957 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2958 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2959 	NETDEV_XDP_FEAT_CHANGE,
2960 };
2961 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2962 
2963 int register_netdevice_notifier(struct notifier_block *nb);
2964 int unregister_netdevice_notifier(struct notifier_block *nb);
2965 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2966 int unregister_netdevice_notifier_net(struct net *net,
2967 				      struct notifier_block *nb);
2968 int register_netdevice_notifier_dev_net(struct net_device *dev,
2969 					struct notifier_block *nb,
2970 					struct netdev_net_notifier *nn);
2971 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2972 					  struct notifier_block *nb,
2973 					  struct netdev_net_notifier *nn);
2974 
2975 struct netdev_notifier_info {
2976 	struct net_device	*dev;
2977 	struct netlink_ext_ack	*extack;
2978 };
2979 
2980 struct netdev_notifier_info_ext {
2981 	struct netdev_notifier_info info; /* must be first */
2982 	union {
2983 		u32 mtu;
2984 	} ext;
2985 };
2986 
2987 struct netdev_notifier_change_info {
2988 	struct netdev_notifier_info info; /* must be first */
2989 	unsigned int flags_changed;
2990 };
2991 
2992 struct netdev_notifier_changeupper_info {
2993 	struct netdev_notifier_info info; /* must be first */
2994 	struct net_device *upper_dev; /* new upper dev */
2995 	bool master; /* is upper dev master */
2996 	bool linking; /* is the notification for link or unlink */
2997 	void *upper_info; /* upper dev info */
2998 };
2999 
3000 struct netdev_notifier_changelowerstate_info {
3001 	struct netdev_notifier_info info; /* must be first */
3002 	void *lower_state_info; /* is lower dev state */
3003 };
3004 
3005 struct netdev_notifier_pre_changeaddr_info {
3006 	struct netdev_notifier_info info; /* must be first */
3007 	const unsigned char *dev_addr;
3008 };
3009 
3010 enum netdev_offload_xstats_type {
3011 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
3012 };
3013 
3014 struct netdev_notifier_offload_xstats_info {
3015 	struct netdev_notifier_info info; /* must be first */
3016 	enum netdev_offload_xstats_type type;
3017 
3018 	union {
3019 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
3020 		struct netdev_notifier_offload_xstats_rd *report_delta;
3021 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
3022 		struct netdev_notifier_offload_xstats_ru *report_used;
3023 	};
3024 };
3025 
3026 int netdev_offload_xstats_enable(struct net_device *dev,
3027 				 enum netdev_offload_xstats_type type,
3028 				 struct netlink_ext_ack *extack);
3029 int netdev_offload_xstats_disable(struct net_device *dev,
3030 				  enum netdev_offload_xstats_type type);
3031 bool netdev_offload_xstats_enabled(const struct net_device *dev,
3032 				   enum netdev_offload_xstats_type type);
3033 int netdev_offload_xstats_get(struct net_device *dev,
3034 			      enum netdev_offload_xstats_type type,
3035 			      struct rtnl_hw_stats64 *stats, bool *used,
3036 			      struct netlink_ext_ack *extack);
3037 void
3038 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
3039 				   const struct rtnl_hw_stats64 *stats);
3040 void
3041 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
3042 void netdev_offload_xstats_push_delta(struct net_device *dev,
3043 				      enum netdev_offload_xstats_type type,
3044 				      const struct rtnl_hw_stats64 *stats);
3045 
3046 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
3047 					     struct net_device *dev)
3048 {
3049 	info->dev = dev;
3050 	info->extack = NULL;
3051 }
3052 
3053 static inline struct net_device *
3054 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
3055 {
3056 	return info->dev;
3057 }
3058 
3059 static inline struct netlink_ext_ack *
3060 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
3061 {
3062 	return info->extack;
3063 }
3064 
3065 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
3066 int call_netdevice_notifiers_info(unsigned long val,
3067 				  struct netdev_notifier_info *info);
3068 
3069 #define for_each_netdev(net, d)		\
3070 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
3071 #define for_each_netdev_reverse(net, d)	\
3072 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
3073 #define for_each_netdev_rcu(net, d)		\
3074 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
3075 #define for_each_netdev_safe(net, d, n)	\
3076 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
3077 #define for_each_netdev_continue(net, d)		\
3078 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
3079 #define for_each_netdev_continue_reverse(net, d)		\
3080 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
3081 						     dev_list)
3082 #define for_each_netdev_continue_rcu(net, d)		\
3083 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
3084 #define for_each_netdev_in_bond_rcu(bond, slave)	\
3085 		for_each_netdev_rcu(&init_net, slave)	\
3086 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
3087 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
3088 
3089 #define for_each_netdev_dump(net, d, ifindex)				\
3090 	for (; (d = xa_find(&(net)->dev_by_index, &ifindex,		\
3091 			    ULONG_MAX, XA_PRESENT)); ifindex++)
3092 
3093 static inline struct net_device *next_net_device(struct net_device *dev)
3094 {
3095 	struct list_head *lh;
3096 	struct net *net;
3097 
3098 	net = dev_net(dev);
3099 	lh = dev->dev_list.next;
3100 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3101 }
3102 
3103 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
3104 {
3105 	struct list_head *lh;
3106 	struct net *net;
3107 
3108 	net = dev_net(dev);
3109 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
3110 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3111 }
3112 
3113 static inline struct net_device *first_net_device(struct net *net)
3114 {
3115 	return list_empty(&net->dev_base_head) ? NULL :
3116 		net_device_entry(net->dev_base_head.next);
3117 }
3118 
3119 static inline struct net_device *first_net_device_rcu(struct net *net)
3120 {
3121 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
3122 
3123 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3124 }
3125 
3126 int netdev_boot_setup_check(struct net_device *dev);
3127 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3128 				       const char *hwaddr);
3129 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
3130 void dev_add_pack(struct packet_type *pt);
3131 void dev_remove_pack(struct packet_type *pt);
3132 void __dev_remove_pack(struct packet_type *pt);
3133 void dev_add_offload(struct packet_offload *po);
3134 void dev_remove_offload(struct packet_offload *po);
3135 
3136 int dev_get_iflink(const struct net_device *dev);
3137 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3138 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3139 			  struct net_device_path_stack *stack);
3140 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3141 				      unsigned short mask);
3142 struct net_device *dev_get_by_name(struct net *net, const char *name);
3143 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3144 struct net_device *__dev_get_by_name(struct net *net, const char *name);
3145 bool netdev_name_in_use(struct net *net, const char *name);
3146 int dev_alloc_name(struct net_device *dev, const char *name);
3147 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3148 void dev_close(struct net_device *dev);
3149 void dev_close_many(struct list_head *head, bool unlink);
3150 void dev_disable_lro(struct net_device *dev);
3151 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3152 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3153 		     struct net_device *sb_dev);
3154 
3155 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3156 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3157 
3158 static inline int dev_queue_xmit(struct sk_buff *skb)
3159 {
3160 	return __dev_queue_xmit(skb, NULL);
3161 }
3162 
3163 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3164 				       struct net_device *sb_dev)
3165 {
3166 	return __dev_queue_xmit(skb, sb_dev);
3167 }
3168 
3169 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3170 {
3171 	int ret;
3172 
3173 	ret = __dev_direct_xmit(skb, queue_id);
3174 	if (!dev_xmit_complete(ret))
3175 		kfree_skb(skb);
3176 	return ret;
3177 }
3178 
3179 int register_netdevice(struct net_device *dev);
3180 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3181 void unregister_netdevice_many(struct list_head *head);
3182 static inline void unregister_netdevice(struct net_device *dev)
3183 {
3184 	unregister_netdevice_queue(dev, NULL);
3185 }
3186 
3187 int netdev_refcnt_read(const struct net_device *dev);
3188 void free_netdev(struct net_device *dev);
3189 void init_dummy_netdev(struct net_device *dev);
3190 
3191 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3192 					 struct sk_buff *skb,
3193 					 bool all_slaves);
3194 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3195 					    struct sock *sk);
3196 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3197 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3198 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
3199 				       netdevice_tracker *tracker, gfp_t gfp);
3200 struct net_device *netdev_get_by_name(struct net *net, const char *name,
3201 				      netdevice_tracker *tracker, gfp_t gfp);
3202 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3203 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3204 void netdev_copy_name(struct net_device *dev, char *name);
3205 
3206 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3207 				  unsigned short type,
3208 				  const void *daddr, const void *saddr,
3209 				  unsigned int len)
3210 {
3211 	if (!dev->header_ops || !dev->header_ops->create)
3212 		return 0;
3213 
3214 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3215 }
3216 
3217 static inline int dev_parse_header(const struct sk_buff *skb,
3218 				   unsigned char *haddr)
3219 {
3220 	const struct net_device *dev = skb->dev;
3221 
3222 	if (!dev->header_ops || !dev->header_ops->parse)
3223 		return 0;
3224 	return dev->header_ops->parse(skb, haddr);
3225 }
3226 
3227 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3228 {
3229 	const struct net_device *dev = skb->dev;
3230 
3231 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3232 		return 0;
3233 	return dev->header_ops->parse_protocol(skb);
3234 }
3235 
3236 /* ll_header must have at least hard_header_len allocated */
3237 static inline bool dev_validate_header(const struct net_device *dev,
3238 				       char *ll_header, int len)
3239 {
3240 	if (likely(len >= dev->hard_header_len))
3241 		return true;
3242 	if (len < dev->min_header_len)
3243 		return false;
3244 
3245 	if (capable(CAP_SYS_RAWIO)) {
3246 		memset(ll_header + len, 0, dev->hard_header_len - len);
3247 		return true;
3248 	}
3249 
3250 	if (dev->header_ops && dev->header_ops->validate)
3251 		return dev->header_ops->validate(ll_header, len);
3252 
3253 	return false;
3254 }
3255 
3256 static inline bool dev_has_header(const struct net_device *dev)
3257 {
3258 	return dev->header_ops && dev->header_ops->create;
3259 }
3260 
3261 /*
3262  * Incoming packets are placed on per-CPU queues
3263  */
3264 struct softnet_data {
3265 	struct list_head	poll_list;
3266 	struct sk_buff_head	process_queue;
3267 	local_lock_t		process_queue_bh_lock;
3268 
3269 	/* stats */
3270 	unsigned int		processed;
3271 	unsigned int		time_squeeze;
3272 #ifdef CONFIG_RPS
3273 	struct softnet_data	*rps_ipi_list;
3274 #endif
3275 
3276 	unsigned int		received_rps;
3277 	bool			in_net_rx_action;
3278 	bool			in_napi_threaded_poll;
3279 
3280 #ifdef CONFIG_NET_FLOW_LIMIT
3281 	struct sd_flow_limit __rcu *flow_limit;
3282 #endif
3283 	struct Qdisc		*output_queue;
3284 	struct Qdisc		**output_queue_tailp;
3285 	struct sk_buff		*completion_queue;
3286 #ifdef CONFIG_XFRM_OFFLOAD
3287 	struct sk_buff_head	xfrm_backlog;
3288 #endif
3289 	/* written and read only by owning cpu: */
3290 	struct netdev_xmit xmit;
3291 #ifdef CONFIG_RPS
3292 	/* input_queue_head should be written by cpu owning this struct,
3293 	 * and only read by other cpus. Worth using a cache line.
