xref: /linux-6.15/include/linux/netdevice.h (revision 3df0e680)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <[email protected]>
12  *		Corey Minyard <[email protected]>
13  *		Donald J. Becker, <[email protected]>
14  *		Alan Cox, <[email protected]>
15  *		Bjorn Ekwall. <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/workqueue.h>
39 #include <linux/dynamic_queue_limits.h>
40 
41 #include <linux/ethtool.h>
42 #include <net/net_namespace.h>
43 #ifdef CONFIG_DCB
44 #include <net/dcbnl.h>
45 #endif
46 #include <net/netprio_cgroup.h>
47 #include <net/xdp.h>
48 
49 #include <linux/netdev_features.h>
50 #include <linux/neighbour.h>
51 #include <uapi/linux/netdevice.h>
52 #include <uapi/linux/if_bonding.h>
53 #include <uapi/linux/pkt_cls.h>
54 #include <linux/hashtable.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 struct dsa_port;
60 
61 struct sfp_bus;
62 /* 802.11 specific */
63 struct wireless_dev;
64 /* 802.15.4 specific */
65 struct wpan_dev;
66 struct mpls_dev;
67 /* UDP Tunnel offloads */
68 struct udp_tunnel_info;
69 struct bpf_prog;
70 struct xdp_buff;
71 
72 void netdev_set_default_ethtool_ops(struct net_device *dev,
73 				    const struct ethtool_ops *ops);
74 
75 /* Backlog congestion levels */
76 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
77 #define NET_RX_DROP		1	/* packet dropped */
78 
79 /*
80  * Transmit return codes: transmit return codes originate from three different
81  * namespaces:
82  *
83  * - qdisc return codes
84  * - driver transmit return codes
85  * - errno values
86  *
87  * Drivers are allowed to return any one of those in their hard_start_xmit()
88  * function. Real network devices commonly used with qdiscs should only return
89  * the driver transmit return codes though - when qdiscs are used, the actual
90  * transmission happens asynchronously, so the value is not propagated to
91  * higher layers. Virtual network devices transmit synchronously; in this case
92  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
93  * others are propagated to higher layers.
94  */
95 
96 /* qdisc ->enqueue() return codes. */
97 #define NET_XMIT_SUCCESS	0x00
98 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
99 #define NET_XMIT_CN		0x02	/* congestion notification	*/
100 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
101 
102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
103  * indicates that the device will soon be dropping packets, or already drops
104  * some packets of the same priority; prompting us to send less aggressively. */
105 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
106 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
107 
108 /* Driver transmit return codes */
109 #define NETDEV_TX_MASK		0xf0
110 
111 enum netdev_tx {
112 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
113 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
114 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
115 };
116 typedef enum netdev_tx netdev_tx_t;
117 
118 /*
119  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121  */
122 static inline bool dev_xmit_complete(int rc)
123 {
124 	/*
125 	 * Positive cases with an skb consumed by a driver:
126 	 * - successful transmission (rc == NETDEV_TX_OK)
127 	 * - error while transmitting (rc < 0)
128 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 	 */
130 	if (likely(rc < NET_XMIT_MASK))
131 		return true;
132 
133 	return false;
134 }
135 
136 /*
137  *	Compute the worst-case header length according to the protocols
138  *	used.
139  */
140 
141 #if defined(CONFIG_HYPERV_NET)
142 # define LL_MAX_HEADER 128
143 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
144 # if defined(CONFIG_MAC80211_MESH)
145 #  define LL_MAX_HEADER 128
146 # else
147 #  define LL_MAX_HEADER 96
148 # endif
149 #else
150 # define LL_MAX_HEADER 32
151 #endif
152 
153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
154     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
155 #define MAX_HEADER LL_MAX_HEADER
156 #else
157 #define MAX_HEADER (LL_MAX_HEADER + 48)
158 #endif
159 
160 /*
161  *	Old network device statistics. Fields are native words
162  *	(unsigned long) so they can be read and written atomically.
163  */
164 
165 struct net_device_stats {
166 	unsigned long	rx_packets;
167 	unsigned long	tx_packets;
168 	unsigned long	rx_bytes;
169 	unsigned long	tx_bytes;
170 	unsigned long	rx_errors;
171 	unsigned long	tx_errors;
172 	unsigned long	rx_dropped;
173 	unsigned long	tx_dropped;
174 	unsigned long	multicast;
175 	unsigned long	collisions;
176 	unsigned long	rx_length_errors;
177 	unsigned long	rx_over_errors;
178 	unsigned long	rx_crc_errors;
179 	unsigned long	rx_frame_errors;
180 	unsigned long	rx_fifo_errors;
181 	unsigned long	rx_missed_errors;
182 	unsigned long	tx_aborted_errors;
183 	unsigned long	tx_carrier_errors;
184 	unsigned long	tx_fifo_errors;
185 	unsigned long	tx_heartbeat_errors;
186 	unsigned long	tx_window_errors;
187 	unsigned long	rx_compressed;
188 	unsigned long	tx_compressed;
189 };
190 
191 
192 #include <linux/cache.h>
193 #include <linux/skbuff.h>
194 
195 #ifdef CONFIG_RPS
196 #include <linux/static_key.h>
197 extern struct static_key rps_needed;
198 extern struct static_key rfs_needed;
199 #endif
200 
201 struct neighbour;
202 struct neigh_parms;
203 struct sk_buff;
204 
205 struct netdev_hw_addr {
206 	struct list_head	list;
207 	unsigned char		addr[MAX_ADDR_LEN];
208 	unsigned char		type;
209 #define NETDEV_HW_ADDR_T_LAN		1
210 #define NETDEV_HW_ADDR_T_SAN		2
211 #define NETDEV_HW_ADDR_T_SLAVE		3
212 #define NETDEV_HW_ADDR_T_UNICAST	4
213 #define NETDEV_HW_ADDR_T_MULTICAST	5
214 	bool			global_use;
215 	int			sync_cnt;
216 	int			refcount;
217 	int			synced;
218 	struct rcu_head		rcu_head;
219 };
220 
221 struct netdev_hw_addr_list {
222 	struct list_head	list;
223 	int			count;
224 };
225 
226 #define netdev_hw_addr_list_count(l) ((l)->count)
227 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
228 #define netdev_hw_addr_list_for_each(ha, l) \
229 	list_for_each_entry(ha, &(l)->list, list)
230 
231 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
232 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
233 #define netdev_for_each_uc_addr(ha, dev) \
234 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
235 
236 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
237 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
238 #define netdev_for_each_mc_addr(ha, dev) \
239 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
240 
241 struct hh_cache {
242 	unsigned int	hh_len;
243 	seqlock_t	hh_lock;
244 
245 	/* cached hardware header; allow for machine alignment needs.        */
246 #define HH_DATA_MOD	16
247 #define HH_DATA_OFF(__len) \
248 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
249 #define HH_DATA_ALIGN(__len) \
250 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
251 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
252 };
253 
254 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
255  * Alternative is:
256  *   dev->hard_header_len ? (dev->hard_header_len +
257  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
258  *
259  * We could use other alignment values, but we must maintain the
260  * relationship HH alignment <= LL alignment.
261  */
262 #define LL_RESERVED_SPACE(dev) \
263 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
265 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
266 
267 struct header_ops {
268 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
269 			   unsigned short type, const void *daddr,
270 			   const void *saddr, unsigned int len);
271 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
272 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
273 	void	(*cache_update)(struct hh_cache *hh,
274 				const struct net_device *dev,
275 				const unsigned char *haddr);
276 	bool	(*validate)(const char *ll_header, unsigned int len);
277 };
278 
279 /* These flag bits are private to the generic network queueing
280  * layer; they may not be explicitly referenced by any other
281  * code.
282  */
283 
284 enum netdev_state_t {
285 	__LINK_STATE_START,
286 	__LINK_STATE_PRESENT,
287 	__LINK_STATE_NOCARRIER,
288 	__LINK_STATE_LINKWATCH_PENDING,
289 	__LINK_STATE_DORMANT,
290 };
291 
292 
293 /*
294  * This structure holds boot-time configured netdevice settings. They
295  * are then used in the device probing.
296  */
297 struct netdev_boot_setup {
298 	char name[IFNAMSIZ];
299 	struct ifmap map;
300 };
301 #define NETDEV_BOOT_SETUP_MAX 8
302 
303 int __init netdev_boot_setup(char *str);
304 
305 struct gro_list {
306 	struct list_head	list;
307 	int			count;
308 };
309 
310 /*
311  * size of gro hash buckets, must less than bit number of
312  * napi_struct::gro_bitmask
313  */
314 #define GRO_HASH_BUCKETS	8
315 
316 /*
317  * Structure for NAPI scheduling similar to tasklet but with weighting
318  */
319 struct napi_struct {
320 	/* The poll_list must only be managed by the entity which
321 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
322 	 * whoever atomically sets that bit can add this napi_struct
323 	 * to the per-CPU poll_list, and whoever clears that bit
324 	 * can remove from the list right before clearing the bit.
325 	 */
326 	struct list_head	poll_list;
327 
328 	unsigned long		state;
329 	int			weight;
330 	unsigned long		gro_bitmask;
331 	int			(*poll)(struct napi_struct *, int);
332 #ifdef CONFIG_NETPOLL
333 	int			poll_owner;
334 #endif
335 	struct net_device	*dev;
336 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
337 	struct sk_buff		*skb;
338 	struct hrtimer		timer;
339 	struct list_head	dev_list;
340 	struct hlist_node	napi_hash_node;
341 	unsigned int		napi_id;
342 };
343 
344 enum {
345 	NAPI_STATE_SCHED,	/* Poll is scheduled */
346 	NAPI_STATE_MISSED,	/* reschedule a napi */
347 	NAPI_STATE_DISABLE,	/* Disable pending */
348 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
349 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
350 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
351 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
352 };
353 
354 enum {
355 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
356 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
357 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
358 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
359 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
360 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
361 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
362 };
363 
364 enum gro_result {
365 	GRO_MERGED,
366 	GRO_MERGED_FREE,
367 	GRO_HELD,
368 	GRO_NORMAL,
369 	GRO_DROP,
370 	GRO_CONSUMED,
371 };
372 typedef enum gro_result gro_result_t;
373 
374 /*
375  * enum rx_handler_result - Possible return values for rx_handlers.
376  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
377  * further.
378  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
379  * case skb->dev was changed by rx_handler.
380  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
381  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
382  *
383  * rx_handlers are functions called from inside __netif_receive_skb(), to do
384  * special processing of the skb, prior to delivery to protocol handlers.
385  *
386  * Currently, a net_device can only have a single rx_handler registered. Trying
387  * to register a second rx_handler will return -EBUSY.
388  *
389  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
390  * To unregister a rx_handler on a net_device, use
391  * netdev_rx_handler_unregister().
392  *
393  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
394  * do with the skb.
395  *
396  * If the rx_handler consumed the skb in some way, it should return
397  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
398  * the skb to be delivered in some other way.
399  *
400  * If the rx_handler changed skb->dev, to divert the skb to another
401  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
402  * new device will be called if it exists.
403  *
404  * If the rx_handler decides the skb should be ignored, it should return
405  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
406  * are registered on exact device (ptype->dev == skb->dev).
407  *
408  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
409  * delivered, it should return RX_HANDLER_PASS.
410  *
411  * A device without a registered rx_handler will behave as if rx_handler
412  * returned RX_HANDLER_PASS.
413  */
414 
415 enum rx_handler_result {
416 	RX_HANDLER_CONSUMED,
417 	RX_HANDLER_ANOTHER,
418 	RX_HANDLER_EXACT,
419 	RX_HANDLER_PASS,
420 };
421 typedef enum rx_handler_result rx_handler_result_t;
422 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
423 
424 void __napi_schedule(struct napi_struct *n);
425 void __napi_schedule_irqoff(struct napi_struct *n);
426 
427 static inline bool napi_disable_pending(struct napi_struct *n)
428 {
429 	return test_bit(NAPI_STATE_DISABLE, &n->state);
430 }
431 
432 bool napi_schedule_prep(struct napi_struct *n);
433 
434 /**
435  *	napi_schedule - schedule NAPI poll
436  *	@n: NAPI context
437  *
438  * Schedule NAPI poll routine to be called if it is not already
439  * running.
440  */
441 static inline void napi_schedule(struct napi_struct *n)
442 {
443 	if (napi_schedule_prep(n))
444 		__napi_schedule(n);
445 }
446 
447 /**
448  *	napi_schedule_irqoff - schedule NAPI poll
449  *	@n: NAPI context
450  *
451  * Variant of napi_schedule(), assuming hard irqs are masked.
452  */
453 static inline void napi_schedule_irqoff(struct napi_struct *n)
454 {
455 	if (napi_schedule_prep(n))
456 		__napi_schedule_irqoff(n);
457 }
458 
459 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
460 static inline bool napi_reschedule(struct napi_struct *napi)
461 {
462 	if (napi_schedule_prep(napi)) {
463 		__napi_schedule(napi);
464 		return true;
465 	}
466 	return false;
467 }
468 
469 bool napi_complete_done(struct napi_struct *n, int work_done);
470 /**
471  *	napi_complete - NAPI processing complete
472  *	@n: NAPI context
473  *
474  * Mark NAPI processing as complete.
475  * Consider using napi_complete_done() instead.
476  * Return false if device should avoid rearming interrupts.
477  */
478 static inline bool napi_complete(struct napi_struct *n)
479 {
480 	return napi_complete_done(n, 0);
481 }
482 
483 /**
484  *	napi_hash_del - remove a NAPI from global table
485  *	@napi: NAPI context
486  *
487  * Warning: caller must observe RCU grace period
488  * before freeing memory containing @napi, if
489  * this function returns true.
490  * Note: core networking stack automatically calls it
491  * from netif_napi_del().
492  * Drivers might want to call this helper to combine all
493  * the needed RCU grace periods into a single one.
494  */
495 bool napi_hash_del(struct napi_struct *napi);
496 
497 /**
498  *	napi_disable - prevent NAPI from scheduling
499  *	@n: NAPI context
500  *
501  * Stop NAPI from being scheduled on this context.
502  * Waits till any outstanding processing completes.
503  */
504 void napi_disable(struct napi_struct *n);
505 
506 /**
507  *	napi_enable - enable NAPI scheduling
508  *	@n: NAPI context
509  *
510  * Resume NAPI from being scheduled on this context.
511  * Must be paired with napi_disable.
512  */
513 static inline void napi_enable(struct napi_struct *n)
514 {
515 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
516 	smp_mb__before_atomic();
517 	clear_bit(NAPI_STATE_SCHED, &n->state);
518 	clear_bit(NAPI_STATE_NPSVC, &n->state);
519 }
520 
521 /**
522  *	napi_synchronize - wait until NAPI is not running
523  *	@n: NAPI context
524  *
525  * Wait until NAPI is done being scheduled on this context.
526  * Waits till any outstanding processing completes but
527  * does not disable future activations.
528  */
529 static inline void napi_synchronize(const struct napi_struct *n)
530 {
531 	if (IS_ENABLED(CONFIG_SMP))
532 		while (test_bit(NAPI_STATE_SCHED, &n->state))
533 			msleep(1);
534 	else
535 		barrier();
536 }
537 
538 /**
539  *	napi_if_scheduled_mark_missed - if napi is running, set the
540  *	NAPIF_STATE_MISSED
541  *	@n: NAPI context
542  *
543  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
544  * NAPI is scheduled.
545  **/
546 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
547 {
548 	unsigned long val, new;
549 
550 	do {
551 		val = READ_ONCE(n->state);
552 		if (val & NAPIF_STATE_DISABLE)
553 			return true;
554 
555 		if (!(val & NAPIF_STATE_SCHED))
556 			return false;
557 
558 		new = val | NAPIF_STATE_MISSED;
559 	} while (cmpxchg(&n->state, val, new) != val);
560 
561 	return true;
562 }
563 
564 enum netdev_queue_state_t {
565 	__QUEUE_STATE_DRV_XOFF,
566 	__QUEUE_STATE_STACK_XOFF,
567 	__QUEUE_STATE_FROZEN,
568 };
569 
570 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
571 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
572 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
573 
574 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
575 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
576 					QUEUE_STATE_FROZEN)
577 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
578 					QUEUE_STATE_FROZEN)
579 
580 /*
581  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
582  * netif_tx_* functions below are used to manipulate this flag.  The
583  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
584  * queue independently.  The netif_xmit_*stopped functions below are called
585  * to check if the queue has been stopped by the driver or stack (either
586  * of the XOFF bits are set in the state).  Drivers should not need to call
587  * netif_xmit*stopped functions, they should only be using netif_tx_*.
588  */
589 
590 struct netdev_queue {
591 /*
592  * read-mostly part
593  */
594 	struct net_device	*dev;
595 	struct Qdisc __rcu	*qdisc;
596 	struct Qdisc		*qdisc_sleeping;
597 #ifdef CONFIG_SYSFS
598 	struct kobject		kobj;
599 #endif
600 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
601 	int			numa_node;
602 #endif
603 	unsigned long		tx_maxrate;
604 	/*
605 	 * Number of TX timeouts for this queue
606 	 * (/sys/class/net/DEV/Q/trans_timeout)
607 	 */
608 	unsigned long		trans_timeout;
609 
610 	/* Subordinate device that the queue has been assigned to */
611 	struct net_device	*sb_dev;
612 /*
613  * write-mostly part
614  */
615 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
616 	int			xmit_lock_owner;
617 	/*
618 	 * Time (in jiffies) of last Tx
619 	 */
620 	unsigned long		trans_start;
621 
622 	unsigned long		state;
623 
624 #ifdef CONFIG_BQL
625 	struct dql		dql;
626 #endif
627 } ____cacheline_aligned_in_smp;
628 
629 extern int sysctl_fb_tunnels_only_for_init_net;
630 
631 static inline bool net_has_fallback_tunnels(const struct net *net)
632 {
633 	return net == &init_net ||
634 	       !IS_ENABLED(CONFIG_SYSCTL) ||
635 	       !sysctl_fb_tunnels_only_for_init_net;
636 }
637 
638 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
639 {
640 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
641 	return q->numa_node;
642 #else
643 	return NUMA_NO_NODE;
644 #endif
645 }
646 
647 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
648 {
649 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
650 	q->numa_node = node;
651 #endif
652 }
653 
654 #ifdef CONFIG_RPS
655 /*
656  * This structure holds an RPS map which can be of variable length.  The
657  * map is an array of CPUs.
658  */
659 struct rps_map {
660 	unsigned int len;
661 	struct rcu_head rcu;
662 	u16 cpus[0];
663 };
664 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
665 
666 /*
667  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
668  * tail pointer for that CPU's input queue at the time of last enqueue, and
669  * a hardware filter index.
