xref: /linux-6.15/include/linux/netdevice.h (revision 3fd87127)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <[email protected]>
12  *		Corey Minyard <[email protected]>
13  *		Donald J. Becker, <[email protected]>
14  *		Alan Cox, <[email protected]>
15  *		Bjorn Ekwall. <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #ifdef CONFIG_DCB
45 #include <net/dcbnl.h>
46 #endif
47 #include <net/netprio_cgroup.h>
48 
49 #include <linux/netdev_features.h>
50 #include <linux/neighbour.h>
51 #include <uapi/linux/netdevice.h>
52 #include <uapi/linux/if_bonding.h>
53 #include <uapi/linux/pkt_cls.h>
54 #include <linux/hashtable.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 struct dsa_switch_tree;
60 
61 /* 802.11 specific */
62 struct wireless_dev;
63 /* 802.15.4 specific */
64 struct wpan_dev;
65 struct mpls_dev;
66 /* UDP Tunnel offloads */
67 struct udp_tunnel_info;
68 struct bpf_prog;
69 struct xdp_buff;
70 
71 void netdev_set_default_ethtool_ops(struct net_device *dev,
72 				    const struct ethtool_ops *ops);
73 
74 /* Backlog congestion levels */
75 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
76 #define NET_RX_DROP		1	/* packet dropped */
77 
78 /*
79  * Transmit return codes: transmit return codes originate from three different
80  * namespaces:
81  *
82  * - qdisc return codes
83  * - driver transmit return codes
84  * - errno values
85  *
86  * Drivers are allowed to return any one of those in their hard_start_xmit()
87  * function. Real network devices commonly used with qdiscs should only return
88  * the driver transmit return codes though - when qdiscs are used, the actual
89  * transmission happens asynchronously, so the value is not propagated to
90  * higher layers. Virtual network devices transmit synchronously; in this case
91  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
92  * others are propagated to higher layers.
93  */
94 
95 /* qdisc ->enqueue() return codes. */
96 #define NET_XMIT_SUCCESS	0x00
97 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
98 #define NET_XMIT_CN		0x02	/* congestion notification	*/
99 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
100 
101 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
102  * indicates that the device will soon be dropping packets, or already drops
103  * some packets of the same priority; prompting us to send less aggressively. */
104 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
105 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
106 
107 /* Driver transmit return codes */
108 #define NETDEV_TX_MASK		0xf0
109 
110 enum netdev_tx {
111 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
112 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
113 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
114 };
115 typedef enum netdev_tx netdev_tx_t;
116 
117 /*
118  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
119  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
120  */
121 static inline bool dev_xmit_complete(int rc)
122 {
123 	/*
124 	 * Positive cases with an skb consumed by a driver:
125 	 * - successful transmission (rc == NETDEV_TX_OK)
126 	 * - error while transmitting (rc < 0)
127 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
128 	 */
129 	if (likely(rc < NET_XMIT_MASK))
130 		return true;
131 
132 	return false;
133 }
134 
135 /*
136  *	Compute the worst-case header length according to the protocols
137  *	used.
138  */
139 
140 #if defined(CONFIG_HYPERV_NET)
141 # define LL_MAX_HEADER 128
142 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
143 # if defined(CONFIG_MAC80211_MESH)
144 #  define LL_MAX_HEADER 128
145 # else
146 #  define LL_MAX_HEADER 96
147 # endif
148 #else
149 # define LL_MAX_HEADER 32
150 #endif
151 
152 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
153     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
154 #define MAX_HEADER LL_MAX_HEADER
155 #else
156 #define MAX_HEADER (LL_MAX_HEADER + 48)
157 #endif
158 
159 /*
160  *	Old network device statistics. Fields are native words
161  *	(unsigned long) so they can be read and written atomically.
162  */
163 
164 struct net_device_stats {
165 	unsigned long	rx_packets;
166 	unsigned long	tx_packets;
167 	unsigned long	rx_bytes;
168 	unsigned long	tx_bytes;
169 	unsigned long	rx_errors;
170 	unsigned long	tx_errors;
171 	unsigned long	rx_dropped;
172 	unsigned long	tx_dropped;
173 	unsigned long	multicast;
174 	unsigned long	collisions;
175 	unsigned long	rx_length_errors;
176 	unsigned long	rx_over_errors;
177 	unsigned long	rx_crc_errors;
178 	unsigned long	rx_frame_errors;
179 	unsigned long	rx_fifo_errors;
180 	unsigned long	rx_missed_errors;
181 	unsigned long	tx_aborted_errors;
182 	unsigned long	tx_carrier_errors;
183 	unsigned long	tx_fifo_errors;
184 	unsigned long	tx_heartbeat_errors;
185 	unsigned long	tx_window_errors;
186 	unsigned long	rx_compressed;
187 	unsigned long	tx_compressed;
188 };
189 
190 
191 #include <linux/cache.h>
192 #include <linux/skbuff.h>
193 
194 #ifdef CONFIG_RPS
195 #include <linux/static_key.h>
196 extern struct static_key rps_needed;
197 extern struct static_key rfs_needed;
198 #endif
199 
200 struct neighbour;
201 struct neigh_parms;
202 struct sk_buff;
203 
204 struct netdev_hw_addr {
205 	struct list_head	list;
206 	unsigned char		addr[MAX_ADDR_LEN];
207 	unsigned char		type;
208 #define NETDEV_HW_ADDR_T_LAN		1
209 #define NETDEV_HW_ADDR_T_SAN		2
210 #define NETDEV_HW_ADDR_T_SLAVE		3
211 #define NETDEV_HW_ADDR_T_UNICAST	4
212 #define NETDEV_HW_ADDR_T_MULTICAST	5
213 	bool			global_use;
214 	int			sync_cnt;
215 	int			refcount;
216 	int			synced;
217 	struct rcu_head		rcu_head;
218 };
219 
220 struct netdev_hw_addr_list {
221 	struct list_head	list;
222 	int			count;
223 };
224 
225 #define netdev_hw_addr_list_count(l) ((l)->count)
226 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
227 #define netdev_hw_addr_list_for_each(ha, l) \
228 	list_for_each_entry(ha, &(l)->list, list)
229 
230 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
231 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
232 #define netdev_for_each_uc_addr(ha, dev) \
233 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
234 
235 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
236 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
237 #define netdev_for_each_mc_addr(ha, dev) \
238 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
239 
240 struct hh_cache {
241 	unsigned int	hh_len;
242 	seqlock_t	hh_lock;
243 
244 	/* cached hardware header; allow for machine alignment needs.        */
245 #define HH_DATA_MOD	16
246 #define HH_DATA_OFF(__len) \
247 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
248 #define HH_DATA_ALIGN(__len) \
249 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
250 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
251 };
252 
253 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
254  * Alternative is:
255  *   dev->hard_header_len ? (dev->hard_header_len +
256  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
257  *
258  * We could use other alignment values, but we must maintain the
259  * relationship HH alignment <= LL alignment.
260  */
261 #define LL_RESERVED_SPACE(dev) \
262 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
263 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
264 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
265 
266 struct header_ops {
267 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
268 			   unsigned short type, const void *daddr,
269 			   const void *saddr, unsigned int len);
270 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
271 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
272 	void	(*cache_update)(struct hh_cache *hh,
273 				const struct net_device *dev,
274 				const unsigned char *haddr);
275 	bool	(*validate)(const char *ll_header, unsigned int len);
276 };
277 
278 /* These flag bits are private to the generic network queueing
279  * layer; they may not be explicitly referenced by any other
280  * code.
281  */
282 
283 enum netdev_state_t {
284 	__LINK_STATE_START,
285 	__LINK_STATE_PRESENT,
286 	__LINK_STATE_NOCARRIER,
287 	__LINK_STATE_LINKWATCH_PENDING,
288 	__LINK_STATE_DORMANT,
289 };
290 
291 
292 /*
293  * This structure holds boot-time configured netdevice settings. They
294  * are then used in the device probing.
295  */
296 struct netdev_boot_setup {
297 	char name[IFNAMSIZ];
298 	struct ifmap map;
299 };
300 #define NETDEV_BOOT_SETUP_MAX 8
301 
302 int __init netdev_boot_setup(char *str);
303 
304 /*
305  * Structure for NAPI scheduling similar to tasklet but with weighting
306  */
307 struct napi_struct {
308 	/* The poll_list must only be managed by the entity which
309 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
310 	 * whoever atomically sets that bit can add this napi_struct
311 	 * to the per-CPU poll_list, and whoever clears that bit
312 	 * can remove from the list right before clearing the bit.
313 	 */
314 	struct list_head	poll_list;
315 
316 	unsigned long		state;
317 	int			weight;
318 	unsigned int		gro_count;
319 	int			(*poll)(struct napi_struct *, int);
320 #ifdef CONFIG_NETPOLL
321 	int			poll_owner;
322 #endif
323 	struct net_device	*dev;
324 	struct sk_buff		*gro_list;
325 	struct sk_buff		*skb;
326 	struct hrtimer		timer;
327 	struct list_head	dev_list;
328 	struct hlist_node	napi_hash_node;
329 	unsigned int		napi_id;
330 };
331 
332 enum {
333 	NAPI_STATE_SCHED,	/* Poll is scheduled */
334 	NAPI_STATE_MISSED,	/* reschedule a napi */
335 	NAPI_STATE_DISABLE,	/* Disable pending */
336 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
337 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
338 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
339 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
340 };
341 
342 enum {
343 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
344 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
345 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
346 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
347 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
348 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
349 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
350 };
351 
352 enum gro_result {
353 	GRO_MERGED,
354 	GRO_MERGED_FREE,
355 	GRO_HELD,
356 	GRO_NORMAL,
357 	GRO_DROP,
358 	GRO_CONSUMED,
359 };
360 typedef enum gro_result gro_result_t;
361 
362 /*
363  * enum rx_handler_result - Possible return values for rx_handlers.
364  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
365  * further.
366  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
367  * case skb->dev was changed by rx_handler.
368  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
369  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
370  *
371  * rx_handlers are functions called from inside __netif_receive_skb(), to do
372  * special processing of the skb, prior to delivery to protocol handlers.
373  *
374  * Currently, a net_device can only have a single rx_handler registered. Trying
375  * to register a second rx_handler will return -EBUSY.
376  *
377  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
378  * To unregister a rx_handler on a net_device, use
379  * netdev_rx_handler_unregister().
380  *
381  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
382  * do with the skb.
383  *
384  * If the rx_handler consumed the skb in some way, it should return
385  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
386  * the skb to be delivered in some other way.
387  *
388  * If the rx_handler changed skb->dev, to divert the skb to another
389  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
390  * new device will be called if it exists.
391  *
392  * If the rx_handler decides the skb should be ignored, it should return
393  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
394  * are registered on exact device (ptype->dev == skb->dev).
395  *
396  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
397  * delivered, it should return RX_HANDLER_PASS.
398  *
399  * A device without a registered rx_handler will behave as if rx_handler
400  * returned RX_HANDLER_PASS.
401  */
402 
403 enum rx_handler_result {
404 	RX_HANDLER_CONSUMED,
405 	RX_HANDLER_ANOTHER,
406 	RX_HANDLER_EXACT,
407 	RX_HANDLER_PASS,
408 };
409 typedef enum rx_handler_result rx_handler_result_t;
410 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
411 
412 void __napi_schedule(struct napi_struct *n);
413 void __napi_schedule_irqoff(struct napi_struct *n);
414 
415 static inline bool napi_disable_pending(struct napi_struct *n)
416 {
417 	return test_bit(NAPI_STATE_DISABLE, &n->state);
418 }
419 
420 bool napi_schedule_prep(struct napi_struct *n);
421 
422 /**
423  *	napi_schedule - schedule NAPI poll
424  *	@n: NAPI context
425  *
426  * Schedule NAPI poll routine to be called if it is not already
427  * running.
428  */
429 static inline void napi_schedule(struct napi_struct *n)
430 {
431 	if (napi_schedule_prep(n))
432 		__napi_schedule(n);
433 }
434 
435 /**
436  *	napi_schedule_irqoff - schedule NAPI poll
437  *	@n: NAPI context
438  *
439  * Variant of napi_schedule(), assuming hard irqs are masked.
440  */
441 static inline void napi_schedule_irqoff(struct napi_struct *n)
442 {
443 	if (napi_schedule_prep(n))
444 		__napi_schedule_irqoff(n);
445 }
446 
447 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
448 static inline bool napi_reschedule(struct napi_struct *napi)
449 {
450 	if (napi_schedule_prep(napi)) {
451 		__napi_schedule(napi);
452 		return true;
453 	}
454 	return false;
455 }
456 
457 bool napi_complete_done(struct napi_struct *n, int work_done);
458 /**
459  *	napi_complete - NAPI processing complete
460  *	@n: NAPI context
461  *
462  * Mark NAPI processing as complete.
463  * Consider using napi_complete_done() instead.
464  * Return false if device should avoid rearming interrupts.
465  */
466 static inline bool napi_complete(struct napi_struct *n)
467 {
468 	return napi_complete_done(n, 0);
469 }
470 
471 /**
472  *	napi_hash_del - remove a NAPI from global table
473  *	@napi: NAPI context
474  *
475  * Warning: caller must observe RCU grace period
476  * before freeing memory containing @napi, if
477  * this function returns true.
478  * Note: core networking stack automatically calls it
479  * from netif_napi_del().
480  * Drivers might want to call this helper to combine all
481  * the needed RCU grace periods into a single one.
482  */
483 bool napi_hash_del(struct napi_struct *napi);
484 
485 /**
486  *	napi_disable - prevent NAPI from scheduling
487  *	@n: NAPI context
488  *
489  * Stop NAPI from being scheduled on this context.
490  * Waits till any outstanding processing completes.
491  */
492 void napi_disable(struct napi_struct *n);
493 
494 /**
495  *	napi_enable - enable NAPI scheduling
496  *	@n: NAPI context
497  *
498  * Resume NAPI from being scheduled on this context.
499  * Must be paired with napi_disable.
500  */
501 static inline void napi_enable(struct napi_struct *n)
502 {
503 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
504 	smp_mb__before_atomic();
505 	clear_bit(NAPI_STATE_SCHED, &n->state);
506 	clear_bit(NAPI_STATE_NPSVC, &n->state);
507 }
508 
509 /**
510  *	napi_synchronize - wait until NAPI is not running
511  *	@n: NAPI context
512  *
513  * Wait until NAPI is done being scheduled on this context.
514  * Waits till any outstanding processing completes but
515  * does not disable future activations.
516  */
517 static inline void napi_synchronize(const struct napi_struct *n)
518 {
519 	if (IS_ENABLED(CONFIG_SMP))
520 		while (test_bit(NAPI_STATE_SCHED, &n->state))
521 			msleep(1);
522 	else
523 		barrier();
524 }
525 
526 enum netdev_queue_state_t {
527 	__QUEUE_STATE_DRV_XOFF,
528 	__QUEUE_STATE_STACK_XOFF,
529 	__QUEUE_STATE_FROZEN,
530 };
531 
532 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
533 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
534 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
535 
536 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
537 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
538 					QUEUE_STATE_FROZEN)
539 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
540 					QUEUE_STATE_FROZEN)
541 
542 /*
543  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
544  * netif_tx_* functions below are used to manipulate this flag.  The
545  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
546  * queue independently.  The netif_xmit_*stopped functions below are called
547  * to check if the queue has been stopped by the driver or stack (either
548  * of the XOFF bits are set in the state).  Drivers should not need to call
549  * netif_xmit*stopped functions, they should only be using netif_tx_*.
550  */
551 
552 struct netdev_queue {
553 /*
554  * read-mostly part
555  */
556 	struct net_device	*dev;
557 	struct Qdisc __rcu	*qdisc;
558 	struct Qdisc		*qdisc_sleeping;
559 #ifdef CONFIG_SYSFS
560 	struct kobject		kobj;
561 #endif
562 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
563 	int			numa_node;
564 #endif
565 	unsigned long		tx_maxrate;
566 	/*
567 	 * Number of TX timeouts for this queue
568 	 * (/sys/class/net/DEV/Q/trans_timeout)
569 	 */
570 	unsigned long		trans_timeout;
571 /*
572  * write-mostly part
573  */
574 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
575 	int			xmit_lock_owner;
576 	/*
577 	 * Time (in jiffies) of last Tx
578 	 */
579 	unsigned long		trans_start;
580 
581 	unsigned long		state;
582 
583 #ifdef CONFIG_BQL
584 	struct dql		dql;
585 #endif
586 } ____cacheline_aligned_in_smp;
587 
588 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
589 {
590 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
591 	return q->numa_node;
592 #else
593 	return NUMA_NO_NODE;
594 #endif
595 }
596 
597 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
598 {
599 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
600 	q->numa_node = node;
601 #endif
602 }
603 
604 #ifdef CONFIG_RPS
605 /*
606  * This structure holds an RPS map which can be of variable length.  The
607  * map is an array of CPUs.
608  */
609 struct rps_map {
610 	unsigned int len;
611 	struct rcu_head rcu;
612 	u16 cpus[0];
613 };
614 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
615 
616 /*
617  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
618  * tail pointer for that CPU's input queue at the time of last enqueue, and
619  * a hardware filter index.
620  */
621 struct rps_dev_flow {
622 	u16 cpu;
623 	u16 filter;
624 	unsigned int last_qtail;
625 };
626 #define RPS_NO_FILTER 0xffff
627 
628 /*
629  * The rps_dev_flow_table structure contains a table of flow mappings.
