xref: /linux-6.15/include/linux/netdevice.h (revision 4a8e43fe)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <[email protected]>
12  *		Corey Minyard <[email protected]>
13  *		Donald J. Becker, <[email protected]>
14  *		Alan Cox, <[email protected]>
15  *		Bjorn Ekwall. <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/if.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_link.h>
32 
33 #ifdef __KERNEL__
34 #include <linux/pm_qos.h>
35 #include <linux/timer.h>
36 #include <linux/bug.h>
37 #include <linux/delay.h>
38 #include <linux/atomic.h>
39 #include <asm/cache.h>
40 #include <asm/byteorder.h>
41 
42 #include <linux/percpu.h>
43 #include <linux/rculist.h>
44 #include <linux/dmaengine.h>
45 #include <linux/workqueue.h>
46 #include <linux/dynamic_queue_limits.h>
47 
48 #include <linux/ethtool.h>
49 #include <net/net_namespace.h>
50 #include <net/dsa.h>
51 #ifdef CONFIG_DCB
52 #include <net/dcbnl.h>
53 #endif
54 #include <net/netprio_cgroup.h>
55 
56 #include <linux/netdev_features.h>
57 #include <linux/neighbour.h>
58 
59 struct netpoll_info;
60 struct device;
61 struct phy_device;
62 /* 802.11 specific */
63 struct wireless_dev;
64 					/* source back-compat hooks */
65 #define SET_ETHTOOL_OPS(netdev,ops) \
66 	( (netdev)->ethtool_ops = (ops) )
67 
68 /* hardware address assignment types */
69 #define NET_ADDR_PERM		0	/* address is permanent (default) */
70 #define NET_ADDR_RANDOM		1	/* address is generated randomly */
71 #define NET_ADDR_STOLEN		2	/* address is stolen from other device */
72 
73 /* Backlog congestion levels */
74 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
75 #define NET_RX_DROP		1	/* packet dropped */
76 
77 /*
78  * Transmit return codes: transmit return codes originate from three different
79  * namespaces:
80  *
81  * - qdisc return codes
82  * - driver transmit return codes
83  * - errno values
84  *
85  * Drivers are allowed to return any one of those in their hard_start_xmit()
86  * function. Real network devices commonly used with qdiscs should only return
87  * the driver transmit return codes though - when qdiscs are used, the actual
88  * transmission happens asynchronously, so the value is not propagated to
89  * higher layers. Virtual network devices transmit synchronously, in this case
90  * the driver transmit return codes are consumed by dev_queue_xmit(), all
91  * others are propagated to higher layers.
92  */
93 
94 /* qdisc ->enqueue() return codes. */
95 #define NET_XMIT_SUCCESS	0x00
96 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
97 #define NET_XMIT_CN		0x02	/* congestion notification	*/
98 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
99 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
100 
101 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
102  * indicates that the device will soon be dropping packets, or already drops
103  * some packets of the same priority; prompting us to send less aggressively. */
104 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
105 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
106 
107 /* Driver transmit return codes */
108 #define NETDEV_TX_MASK		0xf0
109 
110 enum netdev_tx {
111 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
112 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
113 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
114 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
115 };
116 typedef enum netdev_tx netdev_tx_t;
117 
118 /*
119  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121  */
122 static inline bool dev_xmit_complete(int rc)
123 {
124 	/*
125 	 * Positive cases with an skb consumed by a driver:
126 	 * - successful transmission (rc == NETDEV_TX_OK)
127 	 * - error while transmitting (rc < 0)
128 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 	 */
130 	if (likely(rc < NET_XMIT_MASK))
131 		return true;
132 
133 	return false;
134 }
135 
136 #endif
137 
138 #define MAX_ADDR_LEN	32		/* Largest hardware address length */
139 
140 /* Initial net device group. All devices belong to group 0 by default. */
141 #define INIT_NETDEV_GROUP	0
142 
143 #ifdef  __KERNEL__
144 /*
145  *	Compute the worst case header length according to the protocols
146  *	used.
147  */
148 
149 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
150 # if defined(CONFIG_MAC80211_MESH)
151 #  define LL_MAX_HEADER 128
152 # else
153 #  define LL_MAX_HEADER 96
154 # endif
155 #elif IS_ENABLED(CONFIG_TR)
156 # define LL_MAX_HEADER 48
157 #else
158 # define LL_MAX_HEADER 32
159 #endif
160 
161 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
162     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
163 #define MAX_HEADER LL_MAX_HEADER
164 #else
165 #define MAX_HEADER (LL_MAX_HEADER + 48)
166 #endif
167 
168 /*
169  *	Old network device statistics. Fields are native words
170  *	(unsigned long) so they can be read and written atomically.
171  */
172 
173 struct net_device_stats {
174 	unsigned long	rx_packets;
175 	unsigned long	tx_packets;
176 	unsigned long	rx_bytes;
177 	unsigned long	tx_bytes;
178 	unsigned long	rx_errors;
179 	unsigned long	tx_errors;
180 	unsigned long	rx_dropped;
181 	unsigned long	tx_dropped;
182 	unsigned long	multicast;
183 	unsigned long	collisions;
184 	unsigned long	rx_length_errors;
185 	unsigned long	rx_over_errors;
186 	unsigned long	rx_crc_errors;
187 	unsigned long	rx_frame_errors;
188 	unsigned long	rx_fifo_errors;
189 	unsigned long	rx_missed_errors;
190 	unsigned long	tx_aborted_errors;
191 	unsigned long	tx_carrier_errors;
192 	unsigned long	tx_fifo_errors;
193 	unsigned long	tx_heartbeat_errors;
194 	unsigned long	tx_window_errors;
195 	unsigned long	rx_compressed;
196 	unsigned long	tx_compressed;
197 };
198 
199 #endif  /*  __KERNEL__  */
200 
201 
202 /* Media selection options. */
203 enum {
204         IF_PORT_UNKNOWN = 0,
205         IF_PORT_10BASE2,
206         IF_PORT_10BASET,
207         IF_PORT_AUI,
208         IF_PORT_100BASET,
209         IF_PORT_100BASETX,
210         IF_PORT_100BASEFX
211 };
212 
213 #ifdef __KERNEL__
214 
215 #include <linux/cache.h>
216 #include <linux/skbuff.h>
217 
218 #ifdef CONFIG_RPS
219 #include <linux/static_key.h>
220 extern struct static_key rps_needed;
221 #endif
222 
223 struct neighbour;
224 struct neigh_parms;
225 struct sk_buff;
226 
227 struct netdev_hw_addr {
228 	struct list_head	list;
229 	unsigned char		addr[MAX_ADDR_LEN];
230 	unsigned char		type;
231 #define NETDEV_HW_ADDR_T_LAN		1
232 #define NETDEV_HW_ADDR_T_SAN		2
233 #define NETDEV_HW_ADDR_T_SLAVE		3
234 #define NETDEV_HW_ADDR_T_UNICAST	4
235 #define NETDEV_HW_ADDR_T_MULTICAST	5
236 	bool			synced;
237 	bool			global_use;
238 	int			refcount;
239 	struct rcu_head		rcu_head;
240 };
241 
242 struct netdev_hw_addr_list {
243 	struct list_head	list;
244 	int			count;
245 };
246 
247 #define netdev_hw_addr_list_count(l) ((l)->count)
248 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
249 #define netdev_hw_addr_list_for_each(ha, l) \
250 	list_for_each_entry(ha, &(l)->list, list)
251 
252 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
253 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
254 #define netdev_for_each_uc_addr(ha, dev) \
255 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
256 
257 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
258 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
259 #define netdev_for_each_mc_addr(ha, dev) \
260 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
261 
262 struct hh_cache {
263 	u16		hh_len;
264 	u16		__pad;
265 	seqlock_t	hh_lock;
266 
267 	/* cached hardware header; allow for machine alignment needs.        */
268 #define HH_DATA_MOD	16
269 #define HH_DATA_OFF(__len) \
270 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
271 #define HH_DATA_ALIGN(__len) \
272 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
273 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
274 };
275 
276 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
277  * Alternative is:
278  *   dev->hard_header_len ? (dev->hard_header_len +
279  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
280  *
281  * We could use other alignment values, but we must maintain the
282  * relationship HH alignment <= LL alignment.
283  */
284 #define LL_RESERVED_SPACE(dev) \
285 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
286 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
287 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
288 
289 struct header_ops {
290 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
291 			   unsigned short type, const void *daddr,
292 			   const void *saddr, unsigned int len);
293 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
294 	int	(*rebuild)(struct sk_buff *skb);
295 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
296 	void	(*cache_update)(struct hh_cache *hh,
297 				const struct net_device *dev,
298 				const unsigned char *haddr);
299 };
300 
301 /* These flag bits are private to the generic network queueing
302  * layer, they may not be explicitly referenced by any other
303  * code.
304  */
305 
306 enum netdev_state_t {
307 	__LINK_STATE_START,
308 	__LINK_STATE_PRESENT,
309 	__LINK_STATE_NOCARRIER,
310 	__LINK_STATE_LINKWATCH_PENDING,
311 	__LINK_STATE_DORMANT,
312 };
313 
314 
315 /*
316  * This structure holds at boot time configured netdevice settings. They
317  * are then used in the device probing.
318  */
319 struct netdev_boot_setup {
320 	char name[IFNAMSIZ];
321 	struct ifmap map;
322 };
323 #define NETDEV_BOOT_SETUP_MAX 8
324 
325 extern int __init netdev_boot_setup(char *str);
326 
327 /*
328  * Structure for NAPI scheduling similar to tasklet but with weighting
329  */
330 struct napi_struct {
331 	/* The poll_list must only be managed by the entity which
332 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
333 	 * whoever atomically sets that bit can add this napi_struct
334 	 * to the per-cpu poll_list, and whoever clears that bit
335 	 * can remove from the list right before clearing the bit.
336 	 */
337 	struct list_head	poll_list;
338 
339 	unsigned long		state;
340 	int			weight;
341 	unsigned int		gro_count;
342 	int			(*poll)(struct napi_struct *, int);
343 #ifdef CONFIG_NETPOLL
344 	spinlock_t		poll_lock;
345 	int			poll_owner;
346 #endif
347 	struct net_device	*dev;
348 	struct sk_buff		*gro_list;
349 	struct sk_buff		*skb;
350 	struct list_head	dev_list;
351 };
352 
353 enum {
354 	NAPI_STATE_SCHED,	/* Poll is scheduled */
355 	NAPI_STATE_DISABLE,	/* Disable pending */
356 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
357 };
358 
359 enum gro_result {
360 	GRO_MERGED,
361 	GRO_MERGED_FREE,
362 	GRO_HELD,
363 	GRO_NORMAL,
364 	GRO_DROP,
365 };
366 typedef enum gro_result gro_result_t;
367 
368 /*
369  * enum rx_handler_result - Possible return values for rx_handlers.
370  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
371  * further.
372  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
373  * case skb->dev was changed by rx_handler.
374  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
375  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
376  *
377  * rx_handlers are functions called from inside __netif_receive_skb(), to do
378  * special processing of the skb, prior to delivery to protocol handlers.
379  *
380  * Currently, a net_device can only have a single rx_handler registered. Trying
381  * to register a second rx_handler will return -EBUSY.
382  *
383  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
384  * To unregister a rx_handler on a net_device, use
385  * netdev_rx_handler_unregister().
386  *
387  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
388  * do with the skb.
389  *
390  * If the rx_handler consumed to skb in some way, it should return
391  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
392  * the skb to be delivered in some other ways.