670  */
671 struct rps_dev_flow {
672 	u16 cpu;
673 	u16 filter;
674 	unsigned int last_qtail;
675 };
676 #define RPS_NO_FILTER 0xffff
677 
678 /*
679  * The rps_dev_flow_table structure contains a table of flow mappings.
680  */
681 struct rps_dev_flow_table {
682 	unsigned int mask;
683 	struct rcu_head rcu;
684 	struct rps_dev_flow flows[0];
685 };
686 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
687     ((_num) * sizeof(struct rps_dev_flow)))
688 
689 /*
690  * The rps_sock_flow_table contains mappings of flows to the last CPU
691  * on which they were processed by the application (set in recvmsg).
692  * Each entry is a 32bit value. Upper part is the high-order bits
693  * of flow hash, lower part is CPU number.
694  * rps_cpu_mask is used to partition the space, depending on number of
695  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
696  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
697  * meaning we use 32-6=26 bits for the hash.
698  */
699 struct rps_sock_flow_table {
700 	u32	mask;
701 
702 	u32	ents[0] ____cacheline_aligned_in_smp;
703 };
704 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
705 
706 #define RPS_NO_CPU 0xffff
707 
708 extern u32 rps_cpu_mask;
709 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
710 
711 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
712 					u32 hash)
713 {
714 	if (table && hash) {
715 		unsigned int index = hash & table->mask;
716 		u32 val = hash & ~rps_cpu_mask;
717 
718 		/* We only give a hint, preemption can change CPU under us */
719 		val |= raw_smp_processor_id();
720 
721 		if (table->ents[index] != val)
722 			table->ents[index] = val;
723 	}
724 }
725 
726 #ifdef CONFIG_RFS_ACCEL
727 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
728 			 u16 filter_id);
729 #endif
730 #endif /* CONFIG_RPS */
731 
732 /* This structure contains an instance of an RX queue. */
733 struct netdev_rx_queue {
734 #ifdef CONFIG_RPS
735 	struct rps_map __rcu		*rps_map;
736 	struct rps_dev_flow_table __rcu	*rps_flow_table;
737 #endif
738 	struct kobject			kobj;
739 	struct net_device		*dev;
740 	struct xdp_rxq_info		xdp_rxq;
741 } ____cacheline_aligned_in_smp;
742 
743 /*
744  * RX queue sysfs structures and functions.
745  */
746 struct rx_queue_attribute {
747 	struct attribute attr;
748 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
749 	ssize_t (*store)(struct netdev_rx_queue *queue,
750 			 const char *buf, size_t len);
751 };
752 
753 #ifdef CONFIG_XPS
754 /*
755  * This structure holds an XPS map which can be of variable length.  The
756  * map is an array of queues.
757  */
758 struct xps_map {
759 	unsigned int len;
760 	unsigned int alloc_len;
761 	struct rcu_head rcu;
762 	u16 queues[0];
763 };
764 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
765 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
766        - sizeof(struct xps_map)) / sizeof(u16))
767 
768 /*
769  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
770  */
771 struct xps_dev_maps {
772 	struct rcu_head rcu;
773 	struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */
774 };
775 
776 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
777 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
778 
779 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
780 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
781 
782 #endif /* CONFIG_XPS */
783 
784 #define TC_MAX_QUEUE	16
785 #define TC_BITMASK	15
786 /* HW offloaded queuing disciplines txq count and offset maps */
787 struct netdev_tc_txq {
788 	u16 count;
789 	u16 offset;
790 };
791 
792 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
793 /*
794  * This structure is to hold information about the device
795  * configured to run FCoE protocol stack.
796  */
797 struct netdev_fcoe_hbainfo {
798 	char	manufacturer[64];
799 	char	serial_number[64];
800 	char	hardware_version[64];
801 	char	driver_version[64];
802 	char	optionrom_version[64];
803 	char	firmware_version[64];
804 	char	model[256];
805 	char	model_description[256];
806 };
807 #endif
808 
809 #define MAX_PHYS_ITEM_ID_LEN 32
810 
811 /* This structure holds a unique identifier to identify some
812  * physical item (port for example) used by a netdevice.
813  */
814 struct netdev_phys_item_id {
815 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
816 	unsigned char id_len;
817 };
818 
819 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
820 					    struct netdev_phys_item_id *b)
821 {
822 	return a->id_len == b->id_len &&
823 	       memcmp(a->id, b->id, a->id_len) == 0;
824 }
825 
826 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
827 				       struct sk_buff *skb,
828 				       struct net_device *sb_dev);
829 
830 enum tc_setup_type {
831 	TC_SETUP_QDISC_MQPRIO,
832 	TC_SETUP_CLSU32,
833 	TC_SETUP_CLSFLOWER,
834 	TC_SETUP_CLSMATCHALL,
835 	TC_SETUP_CLSBPF,
836 	TC_SETUP_BLOCK,
837 	TC_SETUP_QDISC_CBS,
838 	TC_SETUP_QDISC_RED,
839 	TC_SETUP_QDISC_PRIO,
840 	TC_SETUP_QDISC_MQ,
841 	TC_SETUP_QDISC_ETF,
842 };
843 
844 /* These structures hold the attributes of bpf state that are being passed
845  * to the netdevice through the bpf op.
846  */
847 enum bpf_netdev_command {
848 	/* Set or clear a bpf program used in the earliest stages of packet
849 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
850 	 * is responsible for calling bpf_prog_put on any old progs that are
851 	 * stored. In case of error, the callee need not release the new prog
852 	 * reference, but on success it takes ownership and must bpf_prog_put
853 	 * when it is no longer used.
854 	 */
855 	XDP_SETUP_PROG,
856 	XDP_SETUP_PROG_HW,
857 	XDP_QUERY_PROG,
858 	XDP_QUERY_PROG_HW,
859 	/* BPF program for offload callbacks, invoked at program load time. */
860 	BPF_OFFLOAD_VERIFIER_PREP,
861 	BPF_OFFLOAD_TRANSLATE,
862 	BPF_OFFLOAD_DESTROY,
863 	BPF_OFFLOAD_MAP_ALLOC,
864 	BPF_OFFLOAD_MAP_FREE,
865 	XDP_QUERY_XSK_UMEM,
866 	XDP_SETUP_XSK_UMEM,
867 };
868 
869 struct bpf_prog_offload_ops;
870 struct netlink_ext_ack;
871 struct xdp_umem;
872 
873 struct netdev_bpf {
874 	enum bpf_netdev_command command;
875 	union {
876 		/* XDP_SETUP_PROG */
877 		struct {
878 			u32 flags;
879 			struct bpf_prog *prog;
880 			struct netlink_ext_ack *extack;
881 		};
882 		/* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
883 		struct {
884 			u32 prog_id;
885 			/* flags with which program was installed */
886 			u32 prog_flags;
887 		};
888 		/* BPF_OFFLOAD_VERIFIER_PREP */
889 		struct {
890 			struct bpf_prog *prog;
891 			const struct bpf_prog_offload_ops *ops; /* callee set */
892 		} verifier;
893 		/* BPF_OFFLOAD_TRANSLATE, BPF_OFFLOAD_DESTROY */
894 		struct {
895 			struct bpf_prog *prog;
896 		} offload;
897 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
898 		struct {
899 			struct bpf_offloaded_map *offmap;
900 		};
901 		/* XDP_QUERY_XSK_UMEM, XDP_SETUP_XSK_UMEM */
902 		struct {
903 			struct xdp_umem *umem; /* out for query*/
904 			u16 queue_id; /* in for query */
905 		} xsk;
906 	};
907 };
908 
909 #ifdef CONFIG_XFRM_OFFLOAD
910 struct xfrmdev_ops {
911 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
912 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
913 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
914 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
915 				       struct xfrm_state *x);
916 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
917 };
918 #endif
919 
920 #if IS_ENABLED(CONFIG_TLS_DEVICE)
921 enum tls_offload_ctx_dir {
922 	TLS_OFFLOAD_CTX_DIR_RX,
923 	TLS_OFFLOAD_CTX_DIR_TX,
924 };
925 
926 struct tls_crypto_info;
927 struct tls_context;
928 
929 struct tlsdev_ops {
930 	int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
931 			   enum tls_offload_ctx_dir direction,
932 			   struct tls_crypto_info *crypto_info,
933 			   u32 start_offload_tcp_sn);
934 	void (*tls_dev_del)(struct net_device *netdev,
935 			    struct tls_context *ctx,
936 			    enum tls_offload_ctx_dir direction);
937 	void (*tls_dev_resync_rx)(struct net_device *netdev,
938 				  struct sock *sk, u32 seq, u64 rcd_sn);
939 };
940 #endif
941 
942 struct dev_ifalias {
943 	struct rcu_head rcuhead;
944 	char ifalias[];
945 };
946 
947 /*
948  * This structure defines the management hooks for network devices.
949  * The following hooks can be defined; unless noted otherwise, they are
950  * optional and can be filled with a null pointer.
951  *
952  * int (*ndo_init)(struct net_device *dev);
953  *     This function is called once when a network device is registered.
954  *     The network device can use this for any late stage initialization
955  *     or semantic validation. It can fail with an error code which will
956  *     be propagated back to register_netdev.
957  *
958  * void (*ndo_uninit)(struct net_device *dev);
959  *     This function is called when device is unregistered or when registration
960  *     fails. It is not called if init fails.
961  *
962  * int (*ndo_open)(struct net_device *dev);
963  *     This function is called when a network device transitions to the up
964  *     state.
965  *
966  * int (*ndo_stop)(struct net_device *dev);
967  *     This function is called when a network device transitions to the down
968  *     state.
969  *
970  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
971  *                               struct net_device *dev);
972  *	Called when a packet needs to be transmitted.
973  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
974  *	the queue before that can happen; it's for obsolete devices and weird
975  *	corner cases, but the stack really does a non-trivial amount
976  *	of useless work if you return NETDEV_TX_BUSY.
977  *	Required; cannot be NULL.
978  *
979  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
980  *					   struct net_device *dev
981  *					   netdev_features_t features);
982  *	Called by core transmit path to determine if device is capable of
983  *	performing offload operations on a given packet. This is to give
984  *	the device an opportunity to implement any restrictions that cannot
985  *	be otherwise expressed by feature flags. The check is called with
986  *	the set of features that the stack has calculated and it returns
987  *	those the driver believes to be appropriate.
988  *
989  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
990  *                         struct net_device *sb_dev,
991  *                         select_queue_fallback_t fallback);
992  *	Called to decide which queue to use when device supports multiple
993  *	transmit queues.
994  *
995  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
996  *	This function is called to allow device receiver to make
997  *	changes to configuration when multicast or promiscuous is enabled.
998  *
999  * void (*ndo_set_rx_mode)(struct net_device *dev);
1000  *	This function is called device changes address list filtering.
1001  *	If driver handles unicast address filtering, it should set
1002  *	IFF_UNICAST_FLT in its priv_flags.
1003  *
1004  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1005  *	This function  is called when the Media Access Control address
1006  *	needs to be changed. If this interface is not defined, the
1007  *	MAC address can not be changed.
1008  *
1009  * int (*ndo_validate_addr)(struct net_device *dev);
1010  *	Test if Media Access Control address is valid for the device.
1011  *
1012  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1013  *	Called when a user requests an ioctl which can't be handled by
1014  *	the generic interface code. If not defined ioctls return
1015  *	not supported error code.
1016  *
1017  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1018  *	Used to set network devices bus interface parameters. This interface
1019  *	is retained for legacy reasons; new devices should use the bus
1020  *	interface (PCI) for low level management.
1021  *
1022  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1023  *	Called when a user wants to change the Maximum Transfer Unit
1024  *	of a device.
1025  *
1026  * void (*ndo_tx_timeout)(struct net_device *dev);
1027  *	Callback used when the transmitter has not made any progress
1028  *	for dev->watchdog ticks.
1029  *
1030  * void (*ndo_get_stats64)(struct net_device *dev,
1031  *                         struct rtnl_link_stats64 *storage);
1032  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1033  *	Called when a user wants to get the network device usage
1034  *	statistics. Drivers must do one of the following:
1035  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1036  *	   rtnl_link_stats64 structure passed by the caller.
1037  *	2. Define @ndo_get_stats to update a net_device_stats structure
1038  *	   (which should normally be dev->stats) and return a pointer to
1039  *	   it. The structure may be changed asynchronously only if each
1040  *	   field is written atomically.
1041  *	3. Update dev->stats asynchronously and atomically, and define
1042  *	   neither operation.
1043  *
1044  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1045  *	Return true if this device supports offload stats of this attr_id.
1046  *
1047  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1048  *	void *attr_data)
1049  *	Get statistics for offload operations by attr_id. Write it into the
1050  *	attr_data pointer.
1051  *
1052  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1053  *	If device supports VLAN filtering this function is called when a
1054  *	VLAN id is registered.
1055  *
1056  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1057  *	If device supports VLAN filtering this function is called when a
1058  *	VLAN id is unregistered.
1059  *
1060  * void (*ndo_poll_controller)(struct net_device *dev);
1061  *
1062  *	SR-IOV management functions.
1063  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1064  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1065  *			  u8 qos, __be16 proto);
1066  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1067  *			  int max_tx_rate);
1068  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1069  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1070  * int (*ndo_get_vf_config)(struct net_device *dev,
1071  *			    int vf, struct ifla_vf_info *ivf);
1072  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1073  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1074  *			  struct nlattr *port[]);
1075  *
1076  *      Enable or disable the VF ability to query its RSS Redirection Table and
1077  *      Hash Key. This is needed since on some devices VF share this information
1078  *      with PF and querying it may introduce a theoretical security risk.
1079  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1080  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1081  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1082  *		       void *type_data);
1083  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1084  *	This is always called from the stack with the rtnl lock held and netif
1085  *	tx queues stopped. This allows the netdevice to perform queue
1086  *	management safely.
1087  *
1088  *	Fiber Channel over Ethernet (FCoE) offload functions.
1089  * int (*ndo_fcoe_enable)(struct net_device *dev);
1090  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1091  *	so the underlying device can perform whatever needed configuration or
1092  *	initialization to support acceleration of FCoE traffic.
1093  *
1094  * int (*ndo_fcoe_disable)(struct net_device *dev);
1095  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1096  *	so the underlying device can perform whatever needed clean-ups to
1097  *	stop supporting acceleration of FCoE traffic.
1098  *
1099  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1100  *			     struct scatterlist *sgl, unsigned int sgc);
1101  *	Called when the FCoE Initiator wants to initialize an I/O that
1102  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1103  *	perform necessary setup and returns 1 to indicate the device is set up
1104  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1105  *
1106  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1107  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1108  *	indicated by the FC exchange id 'xid', so the underlying device can
1109  *	clean up and reuse resources for later DDP requests.
1110  *
1111  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1112  *			      struct scatterlist *sgl, unsigned int sgc);
1113  *	Called when the FCoE Target wants to initialize an I/O that
1114  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1115  *	perform necessary setup and returns 1 to indicate the device is set up
1116  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1117  *
1118  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1119  *			       struct netdev_fcoe_hbainfo *hbainfo);
1120  *	Called when the FCoE Protocol stack wants information on the underlying
1121  *	device. This information is utilized by the FCoE protocol stack to
1122  *	register attributes with Fiber Channel management service as per the
1123  *	FC-GS Fabric Device Management Information(FDMI) specification.
1124  *
1125  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1126  *	Called when the underlying device wants to override default World Wide
1127  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1128  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1129  *	protocol stack to use.
1130  *
1131  *	RFS acceleration.
1132  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1133  *			    u16 rxq_index, u32 flow_id);
1134  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1135  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1136  *	Return the filter ID on success, or a negative error code.
1137  *
1138  *	Slave management functions (for bridge, bonding, etc).
1139  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1140  *	Called to make another netdev an underling.
1141  *
1142  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1143  *	Called to release previously enslaved netdev.
1144  *
1145  *      Feature/offload setting functions.
1146  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1147  *		netdev_features_t features);
1148  *	Adjusts the requested feature flags according to device-specific
1149  *	constraints, and returns the resulting flags. Must not modify
1150  *	the device state.
1151  *
1152  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1153  *	Called to update device configuration to new features. Passed
1154  *	feature set might be less than what was returned by ndo_fix_features()).
1155  *	Must return >0 or -errno if it changed dev->features itself.
1156  *
1157  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1158  *		      struct net_device *dev,
1159  *		      const unsigned char *addr, u16 vid, u16 flags)
1160  *	Adds an FDB entry to dev for addr.
1161  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1162  *		      struct net_device *dev,
1163  *		      const unsigned char *addr, u16 vid)
1164  *	Deletes the FDB entry from dev coresponding to addr.
1165  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1166  *		       struct net_device *dev, struct net_device *filter_dev,
1167  *		       int *idx)
1168  *	Used to add FDB entries to dump requests. Implementers should add
1169  *	entries to skb and update idx with the number of entries.
1170  *
1171  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1172  *			     u16 flags)
1173  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1174  *			     struct net_device *dev, u32 filter_mask,
1175  *			     int nlflags)
1176  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1177  *			     u16 flags);
1178  *
1179  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1180  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1181  *	which do not represent real hardware may define this to allow their
1182  *	userspace components to manage their virtual carrier state. Devices
1183  *	that determine carrier state from physical hardware properties (eg
1184  *	network cables) or protocol-dependent mechanisms (eg
1185  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1186  *
1187  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1188  *			       struct netdev_phys_item_id *ppid);
1189  *	Called to get ID of physical port of this device. If driver does
1190  *	not implement this, it is assumed that the hw is not able to have
1191  *	multiple net devices on single physical port.
1192  *
1193  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1194  *			      struct udp_tunnel_info *ti);
1195  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1196  *	address family that a UDP tunnel is listnening to. It is called only
1197  *	when a new port starts listening. The operation is protected by the
1198  *	RTNL.
1199  *
1200  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1201  *			      struct udp_tunnel_info *ti);
1202  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1203  *	address family that the UDP tunnel is not listening to anymore. The
1204  *	operation is protected by the RTNL.
1205  *
1206  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1207  *				 struct net_device *dev)
1208  *	Called by upper layer devices to accelerate switching or other
1209  *	station functionality into hardware. 'pdev is the lowerdev
1210  *	to use for the offload and 'dev' is the net device that will
1211  *	back the offload. Returns a pointer to the private structure
1212  *	the upper layer will maintain.
1213  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1214  *	Called by upper layer device to delete the station created
1215  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1216  *	the station and priv is the structure returned by the add
1217  *	operation.
1218  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1219  *			     int queue_index, u32 maxrate);
1220  *	Called when a user wants to set a max-rate limitation of specific
1221  *	TX queue.
1222  * int (*ndo_get_iflink)(const struct net_device *dev);
1223  *	Called to get the iflink value of this device.
