xref: /linux-6.15/include/linux/netdevice.h (revision 46799a41)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <[email protected]>
13  *		Corey Minyard <[email protected]>
14  *		Donald J. Becker, <[email protected]>
15  *		Alan Cox, <[email protected]>
16  *		Bjorn Ekwall. <[email protected]>
17  *              Pekka Riikonen <[email protected]>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <linux/netdev_features.h>
44 #include <linux/neighbour.h>
45 #include <linux/netdevice_xmit.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <uapi/linux/netdev.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 #include <net/net_debug.h>
54 #include <net/dropreason-core.h>
55 #include <net/neighbour_tables.h>
56 
57 struct netpoll_info;
58 struct device;
59 struct ethtool_ops;
60 struct kernel_hwtstamp_config;
61 struct phy_device;
62 struct dsa_port;
63 struct ip_tunnel_parm_kern;
64 struct macsec_context;
65 struct macsec_ops;
66 struct netdev_name_node;
67 struct sd_flow_limit;
68 struct sfp_bus;
69 /* 802.11 specific */
70 struct wireless_dev;
71 /* 802.15.4 specific */
72 struct wpan_dev;
73 struct mpls_dev;
74 /* UDP Tunnel offloads */
75 struct udp_tunnel_info;
76 struct udp_tunnel_nic_info;
77 struct udp_tunnel_nic;
78 struct bpf_prog;
79 struct xdp_buff;
80 struct xdp_frame;
81 struct xdp_metadata_ops;
82 struct xdp_md;
83 struct ethtool_netdev_state;
84 struct phy_link_topology;
85 
86 typedef u32 xdp_features_t;
87 
88 void synchronize_net(void);
89 void netdev_set_default_ethtool_ops(struct net_device *dev,
90 				    const struct ethtool_ops *ops);
91 void netdev_sw_irq_coalesce_default_on(struct net_device *dev);
92 
93 /* Backlog congestion levels */
94 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
95 #define NET_RX_DROP		1	/* packet dropped */
96 
97 #define MAX_NEST_DEV 8
98 
99 /*
100  * Transmit return codes: transmit return codes originate from three different
101  * namespaces:
102  *
103  * - qdisc return codes
104  * - driver transmit return codes
105  * - errno values
106  *
107  * Drivers are allowed to return any one of those in their hard_start_xmit()
108  * function. Real network devices commonly used with qdiscs should only return
109  * the driver transmit return codes though - when qdiscs are used, the actual
110  * transmission happens asynchronously, so the value is not propagated to
111  * higher layers. Virtual network devices transmit synchronously; in this case
112  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
113  * others are propagated to higher layers.
114  */
115 
116 /* qdisc ->enqueue() return codes. */
117 #define NET_XMIT_SUCCESS	0x00
118 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
119 #define NET_XMIT_CN		0x02	/* congestion notification	*/
120 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
121 
122 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
123  * indicates that the device will soon be dropping packets, or already drops
124  * some packets of the same priority; prompting us to send less aggressively. */
125 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
126 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
127 
128 /* Driver transmit return codes */
129 #define NETDEV_TX_MASK		0xf0
130 
131 enum netdev_tx {
132 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
133 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
134 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
135 };
136 typedef enum netdev_tx netdev_tx_t;
137 
138 /*
139  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
140  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
141  */
142 static inline bool dev_xmit_complete(int rc)
143 {
144 	/*
145 	 * Positive cases with an skb consumed by a driver:
146 	 * - successful transmission (rc == NETDEV_TX_OK)
147 	 * - error while transmitting (rc < 0)
148 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
149 	 */
150 	if (likely(rc < NET_XMIT_MASK))
151 		return true;
152 
153 	return false;
154 }
155 
156 /*
157  *	Compute the worst-case header length according to the protocols
158  *	used.
159  */
160 
161 #if defined(CONFIG_HYPERV_NET)
162 # define LL_MAX_HEADER 128
163 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
164 # if defined(CONFIG_MAC80211_MESH)
165 #  define LL_MAX_HEADER 128
166 # else
167 #  define LL_MAX_HEADER 96
168 # endif
169 #else
170 # define LL_MAX_HEADER 32
171 #endif
172 
173 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
174     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
175 #define MAX_HEADER LL_MAX_HEADER
176 #else
177 #define MAX_HEADER (LL_MAX_HEADER + 48)
178 #endif
179 
180 /*
181  *	Old network device statistics. Fields are native words
182  *	(unsigned long) so they can be read and written atomically.
183  */
184 
185 #define NET_DEV_STAT(FIELD)			\
186 	union {					\
187 		unsigned long FIELD;		\
188 		atomic_long_t __##FIELD;	\
189 	}
190 
191 struct net_device_stats {
192 	NET_DEV_STAT(rx_packets);
193 	NET_DEV_STAT(tx_packets);
194 	NET_DEV_STAT(rx_bytes);
195 	NET_DEV_STAT(tx_bytes);
196 	NET_DEV_STAT(rx_errors);
197 	NET_DEV_STAT(tx_errors);
198 	NET_DEV_STAT(rx_dropped);
199 	NET_DEV_STAT(tx_dropped);
200 	NET_DEV_STAT(multicast);
201 	NET_DEV_STAT(collisions);
202 	NET_DEV_STAT(rx_length_errors);
203 	NET_DEV_STAT(rx_over_errors);
204 	NET_DEV_STAT(rx_crc_errors);
205 	NET_DEV_STAT(rx_frame_errors);
206 	NET_DEV_STAT(rx_fifo_errors);
207 	NET_DEV_STAT(rx_missed_errors);
208 	NET_DEV_STAT(tx_aborted_errors);
209 	NET_DEV_STAT(tx_carrier_errors);
210 	NET_DEV_STAT(tx_fifo_errors);
211 	NET_DEV_STAT(tx_heartbeat_errors);
212 	NET_DEV_STAT(tx_window_errors);
213 	NET_DEV_STAT(rx_compressed);
214 	NET_DEV_STAT(tx_compressed);
215 };
216 #undef NET_DEV_STAT
217 
218 /* per-cpu stats, allocated on demand.
219  * Try to fit them in a single cache line, for dev_get_stats() sake.
220  */
221 struct net_device_core_stats {
222 	unsigned long	rx_dropped;
223 	unsigned long	tx_dropped;
224 	unsigned long	rx_nohandler;
225 	unsigned long	rx_otherhost_dropped;
226 } __aligned(4 * sizeof(unsigned long));
227 
228 #include <linux/cache.h>
229 #include <linux/skbuff.h>
230 
231 struct neighbour;
232 struct neigh_parms;
233 struct sk_buff;
234 
235 struct netdev_hw_addr {
236 	struct list_head	list;
237 	struct rb_node		node;
238 	unsigned char		addr[MAX_ADDR_LEN];
239 	unsigned char		type;
240 #define NETDEV_HW_ADDR_T_LAN		1
241 #define NETDEV_HW_ADDR_T_SAN		2
242 #define NETDEV_HW_ADDR_T_UNICAST	3
243 #define NETDEV_HW_ADDR_T_MULTICAST	4
244 	bool			global_use;
245 	int			sync_cnt;
246 	int			refcount;
247 	int			synced;
248 	struct rcu_head		rcu_head;
249 };
250 
251 struct netdev_hw_addr_list {
252 	struct list_head	list;
253 	int			count;
254 
255 	/* Auxiliary tree for faster lookup on addition and deletion */
256 	struct rb_root		tree;
257 };
258 
259 #define netdev_hw_addr_list_count(l) ((l)->count)
260 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
261 #define netdev_hw_addr_list_for_each(ha, l) \
262 	list_for_each_entry(ha, &(l)->list, list)
263 
264 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
265 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
266 #define netdev_for_each_uc_addr(ha, dev) \
267 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
268 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
269 	netdev_for_each_uc_addr((_ha), (_dev)) \
270 		if ((_ha)->sync_cnt)
271 
272 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
273 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
274 #define netdev_for_each_mc_addr(ha, dev) \
275 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
276 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
277 	netdev_for_each_mc_addr((_ha), (_dev)) \
278 		if ((_ha)->sync_cnt)
279 
280 struct hh_cache {
281 	unsigned int	hh_len;
282 	seqlock_t	hh_lock;
283 
284 	/* cached hardware header; allow for machine alignment needs.        */
285 #define HH_DATA_MOD	16
286 #define HH_DATA_OFF(__len) \
287 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
288 #define HH_DATA_ALIGN(__len) \
289 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
290 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
291 };
292 
293 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
294  * Alternative is:
295  *   dev->hard_header_len ? (dev->hard_header_len +
296  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
297  *
298  * We could use other alignment values, but we must maintain the
299  * relationship HH alignment <= LL alignment.
300  */
301 #define LL_RESERVED_SPACE(dev) \
302 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
303 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
304 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
305 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
306 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
307 
308 struct header_ops {
309 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
310 			   unsigned short type, const void *daddr,
311 			   const void *saddr, unsigned int len);
312 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
313 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
314 	void	(*cache_update)(struct hh_cache *hh,
315 				const struct net_device *dev,
316 				const unsigned char *haddr);
317 	bool	(*validate)(const char *ll_header, unsigned int len);
318 	__be16	(*parse_protocol)(const struct sk_buff *skb);
319 };
320 
321 /* These flag bits are private to the generic network queueing
322  * layer; they may not be explicitly referenced by any other
323  * code.
324  */
325 
326 enum netdev_state_t {
327 	__LINK_STATE_START,
328 	__LINK_STATE_PRESENT,
329 	__LINK_STATE_NOCARRIER,
330 	__LINK_STATE_LINKWATCH_PENDING,
331 	__LINK_STATE_DORMANT,
332 	__LINK_STATE_TESTING,
333 };
334 
335 struct gro_list {
336 	struct list_head	list;
337 	int			count;
338 };
339 
340 /*
341  * size of gro hash buckets, must less than bit number of
342  * napi_struct::gro_bitmask
343  */
344 #define GRO_HASH_BUCKETS	8
345 
346 /*
347  * Structure for per-NAPI config
348  */
349 struct napi_config {
350 	u64 gro_flush_timeout;
351 	u32 defer_hard_irqs;
352 	unsigned int napi_id;
353 };
354 
355 /*
356  * Structure for NAPI scheduling similar to tasklet but with weighting
357  */
358 struct napi_struct {
359 	/* The poll_list must only be managed by the entity which
360 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
361 	 * whoever atomically sets that bit can add this napi_struct
362 	 * to the per-CPU poll_list, and whoever clears that bit
363 	 * can remove from the list right before clearing the bit.
364 	 */
365 	struct list_head	poll_list;
366 
367 	unsigned long		state;
368 	int			weight;
369 	u32			defer_hard_irqs_count;
370 	unsigned long		gro_bitmask;
371 	int			(*poll)(struct napi_struct *, int);
372 #ifdef CONFIG_NETPOLL
373 	/* CPU actively polling if netpoll is configured */
374 	int			poll_owner;
375 #endif
376 	/* CPU on which NAPI has been scheduled for processing */
377 	int			list_owner;
378 	struct net_device	*dev;
379 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
380 	struct sk_buff		*skb;
381 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
382 	int			rx_count; /* length of rx_list */
383 	unsigned int		napi_id;
384 	struct hrtimer		timer;
385 	struct task_struct	*thread;
386 	unsigned long		gro_flush_timeout;
387 	u32			defer_hard_irqs;
388 	/* control-path-only fields follow */
389 	struct list_head	dev_list;
390 	struct hlist_node	napi_hash_node;
391 	int			irq;
392 	int			index;
393 	struct napi_config	*config;
394 };
395 
396 enum {
397 	NAPI_STATE_SCHED,		/* Poll is scheduled */
398 	NAPI_STATE_MISSED,		/* reschedule a napi */
399 	NAPI_STATE_DISABLE,		/* Disable pending */
400 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
401 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
402 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
403 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
404 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
405 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
406 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
407 };
408 
409 enum {
410 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
411 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
412 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
413 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
414 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
415 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
416 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
417 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
418 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
419 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
420 };
421 
422 enum gro_result {
423 	GRO_MERGED,
424 	GRO_MERGED_FREE,
425 	GRO_HELD,
426 	GRO_NORMAL,
427 	GRO_CONSUMED,
428 };
429 typedef enum gro_result gro_result_t;
430 
431 /*
432  * enum rx_handler_result - Possible return values for rx_handlers.
433  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
434  * further.
435  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
436  * case skb->dev was changed by rx_handler.
437  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
438  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
439  *
440  * rx_handlers are functions called from inside __netif_receive_skb(), to do
441  * special processing of the skb, prior to delivery to protocol handlers.
442  *
443  * Currently, a net_device can only have a single rx_handler registered. Trying
444  * to register a second rx_handler will return -EBUSY.
445  *
446  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
447  * To unregister a rx_handler on a net_device, use
448  * netdev_rx_handler_unregister().
449  *
450  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
451  * do with the skb.
452  *
453  * If the rx_handler consumed the skb in some way, it should return
454  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
455  * the skb to be delivered in some other way.
456  *
457  * If the rx_handler changed skb->dev, to divert the skb to another
458  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
459  * new device will be called if it exists.
460  *
461  * If the rx_handler decides the skb should be ignored, it should return
462  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
463  * are registered on exact device (ptype->dev == skb->dev).
464  *
465  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
466  * delivered, it should return RX_HANDLER_PASS.
467  *
468  * A device without a registered rx_handler will behave as if rx_handler
469  * returned RX_HANDLER_PASS.
470  */
471 
472 enum rx_handler_result {
473 	RX_HANDLER_CONSUMED,
474 	RX_HANDLER_ANOTHER,
475 	RX_HANDLER_EXACT,
476 	RX_HANDLER_PASS,
477 };
478 typedef enum rx_handler_result rx_handler_result_t;
479 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
480 
481 void __napi_schedule(struct napi_struct *n);
482 void __napi_schedule_irqoff(struct napi_struct *n);
483 
484 static inline bool napi_disable_pending(struct napi_struct *n)
485 {
486 	return test_bit(NAPI_STATE_DISABLE, &n->state);
487 }
488 
489 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
490 {
491 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
492 }
493 
494 /**
495  * napi_is_scheduled - test if NAPI is scheduled
496  * @n: NAPI context
497  *
498  * This check is "best-effort". With no locking implemented,
499  * a NAPI can be scheduled or terminate right after this check
500  * and produce not precise results.
501  *
502  * NAPI_STATE_SCHED is an internal state, napi_is_scheduled
503  * should not be used normally and napi_schedule should be
504  * used instead.
505  *
506  * Use only if the driver really needs to check if a NAPI
507  * is scheduled for example in the context of delayed timer
508  * that can be skipped if a NAPI is already scheduled.
509  *
510  * Return True if NAPI is scheduled, False otherwise.
511  */
512 static inline bool napi_is_scheduled(struct napi_struct *n)
513 {
514 	return test_bit(NAPI_STATE_SCHED, &n->state);
515 }
516 
517 bool napi_schedule_prep(struct napi_struct *n);
518 
519 /**
520  *	napi_schedule - schedule NAPI poll
521  *	@n: NAPI context
522  *
523  * Schedule NAPI poll routine to be called if it is not already
524  * running.
525  * Return true if we schedule a NAPI or false if not.
526  * Refer to napi_schedule_prep() for additional reason on why
527  * a NAPI might not be scheduled.
528  */
529 static inline bool napi_schedule(struct napi_struct *n)
530 {
531 	if (napi_schedule_prep(n)) {
532 		__napi_schedule(n);
533 		return true;
534 	}
535 
536 	return false;
537 }
538 
539 /**
540  *	napi_schedule_irqoff - schedule NAPI poll
541  *	@n: NAPI context
542  *
543  * Variant of napi_schedule(), assuming hard irqs are masked.
544  */
545 static inline void napi_schedule_irqoff(struct napi_struct *n)
546 {
547 	if (napi_schedule_prep(n))
548 		__napi_schedule_irqoff(n);
549 }
550 
551 /**
552  * napi_complete_done - NAPI processing complete
553  * @n: NAPI context
554  * @work_done: number of packets processed
555  *
556  * Mark NAPI processing as complete. Should only be called if poll budget
557  * has not been completely consumed.
558  * Prefer over napi_complete().
559  * Return false if device should avoid rearming interrupts.
560  */
561 bool napi_complete_done(struct napi_struct *n, int work_done);
562 
563 static inline bool napi_complete(struct napi_struct *n)
564 {
565 	return napi_complete_done(n, 0);
566 }
567 
568 int dev_set_threaded(struct net_device *dev, bool threaded);
569 
570 /**
571  *	napi_disable - prevent NAPI from scheduling
572  *	@n: NAPI context
573  *
574  * Stop NAPI from being scheduled on this context.
575  * Waits till any outstanding processing completes.
576  */
577 void napi_disable(struct napi_struct *n);
578 
579 void napi_enable(struct napi_struct *n);
580 
581 /**
582  *	napi_synchronize - wait until NAPI is not running
583  *	@n: NAPI context
584  *
585  * Wait until NAPI is done being scheduled on this context.
586  * Waits till any outstanding processing completes but
587  * does not disable future activations.
588  */
589 static inline void napi_synchronize(const struct napi_struct *n)
590 {
591 	if (IS_ENABLED(CONFIG_SMP))
592 		while (test_bit(NAPI_STATE_SCHED, &n->state))
593 			msleep(1);
594 	else
595 		barrier();
596 }
597 
598 /**
599  *	napi_if_scheduled_mark_missed - if napi is running, set the
600  *	NAPIF_STATE_MISSED
601  *	@n: NAPI context
602  *
603  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
604  * NAPI is scheduled.
605  **/
606 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
607 {
608 	unsigned long val, new;
609 
610 	val = READ_ONCE(n->state);
611 	do {
612 		if (val & NAPIF_STATE_DISABLE)
613 			return true;
614 
615 		if (!(val & NAPIF_STATE_SCHED))
616 			return false;
617 
618 		new = val | NAPIF_STATE_MISSED;
619 	} while (!try_cmpxchg(&n->state, &val, new));
620 
621 	return true;
622 }
623 
624 enum netdev_queue_state_t {
625 	__QUEUE_STATE_DRV_XOFF,
626 	__QUEUE_STATE_STACK_XOFF,
627 	__QUEUE_STATE_FROZEN,
628 };
629 
630 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
631 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
632 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
633 
634 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
635 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
636 					QUEUE_STATE_FROZEN)
637 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
638 					QUEUE_STATE_FROZEN)
639 
640 /*
641  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
642  * netif_tx_* functions below are used to manipulate this flag.  The
643  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
644  * queue independently.  The netif_xmit_*stopped functions below are called
645  * to check if the queue has been stopped by the driver or stack (either
646  * of the XOFF bits are set in the state).  Drivers should not need to call
647  * netif_xmit*stopped functions, they should only be using netif_tx_*.
648  */
649 
650 struct netdev_queue {
651 /*
652  * read-mostly part
653  */
654 	struct net_device	*dev;
655 	netdevice_tracker	dev_tracker;
656 
657 	struct Qdisc __rcu	*qdisc;
658 	struct Qdisc __rcu	*qdisc_sleeping;
659 #ifdef CONFIG_SYSFS
660 	struct kobject		kobj;
661 #endif
662 	unsigned long		tx_maxrate;
663 	/*
664 	 * Number of TX timeouts for this queue
665 	 * (/sys/class/net/DEV/Q/trans_timeout)
666 	 */
667 	atomic_long_t		trans_timeout;
668 
669 	/* Subordinate device that the queue has been assigned to */
670 	struct net_device	*sb_dev;
671 #ifdef CONFIG_XDP_SOCKETS
672 	struct xsk_buff_pool    *pool;
673 #endif
674 
675 /*
676  * write-mostly part
677  */
678 #ifdef CONFIG_BQL
679 	struct dql		dql;
680 #endif
681 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
682 	int			xmit_lock_owner;
683 	/*
684 	 * Time (in jiffies) of last Tx
685 	 */
686 	unsigned long		trans_start;
687 
688 	unsigned long		state;
689 
690 /*
691  * slow- / control-path part
692  */
693 	/* NAPI instance for the queue
694 	 * Readers and writers must hold RTNL
695 	 */
696 	struct napi_struct	*napi;
697 
698 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
699 	int			numa_node;
700 #endif
701 } ____cacheline_aligned_in_smp;
702 
703 extern int sysctl_fb_tunnels_only_for_init_net;
704 extern int sysctl_devconf_inherit_init_net;
705 
706 /*
707  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
708  *                                     == 1 : For initns only
709  *                                     == 2 : For none.
710  */
711 static inline bool net_has_fallback_tunnels(const struct net *net)
712 {
713 #if IS_ENABLED(CONFIG_SYSCTL)
714 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
715 
716 	return !fb_tunnels_only_for_init_net ||
717 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
718 #else
719 	return true;
720 #endif
721 }
722 
723 static inline int net_inherit_devconf(void)
724 {
725 #if IS_ENABLED(CONFIG_SYSCTL)
726 	return READ_ONCE(sysctl_devconf_inherit_init_net);
727 #else
728 	return 0;
729 #endif
730 }
731 
732 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
733 {
734 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
735 	return q->numa_node;
736 #else
737 	return NUMA_NO_NODE;
738 #endif
739 }
740 
741 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
742 {
743 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
744 	q->numa_node = node;
745 #endif
746 }
747 
748 #ifdef CONFIG_RFS_ACCEL
749 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
750 			 u16 filter_id);
751 #endif
752 
753 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
754 enum xps_map_type {
755 	XPS_CPUS = 0,
756 	XPS_RXQS,
757 	XPS_MAPS_MAX,
758 };
759 
760 #ifdef CONFIG_XPS
761 /*
762  * This structure holds an XPS map which can be of variable length.  The
763  * map is an array of queues.