393  *
394  * If the rx_handler changed skb->dev, to divert the skb to another
395  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
396  * new device will be called if it exists.
397  *
398  * If the rx_handler consider the skb should be ignored, it should return
399  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
400  * are registred on exact device (ptype->dev == skb->dev).
401  *
402  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
403  * delivered, it should return RX_HANDLER_PASS.
404  *
405  * A device without a registered rx_handler will behave as if rx_handler
406  * returned RX_HANDLER_PASS.
407  */
408 
409 enum rx_handler_result {
410 	RX_HANDLER_CONSUMED,
411 	RX_HANDLER_ANOTHER,
412 	RX_HANDLER_EXACT,
413 	RX_HANDLER_PASS,
414 };
415 typedef enum rx_handler_result rx_handler_result_t;
416 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
417 
418 extern void __napi_schedule(struct napi_struct *n);
419 
420 static inline bool napi_disable_pending(struct napi_struct *n)
421 {
422 	return test_bit(NAPI_STATE_DISABLE, &n->state);
423 }
424 
425 /**
426  *	napi_schedule_prep - check if napi can be scheduled
427  *	@n: napi context
428  *
429  * Test if NAPI routine is already running, and if not mark
430  * it as running.  This is used as a condition variable
431  * insure only one NAPI poll instance runs.  We also make
432  * sure there is no pending NAPI disable.
433  */
434 static inline bool napi_schedule_prep(struct napi_struct *n)
435 {
436 	return !napi_disable_pending(n) &&
437 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
438 }
439 
440 /**
441  *	napi_schedule - schedule NAPI poll
442  *	@n: napi context
443  *
444  * Schedule NAPI poll routine to be called if it is not already
445  * running.
446  */
447 static inline void napi_schedule(struct napi_struct *n)
448 {
449 	if (napi_schedule_prep(n))
450 		__napi_schedule(n);
451 }
452 
453 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
454 static inline bool napi_reschedule(struct napi_struct *napi)
455 {
456 	if (napi_schedule_prep(napi)) {
457 		__napi_schedule(napi);
458 		return true;
459 	}
460 	return false;
461 }
462 
463 /**
464  *	napi_complete - NAPI processing complete
465  *	@n: napi context
466  *
467  * Mark NAPI processing as complete.
468  */
469 extern void __napi_complete(struct napi_struct *n);
470 extern void napi_complete(struct napi_struct *n);
471 
472 /**
473  *	napi_disable - prevent NAPI from scheduling
474  *	@n: napi context
475  *
476  * Stop NAPI from being scheduled on this context.
477  * Waits till any outstanding processing completes.
478  */
479 static inline void napi_disable(struct napi_struct *n)
480 {
481 	set_bit(NAPI_STATE_DISABLE, &n->state);
482 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
483 		msleep(1);
484 	clear_bit(NAPI_STATE_DISABLE, &n->state);
485 }
486 
487 /**
488  *	napi_enable - enable NAPI scheduling
489  *	@n: napi context
490  *
491  * Resume NAPI from being scheduled on this context.
492  * Must be paired with napi_disable.
493  */
494 static inline void napi_enable(struct napi_struct *n)
495 {
496 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
497 	smp_mb__before_clear_bit();
498 	clear_bit(NAPI_STATE_SCHED, &n->state);
499 }
500 
501 #ifdef CONFIG_SMP
502 /**
503  *	napi_synchronize - wait until NAPI is not running
504  *	@n: napi context
505  *
506  * Wait until NAPI is done being scheduled on this context.
507  * Waits till any outstanding processing completes but
508  * does not disable future activations.
509  */
510 static inline void napi_synchronize(const struct napi_struct *n)
511 {
512 	while (test_bit(NAPI_STATE_SCHED, &n->state))
513 		msleep(1);
514 }
515 #else
516 # define napi_synchronize(n)	barrier()
517 #endif
518 
519 enum netdev_queue_state_t {
520 	__QUEUE_STATE_DRV_XOFF,
521 	__QUEUE_STATE_STACK_XOFF,
522 	__QUEUE_STATE_FROZEN,
523 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF)		| \
524 			      (1 << __QUEUE_STATE_STACK_XOFF))
525 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF		| \
526 					(1 << __QUEUE_STATE_FROZEN))
527 };
528 /*
529  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
530  * netif_tx_* functions below are used to manipulate this flag.  The
531  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
532  * queue independently.  The netif_xmit_*stopped functions below are called
533  * to check if the queue has been stopped by the driver or stack (either
534  * of the XOFF bits are set in the state).  Drivers should not need to call
535  * netif_xmit*stopped functions, they should only be using netif_tx_*.
536  */
537 
538 struct netdev_queue {
539 /*
540  * read mostly part
541  */
542 	struct net_device	*dev;
543 	struct Qdisc		*qdisc;
544 	struct Qdisc		*qdisc_sleeping;
545 #ifdef CONFIG_SYSFS
546 	struct kobject		kobj;
547 #endif
548 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
549 	int			numa_node;
550 #endif
551 /*
552  * write mostly part
553  */
554 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
555 	int			xmit_lock_owner;
556 	/*
557 	 * please use this field instead of dev->trans_start
558 	 */
559 	unsigned long		trans_start;
560 
561 	/*
562 	 * Number of TX timeouts for this queue
563 	 * (/sys/class/net/DEV/Q/trans_timeout)
564 	 */
565 	unsigned long		trans_timeout;
566 
567 	unsigned long		state;
568 
569 #ifdef CONFIG_BQL
570 	struct dql		dql;
571 #endif
572 } ____cacheline_aligned_in_smp;
573 
574 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
575 {
576 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
577 	return q->numa_node;
578 #else
579 	return NUMA_NO_NODE;
580 #endif
581 }
582 
583 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
584 {
585 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
586 	q->numa_node = node;
587 #endif
588 }
589 
590 #ifdef CONFIG_RPS
591 /*
592  * This structure holds an RPS map which can be of variable length.  The
593  * map is an array of CPUs.
594  */
595 struct rps_map {
596 	unsigned int len;
597 	struct rcu_head rcu;
598 	u16 cpus[0];
599 };
600 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
601 
602 /*
603  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
604  * tail pointer for that CPU's input queue at the time of last enqueue, and
605  * a hardware filter index.
606  */
607 struct rps_dev_flow {
608 	u16 cpu;
609 	u16 filter;
610 	unsigned int last_qtail;
611 };
612 #define RPS_NO_FILTER 0xffff
613 
614 /*
615  * The rps_dev_flow_table structure contains a table of flow mappings.
616  */
617 struct rps_dev_flow_table {
618 	unsigned int mask;
619 	struct rcu_head rcu;
620 	struct work_struct free_work;
621 	struct rps_dev_flow flows[0];
622 };
623 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
624     ((_num) * sizeof(struct rps_dev_flow)))
625 
626 /*
627  * The rps_sock_flow_table contains mappings of flows to the last CPU
628  * on which they were processed by the application (set in recvmsg).
629  */
630 struct rps_sock_flow_table {
631 	unsigned int mask;
632 	u16 ents[0];
633 };
634 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
635     ((_num) * sizeof(u16)))
636 
637 #define RPS_NO_CPU 0xffff
638 
639 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
640 					u32 hash)
641 {
642 	if (table && hash) {
643 		unsigned int cpu, index = hash & table->mask;
644 
645 		/* We only give a hint, preemption can change cpu under us */
646 		cpu = raw_smp_processor_id();
647 
648 		if (table->ents[index] != cpu)
649 			table->ents[index] = cpu;
650 	}
651 }
652 
653 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
654 				       u32 hash)
655 {
656 	if (table && hash)
657 		table->ents[hash & table->mask] = RPS_NO_CPU;
658 }
659 
660 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
661 
662 #ifdef CONFIG_RFS_ACCEL
663 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
664 				u32 flow_id, u16 filter_id);
665 #endif
666 
667 /* This structure contains an instance of an RX queue. */
668 struct netdev_rx_queue {
669 	struct rps_map __rcu		*rps_map;
670 	struct rps_dev_flow_table __rcu	*rps_flow_table;
671 	struct kobject			kobj;
672 	struct net_device		*dev;
673 } ____cacheline_aligned_in_smp;
674 #endif /* CONFIG_RPS */
675 
676 #ifdef CONFIG_XPS
677 /*
678  * This structure holds an XPS map which can be of variable length.  The
679  * map is an array of queues.
680  */
681 struct xps_map {
682 	unsigned int len;
683 	unsigned int alloc_len;
684 	struct rcu_head rcu;
685 	u16 queues[0];
686 };
687 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
688 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))	\
689     / sizeof(u16))
690 
691 /*
692  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
693  */
694 struct xps_dev_maps {
695 	struct rcu_head rcu;
696 	struct xps_map __rcu *cpu_map[0];
697 };
698 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
699     (nr_cpu_ids * sizeof(struct xps_map *)))
700 #endif /* CONFIG_XPS */
701 
702 #define TC_MAX_QUEUE	16
703 #define TC_BITMASK	15
704 /* HW offloaded queuing disciplines txq count and offset maps */
705 struct netdev_tc_txq {
706 	u16 count;
707 	u16 offset;
708 };
709 
710 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
711 /*
712  * This structure is to hold information about the device
713  * configured to run FCoE protocol stack.
714  */
715 struct netdev_fcoe_hbainfo {
716 	char	manufacturer[64];
717 	char	serial_number[64];
718 	char	hardware_version[64];
719 	char	driver_version[64];
720 	char	optionrom_version[64];
721 	char	firmware_version[64];
722 	char	model[256];
723 	char	model_description[256];
724 };
725 #endif
726 
727 /*
728  * This structure defines the management hooks for network devices.
729  * The following hooks can be defined; unless noted otherwise, they are
730  * optional and can be filled with a null pointer.
731  *
732  * int (*ndo_init)(struct net_device *dev);
733  *     This function is called once when network device is registered.
734  *     The network device can use this to any late stage initializaton
735  *     or semantic validattion. It can fail with an error code which will
736  *     be propogated back to register_netdev
737  *
738  * void (*ndo_uninit)(struct net_device *dev);
739  *     This function is called when device is unregistered or when registration
740  *     fails. It is not called if init fails.
741  *
742  * int (*ndo_open)(struct net_device *dev);
743  *     This function is called when network device transistions to the up
744  *     state.
745  *
746  * int (*ndo_stop)(struct net_device *dev);
747  *     This function is called when network device transistions to the down
748  *     state.
749  *
750  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
751  *                               struct net_device *dev);
752  *	Called when a packet needs to be transmitted.
753  *	Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
754  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
755  *	Required can not be NULL.
756  *
757  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
758  *	Called to decide which queue to when device supports multiple
759  *	transmit queues.
760  *
761  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
762  *	This function is called to allow device receiver to make
763  *	changes to configuration when multicast or promiscious is enabled.
764  *
765  * void (*ndo_set_rx_mode)(struct net_device *dev);
766  *	This function is called device changes address list filtering.
767  *	If driver handles unicast address filtering, it should set
768  *	IFF_UNICAST_FLT to its priv_flags.
769  *
770  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
771  *	This function  is called when the Media Access Control address
772  *	needs to be changed. If this interface is not defined, the
773  *	mac address can not be changed.
774  *
775  * int (*ndo_validate_addr)(struct net_device *dev);
776  *	Test if Media Access Control address is valid for the device.
777  *
778  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
779  *	Called when a user request an ioctl which can't be handled by
780  *	the generic interface code. If not defined ioctl's return
781  *	not supported error code.
782  *
783  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
784  *	Used to set network devices bus interface parameters. This interface
785  *	is retained for legacy reason, new devices should use the bus
786  *	interface (PCI) for low level management.