1224  * void (*ndo_change_proto_down)(struct net_device *dev,
1225  *				 bool proto_down);
1226  *	This function is used to pass protocol port error state information
1227  *	to the switch driver. The switch driver can react to the proto_down
1228  *      by doing a phys down on the associated switch port.
1229  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1230  *	This function is used to get egress tunnel information for given skb.
1231  *	This is useful for retrieving outer tunnel header parameters while
1232  *	sampling packet.
1233  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1234  *	This function is used to specify the headroom that the skb must
1235  *	consider when allocation skb during packet reception. Setting
1236  *	appropriate rx headroom value allows avoiding skb head copy on
1237  *	forward. Setting a negative value resets the rx headroom to the
1238  *	default value.
1239  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1240  *	This function is used to set or query state related to XDP on the
1241  *	netdevice and manage BPF offload. See definition of
1242  *	enum bpf_netdev_command for details.
1243  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1244  *			u32 flags);
1245  *	This function is used to submit @n XDP packets for transmit on a
1246  *	netdevice. Returns number of frames successfully transmitted, frames
1247  *	that got dropped are freed/returned via xdp_return_frame().
1248  *	Returns negative number, means general error invoking ndo, meaning
1249  *	no frames were xmit'ed and core-caller will free all frames.
1250  */
1251 struct net_device_ops {
1252 	int			(*ndo_init)(struct net_device *dev);
1253 	void			(*ndo_uninit)(struct net_device *dev);
1254 	int			(*ndo_open)(struct net_device *dev);
1255 	int			(*ndo_stop)(struct net_device *dev);
1256 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1257 						  struct net_device *dev);
1258 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1259 						      struct net_device *dev,
1260 						      netdev_features_t features);
1261 	u16			(*ndo_select_queue)(struct net_device *dev,
1262 						    struct sk_buff *skb,
1263 						    struct net_device *sb_dev,
1264 						    select_queue_fallback_t fallback);
1265 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1266 						       int flags);
1267 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1268 	int			(*ndo_set_mac_address)(struct net_device *dev,
1269 						       void *addr);
1270 	int			(*ndo_validate_addr)(struct net_device *dev);
1271 	int			(*ndo_do_ioctl)(struct net_device *dev,
1272 					        struct ifreq *ifr, int cmd);
1273 	int			(*ndo_set_config)(struct net_device *dev,
1274 					          struct ifmap *map);
1275 	int			(*ndo_change_mtu)(struct net_device *dev,
1276 						  int new_mtu);
1277 	int			(*ndo_neigh_setup)(struct net_device *dev,
1278 						   struct neigh_parms *);
1279 	void			(*ndo_tx_timeout) (struct net_device *dev);
1280 
1281 	void			(*ndo_get_stats64)(struct net_device *dev,
1282 						   struct rtnl_link_stats64 *storage);
1283 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1284 	int			(*ndo_get_offload_stats)(int attr_id,
1285 							 const struct net_device *dev,
1286 							 void *attr_data);
1287 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1288 
1289 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1290 						       __be16 proto, u16 vid);
1291 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1292 						        __be16 proto, u16 vid);
1293 #ifdef CONFIG_NET_POLL_CONTROLLER
1294 	void                    (*ndo_poll_controller)(struct net_device *dev);
1295 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1296 						     struct netpoll_info *info);
1297 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1298 #endif
1299 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1300 						  int queue, u8 *mac);
1301 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1302 						   int queue, u16 vlan,
1303 						   u8 qos, __be16 proto);
1304 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1305 						   int vf, int min_tx_rate,
1306 						   int max_tx_rate);
1307 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1308 						       int vf, bool setting);
1309 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1310 						    int vf, bool setting);
1311 	int			(*ndo_get_vf_config)(struct net_device *dev,
1312 						     int vf,
1313 						     struct ifla_vf_info *ivf);
1314 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1315 							 int vf, int link_state);
1316 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1317 						    int vf,
1318 						    struct ifla_vf_stats
1319 						    *vf_stats);
1320 	int			(*ndo_set_vf_port)(struct net_device *dev,
1321 						   int vf,
1322 						   struct nlattr *port[]);
1323 	int			(*ndo_get_vf_port)(struct net_device *dev,
1324 						   int vf, struct sk_buff *skb);
1325 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1326 						   int vf, u64 guid,
1327 						   int guid_type);
1328 	int			(*ndo_set_vf_rss_query_en)(
1329 						   struct net_device *dev,
1330 						   int vf, bool setting);
1331 	int			(*ndo_setup_tc)(struct net_device *dev,
1332 						enum tc_setup_type type,
1333 						void *type_data);
1334 #if IS_ENABLED(CONFIG_FCOE)
1335 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1336 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1337 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1338 						      u16 xid,
1339 						      struct scatterlist *sgl,
1340 						      unsigned int sgc);
1341 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1342 						     u16 xid);
1343 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1344 						       u16 xid,
1345 						       struct scatterlist *sgl,
1346 						       unsigned int sgc);
1347 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1348 							struct netdev_fcoe_hbainfo *hbainfo);
1349 #endif
1350 
1351 #if IS_ENABLED(CONFIG_LIBFCOE)
1352 #define NETDEV_FCOE_WWNN 0
1353 #define NETDEV_FCOE_WWPN 1
1354 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1355 						    u64 *wwn, int type);
1356 #endif
1357 
1358 #ifdef CONFIG_RFS_ACCEL
1359 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1360 						     const struct sk_buff *skb,
1361 						     u16 rxq_index,
1362 						     u32 flow_id);
1363 #endif
1364 	int			(*ndo_add_slave)(struct net_device *dev,
1365 						 struct net_device *slave_dev,
1366 						 struct netlink_ext_ack *extack);
1367 	int			(*ndo_del_slave)(struct net_device *dev,
1368 						 struct net_device *slave_dev);
1369 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1370 						    netdev_features_t features);
1371 	int			(*ndo_set_features)(struct net_device *dev,
1372 						    netdev_features_t features);
1373 	int			(*ndo_neigh_construct)(struct net_device *dev,
1374 						       struct neighbour *n);
1375 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1376 						     struct neighbour *n);
1377 
1378 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1379 					       struct nlattr *tb[],
1380 					       struct net_device *dev,
1381 					       const unsigned char *addr,
1382 					       u16 vid,
1383 					       u16 flags);
1384 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1385 					       struct nlattr *tb[],
1386 					       struct net_device *dev,
1387 					       const unsigned char *addr,
1388 					       u16 vid);
1389 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1390 						struct netlink_callback *cb,
1391 						struct net_device *dev,
1392 						struct net_device *filter_dev,
1393 						int *idx);
1394 
1395 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1396 						      struct nlmsghdr *nlh,
1397 						      u16 flags);
1398 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1399 						      u32 pid, u32 seq,
1400 						      struct net_device *dev,
1401 						      u32 filter_mask,
1402 						      int nlflags);
1403 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1404 						      struct nlmsghdr *nlh,
1405 						      u16 flags);
1406 	int			(*ndo_change_carrier)(struct net_device *dev,
1407 						      bool new_carrier);
1408 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1409 							struct netdev_phys_item_id *ppid);
1410 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1411 							  char *name, size_t len);
1412 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1413 						      struct udp_tunnel_info *ti);
1414 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1415 						      struct udp_tunnel_info *ti);
1416 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1417 							struct net_device *dev);
1418 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1419 							void *priv);
1420 
1421 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1422 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1423 						      int queue_index,
1424 						      u32 maxrate);
1425 	int			(*ndo_get_iflink)(const struct net_device *dev);
1426 	int			(*ndo_change_proto_down)(struct net_device *dev,
1427 							 bool proto_down);
1428 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1429 						       struct sk_buff *skb);
1430 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1431 						       int needed_headroom);
1432 	int			(*ndo_bpf)(struct net_device *dev,
1433 					   struct netdev_bpf *bpf);
1434 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1435 						struct xdp_frame **xdp,
1436 						u32 flags);
1437 	int			(*ndo_xsk_async_xmit)(struct net_device *dev,
1438 						      u32 queue_id);
1439 };
1440 
1441 /**
1442  * enum net_device_priv_flags - &struct net_device priv_flags
1443  *
1444  * These are the &struct net_device, they are only set internally
1445  * by drivers and used in the kernel. These flags are invisible to
1446  * userspace; this means that the order of these flags can change
1447  * during any kernel release.
1448  *
1449  * You should have a pretty good reason to be extending these flags.
1450  *
1451  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1452  * @IFF_EBRIDGE: Ethernet bridging device
1453  * @IFF_BONDING: bonding master or slave
1454  * @IFF_ISATAP: ISATAP interface (RFC4214)
1455  * @IFF_WAN_HDLC: WAN HDLC device
1456  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1457  *	release skb->dst
1458  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1459  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1460  * @IFF_MACVLAN_PORT: device used as macvlan port
1461  * @IFF_BRIDGE_PORT: device used as bridge port
1462  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1463  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1464  * @IFF_UNICAST_FLT: Supports unicast filtering
1465  * @IFF_TEAM_PORT: device used as team port
1466  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1467  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1468  *	change when it's running
1469  * @IFF_MACVLAN: Macvlan device
1470  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1471  *	underlying stacked devices
1472  * @IFF_L3MDEV_MASTER: device is an L3 master device
1473  * @IFF_NO_QUEUE: device can run without qdisc attached
1474  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1475  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1476  * @IFF_TEAM: device is a team device
1477  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1478  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1479  *	entity (i.e. the master device for bridged veth)
1480  * @IFF_MACSEC: device is a MACsec device
1481  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1482  * @IFF_FAILOVER: device is a failover master device
1483  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1484  */
1485 enum netdev_priv_flags {
1486 	IFF_802_1Q_VLAN			= 1<<0,
1487 	IFF_EBRIDGE			= 1<<1,
1488 	IFF_BONDING			= 1<<2,
1489 	IFF_ISATAP			= 1<<3,
1490 	IFF_WAN_HDLC			= 1<<4,
1491 	IFF_XMIT_DST_RELEASE		= 1<<5,
1492 	IFF_DONT_BRIDGE			= 1<<6,
1493 	IFF_DISABLE_NETPOLL		= 1<<7,
1494 	IFF_MACVLAN_PORT		= 1<<8,
1495 	IFF_BRIDGE_PORT			= 1<<9,
1496 	IFF_OVS_DATAPATH		= 1<<10,
1497 	IFF_TX_SKB_SHARING		= 1<<11,
1498 	IFF_UNICAST_FLT			= 1<<12,
1499 	IFF_TEAM_PORT			= 1<<13,
1500 	IFF_SUPP_NOFCS			= 1<<14,
1501 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1502 	IFF_MACVLAN			= 1<<16,
1503 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1504 	IFF_L3MDEV_MASTER		= 1<<18,
1505 	IFF_NO_QUEUE			= 1<<19,
1506 	IFF_OPENVSWITCH			= 1<<20,
1507 	IFF_L3MDEV_SLAVE		= 1<<21,
1508 	IFF_TEAM			= 1<<22,
1509 	IFF_RXFH_CONFIGURED		= 1<<23,
1510 	IFF_PHONY_HEADROOM		= 1<<24,
1511 	IFF_MACSEC			= 1<<25,
1512 	IFF_NO_RX_HANDLER		= 1<<26,
1513 	IFF_FAILOVER			= 1<<27,
1514 	IFF_FAILOVER_SLAVE		= 1<<28,
1515 };
1516 
1517 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1518 #define IFF_EBRIDGE			IFF_EBRIDGE
1519 #define IFF_BONDING			IFF_BONDING
1520 #define IFF_ISATAP			IFF_ISATAP
1521 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1522 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1523 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1524 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1525 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1526 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1527 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1528 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1529 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1530 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1531 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1532 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1533 #define IFF_MACVLAN			IFF_MACVLAN
1534 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1535 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1536 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1537 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1538 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1539 #define IFF_TEAM			IFF_TEAM
1540 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1541 #define IFF_MACSEC			IFF_MACSEC
1542 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1543 #define IFF_FAILOVER			IFF_FAILOVER
1544 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1545 
1546 /**
1547  *	struct net_device - The DEVICE structure.
1548  *
1549  *	Actually, this whole structure is a big mistake.  It mixes I/O
1550  *	data with strictly "high-level" data, and it has to know about
1551  *	almost every data structure used in the INET module.
1552  *
1553  *	@name:	This is the first field of the "visible" part of this structure
1554  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1555  *		of the interface.
1556  *
1557  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1558  *	@ifalias:	SNMP alias
1559  *	@mem_end:	Shared memory end
1560  *	@mem_start:	Shared memory start
1561  *	@base_addr:	Device I/O address
1562  *	@irq:		Device IRQ number
1563  *
1564  *	@state:		Generic network queuing layer state, see netdev_state_t
1565  *	@dev_list:	The global list of network devices
1566  *	@napi_list:	List entry used for polling NAPI devices
1567  *	@unreg_list:	List entry  when we are unregistering the
1568  *			device; see the function unregister_netdev
1569  *	@close_list:	List entry used when we are closing the device
1570  *	@ptype_all:     Device-specific packet handlers for all protocols
1571  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1572  *
1573  *	@adj_list:	Directly linked devices, like slaves for bonding
1574  *	@features:	Currently active device features
1575  *	@hw_features:	User-changeable features
1576  *
1577  *	@wanted_features:	User-requested features
1578  *	@vlan_features:		Mask of features inheritable by VLAN devices
1579  *
1580  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1581  *				This field indicates what encapsulation
1582  *				offloads the hardware is capable of doing,
1583  *				and drivers will need to set them appropriately.
1584  *
1585  *	@mpls_features:	Mask of features inheritable by MPLS
1586  *
1587  *	@ifindex:	interface index
1588  *	@group:		The group the device belongs to
1589  *
1590  *	@stats:		Statistics struct, which was left as a legacy, use
1591  *			rtnl_link_stats64 instead
1592  *
1593  *	@rx_dropped:	Dropped packets by core network,
1594  *			do not use this in drivers
1595  *	@tx_dropped:	Dropped packets by core network,
1596  *			do not use this in drivers
1597  *	@rx_nohandler:	nohandler dropped packets by core network on
1598  *			inactive devices, do not use this in drivers
1599  *	@carrier_up_count:	Number of times the carrier has been up
1600  *	@carrier_down_count:	Number of times the carrier has been down
1601  *
1602  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1603  *				instead of ioctl,
1604  *				see <net/iw_handler.h> for details.
1605  *	@wireless_data:	Instance data managed by the core of wireless extensions
1606  *
1607  *	@netdev_ops:	Includes several pointers to callbacks,
1608  *			if one wants to override the ndo_*() functions
1609  *	@ethtool_ops:	Management operations
1610  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1611  *			discovery handling. Necessary for e.g. 6LoWPAN.
1612  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1613  *			of Layer 2 headers.
1614  *
1615  *	@flags:		Interface flags (a la BSD)
1616  *	@priv_flags:	Like 'flags' but invisible to userspace,
1617  *			see if.h for the definitions
1618  *	@gflags:	Global flags ( kept as legacy )
1619  *	@padded:	How much padding added by alloc_netdev()
1620  *	@operstate:	RFC2863 operstate
1621  *	@link_mode:	Mapping policy to operstate
1622  *	@if_port:	Selectable AUI, TP, ...
1623  *	@dma:		DMA channel
1624  *	@mtu:		Interface MTU value
1625  *	@min_mtu:	Interface Minimum MTU value
1626  *	@max_mtu:	Interface Maximum MTU value
1627  *	@type:		Interface hardware type
1628  *	@hard_header_len: Maximum hardware header length.
1629  *	@min_header_len:  Minimum hardware header length
1630  *
1631  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1632  *			  cases can this be guaranteed
1633  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1634  *			  cases can this be guaranteed. Some cases also use
1635  *			  LL_MAX_HEADER instead to allocate the skb
1636  *
1637  *	interface address info:
1638  *
1639  * 	@perm_addr:		Permanent hw address
1640  * 	@addr_assign_type:	Hw address assignment type
1641  * 	@addr_len:		Hardware address length
1642  *	@neigh_priv_len:	Used in neigh_alloc()
1643  * 	@dev_id:		Used to differentiate devices that share
1644  * 				the same link layer address
1645  * 	@dev_port:		Used to differentiate devices that share
1646  * 				the same function
1647  *	@addr_list_lock:	XXX: need comments on this one
1648  *	@uc_promisc:		Counter that indicates promiscuous mode
1649  *				has been enabled due to the need to listen to
1650  *				additional unicast addresses in a device that
1651  *				does not implement ndo_set_rx_mode()
1652  *	@uc:			unicast mac addresses
1653  *	@mc:			multicast mac addresses
1654  *	@dev_addrs:		list of device hw addresses
1655  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1656  *	@promiscuity:		Number of times the NIC is told to work in
1657  *				promiscuous mode; if it becomes 0 the NIC will
1658  *				exit promiscuous mode
1659  *	@allmulti:		Counter, enables or disables allmulticast mode
1660  *
1661  *	@vlan_info:	VLAN info
1662  *	@dsa_ptr:	dsa specific data
1663  *	@tipc_ptr:	TIPC specific data
1664  *	@atalk_ptr:	AppleTalk link
1665  *	@ip_ptr:	IPv4 specific data
1666  *	@dn_ptr:	DECnet specific data
1667  *	@ip6_ptr:	IPv6 specific data
1668  *	@ax25_ptr:	AX.25 specific data
1669  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1670  *
1671  *	@dev_addr:	Hw address (before bcast,
1672  *			because most packets are unicast)
1673  *
1674  *	@_rx:			Array of RX queues
1675  *	@num_rx_queues:		Number of RX queues
1676  *				allocated at register_netdev() time
1677  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1678  *
1679  *	@rx_handler:		handler for received packets
1680  *	@rx_handler_data: 	XXX: need comments on this one
1681  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1682  *				ingress processing
1683  *	@ingress_queue:		XXX: need comments on this one
1684  *	@broadcast:		hw bcast address
1685  *
1686  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1687  *			indexed by RX queue number. Assigned by driver.
1688  *			This must only be set if the ndo_rx_flow_steer
1689  *			operation is defined
1690  *	@index_hlist:		Device index hash chain
1691  *
1692  *	@_tx:			Array of TX queues
1693  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1694  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1695  *	@qdisc:			Root qdisc from userspace point of view
1696  *	@tx_queue_len:		Max frames per queue allowed
1697  *	@tx_global_lock: 	XXX: need comments on this one
1698  *
1699  *	@xps_maps:	XXX: need comments on this one
1700  *	@miniq_egress:		clsact qdisc specific data for
1701  *				egress processing
1702  *	@watchdog_timeo:	Represents the timeout that is used by
1703  *				the watchdog (see dev_watchdog())
1704  *	@watchdog_timer:	List of timers
1705  *
1706  *	@pcpu_refcnt:		Number of references to this device
1707  *	@todo_list:		Delayed register/unregister
1708  *	@link_watch_list:	XXX: need comments on this one
1709  *
1710  *	@reg_state:		Register/unregister state machine
1711  *	@dismantle:		Device is going to be freed
1712  *	@rtnl_link_state:	This enum represents the phases of creating
1713  *				a new link
1714  *
1715  *	@needs_free_netdev:	Should unregister perform free_netdev?
