1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <[email protected]> 13 * Corey Minyard <[email protected]> 14 * Donald J. Becker, <[email protected]> 15 * Alan Cox, <[email protected]> 16 * Bjorn Ekwall. <[email protected]> 17 * Pekka Riikonen <[email protected]> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21 #ifndef _LINUX_NETDEVICE_H 22 #define _LINUX_NETDEVICE_H 23 24 #include <linux/timer.h> 25 #include <linux/bug.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/prefetch.h> 29 #include <asm/cache.h> 30 #include <asm/byteorder.h> 31 #include <asm/local.h> 32 33 #include <linux/percpu.h> 34 #include <linux/rculist.h> 35 #include <linux/workqueue.h> 36 #include <linux/dynamic_queue_limits.h> 37 38 #include <net/net_namespace.h> 39 #ifdef CONFIG_DCB 40 #include <net/dcbnl.h> 41 #endif 42 #include <net/netprio_cgroup.h> 43 #include <linux/netdev_features.h> 44 #include <linux/neighbour.h> 45 #include <linux/netdevice_xmit.h> 46 #include <uapi/linux/netdevice.h> 47 #include <uapi/linux/if_bonding.h> 48 #include <uapi/linux/pkt_cls.h> 49 #include <uapi/linux/netdev.h> 50 #include <linux/hashtable.h> 51 #include <linux/rbtree.h> 52 #include <net/net_trackers.h> 53 #include <net/net_debug.h> 54 #include <net/dropreason-core.h> 55 #include <net/neighbour_tables.h> 56 57 struct netpoll_info; 58 struct device; 59 struct ethtool_ops; 60 struct kernel_hwtstamp_config; 61 struct phy_device; 62 struct dsa_port; 63 struct ip_tunnel_parm_kern; 64 struct macsec_context; 65 struct macsec_ops; 66 struct netdev_name_node; 67 struct sd_flow_limit; 68 struct sfp_bus; 69 /* 802.11 specific */ 70 struct wireless_dev; 71 /* 802.15.4 specific */ 72 struct wpan_dev; 73 struct mpls_dev; 74 /* UDP Tunnel offloads */ 75 struct udp_tunnel_info; 76 struct udp_tunnel_nic_info; 77 struct udp_tunnel_nic; 78 struct bpf_prog; 79 struct xdp_buff; 80 struct xdp_frame; 81 struct xdp_metadata_ops; 82 struct xdp_md; 83 struct ethtool_netdev_state; 84 struct phy_link_topology; 85 86 typedef u32 xdp_features_t; 87 88 void synchronize_net(void); 89 void netdev_set_default_ethtool_ops(struct net_device *dev, 90 const struct ethtool_ops *ops); 91 void netdev_sw_irq_coalesce_default_on(struct net_device *dev); 92 93 /* Backlog congestion levels */ 94 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 95 #define NET_RX_DROP 1 /* packet dropped */ 96 97 #define MAX_NEST_DEV 8 98 99 /* 100 * Transmit return codes: transmit return codes originate from three different 101 * namespaces: 102 * 103 * - qdisc return codes 104 * - driver transmit return codes 105 * - errno values 106 * 107 * Drivers are allowed to return any one of those in their hard_start_xmit() 108 * function. Real network devices commonly used with qdiscs should only return 109 * the driver transmit return codes though - when qdiscs are used, the actual 110 * transmission happens asynchronously, so the value is not propagated to 111 * higher layers. Virtual network devices transmit synchronously; in this case 112 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 113 * others are propagated to higher layers. 114 */ 115 116 /* qdisc ->enqueue() return codes. */ 117 #define NET_XMIT_SUCCESS 0x00 118 #define NET_XMIT_DROP 0x01 /* skb dropped */ 119 #define NET_XMIT_CN 0x02 /* congestion notification */ 120 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 121 122 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 123 * indicates that the device will soon be dropping packets, or already drops 124 * some packets of the same priority; prompting us to send less aggressively. */ 125 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 126 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 127 128 /* Driver transmit return codes */ 129 #define NETDEV_TX_MASK 0xf0 130 131 enum netdev_tx { 132 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 133 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 134 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 135 }; 136 typedef enum netdev_tx netdev_tx_t; 137 138 /* 139 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 140 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 141 */ 142 static inline bool dev_xmit_complete(int rc) 143 { 144 /* 145 * Positive cases with an skb consumed by a driver: 146 * - successful transmission (rc == NETDEV_TX_OK) 147 * - error while transmitting (rc < 0) 148 * - error while queueing to a different device (rc & NET_XMIT_MASK) 149 */ 150 if (likely(rc < NET_XMIT_MASK)) 151 return true; 152 153 return false; 154 } 155 156 /* 157 * Compute the worst-case header length according to the protocols 158 * used. 159 */ 160 161 #if defined(CONFIG_HYPERV_NET) 162 # define LL_MAX_HEADER 128 163 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 164 # if defined(CONFIG_MAC80211_MESH) 165 # define LL_MAX_HEADER 128 166 # else 167 # define LL_MAX_HEADER 96 168 # endif 169 #else 170 # define LL_MAX_HEADER 32 171 #endif 172 173 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 174 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 175 #define MAX_HEADER LL_MAX_HEADER 176 #else 177 #define MAX_HEADER (LL_MAX_HEADER + 48) 178 #endif 179 180 /* 181 * Old network device statistics. Fields are native words 182 * (unsigned long) so they can be read and written atomically. 183 */ 184 185 #define NET_DEV_STAT(FIELD) \ 186 union { \ 187 unsigned long FIELD; \ 188 atomic_long_t __##FIELD; \ 189 } 190 191 struct net_device_stats { 192 NET_DEV_STAT(rx_packets); 193 NET_DEV_STAT(tx_packets); 194 NET_DEV_STAT(rx_bytes); 195 NET_DEV_STAT(tx_bytes); 196 NET_DEV_STAT(rx_errors); 197 NET_DEV_STAT(tx_errors); 198 NET_DEV_STAT(rx_dropped); 199 NET_DEV_STAT(tx_dropped); 200 NET_DEV_STAT(multicast); 201 NET_DEV_STAT(collisions); 202 NET_DEV_STAT(rx_length_errors); 203 NET_DEV_STAT(rx_over_errors); 204 NET_DEV_STAT(rx_crc_errors); 205 NET_DEV_STAT(rx_frame_errors); 206 NET_DEV_STAT(rx_fifo_errors); 207 NET_DEV_STAT(rx_missed_errors); 208 NET_DEV_STAT(tx_aborted_errors); 209 NET_DEV_STAT(tx_carrier_errors); 210 NET_DEV_STAT(tx_fifo_errors); 211 NET_DEV_STAT(tx_heartbeat_errors); 212 NET_DEV_STAT(tx_window_errors); 213 NET_DEV_STAT(rx_compressed); 214 NET_DEV_STAT(tx_compressed); 215 }; 216 #undef NET_DEV_STAT 217 218 /* per-cpu stats, allocated on demand. 219 * Try to fit them in a single cache line, for dev_get_stats() sake. 220 */ 221 struct net_device_core_stats { 222 unsigned long rx_dropped; 223 unsigned long tx_dropped; 224 unsigned long rx_nohandler; 225 unsigned long rx_otherhost_dropped; 226 } __aligned(4 * sizeof(unsigned long)); 227 228 #include <linux/cache.h> 229 #include <linux/skbuff.h> 230 231 struct neighbour; 232 struct neigh_parms; 233 struct sk_buff; 234 235 struct netdev_hw_addr { 236 struct list_head list; 237 struct rb_node node; 238 unsigned char addr[MAX_ADDR_LEN]; 239 unsigned char type; 240 #define NETDEV_HW_ADDR_T_LAN 1 241 #define NETDEV_HW_ADDR_T_SAN 2 242 #define NETDEV_HW_ADDR_T_UNICAST 3 243 #define NETDEV_HW_ADDR_T_MULTICAST 4 244 bool global_use; 245 int sync_cnt; 246 int refcount; 247 int synced; 248 struct rcu_head rcu_head; 249 }; 250 251 struct netdev_hw_addr_list { 252 struct list_head list; 253 int count; 254 255 /* Auxiliary tree for faster lookup on addition and deletion */ 256 struct rb_root tree; 257 }; 258 259 #define netdev_hw_addr_list_count(l) ((l)->count) 260 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 261 #define netdev_hw_addr_list_for_each(ha, l) \ 262 list_for_each_entry(ha, &(l)->list, list) 263 264 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 265 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 266 #define netdev_for_each_uc_addr(ha, dev) \ 267 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 268 #define netdev_for_each_synced_uc_addr(_ha, _dev) \ 269 netdev_for_each_uc_addr((_ha), (_dev)) \ 270 if ((_ha)->sync_cnt) 271 272 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 273 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 274 #define netdev_for_each_mc_addr(ha, dev) \ 275 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 276 #define netdev_for_each_synced_mc_addr(_ha, _dev) \ 277 netdev_for_each_mc_addr((_ha), (_dev)) \ 278 if ((_ha)->sync_cnt) 279 280 struct hh_cache { 281 unsigned int hh_len; 282 seqlock_t hh_lock; 283 284 /* cached hardware header; allow for machine alignment needs. */ 285 #define HH_DATA_MOD 16 286 #define HH_DATA_OFF(__len) \ 287 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 288 #define HH_DATA_ALIGN(__len) \ 289 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 290 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 291 }; 292 293 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 294 * Alternative is: 295 * dev->hard_header_len ? (dev->hard_header_len + 296 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 297 * 298 * We could use other alignment values, but we must maintain the 299 * relationship HH alignment <= LL alignment. 300 */ 301 #define LL_RESERVED_SPACE(dev) \ 302 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \ 303 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 304 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 305 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \ 306 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 307 308 struct header_ops { 309 int (*create) (struct sk_buff *skb, struct net_device *dev, 310 unsigned short type, const void *daddr, 311 const void *saddr, unsigned int len); 312 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 313 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 314 void (*cache_update)(struct hh_cache *hh, 315 const struct net_device *dev, 316 const unsigned char *haddr); 317 bool (*validate)(const char *ll_header, unsigned int len); 318 __be16 (*parse_protocol)(const struct sk_buff *skb); 319 }; 320 321 /* These flag bits are private to the generic network queueing 322 * layer; they may not be explicitly referenced by any other 323 * code. 324 */ 325 326 enum netdev_state_t { 327 __LINK_STATE_START, 328 __LINK_STATE_PRESENT, 329 __LINK_STATE_NOCARRIER, 330 __LINK_STATE_LINKWATCH_PENDING, 331 __LINK_STATE_DORMANT, 332 __LINK_STATE_TESTING, 333 }; 334 335 struct gro_list { 336 struct list_head list; 337 int count; 338 }; 339 340 /* 341 * size of gro hash buckets, must less than bit number of 342 * napi_struct::gro_bitmask 343 */ 344 #define GRO_HASH_BUCKETS 8 345 346 /* 347 * Structure for per-NAPI config 348 */ 349 struct napi_config { 350 u64 gro_flush_timeout; 351 u64 irq_suspend_timeout; 352 u32 defer_hard_irqs; 353 unsigned int napi_id; 354 }; 355 356 /* 357 * Structure for NAPI scheduling similar to tasklet but with weighting 358 */ 359 struct napi_struct { 360 /* The poll_list must only be managed by the entity which 361 * changes the state of the NAPI_STATE_SCHED bit. This means 362 * whoever atomically sets that bit can add this napi_struct 363 * to the per-CPU poll_list, and whoever clears that bit 364 * can remove from the list right before clearing the bit. 365 */ 366 struct list_head poll_list; 367 368 unsigned long state; 369 int weight; 370 u32 defer_hard_irqs_count; 371 unsigned long gro_bitmask; 372 int (*poll)(struct napi_struct *, int); 373 #ifdef CONFIG_NETPOLL 374 /* CPU actively polling if netpoll is configured */ 375 int poll_owner; 376 #endif 377 /* CPU on which NAPI has been scheduled for processing */ 378 int list_owner; 379 struct net_device *dev; 380 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 381 struct sk_buff *skb; 382 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 383 int rx_count; /* length of rx_list */ 384 unsigned int napi_id; 385 struct hrtimer timer; 386 struct task_struct *thread; 387 unsigned long gro_flush_timeout; 388 unsigned long irq_suspend_timeout; 389 u32 defer_hard_irqs; 390 /* control-path-only fields follow */ 391 struct list_head dev_list; 392 struct hlist_node napi_hash_node; 393 int irq; 394 int index; 395 struct napi_config *config; 396 }; 397 398 enum { 399 NAPI_STATE_SCHED, /* Poll is scheduled */ 400 NAPI_STATE_MISSED, /* reschedule a napi */ 401 NAPI_STATE_DISABLE, /* Disable pending */ 402 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 403 NAPI_STATE_LISTED, /* NAPI added to system lists */ 404 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */ 405 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */ 406 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/ 407 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/ 408 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */ 409 }; 410 411 enum { 412 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 413 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 414 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 415 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 416 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), 417 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 418 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 419 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL), 420 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED), 421 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED), 422 }; 423 424 enum gro_result { 425 GRO_MERGED, 426 GRO_MERGED_FREE, 427 GRO_HELD, 428 GRO_NORMAL, 429 GRO_CONSUMED, 430 }; 431 typedef enum gro_result gro_result_t; 432 433 /* 434 * enum rx_handler_result - Possible return values for rx_handlers. 435 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 436 * further. 437 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 438 * case skb->dev was changed by rx_handler. 439 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 440 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 441 * 442 * rx_handlers are functions called from inside __netif_receive_skb(), to do 443 * special processing of the skb, prior to delivery to protocol handlers. 444 * 445 * Currently, a net_device can only have a single rx_handler registered. Trying 446 * to register a second rx_handler will return -EBUSY. 447 * 448 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 449 * To unregister a rx_handler on a net_device, use 450 * netdev_rx_handler_unregister(). 451 * 452 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 453 * do with the skb. 454 * 455 * If the rx_handler consumed the skb in some way, it should return 456 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 457 * the skb to be delivered in some other way. 458 * 459 * If the rx_handler changed skb->dev, to divert the skb to another 460 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 461 * new device will be called if it exists. 462 * 463 * If the rx_handler decides the skb should be ignored, it should return 464 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 465 * are registered on exact device (ptype->dev == skb->dev). 466 * 467 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 468 * delivered, it should return RX_HANDLER_PASS. 469 * 470 * A device without a registered rx_handler will behave as if rx_handler 471 * returned RX_HANDLER_PASS. 472 */ 473 474 enum rx_handler_result { 475 RX_HANDLER_CONSUMED, 476 RX_HANDLER_ANOTHER, 477 RX_HANDLER_EXACT, 478 RX_HANDLER_PASS, 479 }; 480 typedef enum rx_handler_result rx_handler_result_t; 481 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 482 483 void __napi_schedule(struct napi_struct *n); 484 void __napi_schedule_irqoff(struct napi_struct *n); 485 486 static inline bool napi_disable_pending(struct napi_struct *n) 487 { 488 return test_bit(NAPI_STATE_DISABLE, &n->state); 489 } 490 491 static inline bool napi_prefer_busy_poll(struct napi_struct *n) 492 { 493 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 494 } 495 496 /** 497 * napi_is_scheduled - test if NAPI is scheduled 498 * @n: NAPI context 499 * 500 * This check is "best-effort". With no locking implemented, 501 * a NAPI can be scheduled or terminate right after this check 502 * and produce not precise results. 503 * 504 * NAPI_STATE_SCHED is an internal state, napi_is_scheduled 505 * should not be used normally and napi_schedule should be 506 * used instead. 507 * 508 * Use only if the driver really needs to check if a NAPI 509 * is scheduled for example in the context of delayed timer 510 * that can be skipped if a NAPI is already scheduled. 511 * 512 * Return: True if NAPI is scheduled, False otherwise. 513 */ 514 static inline bool napi_is_scheduled(struct napi_struct *n) 515 { 516 return test_bit(NAPI_STATE_SCHED, &n->state); 517 } 518 519 bool napi_schedule_prep(struct napi_struct *n); 520 521 /** 522 * napi_schedule - schedule NAPI poll 523 * @n: NAPI context 524 * 525 * Schedule NAPI poll routine to be called if it is not already 526 * running. 527 * Return: true if we schedule a NAPI or false if not. 528 * Refer to napi_schedule_prep() for additional reason on why 529 * a NAPI might not be scheduled. 530 */ 531 static inline bool napi_schedule(struct napi_struct *n) 532 { 533 if (napi_schedule_prep(n)) { 534 __napi_schedule(n); 535 return true; 536 } 537 538 return false; 539 } 540 541 /** 542 * napi_schedule_irqoff - schedule NAPI poll 543 * @n: NAPI context 544 * 545 * Variant of napi_schedule(), assuming hard irqs are masked. 546 */ 547 static inline void napi_schedule_irqoff(struct napi_struct *n) 548 { 549 if (napi_schedule_prep(n)) 550 __napi_schedule_irqoff(n); 551 } 552 553 /** 554 * napi_complete_done - NAPI processing complete 555 * @n: NAPI context 556 * @work_done: number of packets processed 557 * 558 * Mark NAPI processing as complete. Should only be called if poll budget 559 * has not been completely consumed. 560 * Prefer over napi_complete(). 561 * Return: false if device should avoid rearming interrupts. 562 */ 563 bool napi_complete_done(struct napi_struct *n, int work_done); 564 565 static inline bool napi_complete(struct napi_struct *n) 566 { 567 return napi_complete_done(n, 0); 568 } 569 570 int dev_set_threaded(struct net_device *dev, bool threaded); 571 572 /** 573 * napi_disable - prevent NAPI from scheduling 574 * @n: NAPI context 575 * 576 * Stop NAPI from being scheduled on this context. 577 * Waits till any outstanding processing completes. 578 */ 579 void napi_disable(struct napi_struct *n); 580 581 void napi_enable(struct napi_struct *n); 582 583 /** 584 * napi_synchronize - wait until NAPI is not running 585 * @n: NAPI context 586 * 587 * Wait until NAPI is done being scheduled on this context. 588 * Waits till any outstanding processing completes but 589 * does not disable future activations. 590 */ 591 static inline void napi_synchronize(const struct napi_struct *n) 592 { 593 if (IS_ENABLED(CONFIG_SMP)) 594 while (test_bit(NAPI_STATE_SCHED, &n->state)) 595 msleep(1); 596 else 597 barrier(); 598 } 599 600 /** 601 * napi_if_scheduled_mark_missed - if napi is running, set the 602 * NAPIF_STATE_MISSED 603 * @n: NAPI context 604 * 605 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 606 * NAPI is scheduled. 607 **/ 608 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 609 { 610 unsigned long val, new; 611 612 val = READ_ONCE(n->state); 613 do { 614 if (val & NAPIF_STATE_DISABLE) 615 return true; 616 617 if (!(val & NAPIF_STATE_SCHED)) 618 return false; 619 620 new = val | NAPIF_STATE_MISSED; 621 } while (!try_cmpxchg(&n->state, &val, new)); 622 623 return true; 624 } 625 626 enum netdev_queue_state_t { 627 __QUEUE_STATE_DRV_XOFF, 628 __QUEUE_STATE_STACK_XOFF, 629 __QUEUE_STATE_FROZEN, 630 }; 631 632 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 633 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 634 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 635 636 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 637 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 638 QUEUE_STATE_FROZEN) 639 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 640 QUEUE_STATE_FROZEN) 641 642 /* 643 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 644 * netif_tx_* functions below are used to manipulate this flag. The 645 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 646 * queue independently. The netif_xmit_*stopped functions below are called 647 * to check if the queue has been stopped by the driver or stack (either 648 * of the XOFF bits are set in the state). Drivers should not need to call 649 * netif_xmit*stopped functions, they should only be using netif_tx_*. 650 */ 651 652 struct netdev_queue { 653 /* 654 * read-mostly part 655 */ 656 struct net_device *dev; 657 netdevice_tracker dev_tracker; 658 659 struct Qdisc __rcu *qdisc; 660 struct Qdisc __rcu *qdisc_sleeping; 661 #ifdef CONFIG_SYSFS 662 struct kobject kobj; 663 #endif 664 unsigned long tx_maxrate; 665 /* 666 * Number of TX timeouts for this queue 667 * (/sys/class/net/DEV/Q/trans_timeout) 668 */ 669 atomic_long_t trans_timeout; 670 671 /* Subordinate device that the queue has been assigned to */ 672 struct net_device *sb_dev; 673 #ifdef CONFIG_XDP_SOCKETS 674 struct xsk_buff_pool *pool; 675 #endif 676 677 /* 678 * write-mostly part 679 */ 680 #ifdef CONFIG_BQL 681 struct dql dql; 682 #endif 683 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 684 int xmit_lock_owner; 685 /* 686 * Time (in jiffies) of last Tx 687 */ 688 unsigned long trans_start; 689 690 unsigned long state; 691 692 /* 693 * slow- / control-path part 694 */ 695 /* NAPI instance for the queue 696 * Readers and writers must hold RTNL 697 */ 698 struct napi_struct *napi; 699 700 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 701 int numa_node; 702 #endif 703 } ____cacheline_aligned_in_smp; 704 705 extern int sysctl_fb_tunnels_only_for_init_net; 706 extern int sysctl_devconf_inherit_init_net; 707 708 /* 709 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns 710 * == 1 : For initns only 711 * == 2 : For none. 712 */ 713 static inline bool net_has_fallback_tunnels(const struct net *net) 714 { 715 #if IS_ENABLED(CONFIG_SYSCTL) 716 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net); 717 718 return !fb_tunnels_only_for_init_net || 719 (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1); 720 #else 721 return true; 722 #endif 723 } 724 725 static inline int net_inherit_devconf(void) 726 { 727 #if IS_ENABLED(CONFIG_SYSCTL) 728 return READ_ONCE(sysctl_devconf_inherit_init_net); 729 #else 730 return 0; 731 #endif 732 } 733 734 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 735 { 736 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 737 return q->numa_node; 738 #else 739 return NUMA_NO_NODE; 740 #endif 741 } 742 743 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 744 { 745 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 746 q->numa_node = node; 747 #endif 748 } 749 750 #ifdef CONFIG_RFS_ACCEL 751 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 752 u16 filter_id); 753 #endif 754 755 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */ 756 enum xps_map_type { 757 XPS_CPUS = 0, 758 XPS_RXQS, 759 XPS_MAPS_MAX, 760 }; 761 762 #ifdef CONFIG_XPS 763 /* 764 * This structure holds an XPS map which can be of variable length. The 765 * map is an array of queues. 