3294 	 */
3295 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3296 
3297 	/* Elements below can be accessed between CPUs for RPS/RFS */
3298 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3299 	struct softnet_data	*rps_ipi_next;
3300 	unsigned int		cpu;
3301 	unsigned int		input_queue_tail;
3302 #endif
3303 	struct sk_buff_head	input_pkt_queue;
3304 	struct napi_struct	backlog;
3305 
3306 	atomic_t		dropped ____cacheline_aligned_in_smp;
3307 
3308 	/* Another possibly contended cache line */
3309 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3310 	int			defer_count;
3311 	int			defer_ipi_scheduled;
3312 	struct sk_buff		*defer_list;
3313 	call_single_data_t	defer_csd;
3314 };
3315 
3316 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3317 
3318 #ifndef CONFIG_PREEMPT_RT
3319 static inline int dev_recursion_level(void)
3320 {
3321 	return this_cpu_read(softnet_data.xmit.recursion);
3322 }
3323 #else
3324 static inline int dev_recursion_level(void)
3325 {
3326 	return current->net_xmit.recursion;
3327 }
3328 
3329 #endif
3330 
3331 void __netif_schedule(struct Qdisc *q);
3332 void netif_schedule_queue(struct netdev_queue *txq);
3333 
3334 static inline void netif_tx_schedule_all(struct net_device *dev)
3335 {
3336 	unsigned int i;
3337 
3338 	for (i = 0; i < dev->num_tx_queues; i++)
3339 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3340 }
3341 
3342 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3343 {
3344 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3345 }
3346 
3347 /**
3348  *	netif_start_queue - allow transmit
3349  *	@dev: network device
3350  *
3351  *	Allow upper layers to call the device hard_start_xmit routine.
3352  */
3353 static inline void netif_start_queue(struct net_device *dev)
3354 {
3355 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3356 }
3357 
3358 static inline void netif_tx_start_all_queues(struct net_device *dev)
3359 {
3360 	unsigned int i;
3361 
3362 	for (i = 0; i < dev->num_tx_queues; i++) {
3363 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3364 		netif_tx_start_queue(txq);
3365 	}
3366 }
3367 
3368 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3369 
3370 /**
3371  *	netif_wake_queue - restart transmit
3372  *	@dev: network device
3373  *
3374  *	Allow upper layers to call the device hard_start_xmit routine.
3375  *	Used for flow control when transmit resources are available.
3376  */
3377 static inline void netif_wake_queue(struct net_device *dev)
3378 {
3379 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3380 }
3381 
3382 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3383 {
3384 	unsigned int i;
3385 
3386 	for (i = 0; i < dev->num_tx_queues; i++) {
3387 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3388 		netif_tx_wake_queue(txq);
3389 	}
3390 }
3391 
3392 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3393 {
3394 	/* Paired with READ_ONCE() from dev_watchdog() */
3395 	WRITE_ONCE(dev_queue->trans_start, jiffies);
3396 
3397 	/* This barrier is paired with smp_mb() from dev_watchdog() */
3398 	smp_mb__before_atomic();
3399 
3400 	/* Must be an atomic op see netif_txq_try_stop() */
3401 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3402 }
3403 
3404 /**
3405  *	netif_stop_queue - stop transmitted packets
3406  *	@dev: network device
3407  *
3408  *	Stop upper layers calling the device hard_start_xmit routine.
3409  *	Used for flow control when transmit resources are unavailable.
3410  */
3411 static inline void netif_stop_queue(struct net_device *dev)
3412 {
3413 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3414 }
3415 
3416 void netif_tx_stop_all_queues(struct net_device *dev);
3417 
3418 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3419 {
3420 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3421 }
3422 
3423 /**
3424  *	netif_queue_stopped - test if transmit queue is flowblocked
3425  *	@dev: network device
3426  *
3427  *	Test if transmit queue on device is currently unable to send.
3428  */
3429 static inline bool netif_queue_stopped(const struct net_device *dev)
3430 {
3431 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3432 }
3433 
3434 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3435 {
3436 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3437 }
3438 
3439 static inline bool
3440 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3441 {
3442 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3443 }
3444 
3445 static inline bool
3446 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3447 {
3448 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3449 }
3450 
3451 /**
3452  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3453  *	@dev_queue: pointer to transmit queue
3454  *	@min_limit: dql minimum limit
3455  *
3456  * Forces xmit_more() to return true until the minimum threshold
3457  * defined by @min_limit is reached (or until the tx queue is
3458  * empty). Warning: to be use with care, misuse will impact the
3459  * latency.
3460  */
3461 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3462 						  unsigned int min_limit)
3463 {
3464 #ifdef CONFIG_BQL
3465 	dev_queue->dql.min_limit = min_limit;
3466 #endif
3467 }
3468 
3469 static inline int netdev_queue_dql_avail(const struct netdev_queue *txq)
3470 {
3471 #ifdef CONFIG_BQL
3472 	/* Non-BQL migrated drivers will return 0, too. */
3473 	return dql_avail(&txq->dql);
3474 #else
3475 	return 0;
3476 #endif
3477 }
3478 
3479 /**
3480  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3481  *	@dev_queue: pointer to transmit queue
3482  *
3483  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3484  * to give appropriate hint to the CPU.
3485  */
3486 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3487 {
3488 #ifdef CONFIG_BQL
3489 	prefetchw(&dev_queue->dql.num_queued);
3490 #endif
3491 }
3492 
3493 /**
3494  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3495  *	@dev_queue: pointer to transmit queue
3496  *
3497  * BQL enabled drivers might use this helper in their TX completion path,
3498  * to give appropriate hint to the CPU.
3499  */
3500 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3501 {
3502 #ifdef CONFIG_BQL
3503 	prefetchw(&dev_queue->dql.limit);
3504 #endif
3505 }
3506 
3507 /**
3508  *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3509  *	@dev_queue: network device queue
3510  *	@bytes: number of bytes queued to the device queue
3511  *
3512  *	Report the number of bytes queued for sending/completion to the network
3513  *	device hardware queue. @bytes should be a good approximation and should
3514  *	exactly match netdev_completed_queue() @bytes.
3515  *	This is typically called once per packet, from ndo_start_xmit().
3516  */
3517 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3518 					unsigned int bytes)
3519 {
3520 #ifdef CONFIG_BQL
3521 	dql_queued(&dev_queue->dql, bytes);
3522 
3523 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3524 		return;
3525 
3526 	/* Paired with READ_ONCE() from dev_watchdog() */
3527 	WRITE_ONCE(dev_queue->trans_start, jiffies);
3528 
3529 	/* This barrier is paired with smp_mb() from dev_watchdog() */
3530 	smp_mb__before_atomic();
3531 
3532 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3533 
3534 	/*
3535 	 * The XOFF flag must be set before checking the dql_avail below,
3536 	 * because in netdev_tx_completed_queue we update the dql_completed
3537 	 * before checking the XOFF flag.