764  */
765 struct xps_map {
766 	unsigned int len;
767 	unsigned int alloc_len;
768 	struct rcu_head rcu;
769 	u16 queues[];
770 };
771 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
772 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
773        - sizeof(struct xps_map)) / sizeof(u16))
774 
775 /*
776  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
777  *
778  * We keep track of the number of cpus/rxqs used when the struct is allocated,
779  * in nr_ids. This will help not accessing out-of-bound memory.
780  *
781  * We keep track of the number of traffic classes used when the struct is
782  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
783  * not crossing its upper bound, as the original dev->num_tc can be updated in
784  * the meantime.
785  */
786 struct xps_dev_maps {
787 	struct rcu_head rcu;
788 	unsigned int nr_ids;
789 	s16 num_tc;
790 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
791 };
792 
793 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
794 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
795 
796 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
797 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
798 
799 #endif /* CONFIG_XPS */
800 
801 #define TC_MAX_QUEUE	16
802 #define TC_BITMASK	15
803 /* HW offloaded queuing disciplines txq count and offset maps */
804 struct netdev_tc_txq {
805 	u16 count;
806 	u16 offset;
807 };
808 
809 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
810 /*
811  * This structure is to hold information about the device
812  * configured to run FCoE protocol stack.
813  */
814 struct netdev_fcoe_hbainfo {
815 	char	manufacturer[64];
816 	char	serial_number[64];
817 	char	hardware_version[64];
818 	char	driver_version[64];
819 	char	optionrom_version[64];
820 	char	firmware_version[64];
821 	char	model[256];
822 	char	model_description[256];
823 };
824 #endif
825 
826 #define MAX_PHYS_ITEM_ID_LEN 32
827 
828 /* This structure holds a unique identifier to identify some
829  * physical item (port for example) used by a netdevice.
830  */
831 struct netdev_phys_item_id {
832 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
833 	unsigned char id_len;
834 };
835 
836 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
837 					    struct netdev_phys_item_id *b)
838 {
839 	return a->id_len == b->id_len &&
840 	       memcmp(a->id, b->id, a->id_len) == 0;
841 }
842 
843 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
844 				       struct sk_buff *skb,
845 				       struct net_device *sb_dev);
846 
847 enum net_device_path_type {
848 	DEV_PATH_ETHERNET = 0,
849 	DEV_PATH_VLAN,
850 	DEV_PATH_BRIDGE,
851 	DEV_PATH_PPPOE,
852 	DEV_PATH_DSA,
853 	DEV_PATH_MTK_WDMA,
854 };
855 
856 struct net_device_path {
857 	enum net_device_path_type	type;
858 	const struct net_device		*dev;
859 	union {
860 		struct {
861 			u16		id;
862 			__be16		proto;
863 			u8		h_dest[ETH_ALEN];
864 		} encap;
865 		struct {
866 			enum {
867 				DEV_PATH_BR_VLAN_KEEP,
868 				DEV_PATH_BR_VLAN_TAG,
869 				DEV_PATH_BR_VLAN_UNTAG,
870 				DEV_PATH_BR_VLAN_UNTAG_HW,
871 			}		vlan_mode;
872 			u16		vlan_id;
873 			__be16		vlan_proto;
874 		} bridge;
875 		struct {
876 			int port;
877 			u16 proto;
878 		} dsa;
879 		struct {
880 			u8 wdma_idx;
881 			u8 queue;
882 			u16 wcid;
883 			u8 bss;
884 			u8 amsdu;
885 		} mtk_wdma;
886 	};
887 };
888 
889 #define NET_DEVICE_PATH_STACK_MAX	5
890 #define NET_DEVICE_PATH_VLAN_MAX	2
891 
892 struct net_device_path_stack {
893 	int			num_paths;
894 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
895 };
896 
897 struct net_device_path_ctx {
898 	const struct net_device *dev;
899 	u8			daddr[ETH_ALEN];
900 
901 	int			num_vlans;
902 	struct {
903 		u16		id;
904 		__be16		proto;
905 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
906 };
907 
908 enum tc_setup_type {
909 	TC_QUERY_CAPS,
910 	TC_SETUP_QDISC_MQPRIO,
911 	TC_SETUP_CLSU32,
912 	TC_SETUP_CLSFLOWER,
913 	TC_SETUP_CLSMATCHALL,
914 	TC_SETUP_CLSBPF,
915 	TC_SETUP_BLOCK,
916 	TC_SETUP_QDISC_CBS,
917 	TC_SETUP_QDISC_RED,
918 	TC_SETUP_QDISC_PRIO,
919 	TC_SETUP_QDISC_MQ,
920 	TC_SETUP_QDISC_ETF,
921 	TC_SETUP_ROOT_QDISC,
922 	TC_SETUP_QDISC_GRED,
923 	TC_SETUP_QDISC_TAPRIO,
924 	TC_SETUP_FT,
925 	TC_SETUP_QDISC_ETS,
926 	TC_SETUP_QDISC_TBF,
927 	TC_SETUP_QDISC_FIFO,
928 	TC_SETUP_QDISC_HTB,
929 	TC_SETUP_ACT,
930 };
931 
932 /* These structures hold the attributes of bpf state that are being passed
933  * to the netdevice through the bpf op.
934  */
935 enum bpf_netdev_command {
936 	/* Set or clear a bpf program used in the earliest stages of packet
937 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
938 	 * is responsible for calling bpf_prog_put on any old progs that are
939 	 * stored. In case of error, the callee need not release the new prog
940 	 * reference, but on success it takes ownership and must bpf_prog_put
941 	 * when it is no longer used.
942 	 */
943 	XDP_SETUP_PROG,
944 	XDP_SETUP_PROG_HW,
945 	/* BPF program for offload callbacks, invoked at program load time. */
946 	BPF_OFFLOAD_MAP_ALLOC,
947 	BPF_OFFLOAD_MAP_FREE,
948 	XDP_SETUP_XSK_POOL,
949 };
950 
951 struct bpf_prog_offload_ops;
952 struct netlink_ext_ack;
953 struct xdp_umem;
954 struct xdp_dev_bulk_queue;
955 struct bpf_xdp_link;
956 
957 enum bpf_xdp_mode {
958 	XDP_MODE_SKB = 0,
959 	XDP_MODE_DRV = 1,
960 	XDP_MODE_HW = 2,
961 	__MAX_XDP_MODE
962 };
963 
964 struct bpf_xdp_entity {
965 	struct bpf_prog *prog;
966 	struct bpf_xdp_link *link;
967 };
968 
969 struct netdev_bpf {
970 	enum bpf_netdev_command command;
971 	union {
972 		/* XDP_SETUP_PROG */
973 		struct {
974 			u32 flags;
975 			struct bpf_prog *prog;
976 			struct netlink_ext_ack *extack;
977 		};
978 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
979 		struct {
980 			struct bpf_offloaded_map *offmap;
981 		};
982 		/* XDP_SETUP_XSK_POOL */
983 		struct {
984 			struct xsk_buff_pool *pool;
985 			u16 queue_id;
986 		} xsk;
987 	};
988 };
989 
990 /* Flags for ndo_xsk_wakeup. */
991 #define XDP_WAKEUP_RX (1 << 0)
992 #define XDP_WAKEUP_TX (1 << 1)
993 
994 #ifdef CONFIG_XFRM_OFFLOAD
995 struct xfrmdev_ops {
996 	int	(*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack);
997 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
998 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
999 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1000 				       struct xfrm_state *x);
1001 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1002 	void	(*xdo_dev_state_update_stats) (struct xfrm_state *x);
1003 	int	(*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack);
1004 	void	(*xdo_dev_policy_delete) (struct xfrm_policy *x);
1005 	void	(*xdo_dev_policy_free) (struct xfrm_policy *x);
1006 };
1007 #endif
1008 
1009 struct dev_ifalias {
1010 	struct rcu_head rcuhead;
1011 	char ifalias[];
1012 };
1013 
1014 struct devlink;
1015 struct tlsdev_ops;
1016 
1017 struct netdev_net_notifier {
1018 	struct list_head list;
1019 	struct notifier_block *nb;
1020 };
1021 
1022 /*
1023  * This structure defines the management hooks for network devices.
1024  * The following hooks can be defined; unless noted otherwise, they are
1025  * optional and can be filled with a null pointer.
1026  *
1027  * int (*ndo_init)(struct net_device *dev);
1028  *     This function is called once when a network device is registered.
1029  *     The network device can use this for any late stage initialization
1030  *     or semantic validation. It can fail with an error code which will
1031  *     be propagated back to register_netdev.
1032  *
1033  * void (*ndo_uninit)(struct net_device *dev);
1034  *     This function is called when device is unregistered or when registration
1035  *     fails. It is not called if init fails.
1036  *
1037  * int (*ndo_open)(struct net_device *dev);
1038  *     This function is called when a network device transitions to the up
1039  *     state.
1040  *
1041  * int (*ndo_stop)(struct net_device *dev);
1042  *     This function is called when a network device transitions to the down
1043  *     state.
1044  *
1045  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1046  *                               struct net_device *dev);
1047  *	Called when a packet needs to be transmitted.
1048  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1049  *	the queue before that can happen; it's for obsolete devices and weird
1050  *	corner cases, but the stack really does a non-trivial amount
1051  *	of useless work if you return NETDEV_TX_BUSY.
1052  *	Required; cannot be NULL.
1053  *
1054  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1055  *					   struct net_device *dev
1056  *					   netdev_features_t features);
1057  *	Called by core transmit path to determine if device is capable of
1058  *	performing offload operations on a given packet. This is to give
1059  *	the device an opportunity to implement any restrictions that cannot
1060  *	be otherwise expressed by feature flags. The check is called with
1061  *	the set of features that the stack has calculated and it returns
1062  *	those the driver believes to be appropriate.
1063  *
1064  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1065  *                         struct net_device *sb_dev);
1066  *	Called to decide which queue to use when device supports multiple
1067  *	transmit queues.
1068  *
1069  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1070  *	This function is called to allow device receiver to make
1071  *	changes to configuration when multicast or promiscuous is enabled.
1072  *
1073  * void (*ndo_set_rx_mode)(struct net_device *dev);
1074  *	This function is called device changes address list filtering.
1075  *	If driver handles unicast address filtering, it should set
1076  *	IFF_UNICAST_FLT in its priv_flags.
1077  *
1078  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1079  *	This function  is called when the Media Access Control address
1080  *	needs to be changed. If this interface is not defined, the
1081  *	MAC address can not be changed.
1082  *
1083  * int (*ndo_validate_addr)(struct net_device *dev);
1084  *	Test if Media Access Control address is valid for the device.
1085  *
1086  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1087  *	Old-style ioctl entry point. This is used internally by the
1088  *	appletalk and ieee802154 subsystems but is no longer called by
1089  *	the device ioctl handler.
1090  *
1091  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1092  *	Used by the bonding driver for its device specific ioctls:
1093  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1094  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1095  *
1096  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1097  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1098  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1099  *
1100  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1101  *	Used to set network devices bus interface parameters. This interface
1102  *	is retained for legacy reasons; new devices should use the bus
1103  *	interface (PCI) for low level management.
1104  *
1105  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1106  *	Called when a user wants to change the Maximum Transfer Unit
1107  *	of a device.
1108  *
1109  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1110  *	Callback used when the transmitter has not made any progress
1111  *	for dev->watchdog ticks.
1112  *
1113  * void (*ndo_get_stats64)(struct net_device *dev,
1114  *                         struct rtnl_link_stats64 *storage);
1115  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1116  *	Called when a user wants to get the network device usage
1117  *	statistics. Drivers must do one of the following:
1118  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1119  *	   rtnl_link_stats64 structure passed by the caller.
1120  *	2. Define @ndo_get_stats to update a net_device_stats structure
1121  *	   (which should normally be dev->stats) and return a pointer to
1122  *	   it. The structure may be changed asynchronously only if each
1123  *	   field is written atomically.
1124  *	3. Update dev->stats asynchronously and atomically, and define
1125  *	   neither operation.
1126  *
1127  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1128  *	Return true if this device supports offload stats of this attr_id.
1129  *
1130  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1131  *	void *attr_data)
1132  *	Get statistics for offload operations by attr_id. Write it into the
1133  *	attr_data pointer.
1134  *
1135  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1136  *	If device supports VLAN filtering this function is called when a
1137  *	VLAN id is registered.
1138  *
1139  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1140  *	If device supports VLAN filtering this function is called when a
1141  *	VLAN id is unregistered.
1142  *
1143  * void (*ndo_poll_controller)(struct net_device *dev);
1144  *
1145  *	SR-IOV management functions.
1146  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1147  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1148  *			  u8 qos, __be16 proto);
1149  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1150  *			  int max_tx_rate);
1151  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1152  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1153  * int (*ndo_get_vf_config)(struct net_device *dev,
1154  *			    int vf, struct ifla_vf_info *ivf);
1155  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1156  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1157  *			  struct nlattr *port[]);
1158  *
1159  *      Enable or disable the VF ability to query its RSS Redirection Table and
1160  *      Hash Key. This is needed since on some devices VF share this information
1161  *      with PF and querying it may introduce a theoretical security risk.
1162  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1163  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1164  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1165  *		       void *type_data);
1166  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1167  *	This is always called from the stack with the rtnl lock held and netif
1168  *	tx queues stopped. This allows the netdevice to perform queue
1169  *	management safely.
1170  *
1171  *	Fiber Channel over Ethernet (FCoE) offload functions.
1172  * int (*ndo_fcoe_enable)(struct net_device *dev);
1173  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1174  *	so the underlying device can perform whatever needed configuration or
1175  *	initialization to support acceleration of FCoE traffic.
1176  *
1177  * int (*ndo_fcoe_disable)(struct net_device *dev);
1178  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1179  *	so the underlying device can perform whatever needed clean-ups to
1180  *	stop supporting acceleration of FCoE traffic.
1181  *
1182  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1183  *			     struct scatterlist *sgl, unsigned int sgc);
1184  *	Called when the FCoE Initiator wants to initialize an I/O that
1185  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1186  *	perform necessary setup and returns 1 to indicate the device is set up
1187  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1188  *
1189  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1190  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1191  *	indicated by the FC exchange id 'xid', so the underlying device can
1192  *	clean up and reuse resources for later DDP requests.
1193  *
1194  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1195  *			      struct scatterlist *sgl, unsigned int sgc);
1196  *	Called when the FCoE Target wants to initialize an I/O that
1197  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1198  *	perform necessary setup and returns 1 to indicate the device is set up
1199  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1200  *
1201  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1202  *			       struct netdev_fcoe_hbainfo *hbainfo);
1203  *	Called when the FCoE Protocol stack wants information on the underlying
1204  *	device. This information is utilized by the FCoE protocol stack to
1205  *	register attributes with Fiber Channel management service as per the
1206  *	FC-GS Fabric Device Management Information(FDMI) specification.
1207  *
1208  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1209  *	Called when the underlying device wants to override default World Wide
1210  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1211  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1212  *	protocol stack to use.
1213  *
1214  *	RFS acceleration.
1215  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1216  *			    u16 rxq_index, u32 flow_id);
1217  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1218  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1219  *	Return the filter ID on success, or a negative error code.
1220  *
1221  *	Slave management functions (for bridge, bonding, etc).
1222  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1223  *	Called to make another netdev an underling.
1224  *
1225  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1226  *	Called to release previously enslaved netdev.
1227  *
1228  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1229  *					    struct sk_buff *skb,
1230  *					    bool all_slaves);
1231  *	Get the xmit slave of master device. If all_slaves is true, function
1232  *	assume all the slaves can transmit.
1233  *
1234  *      Feature/offload setting functions.
1235  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1236  *		netdev_features_t features);
1237  *	Adjusts the requested feature flags according to device-specific
1238  *	constraints, and returns the resulting flags. Must not modify
1239  *	the device state.
1240  *
1241  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1242  *	Called to update device configuration to new features. Passed
1243  *	feature set might be less than what was returned by ndo_fix_features()).
1244  *	Must return >0 or -errno if it changed dev->features itself.
1245  *
1246  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1247  *		      struct net_device *dev,
1248  *		      const unsigned char *addr, u16 vid, u16 flags,
1249  *		      struct netlink_ext_ack *extack);
1250  *	Adds an FDB entry to dev for addr.
1251  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1252  *		      struct net_device *dev,
1253  *		      const unsigned char *addr, u16 vid)
1254  *	Deletes the FDB entry from dev corresponding to addr.
1255  * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev,
1256  *			   struct netlink_ext_ack *extack);
1257  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1258  *		       struct net_device *dev, struct net_device *filter_dev,
1259  *		       int *idx)
1260  *	Used to add FDB entries to dump requests. Implementers should add
1261  *	entries to skb and update idx with the number of entries.
1262  *
1263  * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[],
1264  *		      u16 nlmsg_flags, struct netlink_ext_ack *extack);
1265  *	Adds an MDB entry to dev.
1266  * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[],
1267  *		      struct netlink_ext_ack *extack);
1268  *	Deletes the MDB entry from dev.
1269  * int (*ndo_mdb_del_bulk)(struct net_device *dev, struct nlattr *tb[],
1270  *			   struct netlink_ext_ack *extack);
1271  *	Bulk deletes MDB entries from dev.
1272  * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb,
1273  *		       struct netlink_callback *cb);
1274  *	Dumps MDB entries from dev. The first argument (marker) in the netlink
1275  *	callback is used by core rtnetlink code.
1276  *
1277  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1278  *			     u16 flags, struct netlink_ext_ack *extack)
1279  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1280  *			     struct net_device *dev, u32 filter_mask,
1281  *			     int nlflags)
1282  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1283  *			     u16 flags);
1284  *
1285  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1286  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1287  *	which do not represent real hardware may define this to allow their
1288  *	userspace components to manage their virtual carrier state. Devices
1289  *	that determine carrier state from physical hardware properties (eg
1290  *	network cables) or protocol-dependent mechanisms (eg
1291  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1292  *
1293  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1294  *			       struct netdev_phys_item_id *ppid);
1295  *	Called to get ID of physical port of this device. If driver does
1296  *	not implement this, it is assumed that the hw is not able to have
1297  *	multiple net devices on single physical port.
1298  *
1299  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1300  *				 struct netdev_phys_item_id *ppid)
1301  *	Called to get the parent ID of the physical port of this device.
1302  *
1303  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1304  *				 struct net_device *dev)
1305  *	Called by upper layer devices to accelerate switching or other
1306  *	station functionality into hardware. 'pdev is the lowerdev
1307  *	to use for the offload and 'dev' is the net device that will
1308  *	back the offload. Returns a pointer to the private structure
1309  *	the upper layer will maintain.
1310  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1311  *	Called by upper layer device to delete the station created
1312  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1313  *	the station and priv is the structure returned by the add
1314  *	operation.
1315  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1316  *			     int queue_index, u32 maxrate);
1317  *	Called when a user wants to set a max-rate limitation of specific
1318  *	TX queue.
1319  * int (*ndo_get_iflink)(const struct net_device *dev);
1320  *	Called to get the iflink value of this device.
1321  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1322  *	This function is used to get egress tunnel information for given skb.
1323  *	This is useful for retrieving outer tunnel header parameters while
1324  *	sampling packet.
1325  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1326  *	This function is used to specify the headroom that the skb must
1327  *	consider when allocation skb during packet reception. Setting
1328  *	appropriate rx headroom value allows avoiding skb head copy on
1329  *	forward. Setting a negative value resets the rx headroom to the
1330  *	default value.
1331  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1332  *	This function is used to set or query state related to XDP on the
1333  *	netdevice and manage BPF offload. See definition of
1334  *	enum bpf_netdev_command for details.
1335  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1336  *			u32 flags);
1337  *	This function is used to submit @n XDP packets for transmit on a
1338  *	netdevice. Returns number of frames successfully transmitted, frames
1339  *	that got dropped are freed/returned via xdp_return_frame().
1340  *	Returns negative number, means general error invoking ndo, meaning
1341  *	no frames were xmit'ed and core-caller will free all frames.
1342  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1343  *					        struct xdp_buff *xdp);
1344  *      Get the xmit slave of master device based on the xdp_buff.
1345  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1346  *      This function is used to wake up the softirq, ksoftirqd or kthread
1347  *	responsible for sending and/or receiving packets on a specific
1348  *	queue id bound to an AF_XDP socket. The flags field specifies if
1349  *	only RX, only Tx, or both should be woken up using the flags
1350  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1351  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm_kern *p,
1352  *			 int cmd);
1353  *	Add, change, delete or get information on an IPv4 tunnel.
1354  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1355  *	If a device is paired with a peer device, return the peer instance.
1356  *	The caller must be under RCU read context.
1357  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1358  *     Get the forwarding path to reach the real device from the HW destination address
1359  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1360  *			     const struct skb_shared_hwtstamps *hwtstamps,
1361  *			     bool cycles);
1362  *	Get hardware timestamp based on normal/adjustable time or free running
1363  *	cycle counter. This function is required if physical clock supports a
1364  *	free running cycle counter.
1365  *
1366  * int (*ndo_hwtstamp_get)(struct net_device *dev,
1367  *			   struct kernel_hwtstamp_config *kernel_config);
1368  *	Get the currently configured hardware timestamping parameters for the
1369  *	NIC device.
1370  *
1371  * int (*ndo_hwtstamp_set)(struct net_device *dev,
1372  *			   struct kernel_hwtstamp_config *kernel_config,
1373  *			   struct netlink_ext_ack *extack);
1374  *	Change the hardware timestamping parameters for NIC device.