787  *
788  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
789  *	Called when a user wants to change the Maximum Transfer Unit
790  *	of a device. If not defined, any request to change MTU will
791  *	will return an error.
792  *
793  * void (*ndo_tx_timeout)(struct net_device *dev);
794  *	Callback uses when the transmitter has not made any progress
795  *	for dev->watchdog ticks.
796  *
797  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
798  *                      struct rtnl_link_stats64 *storage);
799  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
800  *	Called when a user wants to get the network device usage
801  *	statistics. Drivers must do one of the following:
802  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
803  *	   rtnl_link_stats64 structure passed by the caller.
804  *	2. Define @ndo_get_stats to update a net_device_stats structure
805  *	   (which should normally be dev->stats) and return a pointer to
806  *	   it. The structure may be changed asynchronously only if each
807  *	   field is written atomically.
808  *	3. Update dev->stats asynchronously and atomically, and define
809  *	   neither operation.
810  *
811  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
812  *	If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
813  *	this function is called when a VLAN id is registered.
814  *
815  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
816  *	If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
817  *	this function is called when a VLAN id is unregistered.
818  *
819  * void (*ndo_poll_controller)(struct net_device *dev);
820  *
821  *	SR-IOV management functions.
822  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
823  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
824  * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
825  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
826  * int (*ndo_get_vf_config)(struct net_device *dev,
827  *			    int vf, struct ifla_vf_info *ivf);
828  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
829  *			  struct nlattr *port[]);
830  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
831  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
832  * 	Called to setup 'tc' number of traffic classes in the net device. This
833  * 	is always called from the stack with the rtnl lock held and netif tx
834  * 	queues stopped. This allows the netdevice to perform queue management
835  * 	safely.
836  *
837  *	Fiber Channel over Ethernet (FCoE) offload functions.
838  * int (*ndo_fcoe_enable)(struct net_device *dev);
839  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
840  *	so the underlying device can perform whatever needed configuration or
841  *	initialization to support acceleration of FCoE traffic.
842  *
843  * int (*ndo_fcoe_disable)(struct net_device *dev);
844  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
845  *	so the underlying device can perform whatever needed clean-ups to
846  *	stop supporting acceleration of FCoE traffic.
847  *
848  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
849  *			     struct scatterlist *sgl, unsigned int sgc);
850  *	Called when the FCoE Initiator wants to initialize an I/O that
851  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
852  *	perform necessary setup and returns 1 to indicate the device is set up
853  *	successfully to perform DDP on this I/O, otherwise this returns 0.
854  *
855  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
856  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
857  *	indicated by the FC exchange id 'xid', so the underlying device can
858  *	clean up and reuse resources for later DDP requests.
859  *
860  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
861  *			      struct scatterlist *sgl, unsigned int sgc);
862  *	Called when the FCoE Target wants to initialize an I/O that
863  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
864  *	perform necessary setup and returns 1 to indicate the device is set up
865  *	successfully to perform DDP on this I/O, otherwise this returns 0.
866  *
867  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
868  *			       struct netdev_fcoe_hbainfo *hbainfo);
869  *	Called when the FCoE Protocol stack wants information on the underlying
870  *	device. This information is utilized by the FCoE protocol stack to
871  *	register attributes with Fiber Channel management service as per the
872  *	FC-GS Fabric Device Management Information(FDMI) specification.
873  *
874  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
875  *	Called when the underlying device wants to override default World Wide
876  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
877  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
878  *	protocol stack to use.
879  *
880  *	RFS acceleration.
881  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
882  *			    u16 rxq_index, u32 flow_id);
883  *	Set hardware filter for RFS.  rxq_index is the target queue index;
884  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
885  *	Return the filter ID on success, or a negative error code.
886  *
887  *	Slave management functions (for bridge, bonding, etc). User should
888  *	call netdev_set_master() to set dev->master properly.
889  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
890  *	Called to make another netdev an underling.
891  *
892  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
893  *	Called to release previously enslaved netdev.
894  *
895  *      Feature/offload setting functions.
896  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
897  *		netdev_features_t features);
898  *	Adjusts the requested feature flags according to device-specific
899  *	constraints, and returns the resulting flags. Must not modify
900  *	the device state.
901  *
902  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
903  *	Called to update device configuration to new features. Passed
904  *	feature set might be less than what was returned by ndo_fix_features()).
905  *	Must return >0 or -errno if it changed dev->features itself.
906  *
907  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
908  *		      struct net_device *dev,
909  *		      const unsigned char *addr, u16 flags)
910  *	Adds an FDB entry to dev for addr.
911  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct net_device *dev,
912  *		      const unsigned char *addr)
913  *	Deletes the FDB entry from dev coresponding to addr.
914  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
915  *		       struct net_device *dev, int idx)
916  *	Used to add FDB entries to dump requests. Implementers should add
917  *	entries to skb and update idx with the number of entries.
918  */
919 struct net_device_ops {
920 	int			(*ndo_init)(struct net_device *dev);
921 	void			(*ndo_uninit)(struct net_device *dev);
922 	int			(*ndo_open)(struct net_device *dev);
923 	int			(*ndo_stop)(struct net_device *dev);
924 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
925 						   struct net_device *dev);
926 	u16			(*ndo_select_queue)(struct net_device *dev,
927 						    struct sk_buff *skb);
928 	void			(*ndo_change_rx_flags)(struct net_device *dev,
929 						       int flags);
930 	void			(*ndo_set_rx_mode)(struct net_device *dev);
931 	int			(*ndo_set_mac_address)(struct net_device *dev,
932 						       void *addr);
933 	int			(*ndo_validate_addr)(struct net_device *dev);
934 	int			(*ndo_do_ioctl)(struct net_device *dev,
935 					        struct ifreq *ifr, int cmd);
936 	int			(*ndo_set_config)(struct net_device *dev,
937 					          struct ifmap *map);
938 	int			(*ndo_change_mtu)(struct net_device *dev,
939 						  int new_mtu);
940 	int			(*ndo_neigh_setup)(struct net_device *dev,
941 						   struct neigh_parms *);
942 	void			(*ndo_tx_timeout) (struct net_device *dev);
943 
944 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
945 						     struct rtnl_link_stats64 *storage);
946 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
947 
948 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
949 						       unsigned short vid);
950 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
951 						        unsigned short vid);
952 #ifdef CONFIG_NET_POLL_CONTROLLER
953 	void                    (*ndo_poll_controller)(struct net_device *dev);
954 	int			(*ndo_netpoll_setup)(struct net_device *dev,
955 						     struct netpoll_info *info,
956 						     gfp_t gfp);
957 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
958 #endif
959 	int			(*ndo_set_vf_mac)(struct net_device *dev,
960 						  int queue, u8 *mac);
961 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
962 						   int queue, u16 vlan, u8 qos);
963 	int			(*ndo_set_vf_tx_rate)(struct net_device *dev,
964 						      int vf, int rate);
965 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
966 						       int vf, bool setting);
967 	int			(*ndo_get_vf_config)(struct net_device *dev,
968 						     int vf,
969 						     struct ifla_vf_info *ivf);
970 	int			(*ndo_set_vf_port)(struct net_device *dev,
971 						   int vf,
972 						   struct nlattr *port[]);
973 	int			(*ndo_get_vf_port)(struct net_device *dev,
974 						   int vf, struct sk_buff *skb);
975 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
976 #if IS_ENABLED(CONFIG_FCOE)
977 	int			(*ndo_fcoe_enable)(struct net_device *dev);
978 	int			(*ndo_fcoe_disable)(struct net_device *dev);
979 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
980 						      u16 xid,
981 						      struct scatterlist *sgl,
982 						      unsigned int sgc);
983 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
984 						     u16 xid);
985 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
986 						       u16 xid,
987 						       struct scatterlist *sgl,
988 						       unsigned int sgc);
989 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
990 							struct netdev_fcoe_hbainfo *hbainfo);
991 #endif
992 
993 #if IS_ENABLED(CONFIG_LIBFCOE)
994 #define NETDEV_FCOE_WWNN 0
995 #define NETDEV_FCOE_WWPN 1
996 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
997 						    u64 *wwn, int type);
998 #endif
999 
1000 #ifdef CONFIG_RFS_ACCEL
1001 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1002 						     const struct sk_buff *skb,
1003 						     u16 rxq_index,
1004 						     u32 flow_id);
1005 #endif
1006 	int			(*ndo_add_slave)(struct net_device *dev,
1007 						 struct net_device *slave_dev);
1008 	int			(*ndo_del_slave)(struct net_device *dev,
1009 						 struct net_device *slave_dev);
1010 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1011 						    netdev_features_t features);
1012 	int			(*ndo_set_features)(struct net_device *dev,
1013 						    netdev_features_t features);
1014 	int			(*ndo_neigh_construct)(struct neighbour *n);
1015 	void			(*ndo_neigh_destroy)(struct neighbour *n);
1016 
1017 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1018 					       struct nlattr *tb[],
1019 					       struct net_device *dev,
1020 					       const unsigned char *addr,
1021 					       u16 flags);
1022 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1023 					       struct net_device *dev,
1024 					       const unsigned char *addr);
1025 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1026 						struct netlink_callback *cb,
1027 						struct net_device *dev,
1028 						int idx);
1029 };
1030 
1031 /*
1032  *	The DEVICE structure.
1033  *	Actually, this whole structure is a big mistake.  It mixes I/O
1034  *	data with strictly "high-level" data, and it has to know about
1035  *	almost every data structure used in the INET module.
1036  *
1037  *	FIXME: cleanup struct net_device such that network protocol info
1038  *	moves out.
1039  */
1040 
1041 struct net_device {
1042 
1043 	/*
1044 	 * This is the first field of the "visible" part of this structure
1045 	 * (i.e. as seen by users in the "Space.c" file).  It is the name
1046 	 * of the interface.
1047 	 */
1048 	char			name[IFNAMSIZ];
1049 
1050 	/* device name hash chain, please keep it close to name[] */
1051 	struct hlist_node	name_hlist;
1052 
1053 	/* snmp alias */
1054 	char 			*ifalias;
1055 
1056 	/*
1057 	 *	I/O specific fields
1058 	 *	FIXME: Merge these and struct ifmap into one
1059 	 */
1060 	unsigned long		mem_end;	/* shared mem end	*/
1061 	unsigned long		mem_start;	/* shared mem start	*/
1062 	unsigned long		base_addr;	/* device I/O address	*/
1063 	unsigned int		irq;		/* device IRQ number	*/
1064 
1065 	/*
1066 	 *	Some hardware also needs these fields, but they are not
1067 	 *	part of the usual set specified in Space.c.
1068 	 */
1069 
1070 	unsigned long		state;
1071 
1072 	struct list_head	dev_list;
1073 	struct list_head	napi_list;
1074 	struct list_head	unreg_list;
1075 
1076 	/* currently active device features */
1077 	netdev_features_t	features;
1078 	/* user-changeable features */
1079 	netdev_features_t	hw_features;
1080 	/* user-requested features */
1081 	netdev_features_t	wanted_features;
1082 	/* mask of features inheritable by VLAN devices */
1083 	netdev_features_t	vlan_features;
1084 
1085 	/* Interface index. Unique device identifier	*/
1086 	int			ifindex;
1087 	int			iflink;
1088 
1089 	struct net_device_stats	stats;
1090 	atomic_long_t		rx_dropped; /* dropped packets by core network
1091 					     * Do not use this in drivers.
1092 					     */
1093 
1094 #ifdef CONFIG_WIRELESS_EXT
1095 	/* List of functions to handle Wireless Extensions (instead of ioctl).