630  */
631 struct rps_dev_flow_table {
632 	unsigned int mask;
633 	struct rcu_head rcu;
634 	struct rps_dev_flow flows[0];
635 };
636 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
637     ((_num) * sizeof(struct rps_dev_flow)))
638 
639 /*
640  * The rps_sock_flow_table contains mappings of flows to the last CPU
641  * on which they were processed by the application (set in recvmsg).
642  * Each entry is a 32bit value. Upper part is the high-order bits
643  * of flow hash, lower part is CPU number.
644  * rps_cpu_mask is used to partition the space, depending on number of
645  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
646  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
647  * meaning we use 32-6=26 bits for the hash.
648  */
649 struct rps_sock_flow_table {
650 	u32	mask;
651 
652 	u32	ents[0] ____cacheline_aligned_in_smp;
653 };
654 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
655 
656 #define RPS_NO_CPU 0xffff
657 
658 extern u32 rps_cpu_mask;
659 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
660 
661 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
662 					u32 hash)
663 {
664 	if (table && hash) {
665 		unsigned int index = hash & table->mask;
666 		u32 val = hash & ~rps_cpu_mask;
667 
668 		/* We only give a hint, preemption can change CPU under us */
669 		val |= raw_smp_processor_id();
670 
671 		if (table->ents[index] != val)
672 			table->ents[index] = val;
673 	}
674 }
675 
676 #ifdef CONFIG_RFS_ACCEL
677 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
678 			 u16 filter_id);
679 #endif
680 #endif /* CONFIG_RPS */
681 
682 /* This structure contains an instance of an RX queue. */
683 struct netdev_rx_queue {
684 #ifdef CONFIG_RPS
685 	struct rps_map __rcu		*rps_map;
686 	struct rps_dev_flow_table __rcu	*rps_flow_table;
687 #endif
688 	struct kobject			kobj;
689 	struct net_device		*dev;
690 } ____cacheline_aligned_in_smp;
691 
692 /*
693  * RX queue sysfs structures and functions.
694  */
695 struct rx_queue_attribute {
696 	struct attribute attr;
697 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
698 	ssize_t (*store)(struct netdev_rx_queue *queue,
699 			 const char *buf, size_t len);
700 };
701 
702 #ifdef CONFIG_XPS
703 /*
704  * This structure holds an XPS map which can be of variable length.  The
705  * map is an array of queues.
706  */
707 struct xps_map {
708 	unsigned int len;
709 	unsigned int alloc_len;
710 	struct rcu_head rcu;
711 	u16 queues[0];
712 };
713 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
714 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
715        - sizeof(struct xps_map)) / sizeof(u16))
716 
717 /*
718  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
719  */
720 struct xps_dev_maps {
721 	struct rcu_head rcu;
722 	struct xps_map __rcu *cpu_map[0];
723 };
724 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +		\
725 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
726 #endif /* CONFIG_XPS */
727 
728 #define TC_MAX_QUEUE	16
729 #define TC_BITMASK	15
730 /* HW offloaded queuing disciplines txq count and offset maps */
731 struct netdev_tc_txq {
732 	u16 count;
733 	u16 offset;
734 };
735 
736 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
737 /*
738  * This structure is to hold information about the device
739  * configured to run FCoE protocol stack.
740  */
741 struct netdev_fcoe_hbainfo {
742 	char	manufacturer[64];
743 	char	serial_number[64];
744 	char	hardware_version[64];
745 	char	driver_version[64];
746 	char	optionrom_version[64];
747 	char	firmware_version[64];
748 	char	model[256];
749 	char	model_description[256];
750 };
751 #endif
752 
753 #define MAX_PHYS_ITEM_ID_LEN 32
754 
755 /* This structure holds a unique identifier to identify some
756  * physical item (port for example) used by a netdevice.
757  */
758 struct netdev_phys_item_id {
759 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
760 	unsigned char id_len;
761 };
762 
763 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
764 					    struct netdev_phys_item_id *b)
765 {
766 	return a->id_len == b->id_len &&
767 	       memcmp(a->id, b->id, a->id_len) == 0;
768 }
769 
770 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
771 				       struct sk_buff *skb);
772 
773 enum tc_setup_type {
774 	TC_SETUP_MQPRIO,
775 	TC_SETUP_CLSU32,
776 	TC_SETUP_CLSFLOWER,
777 	TC_SETUP_CLSMATCHALL,
778 	TC_SETUP_CLSBPF,
779 };
780 
781 /* These structures hold the attributes of xdp state that are being passed
782  * to the netdevice through the xdp op.
783  */
784 enum xdp_netdev_command {
785 	/* Set or clear a bpf program used in the earliest stages of packet
786 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
787 	 * is responsible for calling bpf_prog_put on any old progs that are
788 	 * stored. In case of error, the callee need not release the new prog
789 	 * reference, but on success it takes ownership and must bpf_prog_put
790 	 * when it is no longer used.
791 	 */
792 	XDP_SETUP_PROG,
793 	XDP_SETUP_PROG_HW,
794 	/* Check if a bpf program is set on the device.  The callee should
795 	 * set @prog_attached to one of XDP_ATTACHED_* values, note that "true"
796 	 * is equivalent to XDP_ATTACHED_DRV.
797 	 */
798 	XDP_QUERY_PROG,
799 };
800 
801 struct netlink_ext_ack;
802 
803 struct netdev_xdp {
804 	enum xdp_netdev_command command;
805 	union {
806 		/* XDP_SETUP_PROG */
807 		struct {
808 			u32 flags;
809 			struct bpf_prog *prog;
810 			struct netlink_ext_ack *extack;
811 		};
812 		/* XDP_QUERY_PROG */
813 		struct {
814 			u8 prog_attached;
815 			u32 prog_id;
816 		};
817 	};
818 };
819 
820 #ifdef CONFIG_XFRM_OFFLOAD
821 struct xfrmdev_ops {
822 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
823 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
824 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
825 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
826 				       struct xfrm_state *x);
827 };
828 #endif
829 
830 /*
831  * This structure defines the management hooks for network devices.
832  * The following hooks can be defined; unless noted otherwise, they are
833  * optional and can be filled with a null pointer.
834  *
835  * int (*ndo_init)(struct net_device *dev);
836  *     This function is called once when a network device is registered.
837  *     The network device can use this for any late stage initialization
838  *     or semantic validation. It can fail with an error code which will
839  *     be propagated back to register_netdev.
840  *
841  * void (*ndo_uninit)(struct net_device *dev);
842  *     This function is called when device is unregistered or when registration
843  *     fails. It is not called if init fails.
844  *
845  * int (*ndo_open)(struct net_device *dev);
846  *     This function is called when a network device transitions to the up
847  *     state.
848  *
849  * int (*ndo_stop)(struct net_device *dev);
850  *     This function is called when a network device transitions to the down
851  *     state.
852  *
853  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
854  *                               struct net_device *dev);
855  *	Called when a packet needs to be transmitted.
856  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
857  *	the queue before that can happen; it's for obsolete devices and weird
858  *	corner cases, but the stack really does a non-trivial amount
859  *	of useless work if you return NETDEV_TX_BUSY.
860  *	Required; cannot be NULL.
861  *
862  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
863  *					   struct net_device *dev
864  *					   netdev_features_t features);
865  *	Called by core transmit path to determine if device is capable of
866  *	performing offload operations on a given packet. This is to give
867  *	the device an opportunity to implement any restrictions that cannot
868  *	be otherwise expressed by feature flags. The check is called with
869  *	the set of features that the stack has calculated and it returns
870  *	those the driver believes to be appropriate.
871  *
872  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
873  *                         void *accel_priv, select_queue_fallback_t fallback);
874  *	Called to decide which queue to use when device supports multiple
875  *	transmit queues.
876  *
877  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
878  *	This function is called to allow device receiver to make
879  *	changes to configuration when multicast or promiscuous is enabled.
880  *
881  * void (*ndo_set_rx_mode)(struct net_device *dev);
882  *	This function is called device changes address list filtering.
883  *	If driver handles unicast address filtering, it should set
884  *	IFF_UNICAST_FLT in its priv_flags.
885  *
886  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
887  *	This function  is called when the Media Access Control address
888  *	needs to be changed. If this interface is not defined, the
889  *	MAC address can not be changed.
890  *
891  * int (*ndo_validate_addr)(struct net_device *dev);
892  *	Test if Media Access Control address is valid for the device.
893  *
894  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
895  *	Called when a user requests an ioctl which can't be handled by
896  *	the generic interface code. If not defined ioctls return
897  *	not supported error code.
898  *
899  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
900  *	Used to set network devices bus interface parameters. This interface
901  *	is retained for legacy reasons; new devices should use the bus
902  *	interface (PCI) for low level management.
903  *
904  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
905  *	Called when a user wants to change the Maximum Transfer Unit
906  *	of a device.
907  *
908  * void (*ndo_tx_timeout)(struct net_device *dev);
909  *	Callback used when the transmitter has not made any progress
910  *	for dev->watchdog ticks.
911  *
912  * void (*ndo_get_stats64)(struct net_device *dev,
913  *                         struct rtnl_link_stats64 *storage);
914  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
915  *	Called when a user wants to get the network device usage
916  *	statistics. Drivers must do one of the following:
917  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
918  *	   rtnl_link_stats64 structure passed by the caller.
919  *	2. Define @ndo_get_stats to update a net_device_stats structure
920  *	   (which should normally be dev->stats) and return a pointer to
921  *	   it. The structure may be changed asynchronously only if each
922  *	   field is written atomically.
923  *	3. Update dev->stats asynchronously and atomically, and define
924  *	   neither operation.
925  *
926  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
927  *	Return true if this device supports offload stats of this attr_id.
928  *
929  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
930  *	void *attr_data)
931  *	Get statistics for offload operations by attr_id. Write it into the
932  *	attr_data pointer.
933  *
934  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
935  *	If device supports VLAN filtering this function is called when a
936  *	VLAN id is registered.
937  *
938  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
939  *	If device supports VLAN filtering this function is called when a
940  *	VLAN id is unregistered.
941  *
942  * void (*ndo_poll_controller)(struct net_device *dev);
943  *
944  *	SR-IOV management functions.
945  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
946  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
947  *			  u8 qos, __be16 proto);
948  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
949  *			  int max_tx_rate);
950  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
951  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
952  * int (*ndo_get_vf_config)(struct net_device *dev,
953  *			    int vf, struct ifla_vf_info *ivf);
954  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
955  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
956  *			  struct nlattr *port[]);
957  *
958  *      Enable or disable the VF ability to query its RSS Redirection Table and
959  *      Hash Key. This is needed since on some devices VF share this information
960  *      with PF and querying it may introduce a theoretical security risk.
961  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
962  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
963  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
964  *		       void *type_data);
965  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
966  *	This is always called from the stack with the rtnl lock held and netif
967  *	tx queues stopped. This allows the netdevice to perform queue
968  *	management safely.
969  *
970  *	Fiber Channel over Ethernet (FCoE) offload functions.
971  * int (*ndo_fcoe_enable)(struct net_device *dev);
972  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
973  *	so the underlying device can perform whatever needed configuration or
974  *	initialization to support acceleration of FCoE traffic.
975  *
976  * int (*ndo_fcoe_disable)(struct net_device *dev);
977  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
978  *	so the underlying device can perform whatever needed clean-ups to
979  *	stop supporting acceleration of FCoE traffic.
980  *
981  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
982  *			     struct scatterlist *sgl, unsigned int sgc);
983  *	Called when the FCoE Initiator wants to initialize an I/O that
984  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
985  *	perform necessary setup and returns 1 to indicate the device is set up
986  *	successfully to perform DDP on this I/O, otherwise this returns 0.
987  *
988  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
989  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
990  *	indicated by the FC exchange id 'xid', so the underlying device can
991  *	clean up and reuse resources for later DDP requests.
992  *
993  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
994  *			      struct scatterlist *sgl, unsigned int sgc);
995  *	Called when the FCoE Target wants to initialize an I/O that
996  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
997  *	perform necessary setup and returns 1 to indicate the device is set up
998  *	successfully to perform DDP on this I/O, otherwise this returns 0.
999  *
1000  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1001  *			       struct netdev_fcoe_hbainfo *hbainfo);
1002  *	Called when the FCoE Protocol stack wants information on the underlying
1003  *	device. This information is utilized by the FCoE protocol stack to
1004  *	register attributes with Fiber Channel management service as per the
1005  *	FC-GS Fabric Device Management Information(FDMI) specification.
1006  *
1007  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1008  *	Called when the underlying device wants to override default World Wide
1009  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1010  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1011  *	protocol stack to use.
1012  *
1013  *	RFS acceleration.
1014  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1015  *			    u16 rxq_index, u32 flow_id);
1016  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1017  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1018  *	Return the filter ID on success, or a negative error code.
1019  *
1020  *	Slave management functions (for bridge, bonding, etc).
1021  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1022  *	Called to make another netdev an underling.
1023  *
1024  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1025  *	Called to release previously enslaved netdev.
1026  *
1027  *      Feature/offload setting functions.
1028  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1029  *		netdev_features_t features);
1030  *	Adjusts the requested feature flags according to device-specific
1031  *	constraints, and returns the resulting flags. Must not modify
1032  *	the device state.
1033  *
1034  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1035  *	Called to update device configuration to new features. Passed
1036  *	feature set might be less than what was returned by ndo_fix_features()).
1037  *	Must return >0 or -errno if it changed dev->features itself.
1038  *
1039  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1040  *		      struct net_device *dev,
1041  *		      const unsigned char *addr, u16 vid, u16 flags)
1042  *	Adds an FDB entry to dev for addr.
1043  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1044  *		      struct net_device *dev,
1045  *		      const unsigned char *addr, u16 vid)
1046  *	Deletes the FDB entry from dev coresponding to addr.
1047  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1048  *		       struct net_device *dev, struct net_device *filter_dev,
1049  *		       int *idx)
1050  *	Used to add FDB entries to dump requests. Implementers should add
1051  *	entries to skb and update idx with the number of entries.
1052  *
1053  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1054  *			     u16 flags)
1055  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1056  *			     struct net_device *dev, u32 filter_mask,
1057  *			     int nlflags)
1058  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1059  *			     u16 flags);
1060  *
1061  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1062  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1063  *	which do not represent real hardware may define this to allow their
1064  *	userspace components to manage their virtual carrier state. Devices
1065  *	that determine carrier state from physical hardware properties (eg
1066  *	network cables) or protocol-dependent mechanisms (eg
1067  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1068  *
1069  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1070  *			       struct netdev_phys_item_id *ppid);
1071  *	Called to get ID of physical port of this device. If driver does
1072  *	not implement this, it is assumed that the hw is not able to have
1073  *	multiple net devices on single physical port.
1074  *
1075  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1076  *			      struct udp_tunnel_info *ti);
1077  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1078  *	address family that a UDP tunnel is listnening to. It is called only
1079  *	when a new port starts listening. The operation is protected by the
1080  *	RTNL.
1081  *
1082  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1083  *			      struct udp_tunnel_info *ti);
1084  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1085  *	address family that the UDP tunnel is not listening to anymore. The
1086  *	operation is protected by the RTNL.
1087  *
1088  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1089  *				 struct net_device *dev)
1090  *	Called by upper layer devices to accelerate switching or other
1091  *	station functionality into hardware. 'pdev is the lowerdev
1092  *	to use for the offload and 'dev' is the net device that will
1093  *	back the offload. Returns a pointer to the private structure
1094  *	the upper layer will maintain.
1095  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1096  *	Called by upper layer device to delete the station created
1097  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1098  *	the station and priv is the structure returned by the add
1099  *	operation.
1100  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1101  *			     int queue_index, u32 maxrate);
1102  *	Called when a user wants to set a max-rate limitation of specific
1103  *	TX queue.
1104  * int (*ndo_get_iflink)(const struct net_device *dev);
1105  *	Called to get the iflink value of this device.
1106  * void (*ndo_change_proto_down)(struct net_device *dev,
1107  *				 bool proto_down);
1108  *	This function is used to pass protocol port error state information
1109  *	to the switch driver. The switch driver can react to the proto_down
1110  *      by doing a phys down on the associated switch port.
1111  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1112  *	This function is used to get egress tunnel information for given skb.
1113  *	This is useful for retrieving outer tunnel header parameters while
1114  *	sampling packet.
1115  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1116  *	This function is used to specify the headroom that the skb must
1117  *	consider when allocation skb during packet reception. Setting
1118  *	appropriate rx headroom value allows avoiding skb head copy on
1119  *	forward. Setting a negative value resets the rx headroom to the
1120  *	default value.
1121  * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp);
1122  *	This function is used to set or query state related to XDP on the
1123  *	netdevice. See definition of enum xdp_netdev_command for details.
1124  * int (*ndo_xdp_xmit)(struct net_device *dev, struct xdp_buff *xdp);
1125  *	This function is used to submit a XDP packet for transmit on a
1126  *	netdevice.
1127  * void (*ndo_xdp_flush)(struct net_device *dev);
1128  *	This function is used to inform the driver to flush a paticular
1129  *	xpd tx queue. Must be called on same CPU as xdp_xmit.