3538 	 */
3539 	smp_mb__after_atomic();
3540 
3541 	/* check again in case another CPU has just made room avail */
3542 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3543 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3544 #endif
3545 }
3546 
3547 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3548  * that they should not test BQL status themselves.
3549  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3550  * skb of a batch.
3551  * Returns true if the doorbell must be used to kick the NIC.
3552  */
3553 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3554 					  unsigned int bytes,
3555 					  bool xmit_more)
3556 {
3557 	if (xmit_more) {
3558 #ifdef CONFIG_BQL
3559 		dql_queued(&dev_queue->dql, bytes);
3560 #endif
3561 		return netif_tx_queue_stopped(dev_queue);
3562 	}
3563 	netdev_tx_sent_queue(dev_queue, bytes);
3564 	return true;
3565 }
3566 
3567 /**
3568  *	netdev_sent_queue - report the number of bytes queued to hardware
3569  *	@dev: network device
3570  *	@bytes: number of bytes queued to the hardware device queue
3571  *
3572  *	Report the number of bytes queued for sending/completion to the network
3573  *	device hardware queue#0. @bytes should be a good approximation and should
3574  *	exactly match netdev_completed_queue() @bytes.
3575  *	This is typically called once per packet, from ndo_start_xmit().
3576  */
3577 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3578 {
3579 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3580 }
3581 
3582 static inline bool __netdev_sent_queue(struct net_device *dev,
3583 				       unsigned int bytes,
3584 				       bool xmit_more)
3585 {
3586 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3587 				      xmit_more);
3588 }
3589 
3590 /**
3591  *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3592  *	@dev_queue: network device queue
3593  *	@pkts: number of packets (currently ignored)
3594  *	@bytes: number of bytes dequeued from the device queue
3595  *
3596  *	Must be called at most once per TX completion round (and not per
3597  *	individual packet), so that BQL can adjust its limits appropriately.
3598  */
3599 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3600 					     unsigned int pkts, unsigned int bytes)
3601 {
3602 #ifdef CONFIG_BQL
3603 	if (unlikely(!bytes))
3604 		return;
3605 
3606 	dql_completed(&dev_queue->dql, bytes);
3607 
3608 	/*
3609 	 * Without the memory barrier there is a small possibility that
3610 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3611 	 * be stopped forever
3612 	 */
3613 	smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */
3614 
3615 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3616 		return;
3617 
3618 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3619 		netif_schedule_queue(dev_queue);
3620 #endif
3621 }
3622 
3623 /**
3624  * 	netdev_completed_queue - report bytes and packets completed by device
3625  * 	@dev: network device
3626  * 	@pkts: actual number of packets sent over the medium
3627  * 	@bytes: actual number of bytes sent over the medium
3628  *
3629  * 	Report the number of bytes and packets transmitted by the network device
3630  * 	hardware queue over the physical medium, @bytes must exactly match the
3631  * 	@bytes amount passed to netdev_sent_queue()
3632  */
3633 static inline void netdev_completed_queue(struct net_device *dev,
3634 					  unsigned int pkts, unsigned int bytes)
3635 {
3636 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3637 }
3638 
3639 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3640 {
3641 #ifdef CONFIG_BQL
3642 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3643 	dql_reset(&q->dql);
3644 #endif
3645 }
3646 
3647 /**
3648  * netdev_tx_reset_subqueue - reset the BQL stats and state of a netdev queue
3649  * @dev: network device
3650  * @qid: stack index of the queue to reset
3651  */
3652 static inline void netdev_tx_reset_subqueue(const struct net_device *dev,
3653 					    u32 qid)
3654 {
3655 	netdev_tx_reset_queue(netdev_get_tx_queue(dev, qid));
3656 }
3657 
3658 /**
3659  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3660  * 	@dev_queue: network device
3661  *
3662  * 	Reset the bytes and packet count of a network device and clear the
3663  * 	software flow control OFF bit for this network device
3664  */
3665 static inline void netdev_reset_queue(struct net_device *dev_queue)
3666 {
3667 	netdev_tx_reset_subqueue(dev_queue, 0);
3668 }
3669 
3670 /**
3671  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3672  * 	@dev: network device
3673  * 	@queue_index: given tx queue index
3674  *
3675  * 	Returns 0 if given tx queue index >= number of device tx queues,
3676  * 	otherwise returns the originally passed tx queue index.
3677  */
3678 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3679 {
3680 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3681 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3682 				     dev->name, queue_index,
3683 				     dev->real_num_tx_queues);
3684 		return 0;
3685 	}
3686 
3687 	return queue_index;
3688 }
3689 
3690 /**
3691  *	netif_running - test if up
3692  *	@dev: network device
3693  *
3694  *	Test if the device has been brought up.
3695  */
3696 static inline bool netif_running(const struct net_device *dev)
3697 {
3698 	return test_bit(__LINK_STATE_START, &dev->state);
3699 }
3700 
3701 /*
3702  * Routines to manage the subqueues on a device.  We only need start,
3703  * stop, and a check if it's stopped.  All other device management is
3704  * done at the overall netdevice level.
3705  * Also test the device if we're multiqueue.
3706  */
3707 
3708 /**
3709  *	netif_start_subqueue - allow sending packets on subqueue
3710  *	@dev: network device
3711  *	@queue_index: sub queue index
3712  *
3713  * Start individual transmit queue of a device with multiple transmit queues.
3714  */
3715 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3716 {
3717 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3718 
3719 	netif_tx_start_queue(txq);
3720 }
3721 
3722 /**
3723  *	netif_stop_subqueue - stop sending packets on subqueue
3724  *	@dev: network device
3725  *	@queue_index: sub queue index
3726  *
3727  * Stop individual transmit queue of a device with multiple transmit queues.
3728  */
3729 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3730 {
3731 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3732 	netif_tx_stop_queue(txq);
3733 }
3734 
3735 /**
3736  *	__netif_subqueue_stopped - test status of subqueue
3737  *	@dev: network device
3738  *	@queue_index: sub queue index
3739  *
3740  * Check individual transmit queue of a device with multiple transmit queues.
3741  */
3742 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3743 					    u16 queue_index)
3744 {
3745 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3746 
3747 	return netif_tx_queue_stopped(txq);
3748 }
3749 
3750 /**
3751  *	netif_subqueue_stopped - test status of subqueue
3752  *	@dev: network device
3753  *	@skb: sub queue buffer pointer
3754  *
3755  * Check individual transmit queue of a device with multiple transmit queues.
3756  */
3757 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3758 					  struct sk_buff *skb)
3759 {
3760 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3761 }
3762 
3763 /**
3764  *	netif_wake_subqueue - allow sending packets on subqueue
3765  *	@dev: network device
3766  *	@queue_index: sub queue index
3767  *
3768  * Resume individual transmit queue of a device with multiple transmit queues.
3769  */
3770 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3771 {
3772 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3773 
3774 	netif_tx_wake_queue(txq);
3775 }
3776 
3777 #ifdef CONFIG_XPS
3778 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3779 			u16 index);
3780 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3781 			  u16 index, enum xps_map_type type);
3782 
3783 /**
3784  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3785  *	@j: CPU/Rx queue index
3786  *	@mask: bitmask of all cpus/rx queues
3787  *	@nr_bits: number of bits in the bitmask
3788  *
3789  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3790  */
3791 static inline bool netif_attr_test_mask(unsigned long j,
3792 					const unsigned long *mask,
3793 					unsigned int nr_bits)
3794 {
3795 	cpu_max_bits_warn(j, nr_bits);
3796 	return test_bit(j, mask);
3797 }
3798 
3799 /**
3800  *	netif_attr_test_online - Test for online CPU/Rx queue
3801  *	@j: CPU/Rx queue index
3802  *	@online_mask: bitmask for CPUs/Rx queues that are online
3803  *	@nr_bits: number of bits in the bitmask
3804  *
3805  * Returns true if a CPU/Rx queue is online.
3806  */
3807 static inline bool netif_attr_test_online(unsigned long j,
3808 					  const unsigned long *online_mask,
3809 					  unsigned int nr_bits)
3810 {
3811 	cpu_max_bits_warn(j, nr_bits);
3812 
3813 	if (online_mask)
3814 		return test_bit(j, online_mask);
3815 
3816 	return (j < nr_bits);
3817 }
3818 
3819 /**
3820  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3821  *	@n: CPU/Rx queue index
3822  *	@srcp: the cpumask/Rx queue mask pointer
3823  *	@nr_bits: number of bits in the bitmask
3824  *
3825  * Returns >= nr_bits if no further CPUs/Rx queues set.