1096 	 * See <net/iw_handler.h> for details. Jean II */
1097 	const struct iw_handler_def *	wireless_handlers;
1098 	/* Instance data managed by the core of Wireless Extensions. */
1099 	struct iw_public_data *	wireless_data;
1100 #endif
1101 	/* Management operations */
1102 	const struct net_device_ops *netdev_ops;
1103 	const struct ethtool_ops *ethtool_ops;
1104 
1105 	/* Hardware header description */
1106 	const struct header_ops *header_ops;
1107 
1108 	unsigned int		flags;	/* interface flags (a la BSD)	*/
1109 	unsigned int		priv_flags; /* Like 'flags' but invisible to userspace.
1110 					     * See if.h for definitions. */
1111 	unsigned short		gflags;
1112 	unsigned short		padded;	/* How much padding added by alloc_netdev() */
1113 
1114 	unsigned char		operstate; /* RFC2863 operstate */
1115 	unsigned char		link_mode; /* mapping policy to operstate */
1116 
1117 	unsigned char		if_port;	/* Selectable AUI, TP,..*/
1118 	unsigned char		dma;		/* DMA channel		*/
1119 
1120 	unsigned int		mtu;	/* interface MTU value		*/
1121 	unsigned short		type;	/* interface hardware type	*/
1122 	unsigned short		hard_header_len;	/* hardware hdr length	*/
1123 
1124 	/* extra head- and tailroom the hardware may need, but not in all cases
1125 	 * can this be guaranteed, especially tailroom. Some cases also use
1126 	 * LL_MAX_HEADER instead to allocate the skb.
1127 	 */
1128 	unsigned short		needed_headroom;
1129 	unsigned short		needed_tailroom;
1130 
1131 	/* Interface address info. */
1132 	unsigned char		perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1133 	unsigned char		addr_assign_type; /* hw address assignment type */
1134 	unsigned char		addr_len;	/* hardware address length	*/
1135 	unsigned char		neigh_priv_len;
1136 	unsigned short          dev_id;		/* for shared network cards */
1137 
1138 	spinlock_t		addr_list_lock;
1139 	struct netdev_hw_addr_list	uc;	/* Unicast mac addresses */
1140 	struct netdev_hw_addr_list	mc;	/* Multicast mac addresses */
1141 	bool			uc_promisc;
1142 	unsigned int		promiscuity;
1143 	unsigned int		allmulti;
1144 
1145 
1146 	/* Protocol specific pointers */
1147 
1148 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1149 	struct vlan_info __rcu	*vlan_info;	/* VLAN info */
1150 #endif
1151 #if IS_ENABLED(CONFIG_NET_DSA)
1152 	struct dsa_switch_tree	*dsa_ptr;	/* dsa specific data */
1153 #endif
1154 	void 			*atalk_ptr;	/* AppleTalk link 	*/
1155 	struct in_device __rcu	*ip_ptr;	/* IPv4 specific data	*/
1156 	struct dn_dev __rcu     *dn_ptr;        /* DECnet specific data */
1157 	struct inet6_dev __rcu	*ip6_ptr;       /* IPv6 specific data */
1158 	void			*ax25_ptr;	/* AX.25 specific data */
1159 	struct wireless_dev	*ieee80211_ptr;	/* IEEE 802.11 specific data,
1160 						   assign before registering */
1161 
1162 /*
1163  * Cache lines mostly used on receive path (including eth_type_trans())
1164  */
1165 	unsigned long		last_rx;	/* Time of last Rx
1166 						 * This should not be set in
1167 						 * drivers, unless really needed,
1168 						 * because network stack (bonding)
1169 						 * use it if/when necessary, to
1170 						 * avoid dirtying this cache line.
1171 						 */
1172 
1173 	struct net_device	*master; /* Pointer to master device of a group,
1174 					  * which this device is member of.
1175 					  */
1176 
1177 	/* Interface address info used in eth_type_trans() */
1178 	unsigned char		*dev_addr;	/* hw address, (before bcast
1179 						   because most packets are
1180 						   unicast) */
1181 
1182 	struct netdev_hw_addr_list	dev_addrs; /* list of device
1183 						      hw addresses */
1184 
1185 	unsigned char		broadcast[MAX_ADDR_LEN];	/* hw bcast add	*/
1186 
1187 #ifdef CONFIG_SYSFS
1188 	struct kset		*queues_kset;
1189 #endif
1190 
1191 #ifdef CONFIG_RPS
1192 	struct netdev_rx_queue	*_rx;
1193 
1194 	/* Number of RX queues allocated at register_netdev() time */
1195 	unsigned int		num_rx_queues;
1196 
1197 	/* Number of RX queues currently active in device */
1198 	unsigned int		real_num_rx_queues;
1199 
1200 #ifdef CONFIG_RFS_ACCEL
1201 	/* CPU reverse-mapping for RX completion interrupts, indexed
1202 	 * by RX queue number.  Assigned by driver.  This must only be
1203 	 * set if the ndo_rx_flow_steer operation is defined. */
1204 	struct cpu_rmap		*rx_cpu_rmap;
1205 #endif
1206 #endif
1207 
1208 	rx_handler_func_t __rcu	*rx_handler;
1209 	void __rcu		*rx_handler_data;
1210 
1211 	struct netdev_queue __rcu *ingress_queue;
1212 
1213 /*
1214  * Cache lines mostly used on transmit path
1215  */
1216 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1217 
1218 	/* Number of TX queues allocated at alloc_netdev_mq() time  */
1219 	unsigned int		num_tx_queues;
1220 
1221 	/* Number of TX queues currently active in device  */
1222 	unsigned int		real_num_tx_queues;
1223 
1224 	/* root qdisc from userspace point of view */
1225 	struct Qdisc		*qdisc;
1226 
1227 	unsigned long		tx_queue_len;	/* Max frames per queue allowed */
1228 	spinlock_t		tx_global_lock;
1229 
1230 #ifdef CONFIG_XPS
1231 	struct xps_dev_maps __rcu *xps_maps;
1232 #endif
1233 
1234 	/* These may be needed for future network-power-down code. */
1235 
1236 	/*
1237 	 * trans_start here is expensive for high speed devices on SMP,
1238 	 * please use netdev_queue->trans_start instead.
1239 	 */
1240 	unsigned long		trans_start;	/* Time (in jiffies) of last Tx	*/
1241 
1242 	int			watchdog_timeo; /* used by dev_watchdog() */
1243 	struct timer_list	watchdog_timer;
1244 
1245 	/* Number of references to this device */
1246 	int __percpu		*pcpu_refcnt;
1247 
1248 	/* delayed register/unregister */
1249 	struct list_head	todo_list;
1250 	/* device index hash chain */
1251 	struct hlist_node	index_hlist;
1252 
1253 	struct list_head	link_watch_list;
1254 
1255 	/* register/unregister state machine */
1256 	enum { NETREG_UNINITIALIZED=0,
1257 	       NETREG_REGISTERED,	/* completed register_netdevice */
1258 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1259 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1260 	       NETREG_RELEASED,		/* called free_netdev */
1261 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1262 	} reg_state:8;
1263 
1264 	bool dismantle; /* device is going do be freed */
1265 
1266 	enum {
1267 		RTNL_LINK_INITIALIZED,
1268 		RTNL_LINK_INITIALIZING,
1269 	} rtnl_link_state:16;
1270 
1271 	/* Called from unregister, can be used to call free_netdev */
1272 	void (*destructor)(struct net_device *dev);
1273 
1274 #ifdef CONFIG_NETPOLL
1275 	struct netpoll_info	*npinfo;
1276 #endif
1277 
1278 #ifdef CONFIG_NET_NS
1279 	/* Network namespace this network device is inside */
1280 	struct net		*nd_net;
1281 #endif
1282 
1283 	/* mid-layer private */
1284 	union {
1285 		void				*ml_priv;
1286 		struct pcpu_lstats __percpu	*lstats; /* loopback stats */
1287 		struct pcpu_tstats __percpu	*tstats; /* tunnel stats */
1288 		struct pcpu_dstats __percpu	*dstats; /* dummy stats */
1289 	};
1290 	/* GARP */
1291 	struct garp_port __rcu	*garp_port;
1292 
1293 	/* class/net/name entry */
1294 	struct device		dev;
1295 	/* space for optional device, statistics, and wireless sysfs groups */
1296 	const struct attribute_group *sysfs_groups[4];
1297 
1298 	/* rtnetlink link ops */
1299 	const struct rtnl_link_ops *rtnl_link_ops;
1300 
1301 	/* for setting kernel sock attribute on TCP connection setup */
1302 #define GSO_MAX_SIZE		65536
1303 	unsigned int		gso_max_size;
1304 #define GSO_MAX_SEGS		65535
1305 	u16			gso_max_segs;
1306 
1307 #ifdef CONFIG_DCB
1308 	/* Data Center Bridging netlink ops */
1309 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1310 #endif
1311 	u8 num_tc;
1312 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1313 	u8 prio_tc_map[TC_BITMASK + 1];
1314 
1315 #if IS_ENABLED(CONFIG_FCOE)
1316 	/* max exchange id for FCoE LRO by ddp */
1317 	unsigned int		fcoe_ddp_xid;
1318 #endif
1319 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1320 	struct netprio_map __rcu *priomap;
1321 #endif
1322 	/* phy device may attach itself for hardware timestamping */
1323 	struct phy_device *phydev;
1324 
1325 	struct lock_class_key *qdisc_tx_busylock;
1326 
1327 	/* group the device belongs to */
1328 	int group;
1329 
1330 	struct pm_qos_request	pm_qos_req;
1331 };
1332 #define to_net_dev(d) container_of(d, struct net_device, dev)
1333 
1334 #define	NETDEV_ALIGN		32
1335 
1336 static inline
1337 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1338 {
1339 	return dev->prio_tc_map[prio & TC_BITMASK];
1340 }
1341 
1342 static inline
1343 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1344 {
1345 	if (tc >= dev->num_tc)
1346 		return -EINVAL;
1347 
1348 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1349 	return 0;
1350 }
1351 
1352 static inline
1353 void netdev_reset_tc(struct net_device *dev)
1354 {
1355 	dev->num_tc = 0;
1356 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1357 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1358 }
1359 
1360 static inline
1361 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1362 {
1363 	if (tc >= dev->num_tc)
1364 		return -EINVAL;
1365 
1366 	dev->tc_to_txq[tc].count = count;
1367 	dev->tc_to_txq[tc].offset = offset;
1368 	return 0;
1369 }
1370 
1371 static inline
1372 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1373 {
1374 	if (num_tc > TC_MAX_QUEUE)
1375 		return -EINVAL;
1376 
1377 	dev->num_tc = num_tc;
1378 	return 0;
1379 }
1380 
1381 static inline
1382 int netdev_get_num_tc(struct net_device *dev)
1383 {
1384 	return dev->num_tc;
1385 }
1386 
1387 static inline
1388 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1389 					 unsigned int index)
1390 {
1391 	return &dev->_tx[index];
1392 }
1393 
1394 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1395 					    void (*f)(struct net_device *,
1396 						      struct netdev_queue *,
1397 						      void *),
1398 					    void *arg)
1399 {
1400 	unsigned int i;
1401 
1402 	for (i = 0; i < dev->num_tx_queues; i++)
1403 		f(dev, &dev->_tx[i], arg);
1404 }
1405 
1406 extern struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1407 					   struct sk_buff *skb);
1408 
1409 /*
1410  * Net namespace inlines
1411  */
1412 static inline
1413 struct net *dev_net(const struct net_device *dev)
1414 {
1415 	return read_pnet(&dev->nd_net);
1416 }
1417 
1418 static inline
1419 void dev_net_set(struct net_device *dev, struct net *net)
1420 {
1421 #ifdef CONFIG_NET_NS
1422 	release_net(dev->nd_net);
1423 	dev->nd_net = hold_net(net);
1424 #endif
1425 }
1426 
1427 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1428 {
1429 #ifdef CONFIG_NET_DSA_TAG_DSA
1430 	if (dev->dsa_ptr != NULL)
1431 		return dsa_uses_dsa_tags(dev->dsa_ptr);
1432 #endif
1433 
1434 	return 0;
1435 }
1436 
1437 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1438 {
1439 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1440 	if (dev->dsa_ptr != NULL)
1441 		return dsa_uses_trailer_tags(dev->dsa_ptr);
1442 #endif
1443 
1444 	return 0;
1445 }
1446 
1447 /**
1448  *	netdev_priv - access network device private data
1449  *	@dev: network device
1450  *
1451  * Get network device private data
1452  */
1453 static inline void *netdev_priv(const struct net_device *dev)
1454 {
1455 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1456 }
1457 
1458 /* Set the sysfs physical device reference for the network logical device
1459  * if set prior to registration will cause a symlink during initialization.