1130  */
1131 struct net_device_ops {
1132 	int			(*ndo_init)(struct net_device *dev);
1133 	void			(*ndo_uninit)(struct net_device *dev);
1134 	int			(*ndo_open)(struct net_device *dev);
1135 	int			(*ndo_stop)(struct net_device *dev);
1136 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1137 						  struct net_device *dev);
1138 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1139 						      struct net_device *dev,
1140 						      netdev_features_t features);
1141 	u16			(*ndo_select_queue)(struct net_device *dev,
1142 						    struct sk_buff *skb,
1143 						    void *accel_priv,
1144 						    select_queue_fallback_t fallback);
1145 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1146 						       int flags);
1147 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1148 	int			(*ndo_set_mac_address)(struct net_device *dev,
1149 						       void *addr);
1150 	int			(*ndo_validate_addr)(struct net_device *dev);
1151 	int			(*ndo_do_ioctl)(struct net_device *dev,
1152 					        struct ifreq *ifr, int cmd);
1153 	int			(*ndo_set_config)(struct net_device *dev,
1154 					          struct ifmap *map);
1155 	int			(*ndo_change_mtu)(struct net_device *dev,
1156 						  int new_mtu);
1157 	int			(*ndo_neigh_setup)(struct net_device *dev,
1158 						   struct neigh_parms *);
1159 	void			(*ndo_tx_timeout) (struct net_device *dev);
1160 
1161 	void			(*ndo_get_stats64)(struct net_device *dev,
1162 						   struct rtnl_link_stats64 *storage);
1163 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1164 	int			(*ndo_get_offload_stats)(int attr_id,
1165 							 const struct net_device *dev,
1166 							 void *attr_data);
1167 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1168 
1169 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1170 						       __be16 proto, u16 vid);
1171 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1172 						        __be16 proto, u16 vid);
1173 #ifdef CONFIG_NET_POLL_CONTROLLER
1174 	void                    (*ndo_poll_controller)(struct net_device *dev);
1175 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1176 						     struct netpoll_info *info);
1177 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1178 #endif
1179 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1180 						  int queue, u8 *mac);
1181 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1182 						   int queue, u16 vlan,
1183 						   u8 qos, __be16 proto);
1184 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1185 						   int vf, int min_tx_rate,
1186 						   int max_tx_rate);
1187 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1188 						       int vf, bool setting);
1189 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1190 						    int vf, bool setting);
1191 	int			(*ndo_get_vf_config)(struct net_device *dev,
1192 						     int vf,
1193 						     struct ifla_vf_info *ivf);
1194 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1195 							 int vf, int link_state);
1196 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1197 						    int vf,
1198 						    struct ifla_vf_stats
1199 						    *vf_stats);
1200 	int			(*ndo_set_vf_port)(struct net_device *dev,
1201 						   int vf,
1202 						   struct nlattr *port[]);
1203 	int			(*ndo_get_vf_port)(struct net_device *dev,
1204 						   int vf, struct sk_buff *skb);
1205 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1206 						   int vf, u64 guid,
1207 						   int guid_type);
1208 	int			(*ndo_set_vf_rss_query_en)(
1209 						   struct net_device *dev,
1210 						   int vf, bool setting);
1211 	int			(*ndo_setup_tc)(struct net_device *dev,
1212 						enum tc_setup_type type,
1213 						void *type_data);
1214 #if IS_ENABLED(CONFIG_FCOE)
1215 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1216 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1217 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1218 						      u16 xid,
1219 						      struct scatterlist *sgl,
1220 						      unsigned int sgc);
1221 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1222 						     u16 xid);
1223 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1224 						       u16 xid,
1225 						       struct scatterlist *sgl,
1226 						       unsigned int sgc);
1227 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1228 							struct netdev_fcoe_hbainfo *hbainfo);
1229 #endif
1230 
1231 #if IS_ENABLED(CONFIG_LIBFCOE)
1232 #define NETDEV_FCOE_WWNN 0
1233 #define NETDEV_FCOE_WWPN 1
1234 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1235 						    u64 *wwn, int type);
1236 #endif
1237 
1238 #ifdef CONFIG_RFS_ACCEL
1239 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1240 						     const struct sk_buff *skb,
1241 						     u16 rxq_index,
1242 						     u32 flow_id);
1243 #endif
1244 	int			(*ndo_add_slave)(struct net_device *dev,
1245 						 struct net_device *slave_dev);
1246 	int			(*ndo_del_slave)(struct net_device *dev,
1247 						 struct net_device *slave_dev);
1248 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1249 						    netdev_features_t features);
1250 	int			(*ndo_set_features)(struct net_device *dev,
1251 						    netdev_features_t features);
1252 	int			(*ndo_neigh_construct)(struct net_device *dev,
1253 						       struct neighbour *n);
1254 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1255 						     struct neighbour *n);
1256 
1257 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1258 					       struct nlattr *tb[],
1259 					       struct net_device *dev,
1260 					       const unsigned char *addr,
1261 					       u16 vid,
1262 					       u16 flags);
1263 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1264 					       struct nlattr *tb[],
1265 					       struct net_device *dev,
1266 					       const unsigned char *addr,
1267 					       u16 vid);
1268 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1269 						struct netlink_callback *cb,
1270 						struct net_device *dev,
1271 						struct net_device *filter_dev,
1272 						int *idx);
1273 
1274 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1275 						      struct nlmsghdr *nlh,
1276 						      u16 flags);
1277 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1278 						      u32 pid, u32 seq,
1279 						      struct net_device *dev,
1280 						      u32 filter_mask,
1281 						      int nlflags);
1282 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1283 						      struct nlmsghdr *nlh,
1284 						      u16 flags);
1285 	int			(*ndo_change_carrier)(struct net_device *dev,
1286 						      bool new_carrier);
1287 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1288 							struct netdev_phys_item_id *ppid);
1289 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1290 							  char *name, size_t len);
1291 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1292 						      struct udp_tunnel_info *ti);
1293 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1294 						      struct udp_tunnel_info *ti);
1295 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1296 							struct net_device *dev);
1297 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1298 							void *priv);
1299 
1300 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1301 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1302 						      int queue_index,
1303 						      u32 maxrate);
1304 	int			(*ndo_get_iflink)(const struct net_device *dev);
1305 	int			(*ndo_change_proto_down)(struct net_device *dev,
1306 							 bool proto_down);
1307 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1308 						       struct sk_buff *skb);
1309 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1310 						       int needed_headroom);
1311 	int			(*ndo_xdp)(struct net_device *dev,
1312 					   struct netdev_xdp *xdp);
1313 	int			(*ndo_xdp_xmit)(struct net_device *dev,
1314 						struct xdp_buff *xdp);
1315 	void			(*ndo_xdp_flush)(struct net_device *dev);
1316 };
1317 
1318 /**
1319  * enum net_device_priv_flags - &struct net_device priv_flags
1320  *
1321  * These are the &struct net_device, they are only set internally
1322  * by drivers and used in the kernel. These flags are invisible to
1323  * userspace; this means that the order of these flags can change
1324  * during any kernel release.
1325  *
1326  * You should have a pretty good reason to be extending these flags.
1327  *
1328  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1329  * @IFF_EBRIDGE: Ethernet bridging device
1330  * @IFF_BONDING: bonding master or slave
1331  * @IFF_ISATAP: ISATAP interface (RFC4214)
1332  * @IFF_WAN_HDLC: WAN HDLC device
1333  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1334  *	release skb->dst
1335  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1336  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1337  * @IFF_MACVLAN_PORT: device used as macvlan port
1338  * @IFF_BRIDGE_PORT: device used as bridge port
1339  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1340  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1341  * @IFF_UNICAST_FLT: Supports unicast filtering
1342  * @IFF_TEAM_PORT: device used as team port
1343  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1344  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1345  *	change when it's running
1346  * @IFF_MACVLAN: Macvlan device
1347  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1348  *	underlying stacked devices
1349  * @IFF_IPVLAN_MASTER: IPvlan master device
1350  * @IFF_IPVLAN_SLAVE: IPvlan slave device
1351  * @IFF_L3MDEV_MASTER: device is an L3 master device
1352  * @IFF_NO_QUEUE: device can run without qdisc attached
1353  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1354  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1355  * @IFF_TEAM: device is a team device
1356  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1357  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1358  *	entity (i.e. the master device for bridged veth)
1359  * @IFF_MACSEC: device is a MACsec device
1360  */
1361 enum netdev_priv_flags {
1362 	IFF_802_1Q_VLAN			= 1<<0,
1363 	IFF_EBRIDGE			= 1<<1,
1364 	IFF_BONDING			= 1<<2,
1365 	IFF_ISATAP			= 1<<3,
1366 	IFF_WAN_HDLC			= 1<<4,
1367 	IFF_XMIT_DST_RELEASE		= 1<<5,
1368 	IFF_DONT_BRIDGE			= 1<<6,
1369 	IFF_DISABLE_NETPOLL		= 1<<7,
1370 	IFF_MACVLAN_PORT		= 1<<8,
1371 	IFF_BRIDGE_PORT			= 1<<9,
1372 	IFF_OVS_DATAPATH		= 1<<10,
1373 	IFF_TX_SKB_SHARING		= 1<<11,
1374 	IFF_UNICAST_FLT			= 1<<12,
1375 	IFF_TEAM_PORT			= 1<<13,
1376 	IFF_SUPP_NOFCS			= 1<<14,
1377 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1378 	IFF_MACVLAN			= 1<<16,
1379 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1380 	IFF_IPVLAN_MASTER		= 1<<18,
1381 	IFF_IPVLAN_SLAVE		= 1<<19,
1382 	IFF_L3MDEV_MASTER		= 1<<20,
1383 	IFF_NO_QUEUE			= 1<<21,
1384 	IFF_OPENVSWITCH			= 1<<22,
1385 	IFF_L3MDEV_SLAVE		= 1<<23,
1386 	IFF_TEAM			= 1<<24,
1387 	IFF_RXFH_CONFIGURED		= 1<<25,
1388 	IFF_PHONY_HEADROOM		= 1<<26,
1389 	IFF_MACSEC			= 1<<27,
1390 };
1391 
1392 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1393 #define IFF_EBRIDGE			IFF_EBRIDGE
1394 #define IFF_BONDING			IFF_BONDING
1395 #define IFF_ISATAP			IFF_ISATAP
1396 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1397 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1398 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1399 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1400 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1401 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1402 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1403 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1404 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1405 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1406 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1407 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1408 #define IFF_MACVLAN			IFF_MACVLAN
1409 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1410 #define IFF_IPVLAN_MASTER		IFF_IPVLAN_MASTER
1411 #define IFF_IPVLAN_SLAVE		IFF_IPVLAN_SLAVE
1412 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1413 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1414 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1415 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1416 #define IFF_TEAM			IFF_TEAM
1417 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1418 #define IFF_MACSEC			IFF_MACSEC
1419 
1420 /**
1421  *	struct net_device - The DEVICE structure.
1422  *
1423  *	Actually, this whole structure is a big mistake.  It mixes I/O
1424  *	data with strictly "high-level" data, and it has to know about
1425  *	almost every data structure used in the INET module.
1426  *
1427  *	@name:	This is the first field of the "visible" part of this structure
1428  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1429  *		of the interface.
1430  *
1431  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1432  *	@ifalias:	SNMP alias
1433  *	@mem_end:	Shared memory end
1434  *	@mem_start:	Shared memory start
1435  *	@base_addr:	Device I/O address
1436  *	@irq:		Device IRQ number
1437  *
1438  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1439  *
1440  *	@state:		Generic network queuing layer state, see netdev_state_t
1441  *	@dev_list:	The global list of network devices
1442  *	@napi_list:	List entry used for polling NAPI devices
1443  *	@unreg_list:	List entry  when we are unregistering the
1444  *			device; see the function unregister_netdev
1445  *	@close_list:	List entry used when we are closing the device
1446  *	@ptype_all:     Device-specific packet handlers for all protocols
1447  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1448  *
1449  *	@adj_list:	Directly linked devices, like slaves for bonding
1450  *	@features:	Currently active device features
1451  *	@hw_features:	User-changeable features
1452  *
1453  *	@wanted_features:	User-requested features
1454  *	@vlan_features:		Mask of features inheritable by VLAN devices
1455  *
1456  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1457  *				This field indicates what encapsulation
1458  *				offloads the hardware is capable of doing,
1459  *				and drivers will need to set them appropriately.
1460  *
1461  *	@mpls_features:	Mask of features inheritable by MPLS
1462  *
1463  *	@ifindex:	interface index
1464  *	@group:		The group the device belongs to
1465  *
1466  *	@stats:		Statistics struct, which was left as a legacy, use
1467  *			rtnl_link_stats64 instead
1468  *
1469  *	@rx_dropped:	Dropped packets by core network,
1470  *			do not use this in drivers
1471  *	@tx_dropped:	Dropped packets by core network,
1472  *			do not use this in drivers
1473  *	@rx_nohandler:	nohandler dropped packets by core network on
1474  *			inactive devices, do not use this in drivers
1475  *
1476  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1477  *				instead of ioctl,
1478  *				see <net/iw_handler.h> for details.
1479  *	@wireless_data:	Instance data managed by the core of wireless extensions
1480  *
1481  *	@netdev_ops:	Includes several pointers to callbacks,
1482  *			if one wants to override the ndo_*() functions
1483  *	@ethtool_ops:	Management operations
1484  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1485  *			discovery handling. Necessary for e.g. 6LoWPAN.
1486  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1487  *			of Layer 2 headers.
1488  *
1489  *	@flags:		Interface flags (a la BSD)
1490  *	@priv_flags:	Like 'flags' but invisible to userspace,
1491  *			see if.h for the definitions
1492  *	@gflags:	Global flags ( kept as legacy )
1493  *	@padded:	How much padding added by alloc_netdev()
1494  *	@operstate:	RFC2863 operstate
1495  *	@link_mode:	Mapping policy to operstate
1496  *	@if_port:	Selectable AUI, TP, ...
1497  *	@dma:		DMA channel
1498  *	@mtu:		Interface MTU value
1499  *	@min_mtu:	Interface Minimum MTU value
1500  *	@max_mtu:	Interface Maximum MTU value
1501  *	@type:		Interface hardware type
1502  *	@hard_header_len: Maximum hardware header length.
1503  *	@min_header_len:  Minimum hardware header length
1504  *
1505  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1506  *			  cases can this be guaranteed
1507  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1508  *			  cases can this be guaranteed. Some cases also use
1509  *			  LL_MAX_HEADER instead to allocate the skb
1510  *
1511  *	interface address info:
1512  *
1513  * 	@perm_addr:		Permanent hw address
1514  * 	@addr_assign_type:	Hw address assignment type
1515  * 	@addr_len:		Hardware address length
1516  *	@neigh_priv_len:	Used in neigh_alloc()
1517  * 	@dev_id:		Used to differentiate devices that share
1518  * 				the same link layer address
1519  * 	@dev_port:		Used to differentiate devices that share
1520  * 				the same function
1521  *	@addr_list_lock:	XXX: need comments on this one
1522  *	@uc_promisc:		Counter that indicates promiscuous mode
1523  *				has been enabled due to the need to listen to
1524  *				additional unicast addresses in a device that
1525  *				does not implement ndo_set_rx_mode()
1526  *	@uc:			unicast mac addresses
1527  *	@mc:			multicast mac addresses
1528  *	@dev_addrs:		list of device hw addresses
1529  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1530  *	@promiscuity:		Number of times the NIC is told to work in
1531  *				promiscuous mode; if it becomes 0 the NIC will
1532  *				exit promiscuous mode
1533  *	@allmulti:		Counter, enables or disables allmulticast mode
1534  *
1535  *	@vlan_info:	VLAN info
1536  *	@dsa_ptr:	dsa specific data
1537  *	@tipc_ptr:	TIPC specific data
1538  *	@atalk_ptr:	AppleTalk link
1539  *	@ip_ptr:	IPv4 specific data
1540  *	@dn_ptr:	DECnet specific data
1541  *	@ip6_ptr:	IPv6 specific data
1542  *	@ax25_ptr:	AX.25 specific data
1543  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1544  *
1545  *	@dev_addr:	Hw address (before bcast,
1546  *			because most packets are unicast)
1547  *
1548  *	@_rx:			Array of RX queues
1549  *	@num_rx_queues:		Number of RX queues
1550  *				allocated at register_netdev() time
1551  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1552  *
1553  *	@rx_handler:		handler for received packets
1554  *	@rx_handler_data: 	XXX: need comments on this one
1555  *	@ingress_queue:		XXX: need comments on this one
1556  *	@broadcast:		hw bcast address
1557  *
1558  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1559  *			indexed by RX queue number. Assigned by driver.
1560  *			This must only be set if the ndo_rx_flow_steer
1561  *			operation is defined
1562  *	@index_hlist:		Device index hash chain
1563  *
1564  *	@_tx:			Array of TX queues
1565  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1566  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1567  *	@qdisc:			Root qdisc from userspace point of view
1568  *	@tx_queue_len:		Max frames per queue allowed
1569  *	@tx_global_lock: 	XXX: need comments on this one
1570  *
1571  *	@xps_maps:	XXX: need comments on this one
1572  *
1573  *	@watchdog_timeo:	Represents the timeout that is used by
1574  *				the watchdog (see dev_watchdog())
1575  *	@watchdog_timer:	List of timers
1576  *
1577  *	@pcpu_refcnt:		Number of references to this device
1578  *	@todo_list:		Delayed register/unregister
1579  *	@link_watch_list:	XXX: need comments on this one
1580  *
1581  *	@reg_state:		Register/unregister state machine
1582  *	@dismantle:		Device is going to be freed
1583  *	@rtnl_link_state:	This enum represents the phases of creating
1584  *				a new link
1585  *
1586  *	@needs_free_netdev:	Should unregister perform free_netdev?