3826  */
3827 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3828 					       unsigned int nr_bits)
3829 {
3830 	/* -1 is a legal arg here. */
3831 	if (n != -1)
3832 		cpu_max_bits_warn(n, nr_bits);
3833 
3834 	if (srcp)
3835 		return find_next_bit(srcp, nr_bits, n + 1);
3836 
3837 	return n + 1;
3838 }
3839 
3840 /**
3841  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3842  *	@n: CPU/Rx queue index
3843  *	@src1p: the first CPUs/Rx queues mask pointer
3844  *	@src2p: the second CPUs/Rx queues mask pointer
3845  *	@nr_bits: number of bits in the bitmask
3846  *
3847  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3848  */
3849 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3850 					  const unsigned long *src2p,
3851 					  unsigned int nr_bits)
3852 {
3853 	/* -1 is a legal arg here. */
3854 	if (n != -1)
3855 		cpu_max_bits_warn(n, nr_bits);
3856 
3857 	if (src1p && src2p)
3858 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3859 	else if (src1p)
3860 		return find_next_bit(src1p, nr_bits, n + 1);
3861 	else if (src2p)
3862 		return find_next_bit(src2p, nr_bits, n + 1);
3863 
3864 	return n + 1;
3865 }
3866 #else
3867 static inline int netif_set_xps_queue(struct net_device *dev,
3868 				      const struct cpumask *mask,
3869 				      u16 index)
3870 {
3871 	return 0;
3872 }
3873 
3874 static inline int __netif_set_xps_queue(struct net_device *dev,
3875 					const unsigned long *mask,
3876 					u16 index, enum xps_map_type type)
3877 {
3878 	return 0;
3879 }
3880 #endif
3881 
3882 /**
3883  *	netif_is_multiqueue - test if device has multiple transmit queues
3884  *	@dev: network device
3885  *
3886  * Check if device has multiple transmit queues
3887  */
3888 static inline bool netif_is_multiqueue(const struct net_device *dev)
3889 {
3890 	return dev->num_tx_queues > 1;
3891 }
3892 
3893 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3894 
3895 #ifdef CONFIG_SYSFS
3896 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3897 #else
3898 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3899 						unsigned int rxqs)
3900 {
3901 	dev->real_num_rx_queues = rxqs;
3902 	return 0;
3903 }
3904 #endif
3905 int netif_set_real_num_queues(struct net_device *dev,
3906 			      unsigned int txq, unsigned int rxq);
3907 
3908 int netif_get_num_default_rss_queues(void);
3909 
3910 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3911 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3912 
3913 /*
3914  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3915  * interrupt context or with hardware interrupts being disabled.
3916  * (in_hardirq() || irqs_disabled())
3917  *
3918  * We provide four helpers that can be used in following contexts :
3919  *
3920  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3921  *  replacing kfree_skb(skb)
3922  *
3923  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3924  *  Typically used in place of consume_skb(skb) in TX completion path
3925  *
3926  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3927  *  replacing kfree_skb(skb)
3928  *
3929  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3930  *  and consumed a packet. Used in place of consume_skb(skb)
3931  */
3932 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3933 {
3934 	dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3935 }
3936 
3937 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3938 {
3939 	dev_kfree_skb_irq_reason(skb, SKB_CONSUMED);
3940 }
3941 
3942 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3943 {
3944 	dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3945 }
3946 
3947 static inline void dev_consume_skb_any(struct sk_buff *skb)
3948 {
3949 	dev_kfree_skb_any_reason(skb, SKB_CONSUMED);
3950 }
3951 
3952 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3953 			     struct bpf_prog *xdp_prog);
3954 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3955 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb);
3956 int netif_rx(struct sk_buff *skb);
3957 int __netif_rx(struct sk_buff *skb);
3958 
3959 int netif_receive_skb(struct sk_buff *skb);
3960 int netif_receive_skb_core(struct sk_buff *skb);
3961 void netif_receive_skb_list_internal(struct list_head *head);
3962 void netif_receive_skb_list(struct list_head *head);
3963 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3964 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3965 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3966 void napi_get_frags_check(struct napi_struct *napi);
3967 gro_result_t napi_gro_frags(struct napi_struct *napi);
3968 
3969 static inline void napi_free_frags(struct napi_struct *napi)
3970 {
3971 	kfree_skb(napi->skb);
3972 	napi->skb = NULL;
3973 }
3974 
3975 bool netdev_is_rx_handler_busy(struct net_device *dev);
3976 int netdev_rx_handler_register(struct net_device *dev,
3977 			       rx_handler_func_t *rx_handler,
3978 			       void *rx_handler_data);
3979 void netdev_rx_handler_unregister(struct net_device *dev);
3980 
3981 bool dev_valid_name(const char *name);
3982 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3983 {
3984 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3985 }
3986 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3987 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3988 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3989 		void __user *data, bool *need_copyout);
3990 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3991 int generic_hwtstamp_get_lower(struct net_device *dev,
3992 			       struct kernel_hwtstamp_config *kernel_cfg);
3993 int generic_hwtstamp_set_lower(struct net_device *dev,
3994 			       struct kernel_hwtstamp_config *kernel_cfg,
3995 			       struct netlink_ext_ack *extack);
3996 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3997 unsigned int dev_get_flags(const struct net_device *);
3998 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3999 		       struct netlink_ext_ack *extack);
4000 int dev_change_flags(struct net_device *dev, unsigned int flags,
4001 		     struct netlink_ext_ack *extack);
4002 int dev_set_alias(struct net_device *, const char *, size_t);
4003 int dev_get_alias(const struct net_device *, char *, size_t);
4004 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
4005 			       const char *pat, int new_ifindex);
4006 static inline
4007 int dev_change_net_namespace(struct net_device *dev, struct net *net,
4008 			     const char *pat)
4009 {
4010 	return __dev_change_net_namespace(dev, net, pat, 0);
4011 }
4012 int __dev_set_mtu(struct net_device *, int);
4013 int dev_set_mtu(struct net_device *, int);
4014 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
4015 			      struct netlink_ext_ack *extack);
4016 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
4017 			struct netlink_ext_ack *extack);
4018 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
4019 			     struct netlink_ext_ack *extack);
4020 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
4021 int dev_get_port_parent_id(struct net_device *dev,
4022 			   struct netdev_phys_item_id *ppid, bool recurse);
4023 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
4024 
4025 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
4026 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
4027 				    struct netdev_queue *txq, int *ret);
4028 
4029 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
4030 u8 dev_xdp_prog_count(struct net_device *dev);
4031 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf);
4032 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
4033 
4034 u32 dev_get_min_mp_channel_count(const struct net_device *dev);
4035 
4036 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4037 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4038 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
4039 bool is_skb_forwardable(const struct net_device *dev,
4040 			const struct sk_buff *skb);
4041 
4042 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
4043 						 const struct sk_buff *skb,
4044 						 const bool check_mtu)
4045 {
4046 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
4047 	unsigned int len;
4048 
4049 	if (!(dev->flags & IFF_UP))
4050 		return false;
4051 
4052 	if (!check_mtu)
4053 		return true;
4054 
4055 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
4056 	if (skb->len <= len)
4057 		return true;
4058 
4059 	/* if TSO is enabled, we don't care about the length as the packet
4060 	 * could be forwarded without being segmented before
4061 	 */
4062 	if (skb_is_gso(skb))
4063 		return true;
4064 
4065 	return false;
4066 }
4067 
4068 void netdev_core_stats_inc(struct net_device *dev, u32 offset);
4069 
4070 #define DEV_CORE_STATS_INC(FIELD)						\
4071 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
4072 {										\
4073 	netdev_core_stats_inc(dev,						\
4074 			offsetof(struct net_device_core_stats, FIELD));		\
4075 }
4076 DEV_CORE_STATS_INC(rx_dropped)
4077 DEV_CORE_STATS_INC(tx_dropped)
4078 DEV_CORE_STATS_INC(rx_nohandler)
4079 DEV_CORE_STATS_INC(rx_otherhost_dropped)
4080 #undef DEV_CORE_STATS_INC
4081 
4082 static __always_inline int ____dev_forward_skb(struct net_device *dev,
4083 					       struct sk_buff *skb,
4084 					       const bool check_mtu)
4085 {
4086 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4087 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4088 		dev_core_stats_rx_dropped_inc(dev);
4089 		kfree_skb(skb);
4090 		return NET_RX_DROP;
4091 	}
4092 
4093 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4094 	skb->priority = 0;
4095 	return 0;
4096 }
4097 
4098 bool dev_nit_active(struct net_device *dev);
4099 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4100 
4101 static inline void __dev_put(struct net_device *dev)
4102 {
4103 	if (dev) {
4104 #ifdef CONFIG_PCPU_DEV_REFCNT
4105 		this_cpu_dec(*dev->pcpu_refcnt);
4106 #else
4107 		refcount_dec(&dev->dev_refcnt);
4108 #endif
4109 	}
4110 }
4111 
4112 static inline void __dev_hold(struct net_device *dev)
4113 {
4114 	if (dev) {
4115 #ifdef CONFIG_PCPU_DEV_REFCNT
4116 		this_cpu_inc(*dev->pcpu_refcnt);
4117 #else
4118 		refcount_inc(&dev->dev_refcnt);
4119 #endif
4120 	}
4121 }
4122 
4123 static inline void __netdev_tracker_alloc(struct net_device *dev,
4124 					  netdevice_tracker *tracker,
4125 					  gfp_t gfp)
4126 {
4127 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4128 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4129 #endif
4130 }
4131 
4132 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4133  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4134  */
4135 static inline void netdev_tracker_alloc(struct net_device *dev,
4136 					netdevice_tracker *tracker, gfp_t gfp)
4137 {
4138 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4139 	refcount_dec(&dev->refcnt_tracker.no_tracker);
4140 	__netdev_tracker_alloc(dev, tracker, gfp);
4141 #endif
4142 }
4143 
4144 static inline void netdev_tracker_free(struct net_device *dev,
4145 				       netdevice_tracker *tracker)
4146 {
4147 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4148 	ref_tracker_free(&dev->refcnt_tracker, tracker);
4149 #endif
4150 }
4151 
4152 static inline void netdev_hold(struct net_device *dev,
4153 			       netdevice_tracker *tracker, gfp_t gfp)
4154 {
4155 	if (dev) {
4156 		__dev_hold(dev);
4157 		__netdev_tracker_alloc(dev, tracker, gfp);
4158 	}
4159 }
4160 
4161 static inline void netdev_put(struct net_device *dev,
4162 			      netdevice_tracker *tracker)
4163 {
4164 	if (dev) {
4165 		netdev_tracker_free(dev, tracker);
4166 		__dev_put(dev);
4167 	}
4168 }
4169 
4170 /**
4171  *	dev_hold - get reference to device
4172  *	@dev: network device
4173  *
4174  * Hold reference to device to keep it from being freed.