1716  *	@priv_destructor:	Called from unregister
1717  *	@npinfo:		XXX: need comments on this one
1718  * 	@nd_net:		Network namespace this network device is inside
1719  *
1720  * 	@ml_priv:	Mid-layer private
1721  * 	@lstats:	Loopback statistics
1722  * 	@tstats:	Tunnel statistics
1723  * 	@dstats:	Dummy statistics
1724  * 	@vstats:	Virtual ethernet statistics
1725  *
1726  *	@garp_port:	GARP
1727  *	@mrp_port:	MRP
1728  *
1729  *	@dev:		Class/net/name entry
1730  *	@sysfs_groups:	Space for optional device, statistics and wireless
1731  *			sysfs groups
1732  *
1733  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1734  *	@rtnl_link_ops:	Rtnl_link_ops
1735  *
1736  *	@gso_max_size:	Maximum size of generic segmentation offload
1737  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1738  *			NIC for GSO
1739  *
1740  *	@dcbnl_ops:	Data Center Bridging netlink ops
1741  *	@num_tc:	Number of traffic classes in the net device
1742  *	@tc_to_txq:	XXX: need comments on this one
1743  *	@prio_tc_map:	XXX: need comments on this one
1744  *
1745  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1746  *
1747  *	@priomap:	XXX: need comments on this one
1748  *	@phydev:	Physical device may attach itself
1749  *			for hardware timestamping
1750  *	@sfp_bus:	attached &struct sfp_bus structure.
1751  *
1752  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1753  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1754  *
1755  *	@proto_down:	protocol port state information can be sent to the
1756  *			switch driver and used to set the phys state of the
1757  *			switch port.
1758  *
1759  *	@wol_enabled:	Wake-on-LAN is enabled
1760  *
1761  *	FIXME: cleanup struct net_device such that network protocol info
1762  *	moves out.
1763  */
1764 
1765 struct net_device {
1766 	char			name[IFNAMSIZ];
1767 	struct hlist_node	name_hlist;
1768 	struct dev_ifalias	__rcu *ifalias;
1769 	/*
1770 	 *	I/O specific fields
1771 	 *	FIXME: Merge these and struct ifmap into one
1772 	 */
1773 	unsigned long		mem_end;
1774 	unsigned long		mem_start;
1775 	unsigned long		base_addr;
1776 	int			irq;
1777 
1778 	/*
1779 	 *	Some hardware also needs these fields (state,dev_list,
1780 	 *	napi_list,unreg_list,close_list) but they are not
1781 	 *	part of the usual set specified in Space.c.
1782 	 */
1783 
1784 	unsigned long		state;
1785 
1786 	struct list_head	dev_list;
1787 	struct list_head	napi_list;
1788 	struct list_head	unreg_list;
1789 	struct list_head	close_list;
1790 	struct list_head	ptype_all;
1791 	struct list_head	ptype_specific;
1792 
1793 	struct {
1794 		struct list_head upper;
1795 		struct list_head lower;
1796 	} adj_list;
1797 
1798 	netdev_features_t	features;
1799 	netdev_features_t	hw_features;
1800 	netdev_features_t	wanted_features;
1801 	netdev_features_t	vlan_features;
1802 	netdev_features_t	hw_enc_features;
1803 	netdev_features_t	mpls_features;
1804 	netdev_features_t	gso_partial_features;
1805 
1806 	int			ifindex;
1807 	int			group;
1808 
1809 	struct net_device_stats	stats;
1810 
1811 	atomic_long_t		rx_dropped;
1812 	atomic_long_t		tx_dropped;
1813 	atomic_long_t		rx_nohandler;
1814 
1815 	/* Stats to monitor link on/off, flapping */
1816 	atomic_t		carrier_up_count;
1817 	atomic_t		carrier_down_count;
1818 
1819 #ifdef CONFIG_WIRELESS_EXT
1820 	const struct iw_handler_def *wireless_handlers;
1821 	struct iw_public_data	*wireless_data;
1822 #endif
1823 	const struct net_device_ops *netdev_ops;
1824 	const struct ethtool_ops *ethtool_ops;
1825 #ifdef CONFIG_NET_SWITCHDEV
1826 	const struct switchdev_ops *switchdev_ops;
1827 #endif
1828 #ifdef CONFIG_NET_L3_MASTER_DEV
1829 	const struct l3mdev_ops	*l3mdev_ops;
1830 #endif
1831 #if IS_ENABLED(CONFIG_IPV6)
1832 	const struct ndisc_ops *ndisc_ops;
1833 #endif
1834 
1835 #ifdef CONFIG_XFRM_OFFLOAD
1836 	const struct xfrmdev_ops *xfrmdev_ops;
1837 #endif
1838 
1839 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1840 	const struct tlsdev_ops *tlsdev_ops;
1841 #endif
1842 
1843 	const struct header_ops *header_ops;
1844 
1845 	unsigned int		flags;
1846 	unsigned int		priv_flags;
1847 
1848 	unsigned short		gflags;
1849 	unsigned short		padded;
1850 
1851 	unsigned char		operstate;
1852 	unsigned char		link_mode;
1853 
1854 	unsigned char		if_port;
1855 	unsigned char		dma;
1856 
1857 	unsigned int		mtu;
1858 	unsigned int		min_mtu;
1859 	unsigned int		max_mtu;
1860 	unsigned short		type;
1861 	unsigned short		hard_header_len;
1862 	unsigned char		min_header_len;
1863 
1864 	unsigned short		needed_headroom;
1865 	unsigned short		needed_tailroom;
1866 
1867 	/* Interface address info. */
1868 	unsigned char		perm_addr[MAX_ADDR_LEN];
1869 	unsigned char		addr_assign_type;
1870 	unsigned char		addr_len;
1871 	unsigned short		neigh_priv_len;
1872 	unsigned short          dev_id;
1873 	unsigned short          dev_port;
1874 	spinlock_t		addr_list_lock;
1875 	unsigned char		name_assign_type;
1876 	bool			uc_promisc;
1877 	struct netdev_hw_addr_list	uc;
1878 	struct netdev_hw_addr_list	mc;
1879 	struct netdev_hw_addr_list	dev_addrs;
1880 
1881 #ifdef CONFIG_SYSFS
1882 	struct kset		*queues_kset;
1883 #endif
1884 	unsigned int		promiscuity;
1885 	unsigned int		allmulti;
1886 
1887 
1888 	/* Protocol-specific pointers */
1889 
1890 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1891 	struct vlan_info __rcu	*vlan_info;
1892 #endif
1893 #if IS_ENABLED(CONFIG_NET_DSA)
1894 	struct dsa_port		*dsa_ptr;
1895 #endif
1896 #if IS_ENABLED(CONFIG_TIPC)
1897 	struct tipc_bearer __rcu *tipc_ptr;
1898 #endif
1899 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1900 	void 			*atalk_ptr;
1901 #endif
1902 	struct in_device __rcu	*ip_ptr;
1903 #if IS_ENABLED(CONFIG_DECNET)
1904 	struct dn_dev __rcu     *dn_ptr;
1905 #endif
1906 	struct inet6_dev __rcu	*ip6_ptr;
1907 #if IS_ENABLED(CONFIG_AX25)
1908 	void			*ax25_ptr;
1909 #endif
1910 	struct wireless_dev	*ieee80211_ptr;
1911 	struct wpan_dev		*ieee802154_ptr;
1912 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1913 	struct mpls_dev __rcu	*mpls_ptr;
1914 #endif
1915 
1916 /*
1917  * Cache lines mostly used on receive path (including eth_type_trans())
1918  */
1919 	/* Interface address info used in eth_type_trans() */
1920 	unsigned char		*dev_addr;
1921 
1922 	struct netdev_rx_queue	*_rx;
1923 	unsigned int		num_rx_queues;
1924 	unsigned int		real_num_rx_queues;
1925 
1926 	struct bpf_prog __rcu	*xdp_prog;
1927 	unsigned long		gro_flush_timeout;
1928 	rx_handler_func_t __rcu	*rx_handler;
1929 	void __rcu		*rx_handler_data;
1930 
1931 #ifdef CONFIG_NET_CLS_ACT
1932 	struct mini_Qdisc __rcu	*miniq_ingress;
1933 #endif
1934 	struct netdev_queue __rcu *ingress_queue;
1935 #ifdef CONFIG_NETFILTER_INGRESS
1936 	struct nf_hook_entries __rcu *nf_hooks_ingress;
1937 #endif
1938 
1939 	unsigned char		broadcast[MAX_ADDR_LEN];
1940 #ifdef CONFIG_RFS_ACCEL
1941 	struct cpu_rmap		*rx_cpu_rmap;
1942 #endif
1943 	struct hlist_node	index_hlist;
1944 
1945 /*
1946  * Cache lines mostly used on transmit path
1947  */
1948 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1949 	unsigned int		num_tx_queues;
1950 	unsigned int		real_num_tx_queues;
1951 	struct Qdisc		*qdisc;
1952 #ifdef CONFIG_NET_SCHED
1953 	DECLARE_HASHTABLE	(qdisc_hash, 4);
1954 #endif
1955 	unsigned int		tx_queue_len;
1956 	spinlock_t		tx_global_lock;
1957 	int			watchdog_timeo;
1958 
1959 #ifdef CONFIG_XPS
1960 	struct xps_dev_maps __rcu *xps_cpus_map;
1961 	struct xps_dev_maps __rcu *xps_rxqs_map;
1962 #endif
1963 #ifdef CONFIG_NET_CLS_ACT
1964 	struct mini_Qdisc __rcu	*miniq_egress;
1965 #endif
1966 
1967 	/* These may be needed for future network-power-down code. */
1968 	struct timer_list	watchdog_timer;
1969 
1970 	int __percpu		*pcpu_refcnt;
1971 	struct list_head	todo_list;
1972 
1973 	struct list_head	link_watch_list;
1974 
1975 	enum { NETREG_UNINITIALIZED=0,
1976 	       NETREG_REGISTERED,	/* completed register_netdevice */
1977 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1978 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1979 	       NETREG_RELEASED,		/* called free_netdev */
1980 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1981 	} reg_state:8;
1982 
1983 	bool dismantle;
1984 
1985 	enum {
1986 		RTNL_LINK_INITIALIZED,
1987 		RTNL_LINK_INITIALIZING,
1988 	} rtnl_link_state:16;
1989 
1990 	bool needs_free_netdev;
1991 	void (*priv_destructor)(struct net_device *dev);
1992 
1993 #ifdef CONFIG_NETPOLL
1994 	struct netpoll_info __rcu	*npinfo;
1995 #endif
1996 
1997 	possible_net_t			nd_net;
1998 
1999 	/* mid-layer private */
2000 	union {
2001 		void					*ml_priv;
2002 		struct pcpu_lstats __percpu		*lstats;
2003 		struct pcpu_sw_netstats __percpu	*tstats;
2004 		struct pcpu_dstats __percpu		*dstats;
2005 	};
2006 
2007 #if IS_ENABLED(CONFIG_GARP)
2008 	struct garp_port __rcu	*garp_port;
2009 #endif
2010 #if IS_ENABLED(CONFIG_MRP)
2011 	struct mrp_port __rcu	*mrp_port;
2012 #endif
2013 
2014 	struct device		dev;
2015 	const struct attribute_group *sysfs_groups[4];
2016 	const struct attribute_group *sysfs_rx_queue_group;
2017 
2018 	const struct rtnl_link_ops *rtnl_link_ops;
2019 
2020 	/* for setting kernel sock attribute on TCP connection setup */
2021 #define GSO_MAX_SIZE		65536
2022 	unsigned int		gso_max_size;
2023 #define GSO_MAX_SEGS		65535
2024 	u16			gso_max_segs;
2025 
2026 #ifdef CONFIG_DCB
2027 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2028 #endif
2029 	s16			num_tc;
2030 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2031 	u8			prio_tc_map[TC_BITMASK + 1];
2032 
2033 #if IS_ENABLED(CONFIG_FCOE)
2034 	unsigned int		fcoe_ddp_xid;
2035 #endif
2036 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2037 	struct netprio_map __rcu *priomap;
2038 #endif
2039 	struct phy_device	*phydev;
2040 	struct sfp_bus		*sfp_bus;
2041 	struct lock_class_key	*qdisc_tx_busylock;
2042 	struct lock_class_key	*qdisc_running_key;
2043 	bool			proto_down;
2044 	unsigned		wol_enabled:1;
2045 };
2046 #define to_net_dev(d) container_of(d, struct net_device, dev)
2047 
2048 static inline bool netif_elide_gro(const struct net_device *dev)
2049 {
2050 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2051 		return true;
2052 	return false;
2053 }
2054 
2055 #define	NETDEV_ALIGN		32
2056 
2057 static inline
2058 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2059 {
2060 	return dev->prio_tc_map[prio & TC_BITMASK];
2061 }
2062 
2063 static inline
2064 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2065 {
2066 	if (tc >= dev->num_tc)
2067 		return -EINVAL;
2068 
2069 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2070 	return 0;
2071 }
2072 
2073 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2074 void netdev_reset_tc(struct net_device *dev);
2075 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2076 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2077 
2078 static inline
2079 int netdev_get_num_tc(struct net_device *dev)
2080 {
2081 	return dev->num_tc;
2082 }
2083 
2084 void netdev_unbind_sb_channel(struct net_device *dev,
2085 			      struct net_device *sb_dev);
2086 int netdev_bind_sb_channel_queue(struct net_device *dev,
2087 				 struct net_device *sb_dev,
2088 				 u8 tc, u16 count, u16 offset);
2089 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2090 static inline int netdev_get_sb_channel(struct net_device *dev)
2091 {
2092 	return max_t(int, -dev->num_tc, 0);
2093 }
2094 
2095 static inline
2096 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2097 					 unsigned int index)
2098 {
2099 	return &dev->_tx[index];
2100 }
2101 
2102 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2103 						    const struct sk_buff *skb)
2104 {
2105 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2106 }
2107 
2108 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2109 					    void (*f)(struct net_device *,
2110 						      struct netdev_queue *,
2111 						      void *),
2112 					    void *arg)
2113 {
2114 	unsigned int i;
2115 
2116 	for (i = 0; i < dev->num_tx_queues; i++)
2117 		f(dev, &dev->_tx[i], arg);
2118 }
2119 
2120 #define netdev_lockdep_set_classes(dev)				\
2121 {								\
2122 	static struct lock_class_key qdisc_tx_busylock_key;	\
2123 	static struct lock_class_key qdisc_running_key;		\
2124 	static struct lock_class_key qdisc_xmit_lock_key;	\
2125 	static struct lock_class_key dev_addr_list_lock_key;	\
2126 	unsigned int i;						\
2127 								\
2128 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2129 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2130 	lockdep_set_class(&(dev)->addr_list_lock,		\
2131 			  &dev_addr_list_lock_key); 		\
2132 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2133 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2134 				  &qdisc_xmit_lock_key);	\
2135 }
2136 
2137 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2138 				    struct sk_buff *skb,
2139 				    struct net_device *sb_dev);
2140 
2141 /* returns the headroom that the master device needs to take in account
2142  * when forwarding to this dev
2143  */
2144 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2145 {
2146 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2147 }
2148 
2149 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2150 {
2151 	if (dev->netdev_ops->ndo_set_rx_headroom)
2152 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2153 }
2154 
2155 /* set the device rx headroom to the dev's default */
2156 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2157 {
2158 	netdev_set_rx_headroom(dev, -1);
2159 }
2160 
2161 /*
2162  * Net namespace inlines
2163  */
2164 static inline
2165 struct net *dev_net(const struct net_device *dev)
2166 {
2167 	return read_pnet(&dev->nd_net);
2168 }
2169 
2170 static inline
2171 void dev_net_set(struct net_device *dev, struct net *net)
2172 {
2173 	write_pnet(&dev->nd_net, net);
2174 }
2175 
2176 /**
2177  *	netdev_priv - access network device private data
2178  *	@dev: network device
2179  *
2180  * Get network device private data
2181  */
2182 static inline void *netdev_priv(const struct net_device *dev)
2183 {
2184 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2185 }
2186 
2187 /* Set the sysfs physical device reference for the network logical device
2188  * if set prior to registration will cause a symlink during initialization.
2189  */
2190 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2191 
2192 /* Set the sysfs device type for the network logical device to allow
2193  * fine-grained identification of different network device types. For
2194  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2195  */
2196 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2197 
2198 /* Default NAPI poll() weight
2199  * Device drivers are strongly advised to not use bigger value
2200  */
2201 #define NAPI_POLL_WEIGHT 64
2202 
2203 /**
2204  *	netif_napi_add - initialize a NAPI context
2205  *	@dev:  network device
2206  *	@napi: NAPI context
2207  *	@poll: polling function
2208  *	@weight: default weight
2209  *
2210  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2211  * *any* of the other NAPI-related functions.
2212  */
2213 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2214 		    int (*poll)(struct napi_struct *, int), int weight);
2215 
2216 /**
2217  *	netif_tx_napi_add - initialize a NAPI context
2218  *	@dev:  network device
2219  *	@napi: NAPI context
2220  *	@poll: polling function
2221  *	@weight: default weight
2222  *
2223  * This variant of netif_napi_add() should be used from drivers using NAPI
2224  * to exclusively poll a TX queue.