1587  *	@priv_destructor:	Called from unregister
1588  *	@npinfo:		XXX: need comments on this one
1589  * 	@nd_net:		Network namespace this network device is inside
1590  *
1591  * 	@ml_priv:	Mid-layer private
1592  * 	@lstats:	Loopback statistics
1593  * 	@tstats:	Tunnel statistics
1594  * 	@dstats:	Dummy statistics
1595  * 	@vstats:	Virtual ethernet statistics
1596  *
1597  *	@garp_port:	GARP
1598  *	@mrp_port:	MRP
1599  *
1600  *	@dev:		Class/net/name entry
1601  *	@sysfs_groups:	Space for optional device, statistics and wireless
1602  *			sysfs groups
1603  *
1604  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1605  *	@rtnl_link_ops:	Rtnl_link_ops
1606  *
1607  *	@gso_max_size:	Maximum size of generic segmentation offload
1608  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1609  *			NIC for GSO
1610  *
1611  *	@dcbnl_ops:	Data Center Bridging netlink ops
1612  *	@num_tc:	Number of traffic classes in the net device
1613  *	@tc_to_txq:	XXX: need comments on this one
1614  *	@prio_tc_map:	XXX: need comments on this one
1615  *
1616  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1617  *
1618  *	@priomap:	XXX: need comments on this one
1619  *	@phydev:	Physical device may attach itself
1620  *			for hardware timestamping
1621  *
1622  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1623  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1624  *
1625  *	@proto_down:	protocol port state information can be sent to the
1626  *			switch driver and used to set the phys state of the
1627  *			switch port.
1628  *
1629  *	FIXME: cleanup struct net_device such that network protocol info
1630  *	moves out.
1631  */
1632 
1633 struct net_device {
1634 	char			name[IFNAMSIZ];
1635 	struct hlist_node	name_hlist;
1636 	char 			*ifalias;
1637 	/*
1638 	 *	I/O specific fields
1639 	 *	FIXME: Merge these and struct ifmap into one
1640 	 */
1641 	unsigned long		mem_end;
1642 	unsigned long		mem_start;
1643 	unsigned long		base_addr;
1644 	int			irq;
1645 
1646 	atomic_t		carrier_changes;
1647 
1648 	/*
1649 	 *	Some hardware also needs these fields (state,dev_list,
1650 	 *	napi_list,unreg_list,close_list) but they are not
1651 	 *	part of the usual set specified in Space.c.
1652 	 */
1653 
1654 	unsigned long		state;
1655 
1656 	struct list_head	dev_list;
1657 	struct list_head	napi_list;
1658 	struct list_head	unreg_list;
1659 	struct list_head	close_list;
1660 	struct list_head	ptype_all;
1661 	struct list_head	ptype_specific;
1662 
1663 	struct {
1664 		struct list_head upper;
1665 		struct list_head lower;
1666 	} adj_list;
1667 
1668 	netdev_features_t	features;
1669 	netdev_features_t	hw_features;
1670 	netdev_features_t	wanted_features;
1671 	netdev_features_t	vlan_features;
1672 	netdev_features_t	hw_enc_features;
1673 	netdev_features_t	mpls_features;
1674 	netdev_features_t	gso_partial_features;
1675 
1676 	int			ifindex;
1677 	int			group;
1678 
1679 	struct net_device_stats	stats;
1680 
1681 	atomic_long_t		rx_dropped;
1682 	atomic_long_t		tx_dropped;
1683 	atomic_long_t		rx_nohandler;
1684 
1685 #ifdef CONFIG_WIRELESS_EXT
1686 	const struct iw_handler_def *wireless_handlers;
1687 	struct iw_public_data	*wireless_data;
1688 #endif
1689 	const struct net_device_ops *netdev_ops;
1690 	const struct ethtool_ops *ethtool_ops;
1691 #ifdef CONFIG_NET_SWITCHDEV
1692 	const struct switchdev_ops *switchdev_ops;
1693 #endif
1694 #ifdef CONFIG_NET_L3_MASTER_DEV
1695 	const struct l3mdev_ops	*l3mdev_ops;
1696 #endif
1697 #if IS_ENABLED(CONFIG_IPV6)
1698 	const struct ndisc_ops *ndisc_ops;
1699 #endif
1700 
1701 #ifdef CONFIG_XFRM
1702 	const struct xfrmdev_ops *xfrmdev_ops;
1703 #endif
1704 
1705 	const struct header_ops *header_ops;
1706 
1707 	unsigned int		flags;
1708 	unsigned int		priv_flags;
1709 
1710 	unsigned short		gflags;
1711 	unsigned short		padded;
1712 
1713 	unsigned char		operstate;
1714 	unsigned char		link_mode;
1715 
1716 	unsigned char		if_port;
1717 	unsigned char		dma;
1718 
1719 	unsigned int		mtu;
1720 	unsigned int		min_mtu;
1721 	unsigned int		max_mtu;
1722 	unsigned short		type;
1723 	unsigned short		hard_header_len;
1724 	unsigned char		min_header_len;
1725 
1726 	unsigned short		needed_headroom;
1727 	unsigned short		needed_tailroom;
1728 
1729 	/* Interface address info. */
1730 	unsigned char		perm_addr[MAX_ADDR_LEN];
1731 	unsigned char		addr_assign_type;
1732 	unsigned char		addr_len;
1733 	unsigned short		neigh_priv_len;
1734 	unsigned short          dev_id;
1735 	unsigned short          dev_port;
1736 	spinlock_t		addr_list_lock;
1737 	unsigned char		name_assign_type;
1738 	bool			uc_promisc;
1739 	struct netdev_hw_addr_list	uc;
1740 	struct netdev_hw_addr_list	mc;
1741 	struct netdev_hw_addr_list	dev_addrs;
1742 
1743 #ifdef CONFIG_SYSFS
1744 	struct kset		*queues_kset;
1745 #endif
1746 	unsigned int		promiscuity;
1747 	unsigned int		allmulti;
1748 
1749 
1750 	/* Protocol-specific pointers */
1751 
1752 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1753 	struct vlan_info __rcu	*vlan_info;
1754 #endif
1755 #if IS_ENABLED(CONFIG_NET_DSA)
1756 	struct dsa_switch_tree	*dsa_ptr;
1757 #endif
1758 #if IS_ENABLED(CONFIG_TIPC)
1759 	struct tipc_bearer __rcu *tipc_ptr;
1760 #endif
1761 	void 			*atalk_ptr;
1762 	struct in_device __rcu	*ip_ptr;
1763 	struct dn_dev __rcu     *dn_ptr;
1764 	struct inet6_dev __rcu	*ip6_ptr;
1765 	void			*ax25_ptr;
1766 	struct wireless_dev	*ieee80211_ptr;
1767 	struct wpan_dev		*ieee802154_ptr;
1768 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1769 	struct mpls_dev __rcu	*mpls_ptr;
1770 #endif
1771 
1772 /*
1773  * Cache lines mostly used on receive path (including eth_type_trans())
1774  */
1775 	/* Interface address info used in eth_type_trans() */
1776 	unsigned char		*dev_addr;
1777 
1778 #ifdef CONFIG_SYSFS
1779 	struct netdev_rx_queue	*_rx;
1780 
1781 	unsigned int		num_rx_queues;
1782 	unsigned int		real_num_rx_queues;
1783 #endif
1784 
1785 	struct bpf_prog __rcu	*xdp_prog;
1786 	unsigned long		gro_flush_timeout;
1787 	rx_handler_func_t __rcu	*rx_handler;
1788 	void __rcu		*rx_handler_data;
1789 
1790 #ifdef CONFIG_NET_CLS_ACT
1791 	struct tcf_proto __rcu  *ingress_cl_list;
1792 #endif
1793 	struct netdev_queue __rcu *ingress_queue;
1794 #ifdef CONFIG_NETFILTER_INGRESS
1795 	struct nf_hook_entry __rcu *nf_hooks_ingress;
1796 #endif
1797 
1798 	unsigned char		broadcast[MAX_ADDR_LEN];
1799 #ifdef CONFIG_RFS_ACCEL
1800 	struct cpu_rmap		*rx_cpu_rmap;
1801 #endif
1802 	struct hlist_node	index_hlist;
1803 
1804 /*
1805  * Cache lines mostly used on transmit path
1806  */
1807 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1808 	unsigned int		num_tx_queues;
1809 	unsigned int		real_num_tx_queues;
1810 	struct Qdisc		*qdisc;
1811 #ifdef CONFIG_NET_SCHED
1812 	DECLARE_HASHTABLE	(qdisc_hash, 4);
1813 #endif
1814 	unsigned int		tx_queue_len;
1815 	spinlock_t		tx_global_lock;
1816 	int			watchdog_timeo;
1817 
1818 #ifdef CONFIG_XPS
1819 	struct xps_dev_maps __rcu *xps_maps;
1820 #endif
1821 #ifdef CONFIG_NET_CLS_ACT
1822 	struct tcf_proto __rcu  *egress_cl_list;
1823 #endif
1824 
1825 	/* These may be needed for future network-power-down code. */
1826 	struct timer_list	watchdog_timer;
1827 
1828 	int __percpu		*pcpu_refcnt;
1829 	struct list_head	todo_list;
1830 
1831 	struct list_head	link_watch_list;
1832 
1833 	enum { NETREG_UNINITIALIZED=0,
1834 	       NETREG_REGISTERED,	/* completed register_netdevice */
1835 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1836 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1837 	       NETREG_RELEASED,		/* called free_netdev */
1838 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1839 	} reg_state:8;
1840 
1841 	bool dismantle;
1842 
1843 	enum {
1844 		RTNL_LINK_INITIALIZED,
1845 		RTNL_LINK_INITIALIZING,
1846 	} rtnl_link_state:16;
1847 
1848 	bool needs_free_netdev;
1849 	void (*priv_destructor)(struct net_device *dev);
1850 
1851 #ifdef CONFIG_NETPOLL
1852 	struct netpoll_info __rcu	*npinfo;
1853 #endif
1854 
1855 	possible_net_t			nd_net;
1856 
1857 	/* mid-layer private */
1858 	union {
1859 		void					*ml_priv;
1860 		struct pcpu_lstats __percpu		*lstats;
1861 		struct pcpu_sw_netstats __percpu	*tstats;
1862 		struct pcpu_dstats __percpu		*dstats;
1863 		struct pcpu_vstats __percpu		*vstats;
1864 	};
1865 
1866 #if IS_ENABLED(CONFIG_GARP)
1867 	struct garp_port __rcu	*garp_port;
1868 #endif
1869 #if IS_ENABLED(CONFIG_MRP)
1870 	struct mrp_port __rcu	*mrp_port;
1871 #endif
1872 
1873 	struct device		dev;
1874 	const struct attribute_group *sysfs_groups[4];
1875 	const struct attribute_group *sysfs_rx_queue_group;
1876 
1877 	const struct rtnl_link_ops *rtnl_link_ops;
1878 
1879 	/* for setting kernel sock attribute on TCP connection setup */
1880 #define GSO_MAX_SIZE		65536
1881 	unsigned int		gso_max_size;
1882 #define GSO_MAX_SEGS		65535
1883 	u16			gso_max_segs;
1884 
1885 #ifdef CONFIG_DCB
1886 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1887 #endif
1888 	u8			num_tc;
1889 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
1890 	u8			prio_tc_map[TC_BITMASK + 1];
1891 
1892 #if IS_ENABLED(CONFIG_FCOE)
1893 	unsigned int		fcoe_ddp_xid;
1894 #endif
1895 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1896 	struct netprio_map __rcu *priomap;
1897 #endif
1898 	struct phy_device	*phydev;
1899 	struct lock_class_key	*qdisc_tx_busylock;
1900 	struct lock_class_key	*qdisc_running_key;
1901 	bool			proto_down;
1902 };
1903 #define to_net_dev(d) container_of(d, struct net_device, dev)
1904 
1905 static inline bool netif_elide_gro(const struct net_device *dev)
1906 {
1907 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
1908 		return true;
1909 	return false;
1910 }
1911 
1912 #define	NETDEV_ALIGN		32
1913 
1914 static inline
1915 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1916 {
1917 	return dev->prio_tc_map[prio & TC_BITMASK];
1918 }
1919 
1920 static inline
1921 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1922 {
1923 	if (tc >= dev->num_tc)
1924 		return -EINVAL;
1925 
1926 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1927 	return 0;
1928 }
1929 
1930 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
1931 void netdev_reset_tc(struct net_device *dev);
1932 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
1933 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
1934 
1935 static inline
1936 int netdev_get_num_tc(struct net_device *dev)
1937 {
1938 	return dev->num_tc;
1939 }
1940 
1941 static inline
1942 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1943 					 unsigned int index)
1944 {
1945 	return &dev->_tx[index];
1946 }
1947 
1948 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1949 						    const struct sk_buff *skb)
1950 {
1951 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1952 }
1953 
1954 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1955 					    void (*f)(struct net_device *,
1956 						      struct netdev_queue *,
1957 						      void *),
1958 					    void *arg)
1959 {
1960 	unsigned int i;
1961 
1962 	for (i = 0; i < dev->num_tx_queues; i++)
1963 		f(dev, &dev->_tx[i], arg);
1964 }
1965 
1966 #define netdev_lockdep_set_classes(dev)				\
1967 {								\
1968 	static struct lock_class_key qdisc_tx_busylock_key;	\
1969 	static struct lock_class_key qdisc_running_key;		\
1970 	static struct lock_class_key qdisc_xmit_lock_key;	\
1971 	static struct lock_class_key dev_addr_list_lock_key;	\
1972 	unsigned int i;						\
1973 								\
1974 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
1975 	(dev)->qdisc_running_key = &qdisc_running_key;		\
1976 	lockdep_set_class(&(dev)->addr_list_lock,		\
1977 			  &dev_addr_list_lock_key); 		\
1978 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
1979 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
1980 				  &qdisc_xmit_lock_key);	\
1981 }
1982 
1983 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1984 				    struct sk_buff *skb,
1985 				    void *accel_priv);
1986 
1987 /* returns the headroom that the master device needs to take in account
1988  * when forwarding to this dev
1989  */
1990 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
1991 {
1992 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
1993 }
1994 
1995 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
1996 {
1997 	if (dev->netdev_ops->ndo_set_rx_headroom)
1998 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
1999 }
2000 
2001 /* set the device rx headroom to the dev's default */
2002 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2003 {
2004 	netdev_set_rx_headroom(dev, -1);
2005 }
2006 
2007 /*
2008  * Net namespace inlines
2009  */
2010 static inline
2011 struct net *dev_net(const struct net_device *dev)
2012 {
2013 	return read_pnet(&dev->nd_net);
2014 }
2015 
2016 static inline
2017 void dev_net_set(struct net_device *dev, struct net *net)
2018 {
2019 	write_pnet(&dev->nd_net, net);
2020 }
2021 
2022 /**
2023  *	netdev_priv - access network device private data
2024  *	@dev: network device
2025  *
2026  * Get network device private data
2027  */
2028 static inline void *netdev_priv(const struct net_device *dev)
2029 {
2030 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2031 }
2032 
2033 /* Set the sysfs physical device reference for the network logical device
2034  * if set prior to registration will cause a symlink during initialization.
2035  */
2036 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2037 
2038 /* Set the sysfs device type for the network logical device to allow
2039  * fine-grained identification of different network device types. For
2040  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2041  */
2042 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2043 
2044 /* Default NAPI poll() weight
2045  * Device drivers are strongly advised to not use bigger value
2046  */
2047 #define NAPI_POLL_WEIGHT 64
2048 
2049 /**
2050  *	netif_napi_add - initialize a NAPI context
2051  *	@dev:  network device
2052  *	@napi: NAPI context
2053  *	@poll: polling function
2054  *	@weight: default weight
2055  *
2056  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2057  * *any* of the other NAPI-related functions.
2058  */
2059 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2060 		    int (*poll)(struct napi_struct *, int), int weight);
2061 
2062 /**
2063  *	netif_tx_napi_add - initialize a NAPI context
2064  *	@dev:  network device
2065  *	@napi: NAPI context
2066  *	@poll: polling function
2067  *	@weight: default weight
2068  *
2069  * This variant of netif_napi_add() should be used from drivers using NAPI
2070  * to exclusively poll a TX queue.