1375  */
1376 struct net_device_ops {
1377 	int			(*ndo_init)(struct net_device *dev);
1378 	void			(*ndo_uninit)(struct net_device *dev);
1379 	int			(*ndo_open)(struct net_device *dev);
1380 	int			(*ndo_stop)(struct net_device *dev);
1381 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1382 						  struct net_device *dev);
1383 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1384 						      struct net_device *dev,
1385 						      netdev_features_t features);
1386 	u16			(*ndo_select_queue)(struct net_device *dev,
1387 						    struct sk_buff *skb,
1388 						    struct net_device *sb_dev);
1389 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1390 						       int flags);
1391 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1392 	int			(*ndo_set_mac_address)(struct net_device *dev,
1393 						       void *addr);
1394 	int			(*ndo_validate_addr)(struct net_device *dev);
1395 	int			(*ndo_do_ioctl)(struct net_device *dev,
1396 					        struct ifreq *ifr, int cmd);
1397 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1398 						 struct ifreq *ifr, int cmd);
1399 	int			(*ndo_siocbond)(struct net_device *dev,
1400 						struct ifreq *ifr, int cmd);
1401 	int			(*ndo_siocwandev)(struct net_device *dev,
1402 						  struct if_settings *ifs);
1403 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1404 						      struct ifreq *ifr,
1405 						      void __user *data, int cmd);
1406 	int			(*ndo_set_config)(struct net_device *dev,
1407 					          struct ifmap *map);
1408 	int			(*ndo_change_mtu)(struct net_device *dev,
1409 						  int new_mtu);
1410 	int			(*ndo_neigh_setup)(struct net_device *dev,
1411 						   struct neigh_parms *);
1412 	void			(*ndo_tx_timeout) (struct net_device *dev,
1413 						   unsigned int txqueue);
1414 
1415 	void			(*ndo_get_stats64)(struct net_device *dev,
1416 						   struct rtnl_link_stats64 *storage);
1417 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1418 	int			(*ndo_get_offload_stats)(int attr_id,
1419 							 const struct net_device *dev,
1420 							 void *attr_data);
1421 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1422 
1423 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1424 						       __be16 proto, u16 vid);
1425 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1426 						        __be16 proto, u16 vid);
1427 #ifdef CONFIG_NET_POLL_CONTROLLER
1428 	void                    (*ndo_poll_controller)(struct net_device *dev);
1429 	int			(*ndo_netpoll_setup)(struct net_device *dev);
1430 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1431 #endif
1432 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1433 						  int queue, u8 *mac);
1434 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1435 						   int queue, u16 vlan,
1436 						   u8 qos, __be16 proto);
1437 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1438 						   int vf, int min_tx_rate,
1439 						   int max_tx_rate);
1440 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1441 						       int vf, bool setting);
1442 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1443 						    int vf, bool setting);
1444 	int			(*ndo_get_vf_config)(struct net_device *dev,
1445 						     int vf,
1446 						     struct ifla_vf_info *ivf);
1447 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1448 							 int vf, int link_state);
1449 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1450 						    int vf,
1451 						    struct ifla_vf_stats
1452 						    *vf_stats);
1453 	int			(*ndo_set_vf_port)(struct net_device *dev,
1454 						   int vf,
1455 						   struct nlattr *port[]);
1456 	int			(*ndo_get_vf_port)(struct net_device *dev,
1457 						   int vf, struct sk_buff *skb);
1458 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1459 						   int vf,
1460 						   struct ifla_vf_guid *node_guid,
1461 						   struct ifla_vf_guid *port_guid);
1462 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1463 						   int vf, u64 guid,
1464 						   int guid_type);
1465 	int			(*ndo_set_vf_rss_query_en)(
1466 						   struct net_device *dev,
1467 						   int vf, bool setting);
1468 	int			(*ndo_setup_tc)(struct net_device *dev,
1469 						enum tc_setup_type type,
1470 						void *type_data);
1471 #if IS_ENABLED(CONFIG_FCOE)
1472 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1473 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1474 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1475 						      u16 xid,
1476 						      struct scatterlist *sgl,
1477 						      unsigned int sgc);
1478 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1479 						     u16 xid);
1480 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1481 						       u16 xid,
1482 						       struct scatterlist *sgl,
1483 						       unsigned int sgc);
1484 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1485 							struct netdev_fcoe_hbainfo *hbainfo);
1486 #endif
1487 
1488 #if IS_ENABLED(CONFIG_LIBFCOE)
1489 #define NETDEV_FCOE_WWNN 0
1490 #define NETDEV_FCOE_WWPN 1
1491 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1492 						    u64 *wwn, int type);
1493 #endif
1494 
1495 #ifdef CONFIG_RFS_ACCEL
1496 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1497 						     const struct sk_buff *skb,
1498 						     u16 rxq_index,
1499 						     u32 flow_id);
1500 #endif
1501 	int			(*ndo_add_slave)(struct net_device *dev,
1502 						 struct net_device *slave_dev,
1503 						 struct netlink_ext_ack *extack);
1504 	int			(*ndo_del_slave)(struct net_device *dev,
1505 						 struct net_device *slave_dev);
1506 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1507 						      struct sk_buff *skb,
1508 						      bool all_slaves);
1509 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1510 							struct sock *sk);
1511 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1512 						    netdev_features_t features);
1513 	int			(*ndo_set_features)(struct net_device *dev,
1514 						    netdev_features_t features);
1515 	int			(*ndo_neigh_construct)(struct net_device *dev,
1516 						       struct neighbour *n);
1517 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1518 						     struct neighbour *n);
1519 
1520 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1521 					       struct nlattr *tb[],
1522 					       struct net_device *dev,
1523 					       const unsigned char *addr,
1524 					       u16 vid,
1525 					       u16 flags,
1526 					       struct netlink_ext_ack *extack);
1527 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1528 					       struct nlattr *tb[],
1529 					       struct net_device *dev,
1530 					       const unsigned char *addr,
1531 					       u16 vid, struct netlink_ext_ack *extack);
1532 	int			(*ndo_fdb_del_bulk)(struct nlmsghdr *nlh,
1533 						    struct net_device *dev,
1534 						    struct netlink_ext_ack *extack);
1535 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1536 						struct netlink_callback *cb,
1537 						struct net_device *dev,
1538 						struct net_device *filter_dev,
1539 						int *idx);
1540 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1541 					       struct nlattr *tb[],
1542 					       struct net_device *dev,
1543 					       const unsigned char *addr,
1544 					       u16 vid, u32 portid, u32 seq,
1545 					       struct netlink_ext_ack *extack);
1546 	int			(*ndo_mdb_add)(struct net_device *dev,
1547 					       struct nlattr *tb[],
1548 					       u16 nlmsg_flags,
1549 					       struct netlink_ext_ack *extack);
1550 	int			(*ndo_mdb_del)(struct net_device *dev,
1551 					       struct nlattr *tb[],
1552 					       struct netlink_ext_ack *extack);
1553 	int			(*ndo_mdb_del_bulk)(struct net_device *dev,
1554 						    struct nlattr *tb[],
1555 						    struct netlink_ext_ack *extack);
1556 	int			(*ndo_mdb_dump)(struct net_device *dev,
1557 						struct sk_buff *skb,
1558 						struct netlink_callback *cb);
1559 	int			(*ndo_mdb_get)(struct net_device *dev,
1560 					       struct nlattr *tb[], u32 portid,
1561 					       u32 seq,
1562 					       struct netlink_ext_ack *extack);
1563 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1564 						      struct nlmsghdr *nlh,
1565 						      u16 flags,
1566 						      struct netlink_ext_ack *extack);
1567 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1568 						      u32 pid, u32 seq,
1569 						      struct net_device *dev,
1570 						      u32 filter_mask,
1571 						      int nlflags);
1572 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1573 						      struct nlmsghdr *nlh,
1574 						      u16 flags);
1575 	int			(*ndo_change_carrier)(struct net_device *dev,
1576 						      bool new_carrier);
1577 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1578 							struct netdev_phys_item_id *ppid);
1579 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1580 							  struct netdev_phys_item_id *ppid);
1581 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1582 							  char *name, size_t len);
1583 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1584 							struct net_device *dev);
1585 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1586 							void *priv);
1587 
1588 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1589 						      int queue_index,
1590 						      u32 maxrate);
1591 	int			(*ndo_get_iflink)(const struct net_device *dev);
1592 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1593 						       struct sk_buff *skb);
1594 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1595 						       int needed_headroom);
1596 	int			(*ndo_bpf)(struct net_device *dev,
1597 					   struct netdev_bpf *bpf);
1598 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1599 						struct xdp_frame **xdp,
1600 						u32 flags);
1601 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1602 							  struct xdp_buff *xdp);
1603 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1604 						  u32 queue_id, u32 flags);
1605 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1606 						  struct ip_tunnel_parm_kern *p,
1607 						  int cmd);
1608 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1609 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1610                                                          struct net_device_path *path);
1611 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1612 						  const struct skb_shared_hwtstamps *hwtstamps,
1613 						  bool cycles);
1614 	int			(*ndo_hwtstamp_get)(struct net_device *dev,
1615 						    struct kernel_hwtstamp_config *kernel_config);
1616 	int			(*ndo_hwtstamp_set)(struct net_device *dev,
1617 						    struct kernel_hwtstamp_config *kernel_config,
1618 						    struct netlink_ext_ack *extack);
1619 
1620 #if IS_ENABLED(CONFIG_NET_SHAPER)
1621 	/**
1622 	 * @net_shaper_ops: Device shaping offload operations
1623 	 * see include/net/net_shapers.h
1624 	 */
1625 	const struct net_shaper_ops *net_shaper_ops;
1626 #endif
1627 };
1628 
1629 /**
1630  * enum netdev_priv_flags - &struct net_device priv_flags
1631  *
1632  * These are the &struct net_device, they are only set internally
1633  * by drivers and used in the kernel. These flags are invisible to
1634  * userspace; this means that the order of these flags can change
1635  * during any kernel release.
1636  *
1637  * You should add bitfield booleans after either net_device::priv_flags
1638  * (hotpath) or ::threaded (slowpath) instead of extending these flags.
1639  *
1640  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1641  * @IFF_EBRIDGE: Ethernet bridging device
1642  * @IFF_BONDING: bonding master or slave
1643  * @IFF_ISATAP: ISATAP interface (RFC4214)
1644  * @IFF_WAN_HDLC: WAN HDLC device
1645  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1646  *	release skb->dst
1647  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1648  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1649  * @IFF_MACVLAN_PORT: device used as macvlan port
1650  * @IFF_BRIDGE_PORT: device used as bridge port
1651  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1652  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1653  * @IFF_UNICAST_FLT: Supports unicast filtering
1654  * @IFF_TEAM_PORT: device used as team port
1655  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1656  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1657  *	change when it's running
1658  * @IFF_MACVLAN: Macvlan device
1659  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1660  *	underlying stacked devices
1661  * @IFF_L3MDEV_MASTER: device is an L3 master device
1662  * @IFF_NO_QUEUE: device can run without qdisc attached
1663  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1664  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1665  * @IFF_TEAM: device is a team device
1666  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1667  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1668  *	entity (i.e. the master device for bridged veth)
1669  * @IFF_MACSEC: device is a MACsec device
1670  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1671  * @IFF_FAILOVER: device is a failover master device
1672  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1673  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1674  * @IFF_NO_ADDRCONF: prevent ipv6 addrconf
1675  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1676  *	skb_headlen(skb) == 0 (data starts from frag0)
1677  */
1678 enum netdev_priv_flags {
1679 	IFF_802_1Q_VLAN			= 1<<0,
1680 	IFF_EBRIDGE			= 1<<1,
1681 	IFF_BONDING			= 1<<2,
1682 	IFF_ISATAP			= 1<<3,
1683 	IFF_WAN_HDLC			= 1<<4,
1684 	IFF_XMIT_DST_RELEASE		= 1<<5,
1685 	IFF_DONT_BRIDGE			= 1<<6,
1686 	IFF_DISABLE_NETPOLL		= 1<<7,
1687 	IFF_MACVLAN_PORT		= 1<<8,
1688 	IFF_BRIDGE_PORT			= 1<<9,
1689 	IFF_OVS_DATAPATH		= 1<<10,
1690 	IFF_TX_SKB_SHARING		= 1<<11,
1691 	IFF_UNICAST_FLT			= 1<<12,
1692 	IFF_TEAM_PORT			= 1<<13,
1693 	IFF_SUPP_NOFCS			= 1<<14,
1694 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1695 	IFF_MACVLAN			= 1<<16,
1696 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1697 	IFF_L3MDEV_MASTER		= 1<<18,
1698 	IFF_NO_QUEUE			= 1<<19,
1699 	IFF_OPENVSWITCH			= 1<<20,
1700 	IFF_L3MDEV_SLAVE		= 1<<21,
1701 	IFF_TEAM			= 1<<22,
1702 	IFF_RXFH_CONFIGURED		= 1<<23,
1703 	IFF_PHONY_HEADROOM		= 1<<24,
1704 	IFF_MACSEC			= 1<<25,
1705 	IFF_NO_RX_HANDLER		= 1<<26,
1706 	IFF_FAILOVER			= 1<<27,
1707 	IFF_FAILOVER_SLAVE		= 1<<28,
1708 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1709 	IFF_NO_ADDRCONF			= BIT_ULL(30),
1710 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1711 };
1712 
1713 /* Specifies the type of the struct net_device::ml_priv pointer */
1714 enum netdev_ml_priv_type {
1715 	ML_PRIV_NONE,
1716 	ML_PRIV_CAN,
1717 };
1718 
1719 enum netdev_stat_type {
1720 	NETDEV_PCPU_STAT_NONE,
1721 	NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */
1722 	NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */
1723 	NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */
1724 };
1725 
1726 enum netdev_reg_state {
1727 	NETREG_UNINITIALIZED = 0,
1728 	NETREG_REGISTERED,	/* completed register_netdevice */
1729 	NETREG_UNREGISTERING,	/* called unregister_netdevice */
1730 	NETREG_UNREGISTERED,	/* completed unregister todo */
1731 	NETREG_RELEASED,	/* called free_netdev */
1732 	NETREG_DUMMY,		/* dummy device for NAPI poll */
1733 };
1734 
1735 /**
1736  *	struct net_device - The DEVICE structure.
1737  *
1738  *	Actually, this whole structure is a big mistake.  It mixes I/O
1739  *	data with strictly "high-level" data, and it has to know about
1740  *	almost every data structure used in the INET module.
1741  *
1742  *	@priv_flags:	flags invisible to userspace defined as bits, see
1743  *			enum netdev_priv_flags for the definitions
1744  *	@lltx:		device supports lockless Tx. Deprecated for real HW
1745  *			drivers. Mainly used by logical interfaces, such as
1746  *			bonding and tunnels
1747  *
1748  *	@name:	This is the first field of the "visible" part of this structure
1749  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1750  *		of the interface.
1751  *
1752  *	@name_node:	Name hashlist node
1753  *	@ifalias:	SNMP alias
1754  *	@mem_end:	Shared memory end
1755  *	@mem_start:	Shared memory start
1756  *	@base_addr:	Device I/O address
1757  *	@irq:		Device IRQ number
1758  *
1759  *	@state:		Generic network queuing layer state, see netdev_state_t
1760  *	@dev_list:	The global list of network devices
1761  *	@napi_list:	List entry used for polling NAPI devices
1762  *	@unreg_list:	List entry  when we are unregistering the
1763  *			device; see the function unregister_netdev
1764  *	@close_list:	List entry used when we are closing the device
1765  *	@ptype_all:     Device-specific packet handlers for all protocols
1766  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1767  *
1768  *	@adj_list:	Directly linked devices, like slaves for bonding
1769  *	@features:	Currently active device features
1770  *	@hw_features:	User-changeable features
1771  *
1772  *	@wanted_features:	User-requested features
1773  *	@vlan_features:		Mask of features inheritable by VLAN devices
1774  *
1775  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1776  *				This field indicates what encapsulation
1777  *				offloads the hardware is capable of doing,
1778  *				and drivers will need to set them appropriately.
1779  *
1780  *	@mpls_features:	Mask of features inheritable by MPLS
1781  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1782  *
1783  *	@ifindex:	interface index
1784  *	@group:		The group the device belongs to
1785  *
1786  *	@stats:		Statistics struct, which was left as a legacy, use
1787  *			rtnl_link_stats64 instead
1788  *
1789  *	@core_stats:	core networking counters,
1790  *			do not use this in drivers
1791  *	@carrier_up_count:	Number of times the carrier has been up
1792  *	@carrier_down_count:	Number of times the carrier has been down
1793  *
1794  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1795  *				instead of ioctl,
1796  *				see <net/iw_handler.h> for details.
1797  *
1798  *	@netdev_ops:	Includes several pointers to callbacks,
1799  *			if one wants to override the ndo_*() functions
1800  *	@xdp_metadata_ops:	Includes pointers to XDP metadata callbacks.
1801  *	@xsk_tx_metadata_ops:	Includes pointers to AF_XDP TX metadata callbacks.
1802  *	@ethtool_ops:	Management operations
1803  *	@l3mdev_ops:	Layer 3 master device operations
1804  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1805  *			discovery handling. Necessary for e.g. 6LoWPAN.
1806  *	@xfrmdev_ops:	Transformation offload operations
1807  *	@tlsdev_ops:	Transport Layer Security offload operations
1808  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1809  *			of Layer 2 headers.
1810  *
1811  *	@flags:		Interface flags (a la BSD)
1812  *	@xdp_features:	XDP capability supported by the device
1813  *	@gflags:	Global flags ( kept as legacy )
1814  *	@priv_len:	Size of the ->priv flexible array
1815  *	@priv:		Flexible array containing private data
1816  *	@operstate:	RFC2863 operstate
1817  *	@link_mode:	Mapping policy to operstate
1818  *	@if_port:	Selectable AUI, TP, ...
1819  *	@dma:		DMA channel
1820  *	@mtu:		Interface MTU value
1821  *	@min_mtu:	Interface Minimum MTU value
1822  *	@max_mtu:	Interface Maximum MTU value
1823  *	@type:		Interface hardware type
1824  *	@hard_header_len: Maximum hardware header length.
1825  *	@min_header_len:  Minimum hardware header length
1826  *
1827  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1828  *			  cases can this be guaranteed
1829  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1830  *			  cases can this be guaranteed. Some cases also use
1831  *			  LL_MAX_HEADER instead to allocate the skb
1832  *
1833  *	interface address info:
1834  *
1835  * 	@perm_addr:		Permanent hw address
1836  * 	@addr_assign_type:	Hw address assignment type
1837  * 	@addr_len:		Hardware address length
1838  *	@upper_level:		Maximum depth level of upper devices.
1839  *	@lower_level:		Maximum depth level of lower devices.
1840  *	@neigh_priv_len:	Used in neigh_alloc()
1841  * 	@dev_id:		Used to differentiate devices that share
1842  * 				the same link layer address
1843  * 	@dev_port:		Used to differentiate devices that share
1844  * 				the same function
1845  *	@addr_list_lock:	XXX: need comments on this one
1846  *	@name_assign_type:	network interface name assignment type
1847  *	@uc_promisc:		Counter that indicates promiscuous mode
1848  *				has been enabled due to the need to listen to
1849  *				additional unicast addresses in a device that
1850  *				does not implement ndo_set_rx_mode()
1851  *	@uc:			unicast mac addresses
1852  *	@mc:			multicast mac addresses
1853  *	@dev_addrs:		list of device hw addresses
1854  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1855  *	@promiscuity:		Number of times the NIC is told to work in
1856  *				promiscuous mode; if it becomes 0 the NIC will
1857  *				exit promiscuous mode
1858  *	@allmulti:		Counter, enables or disables allmulticast mode
1859  *
1860  *	@vlan_info:	VLAN info
1861  *	@dsa_ptr:	dsa specific data
1862  *	@tipc_ptr:	TIPC specific data
1863  *	@atalk_ptr:	AppleTalk link
1864  *	@ip_ptr:	IPv4 specific data
1865  *	@ip6_ptr:	IPv6 specific data
1866  *	@ax25_ptr:	AX.25 specific data
1867  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1868  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1869  *			 device struct
1870  *	@mpls_ptr:	mpls_dev struct pointer
1871  *	@mctp_ptr:	MCTP specific data
1872  *
1873  *	@dev_addr:	Hw address (before bcast,
1874  *			because most packets are unicast)
1875  *
1876  *	@_rx:			Array of RX queues
1877  *	@num_rx_queues:		Number of RX queues
1878  *				allocated at register_netdev() time
1879  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1880  *	@xdp_prog:		XDP sockets filter program pointer
1881  *
1882  *	@rx_handler:		handler for received packets
1883  *	@rx_handler_data: 	XXX: need comments on this one
1884  *	@tcx_ingress:		BPF & clsact qdisc specific data for ingress processing
1885  *	@ingress_queue:		XXX: need comments on this one
1886  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1887  *	@broadcast:		hw bcast address
1888  *
1889  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1890  *			indexed by RX queue number. Assigned by driver.
1891  *			This must only be set if the ndo_rx_flow_steer
1892  *			operation is defined
1893  *	@index_hlist:		Device index hash chain
1894  *
1895  *	@_tx:			Array of TX queues
1896  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1897  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1898  *	@qdisc:			Root qdisc from userspace point of view
1899  *	@tx_queue_len:		Max frames per queue allowed
1900  *	@tx_global_lock: 	XXX: need comments on this one
1901  *	@xdp_bulkq:		XDP device bulk queue
1902  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1903  *
1904  *	@xps_maps:	XXX: need comments on this one
1905  *	@tcx_egress:		BPF & clsact qdisc specific data for egress processing
1906  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1907  *	@qdisc_hash:		qdisc hash table
1908  *	@watchdog_timeo:	Represents the timeout that is used by
1909  *				the watchdog (see dev_watchdog())
1910  *	@watchdog_timer:	List of timers
1911  *
1912  *	@proto_down_reason:	reason a netdev interface is held down
1913  *	@pcpu_refcnt:		Number of references to this device
1914  *	@dev_refcnt:		Number of references to this device
1915  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1916  *	@todo_list:		Delayed register/unregister
1917  *	@link_watch_list:	XXX: need comments on this one
1918  *
1919  *	@reg_state:		Register/unregister state machine
1920  *	@dismantle:		Device is going to be freed
1921  *	@rtnl_link_state:	This enum represents the phases of creating
1922  *				a new link
1923  *
1924  *	@needs_free_netdev:	Should unregister perform free_netdev?