766 */ 767 struct xps_map { 768 unsigned int len; 769 unsigned int alloc_len; 770 struct rcu_head rcu; 771 u16 queues[]; 772 }; 773 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 774 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 775 - sizeof(struct xps_map)) / sizeof(u16)) 776 777 /* 778 * This structure holds all XPS maps for device. Maps are indexed by CPU. 779 * 780 * We keep track of the number of cpus/rxqs used when the struct is allocated, 781 * in nr_ids. This will help not accessing out-of-bound memory. 782 * 783 * We keep track of the number of traffic classes used when the struct is 784 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're 785 * not crossing its upper bound, as the original dev->num_tc can be updated in 786 * the meantime. 787 */ 788 struct xps_dev_maps { 789 struct rcu_head rcu; 790 unsigned int nr_ids; 791 s16 num_tc; 792 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 793 }; 794 795 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 796 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 797 798 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 799 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 800 801 #endif /* CONFIG_XPS */ 802 803 #define TC_MAX_QUEUE 16 804 #define TC_BITMASK 15 805 /* HW offloaded queuing disciplines txq count and offset maps */ 806 struct netdev_tc_txq { 807 u16 count; 808 u16 offset; 809 }; 810 811 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 812 /* 813 * This structure is to hold information about the device 814 * configured to run FCoE protocol stack. 815 */ 816 struct netdev_fcoe_hbainfo { 817 char manufacturer[64]; 818 char serial_number[64]; 819 char hardware_version[64]; 820 char driver_version[64]; 821 char optionrom_version[64]; 822 char firmware_version[64]; 823 char model[256]; 824 char model_description[256]; 825 }; 826 #endif 827 828 #define MAX_PHYS_ITEM_ID_LEN 32 829 830 /* This structure holds a unique identifier to identify some 831 * physical item (port for example) used by a netdevice. 832 */ 833 struct netdev_phys_item_id { 834 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 835 unsigned char id_len; 836 }; 837 838 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 839 struct netdev_phys_item_id *b) 840 { 841 return a->id_len == b->id_len && 842 memcmp(a->id, b->id, a->id_len) == 0; 843 } 844 845 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 846 struct sk_buff *skb, 847 struct net_device *sb_dev); 848 849 enum net_device_path_type { 850 DEV_PATH_ETHERNET = 0, 851 DEV_PATH_VLAN, 852 DEV_PATH_BRIDGE, 853 DEV_PATH_PPPOE, 854 DEV_PATH_DSA, 855 DEV_PATH_MTK_WDMA, 856 }; 857 858 struct net_device_path { 859 enum net_device_path_type type; 860 const struct net_device *dev; 861 union { 862 struct { 863 u16 id; 864 __be16 proto; 865 u8 h_dest[ETH_ALEN]; 866 } encap; 867 struct { 868 enum { 869 DEV_PATH_BR_VLAN_KEEP, 870 DEV_PATH_BR_VLAN_TAG, 871 DEV_PATH_BR_VLAN_UNTAG, 872 DEV_PATH_BR_VLAN_UNTAG_HW, 873 } vlan_mode; 874 u16 vlan_id; 875 __be16 vlan_proto; 876 } bridge; 877 struct { 878 int port; 879 u16 proto; 880 } dsa; 881 struct { 882 u8 wdma_idx; 883 u8 queue; 884 u16 wcid; 885 u8 bss; 886 u8 amsdu; 887 } mtk_wdma; 888 }; 889 }; 890 891 #define NET_DEVICE_PATH_STACK_MAX 5 892 #define NET_DEVICE_PATH_VLAN_MAX 2 893 894 struct net_device_path_stack { 895 int num_paths; 896 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX]; 897 }; 898 899 struct net_device_path_ctx { 900 const struct net_device *dev; 901 u8 daddr[ETH_ALEN]; 902 903 int num_vlans; 904 struct { 905 u16 id; 906 __be16 proto; 907 } vlan[NET_DEVICE_PATH_VLAN_MAX]; 908 }; 909 910 enum tc_setup_type { 911 TC_QUERY_CAPS, 912 TC_SETUP_QDISC_MQPRIO, 913 TC_SETUP_CLSU32, 914 TC_SETUP_CLSFLOWER, 915 TC_SETUP_CLSMATCHALL, 916 TC_SETUP_CLSBPF, 917 TC_SETUP_BLOCK, 918 TC_SETUP_QDISC_CBS, 919 TC_SETUP_QDISC_RED, 920 TC_SETUP_QDISC_PRIO, 921 TC_SETUP_QDISC_MQ, 922 TC_SETUP_QDISC_ETF, 923 TC_SETUP_ROOT_QDISC, 924 TC_SETUP_QDISC_GRED, 925 TC_SETUP_QDISC_TAPRIO, 926 TC_SETUP_FT, 927 TC_SETUP_QDISC_ETS, 928 TC_SETUP_QDISC_TBF, 929 TC_SETUP_QDISC_FIFO, 930 TC_SETUP_QDISC_HTB, 931 TC_SETUP_ACT, 932 }; 933 934 /* These structures hold the attributes of bpf state that are being passed 935 * to the netdevice through the bpf op. 936 */ 937 enum bpf_netdev_command { 938 /* Set or clear a bpf program used in the earliest stages of packet 939 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 940 * is responsible for calling bpf_prog_put on any old progs that are 941 * stored. In case of error, the callee need not release the new prog 942 * reference, but on success it takes ownership and must bpf_prog_put 943 * when it is no longer used. 944 */ 945 XDP_SETUP_PROG, 946 XDP_SETUP_PROG_HW, 947 /* BPF program for offload callbacks, invoked at program load time. */ 948 BPF_OFFLOAD_MAP_ALLOC, 949 BPF_OFFLOAD_MAP_FREE, 950 XDP_SETUP_XSK_POOL, 951 }; 952 953 struct bpf_prog_offload_ops; 954 struct netlink_ext_ack; 955 struct xdp_umem; 956 struct xdp_dev_bulk_queue; 957 struct bpf_xdp_link; 958 959 enum bpf_xdp_mode { 960 XDP_MODE_SKB = 0, 961 XDP_MODE_DRV = 1, 962 XDP_MODE_HW = 2, 963 __MAX_XDP_MODE 964 }; 965 966 struct bpf_xdp_entity { 967 struct bpf_prog *prog; 968 struct bpf_xdp_link *link; 969 }; 970 971 struct netdev_bpf { 972 enum bpf_netdev_command command; 973 union { 974 /* XDP_SETUP_PROG */ 975 struct { 976 u32 flags; 977 struct bpf_prog *prog; 978 struct netlink_ext_ack *extack; 979 }; 980 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 981 struct { 982 struct bpf_offloaded_map *offmap; 983 }; 984 /* XDP_SETUP_XSK_POOL */ 985 struct { 986 struct xsk_buff_pool *pool; 987 u16 queue_id; 988 } xsk; 989 }; 990 }; 991 992 /* Flags for ndo_xsk_wakeup. */ 993 #define XDP_WAKEUP_RX (1 << 0) 994 #define XDP_WAKEUP_TX (1 << 1) 995 996 #ifdef CONFIG_XFRM_OFFLOAD 997 struct xfrmdev_ops { 998 int (*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack); 999 void (*xdo_dev_state_delete) (struct xfrm_state *x); 1000 void (*xdo_dev_state_free) (struct xfrm_state *x); 1001 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 1002 struct xfrm_state *x); 1003 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 1004 void (*xdo_dev_state_update_stats) (struct xfrm_state *x); 1005 int (*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack); 1006 void (*xdo_dev_policy_delete) (struct xfrm_policy *x); 1007 void (*xdo_dev_policy_free) (struct xfrm_policy *x); 1008 }; 1009 #endif 1010 1011 struct dev_ifalias { 1012 struct rcu_head rcuhead; 1013 char ifalias[]; 1014 }; 1015 1016 struct devlink; 1017 struct tlsdev_ops; 1018 1019 struct netdev_net_notifier { 1020 struct list_head list; 1021 struct notifier_block *nb; 1022 }; 1023 1024 /* 1025 * This structure defines the management hooks for network devices. 1026 * The following hooks can be defined; unless noted otherwise, they are 1027 * optional and can be filled with a null pointer. 1028 * 1029 * int (*ndo_init)(struct net_device *dev); 1030 * This function is called once when a network device is registered. 1031 * The network device can use this for any late stage initialization 1032 * or semantic validation. It can fail with an error code which will 1033 * be propagated back to register_netdev. 1034 * 1035 * void (*ndo_uninit)(struct net_device *dev); 1036 * This function is called when device is unregistered or when registration 1037 * fails. It is not called if init fails. 1038 * 1039 * int (*ndo_open)(struct net_device *dev); 1040 * This function is called when a network device transitions to the up 1041 * state. 1042 * 1043 * int (*ndo_stop)(struct net_device *dev); 1044 * This function is called when a network device transitions to the down 1045 * state. 1046 * 1047 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1048 * struct net_device *dev); 1049 * Called when a packet needs to be transmitted. 1050 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 1051 * the queue before that can happen; it's for obsolete devices and weird 1052 * corner cases, but the stack really does a non-trivial amount 1053 * of useless work if you return NETDEV_TX_BUSY. 1054 * Required; cannot be NULL. 1055 * 1056 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1057 * struct net_device *dev 1058 * netdev_features_t features); 1059 * Called by core transmit path to determine if device is capable of 1060 * performing offload operations on a given packet. This is to give 1061 * the device an opportunity to implement any restrictions that cannot 1062 * be otherwise expressed by feature flags. The check is called with 1063 * the set of features that the stack has calculated and it returns 1064 * those the driver believes to be appropriate. 1065 * 1066 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 1067 * struct net_device *sb_dev); 1068 * Called to decide which queue to use when device supports multiple 1069 * transmit queues. 1070 * 1071 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1072 * This function is called to allow device receiver to make 1073 * changes to configuration when multicast or promiscuous is enabled. 1074 * 1075 * void (*ndo_set_rx_mode)(struct net_device *dev); 1076 * This function is called device changes address list filtering. 1077 * If driver handles unicast address filtering, it should set 1078 * IFF_UNICAST_FLT in its priv_flags. 1079 * 1080 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1081 * This function is called when the Media Access Control address 1082 * needs to be changed. If this interface is not defined, the 1083 * MAC address can not be changed. 1084 * 1085 * int (*ndo_validate_addr)(struct net_device *dev); 1086 * Test if Media Access Control address is valid for the device. 1087 * 1088 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1089 * Old-style ioctl entry point. This is used internally by the 1090 * appletalk and ieee802154 subsystems but is no longer called by 1091 * the device ioctl handler. 1092 * 1093 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd); 1094 * Used by the bonding driver for its device specific ioctls: 1095 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE, 1096 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY 1097 * 1098 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1099 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG, 1100 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP. 1101 * 1102 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1103 * Used to set network devices bus interface parameters. This interface 1104 * is retained for legacy reasons; new devices should use the bus 1105 * interface (PCI) for low level management. 1106 * 1107 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1108 * Called when a user wants to change the Maximum Transfer Unit 1109 * of a device. 1110 * 1111 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1112 * Callback used when the transmitter has not made any progress 1113 * for dev->watchdog ticks. 1114 * 1115 * void (*ndo_get_stats64)(struct net_device *dev, 1116 * struct rtnl_link_stats64 *storage); 1117 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1118 * Called when a user wants to get the network device usage 1119 * statistics. Drivers must do one of the following: 1120 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1121 * rtnl_link_stats64 structure passed by the caller. 1122 * 2. Define @ndo_get_stats to update a net_device_stats structure 1123 * (which should normally be dev->stats) and return a pointer to 1124 * it. The structure may be changed asynchronously only if each 1125 * field is written atomically. 1126 * 3. Update dev->stats asynchronously and atomically, and define 1127 * neither operation. 1128 * 1129 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1130 * Return true if this device supports offload stats of this attr_id. 1131 * 1132 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1133 * void *attr_data) 1134 * Get statistics for offload operations by attr_id. Write it into the 1135 * attr_data pointer. 1136 * 1137 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1138 * If device supports VLAN filtering this function is called when a 1139 * VLAN id is registered. 1140 * 1141 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1142 * If device supports VLAN filtering this function is called when a 1143 * VLAN id is unregistered. 1144 * 1145 * void (*ndo_poll_controller)(struct net_device *dev); 1146 * 1147 * SR-IOV management functions. 1148 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1149 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1150 * u8 qos, __be16 proto); 1151 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1152 * int max_tx_rate); 1153 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1154 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1155 * int (*ndo_get_vf_config)(struct net_device *dev, 1156 * int vf, struct ifla_vf_info *ivf); 1157 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1158 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1159 * struct nlattr *port[]); 1160 * 1161 * Enable or disable the VF ability to query its RSS Redirection Table and 1162 * Hash Key. This is needed since on some devices VF share this information 1163 * with PF and querying it may introduce a theoretical security risk. 1164 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1165 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1166 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1167 * void *type_data); 1168 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1169 * This is always called from the stack with the rtnl lock held and netif 1170 * tx queues stopped. This allows the netdevice to perform queue 1171 * management safely. 1172 * 1173 * Fiber Channel over Ethernet (FCoE) offload functions. 1174 * int (*ndo_fcoe_enable)(struct net_device *dev); 1175 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1176 * so the underlying device can perform whatever needed configuration or 1177 * initialization to support acceleration of FCoE traffic. 1178 * 1179 * int (*ndo_fcoe_disable)(struct net_device *dev); 1180 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1181 * so the underlying device can perform whatever needed clean-ups to 1182 * stop supporting acceleration of FCoE traffic. 1183 * 1184 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1185 * struct scatterlist *sgl, unsigned int sgc); 1186 * Called when the FCoE Initiator wants to initialize an I/O that 1187 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1188 * perform necessary setup and returns 1 to indicate the device is set up 1189 * successfully to perform DDP on this I/O, otherwise this returns 0. 1190 * 1191 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1192 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1193 * indicated by the FC exchange id 'xid', so the underlying device can 1194 * clean up and reuse resources for later DDP requests. 1195 * 1196 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1197 * struct scatterlist *sgl, unsigned int sgc); 1198 * Called when the FCoE Target wants to initialize an I/O that 1199 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1200 * perform necessary setup and returns 1 to indicate the device is set up 1201 * successfully to perform DDP on this I/O, otherwise this returns 0. 1202 * 1203 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1204 * struct netdev_fcoe_hbainfo *hbainfo); 1205 * Called when the FCoE Protocol stack wants information on the underlying 1206 * device. This information is utilized by the FCoE protocol stack to 1207 * register attributes with Fiber Channel management service as per the 1208 * FC-GS Fabric Device Management Information(FDMI) specification. 1209 * 1210 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1211 * Called when the underlying device wants to override default World Wide 1212 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1213 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1214 * protocol stack to use. 1215 * 1216 * RFS acceleration. 1217 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1218 * u16 rxq_index, u32 flow_id); 1219 * Set hardware filter for RFS. rxq_index is the target queue index; 1220 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1221 * Return the filter ID on success, or a negative error code. 1222 * 1223 * Slave management functions (for bridge, bonding, etc). 1224 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1225 * Called to make another netdev an underling. 1226 * 1227 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1228 * Called to release previously enslaved netdev. 1229 * 1230 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1231 * struct sk_buff *skb, 1232 * bool all_slaves); 1233 * Get the xmit slave of master device. If all_slaves is true, function 1234 * assume all the slaves can transmit. 1235 * 1236 * Feature/offload setting functions. 1237 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1238 * netdev_features_t features); 1239 * Adjusts the requested feature flags according to device-specific 1240 * constraints, and returns the resulting flags. Must not modify 1241 * the device state. 1242 * 1243 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1244 * Called to update device configuration to new features. Passed 1245 * feature set might be less than what was returned by ndo_fix_features()). 1246 * Must return >0 or -errno if it changed dev->features itself. 1247 * 1248 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1249 * struct net_device *dev, 1250 * const unsigned char *addr, u16 vid, u16 flags, 1251 * bool *notified, struct netlink_ext_ack *extack); 1252 * Adds an FDB entry to dev for addr. 1253 * Callee shall set *notified to true if it sent any appropriate 1254 * notification(s). Otherwise core will send a generic one. 1255 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1256 * struct net_device *dev, 1257 * const unsigned char *addr, u16 vid 1258 * bool *notified, struct netlink_ext_ack *extack); 1259 * Deletes the FDB entry from dev corresponding to addr. 1260 * Callee shall set *notified to true if it sent any appropriate 1261 * notification(s). Otherwise core will send a generic one. 1262 * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev, 1263 * struct netlink_ext_ack *extack); 1264 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1265 * struct net_device *dev, struct net_device *filter_dev, 1266 * int *idx) 1267 * Used to add FDB entries to dump requests. Implementers should add 1268 * entries to skb and update idx with the number of entries. 1269 * 1270 * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[], 1271 * u16 nlmsg_flags, struct netlink_ext_ack *extack); 1272 * Adds an MDB entry to dev. 1273 * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[], 1274 * struct netlink_ext_ack *extack); 1275 * Deletes the MDB entry from dev. 1276 * int (*ndo_mdb_del_bulk)(struct net_device *dev, struct nlattr *tb[], 1277 * struct netlink_ext_ack *extack); 1278 * Bulk deletes MDB entries from dev. 1279 * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb, 1280 * struct netlink_callback *cb); 1281 * Dumps MDB entries from dev. The first argument (marker) in the netlink 1282 * callback is used by core rtnetlink code. 1283 * 1284 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1285 * u16 flags, struct netlink_ext_ack *extack) 1286 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1287 * struct net_device *dev, u32 filter_mask, 1288 * int nlflags) 1289 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1290 * u16 flags); 1291 * 1292 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1293 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1294 * which do not represent real hardware may define this to allow their 1295 * userspace components to manage their virtual carrier state. Devices 1296 * that determine carrier state from physical hardware properties (eg 1297 * network cables) or protocol-dependent mechanisms (eg 1298 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1299 * 1300 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1301 * struct netdev_phys_item_id *ppid); 1302 * Called to get ID of physical port of this device. If driver does 1303 * not implement this, it is assumed that the hw is not able to have 1304 * multiple net devices on single physical port. 1305 * 1306 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1307 * struct netdev_phys_item_id *ppid) 1308 * Called to get the parent ID of the physical port of this device. 1309 * 1310 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1311 * struct net_device *dev) 1312 * Called by upper layer devices to accelerate switching or other 1313 * station functionality into hardware. 'pdev is the lowerdev 1314 * to use for the offload and 'dev' is the net device that will 1315 * back the offload. Returns a pointer to the private structure 1316 * the upper layer will maintain. 1317 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1318 * Called by upper layer device to delete the station created 1319 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1320 * the station and priv is the structure returned by the add 1321 * operation. 1322 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1323 * int queue_index, u32 maxrate); 1324 * Called when a user wants to set a max-rate limitation of specific 1325 * TX queue. 1326 * int (*ndo_get_iflink)(const struct net_device *dev); 1327 * Called to get the iflink value of this device. 1328 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1329 * This function is used to get egress tunnel information for given skb. 1330 * This is useful for retrieving outer tunnel header parameters while 1331 * sampling packet. 1332 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1333 * This function is used to specify the headroom that the skb must 1334 * consider when allocation skb during packet reception. Setting 1335 * appropriate rx headroom value allows avoiding skb head copy on 1336 * forward. Setting a negative value resets the rx headroom to the 1337 * default value. 