2071  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2072  */
2073 static inline void netif_tx_napi_add(struct net_device *dev,
2074 				     struct napi_struct *napi,
2075 				     int (*poll)(struct napi_struct *, int),
2076 				     int weight)
2077 {
2078 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2079 	netif_napi_add(dev, napi, poll, weight);
2080 }
2081 
2082 /**
2083  *  netif_napi_del - remove a NAPI context
2084  *  @napi: NAPI context
2085  *
2086  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2087  */
2088 void netif_napi_del(struct napi_struct *napi);
2089 
2090 struct napi_gro_cb {
2091 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2092 	void	*frag0;
2093 
2094 	/* Length of frag0. */
2095 	unsigned int frag0_len;
2096 
2097 	/* This indicates where we are processing relative to skb->data. */
2098 	int	data_offset;
2099 
2100 	/* This is non-zero if the packet cannot be merged with the new skb. */
2101 	u16	flush;
2102 
2103 	/* Save the IP ID here and check when we get to the transport layer */
2104 	u16	flush_id;
2105 
2106 	/* Number of segments aggregated. */
2107 	u16	count;
2108 
2109 	/* Start offset for remote checksum offload */
2110 	u16	gro_remcsum_start;
2111 
2112 	/* jiffies when first packet was created/queued */
2113 	unsigned long age;
2114 
2115 	/* Used in ipv6_gro_receive() and foo-over-udp */
2116 	u16	proto;
2117 
2118 	/* This is non-zero if the packet may be of the same flow. */
2119 	u8	same_flow:1;
2120 
2121 	/* Used in tunnel GRO receive */
2122 	u8	encap_mark:1;
2123 
2124 	/* GRO checksum is valid */
2125 	u8	csum_valid:1;
2126 
2127 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2128 	u8	csum_cnt:3;
2129 
2130 	/* Free the skb? */
2131 	u8	free:2;
2132 #define NAPI_GRO_FREE		  1
2133 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2134 
2135 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2136 	u8	is_ipv6:1;
2137 
2138 	/* Used in GRE, set in fou/gue_gro_receive */
2139 	u8	is_fou:1;
2140 
2141 	/* Used to determine if flush_id can be ignored */
2142 	u8	is_atomic:1;
2143 
2144 	/* Number of gro_receive callbacks this packet already went through */
2145 	u8 recursion_counter:4;
2146 
2147 	/* 1 bit hole */
2148 
2149 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2150 	__wsum	csum;
2151 
2152 	/* used in skb_gro_receive() slow path */
2153 	struct sk_buff *last;
2154 };
2155 
2156 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2157 
2158 #define GRO_RECURSION_LIMIT 15
2159 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2160 {
2161 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2162 }
2163 
2164 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *);
2165 static inline struct sk_buff **call_gro_receive(gro_receive_t cb,
2166 						struct sk_buff **head,
2167 						struct sk_buff *skb)
2168 {
2169 	if (unlikely(gro_recursion_inc_test(skb))) {
2170 		NAPI_GRO_CB(skb)->flush |= 1;
2171 		return NULL;
2172 	}
2173 
2174 	return cb(head, skb);
2175 }
2176 
2177 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **,
2178 					     struct sk_buff *);
2179 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb,
2180 						   struct sock *sk,
2181 						   struct sk_buff **head,
2182 						   struct sk_buff *skb)
2183 {
2184 	if (unlikely(gro_recursion_inc_test(skb))) {
2185 		NAPI_GRO_CB(skb)->flush |= 1;
2186 		return NULL;
2187 	}
2188 
2189 	return cb(sk, head, skb);
2190 }
2191 
2192 struct packet_type {
2193 	__be16			type;	/* This is really htons(ether_type). */
2194 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2195 	int			(*func) (struct sk_buff *,
2196 					 struct net_device *,
2197 					 struct packet_type *,
2198 					 struct net_device *);
2199 	bool			(*id_match)(struct packet_type *ptype,
2200 					    struct sock *sk);
2201 	void			*af_packet_priv;
2202 	struct list_head	list;
2203 };
2204 
2205 struct offload_callbacks {
2206 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2207 						netdev_features_t features);
2208 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2209 						 struct sk_buff *skb);
2210 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2211 };
2212 
2213 struct packet_offload {
2214 	__be16			 type;	/* This is really htons(ether_type). */
2215 	u16			 priority;
2216 	struct offload_callbacks callbacks;
2217 	struct list_head	 list;
2218 };
2219 
2220 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2221 struct pcpu_sw_netstats {
2222 	u64     rx_packets;
2223 	u64     rx_bytes;
2224 	u64     tx_packets;
2225 	u64     tx_bytes;
2226 	struct u64_stats_sync   syncp;
2227 };
2228 
2229 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2230 ({									\
2231 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2232 	if (pcpu_stats)	{						\
2233 		int __cpu;						\
2234 		for_each_possible_cpu(__cpu) {				\
2235 			typeof(type) *stat;				\
2236 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2237 			u64_stats_init(&stat->syncp);			\
2238 		}							\
2239 	}								\
2240 	pcpu_stats;							\
2241 })
2242 
2243 #define netdev_alloc_pcpu_stats(type)					\
2244 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2245 
2246 enum netdev_lag_tx_type {
2247 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2248 	NETDEV_LAG_TX_TYPE_RANDOM,
2249 	NETDEV_LAG_TX_TYPE_BROADCAST,
2250 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2251 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2252 	NETDEV_LAG_TX_TYPE_HASH,
2253 };
2254 
2255 struct netdev_lag_upper_info {
2256 	enum netdev_lag_tx_type tx_type;
2257 };
2258 
2259 struct netdev_lag_lower_state_info {
2260 	u8 link_up : 1,
2261 	   tx_enabled : 1;
2262 };
2263 
2264 #include <linux/notifier.h>
2265 
2266 /* netdevice notifier chain. Please remember to update the rtnetlink
2267  * notification exclusion list in rtnetlink_event() when adding new
2268  * types.
2269  */
2270 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
2271 #define NETDEV_DOWN	0x0002
2272 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
2273 				   detected a hardware crash and restarted
2274 				   - we can use this eg to kick tcp sessions
2275 				   once done */
2276 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
2277 #define NETDEV_REGISTER 0x0005
2278 #define NETDEV_UNREGISTER	0x0006
2279 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2280 #define NETDEV_CHANGEADDR	0x0008
2281 #define NETDEV_GOING_DOWN	0x0009
2282 #define NETDEV_CHANGENAME	0x000A
2283 #define NETDEV_FEAT_CHANGE	0x000B
2284 #define NETDEV_BONDING_FAILOVER 0x000C
2285 #define NETDEV_PRE_UP		0x000D
2286 #define NETDEV_PRE_TYPE_CHANGE	0x000E
2287 #define NETDEV_POST_TYPE_CHANGE	0x000F
2288 #define NETDEV_POST_INIT	0x0010
2289 #define NETDEV_UNREGISTER_FINAL 0x0011
2290 #define NETDEV_RELEASE		0x0012
2291 #define NETDEV_NOTIFY_PEERS	0x0013
2292 #define NETDEV_JOIN		0x0014
2293 #define NETDEV_CHANGEUPPER	0x0015
2294 #define NETDEV_RESEND_IGMP	0x0016
2295 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2296 #define NETDEV_CHANGEINFODATA	0x0018
2297 #define NETDEV_BONDING_INFO	0x0019
2298 #define NETDEV_PRECHANGEUPPER	0x001A
2299 #define NETDEV_CHANGELOWERSTATE	0x001B
2300 #define NETDEV_UDP_TUNNEL_PUSH_INFO	0x001C
2301 #define NETDEV_UDP_TUNNEL_DROP_INFO	0x001D
2302 #define NETDEV_CHANGE_TX_QUEUE_LEN	0x001E
2303 
2304 int register_netdevice_notifier(struct notifier_block *nb);
2305 int unregister_netdevice_notifier(struct notifier_block *nb);
2306 
2307 struct netdev_notifier_info {
2308 	struct net_device *dev;
2309 };
2310 
2311 struct netdev_notifier_change_info {
2312 	struct netdev_notifier_info info; /* must be first */
2313 	unsigned int flags_changed;
2314 };
2315 
2316 struct netdev_notifier_changeupper_info {
2317 	struct netdev_notifier_info info; /* must be first */
2318 	struct net_device *upper_dev; /* new upper dev */
2319 	bool master; /* is upper dev master */
2320 	bool linking; /* is the notification for link or unlink */
2321 	void *upper_info; /* upper dev info */
2322 };
2323 
2324 struct netdev_notifier_changelowerstate_info {
2325 	struct netdev_notifier_info info; /* must be first */
2326 	void *lower_state_info; /* is lower dev state */
2327 };
2328 
2329 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2330 					     struct net_device *dev)
2331 {
2332 	info->dev = dev;
2333 }
2334 
2335 static inline struct net_device *
2336 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2337 {
2338 	return info->dev;
2339 }
2340 
2341 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2342 
2343 
2344 extern rwlock_t				dev_base_lock;		/* Device list lock */
2345 
2346 #define for_each_netdev(net, d)		\
2347 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2348 #define for_each_netdev_reverse(net, d)	\
2349 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2350 #define for_each_netdev_rcu(net, d)		\
2351 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2352 #define for_each_netdev_safe(net, d, n)	\
2353 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2354 #define for_each_netdev_continue(net, d)		\
2355 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2356 #define for_each_netdev_continue_rcu(net, d)		\
2357 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2358 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2359 		for_each_netdev_rcu(&init_net, slave)	\
2360 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2361 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2362 
2363 static inline struct net_device *next_net_device(struct net_device *dev)
2364 {
2365 	struct list_head *lh;
2366 	struct net *net;
2367 
2368 	net = dev_net(dev);
2369 	lh = dev->dev_list.next;
2370 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2371 }
2372 
2373 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2374 {
2375 	struct list_head *lh;
2376 	struct net *net;
2377 
2378 	net = dev_net(dev);
2379 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2380 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2381 }
2382 
2383 static inline struct net_device *first_net_device(struct net *net)
2384 {
2385 	return list_empty(&net->dev_base_head) ? NULL :
2386 		net_device_entry(net->dev_base_head.next);
2387 }
2388 
2389 static inline struct net_device *first_net_device_rcu(struct net *net)
2390 {
2391 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2392 
2393 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2394 }
2395 
2396 int netdev_boot_setup_check(struct net_device *dev);
2397 unsigned long netdev_boot_base(const char *prefix, int unit);
2398 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2399 				       const char *hwaddr);
2400 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2401 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2402 void dev_add_pack(struct packet_type *pt);
2403 void dev_remove_pack(struct packet_type *pt);
2404 void __dev_remove_pack(struct packet_type *pt);
2405 void dev_add_offload(struct packet_offload *po);
2406 void dev_remove_offload(struct packet_offload *po);
2407 
2408 int dev_get_iflink(const struct net_device *dev);
2409 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2410 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2411 				      unsigned short mask);
2412 struct net_device *dev_get_by_name(struct net *net, const char *name);
2413 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2414 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2415 int dev_alloc_name(struct net_device *dev, const char *name);
2416 int dev_open(struct net_device *dev);
2417 void dev_close(struct net_device *dev);
2418 void dev_close_many(struct list_head *head, bool unlink);
2419 void dev_disable_lro(struct net_device *dev);
2420 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2421 int dev_queue_xmit(struct sk_buff *skb);
2422 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2423 int register_netdevice(struct net_device *dev);
2424 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2425 void unregister_netdevice_many(struct list_head *head);
2426 static inline void unregister_netdevice(struct net_device *dev)
2427 {
2428 	unregister_netdevice_queue(dev, NULL);
2429 }
2430 
2431 int netdev_refcnt_read(const struct net_device *dev);
2432 void free_netdev(struct net_device *dev);
2433 void netdev_freemem(struct net_device *dev);
2434 void synchronize_net(void);
2435 int init_dummy_netdev(struct net_device *dev);
2436 
2437 DECLARE_PER_CPU(int, xmit_recursion);
2438 #define XMIT_RECURSION_LIMIT	10
2439 
2440 static inline int dev_recursion_level(void)
2441 {
2442 	return this_cpu_read(xmit_recursion);
2443 }
2444 
2445 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2446 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2447 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2448 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2449 int netdev_get_name(struct net *net, char *name, int ifindex);
2450 int dev_restart(struct net_device *dev);
2451 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2452 
2453 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2454 {
2455 	return NAPI_GRO_CB(skb)->data_offset;
2456 }
2457 
2458 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2459 {
2460 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2461 }
2462 
2463 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2464 {
2465 	NAPI_GRO_CB(skb)->data_offset += len;
2466 }
2467 
2468 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2469 					unsigned int offset)
2470 {
2471 	return NAPI_GRO_CB(skb)->frag0 + offset;
2472 }
2473 
2474 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2475 {
2476 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2477 }
2478 
2479 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2480 {
2481 	NAPI_GRO_CB(skb)->frag0 = NULL;
2482 	NAPI_GRO_CB(skb)->frag0_len = 0;
2483 }
2484 
2485 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2486 					unsigned int offset)
2487 {
2488 	if (!pskb_may_pull(skb, hlen))
2489 		return NULL;
2490 
2491 	skb_gro_frag0_invalidate(skb);
2492 	return skb->data + offset;
2493 }
2494 
2495 static inline void *skb_gro_network_header(struct sk_buff *skb)
2496 {
2497 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2498 	       skb_network_offset(skb);
2499 }
2500 
2501 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2502 					const void *start, unsigned int len)
2503 {
2504 	if (NAPI_GRO_CB(skb)->csum_valid)
2505 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2506 						  csum_partial(start, len, 0));
2507 }
2508 
2509 /* GRO checksum functions. These are logical equivalents of the normal
2510  * checksum functions (in skbuff.h) except that they operate on the GRO
2511  * offsets and fields in sk_buff.
2512  */
2513 
2514 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2515 
2516 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2517 {
2518 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2519 }
2520 
2521 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2522 						      bool zero_okay,
2523 						      __sum16 check)
2524 {
2525 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2526 		skb_checksum_start_offset(skb) <
2527 		 skb_gro_offset(skb)) &&
2528 		!skb_at_gro_remcsum_start(skb) &&
2529 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2530 		(!zero_okay || check));
2531 }
2532 
2533 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2534 							   __wsum psum)
2535 {
2536 	if (NAPI_GRO_CB(skb)->csum_valid &&
2537 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2538 		return 0;
2539 
2540 	NAPI_GRO_CB(skb)->csum = psum;
2541 
2542 	return __skb_gro_checksum_complete(skb);
2543 }
2544 
2545 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2546 {
2547 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2548 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2549 		NAPI_GRO_CB(skb)->csum_cnt--;
2550 	} else {
2551 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2552 		 * verified a new top level checksum or an encapsulated one
2553 		 * during GRO. This saves work if we fallback to normal path.
2554 		 */
2555 		__skb_incr_checksum_unnecessary(skb);
2556 	}
2557 }
2558 
2559 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2560 				    compute_pseudo)			\
2561 ({									\
2562 	__sum16 __ret = 0;						\
2563 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2564 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2565 				compute_pseudo(skb, proto));		\
2566 	if (!__ret)							\
2567 		skb_gro_incr_csum_unnecessary(skb);			\
2568 	__ret;								\
2569 })
2570 
2571 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2572 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2573 
2574 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2575 					     compute_pseudo)		\
2576 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2577 
2578 #define skb_gro_checksum_simple_validate(skb)				\
2579 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2580 
2581 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2582 {
2583 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2584 		!NAPI_GRO_CB(skb)->csum_valid);
2585 }
2586 
2587 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2588 					      __sum16 check, __wsum pseudo)
2589 {
2590 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2591 	NAPI_GRO_CB(skb)->csum_valid = 1;
2592 }
2593 
2594 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2595 do {									\
2596 	if (__skb_gro_checksum_convert_check(skb))			\
2597 		__skb_gro_checksum_convert(skb, check,			\
2598 					   compute_pseudo(skb, proto));	\
2599 } while (0)
2600 
2601 struct gro_remcsum {
2602 	int offset;
2603 	__wsum delta;
2604 };
2605 
2606 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2607 {
2608 	grc->offset = 0;
2609 	grc->delta = 0;
2610 }
2611 
2612 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2613 					    unsigned int off, size_t hdrlen,
2614 					    int start, int offset,
2615 					    struct gro_remcsum *grc,
2616 					    bool nopartial)
2617 {
2618 	__wsum delta;
2619 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2620 
2621 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2622 
2623 	if (!nopartial) {
2624 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2625 		return ptr;
2626 	}
2627 
2628 	ptr = skb_gro_header_fast(skb, off);
2629 	if (skb_gro_header_hard(skb, off + plen)) {
2630 		ptr = skb_gro_header_slow(skb, off + plen, off);
2631 		if (!ptr)
2632 			return NULL;
2633 	}
2634 
2635 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2636 			       start, offset);
2637 
2638 	/* Adjust skb->csum since we changed the packet */
2639 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2640 
2641 	grc->offset = off + hdrlen + offset;
2642 	grc->delta = delta;
2643 
2644 	return ptr;
2645 }
2646 
2647 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2648 					   struct gro_remcsum *grc)
2649 {
2650 	void *ptr;
2651 	size_t plen = grc->offset + sizeof(u16);
2652 
2653 	if (!grc->delta)
2654 		return;
2655 
2656 	ptr = skb_gro_header_fast(skb, grc->offset);
2657 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2658 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2659 		if (!ptr)
2660 			return;
2661 	}
2662 
2663 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2664 }
2665 
2666 #ifdef CONFIG_XFRM_OFFLOAD
2667 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2668 {
2669 	if (PTR_ERR(pp) != -EINPROGRESS)
2670 		NAPI_GRO_CB(skb)->flush |= flush;
2671 }
2672 #else
2673 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2674 {
2675 	NAPI_GRO_CB(skb)->flush |= flush;
2676 }
2677 #endif
2678 
2679 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2680 				  unsigned short type,
2681 				  const void *daddr, const void *saddr,
2682 				  unsigned int len)
2683 {
2684 	if (!dev->header_ops || !dev->header_ops->create)
2685 		return 0;
2686 
2687 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2688 }
2689 
2690 static inline int dev_parse_header(const struct sk_buff *skb,
2691 				   unsigned char *haddr)
2692 {
2693 	const struct net_device *dev = skb->dev;
2694 
2695 	if (!dev->header_ops || !dev->header_ops->parse)
2696 		return 0;
2697 	return dev->header_ops->parse(skb, haddr);
2698 }
2699 
2700 /* ll_header must have at least hard_header_len allocated */
2701 static inline bool dev_validate_header(const struct net_device *dev,
2702 				       char *ll_header, int len)
2703 {
2704 	if (likely(len >= dev->hard_header_len))
2705 		return true;
2706 	if (len < dev->min_header_len)
2707 		return false;
2708 
2709 	if (capable(CAP_SYS_RAWIO)) {
2710 		memset(ll_header + len, 0, dev->hard_header_len - len);
2711 		return true;
2712 	}
2713 
2714 	if (dev->header_ops && dev->header_ops->validate)
2715 		return dev->header_ops->validate(ll_header, len);
2716 
2717 	return false;
2718 }
2719 
2720 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2721 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2722 static inline int unregister_gifconf(unsigned int family)
2723 {
2724 	return register_gifconf(family, NULL);
2725 }
2726 
2727 #ifdef CONFIG_NET_FLOW_LIMIT
2728 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2729 struct sd_flow_limit {
2730 	u64			count;
2731 	unsigned int		num_buckets;
2732 	unsigned int		history_head;
2733 	u16			history[FLOW_LIMIT_HISTORY];
2734 	u8			buckets[];
2735 };
2736 
2737 extern int netdev_flow_limit_table_len;
2738 #endif /* CONFIG_NET_FLOW_LIMIT */
2739 
2740 /*
2741  * Incoming packets are placed on per-CPU queues
2742  */
2743 struct softnet_data {
2744 	struct list_head	poll_list;
2745 	struct sk_buff_head	process_queue;
2746 
2747 	/* stats */
2748 	unsigned int		processed;
2749 	unsigned int		time_squeeze;
2750 	unsigned int		received_rps;
2751 #ifdef CONFIG_RPS
2752 	struct softnet_data	*rps_ipi_list;
2753 #endif
2754 #ifdef CONFIG_NET_FLOW_LIMIT
2755 	struct sd_flow_limit __rcu *flow_limit;
2756 #endif
2757 	struct Qdisc		*output_queue;
2758 	struct Qdisc		**output_queue_tailp;
2759 	struct sk_buff		*completion_queue;
2760 
2761 #ifdef CONFIG_RPS
2762 	/* input_queue_head should be written by cpu owning this struct,
2763 	 * and only read by other cpus. Worth using a cache line.