1460  */
1461 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1462 
1463 /* Set the sysfs device type for the network logical device to allow
1464  * fin grained indentification of different network device types. For
1465  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1466  */
1467 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1468 
1469 /**
1470  *	netif_napi_add - initialize a napi context
1471  *	@dev:  network device
1472  *	@napi: napi context
1473  *	@poll: polling function
1474  *	@weight: default weight
1475  *
1476  * netif_napi_add() must be used to initialize a napi context prior to calling
1477  * *any* of the other napi related functions.
1478  */
1479 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1480 		    int (*poll)(struct napi_struct *, int), int weight);
1481 
1482 /**
1483  *  netif_napi_del - remove a napi context
1484  *  @napi: napi context
1485  *
1486  *  netif_napi_del() removes a napi context from the network device napi list
1487  */
1488 void netif_napi_del(struct napi_struct *napi);
1489 
1490 struct napi_gro_cb {
1491 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1492 	void *frag0;
1493 
1494 	/* Length of frag0. */
1495 	unsigned int frag0_len;
1496 
1497 	/* This indicates where we are processing relative to skb->data. */
1498 	int data_offset;
1499 
1500 	/* This is non-zero if the packet may be of the same flow. */
1501 	int same_flow;
1502 
1503 	/* This is non-zero if the packet cannot be merged with the new skb. */
1504 	int flush;
1505 
1506 	/* Number of segments aggregated. */
1507 	int count;
1508 
1509 	/* Free the skb? */
1510 	int free;
1511 #define NAPI_GRO_FREE		  1
1512 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1513 };
1514 
1515 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1516 
1517 struct packet_type {
1518 	__be16			type;	/* This is really htons(ether_type). */
1519 	struct net_device	*dev;	/* NULL is wildcarded here	     */
1520 	int			(*func) (struct sk_buff *,
1521 					 struct net_device *,
1522 					 struct packet_type *,
1523 					 struct net_device *);
1524 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
1525 						netdev_features_t features);
1526 	int			(*gso_send_check)(struct sk_buff *skb);
1527 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
1528 					       struct sk_buff *skb);
1529 	int			(*gro_complete)(struct sk_buff *skb);
1530 	bool			(*id_match)(struct packet_type *ptype,
1531 					    struct sock *sk);
1532 	void			*af_packet_priv;
1533 	struct list_head	list;
1534 };
1535 
1536 #include <linux/notifier.h>
1537 
1538 /* netdevice notifier chain. Please remember to update the rtnetlink
1539  * notification exclusion list in rtnetlink_event() when adding new
1540  * types.
1541  */
1542 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
1543 #define NETDEV_DOWN	0x0002
1544 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
1545 				   detected a hardware crash and restarted
1546 				   - we can use this eg to kick tcp sessions
1547 				   once done */
1548 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
1549 #define NETDEV_REGISTER 0x0005
1550 #define NETDEV_UNREGISTER	0x0006
1551 #define NETDEV_CHANGEMTU	0x0007
1552 #define NETDEV_CHANGEADDR	0x0008
1553 #define NETDEV_GOING_DOWN	0x0009
1554 #define NETDEV_CHANGENAME	0x000A
1555 #define NETDEV_FEAT_CHANGE	0x000B
1556 #define NETDEV_BONDING_FAILOVER 0x000C
1557 #define NETDEV_PRE_UP		0x000D
1558 #define NETDEV_PRE_TYPE_CHANGE	0x000E
1559 #define NETDEV_POST_TYPE_CHANGE	0x000F
1560 #define NETDEV_POST_INIT	0x0010
1561 #define NETDEV_UNREGISTER_FINAL 0x0011
1562 #define NETDEV_RELEASE		0x0012
1563 #define NETDEV_NOTIFY_PEERS	0x0013
1564 #define NETDEV_JOIN		0x0014
1565 
1566 extern int register_netdevice_notifier(struct notifier_block *nb);
1567 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1568 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1569 
1570 
1571 extern rwlock_t				dev_base_lock;		/* Device list lock */
1572 
1573 
1574 #define for_each_netdev(net, d)		\
1575 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1576 #define for_each_netdev_reverse(net, d)	\
1577 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1578 #define for_each_netdev_rcu(net, d)		\
1579 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1580 #define for_each_netdev_safe(net, d, n)	\
1581 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1582 #define for_each_netdev_continue(net, d)		\
1583 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1584 #define for_each_netdev_continue_rcu(net, d)		\
1585 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1586 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
1587 
1588 static inline struct net_device *next_net_device(struct net_device *dev)
1589 {
1590 	struct list_head *lh;
1591 	struct net *net;
1592 
1593 	net = dev_net(dev);
1594 	lh = dev->dev_list.next;
1595 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1596 }
1597 
1598 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1599 {
1600 	struct list_head *lh;
1601 	struct net *net;
1602 
1603 	net = dev_net(dev);
1604 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1605 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1606 }
1607 
1608 static inline struct net_device *first_net_device(struct net *net)
1609 {
1610 	return list_empty(&net->dev_base_head) ? NULL :
1611 		net_device_entry(net->dev_base_head.next);
1612 }
1613 
1614 static inline struct net_device *first_net_device_rcu(struct net *net)
1615 {
1616 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1617 
1618 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1619 }
1620 
1621 extern int 			netdev_boot_setup_check(struct net_device *dev);
1622 extern unsigned long		netdev_boot_base(const char *prefix, int unit);
1623 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1624 					      const char *hwaddr);
1625 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1626 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1627 extern void		dev_add_pack(struct packet_type *pt);
1628 extern void		dev_remove_pack(struct packet_type *pt);
1629 extern void		__dev_remove_pack(struct packet_type *pt);
1630 
1631 extern struct net_device	*dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1632 						      unsigned short mask);
1633 extern struct net_device	*dev_get_by_name(struct net *net, const char *name);
1634 extern struct net_device	*dev_get_by_name_rcu(struct net *net, const char *name);
1635 extern struct net_device	*__dev_get_by_name(struct net *net, const char *name);
1636 extern int		dev_alloc_name(struct net_device *dev, const char *name);
1637 extern int		dev_open(struct net_device *dev);
1638 extern int		dev_close(struct net_device *dev);
1639 extern void		dev_disable_lro(struct net_device *dev);
1640 extern int		dev_loopback_xmit(struct sk_buff *newskb);
1641 extern int		dev_queue_xmit(struct sk_buff *skb);
1642 extern int		register_netdevice(struct net_device *dev);
1643 extern void		unregister_netdevice_queue(struct net_device *dev,
1644 						   struct list_head *head);
1645 extern void		unregister_netdevice_many(struct list_head *head);
1646 static inline void unregister_netdevice(struct net_device *dev)
1647 {
1648 	unregister_netdevice_queue(dev, NULL);
1649 }
1650 
1651 extern int 		netdev_refcnt_read(const struct net_device *dev);
1652 extern void		free_netdev(struct net_device *dev);
1653 extern void		synchronize_net(void);
1654 extern int		init_dummy_netdev(struct net_device *dev);
1655 extern void		netdev_resync_ops(struct net_device *dev);
1656 
1657 extern struct net_device	*dev_get_by_index(struct net *net, int ifindex);
1658 extern struct net_device	*__dev_get_by_index(struct net *net, int ifindex);
1659 extern struct net_device	*dev_get_by_index_rcu(struct net *net, int ifindex);
1660 extern int		dev_restart(struct net_device *dev);
1661 #ifdef CONFIG_NETPOLL_TRAP
1662 extern int		netpoll_trap(void);
1663 #endif
1664 extern int	       skb_gro_receive(struct sk_buff **head,
1665 				       struct sk_buff *skb);
1666 extern void	       skb_gro_reset_offset(struct sk_buff *skb);
1667 
1668 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1669 {
1670 	return NAPI_GRO_CB(skb)->data_offset;
1671 }
1672 
1673 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1674 {
1675 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
1676 }
1677 
1678 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1679 {
1680 	NAPI_GRO_CB(skb)->data_offset += len;
1681 }
1682 
1683 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1684 					unsigned int offset)
1685 {
1686 	return NAPI_GRO_CB(skb)->frag0 + offset;
1687 }
1688 
1689 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1690 {
1691 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
1692 }
1693 
1694 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1695 					unsigned int offset)
1696 {
1697 	if (!pskb_may_pull(skb, hlen))
1698 		return NULL;
1699 
1700 	NAPI_GRO_CB(skb)->frag0 = NULL;
1701 	NAPI_GRO_CB(skb)->frag0_len = 0;
1702 	return skb->data + offset;
1703 }
1704 
1705 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1706 {
1707 	return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1708 }
1709 
1710 static inline void *skb_gro_network_header(struct sk_buff *skb)
1711 {
1712 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1713 	       skb_network_offset(skb);
1714 }
1715 
1716 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1717 				  unsigned short type,
1718 				  const void *daddr, const void *saddr,
1719 				  unsigned int len)
1720 {
1721 	if (!dev->header_ops || !dev->header_ops->create)
1722 		return 0;
1723 
1724 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1725 }
1726 
1727 static inline int dev_parse_header(const struct sk_buff *skb,
1728 				   unsigned char *haddr)
1729 {
1730 	const struct net_device *dev = skb->dev;
1731 
1732 	if (!dev->header_ops || !dev->header_ops->parse)
1733 		return 0;
1734 	return dev->header_ops->parse(skb, haddr);
1735 }
1736 
1737 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1738 extern int		register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1739 static inline int unregister_gifconf(unsigned int family)
1740 {
1741 	return register_gifconf(family, NULL);
1742 }
1743 
1744 /*
1745  * Incoming packets are placed on per-cpu queues
1746  */
1747 struct softnet_data {
1748 	struct Qdisc		*output_queue;
1749 	struct Qdisc		**output_queue_tailp;
1750 	struct list_head	poll_list;
1751 	struct sk_buff		*completion_queue;
1752 	struct sk_buff_head	process_queue;
1753 
1754 	/* stats */
1755 	unsigned int		processed;
1756 	unsigned int		time_squeeze;
1757 	unsigned int		cpu_collision;
1758 	unsigned int		received_rps;
1759 
1760 #ifdef CONFIG_RPS
1761 	struct softnet_data	*rps_ipi_list;
1762 
1763 	/* Elements below can be accessed between CPUs for RPS */
1764 	struct call_single_data	csd ____cacheline_aligned_in_smp;
1765 	struct softnet_data	*rps_ipi_next;
1766 	unsigned int		cpu;
1767 	unsigned int		input_queue_head;
1768 	unsigned int		input_queue_tail;
1769 #endif
1770 	unsigned int		dropped;
1771 	struct sk_buff_head	input_pkt_queue;
1772 	struct napi_struct	backlog;
1773 };
1774 
1775 static inline void input_queue_head_incr(struct softnet_data *sd)
1776 {
1777 #ifdef CONFIG_RPS
1778 	sd->input_queue_head++;
1779 #endif
1780 }
1781 
1782 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1783 					      unsigned int *qtail)
1784 {
1785 #ifdef CONFIG_RPS
1786 	*qtail = ++sd->input_queue_tail;
1787 #endif
1788 }
1789 
1790 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1791 
1792 extern void __netif_schedule(struct Qdisc *q);
1793 
1794 static inline void netif_schedule_queue(struct netdev_queue *txq)
1795 {
1796 	if (!(txq->state & QUEUE_STATE_ANY_XOFF))
1797 		__netif_schedule(txq->qdisc);
1798 }
1799 
1800 static inline void netif_tx_schedule_all(struct net_device *dev)
1801 {
1802 	unsigned int i;
1803 
1804 	for (i = 0; i < dev->num_tx_queues; i++)
1805 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
1806 }
1807 
1808 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1809 {
1810 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1811 }
1812 
1813 /**
1814  *	netif_start_queue - allow transmit
1815  *	@dev: network device
1816  *
1817  *	Allow upper layers to call the device hard_start_xmit routine.