4175  * Try using netdev_hold() instead.
4176  */
4177 static inline void dev_hold(struct net_device *dev)
4178 {
4179 	netdev_hold(dev, NULL, GFP_ATOMIC);
4180 }
4181 
4182 /**
4183  *	dev_put - release reference to device
4184  *	@dev: network device
4185  *
4186  * Release reference to device to allow it to be freed.
4187  * Try using netdev_put() instead.
4188  */
4189 static inline void dev_put(struct net_device *dev)
4190 {
4191 	netdev_put(dev, NULL);
4192 }
4193 
4194 DEFINE_FREE(dev_put, struct net_device *, if (_T) dev_put(_T))
4195 
4196 static inline void netdev_ref_replace(struct net_device *odev,
4197 				      struct net_device *ndev,
4198 				      netdevice_tracker *tracker,
4199 				      gfp_t gfp)
4200 {
4201 	if (odev)
4202 		netdev_tracker_free(odev, tracker);
4203 
4204 	__dev_hold(ndev);
4205 	__dev_put(odev);
4206 
4207 	if (ndev)
4208 		__netdev_tracker_alloc(ndev, tracker, gfp);
4209 }
4210 
4211 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4212  * and _off may be called from IRQ context, but it is caller
4213  * who is responsible for serialization of these calls.
4214  *
4215  * The name carrier is inappropriate, these functions should really be
4216  * called netif_lowerlayer_*() because they represent the state of any
4217  * kind of lower layer not just hardware media.
4218  */
4219 void linkwatch_fire_event(struct net_device *dev);
4220 
4221 /**
4222  * linkwatch_sync_dev - sync linkwatch for the given device
4223  * @dev: network device to sync linkwatch for
4224  *
4225  * Sync linkwatch for the given device, removing it from the
4226  * pending work list (if queued).
4227  */
4228 void linkwatch_sync_dev(struct net_device *dev);
4229 
4230 /**
4231  *	netif_carrier_ok - test if carrier present
4232  *	@dev: network device
4233  *
4234  * Check if carrier is present on device
4235  */
4236 static inline bool netif_carrier_ok(const struct net_device *dev)
4237 {
4238 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4239 }
4240 
4241 unsigned long dev_trans_start(struct net_device *dev);
4242 
4243 void __netdev_watchdog_up(struct net_device *dev);
4244 
4245 void netif_carrier_on(struct net_device *dev);
4246 void netif_carrier_off(struct net_device *dev);
4247 void netif_carrier_event(struct net_device *dev);
4248 
4249 /**
4250  *	netif_dormant_on - mark device as dormant.
4251  *	@dev: network device
4252  *
4253  * Mark device as dormant (as per RFC2863).
4254  *
4255  * The dormant state indicates that the relevant interface is not
4256  * actually in a condition to pass packets (i.e., it is not 'up') but is
4257  * in a "pending" state, waiting for some external event.  For "on-
4258  * demand" interfaces, this new state identifies the situation where the
4259  * interface is waiting for events to place it in the up state.
4260  */
4261 static inline void netif_dormant_on(struct net_device *dev)
4262 {
4263 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4264 		linkwatch_fire_event(dev);
4265 }
4266 
4267 /**
4268  *	netif_dormant_off - set device as not dormant.
4269  *	@dev: network device
4270  *
4271  * Device is not in dormant state.
4272  */
4273 static inline void netif_dormant_off(struct net_device *dev)
4274 {
4275 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4276 		linkwatch_fire_event(dev);
4277 }
4278 
4279 /**
4280  *	netif_dormant - test if device is dormant
4281  *	@dev: network device
4282  *
4283  * Check if device is dormant.
4284  */
4285 static inline bool netif_dormant(const struct net_device *dev)
4286 {
4287 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4288 }
4289 
4290 
4291 /**
4292  *	netif_testing_on - mark device as under test.
4293  *	@dev: network device
4294  *
4295  * Mark device as under test (as per RFC2863).
4296  *
4297  * The testing state indicates that some test(s) must be performed on
4298  * the interface. After completion, of the test, the interface state
4299  * will change to up, dormant, or down, as appropriate.
4300  */
4301 static inline void netif_testing_on(struct net_device *dev)
4302 {
4303 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4304 		linkwatch_fire_event(dev);
4305 }
4306 
4307 /**
4308  *	netif_testing_off - set device as not under test.
4309  *	@dev: network device
4310  *
4311  * Device is not in testing state.
4312  */
4313 static inline void netif_testing_off(struct net_device *dev)
4314 {
4315 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4316 		linkwatch_fire_event(dev);
4317 }
4318 
4319 /**
4320  *	netif_testing - test if device is under test
4321  *	@dev: network device
4322  *
4323  * Check if device is under test
4324  */
4325 static inline bool netif_testing(const struct net_device *dev)
4326 {
4327 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4328 }
4329 
4330 
4331 /**
4332  *	netif_oper_up - test if device is operational
4333  *	@dev: network device
4334  *
4335  * Check if carrier is operational
4336  */
4337 static inline bool netif_oper_up(const struct net_device *dev)
4338 {
4339 	unsigned int operstate = READ_ONCE(dev->operstate);
4340 
4341 	return	operstate == IF_OPER_UP ||
4342 		operstate == IF_OPER_UNKNOWN /* backward compat */;
4343 }
4344 
4345 /**
4346  *	netif_device_present - is device available or removed
4347  *	@dev: network device
4348  *
4349  * Check if device has not been removed from system.