1338 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1339 * This function is used to set or query state related to XDP on the 1340 * netdevice and manage BPF offload. See definition of 1341 * enum bpf_netdev_command for details. 1342 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1343 * u32 flags); 1344 * This function is used to submit @n XDP packets for transmit on a 1345 * netdevice. Returns number of frames successfully transmitted, frames 1346 * that got dropped are freed/returned via xdp_return_frame(). 1347 * Returns negative number, means general error invoking ndo, meaning 1348 * no frames were xmit'ed and core-caller will free all frames. 1349 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1350 * struct xdp_buff *xdp); 1351 * Get the xmit slave of master device based on the xdp_buff. 1352 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1353 * This function is used to wake up the softirq, ksoftirqd or kthread 1354 * responsible for sending and/or receiving packets on a specific 1355 * queue id bound to an AF_XDP socket. The flags field specifies if 1356 * only RX, only Tx, or both should be woken up using the flags 1357 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1358 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm_kern *p, 1359 * int cmd); 1360 * Add, change, delete or get information on an IPv4 tunnel. 1361 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); 1362 * If a device is paired with a peer device, return the peer instance. 1363 * The caller must be under RCU read context. 1364 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path); 1365 * Get the forwarding path to reach the real device from the HW destination address 1366 * ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1367 * const struct skb_shared_hwtstamps *hwtstamps, 1368 * bool cycles); 1369 * Get hardware timestamp based on normal/adjustable time or free running 1370 * cycle counter. This function is required if physical clock supports a 1371 * free running cycle counter. 1372 * 1373 * int (*ndo_hwtstamp_get)(struct net_device *dev, 1374 * struct kernel_hwtstamp_config *kernel_config); 1375 * Get the currently configured hardware timestamping parameters for the 1376 * NIC device. 1377 * 1378 * int (*ndo_hwtstamp_set)(struct net_device *dev, 1379 * struct kernel_hwtstamp_config *kernel_config, 1380 * struct netlink_ext_ack *extack); 1381 * Change the hardware timestamping parameters for NIC device. 1382 */ 1383 struct net_device_ops { 1384 int (*ndo_init)(struct net_device *dev); 1385 void (*ndo_uninit)(struct net_device *dev); 1386 int (*ndo_open)(struct net_device *dev); 1387 int (*ndo_stop)(struct net_device *dev); 1388 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1389 struct net_device *dev); 1390 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1391 struct net_device *dev, 1392 netdev_features_t features); 1393 u16 (*ndo_select_queue)(struct net_device *dev, 1394 struct sk_buff *skb, 1395 struct net_device *sb_dev); 1396 void (*ndo_change_rx_flags)(struct net_device *dev, 1397 int flags); 1398 void (*ndo_set_rx_mode)(struct net_device *dev); 1399 int (*ndo_set_mac_address)(struct net_device *dev, 1400 void *addr); 1401 int (*ndo_validate_addr)(struct net_device *dev); 1402 int (*ndo_do_ioctl)(struct net_device *dev, 1403 struct ifreq *ifr, int cmd); 1404 int (*ndo_eth_ioctl)(struct net_device *dev, 1405 struct ifreq *ifr, int cmd); 1406 int (*ndo_siocbond)(struct net_device *dev, 1407 struct ifreq *ifr, int cmd); 1408 int (*ndo_siocwandev)(struct net_device *dev, 1409 struct if_settings *ifs); 1410 int (*ndo_siocdevprivate)(struct net_device *dev, 1411 struct ifreq *ifr, 1412 void __user *data, int cmd); 1413 int (*ndo_set_config)(struct net_device *dev, 1414 struct ifmap *map); 1415 int (*ndo_change_mtu)(struct net_device *dev, 1416 int new_mtu); 1417 int (*ndo_neigh_setup)(struct net_device *dev, 1418 struct neigh_parms *); 1419 void (*ndo_tx_timeout) (struct net_device *dev, 1420 unsigned int txqueue); 1421 1422 void (*ndo_get_stats64)(struct net_device *dev, 1423 struct rtnl_link_stats64 *storage); 1424 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1425 int (*ndo_get_offload_stats)(int attr_id, 1426 const struct net_device *dev, 1427 void *attr_data); 1428 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1429 1430 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1431 __be16 proto, u16 vid); 1432 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1433 __be16 proto, u16 vid); 1434 #ifdef CONFIG_NET_POLL_CONTROLLER 1435 void (*ndo_poll_controller)(struct net_device *dev); 1436 int (*ndo_netpoll_setup)(struct net_device *dev); 1437 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1438 #endif 1439 int (*ndo_set_vf_mac)(struct net_device *dev, 1440 int queue, u8 *mac); 1441 int (*ndo_set_vf_vlan)(struct net_device *dev, 1442 int queue, u16 vlan, 1443 u8 qos, __be16 proto); 1444 int (*ndo_set_vf_rate)(struct net_device *dev, 1445 int vf, int min_tx_rate, 1446 int max_tx_rate); 1447 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1448 int vf, bool setting); 1449 int (*ndo_set_vf_trust)(struct net_device *dev, 1450 int vf, bool setting); 1451 int (*ndo_get_vf_config)(struct net_device *dev, 1452 int vf, 1453 struct ifla_vf_info *ivf); 1454 int (*ndo_set_vf_link_state)(struct net_device *dev, 1455 int vf, int link_state); 1456 int (*ndo_get_vf_stats)(struct net_device *dev, 1457 int vf, 1458 struct ifla_vf_stats 1459 *vf_stats); 1460 int (*ndo_set_vf_port)(struct net_device *dev, 1461 int vf, 1462 struct nlattr *port[]); 1463 int (*ndo_get_vf_port)(struct net_device *dev, 1464 int vf, struct sk_buff *skb); 1465 int (*ndo_get_vf_guid)(struct net_device *dev, 1466 int vf, 1467 struct ifla_vf_guid *node_guid, 1468 struct ifla_vf_guid *port_guid); 1469 int (*ndo_set_vf_guid)(struct net_device *dev, 1470 int vf, u64 guid, 1471 int guid_type); 1472 int (*ndo_set_vf_rss_query_en)( 1473 struct net_device *dev, 1474 int vf, bool setting); 1475 int (*ndo_setup_tc)(struct net_device *dev, 1476 enum tc_setup_type type, 1477 void *type_data); 1478 #if IS_ENABLED(CONFIG_FCOE) 1479 int (*ndo_fcoe_enable)(struct net_device *dev); 1480 int (*ndo_fcoe_disable)(struct net_device *dev); 1481 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1482 u16 xid, 1483 struct scatterlist *sgl, 1484 unsigned int sgc); 1485 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1486 u16 xid); 1487 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1488 u16 xid, 1489 struct scatterlist *sgl, 1490 unsigned int sgc); 1491 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1492 struct netdev_fcoe_hbainfo *hbainfo); 1493 #endif 1494 1495 #if IS_ENABLED(CONFIG_LIBFCOE) 1496 #define NETDEV_FCOE_WWNN 0 1497 #define NETDEV_FCOE_WWPN 1 1498 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1499 u64 *wwn, int type); 1500 #endif 1501 1502 #ifdef CONFIG_RFS_ACCEL 1503 int (*ndo_rx_flow_steer)(struct net_device *dev, 1504 const struct sk_buff *skb, 1505 u16 rxq_index, 1506 u32 flow_id); 1507 #endif 1508 int (*ndo_add_slave)(struct net_device *dev, 1509 struct net_device *slave_dev, 1510 struct netlink_ext_ack *extack); 1511 int (*ndo_del_slave)(struct net_device *dev, 1512 struct net_device *slave_dev); 1513 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1514 struct sk_buff *skb, 1515 bool all_slaves); 1516 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev, 1517 struct sock *sk); 1518 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1519 netdev_features_t features); 1520 int (*ndo_set_features)(struct net_device *dev, 1521 netdev_features_t features); 1522 int (*ndo_neigh_construct)(struct net_device *dev, 1523 struct neighbour *n); 1524 void (*ndo_neigh_destroy)(struct net_device *dev, 1525 struct neighbour *n); 1526 1527 int (*ndo_fdb_add)(struct ndmsg *ndm, 1528 struct nlattr *tb[], 1529 struct net_device *dev, 1530 const unsigned char *addr, 1531 u16 vid, 1532 u16 flags, 1533 bool *notified, 1534 struct netlink_ext_ack *extack); 1535 int (*ndo_fdb_del)(struct ndmsg *ndm, 1536 struct nlattr *tb[], 1537 struct net_device *dev, 1538 const unsigned char *addr, 1539 u16 vid, 1540 bool *notified, 1541 struct netlink_ext_ack *extack); 1542 int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, 1543 struct net_device *dev, 1544 struct netlink_ext_ack *extack); 1545 int (*ndo_fdb_dump)(struct sk_buff *skb, 1546 struct netlink_callback *cb, 1547 struct net_device *dev, 1548 struct net_device *filter_dev, 1549 int *idx); 1550 int (*ndo_fdb_get)(struct sk_buff *skb, 1551 struct nlattr *tb[], 1552 struct net_device *dev, 1553 const unsigned char *addr, 1554 u16 vid, u32 portid, u32 seq, 1555 struct netlink_ext_ack *extack); 1556 int (*ndo_mdb_add)(struct net_device *dev, 1557 struct nlattr *tb[], 1558 u16 nlmsg_flags, 1559 struct netlink_ext_ack *extack); 1560 int (*ndo_mdb_del)(struct net_device *dev, 1561 struct nlattr *tb[], 1562 struct netlink_ext_ack *extack); 1563 int (*ndo_mdb_del_bulk)(struct net_device *dev, 1564 struct nlattr *tb[], 1565 struct netlink_ext_ack *extack); 1566 int (*ndo_mdb_dump)(struct net_device *dev, 1567 struct sk_buff *skb, 1568 struct netlink_callback *cb); 1569 int (*ndo_mdb_get)(struct net_device *dev, 1570 struct nlattr *tb[], u32 portid, 1571 u32 seq, 1572 struct netlink_ext_ack *extack); 1573 int (*ndo_bridge_setlink)(struct net_device *dev, 1574 struct nlmsghdr *nlh, 1575 u16 flags, 1576 struct netlink_ext_ack *extack); 1577 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1578 u32 pid, u32 seq, 1579 struct net_device *dev, 1580 u32 filter_mask, 1581 int nlflags); 1582 int (*ndo_bridge_dellink)(struct net_device *dev, 1583 struct nlmsghdr *nlh, 1584 u16 flags); 1585 int (*ndo_change_carrier)(struct net_device *dev, 1586 bool new_carrier); 1587 int (*ndo_get_phys_port_id)(struct net_device *dev, 1588 struct netdev_phys_item_id *ppid); 1589 int (*ndo_get_port_parent_id)(struct net_device *dev, 1590 struct netdev_phys_item_id *ppid); 1591 int (*ndo_get_phys_port_name)(struct net_device *dev, 1592 char *name, size_t len); 1593 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1594 struct net_device *dev); 1595 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1596 void *priv); 1597 1598 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1599 int queue_index, 1600 u32 maxrate); 1601 int (*ndo_get_iflink)(const struct net_device *dev); 1602 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1603 struct sk_buff *skb); 1604 void (*ndo_set_rx_headroom)(struct net_device *dev, 1605 int needed_headroom); 1606 int (*ndo_bpf)(struct net_device *dev, 1607 struct netdev_bpf *bpf); 1608 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1609 struct xdp_frame **xdp, 1610 u32 flags); 1611 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1612 struct xdp_buff *xdp); 1613 int (*ndo_xsk_wakeup)(struct net_device *dev, 1614 u32 queue_id, u32 flags); 1615 int (*ndo_tunnel_ctl)(struct net_device *dev, 1616 struct ip_tunnel_parm_kern *p, 1617 int cmd); 1618 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); 1619 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, 1620 struct net_device_path *path); 1621 ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1622 const struct skb_shared_hwtstamps *hwtstamps, 1623 bool cycles); 1624 int (*ndo_hwtstamp_get)(struct net_device *dev, 1625 struct kernel_hwtstamp_config *kernel_config); 1626 int (*ndo_hwtstamp_set)(struct net_device *dev, 1627 struct kernel_hwtstamp_config *kernel_config, 1628 struct netlink_ext_ack *extack); 1629 1630 #if IS_ENABLED(CONFIG_NET_SHAPER) 1631 /** 1632 * @net_shaper_ops: Device shaping offload operations 1633 * see include/net/net_shapers.h 1634 */ 1635 const struct net_shaper_ops *net_shaper_ops; 1636 #endif 1637 }; 1638 1639 /** 1640 * enum netdev_priv_flags - &struct net_device priv_flags 1641 * 1642 * These are the &struct net_device, they are only set internally 1643 * by drivers and used in the kernel. These flags are invisible to 1644 * userspace; this means that the order of these flags can change 1645 * during any kernel release. 1646 * 1647 * You should add bitfield booleans after either net_device::priv_flags 1648 * (hotpath) or ::threaded (slowpath) instead of extending these flags. 1649 * 1650 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1651 * @IFF_EBRIDGE: Ethernet bridging device 1652 * @IFF_BONDING: bonding master or slave 1653 * @IFF_ISATAP: ISATAP interface (RFC4214) 1654 * @IFF_WAN_HDLC: WAN HDLC device 1655 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1656 * release skb->dst 1657 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1658 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1659 * @IFF_MACVLAN_PORT: device used as macvlan port 1660 * @IFF_BRIDGE_PORT: device used as bridge port 1661 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1662 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1663 * @IFF_UNICAST_FLT: Supports unicast filtering 1664 * @IFF_TEAM_PORT: device used as team port 1665 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1666 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1667 * change when it's running 1668 * @IFF_MACVLAN: Macvlan device 1669 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1670 * underlying stacked devices 1671 * @IFF_L3MDEV_MASTER: device is an L3 master device 1672 * @IFF_NO_QUEUE: device can run without qdisc attached 1673 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1674 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1675 * @IFF_TEAM: device is a team device 1676 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1677 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1678 * entity (i.e. the master device for bridged veth) 1679 * @IFF_MACSEC: device is a MACsec device 1680 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1681 * @IFF_FAILOVER: device is a failover master device 1682 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1683 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1684 * @IFF_NO_ADDRCONF: prevent ipv6 addrconf 1685 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with 1686 * skb_headlen(skb) == 0 (data starts from frag0) 1687 */ 1688 enum netdev_priv_flags { 1689 IFF_802_1Q_VLAN = 1<<0, 1690 IFF_EBRIDGE = 1<<1, 1691 IFF_BONDING = 1<<2, 1692 IFF_ISATAP = 1<<3, 1693 IFF_WAN_HDLC = 1<<4, 1694 IFF_XMIT_DST_RELEASE = 1<<5, 1695 IFF_DONT_BRIDGE = 1<<6, 1696 IFF_DISABLE_NETPOLL = 1<<7, 1697 IFF_MACVLAN_PORT = 1<<8, 1698 IFF_BRIDGE_PORT = 1<<9, 1699 IFF_OVS_DATAPATH = 1<<10, 1700 IFF_TX_SKB_SHARING = 1<<11, 1701 IFF_UNICAST_FLT = 1<<12, 1702 IFF_TEAM_PORT = 1<<13, 1703 IFF_SUPP_NOFCS = 1<<14, 1704 IFF_LIVE_ADDR_CHANGE = 1<<15, 1705 IFF_MACVLAN = 1<<16, 1706 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1707 IFF_L3MDEV_MASTER = 1<<18, 1708 IFF_NO_QUEUE = 1<<19, 1709 IFF_OPENVSWITCH = 1<<20, 1710 IFF_L3MDEV_SLAVE = 1<<21, 1711 IFF_TEAM = 1<<22, 1712 IFF_RXFH_CONFIGURED = 1<<23, 1713 IFF_PHONY_HEADROOM = 1<<24, 1714 IFF_MACSEC = 1<<25, 1715 IFF_NO_RX_HANDLER = 1<<26, 1716 IFF_FAILOVER = 1<<27, 1717 IFF_FAILOVER_SLAVE = 1<<28, 1718 IFF_L3MDEV_RX_HANDLER = 1<<29, 1719 IFF_NO_ADDRCONF = BIT_ULL(30), 1720 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31), 1721 }; 1722 1723 /* Specifies the type of the struct net_device::ml_priv pointer */ 1724 enum netdev_ml_priv_type { 1725 ML_PRIV_NONE, 1726 ML_PRIV_CAN, 1727 }; 1728 1729 enum netdev_stat_type { 1730 NETDEV_PCPU_STAT_NONE, 1731 NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */ 1732 NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */ 1733 NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */ 1734 }; 1735 1736 enum netdev_reg_state { 1737 NETREG_UNINITIALIZED = 0, 1738 NETREG_REGISTERED, /* completed register_netdevice */ 1739 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1740 NETREG_UNREGISTERED, /* completed unregister todo */ 1741 NETREG_RELEASED, /* called free_netdev */ 1742 NETREG_DUMMY, /* dummy device for NAPI poll */ 1743 }; 1744 1745 /** 1746 * struct net_device - The DEVICE structure. 1747 * 1748 * Actually, this whole structure is a big mistake. It mixes I/O 1749 * data with strictly "high-level" data, and it has to know about 1750 * almost every data structure used in the INET module. 1751 * 1752 * @priv_flags: flags invisible to userspace defined as bits, see 1753 * enum netdev_priv_flags for the definitions 1754 * @lltx: device supports lockless Tx. Deprecated for real HW 1755 * drivers. Mainly used by logical interfaces, such as 1756 * bonding and tunnels 1757 * 1758 * @name: This is the first field of the "visible" part of this structure 1759 * (i.e. as seen by users in the "Space.c" file). It is the name 1760 * of the interface. 1761 * 1762 * @name_node: Name hashlist node 1763 * @ifalias: SNMP alias 1764 * @mem_end: Shared memory end 1765 * @mem_start: Shared memory start 1766 * @base_addr: Device I/O address 1767 * @irq: Device IRQ number 1768 * 1769 * @state: Generic network queuing layer state, see netdev_state_t 1770 * @dev_list: The global list of network devices 1771 * @napi_list: List entry used for polling NAPI devices 1772 * @unreg_list: List entry when we are unregistering the 1773 * device; see the function unregister_netdev 1774 * @close_list: List entry used when we are closing the device 1775 * @ptype_all: Device-specific packet handlers for all protocols 1776 * @ptype_specific: Device-specific, protocol-specific packet handlers 1777 * 1778 * @adj_list: Directly linked devices, like slaves for bonding 1779 * @features: Currently active device features 1780 * @hw_features: User-changeable features 1781 * 1782 * @wanted_features: User-requested features 1783 * @vlan_features: Mask of features inheritable by VLAN devices 1784 * 1785 * @hw_enc_features: Mask of features inherited by encapsulating devices 1786 * This field indicates what encapsulation 1787 * offloads the hardware is capable of doing, 1788 * and drivers will need to set them appropriately. 1789 * 1790 * @mpls_features: Mask of features inheritable by MPLS 1791 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1792 * 1793 * @ifindex: interface index 1794 * @group: The group the device belongs to 1795 * 1796 * @stats: Statistics struct, which was left as a legacy, use 1797 * rtnl_link_stats64 instead 1798 * 1799 * @core_stats: core networking counters, 1800 * do not use this in drivers 1801 * @carrier_up_count: Number of times the carrier has been up 1802 * @carrier_down_count: Number of times the carrier has been down 1803 * 1804 * @wireless_handlers: List of functions to handle Wireless Extensions, 1805 * instead of ioctl, 1806 * see <net/iw_handler.h> for details. 1807 * 1808 * @netdev_ops: Includes several pointers to callbacks, 1809 * if one wants to override the ndo_*() functions 1810 * @xdp_metadata_ops: Includes pointers to XDP metadata callbacks. 1811 * @xsk_tx_metadata_ops: Includes pointers to AF_XDP TX metadata callbacks. 1812 * @ethtool_ops: Management operations 1813 * @l3mdev_ops: Layer 3 master device operations 1814 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1815 * discovery handling. Necessary for e.g. 6LoWPAN. 1816 * @xfrmdev_ops: Transformation offload operations 1817 * @tlsdev_ops: Transport Layer Security offload operations 1818 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1819 * of Layer 2 headers. 1820 * 1821 * @flags: Interface flags (a la BSD) 1822 * @xdp_features: XDP capability supported by the device 1823 * @gflags: Global flags ( kept as legacy ) 1824 * @priv_len: Size of the ->priv flexible array 1825 * @priv: Flexible array containing private data 1826 * @operstate: RFC2863 operstate 1827 * @link_mode: Mapping policy to operstate 1828 * @if_port: Selectable AUI, TP, ... 1829 * @dma: DMA channel 1830 * @mtu: Interface MTU value 1831 * @min_mtu: Interface Minimum MTU value 1832 * @max_mtu: Interface Maximum MTU value 1833 * @type: Interface hardware type 1834 * @hard_header_len: Maximum hardware header length. 1835 * @min_header_len: Minimum hardware header length 1836 * 1837 * @needed_headroom: Extra headroom the hardware may need, but not in all 1838 * cases can this be guaranteed 1839 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1840 * cases can this be guaranteed. Some cases also use 1841 * LL_MAX_HEADER instead to allocate the skb 1842 * 1843 * interface address info: 1844 * 1845 * @perm_addr: Permanent hw address 1846 * @addr_assign_type: Hw address assignment type 1847 * @addr_len: Hardware address length 1848 * @upper_level: Maximum depth level of upper devices. 1849 * @lower_level: Maximum depth level of lower devices. 1850 * @neigh_priv_len: Used in neigh_alloc() 1851 * @dev_id: Used to differentiate devices that share 1852 * the same link layer address 1853 * @dev_port: Used to differentiate devices that share 1854 * the same function 1855 * @addr_list_lock: XXX: need comments on this one 1856 * @name_assign_type: network interface name assignment type 1857 * @uc_promisc: Counter that indicates promiscuous mode 1858 * has been enabled due to the need to listen to 1859 * additional unicast addresses in a device that 1860 * does not implement ndo_set_rx_mode() 1861 * @uc: unicast mac addresses 1862 * @mc: multicast mac addresses 1863 * @dev_addrs: list of device hw addresses 1864 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1865 * @promiscuity: Number of times the NIC is told to work in 1866 * promiscuous mode; if it becomes 0 the NIC will 1867 * exit promiscuous mode 1868 * @allmulti: Counter, enables or disables allmulticast mode 1869 * 1870 * @vlan_info: VLAN info 1871 * @dsa_ptr: dsa specific data 1872 * @tipc_ptr: TIPC specific data 1873 * @atalk_ptr: AppleTalk link 1874 * @ip_ptr: IPv4 specific data 1875 * @ip6_ptr: IPv6 specific data 1876 * @ax25_ptr: AX.25 specific data 1877 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1878 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1879 * device struct 1880 * @mpls_ptr: mpls_dev struct pointer 1881 * @mctp_ptr: MCTP specific data 1882 * 1883 * @dev_addr: Hw address (before bcast, 1884 * because most packets are unicast) 1885 * 1886 * @_rx: Array of RX queues 1887 * @num_rx_queues: Number of RX queues 1888 * allocated at register_netdev() time 1889 * @real_num_rx_queues: Number of RX queues currently active in device 1890 * @xdp_prog: XDP sockets filter program pointer 1891 * 1892 * @rx_handler: handler for received packets 1893 * @rx_handler_data: XXX: need comments on this one 1894 * @tcx_ingress: BPF & clsact qdisc specific data for ingress processing 1895 * @ingress_queue: XXX: need comments on this one 1896 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1897 * @broadcast: hw bcast address 1898 * 1899 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1900 * indexed by RX queue number. Assigned by driver. 