1925  *	@priv_destructor:	Called from unregister
1926  *	@npinfo:		XXX: need comments on this one
1927  * 	@nd_net:		Network namespace this network device is inside
1928  *
1929  * 	@ml_priv:	Mid-layer private
1930  *	@ml_priv_type:  Mid-layer private type
1931  *
1932  *	@pcpu_stat_type:	Type of device statistics which the core should
1933  *				allocate/free: none, lstats, tstats, dstats. none
1934  *				means the driver is handling statistics allocation/
1935  *				freeing internally.
1936  *	@lstats:		Loopback statistics: packets, bytes
1937  *	@tstats:		Tunnel statistics: RX/TX packets, RX/TX bytes
1938  *	@dstats:		Dummy statistics: RX/TX/drop packets, RX/TX bytes
1939  *
1940  *	@garp_port:	GARP
1941  *	@mrp_port:	MRP
1942  *
1943  *	@dm_private:	Drop monitor private
1944  *
1945  *	@dev:		Class/net/name entry
1946  *	@sysfs_groups:	Space for optional device, statistics and wireless
1947  *			sysfs groups
1948  *
1949  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1950  *	@rtnl_link_ops:	Rtnl_link_ops
1951  *	@stat_ops:	Optional ops for queue-aware statistics
1952  *	@queue_mgmt_ops:	Optional ops for queue management
1953  *
1954  *	@gso_max_size:	Maximum size of generic segmentation offload
1955  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
1956  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1957  *			NIC for GSO
1958  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
1959  * 	@gso_ipv4_max_size:	Maximum size of generic segmentation offload,
1960  * 				for IPv4.
1961  *
1962  *	@dcbnl_ops:	Data Center Bridging netlink ops
1963  *	@num_tc:	Number of traffic classes in the net device
1964  *	@tc_to_txq:	XXX: need comments on this one
1965  *	@prio_tc_map:	XXX: need comments on this one
1966  *
1967  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1968  *
1969  *	@priomap:	XXX: need comments on this one
1970  *	@link_topo:	Physical link topology tracking attached PHYs
1971  *	@phydev:	Physical device may attach itself
1972  *			for hardware timestamping
1973  *	@sfp_bus:	attached &struct sfp_bus structure.
1974  *
1975  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1976  *
1977  *	@proto_down:	protocol port state information can be sent to the
1978  *			switch driver and used to set the phys state of the
1979  *			switch port.
1980  *
1981  *	@threaded:	napi threaded mode is enabled
1982  *
1983  *	@see_all_hwtstamp_requests: device wants to see calls to
1984  *			ndo_hwtstamp_set() for all timestamp requests
1985  *			regardless of source, even if those aren't
1986  *			HWTSTAMP_SOURCE_NETDEV
1987  *	@change_proto_down: device supports setting carrier via IFLA_PROTO_DOWN
1988  *	@netns_local: interface can't change network namespaces
1989  *	@fcoe_mtu:	device supports maximum FCoE MTU, 2158 bytes
1990  *
1991  *	@net_notifier_list:	List of per-net netdev notifier block
1992  *				that follow this device when it is moved
1993  *				to another network namespace.
1994  *
1995  *	@macsec_ops:    MACsec offloading ops
1996  *
1997  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1998  *				offload capabilities of the device
1999  *	@udp_tunnel_nic:	UDP tunnel offload state
2000  *	@ethtool:	ethtool related state
2001  *	@xdp_state:		stores info on attached XDP BPF programs
2002  *
2003  *	@nested_level:	Used as a parameter of spin_lock_nested() of
2004  *			dev->addr_list_lock.
2005  *	@unlink_list:	As netif_addr_lock() can be called recursively,
2006  *			keep a list of interfaces to be deleted.
2007  *	@gro_max_size:	Maximum size of aggregated packet in generic
2008  *			receive offload (GRO)
2009  * 	@gro_ipv4_max_size:	Maximum size of aggregated packet in generic
2010  * 				receive offload (GRO), for IPv4.
2011  *	@xdp_zc_max_segs:	Maximum number of segments supported by AF_XDP
2012  *				zero copy driver
2013  *
2014  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
2015  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
2016  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
2017  *	@dev_registered_tracker:	tracker for reference held while
2018  *					registered
2019  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
2020  *
2021  *	@devlink_port:	Pointer to related devlink port structure.
2022  *			Assigned by a driver before netdev registration using
2023  *			SET_NETDEV_DEVLINK_PORT macro. This pointer is static
2024  *			during the time netdevice is registered.
2025  *
2026  *	@dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem,
2027  *		   where the clock is recovered.
2028  *
2029  *	@max_pacing_offload_horizon: max EDT offload horizon in nsec.
2030  *	@napi_config: An array of napi_config structures containing per-NAPI
2031  *		      settings.
2032  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
2033  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
2034  *				allow to avoid NIC hard IRQ, on busy queues.
2035  *
2036  *	@neighbours:	List heads pointing to this device's neighbours'
2037  *			dev_list, one per address-family.
2038  *
2039  *	FIXME: cleanup struct net_device such that network protocol info
2040  *	moves out.
2041  */
2042 
2043 struct net_device {
2044 	/* Cacheline organization can be found documented in
2045 	 * Documentation/networking/net_cachelines/net_device.rst.
2046 	 * Please update the document when adding new fields.
2047 	 */
2048 
2049 	/* TX read-mostly hotpath */
2050 	__cacheline_group_begin(net_device_read_tx);
2051 	struct_group(priv_flags_fast,
2052 		unsigned long		priv_flags:32;
2053 		unsigned long		lltx:1;
2054 	);
2055 	const struct net_device_ops *netdev_ops;
2056 	const struct header_ops *header_ops;
2057 	struct netdev_queue	*_tx;
2058 	netdev_features_t	gso_partial_features;
2059 	unsigned int		real_num_tx_queues;
2060 	unsigned int		gso_max_size;
2061 	unsigned int		gso_ipv4_max_size;
2062 	u16			gso_max_segs;
2063 	s16			num_tc;
2064 	/* Note : dev->mtu is often read without holding a lock.
2065 	 * Writers usually hold RTNL.
2066 	 * It is recommended to use READ_ONCE() to annotate the reads,
2067 	 * and to use WRITE_ONCE() to annotate the writes.
2068 	 */
2069 	unsigned int		mtu;
2070 	unsigned short		needed_headroom;
2071 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2072 #ifdef CONFIG_XPS
2073 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2074 #endif
2075 #ifdef CONFIG_NETFILTER_EGRESS
2076 	struct nf_hook_entries __rcu *nf_hooks_egress;
2077 #endif
2078 #ifdef CONFIG_NET_XGRESS
2079 	struct bpf_mprog_entry __rcu *tcx_egress;
2080 #endif
2081 	__cacheline_group_end(net_device_read_tx);
2082 
2083 	/* TXRX read-mostly hotpath */
2084 	__cacheline_group_begin(net_device_read_txrx);
2085 	union {
2086 		struct pcpu_lstats __percpu		*lstats;
2087 		struct pcpu_sw_netstats __percpu	*tstats;
2088 		struct pcpu_dstats __percpu		*dstats;
2089 	};
2090 	unsigned long		state;
2091 	unsigned int		flags;
2092 	unsigned short		hard_header_len;
2093 	netdev_features_t	features;
2094 	struct inet6_dev __rcu	*ip6_ptr;
2095 	__cacheline_group_end(net_device_read_txrx);
2096 
2097 	/* RX read-mostly hotpath */
2098 	__cacheline_group_begin(net_device_read_rx);
2099 	struct bpf_prog __rcu	*xdp_prog;
2100 	struct list_head	ptype_specific;
2101 	int			ifindex;
2102 	unsigned int		real_num_rx_queues;
2103 	struct netdev_rx_queue	*_rx;
2104 	unsigned int		gro_max_size;
2105 	unsigned int		gro_ipv4_max_size;
2106 	rx_handler_func_t __rcu	*rx_handler;
2107 	void __rcu		*rx_handler_data;
2108 	possible_net_t			nd_net;
2109 #ifdef CONFIG_NETPOLL
2110 	struct netpoll_info __rcu	*npinfo;
2111 #endif
2112 #ifdef CONFIG_NET_XGRESS
2113 	struct bpf_mprog_entry __rcu *tcx_ingress;
2114 #endif
2115 	__cacheline_group_end(net_device_read_rx);
2116 
2117 	char			name[IFNAMSIZ];
2118 	struct netdev_name_node	*name_node;
2119 	struct dev_ifalias	__rcu *ifalias;
2120 	/*
2121 	 *	I/O specific fields
2122 	 *	FIXME: Merge these and struct ifmap into one
2123 	 */
2124 	unsigned long		mem_end;
2125 	unsigned long		mem_start;
2126 	unsigned long		base_addr;
2127 
2128 	/*
2129 	 *	Some hardware also needs these fields (state,dev_list,
2130 	 *	napi_list,unreg_list,close_list) but they are not
2131 	 *	part of the usual set specified in Space.c.
2132 	 */
2133 
2134 
2135 	struct list_head	dev_list;
2136 	struct list_head	napi_list;
2137 	struct list_head	unreg_list;
2138 	struct list_head	close_list;
2139 	struct list_head	ptype_all;
2140 
2141 	struct {
2142 		struct list_head upper;
2143 		struct list_head lower;
2144 	} adj_list;
2145 
2146 	/* Read-mostly cache-line for fast-path access */
2147 	xdp_features_t		xdp_features;
2148 	const struct xdp_metadata_ops *xdp_metadata_ops;
2149 	const struct xsk_tx_metadata_ops *xsk_tx_metadata_ops;
2150 	unsigned short		gflags;
2151 
2152 	unsigned short		needed_tailroom;
2153 
2154 	netdev_features_t	hw_features;
2155 	netdev_features_t	wanted_features;
2156 	netdev_features_t	vlan_features;
2157 	netdev_features_t	hw_enc_features;
2158 	netdev_features_t	mpls_features;
2159 
2160 	unsigned int		min_mtu;
2161 	unsigned int		max_mtu;
2162 	unsigned short		type;
2163 	unsigned char		min_header_len;
2164 	unsigned char		name_assign_type;
2165 
2166 	int			group;
2167 
2168 	struct net_device_stats	stats; /* not used by modern drivers */
2169 
2170 	struct net_device_core_stats __percpu *core_stats;
2171 
2172 	/* Stats to monitor link on/off, flapping */
2173 	atomic_t		carrier_up_count;
2174 	atomic_t		carrier_down_count;
2175 
2176 #ifdef CONFIG_WIRELESS_EXT
2177 	const struct iw_handler_def *wireless_handlers;
2178 #endif
2179 	const struct ethtool_ops *ethtool_ops;
2180 #ifdef CONFIG_NET_L3_MASTER_DEV
2181 	const struct l3mdev_ops	*l3mdev_ops;
2182 #endif
2183 #if IS_ENABLED(CONFIG_IPV6)
2184 	const struct ndisc_ops *ndisc_ops;
2185 #endif
2186 
2187 #ifdef CONFIG_XFRM_OFFLOAD
2188 	const struct xfrmdev_ops *xfrmdev_ops;
2189 #endif
2190 
2191 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2192 	const struct tlsdev_ops *tlsdev_ops;
2193 #endif
2194 
2195 	unsigned int		operstate;
2196 	unsigned char		link_mode;
2197 
2198 	unsigned char		if_port;
2199 	unsigned char		dma;
2200 
2201 	/* Interface address info. */
2202 	unsigned char		perm_addr[MAX_ADDR_LEN];
2203 	unsigned char		addr_assign_type;
2204 	unsigned char		addr_len;
2205 	unsigned char		upper_level;
2206 	unsigned char		lower_level;
2207 
2208 	unsigned short		neigh_priv_len;
2209 	unsigned short          dev_id;
2210 	unsigned short          dev_port;
2211 	int			irq;
2212 	u32			priv_len;
2213 
2214 	spinlock_t		addr_list_lock;
2215 
2216 	struct netdev_hw_addr_list	uc;
2217 	struct netdev_hw_addr_list	mc;
2218 	struct netdev_hw_addr_list	dev_addrs;
2219 
2220 #ifdef CONFIG_SYSFS
2221 	struct kset		*queues_kset;
2222 #endif
2223 #ifdef CONFIG_LOCKDEP
2224 	struct list_head	unlink_list;
2225 #endif
2226 	unsigned int		promiscuity;
2227 	unsigned int		allmulti;
2228 	bool			uc_promisc;
2229 #ifdef CONFIG_LOCKDEP
2230 	unsigned char		nested_level;
2231 #endif
2232 
2233 
2234 	/* Protocol-specific pointers */
2235 	struct in_device __rcu	*ip_ptr;
2236 	/** @fib_nh_head: nexthops associated with this netdev */
2237 	struct hlist_head	fib_nh_head;
2238 
2239 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2240 	struct vlan_info __rcu	*vlan_info;
2241 #endif
2242 #if IS_ENABLED(CONFIG_NET_DSA)
2243 	struct dsa_port		*dsa_ptr;
2244 #endif
2245 #if IS_ENABLED(CONFIG_TIPC)
2246 	struct tipc_bearer __rcu *tipc_ptr;
2247 #endif
2248 #if IS_ENABLED(CONFIG_ATALK)
2249 	void 			*atalk_ptr;
2250 #endif
2251 #if IS_ENABLED(CONFIG_AX25)
2252 	void			*ax25_ptr;
2253 #endif
2254 #if IS_ENABLED(CONFIG_CFG80211)
2255 	struct wireless_dev	*ieee80211_ptr;
2256 #endif
2257 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2258 	struct wpan_dev		*ieee802154_ptr;
2259 #endif
2260 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2261 	struct mpls_dev __rcu	*mpls_ptr;
2262 #endif
2263 #if IS_ENABLED(CONFIG_MCTP)
2264 	struct mctp_dev __rcu	*mctp_ptr;
2265 #endif
2266 
2267 /*
2268  * Cache lines mostly used on receive path (including eth_type_trans())
2269  */
2270 	/* Interface address info used in eth_type_trans() */
2271 	const unsigned char	*dev_addr;
2272 
2273 	unsigned int		num_rx_queues;
2274 #define GRO_LEGACY_MAX_SIZE	65536u
2275 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2276  * and shinfo->gso_segs is a 16bit field.
2277  */
2278 #define GRO_MAX_SIZE		(8 * 65535u)
2279 	unsigned int		xdp_zc_max_segs;
2280 	struct netdev_queue __rcu *ingress_queue;
2281 #ifdef CONFIG_NETFILTER_INGRESS
2282 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2283 #endif
2284 
2285 	unsigned char		broadcast[MAX_ADDR_LEN];
2286 #ifdef CONFIG_RFS_ACCEL
2287 	struct cpu_rmap		*rx_cpu_rmap;
2288 #endif
2289 	struct hlist_node	index_hlist;
2290 
2291 /*
2292  * Cache lines mostly used on transmit path
2293  */
2294 	unsigned int		num_tx_queues;
2295 	struct Qdisc __rcu	*qdisc;
2296 	unsigned int		tx_queue_len;
2297 	spinlock_t		tx_global_lock;
2298 
2299 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2300 
2301 #ifdef CONFIG_NET_SCHED
2302 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2303 #endif
2304 	/* These may be needed for future network-power-down code. */
2305 	struct timer_list	watchdog_timer;
2306 	int			watchdog_timeo;
2307 
2308 	u32                     proto_down_reason;
2309 
2310 	struct list_head	todo_list;
2311 
2312 #ifdef CONFIG_PCPU_DEV_REFCNT
2313 	int __percpu		*pcpu_refcnt;
2314 #else
2315 	refcount_t		dev_refcnt;
2316 #endif
2317 	struct ref_tracker_dir	refcnt_tracker;
2318 
2319 	struct list_head	link_watch_list;
2320 
2321 	u8 reg_state;
2322 
2323 	bool dismantle;
2324 
2325 	enum {
2326 		RTNL_LINK_INITIALIZED,
2327 		RTNL_LINK_INITIALIZING,
2328 	} rtnl_link_state:16;
2329 
2330 	bool needs_free_netdev;
2331 	void (*priv_destructor)(struct net_device *dev);
2332 
2333 	/* mid-layer private */
2334 	void				*ml_priv;
2335 	enum netdev_ml_priv_type	ml_priv_type;
2336 
2337 	enum netdev_stat_type		pcpu_stat_type:8;
2338 
2339 #if IS_ENABLED(CONFIG_GARP)
2340 	struct garp_port __rcu	*garp_port;
2341 #endif
2342 #if IS_ENABLED(CONFIG_MRP)
2343 	struct mrp_port __rcu	*mrp_port;
2344 #endif
2345 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2346 	struct dm_hw_stat_delta __rcu *dm_private;
2347 #endif
2348 	struct device		dev;
2349 	const struct attribute_group *sysfs_groups[4];
2350 	const struct attribute_group *sysfs_rx_queue_group;
2351 
2352 	const struct rtnl_link_ops *rtnl_link_ops;
2353 
2354 	const struct netdev_stat_ops *stat_ops;
2355 
2356 	const struct netdev_queue_mgmt_ops *queue_mgmt_ops;
2357 
2358 	/* for setting kernel sock attribute on TCP connection setup */
2359 #define GSO_MAX_SEGS		65535u
2360 #define GSO_LEGACY_MAX_SIZE	65536u
2361 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2362  * and shinfo->gso_segs is a 16bit field.
2363  */
2364 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2365 
2366 #define TSO_LEGACY_MAX_SIZE	65536
2367 #define TSO_MAX_SIZE		UINT_MAX
2368 	unsigned int		tso_max_size;
2369 #define TSO_MAX_SEGS		U16_MAX
2370 	u16			tso_max_segs;
2371 
2372 #ifdef CONFIG_DCB
2373 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2374 #endif
2375 	u8			prio_tc_map[TC_BITMASK + 1];
2376 
2377 #if IS_ENABLED(CONFIG_FCOE)
2378 	unsigned int		fcoe_ddp_xid;
2379 #endif
2380 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2381 	struct netprio_map __rcu *priomap;
2382 #endif
2383 	struct phy_link_topology	*link_topo;
2384 	struct phy_device	*phydev;
2385 	struct sfp_bus		*sfp_bus;
2386 	struct lock_class_key	*qdisc_tx_busylock;
2387 	bool			proto_down;
2388 	bool			threaded;
2389 
2390 	/* priv_flags_slow, ungrouped to save space */
2391 	unsigned long		see_all_hwtstamp_requests:1;
2392 	unsigned long		change_proto_down:1;
2393 	unsigned long		netns_local:1;
2394 	unsigned long		fcoe_mtu:1;
2395 
2396 	struct list_head	net_notifier_list;
2397 
2398 #if IS_ENABLED(CONFIG_MACSEC)
2399 	/* MACsec management functions */
2400 	const struct macsec_ops *macsec_ops;
2401 #endif
2402 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2403 	struct udp_tunnel_nic	*udp_tunnel_nic;
2404 
2405 	struct ethtool_netdev_state *ethtool;
2406 
2407 	/* protected by rtnl_lock */
2408 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2409 
2410 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2411 	netdevice_tracker	linkwatch_dev_tracker;
2412 	netdevice_tracker	watchdog_dev_tracker;
2413 	netdevice_tracker	dev_registered_tracker;
2414 	struct rtnl_hw_stats64	*offload_xstats_l3;
2415 
2416 	struct devlink_port	*devlink_port;
2417 
2418 #if IS_ENABLED(CONFIG_DPLL)
2419 	struct dpll_pin	__rcu	*dpll_pin;
2420 #endif
2421 #if IS_ENABLED(CONFIG_PAGE_POOL)
2422 	/** @page_pools: page pools created for this netdevice */
2423 	struct hlist_head	page_pools;
2424 #endif
2425 
2426 	/** @irq_moder: dim parameters used if IS_ENABLED(CONFIG_DIMLIB). */
2427 	struct dim_irq_moder	*irq_moder;
2428 
2429 	u64			max_pacing_offload_horizon;
2430 	struct napi_config	*napi_config;
2431 	unsigned long		gro_flush_timeout;
2432 	u32			napi_defer_hard_irqs;
2433 
2434 	/**
2435 	 * @lock: protects @net_shaper_hierarchy, feel free to use for other
2436 	 * netdev-scope protection. Ordering: take after rtnl_lock.
2437 	 */
2438 	struct mutex		lock;
2439 
2440 #if IS_ENABLED(CONFIG_NET_SHAPER)
2441 	/**
2442 	 * @net_shaper_hierarchy: data tracking the current shaper status
2443 	 *  see include/net/net_shapers.h
2444 	 */
2445 	struct net_shaper_hierarchy *net_shaper_hierarchy;
2446 #endif
2447 
2448 	struct hlist_head neighbours[NEIGH_NR_TABLES];
2449 
2450 	u8			priv[] ____cacheline_aligned
2451 				       __counted_by(priv_len);
2452 } ____cacheline_aligned;
2453 #define to_net_dev(d) container_of(d, struct net_device, dev)
2454 
2455 /*
2456  * Driver should use this to assign devlink port instance to a netdevice
2457  * before it registers the netdevice. Therefore devlink_port is static
2458  * during the netdev lifetime after it is registered.
