xref: /linux-6.15/include/linux/netdevice.h (revision 257eeded)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <[email protected]>
12  *		Corey Minyard <[email protected]>
13  *		Donald J. Becker, <[email protected]>
14  *		Alan Cox, <[email protected]>
15  *		Bjorn Ekwall. <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/workqueue.h>
39 #include <linux/dynamic_queue_limits.h>
40 
41 #include <linux/ethtool.h>
42 #include <net/net_namespace.h>
43 #ifdef CONFIG_DCB
44 #include <net/dcbnl.h>
45 #endif
46 #include <net/netprio_cgroup.h>
47 #include <net/xdp.h>
48 
49 #include <linux/netdev_features.h>
50 #include <linux/neighbour.h>
51 #include <uapi/linux/netdevice.h>
52 #include <uapi/linux/if_bonding.h>
53 #include <uapi/linux/pkt_cls.h>
54 #include <linux/hashtable.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 struct dsa_port;
60 
61 struct sfp_bus;
62 /* 802.11 specific */
63 struct wireless_dev;
64 /* 802.15.4 specific */
65 struct wpan_dev;
66 struct mpls_dev;
67 /* UDP Tunnel offloads */
68 struct udp_tunnel_info;
69 struct bpf_prog;
70 struct xdp_buff;
71 
72 void netdev_set_default_ethtool_ops(struct net_device *dev,
73 				    const struct ethtool_ops *ops);
74 
75 /* Backlog congestion levels */
76 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
77 #define NET_RX_DROP		1	/* packet dropped */
78 
79 /*
80  * Transmit return codes: transmit return codes originate from three different
81  * namespaces:
82  *
83  * - qdisc return codes
84  * - driver transmit return codes
85  * - errno values
86  *
87  * Drivers are allowed to return any one of those in their hard_start_xmit()
88  * function. Real network devices commonly used with qdiscs should only return
89  * the driver transmit return codes though - when qdiscs are used, the actual
90  * transmission happens asynchronously, so the value is not propagated to
91  * higher layers. Virtual network devices transmit synchronously; in this case
92  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
93  * others are propagated to higher layers.
94  */
95 
96 /* qdisc ->enqueue() return codes. */
97 #define NET_XMIT_SUCCESS	0x00
98 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
99 #define NET_XMIT_CN		0x02	/* congestion notification	*/
100 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
101 
102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
103  * indicates that the device will soon be dropping packets, or already drops
104  * some packets of the same priority; prompting us to send less aggressively. */
105 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
106 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
107 
108 /* Driver transmit return codes */
109 #define NETDEV_TX_MASK		0xf0
110 
111 enum netdev_tx {
112 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
113 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
114 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
115 };
116 typedef enum netdev_tx netdev_tx_t;
117 
118 /*
119  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121  */
122 static inline bool dev_xmit_complete(int rc)
123 {
124 	/*
125 	 * Positive cases with an skb consumed by a driver:
126 	 * - successful transmission (rc == NETDEV_TX_OK)
127 	 * - error while transmitting (rc < 0)
128 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 	 */
130 	if (likely(rc < NET_XMIT_MASK))
131 		return true;
132 
133 	return false;
134 }
135 
136 /*
137  *	Compute the worst-case header length according to the protocols
138  *	used.
139  */
140 
141 #if defined(CONFIG_HYPERV_NET)
142 # define LL_MAX_HEADER 128
143 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
144 # if defined(CONFIG_MAC80211_MESH)
145 #  define LL_MAX_HEADER 128
146 # else
147 #  define LL_MAX_HEADER 96
148 # endif
149 #else
150 # define LL_MAX_HEADER 32
151 #endif
152 
153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
154     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
155 #define MAX_HEADER LL_MAX_HEADER
156 #else
157 #define MAX_HEADER (LL_MAX_HEADER + 48)
158 #endif
159 
160 /*
161  *	Old network device statistics. Fields are native words
162  *	(unsigned long) so they can be read and written atomically.