1818  */
1819 static inline void netif_start_queue(struct net_device *dev)
1820 {
1821 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1822 }
1823 
1824 static inline void netif_tx_start_all_queues(struct net_device *dev)
1825 {
1826 	unsigned int i;
1827 
1828 	for (i = 0; i < dev->num_tx_queues; i++) {
1829 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1830 		netif_tx_start_queue(txq);
1831 	}
1832 }
1833 
1834 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1835 {
1836 #ifdef CONFIG_NETPOLL_TRAP
1837 	if (netpoll_trap()) {
1838 		netif_tx_start_queue(dev_queue);
1839 		return;
1840 	}
1841 #endif
1842 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
1843 		__netif_schedule(dev_queue->qdisc);
1844 }
1845 
1846 /**
1847  *	netif_wake_queue - restart transmit
1848  *	@dev: network device
1849  *
1850  *	Allow upper layers to call the device hard_start_xmit routine.
1851  *	Used for flow control when transmit resources are available.
1852  */
1853 static inline void netif_wake_queue(struct net_device *dev)
1854 {
1855 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1856 }
1857 
1858 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1859 {
1860 	unsigned int i;
1861 
1862 	for (i = 0; i < dev->num_tx_queues; i++) {
1863 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1864 		netif_tx_wake_queue(txq);
1865 	}
1866 }
1867 
1868 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1869 {
1870 	if (WARN_ON(!dev_queue)) {
1871 		pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1872 		return;
1873 	}
1874 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1875 }
1876 
1877 /**
1878  *	netif_stop_queue - stop transmitted packets
1879  *	@dev: network device
1880  *
1881  *	Stop upper layers calling the device hard_start_xmit routine.
1882  *	Used for flow control when transmit resources are unavailable.
1883  */
1884 static inline void netif_stop_queue(struct net_device *dev)
1885 {
1886 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1887 }
1888 
1889 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1890 {
1891 	unsigned int i;
1892 
1893 	for (i = 0; i < dev->num_tx_queues; i++) {
1894 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1895 		netif_tx_stop_queue(txq);
1896 	}
1897 }
1898 
1899 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1900 {
1901 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1902 }
1903 
1904 /**
1905  *	netif_queue_stopped - test if transmit queue is flowblocked
1906  *	@dev: network device
1907  *
1908  *	Test if transmit queue on device is currently unable to send.
1909  */
1910 static inline bool netif_queue_stopped(const struct net_device *dev)
1911 {
1912 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1913 }
1914 
1915 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
1916 {
1917 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
1918 }
1919 
1920 static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
1921 {
1922 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
1923 }
1924 
1925 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
1926 					unsigned int bytes)
1927 {
1928 #ifdef CONFIG_BQL
1929 	dql_queued(&dev_queue->dql, bytes);
1930 
1931 	if (likely(dql_avail(&dev_queue->dql) >= 0))
1932 		return;
1933 
1934 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1935 
1936 	/*
1937 	 * The XOFF flag must be set before checking the dql_avail below,
1938 	 * because in netdev_tx_completed_queue we update the dql_completed
1939 	 * before checking the XOFF flag.
1940 	 */
1941 	smp_mb();
1942 
1943 	/* check again in case another CPU has just made room avail */
1944 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
1945 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1946 #endif
1947 }
1948 
1949 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
1950 {
1951 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
1952 }
1953 
1954 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
1955 					     unsigned int pkts, unsigned int bytes)
1956 {
1957 #ifdef CONFIG_BQL
1958 	if (unlikely(!bytes))
1959 		return;
1960 
1961 	dql_completed(&dev_queue->dql, bytes);
1962 
1963 	/*
1964 	 * Without the memory barrier there is a small possiblity that
1965 	 * netdev_tx_sent_queue will miss the update and cause the queue to
1966 	 * be stopped forever
1967 	 */
1968 	smp_mb();
1969 
1970 	if (dql_avail(&dev_queue->dql) < 0)
1971 		return;
1972 
1973 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
1974 		netif_schedule_queue(dev_queue);
1975 #endif
1976 }
1977 
1978 static inline void netdev_completed_queue(struct net_device *dev,
1979 					  unsigned int pkts, unsigned int bytes)
1980 {
1981 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
1982 }
1983 
1984 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
1985 {
1986 #ifdef CONFIG_BQL
1987 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
1988 	dql_reset(&q->dql);
1989 #endif
1990 }
1991 
1992 static inline void netdev_reset_queue(struct net_device *dev_queue)
1993 {
1994 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
1995 }
1996 
1997 /**
1998  *	netif_running - test if up
1999  *	@dev: network device
2000  *
2001  *	Test if the device has been brought up.
2002  */
2003 static inline bool netif_running(const struct net_device *dev)
2004 {
2005 	return test_bit(__LINK_STATE_START, &dev->state);
2006 }
2007 
2008 /*
2009  * Routines to manage the subqueues on a device.  We only need start
2010  * stop, and a check if it's stopped.  All other device management is
2011  * done at the overall netdevice level.
2012  * Also test the device if we're multiqueue.
2013  */
2014 
2015 /**
2016  *	netif_start_subqueue - allow sending packets on subqueue
2017  *	@dev: network device
2018  *	@queue_index: sub queue index
2019  *
2020  * Start individual transmit queue of a device with multiple transmit queues.
2021  */
2022 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2023 {
2024 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2025 
2026 	netif_tx_start_queue(txq);
2027 }
2028 
2029 /**
2030  *	netif_stop_subqueue - stop sending packets on subqueue
2031  *	@dev: network device
2032  *	@queue_index: sub queue index
2033  *
2034  * Stop individual transmit queue of a device with multiple transmit queues.
2035  */
2036 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2037 {
2038 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2039 #ifdef CONFIG_NETPOLL_TRAP
2040 	if (netpoll_trap())
2041 		return;
2042 #endif
2043 	netif_tx_stop_queue(txq);
2044 }
2045 
2046 /**
2047  *	netif_subqueue_stopped - test status of subqueue
2048  *	@dev: network device
2049  *	@queue_index: sub queue index
2050  *
2051  * Check individual transmit queue of a device with multiple transmit queues.
2052  */
2053 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2054 					    u16 queue_index)
2055 {
2056 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2057 
2058 	return netif_tx_queue_stopped(txq);
2059 }
2060 
2061 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2062 					  struct sk_buff *skb)
2063 {
2064 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2065 }
2066 
2067 /**
2068  *	netif_wake_subqueue - allow sending packets on subqueue
2069  *	@dev: network device
2070  *	@queue_index: sub queue index
2071  *
2072  * Resume individual transmit queue of a device with multiple transmit queues.
2073  */
2074 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2075 {
2076 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2077 #ifdef CONFIG_NETPOLL_TRAP
2078 	if (netpoll_trap())
2079 		return;
2080 #endif
2081 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2082 		__netif_schedule(txq->qdisc);
2083 }
2084 
2085 /*
2086  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2087  * as a distribution range limit for the returned value.
2088  */
2089 static inline u16 skb_tx_hash(const struct net_device *dev,
2090 			      const struct sk_buff *skb)
2091 {
2092 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2093 }
2094 
2095 /**
2096  *	netif_is_multiqueue - test if device has multiple transmit queues
2097  *	@dev: network device
2098  *
2099  * Check if device has multiple transmit queues
2100  */
2101 static inline bool netif_is_multiqueue(const struct net_device *dev)
2102 {
2103 	return dev->num_tx_queues > 1;
2104 }
2105 
2106 extern int netif_set_real_num_tx_queues(struct net_device *dev,
2107 					unsigned int txq);
2108 
2109 #ifdef CONFIG_RPS
2110 extern int netif_set_real_num_rx_queues(struct net_device *dev,
2111 					unsigned int rxq);
2112 #else
2113 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2114 						unsigned int rxq)
2115 {
2116 	return 0;
2117 }
2118 #endif
2119 
2120 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2121 					     const struct net_device *from_dev)
2122 {
2123 	int err;
2124 
2125 	err = netif_set_real_num_tx_queues(to_dev,
2126 					   from_dev->real_num_tx_queues);
2127 	if (err)
2128 		return err;
2129 #ifdef CONFIG_RPS
2130 	return netif_set_real_num_rx_queues(to_dev,
2131 					    from_dev->real_num_rx_queues);
2132 #else
2133 	return 0;
2134 #endif
2135 }
2136 
2137 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
2138 extern int netif_get_num_default_rss_queues(void);
2139 
2140 /* Use this variant when it is known for sure that it
2141  * is executing from hardware interrupt context or with hardware interrupts
2142  * disabled.
2143  */
2144 extern void dev_kfree_skb_irq(struct sk_buff *skb);
2145 
2146 /* Use this variant in places where it could be invoked
2147  * from either hardware interrupt or other context, with hardware interrupts
2148  * either disabled or enabled.