1901 * This must only be set if the ndo_rx_flow_steer 1902 * operation is defined 1903 * @index_hlist: Device index hash chain 1904 * 1905 * @_tx: Array of TX queues 1906 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1907 * @real_num_tx_queues: Number of TX queues currently active in device 1908 * @qdisc: Root qdisc from userspace point of view 1909 * @tx_queue_len: Max frames per queue allowed 1910 * @tx_global_lock: XXX: need comments on this one 1911 * @xdp_bulkq: XDP device bulk queue 1912 * @xps_maps: all CPUs/RXQs maps for XPS device 1913 * 1914 * @xps_maps: XXX: need comments on this one 1915 * @tcx_egress: BPF & clsact qdisc specific data for egress processing 1916 * @nf_hooks_egress: netfilter hooks executed for egress packets 1917 * @qdisc_hash: qdisc hash table 1918 * @watchdog_timeo: Represents the timeout that is used by 1919 * the watchdog (see dev_watchdog()) 1920 * @watchdog_timer: List of timers 1921 * 1922 * @proto_down_reason: reason a netdev interface is held down 1923 * @pcpu_refcnt: Number of references to this device 1924 * @dev_refcnt: Number of references to this device 1925 * @refcnt_tracker: Tracker directory for tracked references to this device 1926 * @todo_list: Delayed register/unregister 1927 * @link_watch_list: XXX: need comments on this one 1928 * 1929 * @reg_state: Register/unregister state machine 1930 * @dismantle: Device is going to be freed 1931 * @rtnl_link_state: This enum represents the phases of creating 1932 * a new link 1933 * 1934 * @needs_free_netdev: Should unregister perform free_netdev? 1935 * @priv_destructor: Called from unregister 1936 * @npinfo: XXX: need comments on this one 1937 * @nd_net: Network namespace this network device is inside 1938 * 1939 * @ml_priv: Mid-layer private 1940 * @ml_priv_type: Mid-layer private type 1941 * 1942 * @pcpu_stat_type: Type of device statistics which the core should 1943 * allocate/free: none, lstats, tstats, dstats. none 1944 * means the driver is handling statistics allocation/ 1945 * freeing internally. 1946 * @lstats: Loopback statistics: packets, bytes 1947 * @tstats: Tunnel statistics: RX/TX packets, RX/TX bytes 1948 * @dstats: Dummy statistics: RX/TX/drop packets, RX/TX bytes 1949 * 1950 * @garp_port: GARP 1951 * @mrp_port: MRP 1952 * 1953 * @dm_private: Drop monitor private 1954 * 1955 * @dev: Class/net/name entry 1956 * @sysfs_groups: Space for optional device, statistics and wireless 1957 * sysfs groups 1958 * 1959 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1960 * @rtnl_link_ops: Rtnl_link_ops 1961 * @stat_ops: Optional ops for queue-aware statistics 1962 * @queue_mgmt_ops: Optional ops for queue management 1963 * 1964 * @gso_max_size: Maximum size of generic segmentation offload 1965 * @tso_max_size: Device (as in HW) limit on the max TSO request size 1966 * @gso_max_segs: Maximum number of segments that can be passed to the 1967 * NIC for GSO 1968 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count 1969 * @gso_ipv4_max_size: Maximum size of generic segmentation offload, 1970 * for IPv4. 1971 * 1972 * @dcbnl_ops: Data Center Bridging netlink ops 1973 * @num_tc: Number of traffic classes in the net device 1974 * @tc_to_txq: XXX: need comments on this one 1975 * @prio_tc_map: XXX: need comments on this one 1976 * 1977 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1978 * 1979 * @priomap: XXX: need comments on this one 1980 * @link_topo: Physical link topology tracking attached PHYs 1981 * @phydev: Physical device may attach itself 1982 * for hardware timestamping 1983 * @sfp_bus: attached &struct sfp_bus structure. 1984 * 1985 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1986 * 1987 * @proto_down: protocol port state information can be sent to the 1988 * switch driver and used to set the phys state of the 1989 * switch port. 1990 * 1991 * @threaded: napi threaded mode is enabled 1992 * 1993 * @see_all_hwtstamp_requests: device wants to see calls to 1994 * ndo_hwtstamp_set() for all timestamp requests 1995 * regardless of source, even if those aren't 1996 * HWTSTAMP_SOURCE_NETDEV 1997 * @change_proto_down: device supports setting carrier via IFLA_PROTO_DOWN 1998 * @netns_local: interface can't change network namespaces 1999 * @fcoe_mtu: device supports maximum FCoE MTU, 2158 bytes 2000 * 2001 * @net_notifier_list: List of per-net netdev notifier block 2002 * that follow this device when it is moved 2003 * to another network namespace. 2004 * 2005 * @macsec_ops: MACsec offloading ops 2006 * 2007 * @udp_tunnel_nic_info: static structure describing the UDP tunnel 2008 * offload capabilities of the device 2009 * @udp_tunnel_nic: UDP tunnel offload state 2010 * @ethtool: ethtool related state 2011 * @xdp_state: stores info on attached XDP BPF programs 2012 * 2013 * @nested_level: Used as a parameter of spin_lock_nested() of 2014 * dev->addr_list_lock. 2015 * @unlink_list: As netif_addr_lock() can be called recursively, 2016 * keep a list of interfaces to be deleted. 2017 * @gro_max_size: Maximum size of aggregated packet in generic 2018 * receive offload (GRO) 2019 * @gro_ipv4_max_size: Maximum size of aggregated packet in generic 2020 * receive offload (GRO), for IPv4. 2021 * @xdp_zc_max_segs: Maximum number of segments supported by AF_XDP 2022 * zero copy driver 2023 * 2024 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes. 2025 * @linkwatch_dev_tracker: refcount tracker used by linkwatch. 2026 * @watchdog_dev_tracker: refcount tracker used by watchdog. 2027 * @dev_registered_tracker: tracker for reference held while 2028 * registered 2029 * @offload_xstats_l3: L3 HW stats for this netdevice. 2030 * 2031 * @devlink_port: Pointer to related devlink port structure. 2032 * Assigned by a driver before netdev registration using 2033 * SET_NETDEV_DEVLINK_PORT macro. This pointer is static 2034 * during the time netdevice is registered. 2035 * 2036 * @dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem, 2037 * where the clock is recovered. 2038 * 2039 * @max_pacing_offload_horizon: max EDT offload horizon in nsec. 2040 * @napi_config: An array of napi_config structures containing per-NAPI 2041 * settings. 2042 * @gro_flush_timeout: timeout for GRO layer in NAPI 2043 * @napi_defer_hard_irqs: If not zero, provides a counter that would 2044 * allow to avoid NIC hard IRQ, on busy queues. 2045 * 2046 * @neighbours: List heads pointing to this device's neighbours' 2047 * dev_list, one per address-family. 2048 * 2049 * FIXME: cleanup struct net_device such that network protocol info 2050 * moves out. 2051 */ 2052 2053 struct net_device { 2054 /* Cacheline organization can be found documented in 2055 * Documentation/networking/net_cachelines/net_device.rst. 2056 * Please update the document when adding new fields. 2057 */ 2058 2059 /* TX read-mostly hotpath */ 2060 __cacheline_group_begin(net_device_read_tx); 2061 struct_group(priv_flags_fast, 2062 unsigned long priv_flags:32; 2063 unsigned long lltx:1; 2064 ); 2065 const struct net_device_ops *netdev_ops; 2066 const struct header_ops *header_ops; 2067 struct netdev_queue *_tx; 2068 netdev_features_t gso_partial_features; 2069 unsigned int real_num_tx_queues; 2070 unsigned int gso_max_size; 2071 unsigned int gso_ipv4_max_size; 2072 u16 gso_max_segs; 2073 s16 num_tc; 2074 /* Note : dev->mtu is often read without holding a lock. 2075 * Writers usually hold RTNL. 2076 * It is recommended to use READ_ONCE() to annotate the reads, 2077 * and to use WRITE_ONCE() to annotate the writes. 2078 */ 2079 unsigned int mtu; 2080 unsigned short needed_headroom; 2081 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2082 #ifdef CONFIG_XPS 2083 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX]; 2084 #endif 2085 #ifdef CONFIG_NETFILTER_EGRESS 2086 struct nf_hook_entries __rcu *nf_hooks_egress; 2087 #endif 2088 #ifdef CONFIG_NET_XGRESS 2089 struct bpf_mprog_entry __rcu *tcx_egress; 2090 #endif 2091 __cacheline_group_end(net_device_read_tx); 2092 2093 /* TXRX read-mostly hotpath */ 2094 __cacheline_group_begin(net_device_read_txrx); 2095 union { 2096 struct pcpu_lstats __percpu *lstats; 2097 struct pcpu_sw_netstats __percpu *tstats; 2098 struct pcpu_dstats __percpu *dstats; 2099 }; 2100 unsigned long state; 2101 unsigned int flags; 2102 unsigned short hard_header_len; 2103 netdev_features_t features; 2104 struct inet6_dev __rcu *ip6_ptr; 2105 __cacheline_group_end(net_device_read_txrx); 2106 2107 /* RX read-mostly hotpath */ 2108 __cacheline_group_begin(net_device_read_rx); 2109 struct bpf_prog __rcu *xdp_prog; 2110 struct list_head ptype_specific; 2111 int ifindex; 2112 unsigned int real_num_rx_queues; 2113 struct netdev_rx_queue *_rx; 2114 unsigned int gro_max_size; 2115 unsigned int gro_ipv4_max_size; 2116 rx_handler_func_t __rcu *rx_handler; 2117 void __rcu *rx_handler_data; 2118 possible_net_t nd_net; 2119 #ifdef CONFIG_NETPOLL 2120 struct netpoll_info __rcu *npinfo; 2121 #endif 2122 #ifdef CONFIG_NET_XGRESS 2123 struct bpf_mprog_entry __rcu *tcx_ingress; 2124 #endif 2125 __cacheline_group_end(net_device_read_rx); 2126 2127 char name[IFNAMSIZ]; 2128 struct netdev_name_node *name_node; 2129 struct dev_ifalias __rcu *ifalias; 2130 /* 2131 * I/O specific fields 2132 * FIXME: Merge these and struct ifmap into one 2133 */ 2134 unsigned long mem_end; 2135 unsigned long mem_start; 2136 unsigned long base_addr; 2137 2138 /* 2139 * Some hardware also needs these fields (state,dev_list, 2140 * napi_list,unreg_list,close_list) but they are not 2141 * part of the usual set specified in Space.c. 2142 */ 2143 2144 2145 struct list_head dev_list; 2146 struct list_head napi_list; 2147 struct list_head unreg_list; 2148 struct list_head close_list; 2149 struct list_head ptype_all; 2150 2151 struct { 2152 struct list_head upper; 2153 struct list_head lower; 2154 } adj_list; 2155 2156 /* Read-mostly cache-line for fast-path access */ 2157 xdp_features_t xdp_features; 2158 const struct xdp_metadata_ops *xdp_metadata_ops; 2159 const struct xsk_tx_metadata_ops *xsk_tx_metadata_ops; 2160 unsigned short gflags; 2161 2162 unsigned short needed_tailroom; 2163 2164 netdev_features_t hw_features; 2165 netdev_features_t wanted_features; 2166 netdev_features_t vlan_features; 2167 netdev_features_t hw_enc_features; 2168 netdev_features_t mpls_features; 2169 2170 unsigned int min_mtu; 2171 unsigned int max_mtu; 2172 unsigned short type; 2173 unsigned char min_header_len; 2174 unsigned char name_assign_type; 2175 2176 int group; 2177 2178 struct net_device_stats stats; /* not used by modern drivers */ 2179 2180 struct net_device_core_stats __percpu *core_stats; 2181 2182 /* Stats to monitor link on/off, flapping */ 2183 atomic_t carrier_up_count; 2184 atomic_t carrier_down_count; 2185 2186 #ifdef CONFIG_WIRELESS_EXT 2187 const struct iw_handler_def *wireless_handlers; 2188 #endif 2189 const struct ethtool_ops *ethtool_ops; 2190 #ifdef CONFIG_NET_L3_MASTER_DEV 2191 const struct l3mdev_ops *l3mdev_ops; 2192 #endif 2193 #if IS_ENABLED(CONFIG_IPV6) 2194 const struct ndisc_ops *ndisc_ops; 2195 #endif 2196 2197 #ifdef CONFIG_XFRM_OFFLOAD 2198 const struct xfrmdev_ops *xfrmdev_ops; 2199 #endif 2200 2201 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2202 const struct tlsdev_ops *tlsdev_ops; 2203 #endif 2204 2205 unsigned int operstate; 2206 unsigned char link_mode; 2207 2208 unsigned char if_port; 2209 unsigned char dma; 2210 2211 /* Interface address info. */ 2212 unsigned char perm_addr[MAX_ADDR_LEN]; 2213 unsigned char addr_assign_type; 2214 unsigned char addr_len; 2215 unsigned char upper_level; 2216 unsigned char lower_level; 2217 2218 unsigned short neigh_priv_len; 2219 unsigned short dev_id; 2220 unsigned short dev_port; 2221 int irq; 2222 u32 priv_len; 2223 2224 spinlock_t addr_list_lock; 2225 2226 struct netdev_hw_addr_list uc; 2227 struct netdev_hw_addr_list mc; 2228 struct netdev_hw_addr_list dev_addrs; 2229 2230 #ifdef CONFIG_SYSFS 2231 struct kset *queues_kset; 2232 #endif 2233 #ifdef CONFIG_LOCKDEP 2234 struct list_head unlink_list; 2235 #endif 2236 unsigned int promiscuity; 2237 unsigned int allmulti; 2238 bool uc_promisc; 2239 #ifdef CONFIG_LOCKDEP 2240 unsigned char nested_level; 2241 #endif 2242 2243 2244 /* Protocol-specific pointers */ 2245 struct in_device __rcu *ip_ptr; 2246 /** @fib_nh_head: nexthops associated with this netdev */ 2247 struct hlist_head fib_nh_head; 2248 2249 #if IS_ENABLED(CONFIG_VLAN_8021Q) 2250 struct vlan_info __rcu *vlan_info; 2251 #endif 2252 #if IS_ENABLED(CONFIG_NET_DSA) 2253 struct dsa_port *dsa_ptr; 2254 #endif 2255 #if IS_ENABLED(CONFIG_TIPC) 2256 struct tipc_bearer __rcu *tipc_ptr; 2257 #endif 2258 #if IS_ENABLED(CONFIG_ATALK) 2259 void *atalk_ptr; 2260 #endif 2261 #if IS_ENABLED(CONFIG_AX25) 2262 void *ax25_ptr; 2263 #endif 2264 #if IS_ENABLED(CONFIG_CFG80211) 2265 struct wireless_dev *ieee80211_ptr; 2266 #endif 2267 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN) 2268 struct wpan_dev *ieee802154_ptr; 2269 #endif 2270 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 2271 struct mpls_dev __rcu *mpls_ptr; 2272 #endif 2273 #if IS_ENABLED(CONFIG_MCTP) 2274 struct mctp_dev __rcu *mctp_ptr; 2275 #endif 2276 2277 /* 2278 * Cache lines mostly used on receive path (including eth_type_trans()) 2279 */ 2280 /* Interface address info used in eth_type_trans() */ 2281 const unsigned char *dev_addr; 2282 2283 unsigned int num_rx_queues; 2284 #define GRO_LEGACY_MAX_SIZE 65536u 2285 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2286 * and shinfo->gso_segs is a 16bit field. 2287 */ 2288 #define GRO_MAX_SIZE (8 * 65535u) 2289 unsigned int xdp_zc_max_segs; 2290 struct netdev_queue __rcu *ingress_queue; 2291 #ifdef CONFIG_NETFILTER_INGRESS 2292 struct nf_hook_entries __rcu *nf_hooks_ingress; 2293 #endif 2294 2295 unsigned char broadcast[MAX_ADDR_LEN]; 2296 #ifdef CONFIG_RFS_ACCEL 2297 struct cpu_rmap *rx_cpu_rmap; 2298 #endif 2299 struct hlist_node index_hlist; 2300 2301 /* 2302 * Cache lines mostly used on transmit path 2303 */ 2304 unsigned int num_tx_queues; 2305 struct Qdisc __rcu *qdisc; 2306 unsigned int tx_queue_len; 2307 spinlock_t tx_global_lock; 2308 2309 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2310 2311 #ifdef CONFIG_NET_SCHED 2312 DECLARE_HASHTABLE (qdisc_hash, 4); 2313 #endif 2314 /* These may be needed for future network-power-down code. */ 2315 struct timer_list watchdog_timer; 2316 int watchdog_timeo; 2317 2318 u32 proto_down_reason; 2319 2320 struct list_head todo_list; 2321 2322 #ifdef CONFIG_PCPU_DEV_REFCNT 2323 int __percpu *pcpu_refcnt; 2324 #else 2325 refcount_t dev_refcnt; 2326 #endif 2327 struct ref_tracker_dir refcnt_tracker; 2328 2329 struct list_head link_watch_list; 2330 2331 u8 reg_state; 2332 2333 bool dismantle; 2334 2335 enum { 2336 RTNL_LINK_INITIALIZED, 2337 RTNL_LINK_INITIALIZING, 2338 } rtnl_link_state:16; 2339 2340 bool needs_free_netdev; 2341 void (*priv_destructor)(struct net_device *dev); 2342 2343 /* mid-layer private */ 2344 void *ml_priv; 2345 enum netdev_ml_priv_type ml_priv_type; 2346 2347 enum netdev_stat_type pcpu_stat_type:8; 2348 2349 #if IS_ENABLED(CONFIG_GARP) 2350 struct garp_port __rcu *garp_port; 2351 #endif 2352 #if IS_ENABLED(CONFIG_MRP) 2353 struct mrp_port __rcu *mrp_port; 2354 #endif 2355 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR) 2356 struct dm_hw_stat_delta __rcu *dm_private; 2357 #endif 2358 struct device dev; 2359 const struct attribute_group *sysfs_groups[4]; 2360 const struct attribute_group *sysfs_rx_queue_group; 2361 2362 const struct rtnl_link_ops *rtnl_link_ops; 2363 2364 const struct netdev_stat_ops *stat_ops; 2365 2366 const struct netdev_queue_mgmt_ops *queue_mgmt_ops; 2367 2368 /* for setting kernel sock attribute on TCP connection setup */ 2369 #define GSO_MAX_SEGS 65535u 2370 #define GSO_LEGACY_MAX_SIZE 65536u 2371 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2372 * and shinfo->gso_segs is a 16bit field. 2373 */ 2374 #define GSO_MAX_SIZE (8 * GSO_MAX_SEGS) 2375 2376 #define TSO_LEGACY_MAX_SIZE 65536 2377 #define TSO_MAX_SIZE UINT_MAX 2378 unsigned int tso_max_size; 2379 #define TSO_MAX_SEGS U16_MAX 2380 u16 tso_max_segs; 2381 2382 #ifdef CONFIG_DCB 2383 const struct dcbnl_rtnl_ops *dcbnl_ops; 2384 #endif 2385 u8 prio_tc_map[TC_BITMASK + 1]; 2386 2387 #if IS_ENABLED(CONFIG_FCOE) 2388 unsigned int fcoe_ddp_xid; 2389 #endif 2390 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2391 struct netprio_map __rcu *priomap; 2392 #endif 2393 struct phy_link_topology *link_topo; 2394 struct phy_device *phydev; 2395 struct sfp_bus *sfp_bus; 2396 struct lock_class_key *qdisc_tx_busylock; 2397 bool proto_down; 2398 bool threaded; 2399 2400 /* priv_flags_slow, ungrouped to save space */ 2401 unsigned long see_all_hwtstamp_requests:1; 2402 unsigned long change_proto_down:1; 2403 unsigned long netns_local:1; 2404 unsigned long fcoe_mtu:1; 2405 2406 struct list_head net_notifier_list; 2407 2408 #if IS_ENABLED(CONFIG_MACSEC) 2409 /* MACsec management functions */ 2410 const struct macsec_ops *macsec_ops; 2411 #endif 2412 const struct udp_tunnel_nic_info *udp_tunnel_nic_info; 2413 struct udp_tunnel_nic *udp_tunnel_nic; 2414 2415 struct ethtool_netdev_state *ethtool; 2416 2417 /* protected by rtnl_lock */ 2418 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; 2419 2420 u8 dev_addr_shadow[MAX_ADDR_LEN]; 2421 netdevice_tracker linkwatch_dev_tracker; 2422 netdevice_tracker watchdog_dev_tracker; 2423 netdevice_tracker dev_registered_tracker; 2424 struct rtnl_hw_stats64 *offload_xstats_l3; 2425 2426 struct devlink_port *devlink_port; 2427 2428 #if IS_ENABLED(CONFIG_DPLL) 2429 struct dpll_pin __rcu *dpll_pin; 2430 #endif 2431 #if IS_ENABLED(CONFIG_PAGE_POOL) 2432 /** @page_pools: page pools created for this netdevice */ 2433 struct hlist_head page_pools; 2434 #endif 2435 2436 /** @irq_moder: dim parameters used if IS_ENABLED(CONFIG_DIMLIB). */ 2437 struct dim_irq_moder *irq_moder; 2438 2439 u64 max_pacing_offload_horizon; 2440 struct napi_config *napi_config; 2441 unsigned long gro_flush_timeout; 2442 u32 napi_defer_hard_irqs; 2443 2444 /** 2445 * @lock: protects @net_shaper_hierarchy, feel free to use for other 2446 * netdev-scope protection. Ordering: take after rtnl_lock. 2447 */ 2448 struct mutex lock; 2449 2450 #if IS_ENABLED(CONFIG_NET_SHAPER) 2451 /** 2452 * @net_shaper_hierarchy: data tracking the current shaper status 2453 * see include/net/net_shapers.h 2454 */ 2455 struct net_shaper_hierarchy *net_shaper_hierarchy; 2456 #endif 2457 2458 struct hlist_head neighbours[NEIGH_NR_TABLES]; 2459 2460 u8 priv[] ____cacheline_aligned 2461 __counted_by(priv_len); 2462 } ____cacheline_aligned; 2463 #define to_net_dev(d) container_of(d, struct net_device, dev) 2464 2465 /* 2466 * Driver should use this to assign devlink port instance to a netdevice 2467 * before it registers the netdevice. Therefore devlink_port is static 2468 * during the netdev lifetime after it is registered. 2469 */ 2470 #define SET_NETDEV_DEVLINK_PORT(dev, port) \ 2471 ({ \ 2472 WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED); \ 2473 ((dev)->devlink_port = (port)); \ 2474 }) 2475 2476 static inline bool netif_elide_gro(const struct net_device *dev) 2477 { 2478 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2479 return true; 2480 return false; 2481 } 2482 2483 #define NETDEV_ALIGN 32 2484 2485 static inline 2486 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2487 { 2488 return dev->prio_tc_map[prio & TC_BITMASK]; 2489 } 2490 2491 static inline 2492 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2493 { 2494 if (tc >= dev->num_tc) 2495 return -EINVAL; 2496 2497 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2498 return 0; 2499 } 2500 2501 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2502 void netdev_reset_tc(struct net_device *dev); 2503 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2504 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2505 2506 static inline 2507 int netdev_get_num_tc(struct net_device *dev) 2508 { 2509 return dev->num_tc; 2510 } 2511 2512 static inline void net_prefetch(void *p) 2513 { 2514 prefetch(p); 2515 #if L1_CACHE_BYTES < 128 2516 prefetch((u8 *)p + L1_CACHE_BYTES); 2517 #endif 2518 } 2519 2520 static inline void net_prefetchw(void *p) 2521 { 2522 prefetchw(p); 2523 #if L1_CACHE_BYTES < 128 2524 prefetchw((u8 *)p + L1_CACHE_BYTES); 2525 #endif 2526 } 2527 2528 void netdev_unbind_sb_channel(struct net_device *dev, 2529 struct net_device *sb_dev); 2530 int netdev_bind_sb_channel_queue(struct net_device *dev, 2531 struct net_device *sb_dev, 2532 u8 tc, u16 count, u16 offset); 2533 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2534 static inline int netdev_get_sb_channel(struct net_device *dev) 2535 { 2536 return max_t(int, -dev->num_tc, 0); 2537 } 2538 2539 static inline 2540 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2541 unsigned int index) 2542 { 2543 DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues); 2544 return &dev->_tx[index]; 2545 } 2546 2547 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2548 const struct sk_buff *skb) 2549 { 2550 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2551 } 2552 2553 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2554 void (*f)(struct net_device *, 2555 struct netdev_queue *, 2556 void *), 2557 void *arg) 2558 { 2559 unsigned int i; 2560 2561 for (i = 0; i < dev->num_tx_queues; i++) 2562 f(dev, &dev->_tx[i], arg); 2563 } 2564 2565 #define netdev_lockdep_set_classes(dev) \ 2566 { \ 2567 static struct lock_class_key qdisc_tx_busylock_key; \ 2568 static struct lock_class_key qdisc_xmit_lock_key; \ 2569 static struct lock_class_key dev_addr_list_lock_key; \ 2570 unsigned int i; \ 2571 \ 2572 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2573 lockdep_set_class(&(dev)->addr_list_lock, \ 2574 &dev_addr_list_lock_key); \ 2575 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2576 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2577 &qdisc_xmit_lock_key); \ 2578 } 2579 2580 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2581 struct net_device *sb_dev); 2582 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2583 struct sk_buff *skb, 2584 struct net_device *sb_dev); 2585 2586 /* returns the headroom that the master device needs to take in account 2587 * when forwarding to this dev 2588 */ 2589 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2590 { 2591 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2592 } 2593 2594 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2595 { 2596 if (dev->netdev_ops->ndo_set_rx_headroom) 2597 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2598 } 2599 2600 /* set the device rx headroom to the dev's default */ 2601 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2602 { 2603 netdev_set_rx_headroom(dev, -1); 2604 } 2605 2606 static inline void *netdev_get_ml_priv(struct net_device *dev, 2607 enum netdev_ml_priv_type type) 2608 { 2609 if (dev->ml_priv_type != type) 2610 return NULL; 2611 2612 return dev->ml_priv; 2613 } 2614 2615 static inline void netdev_set_ml_priv(struct net_device *dev, 2616 void *ml_priv, 2617 enum netdev_ml_priv_type type) 2618 { 2619 WARN(dev->ml_priv_type && dev->ml_priv_type != type, 2620 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", 2621 dev->ml_priv_type, type); 2622 WARN(!dev->ml_priv_type && dev->ml_priv, 2623 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); 2624 2625 dev->ml_priv = ml_priv; 2626 dev->ml_priv_type = type; 2627 } 2628 2629 /* 2630 * Net namespace inlines 2631 */ 2632 static inline 2633 struct net *dev_net(const struct net_device *dev) 2634 { 2635 return read_pnet(&dev->nd_net); 2636 } 2637 2638 static inline 2639 void dev_net_set(struct net_device *dev, struct net *net) 2640 { 2641 write_pnet(&dev->nd_net, net); 2642 } 2643 2644 /** 2645 * netdev_priv - access network device private data 2646 * @dev: network device 2647 * 2648 * Get network device private data 2649 */ 2650 static inline void *netdev_priv(const struct net_device *dev) 2651 { 2652 return (void *)dev->priv; 2653 } 2654 2655 /* Set the sysfs physical device reference for the network logical device 2656 * if set prior to registration will cause a symlink during initialization. 