2225  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2226  */
2227 static inline void netif_tx_napi_add(struct net_device *dev,
2228 				     struct napi_struct *napi,
2229 				     int (*poll)(struct napi_struct *, int),
2230 				     int weight)
2231 {
2232 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2233 	netif_napi_add(dev, napi, poll, weight);
2234 }
2235 
2236 /**
2237  *  netif_napi_del - remove a NAPI context
2238  *  @napi: NAPI context
2239  *
2240  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2241  */
2242 void netif_napi_del(struct napi_struct *napi);
2243 
2244 struct napi_gro_cb {
2245 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2246 	void	*frag0;
2247 
2248 	/* Length of frag0. */
2249 	unsigned int frag0_len;
2250 
2251 	/* This indicates where we are processing relative to skb->data. */
2252 	int	data_offset;
2253 
2254 	/* This is non-zero if the packet cannot be merged with the new skb. */
2255 	u16	flush;
2256 
2257 	/* Save the IP ID here and check when we get to the transport layer */
2258 	u16	flush_id;
2259 
2260 	/* Number of segments aggregated. */
2261 	u16	count;
2262 
2263 	/* Start offset for remote checksum offload */
2264 	u16	gro_remcsum_start;
2265 
2266 	/* jiffies when first packet was created/queued */
2267 	unsigned long age;
2268 
2269 	/* Used in ipv6_gro_receive() and foo-over-udp */
2270 	u16	proto;
2271 
2272 	/* This is non-zero if the packet may be of the same flow. */
2273 	u8	same_flow:1;
2274 
2275 	/* Used in tunnel GRO receive */
2276 	u8	encap_mark:1;
2277 
2278 	/* GRO checksum is valid */
2279 	u8	csum_valid:1;
2280 
2281 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2282 	u8	csum_cnt:3;
2283 
2284 	/* Free the skb? */
2285 	u8	free:2;
2286 #define NAPI_GRO_FREE		  1
2287 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2288 
2289 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2290 	u8	is_ipv6:1;
2291 
2292 	/* Used in GRE, set in fou/gue_gro_receive */
2293 	u8	is_fou:1;
2294 
2295 	/* Used to determine if flush_id can be ignored */
2296 	u8	is_atomic:1;
2297 
2298 	/* Number of gro_receive callbacks this packet already went through */
2299 	u8 recursion_counter:4;
2300 
2301 	/* 1 bit hole */
2302 
2303 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2304 	__wsum	csum;
2305 
2306 	/* used in skb_gro_receive() slow path */
2307 	struct sk_buff *last;
2308 };
2309 
2310 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2311 
2312 #define GRO_RECURSION_LIMIT 15
2313 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2314 {
2315 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2316 }
2317 
2318 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2319 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2320 					       struct list_head *head,
2321 					       struct sk_buff *skb)
2322 {
2323 	if (unlikely(gro_recursion_inc_test(skb))) {
2324 		NAPI_GRO_CB(skb)->flush |= 1;
2325 		return NULL;
2326 	}
2327 
2328 	return cb(head, skb);
2329 }
2330 
2331 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2332 					    struct sk_buff *);
2333 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2334 						  struct sock *sk,
2335 						  struct list_head *head,
2336 						  struct sk_buff *skb)
2337 {
2338 	if (unlikely(gro_recursion_inc_test(skb))) {
2339 		NAPI_GRO_CB(skb)->flush |= 1;
2340 		return NULL;
2341 	}
2342 
2343 	return cb(sk, head, skb);
2344 }
2345 
2346 struct packet_type {
2347 	__be16			type;	/* This is really htons(ether_type). */
2348 	bool			ignore_outgoing;
2349 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2350 	int			(*func) (struct sk_buff *,
2351 					 struct net_device *,
2352 					 struct packet_type *,
2353 					 struct net_device *);
2354 	void			(*list_func) (struct list_head *,
2355 					      struct packet_type *,
2356 					      struct net_device *);
2357 	bool			(*id_match)(struct packet_type *ptype,
2358 					    struct sock *sk);
2359 	void			*af_packet_priv;
2360 	struct list_head	list;
2361 };
2362 
2363 struct offload_callbacks {
2364 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2365 						netdev_features_t features);
2366 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2367 						struct sk_buff *skb);
2368 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2369 };
2370 
2371 struct packet_offload {
2372 	__be16			 type;	/* This is really htons(ether_type). */
2373 	u16			 priority;
2374 	struct offload_callbacks callbacks;
2375 	struct list_head	 list;
2376 };
2377 
2378 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2379 struct pcpu_sw_netstats {
2380 	u64     rx_packets;
2381 	u64     rx_bytes;
2382 	u64     tx_packets;
2383 	u64     tx_bytes;
2384 	struct u64_stats_sync   syncp;
2385 };
2386 
2387 struct pcpu_lstats {
2388 	u64 packets;
2389 	u64 bytes;
2390 	struct u64_stats_sync syncp;
2391 };
2392 
2393 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2394 ({									\
2395 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2396 	if (pcpu_stats)	{						\
2397 		int __cpu;						\
2398 		for_each_possible_cpu(__cpu) {				\
2399 			typeof(type) *stat;				\
2400 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2401 			u64_stats_init(&stat->syncp);			\
2402 		}							\
2403 	}								\
2404 	pcpu_stats;							\
2405 })
2406 
2407 #define netdev_alloc_pcpu_stats(type)					\
2408 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2409 
2410 enum netdev_lag_tx_type {
2411 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2412 	NETDEV_LAG_TX_TYPE_RANDOM,
2413 	NETDEV_LAG_TX_TYPE_BROADCAST,
2414 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2415 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2416 	NETDEV_LAG_TX_TYPE_HASH,
2417 };
2418 
2419 enum netdev_lag_hash {
2420 	NETDEV_LAG_HASH_NONE,
2421 	NETDEV_LAG_HASH_L2,
2422 	NETDEV_LAG_HASH_L34,
2423 	NETDEV_LAG_HASH_L23,
2424 	NETDEV_LAG_HASH_E23,
2425 	NETDEV_LAG_HASH_E34,
2426 	NETDEV_LAG_HASH_UNKNOWN,
2427 };
2428 
2429 struct netdev_lag_upper_info {
2430 	enum netdev_lag_tx_type tx_type;
2431 	enum netdev_lag_hash hash_type;
2432 };
2433 
2434 struct netdev_lag_lower_state_info {
2435 	u8 link_up : 1,
2436 	   tx_enabled : 1;
2437 };
2438 
2439 #include <linux/notifier.h>
2440 
2441 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2442  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2443  * adding new types.
2444  */
2445 enum netdev_cmd {
2446 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2447 	NETDEV_DOWN,
2448 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2449 				   detected a hardware crash and restarted
2450 				   - we can use this eg to kick tcp sessions
2451 				   once done */
2452 	NETDEV_CHANGE,		/* Notify device state change */
2453 	NETDEV_REGISTER,
2454 	NETDEV_UNREGISTER,
2455 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2456 	NETDEV_CHANGEADDR,
2457 	NETDEV_GOING_DOWN,
2458 	NETDEV_CHANGENAME,
2459 	NETDEV_FEAT_CHANGE,
2460 	NETDEV_BONDING_FAILOVER,
2461 	NETDEV_PRE_UP,
2462 	NETDEV_PRE_TYPE_CHANGE,
2463 	NETDEV_POST_TYPE_CHANGE,
2464 	NETDEV_POST_INIT,
2465 	NETDEV_RELEASE,
2466 	NETDEV_NOTIFY_PEERS,
2467 	NETDEV_JOIN,
2468 	NETDEV_CHANGEUPPER,
2469 	NETDEV_RESEND_IGMP,
2470 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2471 	NETDEV_CHANGEINFODATA,
2472 	NETDEV_BONDING_INFO,
2473 	NETDEV_PRECHANGEUPPER,
2474 	NETDEV_CHANGELOWERSTATE,
2475 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2476 	NETDEV_UDP_TUNNEL_DROP_INFO,
2477 	NETDEV_CHANGE_TX_QUEUE_LEN,
2478 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2479 	NETDEV_CVLAN_FILTER_DROP_INFO,
2480 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2481 	NETDEV_SVLAN_FILTER_DROP_INFO,
2482 };
2483 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2484 
2485 int register_netdevice_notifier(struct notifier_block *nb);
2486 int unregister_netdevice_notifier(struct notifier_block *nb);
2487 
2488 struct netdev_notifier_info {
2489 	struct net_device	*dev;
2490 	struct netlink_ext_ack	*extack;
2491 };
2492 
2493 struct netdev_notifier_change_info {
2494 	struct netdev_notifier_info info; /* must be first */
2495 	unsigned int flags_changed;
2496 };
2497 
2498 struct netdev_notifier_changeupper_info {
2499 	struct netdev_notifier_info info; /* must be first */
2500 	struct net_device *upper_dev; /* new upper dev */
2501 	bool master; /* is upper dev master */
2502 	bool linking; /* is the notification for link or unlink */
2503 	void *upper_info; /* upper dev info */
2504 };
2505 
2506 struct netdev_notifier_changelowerstate_info {
2507 	struct netdev_notifier_info info; /* must be first */
2508 	void *lower_state_info; /* is lower dev state */
2509 };
2510 
2511 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2512 					     struct net_device *dev)
2513 {
2514 	info->dev = dev;
2515 	info->extack = NULL;
2516 }
2517 
2518 static inline struct net_device *
2519 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2520 {
2521 	return info->dev;
2522 }
2523 
2524 static inline struct netlink_ext_ack *
2525 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2526 {
2527 	return info->extack;
2528 }
2529 
2530 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2531 
2532 
2533 extern rwlock_t				dev_base_lock;		/* Device list lock */
2534 
2535 #define for_each_netdev(net, d)		\
2536 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2537 #define for_each_netdev_reverse(net, d)	\
2538 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2539 #define for_each_netdev_rcu(net, d)		\
2540 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2541 #define for_each_netdev_safe(net, d, n)	\
2542 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2543 #define for_each_netdev_continue(net, d)		\
2544 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2545 #define for_each_netdev_continue_rcu(net, d)		\
2546 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2547 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2548 		for_each_netdev_rcu(&init_net, slave)	\
2549 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2550 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2551 
2552 static inline struct net_device *next_net_device(struct net_device *dev)
2553 {
2554 	struct list_head *lh;
2555 	struct net *net;
2556 
2557 	net = dev_net(dev);
2558 	lh = dev->dev_list.next;
2559 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2560 }
2561 
2562 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2563 {
2564 	struct list_head *lh;
2565 	struct net *net;
2566 
2567 	net = dev_net(dev);
2568 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2569 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2570 }
2571 
2572 static inline struct net_device *first_net_device(struct net *net)
2573 {
2574 	return list_empty(&net->dev_base_head) ? NULL :
2575 		net_device_entry(net->dev_base_head.next);
2576 }
2577 
2578 static inline struct net_device *first_net_device_rcu(struct net *net)
2579 {
2580 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2581 
2582 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2583 }
2584 
2585 int netdev_boot_setup_check(struct net_device *dev);
2586 unsigned long netdev_boot_base(const char *prefix, int unit);
2587 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2588 				       const char *hwaddr);
2589 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2590 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2591 void dev_add_pack(struct packet_type *pt);
2592 void dev_remove_pack(struct packet_type *pt);
2593 void __dev_remove_pack(struct packet_type *pt);
2594 void dev_add_offload(struct packet_offload *po);
2595 void dev_remove_offload(struct packet_offload *po);
2596 
2597 int dev_get_iflink(const struct net_device *dev);
2598 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2599 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2600 				      unsigned short mask);
2601 struct net_device *dev_get_by_name(struct net *net, const char *name);
2602 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2603 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2604 int dev_alloc_name(struct net_device *dev, const char *name);
2605 int dev_open(struct net_device *dev);
2606 void dev_close(struct net_device *dev);
2607 void dev_close_many(struct list_head *head, bool unlink);
2608 void dev_disable_lro(struct net_device *dev);
2609 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2610 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2611 		     struct net_device *sb_dev,
2612 		     select_queue_fallback_t fallback);
2613 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2614 		       struct net_device *sb_dev,
2615 		       select_queue_fallback_t fallback);
2616 int dev_queue_xmit(struct sk_buff *skb);
2617 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2618 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2619 int register_netdevice(struct net_device *dev);
2620 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2621 void unregister_netdevice_many(struct list_head *head);
2622 static inline void unregister_netdevice(struct net_device *dev)
2623 {
2624 	unregister_netdevice_queue(dev, NULL);
2625 }
2626 
2627 int netdev_refcnt_read(const struct net_device *dev);
2628 void free_netdev(struct net_device *dev);
2629 void netdev_freemem(struct net_device *dev);
2630 void synchronize_net(void);
2631 int init_dummy_netdev(struct net_device *dev);
2632 
2633 DECLARE_PER_CPU(int, xmit_recursion);
2634 #define XMIT_RECURSION_LIMIT	10
2635 
2636 static inline int dev_recursion_level(void)
2637 {
2638 	return this_cpu_read(xmit_recursion);
2639 }
2640 
2641 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2642 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2643 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2644 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2645 int netdev_get_name(struct net *net, char *name, int ifindex);
2646 int dev_restart(struct net_device *dev);
2647 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2648 
2649 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2650 {
2651 	return NAPI_GRO_CB(skb)->data_offset;
2652 }
2653 
2654 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2655 {
2656 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2657 }
2658 
2659 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2660 {
2661 	NAPI_GRO_CB(skb)->data_offset += len;
2662 }
2663 
2664 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2665 					unsigned int offset)
2666 {
2667 	return NAPI_GRO_CB(skb)->frag0 + offset;
2668 }
2669 
2670 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2671 {
2672 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2673 }
2674 
2675 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2676 {
2677 	NAPI_GRO_CB(skb)->frag0 = NULL;
2678 	NAPI_GRO_CB(skb)->frag0_len = 0;
2679 }
2680 
2681 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2682 					unsigned int offset)
2683 {
2684 	if (!pskb_may_pull(skb, hlen))
2685 		return NULL;
2686 
2687 	skb_gro_frag0_invalidate(skb);
2688 	return skb->data + offset;
2689 }
2690 
2691 static inline void *skb_gro_network_header(struct sk_buff *skb)
2692 {
2693 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2694 	       skb_network_offset(skb);
2695 }
2696 
2697 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2698 					const void *start, unsigned int len)
2699 {
2700 	if (NAPI_GRO_CB(skb)->csum_valid)
2701 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2702 						  csum_partial(start, len, 0));
2703 }
2704 
2705 /* GRO checksum functions. These are logical equivalents of the normal
2706  * checksum functions (in skbuff.h) except that they operate on the GRO
2707  * offsets and fields in sk_buff.
2708  */
2709 
2710 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2711 
2712 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2713 {
2714 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2715 }
2716 
2717 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2718 						      bool zero_okay,
2719 						      __sum16 check)
2720 {
2721 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2722 		skb_checksum_start_offset(skb) <
2723 		 skb_gro_offset(skb)) &&
2724 		!skb_at_gro_remcsum_start(skb) &&
2725 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2726 		(!zero_okay || check));
2727 }
2728 
2729 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2730 							   __wsum psum)
2731 {
2732 	if (NAPI_GRO_CB(skb)->csum_valid &&
2733 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2734 		return 0;
2735 
2736 	NAPI_GRO_CB(skb)->csum = psum;
2737 
2738 	return __skb_gro_checksum_complete(skb);
2739 }
2740 
2741 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2742 {
2743 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2744 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2745 		NAPI_GRO_CB(skb)->csum_cnt--;
2746 	} else {
2747 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2748 		 * verified a new top level checksum or an encapsulated one
2749 		 * during GRO. This saves work if we fallback to normal path.
2750 		 */
2751 		__skb_incr_checksum_unnecessary(skb);
2752 	}
2753 }
2754 
2755 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2756 				    compute_pseudo)			\
2757 ({									\
2758 	__sum16 __ret = 0;						\
2759 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2760 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2761 				compute_pseudo(skb, proto));		\
2762 	if (!__ret)							\
2763 		skb_gro_incr_csum_unnecessary(skb);			\
2764 	__ret;								\
2765 })
2766 
2767 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2768 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2769 
2770 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2771 					     compute_pseudo)		\
2772 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2773 
2774 #define skb_gro_checksum_simple_validate(skb)				\
2775 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2776 
2777 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2778 {
2779 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2780 		!NAPI_GRO_CB(skb)->csum_valid);
2781 }
2782 
2783 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2784 					      __sum16 check, __wsum pseudo)
2785 {
2786 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2787 	NAPI_GRO_CB(skb)->csum_valid = 1;
2788 }
2789 
2790 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2791 do {									\
2792 	if (__skb_gro_checksum_convert_check(skb))			\
2793 		__skb_gro_checksum_convert(skb, check,			\
2794 					   compute_pseudo(skb, proto));	\
2795 } while (0)
2796 
2797 struct gro_remcsum {
2798 	int offset;
2799 	__wsum delta;
2800 };
2801 
2802 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2803 {
2804 	grc->offset = 0;
2805 	grc->delta = 0;
2806 }
2807 
2808 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2809 					    unsigned int off, size_t hdrlen,
2810 					    int start, int offset,
2811 					    struct gro_remcsum *grc,
2812 					    bool nopartial)
2813 {
2814 	__wsum delta;
2815 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2816 
2817 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2818 
2819 	if (!nopartial) {
2820 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2821 		return ptr;
2822 	}
2823 
2824 	ptr = skb_gro_header_fast(skb, off);
2825 	if (skb_gro_header_hard(skb, off + plen)) {
2826 		ptr = skb_gro_header_slow(skb, off + plen, off);
2827 		if (!ptr)
2828 			return NULL;
2829 	}
2830 
2831 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2832 			       start, offset);
2833 
2834 	/* Adjust skb->csum since we changed the packet */
2835 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2836 
2837 	grc->offset = off + hdrlen + offset;
2838 	grc->delta = delta;
2839 
2840 	return ptr;
2841 }
2842 
2843 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2844 					   struct gro_remcsum *grc)
2845 {
2846 	void *ptr;
2847 	size_t plen = grc->offset + sizeof(u16);
2848 
2849 	if (!grc->delta)
2850 		return;
2851 
2852 	ptr = skb_gro_header_fast(skb, grc->offset);
2853 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2854 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2855 		if (!ptr)
2856 			return;
2857 	}
2858 
2859 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2860 }
2861 
2862 #ifdef CONFIG_XFRM_OFFLOAD
2863 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2864 {
2865 	if (PTR_ERR(pp) != -EINPROGRESS)
2866 		NAPI_GRO_CB(skb)->flush |= flush;
2867 }
2868 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2869 					       struct sk_buff *pp,
2870 					       int flush,
2871 					       struct gro_remcsum *grc)
2872 {
2873 	if (PTR_ERR(pp) != -EINPROGRESS) {
2874 		NAPI_GRO_CB(skb)->flush |= flush;
2875 		skb_gro_remcsum_cleanup(skb, grc);
2876 		skb->remcsum_offload = 0;
2877 	}
2878 }
2879 #else
2880 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2881 {
2882 	NAPI_GRO_CB(skb)->flush |= flush;
2883 }
2884 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2885 					       struct sk_buff *pp,
2886 					       int flush,
2887 					       struct gro_remcsum *grc)
2888 {
2889 	NAPI_GRO_CB(skb)->flush |= flush;
2890 	skb_gro_remcsum_cleanup(skb, grc);
2891 	skb->remcsum_offload = 0;
2892 }
2893 #endif
2894 
2895 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2896 				  unsigned short type,
2897 				  const void *daddr, const void *saddr,
2898 				  unsigned int len)
2899 {
2900 	if (!dev->header_ops || !dev->header_ops->create)
2901 		return 0;
2902 
2903 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2904 }
2905 
2906 static inline int dev_parse_header(const struct sk_buff *skb,
2907 				   unsigned char *haddr)
2908 {
2909 	const struct net_device *dev = skb->dev;
2910 
2911 	if (!dev->header_ops || !dev->header_ops->parse)
2912 		return 0;
2913 	return dev->header_ops->parse(skb, haddr);
2914 }
2915 
2916 /* ll_header must have at least hard_header_len allocated */
2917 static inline bool dev_validate_header(const struct net_device *dev,
2918 				       char *ll_header, int len)
2919 {
2920 	if (likely(len >= dev->hard_header_len))
2921 		return true;
2922 	if (len < dev->min_header_len)
2923 		return false;
2924 
2925 	if (capable(CAP_SYS_RAWIO)) {
2926 		memset(ll_header + len, 0, dev->hard_header_len - len);
2927 		return true;
2928 	}
2929 
2930 	if (dev->header_ops && dev->header_ops->validate)
2931 		return dev->header_ops->validate(ll_header, len);
2932 
2933 	return false;
2934 }
2935 
2936 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
2937 			   int len, int size);
2938 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2939 static inline int unregister_gifconf(unsigned int family)
2940 {
2941 	return register_gifconf(family, NULL);
2942 }
2943 
2944 #ifdef CONFIG_NET_FLOW_LIMIT
2945 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2946 struct sd_flow_limit {
2947 	u64			count;
2948 	unsigned int		num_buckets;
2949 	unsigned int		history_head;
2950 	u16			history[FLOW_LIMIT_HISTORY];
2951 	u8			buckets[];
2952 };
2953 
2954 extern int netdev_flow_limit_table_len;
2955 #endif /* CONFIG_NET_FLOW_LIMIT */
2956 
2957 /*
2958  * Incoming packets are placed on per-CPU queues
2959  */
2960 struct softnet_data {
2961 	struct list_head	poll_list;
2962 	struct sk_buff_head	process_queue;
2963 
2964 	/* stats */
2965 	unsigned int		processed;
2966 	unsigned int		time_squeeze;
2967 	unsigned int		received_rps;
2968 #ifdef CONFIG_RPS
2969 	struct softnet_data	*rps_ipi_list;
2970 #endif
2971 #ifdef CONFIG_NET_FLOW_LIMIT
2972 	struct sd_flow_limit __rcu *flow_limit;
2973 #endif
2974 	struct Qdisc		*output_queue;
2975 	struct Qdisc		**output_queue_tailp;
2976 	struct sk_buff		*completion_queue;
2977 #ifdef CONFIG_XFRM_OFFLOAD
2978 	struct sk_buff_head	xfrm_backlog;
2979 #endif
2980 #ifdef CONFIG_RPS
2981 	/* input_queue_head should be written by cpu owning this struct,
2982 	 * and only read by other cpus. Worth using a cache line.