4350  */
4351 static inline bool netif_device_present(const struct net_device *dev)
4352 {
4353 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4354 }
4355 
4356 void netif_device_detach(struct net_device *dev);
4357 
4358 void netif_device_attach(struct net_device *dev);
4359 
4360 /*
4361  * Network interface message level settings
4362  */
4363 
4364 enum {
4365 	NETIF_MSG_DRV_BIT,
4366 	NETIF_MSG_PROBE_BIT,
4367 	NETIF_MSG_LINK_BIT,
4368 	NETIF_MSG_TIMER_BIT,
4369 	NETIF_MSG_IFDOWN_BIT,
4370 	NETIF_MSG_IFUP_BIT,
4371 	NETIF_MSG_RX_ERR_BIT,
4372 	NETIF_MSG_TX_ERR_BIT,
4373 	NETIF_MSG_TX_QUEUED_BIT,
4374 	NETIF_MSG_INTR_BIT,
4375 	NETIF_MSG_TX_DONE_BIT,
4376 	NETIF_MSG_RX_STATUS_BIT,
4377 	NETIF_MSG_PKTDATA_BIT,
4378 	NETIF_MSG_HW_BIT,
4379 	NETIF_MSG_WOL_BIT,
4380 
4381 	/* When you add a new bit above, update netif_msg_class_names array
4382 	 * in net/ethtool/common.c
4383 	 */
4384 	NETIF_MSG_CLASS_COUNT,
4385 };
4386 /* Both ethtool_ops interface and internal driver implementation use u32 */
4387 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4388 
4389 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4390 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4391 
4392 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4393 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4394 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4395 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4396 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4397 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4398 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4399 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4400 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4401 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4402 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4403 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4404 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4405 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4406 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4407 
4408 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4409 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4410 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4411 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4412 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4413 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4414 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4415 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4416 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4417 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4418 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4419 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4420 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4421 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4422 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4423 
4424 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4425 {
4426 	/* use default */
4427 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4428 		return default_msg_enable_bits;
4429 	if (debug_value == 0)	/* no output */
4430 		return 0;
4431 	/* set low N bits */
4432 	return (1U << debug_value) - 1;
4433 }
4434 
4435 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4436 {
4437 	spin_lock(&txq->_xmit_lock);
4438 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4439 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4440 }
4441 
4442 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4443 {
4444 	__acquire(&txq->_xmit_lock);
4445 	return true;
4446 }
4447 
4448 static inline void __netif_tx_release(struct netdev_queue *txq)
4449 {
4450 	__release(&txq->_xmit_lock);
4451 }
4452 
4453 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4454 {
4455 	spin_lock_bh(&txq->_xmit_lock);
4456 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4457 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4458 }
4459 
4460 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4461 {
4462 	bool ok = spin_trylock(&txq->_xmit_lock);
4463 
4464 	if (likely(ok)) {
4465 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4466 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4467 	}
4468 	return ok;
4469 }
4470 
4471 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4472 {
4473 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4474 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4475 	spin_unlock(&txq->_xmit_lock);
4476 }
4477 
4478 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4479 {
4480 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4481 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4482 	spin_unlock_bh(&txq->_xmit_lock);
4483 }
4484 
4485 /*
4486  * txq->trans_start can be read locklessly from dev_watchdog()
4487  */
4488 static inline void txq_trans_update(struct netdev_queue *txq)
4489 {
4490 	if (txq->xmit_lock_owner != -1)
4491 		WRITE_ONCE(txq->trans_start, jiffies);
4492 }
4493 
4494 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4495 {
4496 	unsigned long now = jiffies;
4497 
4498 	if (READ_ONCE(txq->trans_start) != now)
4499 		WRITE_ONCE(txq->trans_start, now);
4500 }
4501 
4502 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4503 static inline void netif_trans_update(struct net_device *dev)
4504 {
4505 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4506 
4507 	txq_trans_cond_update(txq);
4508 }
4509 
4510 /**
4511  *	netif_tx_lock - grab network device transmit lock
4512  *	@dev: network device
4513  *
4514  * Get network device transmit lock
4515  */
4516 void netif_tx_lock(struct net_device *dev);
4517 
4518 static inline void netif_tx_lock_bh(struct net_device *dev)
4519 {
4520 	local_bh_disable();
4521 	netif_tx_lock(dev);
4522 }
4523 
4524 void netif_tx_unlock(struct net_device *dev);
4525 
4526 static inline void netif_tx_unlock_bh(struct net_device *dev)
4527 {
4528 	netif_tx_unlock(dev);
4529 	local_bh_enable();
4530 }
4531 
4532 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4533 	if (!(dev)->lltx) {				\
4534 		__netif_tx_lock(txq, cpu);		\
4535 	} else {					\
4536 		__netif_tx_acquire(txq);		\
4537 	}						\
4538 }
4539 
4540 #define HARD_TX_TRYLOCK(dev, txq)			\
4541 	(!(dev)->lltx ?					\
4542 		__netif_tx_trylock(txq) :		\
4543 		__netif_tx_acquire(txq))
4544 
4545 #define HARD_TX_UNLOCK(dev, txq) {			\
4546 	if (!(dev)->lltx) {				\
4547 		__netif_tx_unlock(txq);			\
4548 	} else {					\
4549 		__netif_tx_release(txq);		\
4550 	}						\
4551 }
4552 
4553 static inline void netif_tx_disable(struct net_device *dev)
4554 {
4555 	unsigned int i;
4556 	int cpu;
4557 
4558 	local_bh_disable();
4559 	cpu = smp_processor_id();
4560 	spin_lock(&dev->tx_global_lock);
4561 	for (i = 0; i < dev->num_tx_queues; i++) {
4562 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4563 
4564 		__netif_tx_lock(txq, cpu);
4565 		netif_tx_stop_queue(txq);
4566 		__netif_tx_unlock(txq);
4567 	}
4568 	spin_unlock(&dev->tx_global_lock);
4569 	local_bh_enable();
4570 }
4571 
4572 static inline void netif_addr_lock(struct net_device *dev)
4573 {
4574 	unsigned char nest_level = 0;
4575 
4576 #ifdef CONFIG_LOCKDEP
4577 	nest_level = dev->nested_level;
4578 #endif
4579 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4580 }
4581 
4582 static inline void netif_addr_lock_bh(struct net_device *dev)
4583 {
4584 	unsigned char nest_level = 0;
4585 
4586 #ifdef CONFIG_LOCKDEP
4587 	nest_level = dev->nested_level;
4588 #endif
4589 	local_bh_disable();
4590 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4591 }
4592 
4593 static inline void netif_addr_unlock(struct net_device *dev)
4594 {
4595 	spin_unlock(&dev->addr_list_lock);
4596 }
4597 
4598 static inline void netif_addr_unlock_bh(struct net_device *dev)
4599 {
4600 	spin_unlock_bh(&dev->addr_list_lock);
4601 }
4602 
4603 /*
4604  * dev_addrs walker. Should be used only for read access. Call with
4605  * rcu_read_lock held.
4606  */
4607 #define for_each_dev_addr(dev, ha) \
4608 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4609 
4610 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4611 
4612 void ether_setup(struct net_device *dev);
4613 
4614 /* Allocate dummy net_device */
4615 struct net_device *alloc_netdev_dummy(int sizeof_priv);
4616 
4617 /* Support for loadable net-drivers */
4618 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4619 				    unsigned char name_assign_type,
4620 				    void (*setup)(struct net_device *),
4621 				    unsigned int txqs, unsigned int rxqs);
4622 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4623 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4624 
4625 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4626 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4627 			 count)
4628 
4629 int register_netdev(struct net_device *dev);
4630 void unregister_netdev(struct net_device *dev);
4631 
4632 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4633 
4634 /* General hardware address lists handling functions */
4635 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4636 		   struct netdev_hw_addr_list *from_list, int addr_len);
4637 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4638 		      struct netdev_hw_addr_list *from_list, int addr_len);
4639 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4640 		       struct net_device *dev,
4641 		       int (*sync)(struct net_device *, const unsigned char *),
4642 		       int (*unsync)(struct net_device *,
4643 				     const unsigned char *));
4644 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4645 			   struct net_device *dev,
4646 			   int (*sync)(struct net_device *,
4647 				       const unsigned char *, int),
4648 			   int (*unsync)(struct net_device *,
4649 					 const unsigned char *, int));
4650 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4651 			      struct net_device *dev,
4652 			      int (*unsync)(struct net_device *,
4653 					    const unsigned char *, int));
4654 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4655 			  struct net_device *dev,
4656 			  int (*unsync)(struct net_device *,
4657 					const unsigned char *));
4658 void __hw_addr_init(struct netdev_hw_addr_list *list);
4659 
4660 /* Functions used for device addresses handling */
4661 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4662 		  const void *addr, size_t len);
4663 
4664 static inline void
4665 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4666 {
4667 	dev_addr_mod(dev, 0, addr, len);
4668 }
4669 
4670 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4671 {
4672 	__dev_addr_set(dev, addr, dev->addr_len);
4673 }
4674 
4675 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4676 		 unsigned char addr_type);
4677 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4678 		 unsigned char addr_type);
4679 
4680 /* Functions used for unicast addresses handling */
4681 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4682 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4683 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4684 int dev_uc_sync(struct net_device *to, struct net_device *from);
4685 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4686 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4687 void dev_uc_flush(struct net_device *dev);
4688 void dev_uc_init(struct net_device *dev);
4689 
4690 /**
4691  *  __dev_uc_sync - Synchronize device's unicast list
4692  *  @dev:  device to sync
4693  *  @sync: function to call if address should be added
4694  *  @unsync: function to call if address should be removed
4695  *
4696  *  Add newly added addresses to the interface, and release
4697  *  addresses that have been deleted.
4698  */
4699 static inline int __dev_uc_sync(struct net_device *dev,
4700 				int (*sync)(struct net_device *,
4701 					    const unsigned char *),
4702 				int (*unsync)(struct net_device *,
4703 					      const unsigned char *))
4704 {
4705 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4706 }
4707 
4708 /**
4709  *  __dev_uc_unsync - Remove synchronized addresses from device
4710  *  @dev:  device to sync
4711  *  @unsync: function to call if address should be removed
4712  *
4713  *  Remove all addresses that were added to the device by dev_uc_sync().
4714  */
4715 static inline void __dev_uc_unsync(struct net_device *dev,
4716 				   int (*unsync)(struct net_device *,
4717 						 const unsigned char *))
4718 {
4719 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4720 }
4721 
4722 /* Functions used for multicast addresses handling */
4723 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4724 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4725 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4726 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4727 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4728 int dev_mc_sync(struct net_device *to, struct net_device *from);
4729 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4730 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4731 void dev_mc_flush(struct net_device *dev);
4732 void dev_mc_init(struct net_device *dev);
4733 
4734 /**
4735  *  __dev_mc_sync - Synchronize device's multicast list
4736  *  @dev:  device to sync
4737  *  @sync: function to call if address should be added
4738  *  @unsync: function to call if address should be removed
4739  *
4740  *  Add newly added addresses to the interface, and release
4741  *  addresses that have been deleted.