2764 	 */
2765 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
2766 
2767 	/* Elements below can be accessed between CPUs for RPS/RFS */
2768 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2769 	struct softnet_data	*rps_ipi_next;
2770 	unsigned int		cpu;
2771 	unsigned int		input_queue_tail;
2772 #endif
2773 	unsigned int		dropped;
2774 	struct sk_buff_head	input_pkt_queue;
2775 	struct napi_struct	backlog;
2776 
2777 };
2778 
2779 static inline void input_queue_head_incr(struct softnet_data *sd)
2780 {
2781 #ifdef CONFIG_RPS
2782 	sd->input_queue_head++;
2783 #endif
2784 }
2785 
2786 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2787 					      unsigned int *qtail)
2788 {
2789 #ifdef CONFIG_RPS
2790 	*qtail = ++sd->input_queue_tail;
2791 #endif
2792 }
2793 
2794 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2795 
2796 void __netif_schedule(struct Qdisc *q);
2797 void netif_schedule_queue(struct netdev_queue *txq);
2798 
2799 static inline void netif_tx_schedule_all(struct net_device *dev)
2800 {
2801 	unsigned int i;
2802 
2803 	for (i = 0; i < dev->num_tx_queues; i++)
2804 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2805 }
2806 
2807 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2808 {
2809 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2810 }
2811 
2812 /**
2813  *	netif_start_queue - allow transmit
2814  *	@dev: network device
2815  *
2816  *	Allow upper layers to call the device hard_start_xmit routine.
2817  */
2818 static inline void netif_start_queue(struct net_device *dev)
2819 {
2820 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2821 }
2822 
2823 static inline void netif_tx_start_all_queues(struct net_device *dev)
2824 {
2825 	unsigned int i;
2826 
2827 	for (i = 0; i < dev->num_tx_queues; i++) {
2828 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2829 		netif_tx_start_queue(txq);
2830 	}
2831 }
2832 
2833 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2834 
2835 /**
2836  *	netif_wake_queue - restart transmit
2837  *	@dev: network device
2838  *
2839  *	Allow upper layers to call the device hard_start_xmit routine.
2840  *	Used for flow control when transmit resources are available.
2841  */
2842 static inline void netif_wake_queue(struct net_device *dev)
2843 {
2844 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2845 }
2846 
2847 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2848 {
2849 	unsigned int i;
2850 
2851 	for (i = 0; i < dev->num_tx_queues; i++) {
2852 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2853 		netif_tx_wake_queue(txq);
2854 	}
2855 }
2856 
2857 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2858 {
2859 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2860 }
2861 
2862 /**
2863  *	netif_stop_queue - stop transmitted packets
2864  *	@dev: network device
2865  *
2866  *	Stop upper layers calling the device hard_start_xmit routine.
2867  *	Used for flow control when transmit resources are unavailable.
2868  */
2869 static inline void netif_stop_queue(struct net_device *dev)
2870 {
2871 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2872 }
2873 
2874 void netif_tx_stop_all_queues(struct net_device *dev);
2875 
2876 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2877 {
2878 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2879 }
2880 
2881 /**
2882  *	netif_queue_stopped - test if transmit queue is flowblocked
2883  *	@dev: network device
2884  *
2885  *	Test if transmit queue on device is currently unable to send.
2886  */
2887 static inline bool netif_queue_stopped(const struct net_device *dev)
2888 {
2889 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2890 }
2891 
2892 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2893 {
2894 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2895 }
2896 
2897 static inline bool
2898 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2899 {
2900 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2901 }
2902 
2903 static inline bool
2904 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2905 {
2906 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2907 }
2908 
2909 /**
2910  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2911  *	@dev_queue: pointer to transmit queue
2912  *
2913  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2914  * to give appropriate hint to the CPU.
2915  */
2916 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2917 {
2918 #ifdef CONFIG_BQL
2919 	prefetchw(&dev_queue->dql.num_queued);
2920 #endif
2921 }
2922 
2923 /**
2924  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2925  *	@dev_queue: pointer to transmit queue
2926  *
2927  * BQL enabled drivers might use this helper in their TX completion path,
2928  * to give appropriate hint to the CPU.
2929  */
2930 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2931 {
2932 #ifdef CONFIG_BQL
2933 	prefetchw(&dev_queue->dql.limit);
2934 #endif
2935 }
2936 
2937 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2938 					unsigned int bytes)
2939 {
2940 #ifdef CONFIG_BQL
2941 	dql_queued(&dev_queue->dql, bytes);
2942 
2943 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2944 		return;
2945 
2946 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2947 
2948 	/*
2949 	 * The XOFF flag must be set before checking the dql_avail below,
2950 	 * because in netdev_tx_completed_queue we update the dql_completed
2951 	 * before checking the XOFF flag.
2952 	 */
2953 	smp_mb();
2954 
2955 	/* check again in case another CPU has just made room avail */
2956 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2957 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2958 #endif
2959 }
2960 
2961 /**
2962  * 	netdev_sent_queue - report the number of bytes queued to hardware
2963  * 	@dev: network device
2964  * 	@bytes: number of bytes queued to the hardware device queue
2965  *
2966  * 	Report the number of bytes queued for sending/completion to the network
2967  * 	device hardware queue. @bytes should be a good approximation and should
2968  * 	exactly match netdev_completed_queue() @bytes
2969  */
2970 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2971 {
2972 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2973 }
2974 
2975 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2976 					     unsigned int pkts, unsigned int bytes)
2977 {
2978 #ifdef CONFIG_BQL
2979 	if (unlikely(!bytes))
2980 		return;
2981 
2982 	dql_completed(&dev_queue->dql, bytes);
2983 
2984 	/*
2985 	 * Without the memory barrier there is a small possiblity that
2986 	 * netdev_tx_sent_queue will miss the update and cause the queue to
2987 	 * be stopped forever
2988 	 */
2989 	smp_mb();
2990 
2991 	if (dql_avail(&dev_queue->dql) < 0)
2992 		return;
2993 
2994 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2995 		netif_schedule_queue(dev_queue);
2996 #endif
2997 }
2998 
2999 /**
3000  * 	netdev_completed_queue - report bytes and packets completed by device
3001  * 	@dev: network device
3002  * 	@pkts: actual number of packets sent over the medium
3003  * 	@bytes: actual number of bytes sent over the medium
3004  *
3005  * 	Report the number of bytes and packets transmitted by the network device
3006  * 	hardware queue over the physical medium, @bytes must exactly match the
3007  * 	@bytes amount passed to netdev_sent_queue()
3008  */
3009 static inline void netdev_completed_queue(struct net_device *dev,
3010 					  unsigned int pkts, unsigned int bytes)
3011 {
3012 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3013 }
3014 
3015 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3016 {
3017 #ifdef CONFIG_BQL
3018 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3019 	dql_reset(&q->dql);
3020 #endif
3021 }
3022 
3023 /**
3024  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3025  * 	@dev_queue: network device
3026  *
3027  * 	Reset the bytes and packet count of a network device and clear the
3028  * 	software flow control OFF bit for this network device
3029  */
3030 static inline void netdev_reset_queue(struct net_device *dev_queue)
3031 {
3032 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3033 }
3034 
3035 /**
3036  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3037  * 	@dev: network device
3038  * 	@queue_index: given tx queue index
3039  *
3040  * 	Returns 0 if given tx queue index >= number of device tx queues,
3041  * 	otherwise returns the originally passed tx queue index.
3042  */
3043 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3044 {
3045 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3046 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3047 				     dev->name, queue_index,
3048 				     dev->real_num_tx_queues);
3049 		return 0;
3050 	}
3051 
3052 	return queue_index;
3053 }
3054 
3055 /**
3056  *	netif_running - test if up
3057  *	@dev: network device
3058  *
3059  *	Test if the device has been brought up.
3060  */
3061 static inline bool netif_running(const struct net_device *dev)
3062 {
3063 	return test_bit(__LINK_STATE_START, &dev->state);
3064 }
3065 
3066 /*
3067  * Routines to manage the subqueues on a device.  We only need start,
3068  * stop, and a check if it's stopped.  All other device management is
3069  * done at the overall netdevice level.
3070  * Also test the device if we're multiqueue.
3071  */
3072 
3073 /**
3074  *	netif_start_subqueue - allow sending packets on subqueue
3075  *	@dev: network device
3076  *	@queue_index: sub queue index
3077  *
3078  * Start individual transmit queue of a device with multiple transmit queues.
3079  */
3080 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3081 {
3082 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3083 
3084 	netif_tx_start_queue(txq);
3085 }
3086 
3087 /**
3088  *	netif_stop_subqueue - stop sending packets on subqueue
3089  *	@dev: network device
3090  *	@queue_index: sub queue index
3091  *
3092  * Stop individual transmit queue of a device with multiple transmit queues.
3093  */
3094 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3095 {
3096 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3097 	netif_tx_stop_queue(txq);
3098 }
3099 
3100 /**
3101  *	netif_subqueue_stopped - test status of subqueue
3102  *	@dev: network device
3103  *	@queue_index: sub queue index
3104  *
3105  * Check individual transmit queue of a device with multiple transmit queues.
3106  */
3107 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3108 					    u16 queue_index)
3109 {
3110 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3111 
3112 	return netif_tx_queue_stopped(txq);
3113 }
3114 
3115 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3116 					  struct sk_buff *skb)
3117 {
3118 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3119 }
3120 
3121 /**
3122  *	netif_wake_subqueue - allow sending packets on subqueue
3123  *	@dev: network device
3124  *	@queue_index: sub queue index
3125  *
3126  * Resume individual transmit queue of a device with multiple transmit queues.
3127  */
3128 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3129 {
3130 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3131 
3132 	netif_tx_wake_queue(txq);
3133 }
3134 
3135 #ifdef CONFIG_XPS
3136 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3137 			u16 index);
3138 #else
3139 static inline int netif_set_xps_queue(struct net_device *dev,
3140 				      const struct cpumask *mask,
3141 				      u16 index)
3142 {
3143 	return 0;
3144 }
3145 #endif
3146 
3147 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3148 		  unsigned int num_tx_queues);
3149 
3150 /*
3151  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3152  * as a distribution range limit for the returned value.
3153  */
3154 static inline u16 skb_tx_hash(const struct net_device *dev,
3155 			      struct sk_buff *skb)
3156 {
3157 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3158 }
3159 
3160 /**
3161  *	netif_is_multiqueue - test if device has multiple transmit queues
3162  *	@dev: network device
3163  *
3164  * Check if device has multiple transmit queues
3165  */
3166 static inline bool netif_is_multiqueue(const struct net_device *dev)
3167 {
3168 	return dev->num_tx_queues > 1;
3169 }
3170 
3171 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3172 
3173 #ifdef CONFIG_SYSFS
3174 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3175 #else
3176 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3177 						unsigned int rxq)
3178 {
3179 	return 0;
3180 }
3181 #endif
3182 
3183 #ifdef CONFIG_SYSFS
3184 static inline unsigned int get_netdev_rx_queue_index(
3185 		struct netdev_rx_queue *queue)
3186 {
3187 	struct net_device *dev = queue->dev;
3188 	int index = queue - dev->_rx;
3189 
3190 	BUG_ON(index >= dev->num_rx_queues);
3191 	return index;
3192 }
3193 #endif
3194 
3195 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3196 int netif_get_num_default_rss_queues(void);
3197 
3198 enum skb_free_reason {
3199 	SKB_REASON_CONSUMED,
3200 	SKB_REASON_DROPPED,
3201 };
3202 
3203 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3204 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3205 
3206 /*
3207  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3208  * interrupt context or with hardware interrupts being disabled.
3209  * (in_irq() || irqs_disabled())
3210  *
3211  * We provide four helpers that can be used in following contexts :
3212  *
3213  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3214  *  replacing kfree_skb(skb)
3215  *
3216  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3217  *  Typically used in place of consume_skb(skb) in TX completion path
3218  *
3219  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3220  *  replacing kfree_skb(skb)
3221  *
3222  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3223  *  and consumed a packet. Used in place of consume_skb(skb)
3224  */
3225 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3226 {
3227 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3228 }
3229 
3230 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3231 {
3232 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3233 }
3234 
3235 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3236 {
3237 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3238 }
3239 
3240 static inline void dev_consume_skb_any(struct sk_buff *skb)
3241 {
3242 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3243 }
3244 
3245 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3246 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3247 int netif_rx(struct sk_buff *skb);
3248 int netif_rx_ni(struct sk_buff *skb);
3249 int netif_receive_skb(struct sk_buff *skb);
3250 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3251 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3252 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3253 gro_result_t napi_gro_frags(struct napi_struct *napi);
3254 struct packet_offload *gro_find_receive_by_type(__be16 type);
3255 struct packet_offload *gro_find_complete_by_type(__be16 type);
3256 
3257 static inline void napi_free_frags(struct napi_struct *napi)
3258 {
3259 	kfree_skb(napi->skb);
3260 	napi->skb = NULL;
3261 }
3262 
3263 bool netdev_is_rx_handler_busy(struct net_device *dev);
3264 int netdev_rx_handler_register(struct net_device *dev,
3265 			       rx_handler_func_t *rx_handler,
3266 			       void *rx_handler_data);
3267 void netdev_rx_handler_unregister(struct net_device *dev);
3268 
3269 bool dev_valid_name(const char *name);
3270 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3271 int dev_ethtool(struct net *net, struct ifreq *);
3272 unsigned int dev_get_flags(const struct net_device *);
3273 int __dev_change_flags(struct net_device *, unsigned int flags);
3274 int dev_change_flags(struct net_device *, unsigned int);
3275 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3276 			unsigned int gchanges);
3277 int dev_change_name(struct net_device *, const char *);
3278 int dev_set_alias(struct net_device *, const char *, size_t);
3279 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3280 int __dev_set_mtu(struct net_device *, int);
3281 int dev_set_mtu(struct net_device *, int);
3282 void dev_set_group(struct net_device *, int);
3283 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3284 int dev_change_carrier(struct net_device *, bool new_carrier);
3285 int dev_get_phys_port_id(struct net_device *dev,
3286 			 struct netdev_phys_item_id *ppid);
3287 int dev_get_phys_port_name(struct net_device *dev,
3288 			   char *name, size_t len);
3289 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3290 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3291 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3292 				    struct netdev_queue *txq, int *ret);
3293 
3294 typedef int (*xdp_op_t)(struct net_device *dev, struct netdev_xdp *xdp);
3295 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3296 		      int fd, u32 flags);
3297 u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id);
3298 
3299 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3300 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3301 bool is_skb_forwardable(const struct net_device *dev,
3302 			const struct sk_buff *skb);
3303 
3304 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3305 					       struct sk_buff *skb)
3306 {
3307 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3308 	    unlikely(!is_skb_forwardable(dev, skb))) {
3309 		atomic_long_inc(&dev->rx_dropped);
3310 		kfree_skb(skb);
3311 		return NET_RX_DROP;
3312 	}
3313 
3314 	skb_scrub_packet(skb, true);
3315 	skb->priority = 0;
3316 	return 0;
3317 }
3318 
3319 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3320 
3321 extern int		netdev_budget;
3322 extern unsigned int	netdev_budget_usecs;
3323 
3324 /* Called by rtnetlink.c:rtnl_unlock() */
3325 void netdev_run_todo(void);
3326 
3327 /**
3328  *	dev_put - release reference to device
3329  *	@dev: network device
3330  *
3331  * Release reference to device to allow it to be freed.