2149  */
2150 extern void dev_kfree_skb_any(struct sk_buff *skb);
2151 
2152 extern int		netif_rx(struct sk_buff *skb);
2153 extern int		netif_rx_ni(struct sk_buff *skb);
2154 extern int		netif_receive_skb(struct sk_buff *skb);
2155 extern gro_result_t	dev_gro_receive(struct napi_struct *napi,
2156 					struct sk_buff *skb);
2157 extern gro_result_t	napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
2158 extern gro_result_t	napi_gro_receive(struct napi_struct *napi,
2159 					 struct sk_buff *skb);
2160 extern void		napi_gro_flush(struct napi_struct *napi);
2161 extern struct sk_buff *	napi_get_frags(struct napi_struct *napi);
2162 extern gro_result_t	napi_frags_finish(struct napi_struct *napi,
2163 					  struct sk_buff *skb,
2164 					  gro_result_t ret);
2165 extern gro_result_t	napi_gro_frags(struct napi_struct *napi);
2166 
2167 static inline void napi_free_frags(struct napi_struct *napi)
2168 {
2169 	kfree_skb(napi->skb);
2170 	napi->skb = NULL;
2171 }
2172 
2173 extern int netdev_rx_handler_register(struct net_device *dev,
2174 				      rx_handler_func_t *rx_handler,
2175 				      void *rx_handler_data);
2176 extern void netdev_rx_handler_unregister(struct net_device *dev);
2177 
2178 extern bool		dev_valid_name(const char *name);
2179 extern int		dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2180 extern int		dev_ethtool(struct net *net, struct ifreq *);
2181 extern unsigned int	dev_get_flags(const struct net_device *);
2182 extern int		__dev_change_flags(struct net_device *, unsigned int flags);
2183 extern int		dev_change_flags(struct net_device *, unsigned int);
2184 extern void		__dev_notify_flags(struct net_device *, unsigned int old_flags);
2185 extern int		dev_change_name(struct net_device *, const char *);
2186 extern int		dev_set_alias(struct net_device *, const char *, size_t);
2187 extern int		dev_change_net_namespace(struct net_device *,
2188 						 struct net *, const char *);
2189 extern int		dev_set_mtu(struct net_device *, int);
2190 extern void		dev_set_group(struct net_device *, int);
2191 extern int		dev_set_mac_address(struct net_device *,
2192 					    struct sockaddr *);
2193 extern int		dev_hard_start_xmit(struct sk_buff *skb,
2194 					    struct net_device *dev,
2195 					    struct netdev_queue *txq);
2196 extern int		dev_forward_skb(struct net_device *dev,
2197 					struct sk_buff *skb);
2198 
2199 extern int		netdev_budget;
2200 
2201 /* Called by rtnetlink.c:rtnl_unlock() */
2202 extern void netdev_run_todo(void);
2203 
2204 /**
2205  *	dev_put - release reference to device
2206  *	@dev: network device
2207  *
2208  * Release reference to device to allow it to be freed.
2209  */
2210 static inline void dev_put(struct net_device *dev)
2211 {
2212 	this_cpu_dec(*dev->pcpu_refcnt);
2213 }
2214 
2215 /**
2216  *	dev_hold - get reference to device
2217  *	@dev: network device
2218  *
2219  * Hold reference to device to keep it from being freed.
2220  */
2221 static inline void dev_hold(struct net_device *dev)
2222 {
2223 	this_cpu_inc(*dev->pcpu_refcnt);
2224 }
2225 
2226 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2227  * and _off may be called from IRQ context, but it is caller
2228  * who is responsible for serialization of these calls.
2229  *
2230  * The name carrier is inappropriate, these functions should really be
2231  * called netif_lowerlayer_*() because they represent the state of any
2232  * kind of lower layer not just hardware media.
2233  */
2234 
2235 extern void linkwatch_init_dev(struct net_device *dev);
2236 extern void linkwatch_fire_event(struct net_device *dev);
2237 extern void linkwatch_forget_dev(struct net_device *dev);
2238 
2239 /**
2240  *	netif_carrier_ok - test if carrier present
2241  *	@dev: network device
2242  *
2243  * Check if carrier is present on device
2244  */
2245 static inline bool netif_carrier_ok(const struct net_device *dev)
2246 {
2247 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2248 }
2249 
2250 extern unsigned long dev_trans_start(struct net_device *dev);
2251 
2252 extern void __netdev_watchdog_up(struct net_device *dev);
2253 
2254 extern void netif_carrier_on(struct net_device *dev);
2255 
2256 extern void netif_carrier_off(struct net_device *dev);
2257 
2258 /**
2259  *	netif_dormant_on - mark device as dormant.
2260  *	@dev: network device
2261  *
2262  * Mark device as dormant (as per RFC2863).
2263  *
2264  * The dormant state indicates that the relevant interface is not
2265  * actually in a condition to pass packets (i.e., it is not 'up') but is
2266  * in a "pending" state, waiting for some external event.  For "on-
2267  * demand" interfaces, this new state identifies the situation where the
2268  * interface is waiting for events to place it in the up state.
2269  *
2270  */
2271 static inline void netif_dormant_on(struct net_device *dev)
2272 {
2273 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2274 		linkwatch_fire_event(dev);
2275 }
2276 
2277 /**
2278  *	netif_dormant_off - set device as not dormant.
2279  *	@dev: network device
2280  *
2281  * Device is not in dormant state.
2282  */
2283 static inline void netif_dormant_off(struct net_device *dev)
2284 {
2285 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2286 		linkwatch_fire_event(dev);
2287 }
2288 
2289 /**
2290  *	netif_dormant - test if carrier present
2291  *	@dev: network device
2292  *
2293  * Check if carrier is present on device
2294  */
2295 static inline bool netif_dormant(const struct net_device *dev)
2296 {
2297 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
2298 }
2299 
2300 
2301 /**
2302  *	netif_oper_up - test if device is operational
2303  *	@dev: network device
2304  *
2305  * Check if carrier is operational
2306  */
2307 static inline bool netif_oper_up(const struct net_device *dev)
2308 {
2309 	return (dev->operstate == IF_OPER_UP ||
2310 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2311 }
2312 
2313 /**
2314  *	netif_device_present - is device available or removed
2315  *	@dev: network device
2316  *
2317  * Check if device has not been removed from system.
2318  */
2319 static inline bool netif_device_present(struct net_device *dev)
2320 {
2321 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
2322 }
2323 
2324 extern void netif_device_detach(struct net_device *dev);
2325 
2326 extern void netif_device_attach(struct net_device *dev);
2327 
2328 /*
2329  * Network interface message level settings
2330  */
2331 
2332 enum {
2333 	NETIF_MSG_DRV		= 0x0001,
2334 	NETIF_MSG_PROBE		= 0x0002,
2335 	NETIF_MSG_LINK		= 0x0004,
2336 	NETIF_MSG_TIMER		= 0x0008,
2337 	NETIF_MSG_IFDOWN	= 0x0010,
2338 	NETIF_MSG_IFUP		= 0x0020,
2339 	NETIF_MSG_RX_ERR	= 0x0040,
2340 	NETIF_MSG_TX_ERR	= 0x0080,
2341 	NETIF_MSG_TX_QUEUED	= 0x0100,
2342 	NETIF_MSG_INTR		= 0x0200,
2343 	NETIF_MSG_TX_DONE	= 0x0400,
2344 	NETIF_MSG_RX_STATUS	= 0x0800,
2345 	NETIF_MSG_PKTDATA	= 0x1000,
2346 	NETIF_MSG_HW		= 0x2000,
2347 	NETIF_MSG_WOL		= 0x4000,
2348 };
2349 
2350 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
2351 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
2352 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
2353 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
2354 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
2355 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
2356 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
2357 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
2358 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2359 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
2360 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
2361 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
2362 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
2363 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
2364 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
2365 
2366 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2367 {
2368 	/* use default */
2369 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2370 		return default_msg_enable_bits;
2371 	if (debug_value == 0)	/* no output */
2372 		return 0;
2373 	/* set low N bits */
2374 	return (1 << debug_value) - 1;
2375 }
2376 
2377 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2378 {
2379 	spin_lock(&txq->_xmit_lock);
2380 	txq->xmit_lock_owner = cpu;
2381 }
2382 
2383 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2384 {
2385 	spin_lock_bh(&txq->_xmit_lock);
2386 	txq->xmit_lock_owner = smp_processor_id();
2387 }
2388 
2389 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2390 {
2391 	bool ok = spin_trylock(&txq->_xmit_lock);
2392 	if (likely(ok))
2393 		txq->xmit_lock_owner = smp_processor_id();
2394 	return ok;
2395 }
2396 
2397 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2398 {
2399 	txq->xmit_lock_owner = -1;
2400 	spin_unlock(&txq->_xmit_lock);
2401 }
2402 
2403 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2404 {
2405 	txq->xmit_lock_owner = -1;
2406 	spin_unlock_bh(&txq->_xmit_lock);
2407 }
2408 
2409 static inline void txq_trans_update(struct netdev_queue *txq)
2410 {
2411 	if (txq->xmit_lock_owner != -1)
2412 		txq->trans_start = jiffies;
2413 }
2414 
2415 /**
2416  *	netif_tx_lock - grab network device transmit lock
2417  *	@dev: network device
2418  *
2419  * Get network device transmit lock
2420  */
2421 static inline void netif_tx_lock(struct net_device *dev)
2422 {
2423 	unsigned int i;
2424 	int cpu;
2425 
2426 	spin_lock(&dev->tx_global_lock);
2427 	cpu = smp_processor_id();
2428 	for (i = 0; i < dev->num_tx_queues; i++) {
2429 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2430 
2431 		/* We are the only thread of execution doing a
2432 		 * freeze, but we have to grab the _xmit_lock in
2433 		 * order to synchronize with threads which are in
2434 		 * the ->hard_start_xmit() handler and already
2435 		 * checked the frozen bit.
2436 		 */
2437 		__netif_tx_lock(txq, cpu);
2438 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2439 		__netif_tx_unlock(txq);
2440 	}
2441 }
2442 
2443 static inline void netif_tx_lock_bh(struct net_device *dev)
2444 {
2445 	local_bh_disable();
2446 	netif_tx_lock(dev);
2447 }
2448 
2449 static inline void netif_tx_unlock(struct net_device *dev)
2450 {
2451 	unsigned int i;
2452 
2453 	for (i = 0; i < dev->num_tx_queues; i++) {
2454 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2455 
2456 		/* No need to grab the _xmit_lock here.  If the
2457 		 * queue is not stopped for another reason, we
2458 		 * force a schedule.
2459 		 */
2460 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2461 		netif_schedule_queue(txq);
2462 	}
2463 	spin_unlock(&dev->tx_global_lock);
2464 }
2465 
2466 static inline void netif_tx_unlock_bh(struct net_device *dev)
2467 {
2468 	netif_tx_unlock(dev);
2469 	local_bh_enable();
2470 }
2471 
2472 #define HARD_TX_LOCK(dev, txq, cpu) {			\
2473 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2474 		__netif_tx_lock(txq, cpu);		\
2475 	}						\
2476 }
2477 
2478 #define HARD_TX_UNLOCK(dev, txq) {			\
2479 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2480 		__netif_tx_unlock(txq);			\
2481 	}						\
2482 }
2483 
2484 static inline void netif_tx_disable(struct net_device *dev)
2485 {
2486 	unsigned int i;
2487 	int cpu;
2488 
2489 	local_bh_disable();
2490 	cpu = smp_processor_id();
2491 	for (i = 0; i < dev->num_tx_queues; i++) {
2492 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2493 
2494 		__netif_tx_lock(txq, cpu);
2495 		netif_tx_stop_queue(txq);
2496 		__netif_tx_unlock(txq);
2497 	}
2498 	local_bh_enable();
2499 }
2500 
2501 static inline void netif_addr_lock(struct net_device *dev)
2502 {
2503 	spin_lock(&dev->addr_list_lock);
2504 }
2505 
2506 static inline void netif_addr_lock_nested(struct net_device *dev)
2507 {
2508 	spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2509 }
2510 
2511 static inline void netif_addr_lock_bh(struct net_device *dev)
2512 {
2513 	spin_lock_bh(&dev->addr_list_lock);
2514 }
2515 
2516 static inline void netif_addr_unlock(struct net_device *dev)
2517 {
2518 	spin_unlock(&dev->addr_list_lock);
2519 }
2520 
2521 static inline void netif_addr_unlock_bh(struct net_device *dev)
2522 {
2523 	spin_unlock_bh(&dev->addr_list_lock);
2524 }
2525 
2526 /*
2527  * dev_addrs walker. Should be used only for read access. Call with
2528  * rcu_read_lock held.