4742  */
4743 static inline int __dev_mc_sync(struct net_device *dev,
4744 				int (*sync)(struct net_device *,
4745 					    const unsigned char *),
4746 				int (*unsync)(struct net_device *,
4747 					      const unsigned char *))
4748 {
4749 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4750 }
4751 
4752 /**
4753  *  __dev_mc_unsync - Remove synchronized addresses from device
4754  *  @dev:  device to sync
4755  *  @unsync: function to call if address should be removed
4756  *
4757  *  Remove all addresses that were added to the device by dev_mc_sync().
4758  */
4759 static inline void __dev_mc_unsync(struct net_device *dev,
4760 				   int (*unsync)(struct net_device *,
4761 						 const unsigned char *))
4762 {
4763 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4764 }
4765 
4766 /* Functions used for secondary unicast and multicast support */
4767 void dev_set_rx_mode(struct net_device *dev);
4768 int dev_set_promiscuity(struct net_device *dev, int inc);
4769 int dev_set_allmulti(struct net_device *dev, int inc);
4770 void netdev_state_change(struct net_device *dev);
4771 void __netdev_notify_peers(struct net_device *dev);
4772 void netdev_notify_peers(struct net_device *dev);
4773 void netdev_features_change(struct net_device *dev);
4774 /* Load a device via the kmod */
4775 void dev_load(struct net *net, const char *name);
4776 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4777 					struct rtnl_link_stats64 *storage);
4778 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4779 			     const struct net_device_stats *netdev_stats);
4780 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4781 			   const struct pcpu_sw_netstats __percpu *netstats);
4782 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4783 
4784 enum {
4785 	NESTED_SYNC_IMM_BIT,
4786 	NESTED_SYNC_TODO_BIT,
4787 };
4788 
4789 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4790 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4791 
4792 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4793 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4794 
4795 struct netdev_nested_priv {
4796 	unsigned char flags;
4797 	void *data;
4798 };
4799 
4800 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4801 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4802 						     struct list_head **iter);
4803 
4804 /* iterate through upper list, must be called under RCU read lock */
4805 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4806 	for (iter = &(dev)->adj_list.upper, \
4807 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4808 	     updev; \
4809 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4810 
4811 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4812 				  int (*fn)(struct net_device *upper_dev,
4813 					    struct netdev_nested_priv *priv),
4814 				  struct netdev_nested_priv *priv);
4815 
4816 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4817 				  struct net_device *upper_dev);
4818 
4819 bool netdev_has_any_upper_dev(struct net_device *dev);
4820 
4821 void *netdev_lower_get_next_private(struct net_device *dev,
4822 				    struct list_head **iter);
4823 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4824 					struct list_head **iter);
4825 
4826 #define netdev_for_each_lower_private(dev, priv, iter) \
4827 	for (iter = (dev)->adj_list.lower.next, \
4828 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4829 	     priv; \
4830 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4831 
4832 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4833 	for (iter = &(dev)->adj_list.lower, \
4834 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4835 	     priv; \
4836 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4837 
4838 void *netdev_lower_get_next(struct net_device *dev,
4839 				struct list_head **iter);
4840 
4841 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4842 	for (iter = (dev)->adj_list.lower.next, \
4843 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4844 	     ldev; \
4845 	     ldev = netdev_lower_get_next(dev, &(iter)))
4846 
4847 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4848 					     struct list_head **iter);
4849 int netdev_walk_all_lower_dev(struct net_device *dev,
4850 			      int (*fn)(struct net_device *lower_dev,
4851 					struct netdev_nested_priv *priv),
4852 			      struct netdev_nested_priv *priv);
4853 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4854 				  int (*fn)(struct net_device *lower_dev,
4855 					    struct netdev_nested_priv *priv),
4856 				  struct netdev_nested_priv *priv);
4857 
4858 void *netdev_adjacent_get_private(struct list_head *adj_list);
4859 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4860 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4861 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4862 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4863 			  struct netlink_ext_ack *extack);
4864 int netdev_master_upper_dev_link(struct net_device *dev,
4865 				 struct net_device *upper_dev,
4866 				 void *upper_priv, void *upper_info,
4867 				 struct netlink_ext_ack *extack);
4868 void netdev_upper_dev_unlink(struct net_device *dev,
4869 			     struct net_device *upper_dev);
4870 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4871 				   struct net_device *new_dev,
4872 				   struct net_device *dev,
4873 				   struct netlink_ext_ack *extack);
4874 void netdev_adjacent_change_commit(struct net_device *old_dev,
4875 				   struct net_device *new_dev,
4876 				   struct net_device *dev);
4877 void netdev_adjacent_change_abort(struct net_device *old_dev,
4878 				  struct net_device *new_dev,
4879 				  struct net_device *dev);
4880 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4881 void *netdev_lower_dev_get_private(struct net_device *dev,
4882 				   struct net_device *lower_dev);
4883 void netdev_lower_state_changed(struct net_device *lower_dev,
4884 				void *lower_state_info);
4885 
4886 /* RSS keys are 40 or 52 bytes long */
4887 #define NETDEV_RSS_KEY_LEN 52
4888 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4889 void netdev_rss_key_fill(void *buffer, size_t len);
4890 
4891 int skb_checksum_help(struct sk_buff *skb);
4892 int skb_crc32c_csum_help(struct sk_buff *skb);
4893 int skb_csum_hwoffload_help(struct sk_buff *skb,
4894 			    const netdev_features_t features);
4895 
4896 struct netdev_bonding_info {
4897 	ifslave	slave;
4898 	ifbond	master;
4899 };
4900 
4901 struct netdev_notifier_bonding_info {
4902 	struct netdev_notifier_info info; /* must be first */
4903 	struct netdev_bonding_info  bonding_info;
4904 };
4905 
4906 void netdev_bonding_info_change(struct net_device *dev,
4907 				struct netdev_bonding_info *bonding_info);
4908 
4909 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4910 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4911 #else
4912 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4913 				  const void *data)
4914 {
4915 }
4916 #endif
4917 
4918 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4919 
4920 static inline bool can_checksum_protocol(netdev_features_t features,
4921 					 __be16 protocol)
4922 {
4923 	if (protocol == htons(ETH_P_FCOE))
4924 		return !!(features & NETIF_F_FCOE_CRC);
4925 
4926 	/* Assume this is an IP checksum (not SCTP CRC) */
4927 
4928 	if (features & NETIF_F_HW_CSUM) {
4929 		/* Can checksum everything */
4930 		return true;
4931 	}
4932 
4933 	switch (protocol) {
4934 	case htons(ETH_P_IP):
4935 		return !!(features & NETIF_F_IP_CSUM);
4936 	case htons(ETH_P_IPV6):
4937 		return !!(features & NETIF_F_IPV6_CSUM);
4938 	default:
4939 		return false;
4940 	}
4941 }
4942 
4943 #ifdef CONFIG_BUG
4944 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4945 #else
4946 static inline void netdev_rx_csum_fault(struct net_device *dev,
4947 					struct sk_buff *skb)
4948 {
4949 }
4950 #endif
4951 /* rx skb timestamps */
4952 void net_enable_timestamp(void);
4953 void net_disable_timestamp(void);
4954 
4955 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4956 					const struct skb_shared_hwtstamps *hwtstamps,
4957 					bool cycles)
4958 {
4959 	const struct net_device_ops *ops = dev->netdev_ops;
4960 
4961 	if (ops->ndo_get_tstamp)
4962 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4963 
4964 	return hwtstamps->hwtstamp;
4965 }
4966 
4967 #ifndef CONFIG_PREEMPT_RT
4968 static inline void netdev_xmit_set_more(bool more)
4969 {
4970 	__this_cpu_write(softnet_data.xmit.more, more);
4971 }
4972 
4973 static inline bool netdev_xmit_more(void)
4974 {
4975 	return __this_cpu_read(softnet_data.xmit.more);
4976 }
4977 #else
4978 static inline void netdev_xmit_set_more(bool more)
4979 {
4980 	current->net_xmit.more = more;
4981 }
4982 
4983 static inline bool netdev_xmit_more(void)
4984 {
4985 	return current->net_xmit.more;
4986 }
4987 #endif
4988 
4989 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4990 					      struct sk_buff *skb, struct net_device *dev,
4991 					      bool more)
4992 {
4993 	netdev_xmit_set_more(more);
4994 	return ops->ndo_start_xmit(skb, dev);
4995 }
4996 
4997 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4998 					    struct netdev_queue *txq, bool more)
4999 {
5000 	const struct net_device_ops *ops = dev->netdev_ops;
5001 	netdev_tx_t rc;
5002 
5003 	rc = __netdev_start_xmit(ops, skb, dev, more);
5004 	if (rc == NETDEV_TX_OK)
5005 		txq_trans_update(txq);
5006 
5007 	return rc;
5008 }
5009 
5010 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
5011 				const void *ns);
5012 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
5013 				 const void *ns);
5014 
5015 extern const struct kobj_ns_type_operations net_ns_type_operations;
5016 
5017 const char *netdev_drivername(const struct net_device *dev);
5018 
5019 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
5020 							  netdev_features_t f2)
5021 {
5022 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
5023 		if (f1 & NETIF_F_HW_CSUM)
5024 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5025 		else
5026 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5027 	}
5028 
5029 	return f1 & f2;
5030 }
5031 
5032 static inline netdev_features_t netdev_get_wanted_features(
5033 	struct net_device *dev)
5034 {
5035 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
5036 }
5037 netdev_features_t netdev_increment_features(netdev_features_t all,
5038 	netdev_features_t one, netdev_features_t mask);
5039 
5040 /* Allow TSO being used on stacked device :
5041  * Performing the GSO segmentation before last device
5042  * is a performance improvement.