2983 	 */
2984 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
2985 
2986 	/* Elements below can be accessed between CPUs for RPS/RFS */
2987 	call_single_data_t	csd ____cacheline_aligned_in_smp;
2988 	struct softnet_data	*rps_ipi_next;
2989 	unsigned int		cpu;
2990 	unsigned int		input_queue_tail;
2991 #endif
2992 	unsigned int		dropped;
2993 	struct sk_buff_head	input_pkt_queue;
2994 	struct napi_struct	backlog;
2995 
2996 };
2997 
2998 static inline void input_queue_head_incr(struct softnet_data *sd)
2999 {
3000 #ifdef CONFIG_RPS
3001 	sd->input_queue_head++;
3002 #endif
3003 }
3004 
3005 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3006 					      unsigned int *qtail)
3007 {
3008 #ifdef CONFIG_RPS
3009 	*qtail = ++sd->input_queue_tail;
3010 #endif
3011 }
3012 
3013 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3014 
3015 void __netif_schedule(struct Qdisc *q);
3016 void netif_schedule_queue(struct netdev_queue *txq);
3017 
3018 static inline void netif_tx_schedule_all(struct net_device *dev)
3019 {
3020 	unsigned int i;
3021 
3022 	for (i = 0; i < dev->num_tx_queues; i++)
3023 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3024 }
3025 
3026 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3027 {
3028 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3029 }
3030 
3031 /**
3032  *	netif_start_queue - allow transmit
3033  *	@dev: network device
3034  *
3035  *	Allow upper layers to call the device hard_start_xmit routine.
3036  */
3037 static inline void netif_start_queue(struct net_device *dev)
3038 {
3039 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3040 }
3041 
3042 static inline void netif_tx_start_all_queues(struct net_device *dev)
3043 {
3044 	unsigned int i;
3045 
3046 	for (i = 0; i < dev->num_tx_queues; i++) {
3047 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3048 		netif_tx_start_queue(txq);
3049 	}
3050 }
3051 
3052 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3053 
3054 /**
3055  *	netif_wake_queue - restart transmit
3056  *	@dev: network device
3057  *
3058  *	Allow upper layers to call the device hard_start_xmit routine.
3059  *	Used for flow control when transmit resources are available.
3060  */
3061 static inline void netif_wake_queue(struct net_device *dev)
3062 {
3063 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3064 }
3065 
3066 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3067 {
3068 	unsigned int i;
3069 
3070 	for (i = 0; i < dev->num_tx_queues; i++) {
3071 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3072 		netif_tx_wake_queue(txq);
3073 	}
3074 }
3075 
3076 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3077 {
3078 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3079 }
3080 
3081 /**
3082  *	netif_stop_queue - stop transmitted packets
3083  *	@dev: network device
3084  *
3085  *	Stop upper layers calling the device hard_start_xmit routine.
3086  *	Used for flow control when transmit resources are unavailable.
3087  */
3088 static inline void netif_stop_queue(struct net_device *dev)
3089 {
3090 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3091 }
3092 
3093 void netif_tx_stop_all_queues(struct net_device *dev);
3094 
3095 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3096 {
3097 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3098 }
3099 
3100 /**
3101  *	netif_queue_stopped - test if transmit queue is flowblocked
3102  *	@dev: network device
3103  *
3104  *	Test if transmit queue on device is currently unable to send.
3105  */
3106 static inline bool netif_queue_stopped(const struct net_device *dev)
3107 {
3108 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3109 }
3110 
3111 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3112 {
3113 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3114 }
3115 
3116 static inline bool
3117 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3118 {
3119 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3120 }
3121 
3122 static inline bool
3123 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3124 {
3125 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3126 }
3127 
3128 /**
3129  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3130  *	@dev_queue: pointer to transmit queue
3131  *
3132  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3133  * to give appropriate hint to the CPU.
3134  */
3135 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3136 {
3137 #ifdef CONFIG_BQL
3138 	prefetchw(&dev_queue->dql.num_queued);
3139 #endif
3140 }
3141 
3142 /**
3143  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3144  *	@dev_queue: pointer to transmit queue
3145  *
3146  * BQL enabled drivers might use this helper in their TX completion path,
3147  * to give appropriate hint to the CPU.
3148  */
3149 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3150 {
3151 #ifdef CONFIG_BQL
3152 	prefetchw(&dev_queue->dql.limit);
3153 #endif
3154 }
3155 
3156 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3157 					unsigned int bytes)
3158 {
3159 #ifdef CONFIG_BQL
3160 	dql_queued(&dev_queue->dql, bytes);
3161 
3162 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3163 		return;
3164 
3165 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3166 
3167 	/*
3168 	 * The XOFF flag must be set before checking the dql_avail below,
3169 	 * because in netdev_tx_completed_queue we update the dql_completed
3170 	 * before checking the XOFF flag.
3171 	 */
3172 	smp_mb();
3173 
3174 	/* check again in case another CPU has just made room avail */
3175 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3176 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3177 #endif
3178 }
3179 
3180 /**
3181  * 	netdev_sent_queue - report the number of bytes queued to hardware
3182  * 	@dev: network device
3183  * 	@bytes: number of bytes queued to the hardware device queue
3184  *
3185  * 	Report the number of bytes queued for sending/completion to the network
3186  * 	device hardware queue. @bytes should be a good approximation and should
3187  * 	exactly match netdev_completed_queue() @bytes
3188  */
3189 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3190 {
3191 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3192 }
3193 
3194 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3195 					     unsigned int pkts, unsigned int bytes)
3196 {
3197 #ifdef CONFIG_BQL
3198 	if (unlikely(!bytes))
3199 		return;
3200 
3201 	dql_completed(&dev_queue->dql, bytes);
3202 
3203 	/*
3204 	 * Without the memory barrier there is a small possiblity that
3205 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3206 	 * be stopped forever
3207 	 */
3208 	smp_mb();
3209 
3210 	if (dql_avail(&dev_queue->dql) < 0)
3211 		return;
3212 
3213 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3214 		netif_schedule_queue(dev_queue);
3215 #endif
3216 }
3217 
3218 /**
3219  * 	netdev_completed_queue - report bytes and packets completed by device
3220  * 	@dev: network device
3221  * 	@pkts: actual number of packets sent over the medium
3222  * 	@bytes: actual number of bytes sent over the medium
3223  *
3224  * 	Report the number of bytes and packets transmitted by the network device
3225  * 	hardware queue over the physical medium, @bytes must exactly match the
3226  * 	@bytes amount passed to netdev_sent_queue()
3227  */
3228 static inline void netdev_completed_queue(struct net_device *dev,
3229 					  unsigned int pkts, unsigned int bytes)
3230 {
3231 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3232 }
3233 
3234 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3235 {
3236 #ifdef CONFIG_BQL
3237 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3238 	dql_reset(&q->dql);
3239 #endif
3240 }
3241 
3242 /**
3243  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3244  * 	@dev_queue: network device
3245  *
3246  * 	Reset the bytes and packet count of a network device and clear the
3247  * 	software flow control OFF bit for this network device
3248  */
3249 static inline void netdev_reset_queue(struct net_device *dev_queue)
3250 {
3251 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3252 }
3253 
3254 /**
3255  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3256  * 	@dev: network device
3257  * 	@queue_index: given tx queue index
3258  *
3259  * 	Returns 0 if given tx queue index >= number of device tx queues,
3260  * 	otherwise returns the originally passed tx queue index.
3261  */
3262 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3263 {
3264 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3265 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3266 				     dev->name, queue_index,
3267 				     dev->real_num_tx_queues);
3268 		return 0;
3269 	}
3270 
3271 	return queue_index;
3272 }
3273 
3274 /**
3275  *	netif_running - test if up
3276  *	@dev: network device
3277  *
3278  *	Test if the device has been brought up.
3279  */
3280 static inline bool netif_running(const struct net_device *dev)
3281 {
3282 	return test_bit(__LINK_STATE_START, &dev->state);
3283 }
3284 
3285 /*
3286  * Routines to manage the subqueues on a device.  We only need start,
3287  * stop, and a check if it's stopped.  All other device management is
3288  * done at the overall netdevice level.
3289  * Also test the device if we're multiqueue.
3290  */
3291 
3292 /**
3293  *	netif_start_subqueue - allow sending packets on subqueue
3294  *	@dev: network device
3295  *	@queue_index: sub queue index
3296  *
3297  * Start individual transmit queue of a device with multiple transmit queues.
3298  */
3299 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3300 {
3301 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3302 
3303 	netif_tx_start_queue(txq);
3304 }
3305 
3306 /**
3307  *	netif_stop_subqueue - stop sending packets on subqueue
3308  *	@dev: network device
3309  *	@queue_index: sub queue index
3310  *
3311  * Stop individual transmit queue of a device with multiple transmit queues.
3312  */
3313 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3314 {
3315 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3316 	netif_tx_stop_queue(txq);
3317 }
3318 
3319 /**
3320  *	netif_subqueue_stopped - test status of subqueue
3321  *	@dev: network device
3322  *	@queue_index: sub queue index
3323  *
3324  * Check individual transmit queue of a device with multiple transmit queues.
3325  */
3326 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3327 					    u16 queue_index)
3328 {
3329 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3330 
3331 	return netif_tx_queue_stopped(txq);
3332 }
3333 
3334 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3335 					  struct sk_buff *skb)
3336 {
3337 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3338 }
3339 
3340 /**
3341  *	netif_wake_subqueue - allow sending packets on subqueue
3342  *	@dev: network device
3343  *	@queue_index: sub queue index
3344  *
3345  * Resume individual transmit queue of a device with multiple transmit queues.
3346  */
3347 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3348 {
3349 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3350 
3351 	netif_tx_wake_queue(txq);
3352 }
3353 
3354 #ifdef CONFIG_XPS
3355 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3356 			u16 index);
3357 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3358 			  u16 index, bool is_rxqs_map);
3359 
3360 /**
3361  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3362  *	@j: CPU/Rx queue index
3363  *	@mask: bitmask of all cpus/rx queues
3364  *	@nr_bits: number of bits in the bitmask
3365  *
3366  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3367  */
3368 static inline bool netif_attr_test_mask(unsigned long j,
3369 					const unsigned long *mask,
3370 					unsigned int nr_bits)
3371 {
3372 	cpu_max_bits_warn(j, nr_bits);
3373 	return test_bit(j, mask);
3374 }
3375 
3376 /**
3377  *	netif_attr_test_online - Test for online CPU/Rx queue
3378  *	@j: CPU/Rx queue index
3379  *	@online_mask: bitmask for CPUs/Rx queues that are online
3380  *	@nr_bits: number of bits in the bitmask
3381  *
3382  * Returns true if a CPU/Rx queue is online.
3383  */
3384 static inline bool netif_attr_test_online(unsigned long j,
3385 					  const unsigned long *online_mask,
3386 					  unsigned int nr_bits)
3387 {
3388 	cpu_max_bits_warn(j, nr_bits);
3389 
3390 	if (online_mask)
3391 		return test_bit(j, online_mask);
3392 
3393 	return (j < nr_bits);
3394 }
3395 
3396 /**
3397  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3398  *	@n: CPU/Rx queue index
3399  *	@srcp: the cpumask/Rx queue mask pointer
3400  *	@nr_bits: number of bits in the bitmask
3401  *
3402  * Returns >= nr_bits if no further CPUs/Rx queues set.
3403  */
3404 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3405 					       unsigned int nr_bits)
3406 {
3407 	/* -1 is a legal arg here. */
3408 	if (n != -1)
3409 		cpu_max_bits_warn(n, nr_bits);
3410 
3411 	if (srcp)
3412 		return find_next_bit(srcp, nr_bits, n + 1);
3413 
3414 	return n + 1;
3415 }
3416 
3417 /**
3418  *	netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p
3419  *	@n: CPU/Rx queue index
3420  *	@src1p: the first CPUs/Rx queues mask pointer
3421  *	@src2p: the second CPUs/Rx queues mask pointer
3422  *	@nr_bits: number of bits in the bitmask
3423  *
3424  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3425  */
3426 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3427 					  const unsigned long *src2p,
3428 					  unsigned int nr_bits)
3429 {
3430 	/* -1 is a legal arg here. */
3431 	if (n != -1)
3432 		cpu_max_bits_warn(n, nr_bits);
3433 
3434 	if (src1p && src2p)
3435 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3436 	else if (src1p)
3437 		return find_next_bit(src1p, nr_bits, n + 1);
3438 	else if (src2p)
3439 		return find_next_bit(src2p, nr_bits, n + 1);
3440 
3441 	return n + 1;
3442 }
3443 #else
3444 static inline int netif_set_xps_queue(struct net_device *dev,
3445 				      const struct cpumask *mask,
3446 				      u16 index)
3447 {
3448 	return 0;
3449 }
3450 
3451 static inline int __netif_set_xps_queue(struct net_device *dev,
3452 					const unsigned long *mask,
3453 					u16 index, bool is_rxqs_map)
3454 {
3455 	return 0;
3456 }
3457 #endif
3458 
3459 /**
3460  *	netif_is_multiqueue - test if device has multiple transmit queues
3461  *	@dev: network device
3462  *
3463  * Check if device has multiple transmit queues
3464  */
3465 static inline bool netif_is_multiqueue(const struct net_device *dev)
3466 {
3467 	return dev->num_tx_queues > 1;
3468 }
3469 
3470 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3471 
3472 #ifdef CONFIG_SYSFS
3473 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3474 #else
3475 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3476 						unsigned int rxqs)
3477 {
3478 	dev->real_num_rx_queues = rxqs;
3479 	return 0;
3480 }
3481 #endif
3482 
3483 static inline struct netdev_rx_queue *
3484 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3485 {
3486 	return dev->_rx + rxq;
3487 }
3488 
3489 #ifdef CONFIG_SYSFS
3490 static inline unsigned int get_netdev_rx_queue_index(
3491 		struct netdev_rx_queue *queue)
3492 {
3493 	struct net_device *dev = queue->dev;
3494 	int index = queue - dev->_rx;
3495 
3496 	BUG_ON(index >= dev->num_rx_queues);
3497 	return index;
3498 }
3499 #endif
3500 
3501 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3502 int netif_get_num_default_rss_queues(void);
3503 
3504 enum skb_free_reason {
3505 	SKB_REASON_CONSUMED,
3506 	SKB_REASON_DROPPED,
3507 };
3508 
3509 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3510 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3511 
3512 /*
3513  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3514  * interrupt context or with hardware interrupts being disabled.