2657 */ 2658 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2659 2660 /* Set the sysfs device type for the network logical device to allow 2661 * fine-grained identification of different network device types. For 2662 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2663 */ 2664 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2665 2666 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 2667 enum netdev_queue_type type, 2668 struct napi_struct *napi); 2669 2670 static inline void netif_napi_set_irq(struct napi_struct *napi, int irq) 2671 { 2672 napi->irq = irq; 2673 } 2674 2675 /* Default NAPI poll() weight 2676 * Device drivers are strongly advised to not use bigger value 2677 */ 2678 #define NAPI_POLL_WEIGHT 64 2679 2680 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 2681 int (*poll)(struct napi_struct *, int), int weight); 2682 2683 /** 2684 * netif_napi_add() - initialize a NAPI context 2685 * @dev: network device 2686 * @napi: NAPI context 2687 * @poll: polling function 2688 * 2689 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2690 * *any* of the other NAPI-related functions. 2691 */ 2692 static inline void 2693 netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2694 int (*poll)(struct napi_struct *, int)) 2695 { 2696 netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2697 } 2698 2699 static inline void 2700 netif_napi_add_tx_weight(struct net_device *dev, 2701 struct napi_struct *napi, 2702 int (*poll)(struct napi_struct *, int), 2703 int weight) 2704 { 2705 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2706 netif_napi_add_weight(dev, napi, poll, weight); 2707 } 2708 2709 /** 2710 * netif_napi_add_config - initialize a NAPI context with persistent config 2711 * @dev: network device 2712 * @napi: NAPI context 2713 * @poll: polling function 2714 * @index: the NAPI index 2715 */ 2716 static inline void 2717 netif_napi_add_config(struct net_device *dev, struct napi_struct *napi, 2718 int (*poll)(struct napi_struct *, int), int index) 2719 { 2720 napi->index = index; 2721 napi->config = &dev->napi_config[index]; 2722 netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2723 } 2724 2725 /** 2726 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only 2727 * @dev: network device 2728 * @napi: NAPI context 2729 * @poll: polling function 2730 * 2731 * This variant of netif_napi_add() should be used from drivers using NAPI 2732 * to exclusively poll a TX queue. 2733 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2734 */ 2735 static inline void netif_napi_add_tx(struct net_device *dev, 2736 struct napi_struct *napi, 2737 int (*poll)(struct napi_struct *, int)) 2738 { 2739 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2740 } 2741 2742 /** 2743 * __netif_napi_del - remove a NAPI context 2744 * @napi: NAPI context 2745 * 2746 * Warning: caller must observe RCU grace period before freeing memory 2747 * containing @napi. Drivers might want to call this helper to combine 2748 * all the needed RCU grace periods into a single one. 2749 */ 2750 void __netif_napi_del(struct napi_struct *napi); 2751 2752 /** 2753 * netif_napi_del - remove a NAPI context 2754 * @napi: NAPI context 2755 * 2756 * netif_napi_del() removes a NAPI context from the network device NAPI list 2757 */ 2758 static inline void netif_napi_del(struct napi_struct *napi) 2759 { 2760 __netif_napi_del(napi); 2761 synchronize_net(); 2762 } 2763 2764 struct packet_type { 2765 __be16 type; /* This is really htons(ether_type). */ 2766 bool ignore_outgoing; 2767 struct net_device *dev; /* NULL is wildcarded here */ 2768 netdevice_tracker dev_tracker; 2769 int (*func) (struct sk_buff *, 2770 struct net_device *, 2771 struct packet_type *, 2772 struct net_device *); 2773 void (*list_func) (struct list_head *, 2774 struct packet_type *, 2775 struct net_device *); 2776 bool (*id_match)(struct packet_type *ptype, 2777 struct sock *sk); 2778 struct net *af_packet_net; 2779 void *af_packet_priv; 2780 struct list_head list; 2781 }; 2782 2783 struct offload_callbacks { 2784 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2785 netdev_features_t features); 2786 struct sk_buff *(*gro_receive)(struct list_head *head, 2787 struct sk_buff *skb); 2788 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2789 }; 2790 2791 struct packet_offload { 2792 __be16 type; /* This is really htons(ether_type). */ 2793 u16 priority; 2794 struct offload_callbacks callbacks; 2795 struct list_head list; 2796 }; 2797 2798 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2799 struct pcpu_sw_netstats { 2800 u64_stats_t rx_packets; 2801 u64_stats_t rx_bytes; 2802 u64_stats_t tx_packets; 2803 u64_stats_t tx_bytes; 2804 struct u64_stats_sync syncp; 2805 } __aligned(4 * sizeof(u64)); 2806 2807 struct pcpu_dstats { 2808 u64_stats_t rx_packets; 2809 u64_stats_t rx_bytes; 2810 u64_stats_t rx_drops; 2811 u64_stats_t tx_packets; 2812 u64_stats_t tx_bytes; 2813 u64_stats_t tx_drops; 2814 struct u64_stats_sync syncp; 2815 } __aligned(8 * sizeof(u64)); 2816 2817 struct pcpu_lstats { 2818 u64_stats_t packets; 2819 u64_stats_t bytes; 2820 struct u64_stats_sync syncp; 2821 } __aligned(2 * sizeof(u64)); 2822 2823 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2824 2825 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) 2826 { 2827 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2828 2829 u64_stats_update_begin(&tstats->syncp); 2830 u64_stats_add(&tstats->rx_bytes, len); 2831 u64_stats_inc(&tstats->rx_packets); 2832 u64_stats_update_end(&tstats->syncp); 2833 } 2834 2835 static inline void dev_sw_netstats_tx_add(struct net_device *dev, 2836 unsigned int packets, 2837 unsigned int len) 2838 { 2839 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2840 2841 u64_stats_update_begin(&tstats->syncp); 2842 u64_stats_add(&tstats->tx_bytes, len); 2843 u64_stats_add(&tstats->tx_packets, packets); 2844 u64_stats_update_end(&tstats->syncp); 2845 } 2846 2847 static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2848 { 2849 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2850 2851 u64_stats_update_begin(&lstats->syncp); 2852 u64_stats_add(&lstats->bytes, len); 2853 u64_stats_inc(&lstats->packets); 2854 u64_stats_update_end(&lstats->syncp); 2855 } 2856 2857 static inline void dev_dstats_rx_add(struct net_device *dev, 2858 unsigned int len) 2859 { 2860 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 2861 2862 u64_stats_update_begin(&dstats->syncp); 2863 u64_stats_inc(&dstats->rx_packets); 2864 u64_stats_add(&dstats->rx_bytes, len); 2865 u64_stats_update_end(&dstats->syncp); 2866 } 2867 2868 static inline void dev_dstats_rx_dropped(struct net_device *dev) 2869 { 2870 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 2871 2872 u64_stats_update_begin(&dstats->syncp); 2873 u64_stats_inc(&dstats->rx_drops); 2874 u64_stats_update_end(&dstats->syncp); 2875 } 2876 2877 static inline void dev_dstats_tx_add(struct net_device *dev, 2878 unsigned int len) 2879 { 2880 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 2881 2882 u64_stats_update_begin(&dstats->syncp); 2883 u64_stats_inc(&dstats->tx_packets); 2884 u64_stats_add(&dstats->tx_bytes, len); 2885 u64_stats_update_end(&dstats->syncp); 2886 } 2887 2888 static inline void dev_dstats_tx_dropped(struct net_device *dev) 2889 { 2890 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 2891 2892 u64_stats_update_begin(&dstats->syncp); 2893 u64_stats_inc(&dstats->tx_drops); 2894 u64_stats_update_end(&dstats->syncp); 2895 } 2896 2897 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2898 ({ \ 2899 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2900 if (pcpu_stats) { \ 2901 int __cpu; \ 2902 for_each_possible_cpu(__cpu) { \ 2903 typeof(type) *stat; \ 2904 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2905 u64_stats_init(&stat->syncp); \ 2906 } \ 2907 } \ 2908 pcpu_stats; \ 2909 }) 2910 2911 #define netdev_alloc_pcpu_stats(type) \ 2912 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2913 2914 #define devm_netdev_alloc_pcpu_stats(dev, type) \ 2915 ({ \ 2916 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\ 2917 if (pcpu_stats) { \ 2918 int __cpu; \ 2919 for_each_possible_cpu(__cpu) { \ 2920 typeof(type) *stat; \ 2921 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2922 u64_stats_init(&stat->syncp); \ 2923 } \ 2924 } \ 2925 pcpu_stats; \ 2926 }) 2927 2928 enum netdev_lag_tx_type { 2929 NETDEV_LAG_TX_TYPE_UNKNOWN, 2930 NETDEV_LAG_TX_TYPE_RANDOM, 2931 NETDEV_LAG_TX_TYPE_BROADCAST, 2932 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2933 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2934 NETDEV_LAG_TX_TYPE_HASH, 2935 }; 2936 2937 enum netdev_lag_hash { 2938 NETDEV_LAG_HASH_NONE, 2939 NETDEV_LAG_HASH_L2, 2940 NETDEV_LAG_HASH_L34, 2941 NETDEV_LAG_HASH_L23, 2942 NETDEV_LAG_HASH_E23, 2943 NETDEV_LAG_HASH_E34, 2944 NETDEV_LAG_HASH_VLAN_SRCMAC, 2945 NETDEV_LAG_HASH_UNKNOWN, 2946 }; 2947 2948 struct netdev_lag_upper_info { 2949 enum netdev_lag_tx_type tx_type; 2950 enum netdev_lag_hash hash_type; 2951 }; 2952 2953 struct netdev_lag_lower_state_info { 2954 u8 link_up : 1, 2955 tx_enabled : 1; 2956 }; 2957 2958 #include <linux/notifier.h> 2959 2960 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2961 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2962 * adding new types. 2963 */ 2964 enum netdev_cmd { 2965 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2966 NETDEV_DOWN, 2967 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2968 detected a hardware crash and restarted 2969 - we can use this eg to kick tcp sessions 2970 once done */ 2971 NETDEV_CHANGE, /* Notify device state change */ 2972 NETDEV_REGISTER, 2973 NETDEV_UNREGISTER, 2974 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2975 NETDEV_CHANGEADDR, /* notify after the address change */ 2976 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2977 NETDEV_GOING_DOWN, 2978 NETDEV_CHANGENAME, 2979 NETDEV_FEAT_CHANGE, 2980 NETDEV_BONDING_FAILOVER, 2981 NETDEV_PRE_UP, 2982 NETDEV_PRE_TYPE_CHANGE, 2983 NETDEV_POST_TYPE_CHANGE, 2984 NETDEV_POST_INIT, 2985 NETDEV_PRE_UNINIT, 2986 NETDEV_RELEASE, 2987 NETDEV_NOTIFY_PEERS, 2988 NETDEV_JOIN, 2989 NETDEV_CHANGEUPPER, 2990 NETDEV_RESEND_IGMP, 2991 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2992 NETDEV_CHANGEINFODATA, 2993 NETDEV_BONDING_INFO, 2994 NETDEV_PRECHANGEUPPER, 2995 NETDEV_CHANGELOWERSTATE, 2996 NETDEV_UDP_TUNNEL_PUSH_INFO, 2997 NETDEV_UDP_TUNNEL_DROP_INFO, 2998 NETDEV_CHANGE_TX_QUEUE_LEN, 2999 NETDEV_CVLAN_FILTER_PUSH_INFO, 3000 NETDEV_CVLAN_FILTER_DROP_INFO, 3001 NETDEV_SVLAN_FILTER_PUSH_INFO, 3002 NETDEV_SVLAN_FILTER_DROP_INFO, 3003 NETDEV_OFFLOAD_XSTATS_ENABLE, 3004 NETDEV_OFFLOAD_XSTATS_DISABLE, 3005 NETDEV_OFFLOAD_XSTATS_REPORT_USED, 3006 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 3007 NETDEV_XDP_FEAT_CHANGE, 3008 }; 3009 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 3010 3011 int register_netdevice_notifier(struct notifier_block *nb); 3012 int unregister_netdevice_notifier(struct notifier_block *nb); 3013 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 3014 int unregister_netdevice_notifier_net(struct net *net, 3015 struct notifier_block *nb); 3016 int register_netdevice_notifier_dev_net(struct net_device *dev, 3017 struct notifier_block *nb, 3018 struct netdev_net_notifier *nn); 3019 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 3020 struct notifier_block *nb, 3021 struct netdev_net_notifier *nn); 3022 3023 struct netdev_notifier_info { 3024 struct net_device *dev; 3025 struct netlink_ext_ack *extack; 3026 }; 3027 3028 struct netdev_notifier_info_ext { 3029 struct netdev_notifier_info info; /* must be first */ 3030 union { 3031 u32 mtu; 3032 } ext; 3033 }; 3034 3035 struct netdev_notifier_change_info { 3036 struct netdev_notifier_info info; /* must be first */ 3037 unsigned int flags_changed; 3038 }; 3039 3040 struct netdev_notifier_changeupper_info { 3041 struct netdev_notifier_info info; /* must be first */ 3042 struct net_device *upper_dev; /* new upper dev */ 3043 bool master; /* is upper dev master */ 3044 bool linking; /* is the notification for link or unlink */ 3045 void *upper_info; /* upper dev info */ 3046 }; 3047 3048 struct netdev_notifier_changelowerstate_info { 3049 struct netdev_notifier_info info; /* must be first */ 3050 void *lower_state_info; /* is lower dev state */ 3051 }; 3052 3053 struct netdev_notifier_pre_changeaddr_info { 3054 struct netdev_notifier_info info; /* must be first */ 3055 const unsigned char *dev_addr; 3056 }; 3057 3058 enum netdev_offload_xstats_type { 3059 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1, 3060 }; 3061 3062 struct netdev_notifier_offload_xstats_info { 3063 struct netdev_notifier_info info; /* must be first */ 3064 enum netdev_offload_xstats_type type; 3065 3066 union { 3067 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */ 3068 struct netdev_notifier_offload_xstats_rd *report_delta; 3069 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */ 3070 struct netdev_notifier_offload_xstats_ru *report_used; 3071 }; 3072 }; 3073 3074 int netdev_offload_xstats_enable(struct net_device *dev, 3075 enum netdev_offload_xstats_type type, 3076 struct netlink_ext_ack *extack); 3077 int netdev_offload_xstats_disable(struct net_device *dev, 3078 enum netdev_offload_xstats_type type); 3079 bool netdev_offload_xstats_enabled(const struct net_device *dev, 3080 enum netdev_offload_xstats_type type); 3081 int netdev_offload_xstats_get(struct net_device *dev, 3082 enum netdev_offload_xstats_type type, 3083 struct rtnl_hw_stats64 *stats, bool *used, 3084 struct netlink_ext_ack *extack); 3085 void 3086 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd, 3087 const struct rtnl_hw_stats64 *stats); 3088 void 3089 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru); 3090 void netdev_offload_xstats_push_delta(struct net_device *dev, 3091 enum netdev_offload_xstats_type type, 3092 const struct rtnl_hw_stats64 *stats); 3093 3094 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 3095 struct net_device *dev) 3096 { 3097 info->dev = dev; 3098 info->extack = NULL; 3099 } 3100 3101 static inline struct net_device * 3102 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 3103 { 3104 return info->dev; 3105 } 3106 3107 static inline struct netlink_ext_ack * 3108 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 3109 { 3110 return info->extack; 3111 } 3112 3113 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 3114 int call_netdevice_notifiers_info(unsigned long val, 3115 struct netdev_notifier_info *info); 3116 3117 #define for_each_netdev(net, d) \ 3118 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 3119 #define for_each_netdev_reverse(net, d) \ 3120 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 3121 #define for_each_netdev_rcu(net, d) \ 3122 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 3123 #define for_each_netdev_safe(net, d, n) \ 3124 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 3125 #define for_each_netdev_continue(net, d) \ 3126 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 3127 #define for_each_netdev_continue_reverse(net, d) \ 3128 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 3129 dev_list) 3130 #define for_each_netdev_continue_rcu(net, d) \ 3131 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 3132 #define for_each_netdev_in_bond_rcu(bond, slave) \ 3133 for_each_netdev_rcu(&init_net, slave) \ 3134 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 3135 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 3136 3137 #define for_each_netdev_dump(net, d, ifindex) \ 3138 for (; (d = xa_find(&(net)->dev_by_index, &ifindex, \ 3139 ULONG_MAX, XA_PRESENT)); ifindex++) 3140 3141 static inline struct net_device *next_net_device(struct net_device *dev) 3142 { 3143 struct list_head *lh; 3144 struct net *net; 3145 3146 net = dev_net(dev); 3147 lh = dev->dev_list.next; 3148 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3149 } 3150 3151 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 3152 { 3153 struct list_head *lh; 3154 struct net *net; 3155 3156 net = dev_net(dev); 3157 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 3158 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3159 } 3160 3161 static inline struct net_device *first_net_device(struct net *net) 3162 { 3163 return list_empty(&net->dev_base_head) ? NULL : 3164 net_device_entry(net->dev_base_head.next); 3165 } 3166 3167 static inline struct net_device *first_net_device_rcu(struct net *net) 3168 { 3169 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 3170 3171 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3172 } 3173 3174 int netdev_boot_setup_check(struct net_device *dev); 3175 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 3176 const char *hwaddr); 3177 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 3178 void dev_add_pack(struct packet_type *pt); 3179 void dev_remove_pack(struct packet_type *pt); 3180 void __dev_remove_pack(struct packet_type *pt); 3181 void dev_add_offload(struct packet_offload *po); 3182 void dev_remove_offload(struct packet_offload *po); 3183 3184 int dev_get_iflink(const struct net_device *dev); 3185 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 3186 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 3187 struct net_device_path_stack *stack); 3188 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 3189 unsigned short mask); 3190 struct net_device *dev_get_by_name(struct net *net, const char *name); 3191 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 3192 struct net_device *__dev_get_by_name(struct net *net, const char *name); 3193 bool netdev_name_in_use(struct net *net, const char *name); 3194 int dev_alloc_name(struct net_device *dev, const char *name); 3195 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 3196 void dev_close(struct net_device *dev); 3197 void dev_close_many(struct list_head *head, bool unlink); 3198 void dev_disable_lro(struct net_device *dev); 3199 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 3200 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3201 struct net_device *sb_dev); 3202 3203 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev); 3204 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 3205 3206 static inline int dev_queue_xmit(struct sk_buff *skb) 3207 { 3208 return __dev_queue_xmit(skb, NULL); 3209 } 3210 3211 static inline int dev_queue_xmit_accel(struct sk_buff *skb, 3212 struct net_device *sb_dev) 3213 { 3214 return __dev_queue_xmit(skb, sb_dev); 3215 } 3216 3217 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3218 { 3219 int ret; 3220 3221 ret = __dev_direct_xmit(skb, queue_id); 3222 if (!dev_xmit_complete(ret)) 3223 kfree_skb(skb); 3224 return ret; 3225 } 3226 3227 int register_netdevice(struct net_device *dev); 3228 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 3229 void unregister_netdevice_many(struct list_head *head); 3230 static inline void unregister_netdevice(struct net_device *dev) 3231 { 3232 unregister_netdevice_queue(dev, NULL); 3233 } 3234 3235 int netdev_refcnt_read(const struct net_device *dev); 3236 void free_netdev(struct net_device *dev); 3237 void init_dummy_netdev(struct net_device *dev); 3238 3239 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 3240 struct sk_buff *skb, 3241 bool all_slaves); 3242 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 3243 struct sock *sk); 3244 struct net_device *dev_get_by_index(struct net *net, int ifindex); 3245 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 3246 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 3247 netdevice_tracker *tracker, gfp_t gfp); 3248 struct net_device *netdev_get_by_name(struct net *net, const char *name, 3249 netdevice_tracker *tracker, gfp_t gfp); 3250 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 3251 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 3252 void netdev_copy_name(struct net_device *dev, char *name); 3253 3254 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 3255 unsigned short type, 3256 const void *daddr, const void *saddr, 3257 unsigned int len) 3258 { 3259 if (!dev->header_ops || !dev->header_ops->create) 3260 return 0; 3261 3262 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3263 } 3264 3265 static inline int dev_parse_header(const struct sk_buff *skb, 3266 unsigned char *haddr) 3267 { 3268 const struct net_device *dev = skb->dev; 3269 3270 if (!dev->header_ops || !dev->header_ops->parse) 3271 return 0; 3272 return dev->header_ops->parse(skb, haddr); 3273 } 3274 3275 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3276 { 3277 const struct net_device *dev = skb->dev; 3278 3279 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3280 return 0; 3281 return dev->header_ops->parse_protocol(skb); 3282 } 3283 3284 /* ll_header