5043  */
5044 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
5045 							netdev_features_t mask)
5046 {
5047 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
5048 }
5049 
5050 int __netdev_update_features(struct net_device *dev);
5051 void netdev_update_features(struct net_device *dev);
5052 void netdev_change_features(struct net_device *dev);
5053 
5054 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5055 					struct net_device *dev);
5056 
5057 netdev_features_t passthru_features_check(struct sk_buff *skb,
5058 					  struct net_device *dev,
5059 					  netdev_features_t features);
5060 netdev_features_t netif_skb_features(struct sk_buff *skb);
5061 void skb_warn_bad_offload(const struct sk_buff *skb);
5062 
5063 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
5064 {
5065 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
5066 
5067 	/* check flags correspondence */
5068 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
5069 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
5070 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
5071 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
5072 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
5073 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
5074 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
5075 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
5076 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
5077 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
5078 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
5079 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
5080 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
5081 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
5082 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
5083 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
5084 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
5085 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5086 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5087 
5088 	return (features & feature) == feature;
5089 }
5090 
5091 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5092 {
5093 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5094 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5095 }
5096 
5097 static inline bool netif_needs_gso(struct sk_buff *skb,
5098 				   netdev_features_t features)
5099 {
5100 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5101 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5102 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5103 }
5104 
5105 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
5106 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
5107 void netif_inherit_tso_max(struct net_device *to,
5108 			   const struct net_device *from);
5109 
5110 static inline unsigned int
5111 netif_get_gro_max_size(const struct net_device *dev, const struct sk_buff *skb)
5112 {
5113 	/* pairs with WRITE_ONCE() in netif_set_gro(_ipv4)_max_size() */
5114 	return skb->protocol == htons(ETH_P_IPV6) ?
5115 	       READ_ONCE(dev->gro_max_size) :
5116 	       READ_ONCE(dev->gro_ipv4_max_size);
5117 }
5118 
5119 static inline unsigned int
5120 netif_get_gso_max_size(const struct net_device *dev, const struct sk_buff *skb)
5121 {
5122 	/* pairs with WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */
5123 	return skb->protocol == htons(ETH_P_IPV6) ?
5124 	       READ_ONCE(dev->gso_max_size) :
5125 	       READ_ONCE(dev->gso_ipv4_max_size);
5126 }
5127 
5128 static inline bool netif_is_macsec(const struct net_device *dev)
5129 {
5130 	return dev->priv_flags & IFF_MACSEC;
5131 }
5132 
5133 static inline bool netif_is_macvlan(const struct net_device *dev)
5134 {
5135 	return dev->priv_flags & IFF_MACVLAN;
5136 }
5137 
5138 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5139 {
5140 	return dev->priv_flags & IFF_MACVLAN_PORT;
5141 }
5142 
5143 static inline bool netif_is_bond_master(const struct net_device *dev)
5144 {
5145 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5146 }
5147 
5148 static inline bool netif_is_bond_slave(const struct net_device *dev)
5149 {
5150 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5151 }
5152 
5153 static inline bool netif_supports_nofcs(struct net_device *dev)
5154 {
5155 	return dev->priv_flags & IFF_SUPP_NOFCS;
5156 }
5157 
5158 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5159 {
5160 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5161 }
5162 
5163 static inline bool netif_is_l3_master(const struct net_device *dev)
5164 {
5165 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5166 }
5167 
5168 static inline bool netif_is_l3_slave(const struct net_device *dev)
5169 {
5170 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5171 }
5172 
5173 static inline int dev_sdif(const struct net_device *dev)
5174 {
5175 #ifdef CONFIG_NET_L3_MASTER_DEV
5176 	if (netif_is_l3_slave(dev))
5177 		return dev->ifindex;
5178 #endif
5179 	return 0;
5180 }
5181 
5182 static inline bool netif_is_bridge_master(const struct net_device *dev)
5183 {
5184 	return dev->priv_flags & IFF_EBRIDGE;
5185 }
5186 
5187 static inline bool netif_is_bridge_port(const struct net_device *dev)
5188 {
5189 	return dev->priv_flags & IFF_BRIDGE_PORT;
5190 }
5191 
5192 static inline bool netif_is_ovs_master(const struct net_device *dev)
5193 {
5194 	return dev->priv_flags & IFF_OPENVSWITCH;
5195 }
5196 
5197 static inline bool netif_is_ovs_port(const struct net_device *dev)
5198 {
5199 	return dev->priv_flags & IFF_OVS_DATAPATH;
5200 }
5201 
5202 static inline bool netif_is_any_bridge_master(const struct net_device *dev)
5203 {
5204 	return netif_is_bridge_master(dev) || netif_is_ovs_master(dev);
5205 }
5206 
5207 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5208 {
5209 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5210 }
5211 
5212 static inline bool netif_is_team_master(const struct net_device *dev)
5213 {
5214 	return dev->priv_flags & IFF_TEAM;
5215 }
5216 
5217 static inline bool netif_is_team_port(const struct net_device *dev)
5218 {
5219 	return dev->priv_flags & IFF_TEAM_PORT;
5220 }
5221 
5222 static inline bool netif_is_lag_master(const struct net_device *dev)
5223 {
5224 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5225 }
5226 
5227 static inline bool netif_is_lag_port(const struct net_device *dev)
5228 {
5229 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5230 }
5231 
5232 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5233 {
5234 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5235 }
5236 
5237 static inline bool netif_is_failover(const struct net_device *dev)
5238 {
5239 	return dev->priv_flags & IFF_FAILOVER;
5240 }
5241 
5242 static inline bool netif_is_failover_slave(const struct net_device *dev)
5243 {
5244 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5245 }
5246 
5247 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5248 static inline void netif_keep_dst(struct net_device *dev)
5249 {
5250 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5251 }
5252 
5253 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5254 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5255 {
5256 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5257 	return netif_is_macsec(dev);
5258 }
5259 
5260 extern struct pernet_operations __net_initdata loopback_net_ops;
5261 
5262 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5263 
5264 /* netdev_printk helpers, similar to dev_printk */
5265 
5266 static inline const char *netdev_name(const struct net_device *dev)
5267 {
5268 	if (!dev->name[0] || strchr(dev->name, '%'))
5269 		return "(unnamed net_device)";
5270 	return dev->name;
5271 }
5272 
5273 static inline const char *netdev_reg_state(const struct net_device *dev)
5274 {
5275 	u8 reg_state = READ_ONCE(dev->reg_state);
5276 
5277 	switch (reg_state) {
5278 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5279 	case NETREG_REGISTERED: return "";
5280 	case NETREG_UNREGISTERING: return " (unregistering)";
5281 	case NETREG_UNREGISTERED: return " (unregistered)";
5282 	case NETREG_RELEASED: return " (released)";
5283 	case NETREG_DUMMY: return " (dummy)";
5284 	}
5285 
5286 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, reg_state);
5287 	return " (unknown)";
5288 }
5289 
5290 #define MODULE_ALIAS_NETDEV(device) \
5291 	MODULE_ALIAS("netdev-" device)
5292 
5293 /*
5294  * netdev_WARN() acts like dev_printk(), but with the key difference
5295  * of using a WARN/WARN_ON to get the message out, including the
5296  * file/line information and a backtrace.
5297  */
5298 #define netdev_WARN(dev, format, args...)			\
5299 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5300 	     netdev_reg_state(dev), ##args)
5301 
5302 #define netdev_WARN_ONCE(dev, format, args...)				\
5303 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5304 		  netdev_reg_state(dev), ##args)
5305 
5306 /*
5307  *	The list of packet types we will receive (as opposed to discard)
5308  *	and the routines to invoke.
5309  *
5310  *	Why 16. Because with 16 the only overlap we get on a hash of the
5311  *	low nibble of the protocol value is RARP/SNAP/X.25.
5312  *
5313  *		0800	IP
5314  *		0001	802.3
5315  *		0002	AX.25
5316  *		0004	802.2
5317  *		8035	RARP
5318  *		0005	SNAP
5319  *		0805	X.25
5320  *		0806	ARP
5321  *		8137	IPX
5322  *		0009	Localtalk
5323  *		86DD	IPv6
5324  */
5325 #define PTYPE_HASH_SIZE	(16)
5326 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5327 
5328 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5329 
5330 extern struct net_device *blackhole_netdev;
5331 
5332 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5333 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5334 #define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
5335 		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5336 #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD)
5337 
5338 #endif	/* _LINUX_NETDEVICE_H */
5339