3515  * (in_irq() || irqs_disabled())
3516  *
3517  * We provide four helpers that can be used in following contexts :
3518  *
3519  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3520  *  replacing kfree_skb(skb)
3521  *
3522  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3523  *  Typically used in place of consume_skb(skb) in TX completion path
3524  *
3525  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3526  *  replacing kfree_skb(skb)
3527  *
3528  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3529  *  and consumed a packet. Used in place of consume_skb(skb)
3530  */
3531 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3532 {
3533 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3534 }
3535 
3536 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3537 {
3538 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3539 }
3540 
3541 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3542 {
3543 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3544 }
3545 
3546 static inline void dev_consume_skb_any(struct sk_buff *skb)
3547 {
3548 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3549 }
3550 
3551 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3552 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3553 int netif_rx(struct sk_buff *skb);
3554 int netif_rx_ni(struct sk_buff *skb);
3555 int netif_receive_skb(struct sk_buff *skb);
3556 int netif_receive_skb_core(struct sk_buff *skb);
3557 void netif_receive_skb_list(struct list_head *head);
3558 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3559 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3560 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3561 gro_result_t napi_gro_frags(struct napi_struct *napi);
3562 struct packet_offload *gro_find_receive_by_type(__be16 type);
3563 struct packet_offload *gro_find_complete_by_type(__be16 type);
3564 
3565 static inline void napi_free_frags(struct napi_struct *napi)
3566 {
3567 	kfree_skb(napi->skb);
3568 	napi->skb = NULL;
3569 }
3570 
3571 bool netdev_is_rx_handler_busy(struct net_device *dev);
3572 int netdev_rx_handler_register(struct net_device *dev,
3573 			       rx_handler_func_t *rx_handler,
3574 			       void *rx_handler_data);
3575 void netdev_rx_handler_unregister(struct net_device *dev);
3576 
3577 bool dev_valid_name(const char *name);
3578 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3579 		bool *need_copyout);
3580 int dev_ifconf(struct net *net, struct ifconf *, int);
3581 int dev_ethtool(struct net *net, struct ifreq *);
3582 unsigned int dev_get_flags(const struct net_device *);
3583 int __dev_change_flags(struct net_device *, unsigned int flags);
3584 int dev_change_flags(struct net_device *, unsigned int);
3585 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3586 			unsigned int gchanges);
3587 int dev_change_name(struct net_device *, const char *);
3588 int dev_set_alias(struct net_device *, const char *, size_t);
3589 int dev_get_alias(const struct net_device *, char *, size_t);
3590 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3591 int __dev_set_mtu(struct net_device *, int);
3592 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3593 		    struct netlink_ext_ack *extack);
3594 int dev_set_mtu(struct net_device *, int);
3595 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3596 void dev_set_group(struct net_device *, int);
3597 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3598 int dev_change_carrier(struct net_device *, bool new_carrier);
3599 int dev_get_phys_port_id(struct net_device *dev,
3600 			 struct netdev_phys_item_id *ppid);
3601 int dev_get_phys_port_name(struct net_device *dev,
3602 			   char *name, size_t len);
3603 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3604 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3605 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3606 				    struct netdev_queue *txq, int *ret);
3607 
3608 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3609 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3610 		      int fd, u32 flags);
3611 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3612 		    enum bpf_netdev_command cmd);
3613 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3614 
3615 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3616 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3617 bool is_skb_forwardable(const struct net_device *dev,
3618 			const struct sk_buff *skb);
3619 
3620 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3621 					       struct sk_buff *skb)
3622 {
3623 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3624 	    unlikely(!is_skb_forwardable(dev, skb))) {
3625 		atomic_long_inc(&dev->rx_dropped);
3626 		kfree_skb(skb);
3627 		return NET_RX_DROP;
3628 	}
3629 
3630 	skb_scrub_packet(skb, true);
3631 	skb->priority = 0;
3632 	return 0;
3633 }
3634 
3635 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3636 
3637 extern int		netdev_budget;
3638 extern unsigned int	netdev_budget_usecs;
3639 
3640 /* Called by rtnetlink.c:rtnl_unlock() */
3641 void netdev_run_todo(void);
3642 
3643 /**
3644  *	dev_put - release reference to device
3645  *	@dev: network device
3646  *
3647  * Release reference to device to allow it to be freed.
3648  */
3649 static inline void dev_put(struct net_device *dev)
3650 {
3651 	this_cpu_dec(*dev->pcpu_refcnt);
3652 }
3653 
3654 /**
3655  *	dev_hold - get reference to device
3656  *	@dev: network device
3657  *
3658  * Hold reference to device to keep it from being freed.
3659  */
3660 static inline void dev_hold(struct net_device *dev)
3661 {
3662 	this_cpu_inc(*dev->pcpu_refcnt);
3663 }
3664 
3665 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3666  * and _off may be called from IRQ context, but it is caller
3667  * who is responsible for serialization of these calls.
3668  *
3669  * The name carrier is inappropriate, these functions should really be
3670  * called netif_lowerlayer_*() because they represent the state of any
3671  * kind of lower layer not just hardware media.
3672  */
3673 
3674 void linkwatch_init_dev(struct net_device *dev);
3675 void linkwatch_fire_event(struct net_device *dev);
3676 void linkwatch_forget_dev(struct net_device *dev);
3677 
3678 /**
3679  *	netif_carrier_ok - test if carrier present
3680  *	@dev: network device
3681  *
3682  * Check if carrier is present on device
3683  */
3684 static inline bool netif_carrier_ok(const struct net_device *dev)
3685 {
3686 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3687 }
3688 
3689 unsigned long dev_trans_start(struct net_device *dev);
3690 
3691 void __netdev_watchdog_up(struct net_device *dev);
3692 
3693 void netif_carrier_on(struct net_device *dev);
3694 
3695 void netif_carrier_off(struct net_device *dev);
3696 
3697 /**
3698  *	netif_dormant_on - mark device as dormant.
3699  *	@dev: network device
3700  *
3701  * Mark device as dormant (as per RFC2863).
3702  *
3703  * The dormant state indicates that the relevant interface is not
3704  * actually in a condition to pass packets (i.e., it is not 'up') but is
3705  * in a "pending" state, waiting for some external event.  For "on-
3706  * demand" interfaces, this new state identifies the situation where the
3707  * interface is waiting for events to place it in the up state.
3708  */
3709 static inline void netif_dormant_on(struct net_device *dev)
3710 {
3711 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3712 		linkwatch_fire_event(dev);
3713 }
3714 
3715 /**
3716  *	netif_dormant_off - set device as not dormant.
3717  *	@dev: network device
3718  *
3719  * Device is not in dormant state.
3720  */
3721 static inline void netif_dormant_off(struct net_device *dev)
3722 {
3723 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3724 		linkwatch_fire_event(dev);
3725 }
3726 
3727 /**
3728  *	netif_dormant - test if device is dormant
3729  *	@dev: network device
3730  *
3731  * Check if device is dormant.
3732  */
3733 static inline bool netif_dormant(const struct net_device *dev)
3734 {
3735 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3736 }
3737 
3738 
3739 /**
3740  *	netif_oper_up - test if device is operational
3741  *	@dev: network device
3742  *
3743  * Check if carrier is operational
3744  */
3745 static inline bool netif_oper_up(const struct net_device *dev)
3746 {
3747 	return (dev->operstate == IF_OPER_UP ||
3748 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3749 }
3750 
3751 /**
3752  *	netif_device_present - is device available or removed
3753  *	@dev: network device
3754  *
3755  * Check if device has not been removed from system.
3756  */
3757 static inline bool netif_device_present(struct net_device *dev)
3758 {
3759 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3760 }
3761 
3762 void netif_device_detach(struct net_device *dev);
3763 
3764 void netif_device_attach(struct net_device *dev);
3765 
3766 /*
3767  * Network interface message level settings
3768  */
3769 
3770 enum {
3771 	NETIF_MSG_DRV		= 0x0001,
3772 	NETIF_MSG_PROBE		= 0x0002,
3773 	NETIF_MSG_LINK		= 0x0004,
3774 	NETIF_MSG_TIMER		= 0x0008,
3775 	NETIF_MSG_IFDOWN	= 0x0010,
3776 	NETIF_MSG_IFUP		= 0x0020,
3777 	NETIF_MSG_RX_ERR	= 0x0040,
3778 	NETIF_MSG_TX_ERR	= 0x0080,
3779 	NETIF_MSG_TX_QUEUED	= 0x0100,
3780 	NETIF_MSG_INTR		= 0x0200,
3781 	NETIF_MSG_TX_DONE	= 0x0400,
3782 	NETIF_MSG_RX_STATUS	= 0x0800,
3783 	NETIF_MSG_PKTDATA	= 0x1000,
3784 	NETIF_MSG_HW		= 0x2000,
3785 	NETIF_MSG_WOL		= 0x4000,
3786 };
3787 
3788 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3789 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3790 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3791 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3792 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3793 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3794 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3795 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3796 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3797 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3798 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3799 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3800 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3801 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3802 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3803 
3804 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3805 {
3806 	/* use default */
3807 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3808 		return default_msg_enable_bits;
3809 	if (debug_value == 0)	/* no output */
3810 		return 0;
3811 	/* set low N bits */
3812 	return (1 << debug_value) - 1;
3813 }
3814 
3815 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3816 {
3817 	spin_lock(&txq->_xmit_lock);
3818 	txq->xmit_lock_owner = cpu;
3819 }
3820 
3821 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3822 {
3823 	__acquire(&txq->_xmit_lock);
3824 	return true;
3825 }
3826 
3827 static inline void __netif_tx_release(struct netdev_queue *txq)
3828 {
3829 	__release(&txq->_xmit_lock);
3830 }
3831 
3832 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3833 {
3834 	spin_lock_bh(&txq->_xmit_lock);
3835 	txq->xmit_lock_owner = smp_processor_id();
3836 }
3837 
3838 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3839 {
3840 	bool ok = spin_trylock(&txq->_xmit_lock);
3841 	if (likely(ok))
3842 		txq->xmit_lock_owner = smp_processor_id();
3843 	return ok;
3844 }
3845 
3846 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3847 {
3848 	txq->xmit_lock_owner = -1;
3849 	spin_unlock(&txq->_xmit_lock);
3850 }
3851 
3852 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3853 {
3854 	txq->xmit_lock_owner = -1;
3855 	spin_unlock_bh(&txq->_xmit_lock);
3856 }
3857 
3858 static inline void txq_trans_update(struct netdev_queue *txq)
3859 {
3860 	if (txq->xmit_lock_owner != -1)
3861 		txq->trans_start = jiffies;
3862 }
3863 
3864 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3865 static inline void netif_trans_update(struct net_device *dev)
3866 {
3867 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3868 
3869 	if (txq->trans_start != jiffies)
3870 		txq->trans_start = jiffies;
3871 }
3872 
3873 /**
3874  *	netif_tx_lock - grab network device transmit lock
3875  *	@dev: network device
3876  *
3877  * Get network device transmit lock
3878  */
3879 static inline void netif_tx_lock(struct net_device *dev)
3880 {
3881 	unsigned int i;
3882 	int cpu;
3883 
3884 	spin_lock(&dev->tx_global_lock);
3885 	cpu = smp_processor_id();
3886 	for (i = 0; i < dev->num_tx_queues; i++) {
3887 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3888 
3889 		/* We are the only thread of execution doing a
3890 		 * freeze, but we have to grab the _xmit_lock in
3891 		 * order to synchronize with threads which are in
3892 		 * the ->hard_start_xmit() handler and already
3893 		 * checked the frozen bit.
3894 		 */
3895 		__netif_tx_lock(txq, cpu);
3896 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3897 		__netif_tx_unlock(txq);
3898 	}
3899 }
3900 
3901 static inline void netif_tx_lock_bh(struct net_device *dev)
3902 {
3903 	local_bh_disable();
3904 	netif_tx_lock(dev);
3905 }
3906 
3907 static inline void netif_tx_unlock(struct net_device *dev)
3908 {
3909 	unsigned int i;
3910 
3911 	for (i = 0; i < dev->num_tx_queues; i++) {
3912 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3913 
3914 		/* No need to grab the _xmit_lock here.  If the
3915 		 * queue is not stopped for another reason, we
3916 		 * force a schedule.
3917 		 */
3918 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3919 		netif_schedule_queue(txq);
3920 	}
3921 	spin_unlock(&dev->tx_global_lock);
3922 }
3923 
3924 static inline void netif_tx_unlock_bh(struct net_device *dev)
3925 {
3926 	netif_tx_unlock(dev);
3927 	local_bh_enable();
3928 }
3929 
3930 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3931 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3932 		__netif_tx_lock(txq, cpu);		\
3933 	} else {					\
3934 		__netif_tx_acquire(txq);		\
3935 	}						\
3936 }
3937 
3938 #define HARD_TX_TRYLOCK(dev, txq)			\
3939 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3940 		__netif_tx_trylock(txq) :		\
3941 		__netif_tx_acquire(txq))
3942 
3943 #define HARD_TX_UNLOCK(dev, txq) {			\
3944 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3945 		__netif_tx_unlock(txq);			\
3946 	} else {					\
3947 		__netif_tx_release(txq);		\
3948 	}						\
3949 }
3950 
3951 static inline void netif_tx_disable(struct net_device *dev)
3952 {
3953 	unsigned int i;
3954 	int cpu;
3955 
3956 	local_bh_disable();
3957 	cpu = smp_processor_id();
3958 	for (i = 0; i < dev->num_tx_queues; i++) {
3959 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3960 
3961 		__netif_tx_lock(txq, cpu);
3962 		netif_tx_stop_queue(txq);
3963 		__netif_tx_unlock(txq);
3964 	}
3965 	local_bh_enable();
3966 }
3967 
3968 static inline void netif_addr_lock(struct net_device *dev)
3969 {
3970 	spin_lock(&dev->addr_list_lock);
3971 }
3972 
3973 static inline void netif_addr_lock_nested(struct net_device *dev)
3974 {
3975 	int subclass = SINGLE_DEPTH_NESTING;
3976 
3977 	if (dev->netdev_ops->ndo_get_lock_subclass)
3978 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3979 
3980 	spin_lock_nested(&dev->addr_list_lock, subclass);
3981 }
3982 
3983 static inline void netif_addr_lock_bh(struct net_device *dev)
3984 {
3985 	spin_lock_bh(&dev->addr_list_lock);
3986 }
3987 
3988 static inline void netif_addr_unlock(struct net_device *dev)
3989 {
3990 	spin_unlock(&dev->addr_list_lock);
3991 }
3992 
3993 static inline void netif_addr_unlock_bh(struct net_device *dev)
3994 {
3995 	spin_unlock_bh(&dev->addr_list_lock);
3996 }
3997 
3998 /*
3999  * dev_addrs walker. Should be used only for read access. Call with
4000  * rcu_read_lock held.
4001  */
4002 #define for_each_dev_addr(dev, ha) \
4003 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4004 
4005 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4006 
4007 void ether_setup(struct net_device *dev);
4008 
4009 /* Support for loadable net-drivers */
4010 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4011 				    unsigned char name_assign_type,
4012 				    void (*setup)(struct net_device *),
4013 				    unsigned int txqs, unsigned int rxqs);
4014 int dev_get_valid_name(struct net *net, struct net_device *dev,
4015 		       const char *name);
4016 
4017 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4018 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4019 
4020 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4021 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4022 			 count)
4023 
4024 int register_netdev(struct net_device *dev);
4025 void unregister_netdev(struct net_device *dev);
4026 
4027 /* General hardware address lists handling functions */
4028 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4029 		   struct netdev_hw_addr_list *from_list, int addr_len);
4030 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4031 		      struct netdev_hw_addr_list *from_list, int addr_len);
4032 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4033 		       struct net_device *dev,
4034 		       int (*sync)(struct net_device *, const unsigned char *),
4035 		       int (*unsync)(struct net_device *,
4036 				     const unsigned char *));
4037 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4038 			  struct net_device *dev,
4039 			  int (*unsync)(struct net_device *,
4040 					const unsigned char *));
4041 void __hw_addr_init(struct netdev_hw_addr_list *list);
4042 
4043 /* Functions used for device addresses handling */
4044 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4045 		 unsigned char addr_type);
4046 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4047 		 unsigned char addr_type);
4048 void dev_addr_flush(struct net_device *dev);
4049 int dev_addr_init(struct net_device *dev);
4050 
4051 /* Functions used for unicast addresses handling */
4052 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4053 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4054 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4055 int dev_uc_sync(struct net_device *to, struct net_device *from);
4056 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4057 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4058 void dev_uc_flush(struct net_device *dev);
4059 void dev_uc_init(struct net_device *dev);
4060 
4061 /**
4062  *  __dev_uc_sync - Synchonize device's unicast list
4063  *  @dev:  device to sync
4064  *  @sync: function to call if address should be added
4065  *  @unsync: function to call if address should be removed
4066  *
4067  *  Add newly added addresses to the interface, and release
4068  *  addresses that have been deleted.
4069  */
4070 static inline int __dev_uc_sync(struct net_device *dev,
4071 				int (*sync)(struct net_device *,
4072 					    const unsigned char *),
4073 				int (*unsync)(struct net_device *,
4074 					      const unsigned char *))
4075 {
4076 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4077 }
4078 
4079 /**
4080  *  __dev_uc_unsync - Remove synchronized addresses from device
4081  *  @dev:  device to sync
4082  *  @unsync: function to call if address should be removed
4083  *
4084  *  Remove all addresses that were added to the device by dev_uc_sync().
4085  */
4086 static inline void __dev_uc_unsync(struct net_device *dev,
4087 				   int (*unsync)(struct net_device *,
4088 						 const unsigned char *))
4089 {
4090 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4091 }
4092 
4093 /* Functions used for multicast addresses handling */
4094 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4095 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4096 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4097 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4098 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4099 int dev_mc_sync(struct net_device *to, struct net_device *from);
4100 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4101 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4102 void dev_mc_flush(struct net_device *dev);
4103 void dev_mc_init(struct net_device *dev);
4104 
4105 /**
4106  *  __dev_mc_sync - Synchonize device's multicast list
4107  *  @dev:  device to sync
4108  *  @sync: function to call if address should be added
4109  *  @unsync: function to call if address should be removed
4110  *
4111  *  Add newly added addresses to the interface, and release
4112  *  addresses that have been deleted.
4113  */
4114 static inline int __dev_mc_sync(struct net_device *dev,
4115 				int (*sync)(struct net_device *,
4116 					    const unsigned char *),
4117 				int (*unsync)(struct net_device *,
4118 					      const unsigned char *))
4119 {
4120 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4121 }
4122 
4123 /**
4124  *  __dev_mc_unsync - Remove synchronized addresses from device
4125  *  @dev:  device to sync
4126  *  @unsync: function to call if address should be removed
4127  *
4128  *  Remove all addresses that were added to the device by dev_mc_sync().