2459  */
2460 #define SET_NETDEV_DEVLINK_PORT(dev, port)			\
2461 ({								\
2462 	WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED);	\
2463 	((dev)->devlink_port = (port));				\
2464 })
2465 
2466 static inline bool netif_elide_gro(const struct net_device *dev)
2467 {
2468 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2469 		return true;
2470 	return false;
2471 }
2472 
2473 #define	NETDEV_ALIGN		32
2474 
2475 static inline
2476 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2477 {
2478 	return dev->prio_tc_map[prio & TC_BITMASK];
2479 }
2480 
2481 static inline
2482 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2483 {
2484 	if (tc >= dev->num_tc)
2485 		return -EINVAL;
2486 
2487 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2488 	return 0;
2489 }
2490 
2491 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2492 void netdev_reset_tc(struct net_device *dev);
2493 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2494 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2495 
2496 static inline
2497 int netdev_get_num_tc(struct net_device *dev)
2498 {
2499 	return dev->num_tc;
2500 }
2501 
2502 static inline void net_prefetch(void *p)
2503 {
2504 	prefetch(p);
2505 #if L1_CACHE_BYTES < 128
2506 	prefetch((u8 *)p + L1_CACHE_BYTES);
2507 #endif
2508 }
2509 
2510 static inline void net_prefetchw(void *p)
2511 {
2512 	prefetchw(p);
2513 #if L1_CACHE_BYTES < 128
2514 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2515 #endif
2516 }
2517 
2518 void netdev_unbind_sb_channel(struct net_device *dev,
2519 			      struct net_device *sb_dev);
2520 int netdev_bind_sb_channel_queue(struct net_device *dev,
2521 				 struct net_device *sb_dev,
2522 				 u8 tc, u16 count, u16 offset);
2523 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2524 static inline int netdev_get_sb_channel(struct net_device *dev)
2525 {
2526 	return max_t(int, -dev->num_tc, 0);
2527 }
2528 
2529 static inline
2530 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2531 					 unsigned int index)
2532 {
2533 	DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues);
2534 	return &dev->_tx[index];
2535 }
2536 
2537 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2538 						    const struct sk_buff *skb)
2539 {
2540 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2541 }
2542 
2543 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2544 					    void (*f)(struct net_device *,
2545 						      struct netdev_queue *,
2546 						      void *),
2547 					    void *arg)
2548 {
2549 	unsigned int i;
2550 
2551 	for (i = 0; i < dev->num_tx_queues; i++)
2552 		f(dev, &dev->_tx[i], arg);
2553 }
2554 
2555 #define netdev_lockdep_set_classes(dev)				\
2556 {								\
2557 	static struct lock_class_key qdisc_tx_busylock_key;	\
2558 	static struct lock_class_key qdisc_xmit_lock_key;	\
2559 	static struct lock_class_key dev_addr_list_lock_key;	\
2560 	unsigned int i;						\
2561 								\
2562 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2563 	lockdep_set_class(&(dev)->addr_list_lock,		\
2564 			  &dev_addr_list_lock_key);		\
2565 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2566 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2567 				  &qdisc_xmit_lock_key);	\
2568 }
2569 
2570 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2571 		     struct net_device *sb_dev);
2572 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2573 					 struct sk_buff *skb,
2574 					 struct net_device *sb_dev);
2575 
2576 /* returns the headroom that the master device needs to take in account
2577  * when forwarding to this dev
2578  */
2579 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2580 {
2581 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2582 }
2583 
2584 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2585 {
2586 	if (dev->netdev_ops->ndo_set_rx_headroom)
2587 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2588 }
2589 
2590 /* set the device rx headroom to the dev's default */
2591 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2592 {
2593 	netdev_set_rx_headroom(dev, -1);
2594 }
2595 
2596 static inline void *netdev_get_ml_priv(struct net_device *dev,
2597 				       enum netdev_ml_priv_type type)
2598 {
2599 	if (dev->ml_priv_type != type)
2600 		return NULL;
2601 
2602 	return dev->ml_priv;
2603 }
2604 
2605 static inline void netdev_set_ml_priv(struct net_device *dev,
2606 				      void *ml_priv,
2607 				      enum netdev_ml_priv_type type)
2608 {
2609 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2610 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2611 	     dev->ml_priv_type, type);
2612 	WARN(!dev->ml_priv_type && dev->ml_priv,
2613 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2614 
2615 	dev->ml_priv = ml_priv;
2616 	dev->ml_priv_type = type;
2617 }
2618 
2619 /*
2620  * Net namespace inlines
2621  */
2622 static inline
2623 struct net *dev_net(const struct net_device *dev)
2624 {
2625 	return read_pnet(&dev->nd_net);
2626 }
2627 
2628 static inline
2629 void dev_net_set(struct net_device *dev, struct net *net)
2630 {
2631 	write_pnet(&dev->nd_net, net);
2632 }
2633 
2634 /**
2635  *	netdev_priv - access network device private data
2636  *	@dev: network device
2637  *
2638  * Get network device private data
2639  */
2640 static inline void *netdev_priv(const struct net_device *dev)
2641 {
2642 	return (void *)dev->priv;
2643 }
2644 
2645 /* Set the sysfs physical device reference for the network logical device
2646  * if set prior to registration will cause a symlink during initialization.
2647  */
2648 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2649 
2650 /* Set the sysfs device type for the network logical device to allow
2651  * fine-grained identification of different network device types. For
2652  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2653  */
2654 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2655 
2656 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
2657 			  enum netdev_queue_type type,
2658 			  struct napi_struct *napi);
2659 
2660 static inline void netif_napi_set_irq(struct napi_struct *napi, int irq)
2661 {
2662 	napi->irq = irq;
2663 }
2664 
2665 /* Default NAPI poll() weight
2666  * Device drivers are strongly advised to not use bigger value
2667  */
2668 #define NAPI_POLL_WEIGHT 64
2669 
2670 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2671 			   int (*poll)(struct napi_struct *, int), int weight);
2672 
2673 /**
2674  * netif_napi_add() - initialize a NAPI context
2675  * @dev:  network device
2676  * @napi: NAPI context
2677  * @poll: polling function
2678  *
2679  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2680  * *any* of the other NAPI-related functions.
2681  */
2682 static inline void
2683 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2684 	       int (*poll)(struct napi_struct *, int))
2685 {
2686 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2687 }
2688 
2689 static inline void
2690 netif_napi_add_tx_weight(struct net_device *dev,
2691 			 struct napi_struct *napi,
2692 			 int (*poll)(struct napi_struct *, int),
2693 			 int weight)
2694 {
2695 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2696 	netif_napi_add_weight(dev, napi, poll, weight);
2697 }
2698 
2699 /**
2700  * netif_napi_add_config - initialize a NAPI context with persistent config
2701  * @dev: network device
2702  * @napi: NAPI context
2703  * @poll: polling function
2704  * @index: the NAPI index
2705  */
2706 static inline void
2707 netif_napi_add_config(struct net_device *dev, struct napi_struct *napi,
2708 		      int (*poll)(struct napi_struct *, int), int index)
2709 {
2710 	napi->index = index;
2711 	napi->config = &dev->napi_config[index];
2712 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2713 }
2714 
2715 /**
2716  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2717  * @dev:  network device
2718  * @napi: NAPI context
2719  * @poll: polling function
2720  *
2721  * This variant of netif_napi_add() should be used from drivers using NAPI
2722  * to exclusively poll a TX queue.
2723  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2724  */
2725 static inline void netif_napi_add_tx(struct net_device *dev,
2726 				     struct napi_struct *napi,
2727 				     int (*poll)(struct napi_struct *, int))
2728 {
2729 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2730 }
2731 
2732 /**
2733  *  __netif_napi_del - remove a NAPI context
2734  *  @napi: NAPI context
2735  *
2736  * Warning: caller must observe RCU grace period before freeing memory
2737  * containing @napi. Drivers might want to call this helper to combine
2738  * all the needed RCU grace periods into a single one.
2739  */
2740 void __netif_napi_del(struct napi_struct *napi);
2741 
2742 /**
2743  *  netif_napi_del - remove a NAPI context
2744  *  @napi: NAPI context
2745  *
2746  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2747  */
2748 static inline void netif_napi_del(struct napi_struct *napi)
2749 {
2750 	__netif_napi_del(napi);
2751 	synchronize_net();
2752 }
2753 
2754 struct packet_type {
2755 	__be16			type;	/* This is really htons(ether_type). */
2756 	bool			ignore_outgoing;
2757 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2758 	netdevice_tracker	dev_tracker;
2759 	int			(*func) (struct sk_buff *,
2760 					 struct net_device *,
2761 					 struct packet_type *,
2762 					 struct net_device *);
2763 	void			(*list_func) (struct list_head *,
2764 					      struct packet_type *,
2765 					      struct net_device *);
2766 	bool			(*id_match)(struct packet_type *ptype,
2767 					    struct sock *sk);
2768 	struct net		*af_packet_net;
2769 	void			*af_packet_priv;
2770 	struct list_head	list;
2771 };
2772 
2773 struct offload_callbacks {
2774 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2775 						netdev_features_t features);
2776 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2777 						struct sk_buff *skb);
2778 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2779 };
2780 
2781 struct packet_offload {
2782 	__be16			 type;	/* This is really htons(ether_type). */
2783 	u16			 priority;
2784 	struct offload_callbacks callbacks;
2785 	struct list_head	 list;
2786 };
2787 
2788 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2789 struct pcpu_sw_netstats {
2790 	u64_stats_t		rx_packets;
2791 	u64_stats_t		rx_bytes;
2792 	u64_stats_t		tx_packets;
2793 	u64_stats_t		tx_bytes;
2794 	struct u64_stats_sync   syncp;
2795 } __aligned(4 * sizeof(u64));
2796 
2797 struct pcpu_dstats {
2798 	u64_stats_t		rx_packets;
2799 	u64_stats_t		rx_bytes;
2800 	u64_stats_t		rx_drops;
2801 	u64_stats_t		tx_packets;
2802 	u64_stats_t		tx_bytes;
2803 	u64_stats_t		tx_drops;
2804 	struct u64_stats_sync	syncp;
2805 } __aligned(8 * sizeof(u64));
2806 
2807 struct pcpu_lstats {
2808 	u64_stats_t packets;
2809 	u64_stats_t bytes;
2810 	struct u64_stats_sync syncp;
2811 } __aligned(2 * sizeof(u64));
2812 
2813 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2814 
2815 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2816 {
2817 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2818 
2819 	u64_stats_update_begin(&tstats->syncp);
2820 	u64_stats_add(&tstats->rx_bytes, len);
2821 	u64_stats_inc(&tstats->rx_packets);
2822 	u64_stats_update_end(&tstats->syncp);
2823 }
2824 
2825 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2826 					  unsigned int packets,
2827 					  unsigned int len)
2828 {
2829 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2830 
2831 	u64_stats_update_begin(&tstats->syncp);
2832 	u64_stats_add(&tstats->tx_bytes, len);
2833 	u64_stats_add(&tstats->tx_packets, packets);
2834 	u64_stats_update_end(&tstats->syncp);
2835 }
2836 
2837 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2838 {
2839 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2840 
2841 	u64_stats_update_begin(&lstats->syncp);
2842 	u64_stats_add(&lstats->bytes, len);
2843 	u64_stats_inc(&lstats->packets);
2844 	u64_stats_update_end(&lstats->syncp);
2845 }
2846 
2847 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2848 ({									\
2849 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2850 	if (pcpu_stats)	{						\
2851 		int __cpu;						\
2852 		for_each_possible_cpu(__cpu) {				\
2853 			typeof(type) *stat;				\
2854 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2855 			u64_stats_init(&stat->syncp);			\
2856 		}							\
2857 	}								\
2858 	pcpu_stats;							\
2859 })
2860 
2861 #define netdev_alloc_pcpu_stats(type)					\
2862 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2863 
2864 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2865 ({									\
2866 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2867 	if (pcpu_stats) {						\
2868 		int __cpu;						\
2869 		for_each_possible_cpu(__cpu) {				\
2870 			typeof(type) *stat;				\
2871 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2872 			u64_stats_init(&stat->syncp);			\
2873 		}							\
2874 	}								\
2875 	pcpu_stats;							\
2876 })
2877 
2878 enum netdev_lag_tx_type {
2879 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2880 	NETDEV_LAG_TX_TYPE_RANDOM,
2881 	NETDEV_LAG_TX_TYPE_BROADCAST,
2882 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2883 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2884 	NETDEV_LAG_TX_TYPE_HASH,
2885 };
2886 
2887 enum netdev_lag_hash {
2888 	NETDEV_LAG_HASH_NONE,
2889 	NETDEV_LAG_HASH_L2,
2890 	NETDEV_LAG_HASH_L34,
2891 	NETDEV_LAG_HASH_L23,
2892 	NETDEV_LAG_HASH_E23,
2893 	NETDEV_LAG_HASH_E34,
2894 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2895 	NETDEV_LAG_HASH_UNKNOWN,
2896 };
2897 
2898 struct netdev_lag_upper_info {
2899 	enum netdev_lag_tx_type tx_type;
2900 	enum netdev_lag_hash hash_type;
2901 };
2902 
2903 struct netdev_lag_lower_state_info {
2904 	u8 link_up : 1,
2905 	   tx_enabled : 1;
2906 };
2907 
2908 #include <linux/notifier.h>
2909 
2910 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2911  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2912  * adding new types.
2913  */
2914 enum netdev_cmd {
2915 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2916 	NETDEV_DOWN,
2917 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2918 				   detected a hardware crash and restarted
2919 				   - we can use this eg to kick tcp sessions
2920 				   once done */
2921 	NETDEV_CHANGE,		/* Notify device state change */
2922 	NETDEV_REGISTER,
2923 	NETDEV_UNREGISTER,
2924 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2925 	NETDEV_CHANGEADDR,	/* notify after the address change */
2926 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2927 	NETDEV_GOING_DOWN,
2928 	NETDEV_CHANGENAME,
2929 	NETDEV_FEAT_CHANGE,
2930 	NETDEV_BONDING_FAILOVER,
2931 	NETDEV_PRE_UP,
2932 	NETDEV_PRE_TYPE_CHANGE,
2933 	NETDEV_POST_TYPE_CHANGE,
2934 	NETDEV_POST_INIT,
2935 	NETDEV_PRE_UNINIT,
2936 	NETDEV_RELEASE,
2937 	NETDEV_NOTIFY_PEERS,
2938 	NETDEV_JOIN,
2939 	NETDEV_CHANGEUPPER,
2940 	NETDEV_RESEND_IGMP,
2941 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2942 	NETDEV_CHANGEINFODATA,
2943 	NETDEV_BONDING_INFO,
2944 	NETDEV_PRECHANGEUPPER,
2945 	NETDEV_CHANGELOWERSTATE,
2946 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2947 	NETDEV_UDP_TUNNEL_DROP_INFO,
2948 	NETDEV_CHANGE_TX_QUEUE_LEN,
2949 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2950 	NETDEV_CVLAN_FILTER_DROP_INFO,
2951 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2952 	NETDEV_SVLAN_FILTER_DROP_INFO,
2953 	NETDEV_OFFLOAD_XSTATS_ENABLE,
2954 	NETDEV_OFFLOAD_XSTATS_DISABLE,
2955 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2956 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2957 	NETDEV_XDP_FEAT_CHANGE,
2958 };
2959 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2960 
2961 int register_netdevice_notifier(struct notifier_block *nb);
2962 int unregister_netdevice_notifier(struct notifier_block *nb);
2963 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2964 int unregister_netdevice_notifier_net(struct net *net,
2965 				      struct notifier_block *nb);
2966 int register_netdevice_notifier_dev_net(struct net_device *dev,
2967 					struct notifier_block *nb,
2968 					struct netdev_net_notifier *nn);
2969 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2970 					  struct notifier_block *nb,
2971 					  struct netdev_net_notifier *nn);
2972 
2973 struct netdev_notifier_info {
2974 	struct net_device	*dev;
2975 	struct netlink_ext_ack	*extack;
2976 };
2977 
2978 struct netdev_notifier_info_ext {
2979 	struct netdev_notifier_info info; /* must be first */
2980 	union {
2981 		u32 mtu;
2982 	} ext;
2983 };
2984 
2985 struct netdev_notifier_change_info {
2986 	struct netdev_notifier_info info; /* must be first */
2987 	unsigned int flags_changed;
2988 };
2989 
2990 struct netdev_notifier_changeupper_info {
2991 	struct netdev_notifier_info info; /* must be first */
2992 	struct net_device *upper_dev; /* new upper dev */
2993 	bool master; /* is upper dev master */
2994 	bool linking; /* is the notification for link or unlink */
2995 	void *upper_info; /* upper dev info */
2996 };
2997 
2998 struct netdev_notifier_changelowerstate_info {
2999 	struct netdev_notifier_info info; /* must be first */
3000 	void *lower_state_info; /* is lower dev state */
3001 };
3002 
3003 struct netdev_notifier_pre_changeaddr_info {
3004 	struct netdev_notifier_info info; /* must be first */
3005 	const unsigned char *dev_addr;
3006 };
3007 
3008 enum netdev_offload_xstats_type {
3009 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
3010 };
3011 
3012 struct netdev_notifier_offload_xstats_info {
3013 	struct netdev_notifier_info info; /* must be first */
3014 	enum netdev_offload_xstats_type type;
3015 
3016 	union {
3017 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
3018 		struct netdev_notifier_offload_xstats_rd *report_delta;
3019 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
3020 		struct netdev_notifier_offload_xstats_ru *report_used;
3021 	};
3022 };
3023 
3024 int netdev_offload_xstats_enable(struct net_device *dev,
3025 				 enum netdev_offload_xstats_type type,
3026 				 struct netlink_ext_ack *extack);
3027 int netdev_offload_xstats_disable(struct net_device *dev,
3028 				  enum netdev_offload_xstats_type type);
3029 bool netdev_offload_xstats_enabled(const struct net_device *dev,
3030 				   enum netdev_offload_xstats_type type);
3031 int netdev_offload_xstats_get(struct net_device *dev,
3032 			      enum netdev_offload_xstats_type type,
3033 			      struct rtnl_hw_stats64 *stats, bool *used,
3034 			      struct netlink_ext_ack *extack);
3035 void
3036 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
3037 				   const struct rtnl_hw_stats64 *stats);
3038 void
3039 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
3040 void netdev_offload_xstats_push_delta(struct net_device *dev,
3041 				      enum netdev_offload_xstats_type type,
3042 				      const struct rtnl_hw_stats64 *stats);
3043 
3044 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
3045 					     struct net_device *dev)
3046 {
3047 	info->dev = dev;
3048 	info->extack = NULL;
3049 }
3050 
3051 static inline struct net_device *
3052 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
3053 {
3054 	return info->dev;
3055 }
3056 
3057 static inline struct netlink_ext_ack *
3058 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
3059 {
3060 	return info->extack;
3061 }
3062 
3063 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
3064 int call_netdevice_notifiers_info(unsigned long val,
3065 				  struct netdev_notifier_info *info);
3066 
3067 #define for_each_netdev(net, d)		\
3068 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
3069 #define for_each_netdev_reverse(net, d)	\
3070 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
3071 #define for_each_netdev_rcu(net, d)		\
3072 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
3073 #define for_each_netdev_safe(net, d, n)	\
3074 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
3075 #define for_each_netdev_continue(net, d)		\
3076 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
3077 #define for_each_netdev_continue_reverse(net, d)		\
3078 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
3079 						     dev_list)
3080 #define for_each_netdev_continue_rcu(net, d)		\
3081 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
3082 #define for_each_netdev_in_bond_rcu(bond, slave)	\
3083 		for_each_netdev_rcu(&init_net, slave)	\
3084 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
3085 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
3086 
3087 #define for_each_netdev_dump(net, d, ifindex)				\
3088 	for (; (d = xa_find(&(net)->dev_by_index, &ifindex,		\
3089 			    ULONG_MAX, XA_PRESENT)); ifindex++)
3090 
3091 static inline struct net_device *next_net_device(struct net_device *dev)
3092 {
3093 	struct list_head *lh;
3094 	struct net *net;
3095 
3096 	net = dev_net(dev);
3097 	lh = dev->dev_list.next;
3098 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3099 }
3100 
3101 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
3102 {
3103 	struct list_head *lh;
3104 	struct net *net;
3105 
3106 	net = dev_net(dev);
3107 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
3108 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3109 }
3110 
3111 static inline struct net_device *first_net_device(struct net *net)
3112 {
3113 	return list_empty(&net->dev_base_head) ? NULL :
3114 		net_device_entry(net->dev_base_head.next);
3115 }
3116 
3117 static inline struct net_device *first_net_device_rcu(struct net *net)
3118 {
3119 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
3120 
3121 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3122 }
3123 
3124 int netdev_boot_setup_check(struct net_device *dev);
3125 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3126 				       const char *hwaddr);
3127 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
3128 void dev_add_pack(struct packet_type *pt);
3129 void dev_remove_pack(struct packet_type *pt);
3130 void __dev_remove_pack(struct packet_type *pt);
3131 void dev_add_offload(struct packet_offload *po);
3132 void dev_remove_offload(struct packet_offload *po);
3133 
3134 int dev_get_iflink(const struct net_device *dev);
3135 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3136 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3137 			  struct net_device_path_stack *stack);
3138 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3139 				      unsigned short mask);
3140 struct net_device *dev_get_by_name(struct net *net, const char *name);
3141 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3142 struct net_device *__dev_get_by_name(struct net *net, const char *name);
3143 bool netdev_name_in_use(struct net *net, const char *name);
3144 int dev_alloc_name(struct net_device *dev, const char *name);
3145 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3146 void dev_close(struct net_device *dev);
3147 void dev_close_many(struct list_head *head, bool unlink);
3148 void dev_disable_lro(struct net_device *dev);
3149 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3150 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3151 		     struct net_device *sb_dev);
3152 
3153 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3154 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3155 
3156 static inline int dev_queue_xmit(struct sk_buff *skb)
3157 {
3158 	return __dev_queue_xmit(skb, NULL);
3159 }
3160 
3161 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3162 				       struct net_device *sb_dev)
3163 {
3164 	return __dev_queue_xmit(skb, sb_dev);
3165 }
3166 
3167 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3168 {
3169 	int ret;
3170 
3171 	ret = __dev_direct_xmit(skb, queue_id);
3172 	if (!dev_xmit_complete(ret))
3173 		kfree_skb(skb);
3174 	return ret;
3175 }
3176 
3177 int register_netdevice(struct net_device *dev);
3178 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3179 void unregister_netdevice_many(struct list_head *head);
3180 static inline void unregister_netdevice(struct net_device *dev)
3181 {
3182 	unregister_netdevice_queue(dev, NULL);
3183 }
3184 
3185 int netdev_refcnt_read(const struct net_device *dev);
3186 void free_netdev(struct net_device *dev);
3187 void init_dummy_netdev(struct net_device *dev);
3188 
3189 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3190 					 struct sk_buff *skb,
3191 					 bool all_slaves);
3192 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3193 					    struct sock *sk);
3194 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3195 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3196 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
3197 				       netdevice_tracker *tracker, gfp_t gfp);
3198 struct net_device *netdev_get_by_name(struct net *net, const char *name,
3199 				      netdevice_tracker *tracker, gfp_t gfp);
3200 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3201 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3202 void netdev_copy_name(struct net_device *dev, char *name);
3203 
3204 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3205 				  unsigned short type,
3206 				  const void *daddr, const void *saddr,
3207 				  unsigned int len)
3208 {
3209 	if (!dev->header_ops || !dev->header_ops->create)
3210 		return 0;
3211 
3212 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3213 }
3214 
3215 static inline int dev_parse_header(const struct sk_buff *skb,
3216 				   unsigned char *haddr)
3217 {
3218 	const struct net_device *dev = skb->dev;
3219 
3220 	if (!dev->header_ops || !dev->header_ops->parse)
3221 		return 0;
3222 	return dev->header_ops->parse(skb, haddr);
3223 }
3224 
3225 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3226 {
3227 	const struct net_device *dev = skb->dev;
3228 
3229 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3230 		return 0;
3231 	return dev->header_ops->parse_protocol(skb);
3232 }
3233 
3234 /* ll_header must have at least hard_header_len allocated */
3235 static inline bool dev_validate_header(const struct net_device *dev,
3236 				       char *ll_header, int len)
3237 {
3238 	if (likely(len >= dev->hard_header_len))
3239 		return true;
3240 	if (len < dev->min_header_len)
3241 		return false;
3242 
3243 	if (capable(CAP_SYS_RAWIO)) {
3244 		memset(ll_header + len, 0, dev->hard_header_len - len);
3245 		return true;
3246 	}
3247 
3248 	if (dev->header_ops && dev->header_ops->validate)
3249 		return dev->header_ops->validate(ll_header, len);
3250 
3251 	return false;
3252 }
3253 
3254 static inline bool dev_has_header(const struct net_device *dev)
3255 {
3256 	return dev->header_ops && dev->header_ops->create;
3257 }
3258 
3259 /*
3260  * Incoming packets are placed on per-CPU queues
3261  */
3262 struct softnet_data {
3263 	struct list_head	poll_list;
3264 	struct sk_buff_head	process_queue;
3265 	local_lock_t		process_queue_bh_lock;
3266 
3267 	/* stats */
3268 	unsigned int		processed;
3269 	unsigned int		time_squeeze;
3270 #ifdef CONFIG_RPS
3271 	struct softnet_data	*rps_ipi_list;
3272 #endif
3273 
3274 	unsigned int		received_rps;
3275 	bool			in_net_rx_action;
3276 	bool			in_napi_threaded_poll;
3277 
3278 #ifdef CONFIG_NET_FLOW_LIMIT
3279 	struct sd_flow_limit __rcu *flow_limit;
3280 #endif
3281 	struct Qdisc		*output_queue;
3282 	struct Qdisc		**output_queue_tailp;
3283 	struct sk_buff		*completion_queue;
3284 #ifdef CONFIG_XFRM_OFFLOAD
3285 	struct sk_buff_head	xfrm_backlog;
3286 #endif
3287 	/* written and read only by owning cpu: */
3288 	struct netdev_xmit xmit;
3289 #ifdef CONFIG_RPS
3290 	/* input_queue_head should be written by cpu owning this struct,
3291 	 * and only read by other cpus. Worth using a cache line.