must have at least hard_header_len allocated */ 3285 static inline bool dev_validate_header(const struct net_device *dev, 3286 char *ll_header, int len) 3287 { 3288 if (likely(len >= dev->hard_header_len)) 3289 return true; 3290 if (len < dev->min_header_len) 3291 return false; 3292 3293 if (capable(CAP_SYS_RAWIO)) { 3294 memset(ll_header + len, 0, dev->hard_header_len - len); 3295 return true; 3296 } 3297 3298 if (dev->header_ops && dev->header_ops->validate) 3299 return dev->header_ops->validate(ll_header, len); 3300 3301 return false; 3302 } 3303 3304 static inline bool dev_has_header(const struct net_device *dev) 3305 { 3306 return dev->header_ops && dev->header_ops->create; 3307 } 3308 3309 /* 3310 * Incoming packets are placed on per-CPU queues 3311 */ 3312 struct softnet_data { 3313 struct list_head poll_list; 3314 struct sk_buff_head process_queue; 3315 local_lock_t process_queue_bh_lock; 3316 3317 /* stats */ 3318 unsigned int processed; 3319 unsigned int time_squeeze; 3320 #ifdef CONFIG_RPS 3321 struct softnet_data *rps_ipi_list; 3322 #endif 3323 3324 unsigned int received_rps; 3325 bool in_net_rx_action; 3326 bool in_napi_threaded_poll; 3327 3328 #ifdef CONFIG_NET_FLOW_LIMIT 3329 struct sd_flow_limit __rcu *flow_limit; 3330 #endif 3331 struct Qdisc *output_queue; 3332 struct Qdisc **output_queue_tailp; 3333 struct sk_buff *completion_queue; 3334 #ifdef CONFIG_XFRM_OFFLOAD 3335 struct sk_buff_head xfrm_backlog; 3336 #endif 3337 /* written and read only by owning cpu: */ 3338 struct netdev_xmit xmit; 3339 #ifdef CONFIG_RPS 3340 /* input_queue_head should be written by cpu owning this struct, 3341 * and only read by other cpus. Worth using a cache line. 3342 */ 3343 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3344 3345 /* Elements below can be accessed between CPUs for RPS/RFS */ 3346 call_single_data_t csd ____cacheline_aligned_in_smp; 3347 struct softnet_data *rps_ipi_next; 3348 unsigned int cpu; 3349 unsigned int input_queue_tail; 3350 #endif 3351 struct sk_buff_head input_pkt_queue; 3352 struct napi_struct backlog; 3353 3354 atomic_t dropped ____cacheline_aligned_in_smp; 3355 3356 /* Another possibly contended cache line */ 3357 spinlock_t defer_lock ____cacheline_aligned_in_smp; 3358 int defer_count; 3359 int defer_ipi_scheduled; 3360 struct sk_buff *defer_list; 3361 call_single_data_t defer_csd; 3362 }; 3363 3364 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3365 DECLARE_PER_CPU(struct page_pool *, system_page_pool); 3366 3367 #ifndef CONFIG_PREEMPT_RT 3368 static inline int dev_recursion_level(void) 3369 { 3370 return this_cpu_read(softnet_data.xmit.recursion); 3371 } 3372 #else 3373 static inline int dev_recursion_level(void) 3374 { 3375 return current->net_xmit.recursion; 3376 } 3377 3378 #endif 3379 3380 void __netif_schedule(struct Qdisc *q); 3381 void netif_schedule_queue(struct netdev_queue *txq); 3382 3383 static inline void netif_tx_schedule_all(struct net_device *dev) 3384 { 3385 unsigned int i; 3386 3387 for (i = 0; i < dev->num_tx_queues; i++) 3388 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3389 } 3390 3391 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3392 { 3393 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3394 } 3395 3396 /** 3397 * netif_start_queue - allow transmit 3398 * @dev: network device 3399 * 3400 * Allow upper layers to call the device hard_start_xmit routine. 3401 */ 3402 static inline void netif_start_queue(struct net_device *dev) 3403 { 3404 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3405 } 3406 3407 static inline void netif_tx_start_all_queues(struct net_device *dev) 3408 { 3409 unsigned int i; 3410 3411 for (i = 0; i < dev->num_tx_queues; i++) { 3412 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3413 netif_tx_start_queue(txq); 3414 } 3415 } 3416 3417 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3418 3419 /** 3420 * netif_wake_queue - restart transmit 3421 * @dev: network device 3422 * 3423 * Allow upper layers to call the device hard_start_xmit routine. 3424 * Used for flow control when transmit resources are available. 3425 */ 3426 static inline void netif_wake_queue(struct net_device *dev) 3427 { 3428 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3429 } 3430 3431 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3432 { 3433 unsigned int i; 3434 3435 for (i = 0; i < dev->num_tx_queues; i++) { 3436 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3437 netif_tx_wake_queue(txq); 3438 } 3439 } 3440 3441 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3442 { 3443 /* Paired with READ_ONCE() from dev_watchdog() */ 3444 WRITE_ONCE(dev_queue->trans_start, jiffies); 3445 3446 /* This barrier is paired with smp_mb() from dev_watchdog() */ 3447 smp_mb__before_atomic(); 3448 3449 /* Must be an atomic op see netif_txq_try_stop() */ 3450 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3451 } 3452 3453 /** 3454 * netif_stop_queue - stop transmitted packets 3455 * @dev: network device 3456 * 3457 * Stop upper layers calling the device hard_start_xmit routine. 3458 * Used for flow control when transmit resources are unavailable. 3459 */ 3460 static inline void netif_stop_queue(struct net_device *dev) 3461 { 3462 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3463 } 3464 3465 void netif_tx_stop_all_queues(struct net_device *dev); 3466 3467 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3468 { 3469 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3470 } 3471 3472 /** 3473 * netif_queue_stopped - test if transmit queue is flowblocked 3474 * @dev: network device 3475 * 3476 * Test if transmit queue on device is currently unable to send. 3477 */ 3478 static inline bool netif_queue_stopped(const struct net_device *dev) 3479 { 3480 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3481 } 3482 3483 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3484 { 3485 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3486 } 3487 3488 static inline bool 3489 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3490 { 3491 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3492 } 3493 3494 static inline bool 3495 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3496 { 3497 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3498 } 3499 3500 /** 3501 * netdev_queue_set_dql_min_limit - set dql minimum limit 3502 * @dev_queue: pointer to transmit queue 3503 * @min_limit: dql minimum limit 3504 * 3505 * Forces xmit_more() to return true until the minimum threshold 3506 * defined by @min_limit is reached (or until the tx queue is 3507 * empty). Warning: to be use with care, misuse will impact the 3508 * latency. 3509 */ 3510 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue, 3511 unsigned int min_limit) 3512 { 3513 #ifdef CONFIG_BQL 3514 dev_queue->dql.min_limit = min_limit; 3515 #endif 3516 } 3517 3518 static inline int netdev_queue_dql_avail(const struct netdev_queue *txq) 3519 { 3520 #ifdef CONFIG_BQL 3521 /* Non-BQL migrated drivers will return 0, too. */ 3522 return dql_avail(&txq->dql); 3523 #else 3524 return 0; 3525 #endif 3526 } 3527 3528 /** 3529 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3530 * @dev_queue: pointer to transmit queue 3531 * 3532 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3533 * to give appropriate hint to the CPU. 3534 */ 3535 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3536 { 3537 #ifdef CONFIG_BQL 3538 prefetchw(&dev_queue->dql.num_queued); 3539 #endif 3540 } 3541 3542 /** 3543 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3544 * @dev_queue: pointer to transmit queue 3545 * 3546 * BQL enabled drivers might use this helper in their TX completion path, 3547 * to give appropriate hint to the CPU. 3548 */ 3549 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3550 { 3551 #ifdef CONFIG_BQL 3552 prefetchw(&dev_queue->dql.limit); 3553 #endif 3554 } 3555 3556 /** 3557 * netdev_tx_sent_queue - report the number of bytes queued to a given tx queue 3558 * @dev_queue: network device queue 3559 * @bytes: number of bytes queued to the device queue 3560 * 3561 * Report the number of bytes queued for sending/completion to the network 3562 * device hardware queue. @bytes should be a good approximation and should 3563 * exactly match netdev_completed_queue() @bytes. 3564 * This is typically called once per packet, from ndo_start_xmit(). 3565 */ 3566 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3567 unsigned int bytes) 3568 { 3569 #ifdef CONFIG_BQL 3570 dql_queued(&dev_queue->dql, bytes); 3571 3572 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3573 return; 3574 3575 /* Paired with READ_ONCE() from dev_watchdog() */ 3576 WRITE_ONCE(dev_queue->trans_start, jiffies); 3577 3578 /* This barrier is paired with smp_mb() from dev_watchdog() */ 3579 smp_mb__before_atomic(); 3580 3581 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3582 3583 /* 3584 * The XOFF flag must be set before checking the dql_avail below, 3585 * because in netdev_tx_completed_queue we update the dql_completed 3586 * before checking the XOFF flag. 3587 */ 3588 smp_mb__after_atomic(); 3589 3590 /* check again in case another CPU has just made room avail */ 3591 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3592 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3593 #endif 3594 } 3595 3596 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3597 * that they should not test BQL status themselves. 3598 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3599 * skb of a batch. 3600 * Returns true if the doorbell must be used to kick the NIC. 3601 */ 3602 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3603 unsigned int bytes, 3604 bool xmit_more) 3605 { 3606 if (xmit_more) { 3607 #ifdef CONFIG_BQL 3608 dql_queued(&dev_queue->dql, bytes); 3609 #endif 3610 return netif_tx_queue_stopped(dev_queue); 3611 } 3612 netdev_tx_sent_queue(dev_queue, bytes); 3613 return true; 3614 } 3615 3616 /** 3617 * netdev_sent_queue - report the number of bytes queued to hardware 3618 * @dev: network device 3619 * @bytes: number of bytes queued to the hardware device queue 3620 * 3621 * Report the number of bytes queued for sending/completion to the network 3622 * device hardware queue#0. @bytes should be a good approximation and should 3623 * exactly match netdev_completed_queue() @bytes. 3624 * This is typically called once per packet, from ndo_start_xmit(). 3625 */ 3626 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3627 { 3628 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3629 } 3630 3631 static inline bool __netdev_sent_queue(struct net_device *dev, 3632 unsigned int bytes, 3633 bool xmit_more) 3634 { 3635 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3636 xmit_more); 3637 } 3638 3639 /** 3640 * netdev_tx_completed_queue - report number of packets/bytes at TX completion. 3641 * @dev_queue: network device queue 3642 * @pkts: number of packets (currently ignored) 3643 * @bytes: number of bytes dequeued from the device queue 3644 * 3645 * Must be called at most once per TX completion round (and not per 3646 * individual packet), so that BQL can adjust its limits appropriately. 3647 */ 3648 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3649 unsigned int pkts, unsigned int bytes) 3650 { 3651 #ifdef CONFIG_BQL 3652 if (unlikely(!bytes)) 3653 return; 3654 3655 dql_completed(&dev_queue->dql, bytes); 3656 3657 /* 3658 * Without the memory barrier there is a small possibility that 3659 * netdev_tx_sent_queue will miss the update and cause the queue to 3660 * be stopped forever 3661 */ 3662 smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */ 3663 3664 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3665 return; 3666 3667 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3668 netif_schedule_queue(dev_queue); 3669 #endif 3670 } 3671 3672 /** 3673 * netdev_completed_queue - report bytes and packets completed by device 3674 * @dev: network device 3675 * @pkts: actual number of packets sent over the medium 3676 * @bytes: actual number of bytes sent over the medium 3677 * 3678 * Report the number of bytes and packets transmitted by the network device 3679 * hardware queue over the physical medium, @bytes must exactly match the 3680 * @bytes amount passed to netdev_sent_queue() 3681 */ 3682 static inline void netdev_completed_queue(struct net_device *dev, 3683 unsigned int pkts, unsigned int bytes) 3684 { 3685 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3686 } 3687 3688 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3689 { 3690 #ifdef CONFIG_BQL 3691 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3692 dql_reset(&q->dql); 3693 #endif 3694 } 3695 3696 /** 3697 * netdev_tx_reset_subqueue - reset the BQL stats and state of a netdev queue 3698 * @dev: network device 3699 * @qid: stack index of the queue to reset 3700 */ 3701 static inline void netdev_tx_reset_subqueue(const struct net_device *dev, 3702 u32 qid) 3703 { 3704 netdev_tx_reset_queue(netdev_get_tx_queue(dev, qid)); 3705 } 3706 3707 /** 3708 * netdev_reset_queue - reset the packets and bytes count of a network device 3709 * @dev_queue: network device 3710 * 3711 * Reset the bytes and packet count of a network device and clear the 3712 * software flow control OFF bit for this network device 3713 */ 3714 static inline void netdev_reset_queue(struct net_device *dev_queue) 3715 { 3716 netdev_tx_reset_subqueue(dev_queue, 0); 3717 } 3718 3719 /** 3720 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3721 * @dev: network device 3722 * @queue_index: given tx queue index 3723 * 3724 * Returns 0 if given tx queue index >= number of device tx queues, 3725 * otherwise returns the originally passed tx queue index. 3726 */ 3727 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3728 { 3729 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3730 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3731 dev->name, queue_index, 3732 dev->real_num_tx_queues); 3733 return 0; 3734 } 3735 3736 return queue_index; 3737 } 3738 3739 /** 3740 * netif_running - test if up 3741 * @dev: network device 3742 * 3743 * Test if the device has been brought up. 3744 */ 3745 static inline bool netif_running(const struct net_device *dev) 3746 { 3747 return test_bit(__LINK_STATE_START, &dev->state); 3748 } 3749 3750 /* 3751 * Routines to manage the subqueues on a device. We only need start, 3752 * stop, and a check if it's stopped. All other device management is 3753 * done at the overall netdevice level. 3754 * Also test the device if we're multiqueue. 3755 */ 3756 3757 /** 3758 * netif_start_subqueue - allow sending packets on subqueue 3759 * @dev: network device 3760 * @queue_index: sub queue index 3761 * 3762 * Start individual transmit queue of a device with multiple transmit queues. 3763 */ 3764 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3765 { 3766 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3767 3768 netif_tx_start_queue(txq); 3769 } 3770 3771 /** 3772 * netif_stop_subqueue - stop sending packets on subqueue 3773 * @dev: network device 3774 * @queue_index: sub queue index 3775 * 3776 * Stop individual transmit queue of a device with multiple transmit queues. 3777 */ 3778 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3779 { 3780 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3781 netif_tx_stop_queue(txq); 3782 } 3783 3784 /** 3785 * __netif_subqueue_stopped - test status of subqueue 3786 * @dev: network device 3787 * @queue_index: sub queue index 3788 * 3789 * Check individual transmit queue of a device with multiple transmit queues. 3790 */ 3791 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3792 u16 queue_index) 3793 { 3794 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3795 3796 return netif_tx_queue_stopped(txq); 3797 } 3798 3799 /** 3800 * netif_subqueue_stopped - test status of subqueue 3801 * @dev: network device 3802 * @skb: sub queue buffer pointer 3803 * 3804 * Check individual transmit queue of a device with multiple transmit queues. 3805 */ 3806 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3807 struct sk_buff *skb) 3808 { 3809 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3810 } 3811 3812 /** 3813 * netif_wake_subqueue - allow sending packets on subqueue 3814 * @dev: network device 3815 * @queue_index: sub queue index 3816 * 3817 * Resume individual transmit queue of a device with multiple transmit queues. 3818 */ 3819 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3820 { 3821 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3822 3823 netif_tx_wake_queue(txq); 3824 } 3825 3826 #ifdef CONFIG_XPS 3827 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3828 u16 index); 3829 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3830 u16 index, enum xps_map_type type); 3831 3832 /** 3833 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3834 * @j: CPU/Rx queue index 3835 * @mask: bitmask of all cpus/rx queues 3836 * @nr_bits: number of bits in the bitmask 3837 * 3838 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3839 */ 3840 static inline bool netif_attr_test_mask(unsigned long j, 3841 const unsigned long *mask, 3842 unsigned int nr_bits) 3843 { 3844 cpu_max_bits_warn(j, nr_bits); 3845 return test_bit(j, mask); 3846 } 3847 3848 /** 3849 * netif_attr_test_online - Test for online CPU/Rx queue 3850 * @j: CPU/Rx queue index 3851 * @online_mask: bitmask for CPUs/Rx queues that are online 3852 * @nr_bits: number of bits in the bitmask 3853 * 3854 * Returns: true if a CPU/Rx queue is online. 3855 */ 3856 static inline bool netif_attr_test_online(unsigned long j, 3857 const unsigned long *online_mask, 3858 unsigned int nr_bits) 3859 { 3860 cpu_max_bits_warn(j, nr_bits); 3861 3862 if (online_mask) 3863 return test_bit(j, online_mask); 3864 3865 return (j < nr_bits); 3866 } 3867 3868 /** 3869 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3870 * @n: CPU/Rx queue index 3871 * @srcp: the cpumask/Rx queue mask pointer 3872 * @nr_bits: number of bits in the bitmask 3873 * 3874 * Returns: next (after n) CPU/Rx queue index in the mask; 3875 * >= nr_bits if no further CPUs/Rx queues set. 3876 */ 3877 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3878 unsigned int nr_bits) 3879 { 3880 /* -1 is a legal arg here. */ 3881 if (n != -1) 3882 cpu_max_bits_warn(n, nr_bits); 3883 3884 if (srcp) 3885 return find_next_bit(srcp, nr_bits, n + 1); 3886 3887 return n + 1; 3888 } 3889 3890 /** 3891 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 3892 * @n: CPU/Rx queue index 3893 * @src1p: the first CPUs/Rx queues mask pointer 3894 * @src2p: the second CPUs/Rx queues mask pointer 3895 * @nr_bits: number of bits in the bitmask 3896 * 3897 * Returns: next (after n) CPU/Rx queue index set in both masks; 3898 * >= nr_bits if no further CPUs/Rx queues set in both. 3899 */ 3900 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3901 const unsigned long *src2p, 3902 unsigned int nr_bits) 3903 { 3904 /* -1 is a legal arg here. */ 3905 if (n != -1) 3906 cpu_max_bits_warn(n, nr_bits); 3907 3908 if (src1p && src2p) 3909 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3910 else if (src1p) 3911 return find_next_bit(src1p, nr_bits, n + 1); 3912 else if (src2p) 3913 return find_next_bit(src2p, nr_bits, n + 1); 3914 3915 return n + 1; 3916 } 3917 #else 3918 static inline int netif_set_xps_queue(struct net_device *dev, 3919 const struct cpumask *mask, 3920 u16 index) 3921 { 3922 return 0; 3923 } 3924 3925 static inline int __netif_set_xps_queue(struct net_device *dev, 3926 const unsigned long *mask, 3927 u16 index, enum xps_map_type type) 3928 { 3929 return 0; 3930 } 3931 #endif 3932 3933 /** 3934 * netif_is_multiqueue - test if device has multiple transmit queues 3935 * @dev: network device 3936 * 3937 * Check if device has multiple transmit queues 3938 */ 3939 static inline bool netif_is_multiqueue(const struct net_device *dev) 3940 { 3941 return dev->num_tx_queues > 1; 3942 } 3943 3944 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3945 3946 #ifdef CONFIG_SYSFS 3947 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3948 #else 3949 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3950 unsigned int rxqs) 3951 { 3952 dev->real_num_rx_queues = rxqs; 3953 return 0; 3954 } 3955 #endif 3956 int netif_set_real_num_queues(struct net_device *dev, 3957 unsigned int txq, unsigned int rxq); 3958 3959 int netif_get_num_default_rss_queues(void); 3960 3961 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3962 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3963 3964 /* 3965 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3966 * interrupt context or with hardware interrupts being disabled. 