4129  */
4130 static inline void __dev_mc_unsync(struct net_device *dev,
4131 				   int (*unsync)(struct net_device *,
4132 						 const unsigned char *))
4133 {
4134 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4135 }
4136 
4137 /* Functions used for secondary unicast and multicast support */
4138 void dev_set_rx_mode(struct net_device *dev);
4139 void __dev_set_rx_mode(struct net_device *dev);
4140 int dev_set_promiscuity(struct net_device *dev, int inc);
4141 int dev_set_allmulti(struct net_device *dev, int inc);
4142 void netdev_state_change(struct net_device *dev);
4143 void netdev_notify_peers(struct net_device *dev);
4144 void netdev_features_change(struct net_device *dev);
4145 /* Load a device via the kmod */
4146 void dev_load(struct net *net, const char *name);
4147 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4148 					struct rtnl_link_stats64 *storage);
4149 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4150 			     const struct net_device_stats *netdev_stats);
4151 
4152 extern int		netdev_max_backlog;
4153 extern int		netdev_tstamp_prequeue;
4154 extern int		weight_p;
4155 extern int		dev_weight_rx_bias;
4156 extern int		dev_weight_tx_bias;
4157 extern int		dev_rx_weight;
4158 extern int		dev_tx_weight;
4159 
4160 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4161 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4162 						     struct list_head **iter);
4163 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4164 						     struct list_head **iter);
4165 
4166 /* iterate through upper list, must be called under RCU read lock */
4167 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4168 	for (iter = &(dev)->adj_list.upper, \
4169 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4170 	     updev; \
4171 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4172 
4173 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4174 				  int (*fn)(struct net_device *upper_dev,
4175 					    void *data),
4176 				  void *data);
4177 
4178 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4179 				  struct net_device *upper_dev);
4180 
4181 bool netdev_has_any_upper_dev(struct net_device *dev);
4182 
4183 void *netdev_lower_get_next_private(struct net_device *dev,
4184 				    struct list_head **iter);
4185 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4186 					struct list_head **iter);
4187 
4188 #define netdev_for_each_lower_private(dev, priv, iter) \
4189 	for (iter = (dev)->adj_list.lower.next, \
4190 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4191 	     priv; \
4192 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4193 
4194 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4195 	for (iter = &(dev)->adj_list.lower, \
4196 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4197 	     priv; \
4198 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4199 
4200 void *netdev_lower_get_next(struct net_device *dev,
4201 				struct list_head **iter);
4202 
4203 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4204 	for (iter = (dev)->adj_list.lower.next, \
4205 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4206 	     ldev; \
4207 	     ldev = netdev_lower_get_next(dev, &(iter)))
4208 
4209 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
4210 					     struct list_head **iter);
4211 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
4212 						 struct list_head **iter);
4213 
4214 int netdev_walk_all_lower_dev(struct net_device *dev,
4215 			      int (*fn)(struct net_device *lower_dev,
4216 					void *data),
4217 			      void *data);
4218 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4219 				  int (*fn)(struct net_device *lower_dev,
4220 					    void *data),
4221 				  void *data);
4222 
4223 void *netdev_adjacent_get_private(struct list_head *adj_list);
4224 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4225 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4226 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4227 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4228 			  struct netlink_ext_ack *extack);
4229 int netdev_master_upper_dev_link(struct net_device *dev,
4230 				 struct net_device *upper_dev,
4231 				 void *upper_priv, void *upper_info,
4232 				 struct netlink_ext_ack *extack);
4233 void netdev_upper_dev_unlink(struct net_device *dev,
4234 			     struct net_device *upper_dev);
4235 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4236 void *netdev_lower_dev_get_private(struct net_device *dev,
4237 				   struct net_device *lower_dev);
4238 void netdev_lower_state_changed(struct net_device *lower_dev,
4239 				void *lower_state_info);
4240 
4241 /* RSS keys are 40 or 52 bytes long */
4242 #define NETDEV_RSS_KEY_LEN 52
4243 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4244 void netdev_rss_key_fill(void *buffer, size_t len);
4245 
4246 int dev_get_nest_level(struct net_device *dev);
4247 int skb_checksum_help(struct sk_buff *skb);
4248 int skb_crc32c_csum_help(struct sk_buff *skb);
4249 int skb_csum_hwoffload_help(struct sk_buff *skb,
4250 			    const netdev_features_t features);
4251 
4252 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4253 				  netdev_features_t features, bool tx_path);
4254 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4255 				    netdev_features_t features);
4256 
4257 struct netdev_bonding_info {
4258 	ifslave	slave;
4259 	ifbond	master;
4260 };
4261 
4262 struct netdev_notifier_bonding_info {
4263 	struct netdev_notifier_info info; /* must be first */
4264 	struct netdev_bonding_info  bonding_info;
4265 };
4266 
4267 void netdev_bonding_info_change(struct net_device *dev,
4268 				struct netdev_bonding_info *bonding_info);
4269 
4270 static inline
4271 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4272 {
4273 	return __skb_gso_segment(skb, features, true);
4274 }
4275 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4276 
4277 static inline bool can_checksum_protocol(netdev_features_t features,
4278 					 __be16 protocol)
4279 {
4280 	if (protocol == htons(ETH_P_FCOE))
4281 		return !!(features & NETIF_F_FCOE_CRC);
4282 
4283 	/* Assume this is an IP checksum (not SCTP CRC) */
4284 
4285 	if (features & NETIF_F_HW_CSUM) {
4286 		/* Can checksum everything */
4287 		return true;
4288 	}
4289 
4290 	switch (protocol) {
4291 	case htons(ETH_P_IP):
4292 		return !!(features & NETIF_F_IP_CSUM);
4293 	case htons(ETH_P_IPV6):
4294 		return !!(features & NETIF_F_IPV6_CSUM);
4295 	default:
4296 		return false;
4297 	}
4298 }
4299 
4300 #ifdef CONFIG_BUG
4301 void netdev_rx_csum_fault(struct net_device *dev);
4302 #else
4303 static inline void netdev_rx_csum_fault(struct net_device *dev)
4304 {
4305 }
4306 #endif
4307 /* rx skb timestamps */
4308 void net_enable_timestamp(void);
4309 void net_disable_timestamp(void);
4310 
4311 #ifdef CONFIG_PROC_FS
4312 int __init dev_proc_init(void);
4313 #else
4314 #define dev_proc_init() 0
4315 #endif
4316 
4317 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4318 					      struct sk_buff *skb, struct net_device *dev,
4319 					      bool more)
4320 {
4321 	skb->xmit_more = more ? 1 : 0;
4322 	return ops->ndo_start_xmit(skb, dev);
4323 }
4324 
4325 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4326 					    struct netdev_queue *txq, bool more)
4327 {
4328 	const struct net_device_ops *ops = dev->netdev_ops;
4329 	int rc;
4330 
4331 	rc = __netdev_start_xmit(ops, skb, dev, more);
4332 	if (rc == NETDEV_TX_OK)
4333 		txq_trans_update(txq);
4334 
4335 	return rc;
4336 }
4337 
4338 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4339 				const void *ns);
4340 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4341 				 const void *ns);
4342 
4343 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4344 {
4345 	return netdev_class_create_file_ns(class_attr, NULL);
4346 }
4347 
4348 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4349 {
4350 	netdev_class_remove_file_ns(class_attr, NULL);
4351 }
4352 
4353 extern const struct kobj_ns_type_operations net_ns_type_operations;
4354 
4355 const char *netdev_drivername(const struct net_device *dev);
4356 
4357 void linkwatch_run_queue(void);
4358 
4359 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4360 							  netdev_features_t f2)
4361 {
4362 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4363 		if (f1 & NETIF_F_HW_CSUM)
4364 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4365 		else
4366 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4367 	}
4368 
4369 	return f1 & f2;
4370 }
4371 
4372 static inline netdev_features_t netdev_get_wanted_features(
4373 	struct net_device *dev)
4374 {
4375 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4376 }
4377 netdev_features_t netdev_increment_features(netdev_features_t all,
4378 	netdev_features_t one, netdev_features_t mask);
4379 
4380 /* Allow TSO being used on stacked device :
4381  * Performing the GSO segmentation before last device
4382  * is a performance improvement.
4383  */
4384 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4385 							netdev_features_t mask)
4386 {
4387 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4388 }
4389 
4390 int __netdev_update_features(struct net_device *dev);
4391 void netdev_update_features(struct net_device *dev);
4392 void netdev_change_features(struct net_device *dev);
4393 
4394 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4395 					struct net_device *dev);
4396 
4397 netdev_features_t passthru_features_check(struct sk_buff *skb,
4398 					  struct net_device *dev,
4399 					  netdev_features_t features);
4400 netdev_features_t netif_skb_features(struct sk_buff *skb);
4401 
4402 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4403 {
4404 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4405 
4406 	/* check flags correspondence */
4407 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4408 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4409 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4410 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4411 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4412 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4413 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4414 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4415 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4416 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4417 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4418 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4419 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4420 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4421 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4422 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4423 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4424 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4425 
4426 	return (features & feature) == feature;
4427 }
4428 
4429 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4430 {
4431 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4432 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4433 }
4434 
4435 static inline bool netif_needs_gso(struct sk_buff *skb,
4436 				   netdev_features_t features)
4437 {
4438 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4439 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4440 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4441 }
4442 
4443 static inline void netif_set_gso_max_size(struct net_device *dev,
4444 					  unsigned int size)
4445 {
4446 	dev->gso_max_size = size;
4447 }
4448 
4449 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4450 					int pulled_hlen, u16 mac_offset,
4451 					int mac_len)
4452 {
4453 	skb->protocol = protocol;
4454 	skb->encapsulation = 1;
4455 	skb_push(skb, pulled_hlen);
4456 	skb_reset_transport_header(skb);
4457 	skb->mac_header = mac_offset;
4458 	skb->network_header = skb->mac_header + mac_len;
4459 	skb->mac_len = mac_len;
4460 }
4461 
4462 static inline bool netif_is_macsec(const struct net_device *dev)
4463 {
4464 	return dev->priv_flags & IFF_MACSEC;
4465 }
4466 
4467 static inline bool netif_is_macvlan(const struct net_device *dev)
4468 {
4469 	return dev->priv_flags & IFF_MACVLAN;
4470 }
4471 
4472 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4473 {
4474 	return dev->priv_flags & IFF_MACVLAN_PORT;
4475 }
4476 
4477 static inline bool netif_is_bond_master(const struct net_device *dev)
4478 {
4479 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4480 }
4481 
4482 static inline bool netif_is_bond_slave(const struct net_device *dev)
4483 {
4484 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4485 }
4486 
4487 static inline bool netif_supports_nofcs(struct net_device *dev)
4488 {
4489 	return dev->priv_flags & IFF_SUPP_NOFCS;
4490 }
4491 
4492 static inline bool netif_is_l3_master(const struct net_device *dev)
4493 {
4494 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4495 }
4496 
4497 static inline bool netif_is_l3_slave(const struct net_device *dev)
4498 {
4499 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4500 }
4501 
4502 static inline bool netif_is_bridge_master(const struct net_device *dev)
4503 {
4504 	return dev->priv_flags & IFF_EBRIDGE;
4505 }
4506 
4507 static inline bool netif_is_bridge_port(const struct net_device *dev)
4508 {
4509 	return dev->priv_flags & IFF_BRIDGE_PORT;
4510 }
4511 
4512 static inline bool netif_is_ovs_master(const struct net_device *dev)
4513 {
4514 	return dev->priv_flags & IFF_OPENVSWITCH;
4515 }
4516 
4517 static inline bool netif_is_ovs_port(const struct net_device *dev)
4518 {
4519 	return dev->priv_flags & IFF_OVS_DATAPATH;
4520 }
4521 
4522 static inline bool netif_is_team_master(const struct net_device *dev)
4523 {
4524 	return dev->priv_flags & IFF_TEAM;
4525 }
4526 
4527 static inline bool netif_is_team_port(const struct net_device *dev)
4528 {
4529 	return dev->priv_flags & IFF_TEAM_PORT;
4530 }
4531 
4532 static inline bool netif_is_lag_master(const struct net_device *dev)
4533 {
4534 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4535 }
4536 
4537 static inline bool netif_is_lag_port(const struct net_device *dev)
4538 {
4539 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4540 }
4541 
4542 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4543 {
4544 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4545 }
4546 
4547 static inline bool netif_is_failover(const struct net_device *dev)
4548 {
4549 	return dev->priv_flags & IFF_FAILOVER;
4550 }
4551 
4552 static inline bool netif_is_failover_slave(const struct net_device *dev)
4553 {
4554 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4555 }
4556 
4557 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4558 static inline void netif_keep_dst(struct net_device *dev)
4559 {
4560 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4561 }
4562 
4563 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4564 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4565 {
4566 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4567 	return dev->priv_flags & IFF_MACSEC;
4568 }
4569 
4570 extern struct pernet_operations __net_initdata loopback_net_ops;
4571 
4572 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4573 
4574 /* netdev_printk helpers, similar to dev_printk */
4575 
4576 static inline const char *netdev_name(const struct net_device *dev)
4577 {
4578 	if (!dev->name[0] || strchr(dev->name, '%'))
4579 		return "(unnamed net_device)";
4580 	return dev->name;
4581 }
4582 
4583 static inline bool netdev_unregistering(const struct net_device *dev)
4584 {
4585 	return dev->reg_state == NETREG_UNREGISTERING;
4586 }
4587 
4588 static inline const char *netdev_reg_state(const struct net_device *dev)
4589 {
4590 	switch (dev->reg_state) {
4591 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4592 	case NETREG_REGISTERED: return "";
4593 	case NETREG_UNREGISTERING: return " (unregistering)";
4594 	case NETREG_UNREGISTERED: return " (unregistered)";
4595 	case NETREG_RELEASED: return " (released)";
4596 	case NETREG_DUMMY: return " (dummy)";
4597 	}
4598 
4599 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4600 	return " (unknown)";
4601 }
4602 
4603 __printf(3, 4)
4604 void netdev_printk(const char *level, const struct net_device *dev,
4605 		   const char *format, ...);
4606 __printf(2, 3)
4607 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4608 __printf(2, 3)
4609 void netdev_alert(const struct net_device *dev, const char *format, ...);
4610 __printf(2, 3)
4611 void netdev_crit(const struct net_device *dev, const char *format, ...);
4612 __printf(2, 3)
4613 void netdev_err(const struct net_device *dev, const char *format, ...);
4614 __printf(2, 3)
4615 void netdev_warn(const struct net_device *dev, const char *format, ...);
4616 __printf(2, 3)
4617 void netdev_notice(const struct net_device *dev, const char *format, ...);
4618 __printf(2, 3)
4619 void netdev_info(const struct net_device *dev, const char *format, ...);
4620 
4621 #define netdev_level_once(level, dev, fmt, ...)			\
4622 do {								\
4623 	static bool __print_once __read_mostly;			\
4624 								\
4625 	if (!__print_once) {					\
4626 		__print_once = true;				\
4627 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4628 	}							\
4629 } while (0)
4630 
4631 #define netdev_emerg_once(dev, fmt, ...) \
4632 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4633 #define netdev_alert_once(dev, fmt, ...) \
4634 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4635 #define netdev_crit_once(dev, fmt, ...) \
4636 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4637 #define netdev_err_once(dev, fmt, ...) \
4638 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4639 #define netdev_warn_once(dev, fmt, ...) \
4640 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4641 #define netdev_notice_once(dev, fmt, ...) \
4642 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4643 #define netdev_info_once(dev, fmt, ...) \
4644 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4645 
4646 #define MODULE_ALIAS_NETDEV(device) \
4647 	MODULE_ALIAS("netdev-" device)
4648 
4649 #if defined(CONFIG_DYNAMIC_DEBUG)
4650 #define netdev_dbg(__dev, format, args...)			\
4651 do {								\
4652 	dynamic_netdev_dbg(__dev, format, ##args);		\
4653 } while (0)
4654 #elif defined(DEBUG)
4655 #define netdev_dbg(__dev, format, args...)			\
4656 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4657 #else
4658 #define netdev_dbg(__dev, format, args...)			\
4659 ({								\
4660 	if (0)							\
4661 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4662 })
4663 #endif
4664 
4665 #if defined(VERBOSE_DEBUG)
4666 #define netdev_vdbg	netdev_dbg
4667 #else
4668 
4669 #define netdev_vdbg(dev, format, args...)			\
4670 ({								\
4671 	if (0)							\
4672 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4673 	0;							\
4674 })
4675 #endif
4676 
4677 /*
4678  * netdev_WARN() acts like dev_printk(), but with the key difference
4679  * of using a WARN/WARN_ON to get the message out, including the
4680  * file/line information and a backtrace.
4681  */
4682 #define netdev_WARN(dev, format, args...)			\
4683 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4684 	     netdev_reg_state(dev), ##args)
4685 
4686 #define netdev_WARN_ONCE(dev, format, args...)				\
4687 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4688 		  netdev_reg_state(dev), ##args)
4689 
4690 /* netif printk helpers, similar to netdev_printk */
4691 
4692 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4693 do {					  			\
4694 	if (netif_msg_##type(priv))				\
4695 		netdev_printk(level, (dev), fmt, ##args);	\
4696 } while (0)
4697 
4698 #define netif_level(level, priv, type, dev, fmt, args...)	\
4699 do {								\
4700 	if (netif_msg_##type(priv))				\
4701 		netdev_##level(dev, fmt, ##args);		\
4702 } while (0)
4703 
4704 #define netif_emerg(priv, type, dev, fmt, args...)		\
4705 	netif_level(emerg, priv, type, dev, fmt, ##args)
4706 #define netif_alert(priv, type, dev, fmt, args...)		\
4707 	netif_level(alert, priv, type, dev, fmt, ##args)
4708 #define netif_crit(priv, type, dev, fmt, args...)		\
4709 	netif_level(crit, priv, type, dev, fmt, ##args)
4710 #define netif_err(priv, type, dev, fmt, args...)		\
4711 	netif_level(err, priv, type, dev, fmt, ##args)
4712 #define netif_warn(priv, type, dev, fmt, args...)		\
4713 	netif_level(warn, priv, type, dev, fmt, ##args)
4714 #define netif_notice(priv, type, dev, fmt, args...)		\
4715 	netif_level(notice, priv, type, dev, fmt, ##args)
4716 #define netif_info(priv, type, dev, fmt, args...)		\
4717 	netif_level(info, priv, type, dev, fmt, ##args)
4718 
4719 #if defined(CONFIG_DYNAMIC_DEBUG)
4720 #define netif_dbg(priv, type, netdev, format, args...)		\
4721 do {								\
4722 	if (netif_msg_##type(priv))				\
4723 		dynamic_netdev_dbg(netdev, format, ##args);	\
4724 } while (0)
4725 #elif defined(DEBUG)
4726 #define netif_dbg(priv, type, dev, format, args...)		\
4727 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4728 #else
4729 #define netif_dbg(priv, type, dev, format, args...)			\
4730 ({									\
4731 	if (0)								\
4732 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4733 	0;								\
4734 })
4735 #endif
4736 
4737 /* if @cond then downgrade to debug, else print at @level */
4738 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4739 	do {                                                              \
4740 		if (cond)                                                 \
4741 			netif_dbg(priv, type, netdev, fmt, ##args);       \
4742 		else                                                      \
4743 			netif_ ## level(priv, type, netdev, fmt, ##args); \
4744 	} while (0)
4745 
4746 #if defined(VERBOSE_DEBUG)
4747 #define netif_vdbg	netif_dbg
4748 #else
4749 #define netif_vdbg(priv, type, dev, format, args...)		\
4750 ({								\
4751 	if (0)							\
4752 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4753 	0;							\
4754 })
4755 #endif
4756 
4757 /*
4758  *	The list of packet types we will receive (as opposed to discard)
4759  *	and the routines to invoke.
4760  *
4761  *	Why 16. Because with 16 the only overlap we get on a hash of the
4762  *	low nibble of the protocol value is RARP/SNAP/X.25.
4763  *
4764  *		0800	IP
4765  *		0001	802.3
4766  *		0002	AX.25
4767  *		0004	802.2
4768  *		8035	RARP
4769  *		0005	SNAP
4770  *		0805	X.25
4771  *		0806	ARP
4772  *		8137	IPX
4773  *		0009	Localtalk
4774  *		86DD	IPv6
4775  */
4776 #define PTYPE_HASH_SIZE	(16)
4777 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4778 
4779 #endif	/* _LINUX_NETDEVICE_H */
4780