3292 	 */
3293 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3294 
3295 	/* Elements below can be accessed between CPUs for RPS/RFS */
3296 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3297 	struct softnet_data	*rps_ipi_next;
3298 	unsigned int		cpu;
3299 	unsigned int		input_queue_tail;
3300 #endif
3301 	struct sk_buff_head	input_pkt_queue;
3302 	struct napi_struct	backlog;
3303 
3304 	atomic_t		dropped ____cacheline_aligned_in_smp;
3305 
3306 	/* Another possibly contended cache line */
3307 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3308 	int			defer_count;
3309 	int			defer_ipi_scheduled;
3310 	struct sk_buff		*defer_list;
3311 	call_single_data_t	defer_csd;
3312 };
3313 
3314 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3315 
3316 #ifndef CONFIG_PREEMPT_RT
3317 static inline int dev_recursion_level(void)
3318 {
3319 	return this_cpu_read(softnet_data.xmit.recursion);
3320 }
3321 #else
3322 static inline int dev_recursion_level(void)
3323 {
3324 	return current->net_xmit.recursion;
3325 }
3326 
3327 #endif
3328 
3329 void __netif_schedule(struct Qdisc *q);
3330 void netif_schedule_queue(struct netdev_queue *txq);
3331 
3332 static inline void netif_tx_schedule_all(struct net_device *dev)
3333 {
3334 	unsigned int i;
3335 
3336 	for (i = 0; i < dev->num_tx_queues; i++)
3337 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3338 }
3339 
3340 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3341 {
3342 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3343 }
3344 
3345 /**
3346  *	netif_start_queue - allow transmit
3347  *	@dev: network device
3348  *
3349  *	Allow upper layers to call the device hard_start_xmit routine.
3350  */
3351 static inline void netif_start_queue(struct net_device *dev)
3352 {
3353 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3354 }
3355 
3356 static inline void netif_tx_start_all_queues(struct net_device *dev)
3357 {
3358 	unsigned int i;
3359 
3360 	for (i = 0; i < dev->num_tx_queues; i++) {
3361 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3362 		netif_tx_start_queue(txq);
3363 	}
3364 }
3365 
3366 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3367 
3368 /**
3369  *	netif_wake_queue - restart transmit
3370  *	@dev: network device
3371  *
3372  *	Allow upper layers to call the device hard_start_xmit routine.
3373  *	Used for flow control when transmit resources are available.
3374  */
3375 static inline void netif_wake_queue(struct net_device *dev)
3376 {
3377 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3378 }
3379 
3380 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3381 {
3382 	unsigned int i;
3383 
3384 	for (i = 0; i < dev->num_tx_queues; i++) {
3385 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3386 		netif_tx_wake_queue(txq);
3387 	}
3388 }
3389 
3390 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3391 {
3392 	/* Paired with READ_ONCE() from dev_watchdog() */
3393 	WRITE_ONCE(dev_queue->trans_start, jiffies);
3394 
3395 	/* This barrier is paired with smp_mb() from dev_watchdog() */
3396 	smp_mb__before_atomic();
3397 
3398 	/* Must be an atomic op see netif_txq_try_stop() */
3399 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3400 }
3401 
3402 /**
3403  *	netif_stop_queue - stop transmitted packets
3404  *	@dev: network device
3405  *
3406  *	Stop upper layers calling the device hard_start_xmit routine.
3407  *	Used for flow control when transmit resources are unavailable.
3408  */
3409 static inline void netif_stop_queue(struct net_device *dev)
3410 {
3411 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3412 }
3413 
3414 void netif_tx_stop_all_queues(struct net_device *dev);
3415 
3416 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3417 {
3418 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3419 }
3420 
3421 /**
3422  *	netif_queue_stopped - test if transmit queue is flowblocked
3423  *	@dev: network device
3424  *
3425  *	Test if transmit queue on device is currently unable to send.
3426  */
3427 static inline bool netif_queue_stopped(const struct net_device *dev)
3428 {
3429 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3430 }
3431 
3432 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3433 {
3434 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3435 }
3436 
3437 static inline bool
3438 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3439 {
3440 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3441 }
3442 
3443 static inline bool
3444 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3445 {
3446 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3447 }
3448 
3449 /**
3450  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3451  *	@dev_queue: pointer to transmit queue
3452  *	@min_limit: dql minimum limit
3453  *
3454  * Forces xmit_more() to return true until the minimum threshold
3455  * defined by @min_limit is reached (or until the tx queue is
3456  * empty). Warning: to be use with care, misuse will impact the
3457  * latency.
3458  */
3459 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3460 						  unsigned int min_limit)
3461 {
3462 #ifdef CONFIG_BQL
3463 	dev_queue->dql.min_limit = min_limit;
3464 #endif
3465 }
3466 
3467 static inline int netdev_queue_dql_avail(const struct netdev_queue *txq)
3468 {
3469 #ifdef CONFIG_BQL
3470 	/* Non-BQL migrated drivers will return 0, too. */
3471 	return dql_avail(&txq->dql);
3472 #else
3473 	return 0;
3474 #endif
3475 }
3476 
3477 /**
3478  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3479  *	@dev_queue: pointer to transmit queue
3480  *
3481  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3482  * to give appropriate hint to the CPU.
3483  */
3484 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3485 {
3486 #ifdef CONFIG_BQL
3487 	prefetchw(&dev_queue->dql.num_queued);
3488 #endif
3489 }
3490 
3491 /**
3492  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3493  *	@dev_queue: pointer to transmit queue
3494  *
3495  * BQL enabled drivers might use this helper in their TX completion path,
3496  * to give appropriate hint to the CPU.
3497  */
3498 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3499 {
3500 #ifdef CONFIG_BQL
3501 	prefetchw(&dev_queue->dql.limit);
3502 #endif
3503 }
3504 
3505 /**
3506  *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3507  *	@dev_queue: network device queue
3508  *	@bytes: number of bytes queued to the device queue
3509  *
3510  *	Report the number of bytes queued for sending/completion to the network
3511  *	device hardware queue. @bytes should be a good approximation and should
3512  *	exactly match netdev_completed_queue() @bytes.
3513  *	This is typically called once per packet, from ndo_start_xmit().
3514  */
3515 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3516 					unsigned int bytes)
3517 {
3518 #ifdef CONFIG_BQL
3519 	dql_queued(&dev_queue->dql, bytes);
3520 
3521 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3522 		return;
3523 
3524 	/* Paired with READ_ONCE() from dev_watchdog() */
3525 	WRITE_ONCE(dev_queue->trans_start, jiffies);
3526 
3527 	/* This barrier is paired with smp_mb() from dev_watchdog() */
3528 	smp_mb__before_atomic();
3529 
3530 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3531 
3532 	/*
3533 	 * The XOFF flag must be set before checking the dql_avail below,
3534 	 * because in netdev_tx_completed_queue we update the dql_completed
3535 	 * before checking the XOFF flag.
3536 	 */
3537 	smp_mb__after_atomic();
3538 
3539 	/* check again in case another CPU has just made room avail */
3540 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3541 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3542 #endif
3543 }
3544 
3545 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3546  * that they should not test BQL status themselves.
3547  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3548  * skb of a batch.
3549  * Returns true if the doorbell must be used to kick the NIC.
3550  */
3551 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3552 					  unsigned int bytes,
3553 					  bool xmit_more)
3554 {
3555 	if (xmit_more) {
3556 #ifdef CONFIG_BQL
3557 		dql_queued(&dev_queue->dql, bytes);
3558 #endif
3559 		return netif_tx_queue_stopped(dev_queue);
3560 	}
3561 	netdev_tx_sent_queue(dev_queue, bytes);
3562 	return true;
3563 }
3564 
3565 /**
3566  *	netdev_sent_queue - report the number of bytes queued to hardware
3567  *	@dev: network device
3568  *	@bytes: number of bytes queued to the hardware device queue
3569  *
3570  *	Report the number of bytes queued for sending/completion to the network
3571  *	device hardware queue#0. @bytes should be a good approximation and should
3572  *	exactly match netdev_completed_queue() @bytes.
3573  *	This is typically called once per packet, from ndo_start_xmit().
3574  */
3575 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3576 {
3577 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3578 }
3579 
3580 static inline bool __netdev_sent_queue(struct net_device *dev,
3581 				       unsigned int bytes,
3582 				       bool xmit_more)
3583 {
3584 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3585 				      xmit_more);
3586 }
3587 
3588 /**
3589  *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3590  *	@dev_queue: network device queue
3591  *	@pkts: number of packets (currently ignored)
3592  *	@bytes: number of bytes dequeued from the device queue
3593  *
3594  *	Must be called at most once per TX completion round (and not per
3595  *	individual packet), so that BQL can adjust its limits appropriately.
3596  */
3597 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3598 					     unsigned int pkts, unsigned int bytes)
3599 {
3600 #ifdef CONFIG_BQL
3601 	if (unlikely(!bytes))
3602 		return;
3603 
3604 	dql_completed(&dev_queue->dql, bytes);
3605 
3606 	/*
3607 	 * Without the memory barrier there is a small possibility that
3608 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3609 	 * be stopped forever
3610 	 */
3611 	smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */
3612 
3613 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3614 		return;
3615 
3616 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3617 		netif_schedule_queue(dev_queue);
3618 #endif
3619 }
3620 
3621 /**
3622  * 	netdev_completed_queue - report bytes and packets completed by device
3623  * 	@dev: network device
3624  * 	@pkts: actual number of packets sent over the medium
3625  * 	@bytes: actual number of bytes sent over the medium
3626  *
3627  * 	Report the number of bytes and packets transmitted by the network device
3628  * 	hardware queue over the physical medium, @bytes must exactly match the
3629  * 	@bytes amount passed to netdev_sent_queue()
3630  */
3631 static inline void netdev_completed_queue(struct net_device *dev,
3632 					  unsigned int pkts, unsigned int bytes)
3633 {
3634 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3635 }
3636 
3637 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3638 {
3639 #ifdef CONFIG_BQL
3640 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3641 	dql_reset(&q->dql);
3642 #endif
3643 }
3644 
3645 /**
3646  * netdev_tx_reset_subqueue - reset the BQL stats and state of a netdev queue
3647  * @dev: network device
3648  * @qid: stack index of the queue to reset
3649  */
3650 static inline void netdev_tx_reset_subqueue(const struct net_device *dev,
3651 					    u32 qid)
3652 {
3653 	netdev_tx_reset_queue(netdev_get_tx_queue(dev, qid));
3654 }
3655 
3656 /**
3657  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3658  * 	@dev_queue: network device
3659  *
3660  * 	Reset the bytes and packet count of a network device and clear the
3661  * 	software flow control OFF bit for this network device
3662  */
3663 static inline void netdev_reset_queue(struct net_device *dev_queue)
3664 {
3665 	netdev_tx_reset_subqueue(dev_queue, 0);
3666 }
3667 
3668 /**
3669  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3670  * 	@dev: network device
3671  * 	@queue_index: given tx queue index
3672  *
3673  * 	Returns 0 if given tx queue index >= number of device tx queues,
3674  * 	otherwise returns the originally passed tx queue index.
3675  */
3676 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3677 {
3678 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3679 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3680 				     dev->name, queue_index,
3681 				     dev->real_num_tx_queues);
3682 		return 0;
3683 	}
3684 
3685 	return queue_index;
3686 }
3687 
3688 /**
3689  *	netif_running - test if up
3690  *	@dev: network device
3691  *
3692  *	Test if the device has been brought up.
3693  */
3694 static inline bool netif_running(const struct net_device *dev)
3695 {
3696 	return test_bit(__LINK_STATE_START, &dev->state);
3697 }
3698 
3699 /*
3700  * Routines to manage the subqueues on a device.  We only need start,
3701  * stop, and a check if it's stopped.  All other device management is
3702  * done at the overall netdevice level.
3703  * Also test the device if we're multiqueue.
3704  */
3705 
3706 /**
3707  *	netif_start_subqueue - allow sending packets on subqueue
3708  *	@dev: network device
3709  *	@queue_index: sub queue index
3710  *
3711  * Start individual transmit queue of a device with multiple transmit queues.
3712  */
3713 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3714 {
3715 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3716 
3717 	netif_tx_start_queue(txq);
3718 }
3719 
3720 /**
3721  *	netif_stop_subqueue - stop sending packets on subqueue
3722  *	@dev: network device
3723  *	@queue_index: sub queue index
3724  *
3725  * Stop individual transmit queue of a device with multiple transmit queues.
3726  */
3727 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3728 {
3729 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3730 	netif_tx_stop_queue(txq);
3731 }
3732 
3733 /**
3734  *	__netif_subqueue_stopped - test status of subqueue
3735  *	@dev: network device
3736  *	@queue_index: sub queue index
3737  *
3738  * Check individual transmit queue of a device with multiple transmit queues.
3739  */
3740 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3741 					    u16 queue_index)
3742 {
3743 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3744 
3745 	return netif_tx_queue_stopped(txq);
3746 }
3747 
3748 /**
3749  *	netif_subqueue_stopped - test status of subqueue
3750  *	@dev: network device
3751  *	@skb: sub queue buffer pointer
3752  *
3753  * Check individual transmit queue of a device with multiple transmit queues.
3754  */
3755 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3756 					  struct sk_buff *skb)
3757 {
3758 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3759 }
3760 
3761 /**
3762  *	netif_wake_subqueue - allow sending packets on subqueue
3763  *	@dev: network device
3764  *	@queue_index: sub queue index
3765  *
3766  * Resume individual transmit queue of a device with multiple transmit queues.
3767  */
3768 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3769 {
3770 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3771 
3772 	netif_tx_wake_queue(txq);
3773 }
3774 
3775 #ifdef CONFIG_XPS
3776 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3777 			u16 index);
3778 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3779 			  u16 index, enum xps_map_type type);
3780 
3781 /**
3782  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3783  *	@j: CPU/Rx queue index
3784  *	@mask: bitmask of all cpus/rx queues
3785  *	@nr_bits: number of bits in the bitmask
3786  *
3787  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3788  */
3789 static inline bool netif_attr_test_mask(unsigned long j,
3790 					const unsigned long *mask,
3791 					unsigned int nr_bits)
3792 {
3793 	cpu_max_bits_warn(j, nr_bits);
3794 	return test_bit(j, mask);
3795 }
3796 
3797 /**
3798  *	netif_attr_test_online - Test for online CPU/Rx queue
3799  *	@j: CPU/Rx queue index
3800  *	@online_mask: bitmask for CPUs/Rx queues that are online
3801  *	@nr_bits: number of bits in the bitmask
3802  *
3803  * Returns true if a CPU/Rx queue is online.
3804  */
3805 static inline bool netif_attr_test_online(unsigned long j,
3806 					  const unsigned long *online_mask,
3807 					  unsigned int nr_bits)
3808 {
3809 	cpu_max_bits_warn(j, nr_bits);
3810 
3811 	if (online_mask)
3812 		return test_bit(j, online_mask);
3813 
3814 	return (j < nr_bits);
3815 }
3816 
3817 /**
3818  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3819  *	@n: CPU/Rx queue index
3820  *	@srcp: the cpumask/Rx queue mask pointer
3821  *	@nr_bits: number of bits in the bitmask
3822  *
3823  * Returns >= nr_bits if no further CPUs/Rx queues set.
3824  */
3825 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3826 					       unsigned int nr_bits)
3827 {
3828 	/* -1 is a legal arg here. */
3829 	if (n != -1)
3830 		cpu_max_bits_warn(n, nr_bits);
3831 
3832 	if (srcp)
3833 		return find_next_bit(srcp, nr_bits, n + 1);
3834 
3835 	return n + 1;
3836 }
3837 
3838 /**
3839  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3840  *	@n: CPU/Rx queue index
3841  *	@src1p: the first CPUs/Rx queues mask pointer
3842  *	@src2p: the second CPUs/Rx queues mask pointer
3843  *	@nr_bits: number of bits in the bitmask
3844  *
3845  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3846  */
3847 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3848 					  const unsigned long *src2p,
3849 					  unsigned int nr_bits)
3850 {
3851 	/* -1 is a legal arg here. */
3852 	if (n != -1)
3853 		cpu_max_bits_warn(n, nr_bits);
3854 
3855 	if (src1p && src2p)
3856 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3857 	else if (src1p)
3858 		return find_next_bit(src1p, nr_bits, n + 1);
3859 	else if (src2p)
3860 		return find_next_bit(src2p, nr_bits, n + 1);
3861 
3862 	return n + 1;
3863 }
3864 #else
3865 static inline int netif_set_xps_queue(struct net_device *dev,
3866 				      const struct cpumask *mask,
3867 				      u16 index)
3868 {
3869 	return 0;
3870 }
3871 
3872 static inline int __netif_set_xps_queue(struct net_device *dev,
3873 					const unsigned long *mask,
3874 					u16 index, enum xps_map_type type)
3875 {
3876 	return 0;
3877 }
3878 #endif
3879 
3880 /**
3881  *	netif_is_multiqueue - test if device has multiple transmit queues
3882  *	@dev: network device
3883  *
3884  * Check if device has multiple transmit queues
3885  */
3886 static inline bool netif_is_multiqueue(const struct net_device *dev)
3887 {
3888 	return dev->num_tx_queues > 1;
3889 }
3890 
3891 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3892 
3893 #ifdef CONFIG_SYSFS
3894 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3895 #else
3896 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3897 						unsigned int rxqs)
3898 {
3899 	dev->real_num_rx_queues = rxqs;
3900 	return 0;
3901 }
3902 #endif
3903 int netif_set_real_num_queues(struct net_device *dev,
3904 			      unsigned int txq, unsigned int rxq);
3905 
3906 int netif_get_num_default_rss_queues(void);
3907 
3908 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3909 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3910 
3911 /*
3912  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3913  * interrupt context or with hardware interrupts being disabled.