3332  */
3333 static inline void dev_put(struct net_device *dev)
3334 {
3335 	this_cpu_dec(*dev->pcpu_refcnt);
3336 }
3337 
3338 /**
3339  *	dev_hold - get reference to device
3340  *	@dev: network device
3341  *
3342  * Hold reference to device to keep it from being freed.
3343  */
3344 static inline void dev_hold(struct net_device *dev)
3345 {
3346 	this_cpu_inc(*dev->pcpu_refcnt);
3347 }
3348 
3349 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3350  * and _off may be called from IRQ context, but it is caller
3351  * who is responsible for serialization of these calls.
3352  *
3353  * The name carrier is inappropriate, these functions should really be
3354  * called netif_lowerlayer_*() because they represent the state of any
3355  * kind of lower layer not just hardware media.
3356  */
3357 
3358 void linkwatch_init_dev(struct net_device *dev);
3359 void linkwatch_fire_event(struct net_device *dev);
3360 void linkwatch_forget_dev(struct net_device *dev);
3361 
3362 /**
3363  *	netif_carrier_ok - test if carrier present
3364  *	@dev: network device
3365  *
3366  * Check if carrier is present on device
3367  */
3368 static inline bool netif_carrier_ok(const struct net_device *dev)
3369 {
3370 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3371 }
3372 
3373 unsigned long dev_trans_start(struct net_device *dev);
3374 
3375 void __netdev_watchdog_up(struct net_device *dev);
3376 
3377 void netif_carrier_on(struct net_device *dev);
3378 
3379 void netif_carrier_off(struct net_device *dev);
3380 
3381 /**
3382  *	netif_dormant_on - mark device as dormant.
3383  *	@dev: network device
3384  *
3385  * Mark device as dormant (as per RFC2863).
3386  *
3387  * The dormant state indicates that the relevant interface is not
3388  * actually in a condition to pass packets (i.e., it is not 'up') but is
3389  * in a "pending" state, waiting for some external event.  For "on-
3390  * demand" interfaces, this new state identifies the situation where the
3391  * interface is waiting for events to place it in the up state.
3392  */
3393 static inline void netif_dormant_on(struct net_device *dev)
3394 {
3395 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3396 		linkwatch_fire_event(dev);
3397 }
3398 
3399 /**
3400  *	netif_dormant_off - set device as not dormant.
3401  *	@dev: network device
3402  *
3403  * Device is not in dormant state.
3404  */
3405 static inline void netif_dormant_off(struct net_device *dev)
3406 {
3407 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3408 		linkwatch_fire_event(dev);
3409 }
3410 
3411 /**
3412  *	netif_dormant - test if device is dormant
3413  *	@dev: network device
3414  *
3415  * Check if device is dormant.
3416  */
3417 static inline bool netif_dormant(const struct net_device *dev)
3418 {
3419 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3420 }
3421 
3422 
3423 /**
3424  *	netif_oper_up - test if device is operational
3425  *	@dev: network device
3426  *
3427  * Check if carrier is operational
3428  */
3429 static inline bool netif_oper_up(const struct net_device *dev)
3430 {
3431 	return (dev->operstate == IF_OPER_UP ||
3432 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3433 }
3434 
3435 /**
3436  *	netif_device_present - is device available or removed
3437  *	@dev: network device
3438  *
3439  * Check if device has not been removed from system.
3440  */
3441 static inline bool netif_device_present(struct net_device *dev)
3442 {
3443 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3444 }
3445 
3446 void netif_device_detach(struct net_device *dev);
3447 
3448 void netif_device_attach(struct net_device *dev);
3449 
3450 /*
3451  * Network interface message level settings
3452  */
3453 
3454 enum {
3455 	NETIF_MSG_DRV		= 0x0001,
3456 	NETIF_MSG_PROBE		= 0x0002,
3457 	NETIF_MSG_LINK		= 0x0004,
3458 	NETIF_MSG_TIMER		= 0x0008,
3459 	NETIF_MSG_IFDOWN	= 0x0010,
3460 	NETIF_MSG_IFUP		= 0x0020,
3461 	NETIF_MSG_RX_ERR	= 0x0040,
3462 	NETIF_MSG_TX_ERR	= 0x0080,
3463 	NETIF_MSG_TX_QUEUED	= 0x0100,
3464 	NETIF_MSG_INTR		= 0x0200,
3465 	NETIF_MSG_TX_DONE	= 0x0400,
3466 	NETIF_MSG_RX_STATUS	= 0x0800,
3467 	NETIF_MSG_PKTDATA	= 0x1000,
3468 	NETIF_MSG_HW		= 0x2000,
3469 	NETIF_MSG_WOL		= 0x4000,
3470 };
3471 
3472 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3473 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3474 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3475 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3476 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3477 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3478 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3479 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3480 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3481 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3482 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3483 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3484 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3485 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3486 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3487 
3488 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3489 {
3490 	/* use default */
3491 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3492 		return default_msg_enable_bits;
3493 	if (debug_value == 0)	/* no output */
3494 		return 0;
3495 	/* set low N bits */
3496 	return (1 << debug_value) - 1;
3497 }
3498 
3499 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3500 {
3501 	spin_lock(&txq->_xmit_lock);
3502 	txq->xmit_lock_owner = cpu;
3503 }
3504 
3505 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3506 {
3507 	__acquire(&txq->_xmit_lock);
3508 	return true;
3509 }
3510 
3511 static inline void __netif_tx_release(struct netdev_queue *txq)
3512 {
3513 	__release(&txq->_xmit_lock);
3514 }
3515 
3516 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3517 {
3518 	spin_lock_bh(&txq->_xmit_lock);
3519 	txq->xmit_lock_owner = smp_processor_id();
3520 }
3521 
3522 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3523 {
3524 	bool ok = spin_trylock(&txq->_xmit_lock);
3525 	if (likely(ok))
3526 		txq->xmit_lock_owner = smp_processor_id();
3527 	return ok;
3528 }
3529 
3530 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3531 {
3532 	txq->xmit_lock_owner = -1;
3533 	spin_unlock(&txq->_xmit_lock);
3534 }
3535 
3536 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3537 {
3538 	txq->xmit_lock_owner = -1;
3539 	spin_unlock_bh(&txq->_xmit_lock);
3540 }
3541 
3542 static inline void txq_trans_update(struct netdev_queue *txq)
3543 {
3544 	if (txq->xmit_lock_owner != -1)
3545 		txq->trans_start = jiffies;
3546 }
3547 
3548 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3549 static inline void netif_trans_update(struct net_device *dev)
3550 {
3551 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3552 
3553 	if (txq->trans_start != jiffies)
3554 		txq->trans_start = jiffies;
3555 }
3556 
3557 /**
3558  *	netif_tx_lock - grab network device transmit lock
3559  *	@dev: network device
3560  *
3561  * Get network device transmit lock
3562  */
3563 static inline void netif_tx_lock(struct net_device *dev)
3564 {
3565 	unsigned int i;
3566 	int cpu;
3567 
3568 	spin_lock(&dev->tx_global_lock);
3569 	cpu = smp_processor_id();
3570 	for (i = 0; i < dev->num_tx_queues; i++) {
3571 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3572 
3573 		/* We are the only thread of execution doing a
3574 		 * freeze, but we have to grab the _xmit_lock in
3575 		 * order to synchronize with threads which are in
3576 		 * the ->hard_start_xmit() handler and already
3577 		 * checked the frozen bit.
3578 		 */
3579 		__netif_tx_lock(txq, cpu);
3580 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3581 		__netif_tx_unlock(txq);
3582 	}
3583 }
3584 
3585 static inline void netif_tx_lock_bh(struct net_device *dev)
3586 {
3587 	local_bh_disable();
3588 	netif_tx_lock(dev);
3589 }
3590 
3591 static inline void netif_tx_unlock(struct net_device *dev)
3592 {
3593 	unsigned int i;
3594 
3595 	for (i = 0; i < dev->num_tx_queues; i++) {
3596 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3597 
3598 		/* No need to grab the _xmit_lock here.  If the
3599 		 * queue is not stopped for another reason, we
3600 		 * force a schedule.
3601 		 */
3602 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3603 		netif_schedule_queue(txq);
3604 	}
3605 	spin_unlock(&dev->tx_global_lock);
3606 }
3607 
3608 static inline void netif_tx_unlock_bh(struct net_device *dev)
3609 {
3610 	netif_tx_unlock(dev);
3611 	local_bh_enable();
3612 }
3613 
3614 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3615 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3616 		__netif_tx_lock(txq, cpu);		\
3617 	} else {					\
3618 		__netif_tx_acquire(txq);		\
3619 	}						\
3620 }
3621 
3622 #define HARD_TX_TRYLOCK(dev, txq)			\
3623 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3624 		__netif_tx_trylock(txq) :		\
3625 		__netif_tx_acquire(txq))
3626 
3627 #define HARD_TX_UNLOCK(dev, txq) {			\
3628 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3629 		__netif_tx_unlock(txq);			\
3630 	} else {					\
3631 		__netif_tx_release(txq);		\
3632 	}						\
3633 }
3634 
3635 static inline void netif_tx_disable(struct net_device *dev)
3636 {
3637 	unsigned int i;
3638 	int cpu;
3639 
3640 	local_bh_disable();
3641 	cpu = smp_processor_id();
3642 	for (i = 0; i < dev->num_tx_queues; i++) {
3643 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3644 
3645 		__netif_tx_lock(txq, cpu);
3646 		netif_tx_stop_queue(txq);
3647 		__netif_tx_unlock(txq);
3648 	}
3649 	local_bh_enable();
3650 }
3651 
3652 static inline void netif_addr_lock(struct net_device *dev)
3653 {
3654 	spin_lock(&dev->addr_list_lock);
3655 }
3656 
3657 static inline void netif_addr_lock_nested(struct net_device *dev)
3658 {
3659 	int subclass = SINGLE_DEPTH_NESTING;
3660 
3661 	if (dev->netdev_ops->ndo_get_lock_subclass)
3662 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3663 
3664 	spin_lock_nested(&dev->addr_list_lock, subclass);
3665 }
3666 
3667 static inline void netif_addr_lock_bh(struct net_device *dev)
3668 {
3669 	spin_lock_bh(&dev->addr_list_lock);
3670 }
3671 
3672 static inline void netif_addr_unlock(struct net_device *dev)
3673 {
3674 	spin_unlock(&dev->addr_list_lock);
3675 }
3676 
3677 static inline void netif_addr_unlock_bh(struct net_device *dev)
3678 {
3679 	spin_unlock_bh(&dev->addr_list_lock);
3680 }
3681 
3682 /*
3683  * dev_addrs walker. Should be used only for read access. Call with
3684  * rcu_read_lock held.
3685  */
3686 #define for_each_dev_addr(dev, ha) \
3687 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3688 
3689 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3690 
3691 void ether_setup(struct net_device *dev);
3692 
3693 /* Support for loadable net-drivers */
3694 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3695 				    unsigned char name_assign_type,
3696 				    void (*setup)(struct net_device *),
3697 				    unsigned int txqs, unsigned int rxqs);
3698 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3699 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3700 
3701 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3702 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3703 			 count)
3704 
3705 int register_netdev(struct net_device *dev);
3706 void unregister_netdev(struct net_device *dev);
3707 
3708 /* General hardware address lists handling functions */
3709 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3710 		   struct netdev_hw_addr_list *from_list, int addr_len);
3711 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3712 		      struct netdev_hw_addr_list *from_list, int addr_len);
3713 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3714 		       struct net_device *dev,
3715 		       int (*sync)(struct net_device *, const unsigned char *),
3716 		       int (*unsync)(struct net_device *,
3717 				     const unsigned char *));
3718 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3719 			  struct net_device *dev,
3720 			  int (*unsync)(struct net_device *,
3721 					const unsigned char *));
3722 void __hw_addr_init(struct netdev_hw_addr_list *list);
3723 
3724 /* Functions used for device addresses handling */
3725 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3726 		 unsigned char addr_type);
3727 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3728 		 unsigned char addr_type);
3729 void dev_addr_flush(struct net_device *dev);
3730 int dev_addr_init(struct net_device *dev);
3731 
3732 /* Functions used for unicast addresses handling */
3733 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3734 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3735 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3736 int dev_uc_sync(struct net_device *to, struct net_device *from);
3737 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3738 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3739 void dev_uc_flush(struct net_device *dev);
3740 void dev_uc_init(struct net_device *dev);
3741 
3742 /**
3743  *  __dev_uc_sync - Synchonize device's unicast list
3744  *  @dev:  device to sync
3745  *  @sync: function to call if address should be added
3746  *  @unsync: function to call if address should be removed
3747  *
3748  *  Add newly added addresses to the interface, and release
3749  *  addresses that have been deleted.
3750  */
3751 static inline int __dev_uc_sync(struct net_device *dev,
3752 				int (*sync)(struct net_device *,
3753 					    const unsigned char *),
3754 				int (*unsync)(struct net_device *,
3755 					      const unsigned char *))
3756 {
3757 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3758 }
3759 
3760 /**
3761  *  __dev_uc_unsync - Remove synchronized addresses from device
3762  *  @dev:  device to sync
3763  *  @unsync: function to call if address should be removed
3764  *
3765  *  Remove all addresses that were added to the device by dev_uc_sync().
3766  */
3767 static inline void __dev_uc_unsync(struct net_device *dev,
3768 				   int (*unsync)(struct net_device *,
3769 						 const unsigned char *))
3770 {
3771 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3772 }
3773 
3774 /* Functions used for multicast addresses handling */
3775 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3776 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3777 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3778 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3779 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3780 int dev_mc_sync(struct net_device *to, struct net_device *from);
3781 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3782 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3783 void dev_mc_flush(struct net_device *dev);
3784 void dev_mc_init(struct net_device *dev);
3785 
3786 /**
3787  *  __dev_mc_sync - Synchonize device's multicast list
3788  *  @dev:  device to sync
3789  *  @sync: function to call if address should be added
3790  *  @unsync: function to call if address should be removed
3791  *
3792  *  Add newly added addresses to the interface, and release
3793  *  addresses that have been deleted.
3794  */
3795 static inline int __dev_mc_sync(struct net_device *dev,
3796 				int (*sync)(struct net_device *,
3797 					    const unsigned char *),
3798 				int (*unsync)(struct net_device *,
3799 					      const unsigned char *))
3800 {
3801 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3802 }
3803 
3804 /**
3805  *  __dev_mc_unsync - Remove synchronized addresses from device
3806  *  @dev:  device to sync
3807  *  @unsync: function to call if address should be removed
3808  *
3809  *  Remove all addresses that were added to the device by dev_mc_sync().