2529  */
2530 #define for_each_dev_addr(dev, ha) \
2531 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2532 
2533 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2534 
2535 extern void		ether_setup(struct net_device *dev);
2536 
2537 /* Support for loadable net-drivers */
2538 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2539 				       void (*setup)(struct net_device *),
2540 				       unsigned int txqs, unsigned int rxqs);
2541 #define alloc_netdev(sizeof_priv, name, setup) \
2542 	alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2543 
2544 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2545 	alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2546 
2547 extern int		register_netdev(struct net_device *dev);
2548 extern void		unregister_netdev(struct net_device *dev);
2549 
2550 /* General hardware address lists handling functions */
2551 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2552 				  struct netdev_hw_addr_list *from_list,
2553 				  int addr_len, unsigned char addr_type);
2554 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2555 				   struct netdev_hw_addr_list *from_list,
2556 				   int addr_len, unsigned char addr_type);
2557 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2558 			  struct netdev_hw_addr_list *from_list,
2559 			  int addr_len);
2560 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2561 			     struct netdev_hw_addr_list *from_list,
2562 			     int addr_len);
2563 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2564 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2565 
2566 /* Functions used for device addresses handling */
2567 extern int dev_addr_add(struct net_device *dev, const unsigned char *addr,
2568 			unsigned char addr_type);
2569 extern int dev_addr_del(struct net_device *dev, const unsigned char *addr,
2570 			unsigned char addr_type);
2571 extern int dev_addr_add_multiple(struct net_device *to_dev,
2572 				 struct net_device *from_dev,
2573 				 unsigned char addr_type);
2574 extern int dev_addr_del_multiple(struct net_device *to_dev,
2575 				 struct net_device *from_dev,
2576 				 unsigned char addr_type);
2577 extern void dev_addr_flush(struct net_device *dev);
2578 extern int dev_addr_init(struct net_device *dev);
2579 
2580 /* Functions used for unicast addresses handling */
2581 extern int dev_uc_add(struct net_device *dev, const unsigned char *addr);
2582 extern int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
2583 extern int dev_uc_del(struct net_device *dev, const unsigned char *addr);
2584 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2585 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2586 extern void dev_uc_flush(struct net_device *dev);
2587 extern void dev_uc_init(struct net_device *dev);
2588 
2589 /* Functions used for multicast addresses handling */
2590 extern int dev_mc_add(struct net_device *dev, const unsigned char *addr);
2591 extern int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
2592 extern int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
2593 extern int dev_mc_del(struct net_device *dev, const unsigned char *addr);
2594 extern int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
2595 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2596 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2597 extern void dev_mc_flush(struct net_device *dev);
2598 extern void dev_mc_init(struct net_device *dev);
2599 
2600 /* Functions used for secondary unicast and multicast support */
2601 extern void		dev_set_rx_mode(struct net_device *dev);
2602 extern void		__dev_set_rx_mode(struct net_device *dev);
2603 extern int		dev_set_promiscuity(struct net_device *dev, int inc);
2604 extern int		dev_set_allmulti(struct net_device *dev, int inc);
2605 extern void		netdev_state_change(struct net_device *dev);
2606 extern void		netdev_notify_peers(struct net_device *dev);
2607 extern void		netdev_features_change(struct net_device *dev);
2608 /* Load a device via the kmod */
2609 extern void		dev_load(struct net *net, const char *name);
2610 extern void		dev_mcast_init(void);
2611 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2612 					       struct rtnl_link_stats64 *storage);
2613 extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
2614 				    const struct net_device_stats *netdev_stats);
2615 
2616 extern int		netdev_max_backlog;
2617 extern int		netdev_tstamp_prequeue;
2618 extern int		weight_p;
2619 extern int		bpf_jit_enable;
2620 extern int		netdev_set_master(struct net_device *dev, struct net_device *master);
2621 extern int netdev_set_bond_master(struct net_device *dev,
2622 				  struct net_device *master);
2623 extern int skb_checksum_help(struct sk_buff *skb);
2624 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb,
2625 	netdev_features_t features);
2626 #ifdef CONFIG_BUG
2627 extern void netdev_rx_csum_fault(struct net_device *dev);
2628 #else
2629 static inline void netdev_rx_csum_fault(struct net_device *dev)
2630 {
2631 }
2632 #endif
2633 /* rx skb timestamps */
2634 extern void		net_enable_timestamp(void);
2635 extern void		net_disable_timestamp(void);
2636 
2637 #ifdef CONFIG_PROC_FS
2638 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2639 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2640 extern void dev_seq_stop(struct seq_file *seq, void *v);
2641 #endif
2642 
2643 extern int netdev_class_create_file(struct class_attribute *class_attr);
2644 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2645 
2646 extern struct kobj_ns_type_operations net_ns_type_operations;
2647 
2648 extern const char *netdev_drivername(const struct net_device *dev);
2649 
2650 extern void linkwatch_run_queue(void);
2651 
2652 static inline netdev_features_t netdev_get_wanted_features(
2653 	struct net_device *dev)
2654 {
2655 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
2656 }
2657 netdev_features_t netdev_increment_features(netdev_features_t all,
2658 	netdev_features_t one, netdev_features_t mask);
2659 int __netdev_update_features(struct net_device *dev);
2660 void netdev_update_features(struct net_device *dev);
2661 void netdev_change_features(struct net_device *dev);
2662 
2663 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2664 					struct net_device *dev);
2665 
2666 netdev_features_t netif_skb_features(struct sk_buff *skb);
2667 
2668 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
2669 {
2670 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2671 
2672 	/* check flags correspondence */
2673 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2674 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2675 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2676 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2677 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2678 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
2679 
2680 	return (features & feature) == feature;
2681 }
2682 
2683 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
2684 {
2685 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2686 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2687 }
2688 
2689 static inline bool netif_needs_gso(struct sk_buff *skb,
2690 				   netdev_features_t features)
2691 {
2692 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2693 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
2694 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
2695 }
2696 
2697 static inline void netif_set_gso_max_size(struct net_device *dev,
2698 					  unsigned int size)
2699 {
2700 	dev->gso_max_size = size;
2701 }
2702 
2703 static inline bool netif_is_bond_slave(struct net_device *dev)
2704 {
2705 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2706 }
2707 
2708 static inline bool netif_supports_nofcs(struct net_device *dev)
2709 {
2710 	return dev->priv_flags & IFF_SUPP_NOFCS;
2711 }
2712 
2713 extern struct pernet_operations __net_initdata loopback_net_ops;
2714 
2715 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2716 
2717 /* netdev_printk helpers, similar to dev_printk */
2718 
2719 static inline const char *netdev_name(const struct net_device *dev)
2720 {
2721 	if (dev->reg_state != NETREG_REGISTERED)
2722 		return "(unregistered net_device)";
2723 	return dev->name;
2724 }
2725 
2726 extern __printf(3, 4)
2727 int netdev_printk(const char *level, const struct net_device *dev,
2728 		  const char *format, ...);
2729 extern __printf(2, 3)
2730 int netdev_emerg(const struct net_device *dev, const char *format, ...);
2731 extern __printf(2, 3)
2732 int netdev_alert(const struct net_device *dev, const char *format, ...);
2733 extern __printf(2, 3)
2734 int netdev_crit(const struct net_device *dev, const char *format, ...);
2735 extern __printf(2, 3)
2736 int netdev_err(const struct net_device *dev, const char *format, ...);
2737 extern __printf(2, 3)
2738 int netdev_warn(const struct net_device *dev, const char *format, ...);
2739 extern __printf(2, 3)
2740 int netdev_notice(const struct net_device *dev, const char *format, ...);
2741 extern __printf(2, 3)
2742 int netdev_info(const struct net_device *dev, const char *format, ...);
2743 
2744 #define MODULE_ALIAS_NETDEV(device) \
2745 	MODULE_ALIAS("netdev-" device)
2746 
2747 #if defined(CONFIG_DYNAMIC_DEBUG)
2748 #define netdev_dbg(__dev, format, args...)			\
2749 do {								\
2750 	dynamic_netdev_dbg(__dev, format, ##args);		\
2751 } while (0)
2752 #elif defined(DEBUG)
2753 #define netdev_dbg(__dev, format, args...)			\
2754 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
2755 #else
2756 #define netdev_dbg(__dev, format, args...)			\
2757 ({								\
2758 	if (0)							\
2759 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2760 	0;							\
2761 })
2762 #endif
2763 
2764 #if defined(VERBOSE_DEBUG)
2765 #define netdev_vdbg	netdev_dbg
2766 #else
2767 
2768 #define netdev_vdbg(dev, format, args...)			\
2769 ({								\
2770 	if (0)							\
2771 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
2772 	0;							\
2773 })
2774 #endif
2775 
2776 /*
2777  * netdev_WARN() acts like dev_printk(), but with the key difference
2778  * of using a WARN/WARN_ON to get the message out, including the
2779  * file/line information and a backtrace.
2780  */
2781 #define netdev_WARN(dev, format, args...)			\
2782 	WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2783 
2784 /* netif printk helpers, similar to netdev_printk */
2785 
2786 #define netif_printk(priv, type, level, dev, fmt, args...)	\
2787 do {					  			\
2788 	if (netif_msg_##type(priv))				\
2789 		netdev_printk(level, (dev), fmt, ##args);	\
2790 } while (0)
2791 
2792 #define netif_level(level, priv, type, dev, fmt, args...)	\
2793 do {								\
2794 	if (netif_msg_##type(priv))				\
2795 		netdev_##level(dev, fmt, ##args);		\
2796 } while (0)
2797 
2798 #define netif_emerg(priv, type, dev, fmt, args...)		\
2799 	netif_level(emerg, priv, type, dev, fmt, ##args)
2800 #define netif_alert(priv, type, dev, fmt, args...)		\
2801 	netif_level(alert, priv, type, dev, fmt, ##args)
2802 #define netif_crit(priv, type, dev, fmt, args...)		\
2803 	netif_level(crit, priv, type, dev, fmt, ##args)
2804 #define netif_err(priv, type, dev, fmt, args...)		\
2805 	netif_level(err, priv, type, dev, fmt, ##args)
2806 #define netif_warn(priv, type, dev, fmt, args...)		\
2807 	netif_level(warn, priv, type, dev, fmt, ##args)
2808 #define netif_notice(priv, type, dev, fmt, args...)		\
2809 	netif_level(notice, priv, type, dev, fmt, ##args)
2810 #define netif_info(priv, type, dev, fmt, args...)		\
2811 	netif_level(info, priv, type, dev, fmt, ##args)
2812 
2813 #if defined(CONFIG_DYNAMIC_DEBUG)
2814 #define netif_dbg(priv, type, netdev, format, args...)		\
2815 do {								\
2816 	if (netif_msg_##type(priv))				\
2817 		dynamic_netdev_dbg(netdev, format, ##args);	\
2818 } while (0)
2819 #elif defined(DEBUG)
2820 #define netif_dbg(priv, type, dev, format, args...)		\
2821 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2822 #else
2823 #define netif_dbg(priv, type, dev, format, args...)			\
2824 ({									\
2825 	if (0)								\
2826 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2827 	0;								\
2828 })
2829 #endif
2830 
2831 #if defined(VERBOSE_DEBUG)
2832 #define netif_vdbg	netif_dbg
2833 #else
2834 #define netif_vdbg(priv, type, dev, format, args...)		\
2835 ({								\
2836 	if (0)							\
2837 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2838 	0;							\
2839 })
2840 #endif
2841 
2842 #endif /* __KERNEL__ */
2843 
2844 #endif	/* _LINUX_NETDEVICE_H */
2845