3914  * (in_hardirq() || irqs_disabled())
3915  *
3916  * We provide four helpers that can be used in following contexts :
3917  *
3918  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3919  *  replacing kfree_skb(skb)
3920  *
3921  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3922  *  Typically used in place of consume_skb(skb) in TX completion path
3923  *
3924  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3925  *  replacing kfree_skb(skb)
3926  *
3927  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3928  *  and consumed a packet. Used in place of consume_skb(skb)
3929  */
3930 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3931 {
3932 	dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3933 }
3934 
3935 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3936 {
3937 	dev_kfree_skb_irq_reason(skb, SKB_CONSUMED);
3938 }
3939 
3940 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3941 {
3942 	dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3943 }
3944 
3945 static inline void dev_consume_skb_any(struct sk_buff *skb)
3946 {
3947 	dev_kfree_skb_any_reason(skb, SKB_CONSUMED);
3948 }
3949 
3950 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3951 			     struct bpf_prog *xdp_prog);
3952 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3953 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb);
3954 int netif_rx(struct sk_buff *skb);
3955 int __netif_rx(struct sk_buff *skb);
3956 
3957 int netif_receive_skb(struct sk_buff *skb);
3958 int netif_receive_skb_core(struct sk_buff *skb);
3959 void netif_receive_skb_list_internal(struct list_head *head);
3960 void netif_receive_skb_list(struct list_head *head);
3961 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3962 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3963 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3964 void napi_get_frags_check(struct napi_struct *napi);
3965 gro_result_t napi_gro_frags(struct napi_struct *napi);
3966 
3967 static inline void napi_free_frags(struct napi_struct *napi)
3968 {
3969 	kfree_skb(napi->skb);
3970 	napi->skb = NULL;
3971 }
3972 
3973 bool netdev_is_rx_handler_busy(struct net_device *dev);
3974 int netdev_rx_handler_register(struct net_device *dev,
3975 			       rx_handler_func_t *rx_handler,
3976 			       void *rx_handler_data);
3977 void netdev_rx_handler_unregister(struct net_device *dev);
3978 
3979 bool dev_valid_name(const char *name);
3980 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3981 {
3982 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3983 }
3984 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3985 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3986 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3987 		void __user *data, bool *need_copyout);
3988 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3989 int generic_hwtstamp_get_lower(struct net_device *dev,
3990 			       struct kernel_hwtstamp_config *kernel_cfg);
3991 int generic_hwtstamp_set_lower(struct net_device *dev,
3992 			       struct kernel_hwtstamp_config *kernel_cfg,
3993 			       struct netlink_ext_ack *extack);
3994 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3995 unsigned int dev_get_flags(const struct net_device *);
3996 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3997 		       struct netlink_ext_ack *extack);
3998 int dev_change_flags(struct net_device *dev, unsigned int flags,
3999 		     struct netlink_ext_ack *extack);
4000 int dev_set_alias(struct net_device *, const char *, size_t);
4001 int dev_get_alias(const struct net_device *, char *, size_t);
4002 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
4003 			       const char *pat, int new_ifindex);
4004 static inline
4005 int dev_change_net_namespace(struct net_device *dev, struct net *net,
4006 			     const char *pat)
4007 {
4008 	return __dev_change_net_namespace(dev, net, pat, 0);
4009 }
4010 int __dev_set_mtu(struct net_device *, int);
4011 int dev_set_mtu(struct net_device *, int);
4012 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
4013 			      struct netlink_ext_ack *extack);
4014 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
4015 			struct netlink_ext_ack *extack);
4016 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
4017 			     struct netlink_ext_ack *extack);
4018 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
4019 int dev_get_port_parent_id(struct net_device *dev,
4020 			   struct netdev_phys_item_id *ppid, bool recurse);
4021 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
4022 
4023 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
4024 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
4025 				    struct netdev_queue *txq, int *ret);
4026 
4027 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
4028 u8 dev_xdp_prog_count(struct net_device *dev);
4029 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf);
4030 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
4031 
4032 u32 dev_get_min_mp_channel_count(const struct net_device *dev);
4033 
4034 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4035 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4036 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
4037 bool is_skb_forwardable(const struct net_device *dev,
4038 			const struct sk_buff *skb);
4039 
4040 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
4041 						 const struct sk_buff *skb,
4042 						 const bool check_mtu)
4043 {
4044 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
4045 	unsigned int len;
4046 
4047 	if (!(dev->flags & IFF_UP))
4048 		return false;
4049 
4050 	if (!check_mtu)
4051 		return true;
4052 
4053 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
4054 	if (skb->len <= len)
4055 		return true;
4056 
4057 	/* if TSO is enabled, we don't care about the length as the packet
4058 	 * could be forwarded without being segmented before
4059 	 */
4060 	if (skb_is_gso(skb))
4061 		return true;
4062 
4063 	return false;
4064 }
4065 
4066 void netdev_core_stats_inc(struct net_device *dev, u32 offset);
4067 
4068 #define DEV_CORE_STATS_INC(FIELD)						\
4069 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
4070 {										\
4071 	netdev_core_stats_inc(dev,						\
4072 			offsetof(struct net_device_core_stats, FIELD));		\
4073 }
4074 DEV_CORE_STATS_INC(rx_dropped)
4075 DEV_CORE_STATS_INC(tx_dropped)
4076 DEV_CORE_STATS_INC(rx_nohandler)
4077 DEV_CORE_STATS_INC(rx_otherhost_dropped)
4078 #undef DEV_CORE_STATS_INC
4079 
4080 static __always_inline int ____dev_forward_skb(struct net_device *dev,
4081 					       struct sk_buff *skb,
4082 					       const bool check_mtu)
4083 {
4084 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4085 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4086 		dev_core_stats_rx_dropped_inc(dev);
4087 		kfree_skb(skb);
4088 		return NET_RX_DROP;
4089 	}
4090 
4091 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4092 	skb->priority = 0;
4093 	return 0;
4094 }
4095 
4096 bool dev_nit_active(struct net_device *dev);
4097 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4098 
4099 static inline void __dev_put(struct net_device *dev)
4100 {
4101 	if (dev) {
4102 #ifdef CONFIG_PCPU_DEV_REFCNT
4103 		this_cpu_dec(*dev->pcpu_refcnt);
4104 #else
4105 		refcount_dec(&dev->dev_refcnt);
4106 #endif
4107 	}
4108 }
4109 
4110 static inline void __dev_hold(struct net_device *dev)
4111 {
4112 	if (dev) {
4113 #ifdef CONFIG_PCPU_DEV_REFCNT
4114 		this_cpu_inc(*dev->pcpu_refcnt);
4115 #else
4116 		refcount_inc(&dev->dev_refcnt);
4117 #endif
4118 	}
4119 }
4120 
4121 static inline void __netdev_tracker_alloc(struct net_device *dev,
4122 					  netdevice_tracker *tracker,
4123 					  gfp_t gfp)
4124 {
4125 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4126 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4127 #endif
4128 }
4129 
4130 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4131  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4132  */
4133 static inline void netdev_tracker_alloc(struct net_device *dev,
4134 					netdevice_tracker *tracker, gfp_t gfp)
4135 {
4136 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4137 	refcount_dec(&dev->refcnt_tracker.no_tracker);
4138 	__netdev_tracker_alloc(dev, tracker, gfp);
4139 #endif
4140 }
4141 
4142 static inline void netdev_tracker_free(struct net_device *dev,
4143 				       netdevice_tracker *tracker)
4144 {
4145 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4146 	ref_tracker_free(&dev->refcnt_tracker, tracker);
4147 #endif
4148 }
4149 
4150 static inline void netdev_hold(struct net_device *dev,
4151 			       netdevice_tracker *tracker, gfp_t gfp)
4152 {
4153 	if (dev) {
4154 		__dev_hold(dev);
4155 		__netdev_tracker_alloc(dev, tracker, gfp);
4156 	}
4157 }
4158 
4159 static inline void netdev_put(struct net_device *dev,
4160 			      netdevice_tracker *tracker)
4161 {
4162 	if (dev) {
4163 		netdev_tracker_free(dev, tracker);
4164 		__dev_put(dev);
4165 	}
4166 }
4167 
4168 /**
4169  *	dev_hold - get reference to device
4170  *	@dev: network device
4171  *
4172  * Hold reference to device to keep it from being freed.
4173  * Try using netdev_hold() instead.
4174  */
4175 static inline void dev_hold(struct net_device *dev)
4176 {
4177 	netdev_hold(dev, NULL, GFP_ATOMIC);
4178 }
4179 
4180 /**
4181  *	dev_put - release reference to device
4182  *	@dev: network device
4183  *
4184  * Release reference to device to allow it to be freed.
4185  * Try using netdev_put() instead.
4186  */
4187 static inline void dev_put(struct net_device *dev)
4188 {
4189 	netdev_put(dev, NULL);
4190 }
4191 
4192 DEFINE_FREE(dev_put, struct net_device *, if (_T) dev_put(_T))
4193 
4194 static inline void netdev_ref_replace(struct net_device *odev,
4195 				      struct net_device *ndev,
4196 				      netdevice_tracker *tracker,
4197 				      gfp_t gfp)
4198 {
4199 	if (odev)
4200 		netdev_tracker_free(odev, tracker);
4201 
4202 	__dev_hold(ndev);
4203 	__dev_put(odev);
4204 
4205 	if (ndev)
4206 		__netdev_tracker_alloc(ndev, tracker, gfp);
4207 }
4208 
4209 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4210  * and _off may be called from IRQ context, but it is caller
4211  * who is responsible for serialization of these calls.
4212  *
4213  * The name carrier is inappropriate, these functions should really be
4214  * called netif_lowerlayer_*() because they represent the state of any
4215  * kind of lower layer not just hardware media.
4216  */
4217 void linkwatch_fire_event(struct net_device *dev);
4218 
4219 /**
4220  * linkwatch_sync_dev - sync linkwatch for the given device
4221  * @dev: network device to sync linkwatch for
4222  *
4223  * Sync linkwatch for the given device, removing it from the
4224  * pending work list (if queued).
4225  */
4226 void linkwatch_sync_dev(struct net_device *dev);
4227 
4228 /**
4229  *	netif_carrier_ok - test if carrier present
4230  *	@dev: network device
4231  *
4232  * Check if carrier is present on device
4233  */
4234 static inline bool netif_carrier_ok(const struct net_device *dev)
4235 {
4236 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4237 }
4238 
4239 unsigned long dev_trans_start(struct net_device *dev);
4240 
4241 void __netdev_watchdog_up(struct net_device *dev);
4242 
4243 void netif_carrier_on(struct net_device *dev);
4244 void netif_carrier_off(struct net_device *dev);
4245 void netif_carrier_event(struct net_device *dev);
4246 
4247 /**
4248  *	netif_dormant_on - mark device as dormant.
4249  *	@dev: network device
4250  *
4251  * Mark device as dormant (as per RFC2863).
4252  *
4253  * The dormant state indicates that the relevant interface is not
4254  * actually in a condition to pass packets (i.e., it is not 'up') but is
4255  * in a "pending" state, waiting for some external event.  For "on-
4256  * demand" interfaces, this new state identifies the situation where the
4257  * interface is waiting for events to place it in the up state.
4258  */
4259 static inline void netif_dormant_on(struct net_device *dev)
4260 {
4261 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4262 		linkwatch_fire_event(dev);
4263 }
4264 
4265 /**
4266  *	netif_dormant_off - set device as not dormant.
4267  *	@dev: network device
4268  *
4269  * Device is not in dormant state.
4270  */
4271 static inline void netif_dormant_off(struct net_device *dev)
4272 {
4273 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4274 		linkwatch_fire_event(dev);
4275 }
4276 
4277 /**
4278  *	netif_dormant - test if device is dormant
4279  *	@dev: network device
4280  *
4281  * Check if device is dormant.
4282  */
4283 static inline bool netif_dormant(const struct net_device *dev)
4284 {
4285 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4286 }
4287 
4288 
4289 /**
4290  *	netif_testing_on - mark device as under test.
4291  *	@dev: network device
4292  *
4293  * Mark device as under test (as per RFC2863).
4294  *
4295  * The testing state indicates that some test(s) must be performed on
4296  * the interface. After completion, of the test, the interface state
4297  * will change to up, dormant, or down, as appropriate.
4298  */
4299 static inline void netif_testing_on(struct net_device *dev)
4300 {
4301 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4302 		linkwatch_fire_event(dev);
4303 }
4304 
4305 /**
4306  *	netif_testing_off - set device as not under test.
4307  *	@dev: network device
4308  *
4309  * Device is not in testing state.
4310  */
4311 static inline void netif_testing_off(struct net_device *dev)
4312 {
4313 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4314 		linkwatch_fire_event(dev);
4315 }
4316 
4317 /**
4318  *	netif_testing - test if device is under test
4319  *	@dev: network device
4320  *
4321  * Check if device is under test
4322  */
4323 static inline bool netif_testing(const struct net_device *dev)
4324 {
4325 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4326 }
4327 
4328 
4329 /**
4330  *	netif_oper_up - test if device is operational
4331  *	@dev: network device
4332  *
4333  * Check if carrier is operational
4334  */
4335 static inline bool netif_oper_up(const struct net_device *dev)
4336 {
4337 	unsigned int operstate = READ_ONCE(dev->operstate);
4338 
4339 	return	operstate == IF_OPER_UP ||
4340 		operstate == IF_OPER_UNKNOWN /* backward compat */;
4341 }
4342 
4343 /**
4344  *	netif_device_present - is device available or removed
4345  *	@dev: network device
4346  *
4347  * Check if device has not been removed from system.
4348  */
4349 static inline bool netif_device_present(const struct net_device *dev)
4350 {
4351 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4352 }
4353 
4354 void netif_device_detach(struct net_device *dev);
4355 
4356 void netif_device_attach(struct net_device *dev);
4357 
4358 /*
4359  * Network interface message level settings
4360  */
4361 
4362 enum {
4363 	NETIF_MSG_DRV_BIT,
4364 	NETIF_MSG_PROBE_BIT,
4365 	NETIF_MSG_LINK_BIT,
4366 	NETIF_MSG_TIMER_BIT,
4367 	NETIF_MSG_IFDOWN_BIT,
4368 	NETIF_MSG_IFUP_BIT,
4369 	NETIF_MSG_RX_ERR_BIT,
4370 	NETIF_MSG_TX_ERR_BIT,
4371 	NETIF_MSG_TX_QUEUED_BIT,
4372 	NETIF_MSG_INTR_BIT,
4373 	NETIF_MSG_TX_DONE_BIT,
4374 	NETIF_MSG_RX_STATUS_BIT,
4375 	NETIF_MSG_PKTDATA_BIT,
4376 	NETIF_MSG_HW_BIT,
4377 	NETIF_MSG_WOL_BIT,
4378 
4379 	/* When you add a new bit above, update netif_msg_class_names array
4380 	 * in net/ethtool/common.c
4381 	 */
4382 	NETIF_MSG_CLASS_COUNT,
4383 };
4384 /* Both ethtool_ops interface and internal driver implementation use u32 */
4385 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4386 
4387 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4388 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4389 
4390 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4391 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4392 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4393 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4394 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4395 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4396 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4397 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4398 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4399 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4400 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4401 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4402 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4403 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4404 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4405 
4406 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4407 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4408 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4409 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4410 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4411 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4412 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4413 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4414 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4415 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4416 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4417 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4418 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4419 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4420 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4421 
4422 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4423 {
4424 	/* use default */
4425 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4426 		return default_msg_enable_bits;
4427 	if (debug_value == 0)	/* no output */
4428 		return 0;
4429 	/* set low N bits */
4430 	return (1U << debug_value) - 1;
4431 }
4432 
4433 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4434 {
4435 	spin_lock(&txq->_xmit_lock);
4436 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4437 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4438 }
4439 
4440 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4441 {
4442 	__acquire(&txq->_xmit_lock);
4443 	return true;
4444 }
4445 
4446 static inline void __netif_tx_release(struct netdev_queue *txq)
4447 {
4448 	__release(&txq->_xmit_lock);
4449 }
4450 
4451 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4452 {
4453 	spin_lock_bh(&txq->_xmit_lock);
4454 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4455 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4456 }
4457 
4458 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4459 {
4460 	bool ok = spin_trylock(&txq->_xmit_lock);
4461 
4462 	if (likely(ok)) {
4463 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4464 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4465 	}
4466 	return ok;
4467 }
4468 
4469 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4470 {
4471 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4472 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4473 	spin_unlock(&txq->_xmit_lock);
4474 }
4475 
4476 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4477 {
4478 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4479 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4480 	spin_unlock_bh(&txq->_xmit_lock);
4481 }
4482 
4483 /*
4484  * txq->trans_start can be read locklessly from dev_watchdog()
4485  */
4486 static inline void txq_trans_update(struct netdev_queue *txq)
4487 {
4488 	if (txq->xmit_lock_owner != -1)
4489 		WRITE_ONCE(txq->trans_start, jiffies);
4490 }
4491 
4492 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4493 {
4494 	unsigned long now = jiffies;
4495 
4496 	if (READ_ONCE(txq->trans_start) != now)
4497 		WRITE_ONCE(txq->trans_start, now);
4498 }
4499 
4500 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4501 static inline void netif_trans_update(struct net_device *dev)
4502 {
4503 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4504 
4505 	txq_trans_cond_update(txq);
4506 }
4507 
4508 /**
4509  *	netif_tx_lock - grab network device transmit lock
4510  *	@dev: network device
4511  *
4512  * Get network device transmit lock
4513  */
4514 void netif_tx_lock(struct net_device *dev);
4515 
4516 static inline void netif_tx_lock_bh(struct net_device *dev)
4517 {
4518 	local_bh_disable();
4519 	netif_tx_lock(dev);
4520 }
4521 
4522 void netif_tx_unlock(struct net_device *dev);
4523 
4524 static inline void netif_tx_unlock_bh(struct net_device *dev)
4525 {
4526 	netif_tx_unlock(dev);
4527 	local_bh_enable();
4528 }
4529 
4530 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4531 	if (!(dev)->lltx) {				\
4532 		__netif_tx_lock(txq, cpu);		\
4533 	} else {					\
4534 		__netif_tx_acquire(txq);		\
4535 	}						\
4536 }
4537 
4538 #define HARD_TX_TRYLOCK(dev, txq)			\
4539 	(!(dev)->lltx ?					\
4540 		__netif_tx_trylock(txq) :		\
4541 		__netif_tx_acquire(txq))
4542 
4543 #define HARD_TX_UNLOCK(dev, txq) {			\
4544 	if (!(dev)->lltx) {				\
4545 		__netif_tx_unlock(txq);			\
4546 	} else {					\
4547 		__netif_tx_release(txq);		\
4548 	}						\
4549 }
4550 
4551 static inline void netif_tx_disable(struct net_device *dev)
4552 {
4553 	unsigned int i;
4554 	int cpu;
4555 
4556 	local_bh_disable();
4557 	cpu = smp_processor_id();
4558 	spin_lock(&dev->tx_global_lock);
4559 	for (i = 0; i < dev->num_tx_queues; i++) {
4560 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4561 
4562 		__netif_tx_lock(txq, cpu);
4563 		netif_tx_stop_queue(txq);
4564 		__netif_tx_unlock(txq);
4565 	}
4566 	spin_unlock(&dev->tx_global_lock);
4567 	local_bh_enable();
4568 }
4569 
4570 static inline void netif_addr_lock(struct net_device *dev)
4571 {
4572 	unsigned char nest_level = 0;
4573 
4574 #ifdef CONFIG_LOCKDEP
4575 	nest_level = dev->nested_level;
4576 #endif
4577 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4578 }
4579 
4580 static inline void netif_addr_lock_bh(struct net_device *dev)
4581 {
4582 	unsigned char nest_level = 0;
4583 
4584 #ifdef CONFIG_LOCKDEP
4585 	nest_level = dev->nested_level;
4586 #endif
4587 	local_bh_disable();
4588 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4589 }
4590 
4591 static inline void netif_addr_unlock(struct net_device *dev)
4592 {
4593 	spin_unlock(&dev->addr_list_lock);
4594 }
4595 
4596 static inline void netif_addr_unlock_bh(struct net_device *dev)
4597 {
4598 	spin_unlock_bh(&dev->addr_list_lock);
4599 }
4600 
4601 /*
4602  * dev_addrs walker. Should be used only for read access. Call with
4603  * rcu_read_lock held.