3810  */
3811 static inline void __dev_mc_unsync(struct net_device *dev,
3812 				   int (*unsync)(struct net_device *,
3813 						 const unsigned char *))
3814 {
3815 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3816 }
3817 
3818 /* Functions used for secondary unicast and multicast support */
3819 void dev_set_rx_mode(struct net_device *dev);
3820 void __dev_set_rx_mode(struct net_device *dev);
3821 int dev_set_promiscuity(struct net_device *dev, int inc);
3822 int dev_set_allmulti(struct net_device *dev, int inc);
3823 void netdev_state_change(struct net_device *dev);
3824 void netdev_notify_peers(struct net_device *dev);
3825 void netdev_features_change(struct net_device *dev);
3826 /* Load a device via the kmod */
3827 void dev_load(struct net *net, const char *name);
3828 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3829 					struct rtnl_link_stats64 *storage);
3830 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3831 			     const struct net_device_stats *netdev_stats);
3832 
3833 extern int		netdev_max_backlog;
3834 extern int		netdev_tstamp_prequeue;
3835 extern int		weight_p;
3836 extern int		dev_weight_rx_bias;
3837 extern int		dev_weight_tx_bias;
3838 extern int		dev_rx_weight;
3839 extern int		dev_tx_weight;
3840 
3841 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3842 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3843 						     struct list_head **iter);
3844 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3845 						     struct list_head **iter);
3846 
3847 /* iterate through upper list, must be called under RCU read lock */
3848 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3849 	for (iter = &(dev)->adj_list.upper, \
3850 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3851 	     updev; \
3852 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3853 
3854 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
3855 				  int (*fn)(struct net_device *upper_dev,
3856 					    void *data),
3857 				  void *data);
3858 
3859 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
3860 				  struct net_device *upper_dev);
3861 
3862 void *netdev_lower_get_next_private(struct net_device *dev,
3863 				    struct list_head **iter);
3864 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3865 					struct list_head **iter);
3866 
3867 #define netdev_for_each_lower_private(dev, priv, iter) \
3868 	for (iter = (dev)->adj_list.lower.next, \
3869 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3870 	     priv; \
3871 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3872 
3873 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3874 	for (iter = &(dev)->adj_list.lower, \
3875 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3876 	     priv; \
3877 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3878 
3879 void *netdev_lower_get_next(struct net_device *dev,
3880 				struct list_head **iter);
3881 
3882 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3883 	for (iter = (dev)->adj_list.lower.next, \
3884 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3885 	     ldev; \
3886 	     ldev = netdev_lower_get_next(dev, &(iter)))
3887 
3888 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3889 					     struct list_head **iter);
3890 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3891 						 struct list_head **iter);
3892 
3893 int netdev_walk_all_lower_dev(struct net_device *dev,
3894 			      int (*fn)(struct net_device *lower_dev,
3895 					void *data),
3896 			      void *data);
3897 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
3898 				  int (*fn)(struct net_device *lower_dev,
3899 					    void *data),
3900 				  void *data);
3901 
3902 void *netdev_adjacent_get_private(struct list_head *adj_list);
3903 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3904 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3905 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3906 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3907 int netdev_master_upper_dev_link(struct net_device *dev,
3908 				 struct net_device *upper_dev,
3909 				 void *upper_priv, void *upper_info);
3910 void netdev_upper_dev_unlink(struct net_device *dev,
3911 			     struct net_device *upper_dev);
3912 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3913 void *netdev_lower_dev_get_private(struct net_device *dev,
3914 				   struct net_device *lower_dev);
3915 void netdev_lower_state_changed(struct net_device *lower_dev,
3916 				void *lower_state_info);
3917 
3918 /* RSS keys are 40 or 52 bytes long */
3919 #define NETDEV_RSS_KEY_LEN 52
3920 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3921 void netdev_rss_key_fill(void *buffer, size_t len);
3922 
3923 int dev_get_nest_level(struct net_device *dev);
3924 int skb_checksum_help(struct sk_buff *skb);
3925 int skb_crc32c_csum_help(struct sk_buff *skb);
3926 int skb_csum_hwoffload_help(struct sk_buff *skb,
3927 			    const netdev_features_t features);
3928 
3929 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3930 				  netdev_features_t features, bool tx_path);
3931 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3932 				    netdev_features_t features);
3933 
3934 struct netdev_bonding_info {
3935 	ifslave	slave;
3936 	ifbond	master;
3937 };
3938 
3939 struct netdev_notifier_bonding_info {
3940 	struct netdev_notifier_info info; /* must be first */
3941 	struct netdev_bonding_info  bonding_info;
3942 };
3943 
3944 void netdev_bonding_info_change(struct net_device *dev,
3945 				struct netdev_bonding_info *bonding_info);
3946 
3947 static inline
3948 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3949 {
3950 	return __skb_gso_segment(skb, features, true);
3951 }
3952 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3953 
3954 static inline bool can_checksum_protocol(netdev_features_t features,
3955 					 __be16 protocol)
3956 {
3957 	if (protocol == htons(ETH_P_FCOE))
3958 		return !!(features & NETIF_F_FCOE_CRC);
3959 
3960 	/* Assume this is an IP checksum (not SCTP CRC) */
3961 
3962 	if (features & NETIF_F_HW_CSUM) {
3963 		/* Can checksum everything */
3964 		return true;
3965 	}
3966 
3967 	switch (protocol) {
3968 	case htons(ETH_P_IP):
3969 		return !!(features & NETIF_F_IP_CSUM);
3970 	case htons(ETH_P_IPV6):
3971 		return !!(features & NETIF_F_IPV6_CSUM);
3972 	default:
3973 		return false;
3974 	}
3975 }
3976 
3977 #ifdef CONFIG_BUG
3978 void netdev_rx_csum_fault(struct net_device *dev);
3979 #else
3980 static inline void netdev_rx_csum_fault(struct net_device *dev)
3981 {
3982 }
3983 #endif
3984 /* rx skb timestamps */
3985 void net_enable_timestamp(void);
3986 void net_disable_timestamp(void);
3987 
3988 #ifdef CONFIG_PROC_FS
3989 int __init dev_proc_init(void);
3990 #else
3991 #define dev_proc_init() 0
3992 #endif
3993 
3994 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3995 					      struct sk_buff *skb, struct net_device *dev,
3996 					      bool more)
3997 {
3998 	skb->xmit_more = more ? 1 : 0;
3999 	return ops->ndo_start_xmit(skb, dev);
4000 }
4001 
4002 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4003 					    struct netdev_queue *txq, bool more)
4004 {
4005 	const struct net_device_ops *ops = dev->netdev_ops;
4006 	int rc;
4007 
4008 	rc = __netdev_start_xmit(ops, skb, dev, more);
4009 	if (rc == NETDEV_TX_OK)
4010 		txq_trans_update(txq);
4011 
4012 	return rc;
4013 }
4014 
4015 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4016 				const void *ns);
4017 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4018 				 const void *ns);
4019 
4020 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4021 {
4022 	return netdev_class_create_file_ns(class_attr, NULL);
4023 }
4024 
4025 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4026 {
4027 	netdev_class_remove_file_ns(class_attr, NULL);
4028 }
4029 
4030 extern const struct kobj_ns_type_operations net_ns_type_operations;
4031 
4032 const char *netdev_drivername(const struct net_device *dev);
4033 
4034 void linkwatch_run_queue(void);
4035 
4036 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4037 							  netdev_features_t f2)
4038 {
4039 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4040 		if (f1 & NETIF_F_HW_CSUM)
4041 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4042 		else
4043 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4044 	}
4045 
4046 	return f1 & f2;
4047 }
4048 
4049 static inline netdev_features_t netdev_get_wanted_features(
4050 	struct net_device *dev)
4051 {
4052 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4053 }
4054 netdev_features_t netdev_increment_features(netdev_features_t all,
4055 	netdev_features_t one, netdev_features_t mask);
4056 
4057 /* Allow TSO being used on stacked device :
4058  * Performing the GSO segmentation before last device
4059  * is a performance improvement.
4060  */
4061 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4062 							netdev_features_t mask)
4063 {
4064 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4065 }
4066 
4067 int __netdev_update_features(struct net_device *dev);
4068 void netdev_update_features(struct net_device *dev);
4069 void netdev_change_features(struct net_device *dev);
4070 
4071 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4072 					struct net_device *dev);
4073 
4074 netdev_features_t passthru_features_check(struct sk_buff *skb,
4075 					  struct net_device *dev,
4076 					  netdev_features_t features);
4077 netdev_features_t netif_skb_features(struct sk_buff *skb);
4078 
4079 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4080 {
4081 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4082 
4083 	/* check flags correspondence */
4084 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4085 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4086 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4087 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4088 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4089 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4090 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4091 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4092 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4093 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4094 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4095 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4096 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4097 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4098 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4099 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4100 
4101 	return (features & feature) == feature;
4102 }
4103 
4104 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4105 {
4106 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4107 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4108 }
4109 
4110 static inline bool netif_needs_gso(struct sk_buff *skb,
4111 				   netdev_features_t features)
4112 {
4113 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4114 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4115 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4116 }
4117 
4118 static inline void netif_set_gso_max_size(struct net_device *dev,
4119 					  unsigned int size)
4120 {
4121 	dev->gso_max_size = size;
4122 }
4123 
4124 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4125 					int pulled_hlen, u16 mac_offset,
4126 					int mac_len)
4127 {
4128 	skb->protocol = protocol;
4129 	skb->encapsulation = 1;
4130 	skb_push(skb, pulled_hlen);
4131 	skb_reset_transport_header(skb);
4132 	skb->mac_header = mac_offset;
4133 	skb->network_header = skb->mac_header + mac_len;
4134 	skb->mac_len = mac_len;
4135 }
4136 
4137 static inline bool netif_is_macsec(const struct net_device *dev)
4138 {
4139 	return dev->priv_flags & IFF_MACSEC;
4140 }
4141 
4142 static inline bool netif_is_macvlan(const struct net_device *dev)
4143 {
4144 	return dev->priv_flags & IFF_MACVLAN;
4145 }
4146 
4147 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4148 {
4149 	return dev->priv_flags & IFF_MACVLAN_PORT;
4150 }
4151 
4152 static inline bool netif_is_ipvlan(const struct net_device *dev)
4153 {
4154 	return dev->priv_flags & IFF_IPVLAN_SLAVE;
4155 }
4156 
4157 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4158 {
4159 	return dev->priv_flags & IFF_IPVLAN_MASTER;
4160 }
4161 
4162 static inline bool netif_is_bond_master(const struct net_device *dev)
4163 {
4164 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4165 }
4166 
4167 static inline bool netif_is_bond_slave(const struct net_device *dev)
4168 {
4169 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4170 }
4171 
4172 static inline bool netif_supports_nofcs(struct net_device *dev)
4173 {
4174 	return dev->priv_flags & IFF_SUPP_NOFCS;
4175 }
4176 
4177 static inline bool netif_is_l3_master(const struct net_device *dev)
4178 {
4179 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4180 }
4181 
4182 static inline bool netif_is_l3_slave(const struct net_device *dev)
4183 {
4184 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4185 }
4186 
4187 static inline bool netif_is_bridge_master(const struct net_device *dev)
4188 {
4189 	return dev->priv_flags & IFF_EBRIDGE;
4190 }
4191 
4192 static inline bool netif_is_bridge_port(const struct net_device *dev)
4193 {
4194 	return dev->priv_flags & IFF_BRIDGE_PORT;
4195 }
4196 
4197 static inline bool netif_is_ovs_master(const struct net_device *dev)
4198 {
4199 	return dev->priv_flags & IFF_OPENVSWITCH;
4200 }
4201 
4202 static inline bool netif_is_ovs_port(const struct net_device *dev)
4203 {
4204 	return dev->priv_flags & IFF_OVS_DATAPATH;
4205 }
4206 
4207 static inline bool netif_is_team_master(const struct net_device *dev)
4208 {
4209 	return dev->priv_flags & IFF_TEAM;
4210 }
4211 
4212 static inline bool netif_is_team_port(const struct net_device *dev)
4213 {
4214 	return dev->priv_flags & IFF_TEAM_PORT;
4215 }
4216 
4217 static inline bool netif_is_lag_master(const struct net_device *dev)
4218 {
4219 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4220 }
4221 
4222 static inline bool netif_is_lag_port(const struct net_device *dev)
4223 {
4224 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4225 }
4226 
4227 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4228 {
4229 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4230 }
4231 
4232 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4233 static inline void netif_keep_dst(struct net_device *dev)
4234 {
4235 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4236 }
4237 
4238 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4239 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4240 {
4241 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4242 	return dev->priv_flags & IFF_MACSEC;
4243 }
4244 
4245 extern struct pernet_operations __net_initdata loopback_net_ops;
4246 
4247 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4248 
4249 /* netdev_printk helpers, similar to dev_printk */
4250 
4251 static inline const char *netdev_name(const struct net_device *dev)
4252 {
4253 	if (!dev->name[0] || strchr(dev->name, '%'))
4254 		return "(unnamed net_device)";
4255 	return dev->name;
4256 }
4257 
4258 static inline bool netdev_unregistering(const struct net_device *dev)
4259 {
4260 	return dev->reg_state == NETREG_UNREGISTERING;
4261 }
4262 
4263 static inline const char *netdev_reg_state(const struct net_device *dev)
4264 {
4265 	switch (dev->reg_state) {
4266 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4267 	case NETREG_REGISTERED: return "";
4268 	case NETREG_UNREGISTERING: return " (unregistering)";
4269 	case NETREG_UNREGISTERED: return " (unregistered)";
4270 	case NETREG_RELEASED: return " (released)";
4271 	case NETREG_DUMMY: return " (dummy)";
4272 	}
4273 
4274 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4275 	return " (unknown)";
4276 }
4277 
4278 __printf(3, 4)
4279 void netdev_printk(const char *level, const struct net_device *dev,
4280 		   const char *format, ...);
4281 __printf(2, 3)
4282 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4283 __printf(2, 3)
4284 void netdev_alert(const struct net_device *dev, const char *format, ...);
4285 __printf(2, 3)
4286 void netdev_crit(const struct net_device *dev, const char *format, ...);
4287 __printf(2, 3)
4288 void netdev_err(const struct net_device *dev, const char *format, ...);
4289 __printf(2, 3)
4290 void netdev_warn(const struct net_device *dev, const char *format, ...);
4291 __printf(2, 3)
4292 void netdev_notice(const struct net_device *dev, const char *format, ...);
4293 __printf(2, 3)
4294 void netdev_info(const struct net_device *dev, const char *format, ...);
4295 
4296 #define MODULE_ALIAS_NETDEV(device) \
4297 	MODULE_ALIAS("netdev-" device)
4298 
4299 #if defined(CONFIG_DYNAMIC_DEBUG)
4300 #define netdev_dbg(__dev, format, args...)			\
4301 do {								\
4302 	dynamic_netdev_dbg(__dev, format, ##args);		\
4303 } while (0)
4304 #elif defined(DEBUG)
4305 #define netdev_dbg(__dev, format, args...)			\
4306 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4307 #else
4308 #define netdev_dbg(__dev, format, args...)			\
4309 ({								\
4310 	if (0)							\
4311 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4312 })
4313 #endif
4314 
4315 #if defined(VERBOSE_DEBUG)
4316 #define netdev_vdbg	netdev_dbg
4317 #else
4318 
4319 #define netdev_vdbg(dev, format, args...)			\
4320 ({								\
4321 	if (0)							\
4322 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4323 	0;							\
4324 })
4325 #endif
4326 
4327 /*
4328  * netdev_WARN() acts like dev_printk(), but with the key difference
4329  * of using a WARN/WARN_ON to get the message out, including the
4330  * file/line information and a backtrace.
4331  */
4332 #define netdev_WARN(dev, format, args...)			\
4333 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
4334 	     netdev_reg_state(dev), ##args)
4335 
4336 /* netif printk helpers, similar to netdev_printk */
4337 
4338 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4339 do {					  			\
4340 	if (netif_msg_##type(priv))				\
4341 		netdev_printk(level, (dev), fmt, ##args);	\
4342 } while (0)
4343 
4344 #define netif_level(level, priv, type, dev, fmt, args...)	\
4345 do {								\
4346 	if (netif_msg_##type(priv))				\
4347 		netdev_##level(dev, fmt, ##args);		\
4348 } while (0)
4349 
4350 #define netif_emerg(priv, type, dev, fmt, args...)		\
4351 	netif_level(emerg, priv, type, dev, fmt, ##args)
4352 #define netif_alert(priv, type, dev, fmt, args...)		\
4353 	netif_level(alert, priv, type, dev, fmt, ##args)
4354 #define netif_crit(priv, type, dev, fmt, args...)		\
4355 	netif_level(crit, priv, type, dev, fmt, ##args)
4356 #define netif_err(priv, type, dev, fmt, args...)		\
4357 	netif_level(err, priv, type, dev, fmt, ##args)
4358 #define netif_warn(priv, type, dev, fmt, args...)		\
4359 	netif_level(warn, priv, type, dev, fmt, ##args)
4360 #define netif_notice(priv, type, dev, fmt, args...)		\
4361 	netif_level(notice, priv, type, dev, fmt, ##args)
4362 #define netif_info(priv, type, dev, fmt, args...)		\
4363 	netif_level(info, priv, type, dev, fmt, ##args)
4364 
4365 #if defined(CONFIG_DYNAMIC_DEBUG)
4366 #define netif_dbg(priv, type, netdev, format, args...)		\
4367 do {								\
4368 	if (netif_msg_##type(priv))				\
4369 		dynamic_netdev_dbg(netdev, format, ##args);	\
4370 } while (0)
4371 #elif defined(DEBUG)
4372 #define netif_dbg(priv, type, dev, format, args...)		\
4373 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4374 #else
4375 #define netif_dbg(priv, type, dev, format, args...)			\
4376 ({									\
4377 	if (0)								\
4378 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4379 	0;								\
4380 })
4381 #endif
4382 
4383 /* if @cond then downgrade to debug, else print at @level */
4384 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4385 	do {                                                              \
4386 		if (cond)                                                 \
4387 			netif_dbg(priv, type, netdev, fmt, ##args);       \
4388 		else                                                      \
4389 			netif_ ## level(priv, type, netdev, fmt, ##args); \
4390 	} while (0)
4391 
4392 #if defined(VERBOSE_DEBUG)
4393 #define netif_vdbg	netif_dbg
4394 #else
4395 #define netif_vdbg(priv, type, dev, format, args...)		\
4396 ({								\
4397 	if (0)							\
4398 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4399 	0;							\
4400 })
4401 #endif
4402 
4403 /*
4404  *	The list of packet types we will receive (as opposed to discard)
4405  *	and the routines to invoke.
4406  *
4407  *	Why 16. Because with 16 the only overlap we get on a hash of the
4408  *	low nibble of the protocol value is RARP/SNAP/X.25.
4409  *
4410  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4411  *             sure which should go first, but I bet it won't make much
4412  *             difference if we are running VLANs.  The good news is that
4413  *             this protocol won't be in the list unless compiled in, so
4414  *             the average user (w/out VLANs) will not be adversely affected.
4415  *             --BLG
4416  *
4417  *		0800	IP
4418  *		8100    802.1Q VLAN
4419  *		0001	802.3
4420  *		0002	AX.25
4421  *		0004	802.2
4422  *		8035	RARP
4423  *		0005	SNAP
4424  *		0805	X.25
4425  *		0806	ARP
4426  *		8137	IPX
4427  *		0009	Localtalk
4428  *		86DD	IPv6
4429  */
4430 #define PTYPE_HASH_SIZE	(16)
4431 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4432 
4433 #endif	/* _LINUX_NETDEVICE_H */
4434