3967 * (in_hardirq() || irqs_disabled()) 3968 * 3969 * We provide four helpers that can be used in following contexts : 3970 * 3971 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3972 * replacing kfree_skb(skb) 3973 * 3974 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3975 * Typically used in place of consume_skb(skb) in TX completion path 3976 * 3977 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3978 * replacing kfree_skb(skb) 3979 * 3980 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3981 * and consumed a packet. Used in place of consume_skb(skb) 3982 */ 3983 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3984 { 3985 dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3986 } 3987 3988 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3989 { 3990 dev_kfree_skb_irq_reason(skb, SKB_CONSUMED); 3991 } 3992 3993 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3994 { 3995 dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3996 } 3997 3998 static inline void dev_consume_skb_any(struct sk_buff *skb) 3999 { 4000 dev_kfree_skb_any_reason(skb, SKB_CONSUMED); 4001 } 4002 4003 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 4004 const struct bpf_prog *xdp_prog); 4005 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog); 4006 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb); 4007 int netif_rx(struct sk_buff *skb); 4008 int __netif_rx(struct sk_buff *skb); 4009 4010 int netif_receive_skb(struct sk_buff *skb); 4011 int netif_receive_skb_core(struct sk_buff *skb); 4012 void netif_receive_skb_list_internal(struct list_head *head); 4013 void netif_receive_skb_list(struct list_head *head); 4014 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 4015 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 4016 struct sk_buff *napi_get_frags(struct napi_struct *napi); 4017 void napi_get_frags_check(struct napi_struct *napi); 4018 gro_result_t napi_gro_frags(struct napi_struct *napi); 4019 4020 static inline void napi_free_frags(struct napi_struct *napi) 4021 { 4022 kfree_skb(napi->skb); 4023 napi->skb = NULL; 4024 } 4025 4026 bool netdev_is_rx_handler_busy(struct net_device *dev); 4027 int netdev_rx_handler_register(struct net_device *dev, 4028 rx_handler_func_t *rx_handler, 4029 void *rx_handler_data); 4030 void netdev_rx_handler_unregister(struct net_device *dev); 4031 4032 bool dev_valid_name(const char *name); 4033 static inline bool is_socket_ioctl_cmd(unsigned int cmd) 4034 { 4035 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE; 4036 } 4037 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg); 4038 int put_user_ifreq(struct ifreq *ifr, void __user *arg); 4039 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 4040 void __user *data, bool *need_copyout); 4041 int dev_ifconf(struct net *net, struct ifconf __user *ifc); 4042 int generic_hwtstamp_get_lower(struct net_device *dev, 4043 struct kernel_hwtstamp_config *kernel_cfg); 4044 int generic_hwtstamp_set_lower(struct net_device *dev, 4045 struct kernel_hwtstamp_config *kernel_cfg, 4046 struct netlink_ext_ack *extack); 4047 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata); 4048 unsigned int dev_get_flags(const struct net_device *); 4049 int __dev_change_flags(struct net_device *dev, unsigned int flags, 4050 struct netlink_ext_ack *extack); 4051 int dev_change_flags(struct net_device *dev, unsigned int flags, 4052 struct netlink_ext_ack *extack); 4053 int dev_set_alias(struct net_device *, const char *, size_t); 4054 int dev_get_alias(const struct net_device *, char *, size_t); 4055 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 4056 const char *pat, int new_ifindex); 4057 static inline 4058 int dev_change_net_namespace(struct net_device *dev, struct net *net, 4059 const char *pat) 4060 { 4061 return __dev_change_net_namespace(dev, net, pat, 0); 4062 } 4063 int __dev_set_mtu(struct net_device *, int); 4064 int dev_set_mtu(struct net_device *, int); 4065 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 4066 struct netlink_ext_ack *extack); 4067 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 4068 struct netlink_ext_ack *extack); 4069 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 4070 struct netlink_ext_ack *extack); 4071 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); 4072 int dev_get_port_parent_id(struct net_device *dev, 4073 struct netdev_phys_item_id *ppid, bool recurse); 4074 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 4075 4076 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 4077 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 4078 struct netdev_queue *txq, int *ret); 4079 4080 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); 4081 u8 dev_xdp_prog_count(struct net_device *dev); 4082 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf); 4083 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); 4084 4085 u32 dev_get_min_mp_channel_count(const struct net_device *dev); 4086 4087 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 4088 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 4089 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb); 4090 bool is_skb_forwardable(const struct net_device *dev, 4091 const struct sk_buff *skb); 4092 4093 static __always_inline bool __is_skb_forwardable(const struct net_device *dev, 4094 const struct sk_buff *skb, 4095 const bool check_mtu) 4096 { 4097 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */ 4098 unsigned int len; 4099 4100 if (!(dev->flags & IFF_UP)) 4101 return false; 4102 4103 if (!check_mtu) 4104 return true; 4105 4106 len = dev->mtu + dev->hard_header_len + vlan_hdr_len; 4107 if (skb->len <= len) 4108 return true; 4109 4110 /* if TSO is enabled, we don't care about the length as the packet 4111 * could be forwarded without being segmented before 4112 */ 4113 if (skb_is_gso(skb)) 4114 return true; 4115 4116 return false; 4117 } 4118 4119 void netdev_core_stats_inc(struct net_device *dev, u32 offset); 4120 4121 #define DEV_CORE_STATS_INC(FIELD) \ 4122 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \ 4123 { \ 4124 netdev_core_stats_inc(dev, \ 4125 offsetof(struct net_device_core_stats, FIELD)); \ 4126 } 4127 DEV_CORE_STATS_INC(rx_dropped) 4128 DEV_CORE_STATS_INC(tx_dropped) 4129 DEV_CORE_STATS_INC(rx_nohandler) 4130 DEV_CORE_STATS_INC(rx_otherhost_dropped) 4131 #undef DEV_CORE_STATS_INC 4132 4133 static __always_inline int ____dev_forward_skb(struct net_device *dev, 4134 struct sk_buff *skb, 4135 const bool check_mtu) 4136 { 4137 if (skb_orphan_frags(skb, GFP_ATOMIC) || 4138 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) { 4139 dev_core_stats_rx_dropped_inc(dev); 4140 kfree_skb(skb); 4141 return NET_RX_DROP; 4142 } 4143 4144 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev))); 4145 skb->priority = 0; 4146 return 0; 4147 } 4148 4149 bool dev_nit_active(struct net_device *dev); 4150 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 4151 4152 static inline void __dev_put(struct net_device *dev) 4153 { 4154 if (dev) { 4155 #ifdef CONFIG_PCPU_DEV_REFCNT 4156 this_cpu_dec(*dev->pcpu_refcnt); 4157 #else 4158 refcount_dec(&dev->dev_refcnt); 4159 #endif 4160 } 4161 } 4162 4163 static inline void __dev_hold(struct net_device *dev) 4164 { 4165 if (dev) { 4166 #ifdef CONFIG_PCPU_DEV_REFCNT 4167 this_cpu_inc(*dev->pcpu_refcnt); 4168 #else 4169 refcount_inc(&dev->dev_refcnt); 4170 #endif 4171 } 4172 } 4173 4174 static inline void __netdev_tracker_alloc(struct net_device *dev, 4175 netdevice_tracker *tracker, 4176 gfp_t gfp) 4177 { 4178 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4179 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp); 4180 #endif 4181 } 4182 4183 /* netdev_tracker_alloc() can upgrade a prior untracked reference 4184 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one. 4185 */ 4186 static inline void netdev_tracker_alloc(struct net_device *dev, 4187 netdevice_tracker *tracker, gfp_t gfp) 4188 { 4189 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4190 refcount_dec(&dev->refcnt_tracker.no_tracker); 4191 __netdev_tracker_alloc(dev, tracker, gfp); 4192 #endif 4193 } 4194 4195 static inline void netdev_tracker_free(struct net_device *dev, 4196 netdevice_tracker *tracker) 4197 { 4198 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4199 ref_tracker_free(&dev->refcnt_tracker, tracker); 4200 #endif 4201 } 4202 4203 static inline void netdev_hold(struct net_device *dev, 4204 netdevice_tracker *tracker, gfp_t gfp) 4205 { 4206 if (dev) { 4207 __dev_hold(dev); 4208 __netdev_tracker_alloc(dev, tracker, gfp); 4209 } 4210 } 4211 4212 static inline void netdev_put(struct net_device *dev, 4213 netdevice_tracker *tracker) 4214 { 4215 if (dev) { 4216 netdev_tracker_free(dev, tracker); 4217 __dev_put(dev); 4218 } 4219 } 4220 4221 /** 4222 * dev_hold - get reference to device 4223 * @dev: network device 4224 * 4225 * Hold reference to device to keep it from being freed. 4226 * Try using netdev_hold() instead. 4227 */ 4228 static inline void dev_hold(struct net_device *dev) 4229 { 4230 netdev_hold(dev, NULL, GFP_ATOMIC); 4231 } 4232 4233 /** 4234 * dev_put - release reference to device 4235 * @dev: network device 4236 * 4237 * Release reference to device to allow it to be freed. 4238 * Try using netdev_put() instead. 4239 */ 4240 static inline void dev_put(struct net_device *dev) 4241 { 4242 netdev_put(dev, NULL); 4243 } 4244 4245 DEFINE_FREE(dev_put, struct net_device *, if (_T) dev_put(_T)) 4246 4247 static inline void netdev_ref_replace(struct net_device *odev, 4248 struct net_device *ndev, 4249 netdevice_tracker *tracker, 4250 gfp_t gfp) 4251 { 4252 if (odev) 4253 netdev_tracker_free(odev, tracker); 4254 4255 __dev_hold(ndev); 4256 __dev_put(odev); 4257 4258 if (ndev) 4259 __netdev_tracker_alloc(ndev, tracker, gfp); 4260 } 4261 4262 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 4263 * and _off may be called from IRQ context, but it is caller 4264 * who is responsible for serialization of these calls. 4265 * 4266 * The name carrier is inappropriate, these functions should really be 4267 * called netif_lowerlayer_*() because they represent the state of any 4268 * kind of lower layer not just hardware media. 4269 */ 4270 void linkwatch_fire_event(struct net_device *dev); 4271 4272 /** 4273 * linkwatch_sync_dev - sync linkwatch for the given device 4274 * @dev: network device to sync linkwatch for 4275 * 4276 * Sync linkwatch for the given device, removing it from the 4277 * pending work list (if queued). 4278 */ 4279 void linkwatch_sync_dev(struct net_device *dev); 4280 4281 /** 4282 * netif_carrier_ok - test if carrier present 4283 * @dev: network device 4284 * 4285 * Check if carrier is present on device 4286 */ 4287 static inline bool netif_carrier_ok(const struct net_device *dev) 4288 { 4289 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 4290 } 4291 4292 unsigned long dev_trans_start(struct net_device *dev); 4293 4294 void __netdev_watchdog_up(struct net_device *dev); 4295 4296 void netif_carrier_on(struct net_device *dev); 4297 void netif_carrier_off(struct net_device *dev); 4298 void netif_carrier_event(struct net_device *dev); 4299 4300 /** 4301 * netif_dormant_on - mark device as dormant. 4302 * @dev: network device 4303 * 4304 * Mark device as dormant (as per RFC2863). 4305 * 4306 * The dormant state indicates that the relevant interface is not 4307 * actually in a condition to pass packets (i.e., it is not 'up') but is 4308 * in a "pending" state, waiting for some external event. For "on- 4309 * demand" interfaces, this new state identifies the situation where the 4310 * interface is waiting for events to place it in the up state. 4311 */ 4312 static inline void netif_dormant_on(struct net_device *dev) 4313 { 4314 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 4315 linkwatch_fire_event(dev); 4316 } 4317 4318 /** 4319 * netif_dormant_off - set device as not dormant. 4320 * @dev: network device 4321 * 4322 * Device is not in dormant state. 4323 */ 4324 static inline void netif_dormant_off(struct net_device *dev) 4325 { 4326 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 4327 linkwatch_fire_event(dev); 4328 } 4329 4330 /** 4331 * netif_dormant - test if device is dormant 4332 * @dev: network device 4333 * 4334 * Check if device is dormant. 4335 */ 4336 static inline bool netif_dormant(const struct net_device *dev) 4337 { 4338 return test_bit(__LINK_STATE_DORMANT, &dev->state); 4339 } 4340 4341 4342 /** 4343 * netif_testing_on - mark device as under test. 4344 * @dev: network device 4345 * 4346 * Mark device as under test (as per RFC2863). 4347 * 4348 * The testing state indicates that some test(s) must be performed on 4349 * the interface. After completion, of the test, the interface state 4350 * will change to up, dormant, or down, as appropriate. 4351 */ 4352 static inline void netif_testing_on(struct net_device *dev) 4353 { 4354 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 4355 linkwatch_fire_event(dev); 4356 } 4357 4358 /** 4359 * netif_testing_off - set device as not under test. 4360 * @dev: network device 4361 * 4362 * Device is not in testing state. 4363 */ 4364 static inline void netif_testing_off(struct net_device *dev) 4365 { 4366 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 4367 linkwatch_fire_event(dev); 4368 } 4369 4370 /** 4371 * netif_testing - test if device is under test 4372 * @dev: network device 4373 * 4374 * Check if device is under test 4375 */ 4376 static inline bool netif_testing(const struct net_device *dev) 4377 { 4378 return test_bit(__LINK_STATE_TESTING, &dev->state); 4379 } 4380 4381 4382 /** 4383 * netif_oper_up - test if device is operational 4384 * @dev: network device 4385 * 4386 * Check if carrier is operational 4387 */ 4388 static inline bool netif_oper_up(const struct net_device *dev) 4389 { 4390 unsigned int operstate = READ_ONCE(dev->operstate); 4391 4392 return operstate == IF_OPER_UP || 4393 operstate == IF_OPER_UNKNOWN /* backward compat */; 4394 } 4395 4396 /** 4397 * netif_device_present - is device available or removed 4398 * @dev: network device 4399 * 4400 * Check if device has not been removed from system. 4401 */ 4402 static inline bool netif_device_present(const struct net_device *dev) 4403 { 4404 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4405 } 4406 4407 void netif_device_detach(struct net_device *dev); 4408 4409 void netif_device_attach(struct net_device *dev); 4410 4411 /* 4412 * Network interface message level settings 4413 */ 4414 4415 enum { 4416 NETIF_MSG_DRV_BIT, 4417 NETIF_MSG_PROBE_BIT, 4418 NETIF_MSG_LINK_BIT, 4419 NETIF_MSG_TIMER_BIT, 4420 NETIF_MSG_IFDOWN_BIT, 4421 NETIF_MSG_IFUP_BIT, 4422 NETIF_MSG_RX_ERR_BIT, 4423 NETIF_MSG_TX_ERR_BIT, 4424 NETIF_MSG_TX_QUEUED_BIT, 4425 NETIF_MSG_INTR_BIT, 4426 NETIF_MSG_TX_DONE_BIT, 4427 NETIF_MSG_RX_STATUS_BIT, 4428 NETIF_MSG_PKTDATA_BIT, 4429 NETIF_MSG_HW_BIT, 4430 NETIF_MSG_WOL_BIT, 4431 4432 /* When you add a new bit above, update netif_msg_class_names array 4433 * in net/ethtool/common.c 4434 */ 4435 NETIF_MSG_CLASS_COUNT, 4436 }; 4437 /* Both ethtool_ops interface and internal driver implementation use u32 */ 4438 static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4439 4440 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4441 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4442 4443 #define NETIF_MSG_DRV __NETIF_MSG(DRV) 4444 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4445 #define NETIF_MSG_LINK __NETIF_MSG(LINK) 4446 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4447 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4448 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4449 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4450 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4451 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4452 #define NETIF_MSG_INTR __NETIF_MSG(INTR) 4453 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4454 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4455 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4456 #define NETIF_MSG_HW __NETIF_MSG(HW) 4457 #define NETIF_MSG_WOL __NETIF_MSG(WOL) 4458 4459 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4460 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4461 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4462 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4463 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4464 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4465 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4466 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4467 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4468 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4469 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4470 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4471 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4472 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4473 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4474 4475 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4476 { 4477 /* use default */ 4478 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4479 return default_msg_enable_bits; 4480 if (debug_value == 0) /* no output */ 4481 return 0; 4482 /* set low N bits */ 4483 return (1U << debug_value) - 1; 4484 } 4485 4486 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4487 { 4488 spin_lock(&txq->_xmit_lock); 4489 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4490 WRITE_ONCE(txq->xmit_lock_owner, cpu); 4491 } 4492 4493 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4494 { 4495 __acquire(&txq->_xmit_lock); 4496 return true; 4497 } 4498 4499 static inline void __netif_tx_release(struct netdev_queue *txq) 4500 { 4501 __release(&txq->_xmit_lock); 4502 } 4503 4504 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4505 { 4506 spin_lock_bh(&txq->_xmit_lock); 4507 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4508 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4509 } 4510 4511 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4512 { 4513 bool ok = spin_trylock(&txq->_xmit_lock); 4514 4515 if (likely(ok)) { 4516 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4517 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4518 } 4519 return ok; 4520 } 4521 4522 static inline void __netif_tx_unlock(struct netdev_queue *txq) 4523 { 4524 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4525 WRITE_ONCE(txq->xmit_lock_owner, -1); 4526 spin_unlock(&txq->_xmit_lock); 4527 } 4528 4529 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4530 { 4531 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4532 WRITE_ONCE(txq->xmit_lock_owner, -1); 4533 spin_unlock_bh(&txq->_xmit_lock); 4534 } 4535 4536 /* 4537 * txq->trans_start can be read locklessly from dev_watchdog() 4538 */ 4539 static inline void txq_trans_update(struct netdev_queue *txq) 4540 { 4541 if (txq->xmit_lock_owner != -1) 4542 WRITE_ONCE(txq->trans_start, jiffies); 4543 } 4544 4545 static inline void txq_trans_cond_update(struct netdev_queue *txq) 4546 { 4547 unsigned long now = jiffies; 4548 4549 if (READ_ONCE(txq->trans_start) != now) 4550 WRITE_ONCE(txq->trans_start, now); 4551 } 4552 4553 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4554 static inline void netif_trans_update(struct net_device *dev) 4555 { 4556 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4557 4558 txq_trans_cond_update(txq); 4559 } 4560 4561 /** 4562 * netif_tx_lock - grab network device transmit lock 4563 * @dev: network device 4564 * 4565 * Get network device transmit lock 4566 */ 4567 void netif_tx_lock(struct net_device *dev); 4568 4569 static inline void netif_tx_lock_bh(struct net_device *dev) 4570 { 4571 local_bh_disable(); 4572 netif_tx_lock(dev); 4573 } 4574 4575 void netif_tx_unlock(struct net_device *dev); 4576 4577 static inline void netif_tx_unlock_bh(struct net_device *dev) 4578 { 4579 netif_tx_unlock(dev); 4580 local_bh_enable(); 4581 } 4582 4583 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4584 if (!(dev)->lltx) { \ 4585 __netif_tx_lock(txq, cpu); \ 4586 } else { \ 4587 __netif_tx_acquire(txq); \ 4588 } \ 4589 } 4590 4591 #define HARD_TX_TRYLOCK(dev, txq) \ 4592 (!(dev)->lltx ? \ 4593 __netif_tx_trylock(txq) : \ 4594 __netif_tx_acquire(txq)) 4595 4596 #define HARD_TX_UNLOCK(dev, txq) { \ 4597 if (!(dev)->lltx) { \ 4598 __netif_tx_unlock(txq); \ 4599 } else { \ 4600 __netif_tx_release(txq); \ 4601 } \ 4602 } 4603 4604 static inline void netif_tx_disable(struct net_device *dev) 4605 { 4606 unsigned int i; 4607 int cpu; 4608 4609 local_bh_disable(); 4610 cpu = smp_processor_id(); 4611 spin_lock(&dev->tx_global_lock); 4612 for (i = 0; i < dev->num_tx_queues; i++) { 4613 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4614 4615 __netif_tx_lock(txq, cpu); 4616 netif_tx_stop_queue(txq); 4617 __netif_tx_unlock(txq); 4618 } 4619 spin_unlock(&dev->tx_global_lock); 4620 local_bh_enable(); 4621 } 4622 4623 static inline void netif_addr_lock(struct net_device *dev) 4624 { 4625 unsigned char nest_level = 0; 4626 4627 #ifdef CONFIG_LOCKDEP 4628 nest_level = dev->nested_level; 4629 #endif 4630 spin_lock_nested(&dev->addr_list_lock, nest_level); 4631 } 4632 4633 static inline void netif_addr_lock_bh(struct net_device *dev) 4634 { 4635 unsigned char nest_level = 0; 4636 4637 #ifdef CONFIG_LOCKDEP 4638 nest_level = dev->nested_level; 4639 #endif 4640 local_bh_disable(); 4641 spin_lock_nested(&dev->addr_list_lock, nest_level); 4642 } 4643 4644 static inline void netif_addr_unlock(struct net_device *dev) 4645 { 4646 spin_unlock(&dev->addr_list_lock); 4647 } 4648 4649 static inline void netif_addr_unlock_bh(struct net_device *dev) 4650 { 4651 spin_unlock_bh(&dev->addr_list_lock); 4652 } 4653 4654 /* 4655 * dev_addrs walker. Should be used only for read access. Call with 4656 * rcu_read_lock held. 4657 */ 4658 #define for_each_dev_addr(dev, ha) \ 4659 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4660 4661 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4662 4663 void ether_setup(struct net_device *dev); 4664 4665 /* Allocate dummy net_device */ 4666 struct net_device *alloc_netdev_dummy(int sizeof_priv); 4667 4668 /* Support for loadable net-drivers */ 4669 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4670 unsigned char name_assign_type, 4671 void (*setup)(struct net_device *), 4672 unsigned int txqs, unsigned int rxqs); 4673 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4674 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4675 4676 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4677 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4678 count) 4679 4680 int register_netdev(struct net_device *dev); 4681 void unregister_netdev(struct net_device *dev); 4682 4683 int devm_register_netdev(struct device *dev, struct net_device *ndev); 4684 4685 /* General hardware address lists handling functions */ 4686 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4687 struct netdev_hw_addr_list *from_list, int addr_len); 4688 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4689 struct netdev_hw_addr_list *from_list, int addr_len); 4690 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4691 struct net_device *dev, 4692 int (*sync)(struct net_device *, const unsigned char *), 4693 int (*unsync)(struct net_device *, 4694 const unsigned char *)); 4695 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4696 struct net_device *dev, 4697 int (*sync)(struct net_device *, 4698 const unsigned char *, int), 4699 int (*unsync)(struct net_device *, 4700 const unsigned char *, int)); 4701 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4702 struct net_device *dev, 4703 int (*unsync)(struct net_device *, 4704 const unsigned char *, int)); 4705 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4706 struct net_device *dev, 4707 int (*unsync)(struct net_device *, 4708 const unsigned char *)); 4709 void __hw_addr_init(struct netdev_hw_addr_list *list); 4710 4711 /* Functions used for device addresses handling */ 4712 void dev_addr_mod(struct net_device *dev, unsigned int offset, 4713 const void *addr, size_t len); 4714 4715 static inline void 4716 __dev_addr_set(struct net_device *dev, const void *addr, size_t len) 4717 { 4718 dev_addr_mod(dev, 0, addr, len); 4719 } 4720 4721 static inline void dev_addr_set(struct net_device *dev, const u8 *addr) 4722 { 4723 __dev_addr_set(dev, addr, dev->addr_len); 4724 } 4725 4726 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4727 unsigned char addr_type); 4728 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4729 unsigned char addr_type); 4730 4731 /* Functions used for unicast addresses handling */ 4732 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4733 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4734 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4735 int dev_uc_sync(struct net_device *to, struct net_device *from); 4736 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4737 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4738 void dev_uc_flush(struct net_device *dev); 4739 void dev_uc_init(struct net_device *dev); 4740 4741 /** 4742 * __dev_uc_sync - Synchronize device's unicast list 4743 * @dev: device to sync 4744 * @sync: function to call if address should be added 4745 * @unsync: function to call if address should be removed 4746 * 4747 * Add newly added addresses to the interface, and release 4748 * addresses that have been deleted. 