4604  */
4605 #define for_each_dev_addr(dev, ha) \
4606 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4607 
4608 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4609 
4610 void ether_setup(struct net_device *dev);
4611 
4612 /* Allocate dummy net_device */
4613 struct net_device *alloc_netdev_dummy(int sizeof_priv);
4614 
4615 /* Support for loadable net-drivers */
4616 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4617 				    unsigned char name_assign_type,
4618 				    void (*setup)(struct net_device *),
4619 				    unsigned int txqs, unsigned int rxqs);
4620 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4621 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4622 
4623 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4624 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4625 			 count)
4626 
4627 int register_netdev(struct net_device *dev);
4628 void unregister_netdev(struct net_device *dev);
4629 
4630 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4631 
4632 /* General hardware address lists handling functions */
4633 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4634 		   struct netdev_hw_addr_list *from_list, int addr_len);
4635 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4636 		      struct netdev_hw_addr_list *from_list, int addr_len);
4637 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4638 		       struct net_device *dev,
4639 		       int (*sync)(struct net_device *, const unsigned char *),
4640 		       int (*unsync)(struct net_device *,
4641 				     const unsigned char *));
4642 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4643 			   struct net_device *dev,
4644 			   int (*sync)(struct net_device *,
4645 				       const unsigned char *, int),
4646 			   int (*unsync)(struct net_device *,
4647 					 const unsigned char *, int));
4648 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4649 			      struct net_device *dev,
4650 			      int (*unsync)(struct net_device *,
4651 					    const unsigned char *, int));
4652 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4653 			  struct net_device *dev,
4654 			  int (*unsync)(struct net_device *,
4655 					const unsigned char *));
4656 void __hw_addr_init(struct netdev_hw_addr_list *list);
4657 
4658 /* Functions used for device addresses handling */
4659 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4660 		  const void *addr, size_t len);
4661 
4662 static inline void
4663 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4664 {
4665 	dev_addr_mod(dev, 0, addr, len);
4666 }
4667 
4668 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4669 {
4670 	__dev_addr_set(dev, addr, dev->addr_len);
4671 }
4672 
4673 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4674 		 unsigned char addr_type);
4675 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4676 		 unsigned char addr_type);
4677 
4678 /* Functions used for unicast addresses handling */
4679 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4680 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4681 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4682 int dev_uc_sync(struct net_device *to, struct net_device *from);
4683 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4684 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4685 void dev_uc_flush(struct net_device *dev);
4686 void dev_uc_init(struct net_device *dev);
4687 
4688 /**
4689  *  __dev_uc_sync - Synchronize device's unicast list
4690  *  @dev:  device to sync
4691  *  @sync: function to call if address should be added
4692  *  @unsync: function to call if address should be removed
4693  *
4694  *  Add newly added addresses to the interface, and release
4695  *  addresses that have been deleted.
4696  */
4697 static inline int __dev_uc_sync(struct net_device *dev,
4698 				int (*sync)(struct net_device *,
4699 					    const unsigned char *),
4700 				int (*unsync)(struct net_device *,
4701 					      const unsigned char *))
4702 {
4703 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4704 }
4705 
4706 /**
4707  *  __dev_uc_unsync - Remove synchronized addresses from device
4708  *  @dev:  device to sync
4709  *  @unsync: function to call if address should be removed
4710  *
4711  *  Remove all addresses that were added to the device by dev_uc_sync().
4712  */
4713 static inline void __dev_uc_unsync(struct net_device *dev,
4714 				   int (*unsync)(struct net_device *,
4715 						 const unsigned char *))
4716 {
4717 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4718 }
4719 
4720 /* Functions used for multicast addresses handling */
4721 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4722 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4723 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4724 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4725 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4726 int dev_mc_sync(struct net_device *to, struct net_device *from);
4727 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4728 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4729 void dev_mc_flush(struct net_device *dev);
4730 void dev_mc_init(struct net_device *dev);
4731 
4732 /**
4733  *  __dev_mc_sync - Synchronize device's multicast list
4734  *  @dev:  device to sync
4735  *  @sync: function to call if address should be added
4736  *  @unsync: function to call if address should be removed
4737  *
4738  *  Add newly added addresses to the interface, and release
4739  *  addresses that have been deleted.
4740  */
4741 static inline int __dev_mc_sync(struct net_device *dev,
4742 				int (*sync)(struct net_device *,
4743 					    const unsigned char *),
4744 				int (*unsync)(struct net_device *,
4745 					      const unsigned char *))
4746 {
4747 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4748 }
4749 
4750 /**
4751  *  __dev_mc_unsync - Remove synchronized addresses from device
4752  *  @dev:  device to sync
4753  *  @unsync: function to call if address should be removed
4754  *
4755  *  Remove all addresses that were added to the device by dev_mc_sync().
4756  */
4757 static inline void __dev_mc_unsync(struct net_device *dev,
4758 				   int (*unsync)(struct net_device *,
4759 						 const unsigned char *))
4760 {
4761 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4762 }
4763 
4764 /* Functions used for secondary unicast and multicast support */
4765 void dev_set_rx_mode(struct net_device *dev);
4766 int dev_set_promiscuity(struct net_device *dev, int inc);
4767 int dev_set_allmulti(struct net_device *dev, int inc);
4768 void netdev_state_change(struct net_device *dev);
4769 void __netdev_notify_peers(struct net_device *dev);
4770 void netdev_notify_peers(struct net_device *dev);
4771 void netdev_features_change(struct net_device *dev);
4772 /* Load a device via the kmod */
4773 void dev_load(struct net *net, const char *name);
4774 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4775 					struct rtnl_link_stats64 *storage);
4776 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4777 			     const struct net_device_stats *netdev_stats);
4778 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4779 			   const struct pcpu_sw_netstats __percpu *netstats);
4780 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4781 
4782 enum {
4783 	NESTED_SYNC_IMM_BIT,
4784 	NESTED_SYNC_TODO_BIT,
4785 };
4786 
4787 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4788 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4789 
4790 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4791 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4792 
4793 struct netdev_nested_priv {
4794 	unsigned char flags;
4795 	void *data;
4796 };
4797 
4798 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4799 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4800 						     struct list_head **iter);
4801 
4802 /* iterate through upper list, must be called under RCU read lock */
4803 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4804 	for (iter = &(dev)->adj_list.upper, \
4805 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4806 	     updev; \
4807 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4808 
4809 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4810 				  int (*fn)(struct net_device *upper_dev,
4811 					    struct netdev_nested_priv *priv),
4812 				  struct netdev_nested_priv *priv);
4813 
4814 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4815 				  struct net_device *upper_dev);
4816 
4817 bool netdev_has_any_upper_dev(struct net_device *dev);
4818 
4819 void *netdev_lower_get_next_private(struct net_device *dev,
4820 				    struct list_head **iter);
4821 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4822 					struct list_head **iter);
4823 
4824 #define netdev_for_each_lower_private(dev, priv, iter) \
4825 	for (iter = (dev)->adj_list.lower.next, \
4826 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4827 	     priv; \
4828 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4829 
4830 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4831 	for (iter = &(dev)->adj_list.lower, \
4832 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4833 	     priv; \
4834 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4835 
4836 void *netdev_lower_get_next(struct net_device *dev,
4837 				struct list_head **iter);
4838 
4839 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4840 	for (iter = (dev)->adj_list.lower.next, \
4841 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4842 	     ldev; \
4843 	     ldev = netdev_lower_get_next(dev, &(iter)))
4844 
4845 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4846 					     struct list_head **iter);
4847 int netdev_walk_all_lower_dev(struct net_device *dev,
4848 			      int (*fn)(struct net_device *lower_dev,
4849 					struct netdev_nested_priv *priv),
4850 			      struct netdev_nested_priv *priv);
4851 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4852 				  int (*fn)(struct net_device *lower_dev,
4853 					    struct netdev_nested_priv *priv),
4854 				  struct netdev_nested_priv *priv);
4855 
4856 void *netdev_adjacent_get_private(struct list_head *adj_list);
4857 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4858 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4859 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4860 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4861 			  struct netlink_ext_ack *extack);
4862 int netdev_master_upper_dev_link(struct net_device *dev,
4863 				 struct net_device *upper_dev,
4864 				 void *upper_priv, void *upper_info,
4865 				 struct netlink_ext_ack *extack);
4866 void netdev_upper_dev_unlink(struct net_device *dev,
4867 			     struct net_device *upper_dev);
4868 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4869 				   struct net_device *new_dev,
4870 				   struct net_device *dev,
4871 				   struct netlink_ext_ack *extack);
4872 void netdev_adjacent_change_commit(struct net_device *old_dev,
4873 				   struct net_device *new_dev,
4874 				   struct net_device *dev);
4875 void netdev_adjacent_change_abort(struct net_device *old_dev,
4876 				  struct net_device *new_dev,
4877 				  struct net_device *dev);
4878 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4879 void *netdev_lower_dev_get_private(struct net_device *dev,
4880 				   struct net_device *lower_dev);
4881 void netdev_lower_state_changed(struct net_device *lower_dev,
4882 				void *lower_state_info);
4883 
4884 /* RSS keys are 40 or 52 bytes long */
4885 #define NETDEV_RSS_KEY_LEN 52
4886 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4887 void netdev_rss_key_fill(void *buffer, size_t len);
4888 
4889 int skb_checksum_help(struct sk_buff *skb);
4890 int skb_crc32c_csum_help(struct sk_buff *skb);
4891 int skb_csum_hwoffload_help(struct sk_buff *skb,
4892 			    const netdev_features_t features);
4893 
4894 struct netdev_bonding_info {
4895 	ifslave	slave;
4896 	ifbond	master;
4897 };
4898 
4899 struct netdev_notifier_bonding_info {
4900 	struct netdev_notifier_info info; /* must be first */
4901 	struct netdev_bonding_info  bonding_info;
4902 };
4903 
4904 void netdev_bonding_info_change(struct net_device *dev,
4905 				struct netdev_bonding_info *bonding_info);
4906 
4907 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4908 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4909 #else
4910 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4911 				  const void *data)
4912 {
4913 }
4914 #endif
4915 
4916 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4917 
4918 static inline bool can_checksum_protocol(netdev_features_t features,
4919 					 __be16 protocol)
4920 {
4921 	if (protocol == htons(ETH_P_FCOE))
4922 		return !!(features & NETIF_F_FCOE_CRC);
4923 
4924 	/* Assume this is an IP checksum (not SCTP CRC) */
4925 
4926 	if (features & NETIF_F_HW_CSUM) {
4927 		/* Can checksum everything */
4928 		return true;
4929 	}
4930 
4931 	switch (protocol) {
4932 	case htons(ETH_P_IP):
4933 		return !!(features & NETIF_F_IP_CSUM);
4934 	case htons(ETH_P_IPV6):
4935 		return !!(features & NETIF_F_IPV6_CSUM);
4936 	default:
4937 		return false;
4938 	}
4939 }
4940 
4941 #ifdef CONFIG_BUG
4942 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4943 #else
4944 static inline void netdev_rx_csum_fault(struct net_device *dev,
4945 					struct sk_buff *skb)
4946 {
4947 }
4948 #endif
4949 /* rx skb timestamps */
4950 void net_enable_timestamp(void);
4951 void net_disable_timestamp(void);
4952 
4953 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4954 					const struct skb_shared_hwtstamps *hwtstamps,
4955 					bool cycles)
4956 {
4957 	const struct net_device_ops *ops = dev->netdev_ops;
4958 
4959 	if (ops->ndo_get_tstamp)
4960 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4961 
4962 	return hwtstamps->hwtstamp;
4963 }
4964 
4965 #ifndef CONFIG_PREEMPT_RT
4966 static inline void netdev_xmit_set_more(bool more)
4967 {
4968 	__this_cpu_write(softnet_data.xmit.more, more);
4969 }
4970 
4971 static inline bool netdev_xmit_more(void)
4972 {
4973 	return __this_cpu_read(softnet_data.xmit.more);
4974 }
4975 #else
4976 static inline void netdev_xmit_set_more(bool more)
4977 {
4978 	current->net_xmit.more = more;
4979 }
4980 
4981 static inline bool netdev_xmit_more(void)
4982 {
4983 	return current->net_xmit.more;
4984 }
4985 #endif
4986 
4987 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4988 					      struct sk_buff *skb, struct net_device *dev,
4989 					      bool more)
4990 {
4991 	netdev_xmit_set_more(more);
4992 	return ops->ndo_start_xmit(skb, dev);
4993 }
4994 
4995 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4996 					    struct netdev_queue *txq, bool more)
4997 {
4998 	const struct net_device_ops *ops = dev->netdev_ops;
4999 	netdev_tx_t rc;
5000 
5001 	rc = __netdev_start_xmit(ops, skb, dev, more);
5002 	if (rc == NETDEV_TX_OK)
5003 		txq_trans_update(txq);
5004 
5005 	return rc;
5006 }
5007 
5008 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
5009 				const void *ns);
5010 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
5011 				 const void *ns);
5012 
5013 extern const struct kobj_ns_type_operations net_ns_type_operations;
5014 
5015 const char *netdev_drivername(const struct net_device *dev);
5016 
5017 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
5018 							  netdev_features_t f2)
5019 {
5020 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
5021 		if (f1 & NETIF_F_HW_CSUM)
5022 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5023 		else
5024 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5025 	}
5026 
5027 	return f1 & f2;
5028 }
5029 
5030 static inline netdev_features_t netdev_get_wanted_features(
5031 	struct net_device *dev)
5032 {
5033 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
5034 }
5035 netdev_features_t netdev_increment_features(netdev_features_t all,
5036 	netdev_features_t one, netdev_features_t mask);
5037 
5038 /* Allow TSO being used on stacked device :
5039  * Performing the GSO segmentation before last device
5040  * is a performance improvement.
5041  */
5042 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
5043 							netdev_features_t mask)
5044 {
5045 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
5046 }
5047 
5048 int __netdev_update_features(struct net_device *dev);
5049 void netdev_update_features(struct net_device *dev);
5050 void netdev_change_features(struct net_device *dev);
5051 
5052 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5053 					struct net_device *dev);
5054 
5055 netdev_features_t passthru_features_check(struct sk_buff *skb,
5056 					  struct net_device *dev,
5057 					  netdev_features_t features);
5058 netdev_features_t netif_skb_features(struct sk_buff *skb);
5059 void skb_warn_bad_offload(const struct sk_buff *skb);
5060 
5061 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
5062 {
5063 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
5064 
5065 	/* check flags correspondence */
5066 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
5067 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
5068 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
5069 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
5070 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
5071 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
5072 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
5073 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
5074 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
5075 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
5076 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
5077 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
5078 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
5079 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
5080 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
5081 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
5082 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
5083 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5084 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5085 
5086 	return (features & feature) == feature;
5087 }
5088 
5089 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5090 {
5091 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5092 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5093 }
5094 
5095 static inline bool netif_needs_gso(struct sk_buff *skb,
5096 				   netdev_features_t features)
5097 {
5098 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5099 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5100 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5101 }
5102 
5103 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
5104 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
5105 void netif_inherit_tso_max(struct net_device *to,
5106 			   const struct net_device *from);
5107 
5108 static inline unsigned int
5109 netif_get_gro_max_size(const struct net_device *dev, const struct sk_buff *skb)
5110 {
5111 	/* pairs with WRITE_ONCE() in netif_set_gro(_ipv4)_max_size() */
5112 	return skb->protocol == htons(ETH_P_IPV6) ?
5113 	       READ_ONCE(dev->gro_max_size) :
5114 	       READ_ONCE(dev->gro_ipv4_max_size);
5115 }
5116 
5117 static inline unsigned int
5118 netif_get_gso_max_size(const struct net_device *dev, const struct sk_buff *skb)
5119 {
5120 	/* pairs with WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */
5121 	return skb->protocol == htons(ETH_P_IPV6) ?
5122 	       READ_ONCE(dev->gso_max_size) :
5123 	       READ_ONCE(dev->gso_ipv4_max_size);
5124 }
5125 
5126 static inline bool netif_is_macsec(const struct net_device *dev)
5127 {
5128 	return dev->priv_flags & IFF_MACSEC;
5129 }
5130 
5131 static inline bool netif_is_macvlan(const struct net_device *dev)
5132 {
5133 	return dev->priv_flags & IFF_MACVLAN;
5134 }
5135 
5136 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5137 {
5138 	return dev->priv_flags & IFF_MACVLAN_PORT;
5139 }
5140 
5141 static inline bool netif_is_bond_master(const struct net_device *dev)
5142 {
5143 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5144 }
5145 
5146 static inline bool netif_is_bond_slave(const struct net_device *dev)
5147 {
5148 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5149 }
5150 
5151 static inline bool netif_supports_nofcs(struct net_device *dev)
5152 {
5153 	return dev->priv_flags & IFF_SUPP_NOFCS;
5154 }
5155 
5156 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5157 {
5158 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5159 }
5160 
5161 static inline bool netif_is_l3_master(const struct net_device *dev)
5162 {
5163 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5164 }
5165 
5166 static inline bool netif_is_l3_slave(const struct net_device *dev)
5167 {
5168 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5169 }
5170 
5171 static inline int dev_sdif(const struct net_device *dev)
5172 {
5173 #ifdef CONFIG_NET_L3_MASTER_DEV
5174 	if (netif_is_l3_slave(dev))
5175 		return dev->ifindex;
5176 #endif
5177 	return 0;
5178 }
5179 
5180 static inline bool netif_is_bridge_master(const struct net_device *dev)
5181 {
5182 	return dev->priv_flags & IFF_EBRIDGE;
5183 }
5184 
5185 static inline bool netif_is_bridge_port(const struct net_device *dev)
5186 {
5187 	return dev->priv_flags & IFF_BRIDGE_PORT;
5188 }
5189 
5190 static inline bool netif_is_ovs_master(const struct net_device *dev)
5191 {
5192 	return dev->priv_flags & IFF_OPENVSWITCH;
5193 }
5194 
5195 static inline bool netif_is_ovs_port(const struct net_device *dev)
5196 {
5197 	return dev->priv_flags & IFF_OVS_DATAPATH;
5198 }
5199 
5200 static inline bool netif_is_any_bridge_master(const struct net_device *dev)
5201 {
5202 	return netif_is_bridge_master(dev) || netif_is_ovs_master(dev);
5203 }
5204 
5205 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5206 {
5207 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5208 }
5209 
5210 static inline bool netif_is_team_master(const struct net_device *dev)
5211 {
5212 	return dev->priv_flags & IFF_TEAM;
5213 }
5214 
5215 static inline bool netif_is_team_port(const struct net_device *dev)
5216 {
5217 	return dev->priv_flags & IFF_TEAM_PORT;
5218 }
5219 
5220 static inline bool netif_is_lag_master(const struct net_device *dev)
5221 {
5222 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5223 }
5224 
5225 static inline bool netif_is_lag_port(const struct net_device *dev)
5226 {
5227 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5228 }
5229 
5230 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5231 {
5232 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5233 }
5234 
5235 static inline bool netif_is_failover(const struct net_device *dev)
5236 {
5237 	return dev->priv_flags & IFF_FAILOVER;
5238 }
5239 
5240 static inline bool netif_is_failover_slave(const struct net_device *dev)
5241 {
5242 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5243 }
5244 
5245 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5246 static inline void netif_keep_dst(struct net_device *dev)
5247 {
5248 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5249 }
5250 
5251 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5252 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5253 {
5254 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5255 	return netif_is_macsec(dev);
5256 }
5257 
5258 extern struct pernet_operations __net_initdata loopback_net_ops;
5259 
5260 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5261 
5262 /* netdev_printk helpers, similar to dev_printk */
5263 
5264 static inline const char *netdev_name(const struct net_device *dev)
5265 {
5266 	if (!dev->name[0] || strchr(dev->name, '%'))
5267 		return "(unnamed net_device)";
5268 	return dev->name;
5269 }
5270 
5271 static inline const char *netdev_reg_state(const struct net_device *dev)
5272 {
5273 	u8 reg_state = READ_ONCE(dev->reg_state);
5274 
5275 	switch (reg_state) {
5276 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5277 	case NETREG_REGISTERED: return "";
5278 	case NETREG_UNREGISTERING: return " (unregistering)";
5279 	case NETREG_UNREGISTERED: return " (unregistered)";
5280 	case NETREG_RELEASED: return " (released)";
5281 	case NETREG_DUMMY: return " (dummy)";
5282 	}
5283 
5284 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, reg_state);
5285 	return " (unknown)";
5286 }
5287 
5288 #define MODULE_ALIAS_NETDEV(device) \
5289 	MODULE_ALIAS("netdev-" device)
5290 
5291 /*
5292  * netdev_WARN() acts like dev_printk(), but with the key difference
5293  * of using a WARN/WARN_ON to get the message out, including the
5294  * file/line information and a backtrace.
5295  */
5296 #define netdev_WARN(dev, format, args...)			\
5297 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5298 	     netdev_reg_state(dev), ##args)
5299 
5300 #define netdev_WARN_ONCE(dev, format, args...)				\
5301 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5302 		  netdev_reg_state(dev), ##args)
5303 
5304 /*
5305  *	The list of packet types we will receive (as opposed to discard)
5306  *	and the routines to invoke.
5307  *
5308  *	Why 16. Because with 16 the only overlap we get on a hash of the
5309  *	low nibble of the protocol value is RARP/SNAP/X.25.
5310  *
5311  *		0800	IP
5312  *		0001	802.3
5313  *		0002	AX.25
5314  *		0004	802.2
5315  *		8035	RARP
5316  *		0005	SNAP
5317  *		0805	X.25
5318  *		0806	ARP
5319  *		8137	IPX
5320  *		0009	Localtalk
5321  *		86DD	IPv6
5322  */
5323 #define PTYPE_HASH_SIZE	(16)
5324 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5325 
5326 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5327 
5328 extern struct net_device *blackhole_netdev;
5329 
5330 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5331 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5332 #define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
5333 		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5334 #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD)
5335 
5336 #endif	/* _LINUX_NETDEVICE_H */
5337