4749 */ 4750 static inline int __dev_uc_sync(struct net_device *dev, 4751 int (*sync)(struct net_device *, 4752 const unsigned char *), 4753 int (*unsync)(struct net_device *, 4754 const unsigned char *)) 4755 { 4756 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4757 } 4758 4759 /** 4760 * __dev_uc_unsync - Remove synchronized addresses from device 4761 * @dev: device to sync 4762 * @unsync: function to call if address should be removed 4763 * 4764 * Remove all addresses that were added to the device by dev_uc_sync(). 4765 */ 4766 static inline void __dev_uc_unsync(struct net_device *dev, 4767 int (*unsync)(struct net_device *, 4768 const unsigned char *)) 4769 { 4770 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4771 } 4772 4773 /* Functions used for multicast addresses handling */ 4774 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4775 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4776 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4777 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4778 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4779 int dev_mc_sync(struct net_device *to, struct net_device *from); 4780 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4781 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4782 void dev_mc_flush(struct net_device *dev); 4783 void dev_mc_init(struct net_device *dev); 4784 4785 /** 4786 * __dev_mc_sync - Synchronize device's multicast list 4787 * @dev: device to sync 4788 * @sync: function to call if address should be added 4789 * @unsync: function to call if address should be removed 4790 * 4791 * Add newly added addresses to the interface, and release 4792 * addresses that have been deleted. 4793 */ 4794 static inline int __dev_mc_sync(struct net_device *dev, 4795 int (*sync)(struct net_device *, 4796 const unsigned char *), 4797 int (*unsync)(struct net_device *, 4798 const unsigned char *)) 4799 { 4800 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4801 } 4802 4803 /** 4804 * __dev_mc_unsync - Remove synchronized addresses from device 4805 * @dev: device to sync 4806 * @unsync: function to call if address should be removed 4807 * 4808 * Remove all addresses that were added to the device by dev_mc_sync(). 4809 */ 4810 static inline void __dev_mc_unsync(struct net_device *dev, 4811 int (*unsync)(struct net_device *, 4812 const unsigned char *)) 4813 { 4814 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4815 } 4816 4817 /* Functions used for secondary unicast and multicast support */ 4818 void dev_set_rx_mode(struct net_device *dev); 4819 int dev_set_promiscuity(struct net_device *dev, int inc); 4820 int dev_set_allmulti(struct net_device *dev, int inc); 4821 void netdev_state_change(struct net_device *dev); 4822 void __netdev_notify_peers(struct net_device *dev); 4823 void netdev_notify_peers(struct net_device *dev); 4824 void netdev_features_change(struct net_device *dev); 4825 /* Load a device via the kmod */ 4826 void dev_load(struct net *net, const char *name); 4827 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4828 struct rtnl_link_stats64 *storage); 4829 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4830 const struct net_device_stats *netdev_stats); 4831 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 4832 const struct pcpu_sw_netstats __percpu *netstats); 4833 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s); 4834 4835 enum { 4836 NESTED_SYNC_IMM_BIT, 4837 NESTED_SYNC_TODO_BIT, 4838 }; 4839 4840 #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) 4841 #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) 4842 4843 #define NESTED_SYNC_IMM __NESTED_SYNC(IMM) 4844 #define NESTED_SYNC_TODO __NESTED_SYNC(TODO) 4845 4846 struct netdev_nested_priv { 4847 unsigned char flags; 4848 void *data; 4849 }; 4850 4851 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4852 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4853 struct list_head **iter); 4854 4855 /* iterate through upper list, must be called under RCU read lock */ 4856 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4857 for (iter = &(dev)->adj_list.upper, \ 4858 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4859 updev; \ 4860 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4861 4862 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4863 int (*fn)(struct net_device *upper_dev, 4864 struct netdev_nested_priv *priv), 4865 struct netdev_nested_priv *priv); 4866 4867 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4868 struct net_device *upper_dev); 4869 4870 bool netdev_has_any_upper_dev(struct net_device *dev); 4871 4872 void *netdev_lower_get_next_private(struct net_device *dev, 4873 struct list_head **iter); 4874 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4875 struct list_head **iter); 4876 4877 #define netdev_for_each_lower_private(dev, priv, iter) \ 4878 for (iter = (dev)->adj_list.lower.next, \ 4879 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4880 priv; \ 4881 priv = netdev_lower_get_next_private(dev, &(iter))) 4882 4883 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4884 for (iter = &(dev)->adj_list.lower, \ 4885 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4886 priv; \ 4887 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4888 4889 void *netdev_lower_get_next(struct net_device *dev, 4890 struct list_head **iter); 4891 4892 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4893 for (iter = (dev)->adj_list.lower.next, \ 4894 ldev = netdev_lower_get_next(dev, &(iter)); \ 4895 ldev; \ 4896 ldev = netdev_lower_get_next(dev, &(iter))) 4897 4898 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 4899 struct list_head **iter); 4900 int netdev_walk_all_lower_dev(struct net_device *dev, 4901 int (*fn)(struct net_device *lower_dev, 4902 struct netdev_nested_priv *priv), 4903 struct netdev_nested_priv *priv); 4904 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4905 int (*fn)(struct net_device *lower_dev, 4906 struct netdev_nested_priv *priv), 4907 struct netdev_nested_priv *priv); 4908 4909 void *netdev_adjacent_get_private(struct list_head *adj_list); 4910 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4911 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4912 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4913 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4914 struct netlink_ext_ack *extack); 4915 int netdev_master_upper_dev_link(struct net_device *dev, 4916 struct net_device *upper_dev, 4917 void *upper_priv, void *upper_info, 4918 struct netlink_ext_ack *extack); 4919 void netdev_upper_dev_unlink(struct net_device *dev, 4920 struct net_device *upper_dev); 4921 int netdev_adjacent_change_prepare(struct net_device *old_dev, 4922 struct net_device *new_dev, 4923 struct net_device *dev, 4924 struct netlink_ext_ack *extack); 4925 void netdev_adjacent_change_commit(struct net_device *old_dev, 4926 struct net_device *new_dev, 4927 struct net_device *dev); 4928 void netdev_adjacent_change_abort(struct net_device *old_dev, 4929 struct net_device *new_dev, 4930 struct net_device *dev); 4931 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4932 void *netdev_lower_dev_get_private(struct net_device *dev, 4933 struct net_device *lower_dev); 4934 void netdev_lower_state_changed(struct net_device *lower_dev, 4935 void *lower_state_info); 4936 4937 /* RSS keys are 40 or 52 bytes long */ 4938 #define NETDEV_RSS_KEY_LEN 52 4939 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4940 void netdev_rss_key_fill(void *buffer, size_t len); 4941 4942 int skb_checksum_help(struct sk_buff *skb); 4943 int skb_crc32c_csum_help(struct sk_buff *skb); 4944 int skb_csum_hwoffload_help(struct sk_buff *skb, 4945 const netdev_features_t features); 4946 4947 struct netdev_bonding_info { 4948 ifslave slave; 4949 ifbond master; 4950 }; 4951 4952 struct netdev_notifier_bonding_info { 4953 struct netdev_notifier_info info; /* must be first */ 4954 struct netdev_bonding_info bonding_info; 4955 }; 4956 4957 void netdev_bonding_info_change(struct net_device *dev, 4958 struct netdev_bonding_info *bonding_info); 4959 4960 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 4961 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); 4962 #else 4963 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, 4964 const void *data) 4965 { 4966 } 4967 #endif 4968 4969 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4970 4971 static inline bool can_checksum_protocol(netdev_features_t features, 4972 __be16 protocol) 4973 { 4974 if (protocol == htons(ETH_P_FCOE)) 4975 return !!(features & NETIF_F_FCOE_CRC); 4976 4977 /* Assume this is an IP checksum (not SCTP CRC) */ 4978 4979 if (features & NETIF_F_HW_CSUM) { 4980 /* Can checksum everything */ 4981 return true; 4982 } 4983 4984 switch (protocol) { 4985 case htons(ETH_P_IP): 4986 return !!(features & NETIF_F_IP_CSUM); 4987 case htons(ETH_P_IPV6): 4988 return !!(features & NETIF_F_IPV6_CSUM); 4989 default: 4990 return false; 4991 } 4992 } 4993 4994 #ifdef CONFIG_BUG 4995 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4996 #else 4997 static inline void netdev_rx_csum_fault(struct net_device *dev, 4998 struct sk_buff *skb) 4999 { 5000 } 5001 #endif 5002 /* rx skb timestamps */ 5003 void net_enable_timestamp(void); 5004 void net_disable_timestamp(void); 5005 5006 static inline ktime_t netdev_get_tstamp(struct net_device *dev, 5007 const struct skb_shared_hwtstamps *hwtstamps, 5008 bool cycles) 5009 { 5010 const struct net_device_ops *ops = dev->netdev_ops; 5011 5012 if (ops->ndo_get_tstamp) 5013 return ops->ndo_get_tstamp(dev, hwtstamps, cycles); 5014 5015 return hwtstamps->hwtstamp; 5016 } 5017 5018 #ifndef CONFIG_PREEMPT_RT 5019 static inline void netdev_xmit_set_more(bool more) 5020 { 5021 __this_cpu_write(softnet_data.xmit.more, more); 5022 } 5023 5024 static inline bool netdev_xmit_more(void) 5025 { 5026 return __this_cpu_read(softnet_data.xmit.more); 5027 } 5028 #else 5029 static inline void netdev_xmit_set_more(bool more) 5030 { 5031 current->net_xmit.more = more; 5032 } 5033 5034 static inline bool netdev_xmit_more(void) 5035 { 5036 return current->net_xmit.more; 5037 } 5038 #endif 5039 5040 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 5041 struct sk_buff *skb, struct net_device *dev, 5042 bool more) 5043 { 5044 netdev_xmit_set_more(more); 5045 return ops->ndo_start_xmit(skb, dev); 5046 } 5047 5048 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 5049 struct netdev_queue *txq, bool more) 5050 { 5051 const struct net_device_ops *ops = dev->netdev_ops; 5052 netdev_tx_t rc; 5053 5054 rc = __netdev_start_xmit(ops, skb, dev, more); 5055 if (rc == NETDEV_TX_OK) 5056 txq_trans_update(txq); 5057 5058 return rc; 5059 } 5060 5061 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 5062 const void *ns); 5063 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 5064 const void *ns); 5065 5066 extern const struct kobj_ns_type_operations net_ns_type_operations; 5067 5068 const char *netdev_drivername(const struct net_device *dev); 5069 5070 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 5071 netdev_features_t f2) 5072 { 5073 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 5074 if (f1 & NETIF_F_HW_CSUM) 5075 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5076 else 5077 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5078 } 5079 5080 return f1 & f2; 5081 } 5082 5083 static inline netdev_features_t netdev_get_wanted_features( 5084 struct net_device *dev) 5085 { 5086 return (dev->features & ~dev->hw_features) | dev->wanted_features; 5087 } 5088 netdev_features_t netdev_increment_features(netdev_features_t all, 5089 netdev_features_t one, netdev_features_t mask); 5090 5091 /* Allow TSO being used on stacked device : 5092 * Performing the GSO segmentation before last device 5093 * is a performance improvement. 5094 */ 5095 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 5096 netdev_features_t mask) 5097 { 5098 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 5099 } 5100 5101 int __netdev_update_features(struct net_device *dev); 5102 void netdev_update_features(struct net_device *dev); 5103 void netdev_change_features(struct net_device *dev); 5104 5105 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5106 struct net_device *dev); 5107 5108 netdev_features_t passthru_features_check(struct sk_buff *skb, 5109 struct net_device *dev, 5110 netdev_features_t features); 5111 netdev_features_t netif_skb_features(struct sk_buff *skb); 5112 void skb_warn_bad_offload(const struct sk_buff *skb); 5113 5114 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 5115 { 5116 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 5117 5118 /* check flags correspondence */ 5119 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 5120 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 5121 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 5122 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 5123 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 5124 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 5125 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 5126 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 5127 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 5128 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 5129 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 5130 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 5131 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 5132 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 5133 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 5134 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 5135 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 5136 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 5137 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 5138 5139 return (features & feature) == feature; 5140 } 5141 5142 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 5143 { 5144 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 5145 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 5146 } 5147 5148 static inline bool netif_needs_gso(struct sk_buff *skb, 5149 netdev_features_t features) 5150 { 5151 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 5152 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 5153 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 5154 } 5155 5156 void netif_set_tso_max_size(struct net_device *dev, unsigned int size); 5157 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs); 5158 void netif_inherit_tso_max(struct net_device *to, 5159 const struct net_device *from); 5160 5161 static inline unsigned int 5162 netif_get_gro_max_size(const struct net_device *dev, const struct sk_buff *skb) 5163 { 5164 /* pairs with WRITE_ONCE() in netif_set_gro(_ipv4)_max_size() */ 5165 return skb->protocol == htons(ETH_P_IPV6) ? 5166 READ_ONCE(dev->gro_max_size) : 5167 READ_ONCE(dev->gro_ipv4_max_size); 5168 } 5169 5170 static inline unsigned int 5171 netif_get_gso_max_size(const struct net_device *dev, const struct sk_buff *skb) 5172 { 5173 /* pairs with WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */ 5174 return skb->protocol == htons(ETH_P_IPV6) ? 5175 READ_ONCE(dev->gso_max_size) : 5176 READ_ONCE(dev->gso_ipv4_max_size); 5177 } 5178 5179 static inline bool netif_is_macsec(const struct net_device *dev) 5180 { 5181 return dev->priv_flags & IFF_MACSEC; 5182 } 5183 5184 static inline bool netif_is_macvlan(const struct net_device *dev) 5185 { 5186 return dev->priv_flags & IFF_MACVLAN; 5187 } 5188 5189 static inline bool netif_is_macvlan_port(const struct net_device *dev) 5190 { 5191 return dev->priv_flags & IFF_MACVLAN_PORT; 5192 } 5193 5194 static inline bool netif_is_bond_master(const struct net_device *dev) 5195 { 5196 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 5197 } 5198 5199 static inline bool netif_is_bond_slave(const struct net_device *dev) 5200 { 5201 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 5202 } 5203 5204 static inline bool netif_supports_nofcs(struct net_device *dev) 5205 { 5206 return dev->priv_flags & IFF_SUPP_NOFCS; 5207 } 5208 5209 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 5210 { 5211 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 5212 } 5213 5214 static inline bool netif_is_l3_master(const struct net_device *dev) 5215 { 5216 return dev->priv_flags & IFF_L3MDEV_MASTER; 5217 } 5218 5219 static inline bool netif_is_l3_slave(const struct net_device *dev) 5220 { 5221 return dev->priv_flags & IFF_L3MDEV_SLAVE; 5222 } 5223 5224 static inline int dev_sdif(const struct net_device *dev) 5225 { 5226 #ifdef CONFIG_NET_L3_MASTER_DEV 5227 if (netif_is_l3_slave(dev)) 5228 return dev->ifindex; 5229 #endif 5230 return 0; 5231 } 5232 5233 static inline bool netif_is_bridge_master(const struct net_device *dev) 5234 { 5235 return dev->priv_flags & IFF_EBRIDGE; 5236 } 5237 5238 static inline bool netif_is_bridge_port(const struct net_device *dev) 5239 { 5240 return dev->priv_flags & IFF_BRIDGE_PORT; 5241 } 5242 5243 static inline bool netif_is_ovs_master(const struct net_device *dev) 5244 { 5245 return dev->priv_flags & IFF_OPENVSWITCH; 5246 } 5247 5248 static inline bool netif_is_ovs_port(const struct net_device *dev) 5249 { 5250 return dev->priv_flags & IFF_OVS_DATAPATH; 5251 } 5252 5253 static inline bool netif_is_any_bridge_master(const struct net_device *dev) 5254 { 5255 return netif_is_bridge_master(dev) || netif_is_ovs_master(dev); 5256 } 5257 5258 static inline bool netif_is_any_bridge_port(const struct net_device *dev) 5259 { 5260 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); 5261 } 5262 5263 static inline bool netif_is_team_master(const struct net_device *dev) 5264 { 5265 return dev->priv_flags & IFF_TEAM; 5266 } 5267 5268 static inline bool netif_is_team_port(const struct net_device *dev) 5269 { 5270 return dev->priv_flags & IFF_TEAM_PORT; 5271 } 5272 5273 static inline bool netif_is_lag_master(const struct net_device *dev) 5274 { 5275 return netif_is_bond_master(dev) || netif_is_team_master(dev); 5276 } 5277 5278 static inline bool netif_is_lag_port(const struct net_device *dev) 5279 { 5280 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 5281 } 5282 5283 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 5284 { 5285 return dev->priv_flags & IFF_RXFH_CONFIGURED; 5286 } 5287 5288 static inline bool netif_is_failover(const struct net_device *dev) 5289 { 5290 return dev->priv_flags & IFF_FAILOVER; 5291 } 5292 5293 static inline bool netif_is_failover_slave(const struct net_device *dev) 5294 { 5295 return dev->priv_flags & IFF_FAILOVER_SLAVE; 5296 } 5297 5298 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 5299 static inline void netif_keep_dst(struct net_device *dev) 5300 { 5301 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 5302 } 5303 5304 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 5305 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 5306 { 5307 /* TODO: reserve and use an additional IFF bit, if we get more users */ 5308 return netif_is_macsec(dev); 5309 } 5310 5311 extern struct pernet_operations __net_initdata loopback_net_ops; 5312 5313 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 5314 5315 /* netdev_printk helpers, similar to dev_printk */ 5316 5317 static inline const char *netdev_name(const struct net_device *dev) 5318 { 5319 if (!dev->name[0] || strchr(dev->name, '%')) 5320 return "(unnamed net_device)"; 5321 return dev->name; 5322 } 5323 5324 static inline const char *netdev_reg_state(const struct net_device *dev) 5325 { 5326 u8 reg_state = READ_ONCE(dev->reg_state); 5327 5328 switch (reg_state) { 5329 case NETREG_UNINITIALIZED: return " (uninitialized)"; 5330 case NETREG_REGISTERED: return ""; 5331 case NETREG_UNREGISTERING: return " (unregistering)"; 5332 case NETREG_UNREGISTERED: return " (unregistered)"; 5333 case NETREG_RELEASED: return " (released)"; 5334 case NETREG_DUMMY: return " (dummy)"; 5335 } 5336 5337 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, reg_state); 5338 return " (unknown)"; 5339 } 5340 5341 #define MODULE_ALIAS_NETDEV(device) \ 5342 MODULE_ALIAS("netdev-" device) 5343 5344 /* 5345 * netdev_WARN() acts like dev_printk(), but with the key difference 5346 * of using a WARN/WARN_ON to get the message out, including the 5347 * file/line information and a backtrace. 5348 */ 5349 #define netdev_WARN(dev, format, args...) \ 5350 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5351 netdev_reg_state(dev), ##args) 5352 5353 #define netdev_WARN_ONCE(dev, format, args...) \ 5354 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5355 netdev_reg_state(dev), ##args) 5356 5357 /* 5358 * The list of packet types we will receive (as opposed to discard) 5359 * and the routines to invoke. 5360 * 5361 * Why 16. Because with 16 the only overlap we get on a hash of the 5362 * low nibble of the protocol value is RARP/SNAP/X.25. 5363 * 5364 * 0800 IP 5365 * 0001 802.3 5366 * 0002 AX.25 5367 * 0004 802.2 5368 * 8035 RARP 5369 * 0005 SNAP 5370 * 0805 X.25 5371 * 0806 ARP 5372 * 8137 IPX 5373 * 0009 Localtalk 5374 * 86DD IPv6 5375 */ 5376 #define PTYPE_HASH_SIZE (16) 5377 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5378 5379 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 5380 5381 extern struct net_device *blackhole_netdev; 5382 5383 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */ 5384 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD) 5385 #define DEV_STATS_ADD(DEV, FIELD, VAL) \ 5386 atomic_long_add((VAL), &(DEV)->stats.__##FIELD) 5387 #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD) 5388 5389 #endif /* _LINUX_NETDEVICE_H */ 5390