163  */
164 
165 struct net_device_stats {
166 	unsigned long	rx_packets;
167 	unsigned long	tx_packets;
168 	unsigned long	rx_bytes;
169 	unsigned long	tx_bytes;
170 	unsigned long	rx_errors;
171 	unsigned long	tx_errors;
172 	unsigned long	rx_dropped;
173 	unsigned long	tx_dropped;
174 	unsigned long	multicast;
175 	unsigned long	collisions;
176 	unsigned long	rx_length_errors;
177 	unsigned long	rx_over_errors;
178 	unsigned long	rx_crc_errors;
179 	unsigned long	rx_frame_errors;
180 	unsigned long	rx_fifo_errors;
181 	unsigned long	rx_missed_errors;
182 	unsigned long	tx_aborted_errors;
183 	unsigned long	tx_carrier_errors;
184 	unsigned long	tx_fifo_errors;
185 	unsigned long	tx_heartbeat_errors;
186 	unsigned long	tx_window_errors;
187 	unsigned long	rx_compressed;
188 	unsigned long	tx_compressed;
189 };
190 
191 
192 #include <linux/cache.h>
193 #include <linux/skbuff.h>
194 
195 #ifdef CONFIG_RPS
196 #include <linux/static_key.h>
197 extern struct static_key rps_needed;
198 extern struct static_key rfs_needed;
199 #endif
200 
201 struct neighbour;
202 struct neigh_parms;
203 struct sk_buff;
204 
205 struct netdev_hw_addr {
206 	struct list_head	list;
207 	unsigned char		addr[MAX_ADDR_LEN];
208 	unsigned char		type;
209 #define NETDEV_HW_ADDR_T_LAN		1
210 #define NETDEV_HW_ADDR_T_SAN		2
211 #define NETDEV_HW_ADDR_T_SLAVE		3
212 #define NETDEV_HW_ADDR_T_UNICAST	4
213 #define NETDEV_HW_ADDR_T_MULTICAST	5
214 	bool			global_use;
215 	int			sync_cnt;
216 	int			refcount;
217 	int			synced;
218 	struct rcu_head		rcu_head;
219 };
220 
221 struct netdev_hw_addr_list {
222 	struct list_head	list;
223 	int			count;
224 };
225 
226 #define netdev_hw_addr_list_count(l) ((l)->count)
227 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
228 #define netdev_hw_addr_list_for_each(ha, l) \
229 	list_for_each_entry(ha, &(l)->list, list)
230 
231 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
232 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
233 #define netdev_for_each_uc_addr(ha, dev) \
234 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
235 
236 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
237 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
238 #define netdev_for_each_mc_addr(ha, dev) \
239 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
240 
241 struct hh_cache {
242 	unsigned int	hh_len;
243 	seqlock_t	hh_lock;
244 
245 	/* cached hardware header; allow for machine alignment needs.        */
246 #define HH_DATA_MOD	16
247 #define HH_DATA_OFF(__len) \
248 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
249 #define HH_DATA_ALIGN(__len) \
250 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
251 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
252 };
253 
254 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
255  * Alternative is:
256  *   dev->hard_header_len ? (dev->hard_header_len +
257  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
258  *
259  * We could use other alignment values, but we must maintain the
260  * relationship HH alignment <= LL alignment.
261  */
262 #define LL_RESERVED_SPACE(dev) \
263 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
265 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
266 
267 struct header_ops {
268 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
269 			   unsigned short type, const void *daddr,
270 			   const void *saddr, unsigned int len);
271 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
272 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
273 	void	(*cache_update)(struct hh_cache *hh,
274 				const struct net_device *dev,
275 				const unsigned char *haddr);
276 	bool	(*validate)(const char *ll_header, unsigned int len);
277 };
278 
279 /* These flag bits are private to the generic network queueing
280  * layer; they may not be explicitly referenced by any other
281  * code.
282  */
283 
284 enum netdev_state_t {
285 	__LINK_STATE_START,
286 	__LINK_STATE_PRESENT,
287 	__LINK_STATE_NOCARRIER,
288 	__LINK_STATE_LINKWATCH_PENDING,
289 	__LINK_STATE_DORMANT,
290 };
291 
292 
293 /*
294  * This structure holds boot-time configured netdevice settings. They
295  * are then used in the device probing.
296  */
297 struct netdev_boot_setup {
298 	char name[IFNAMSIZ];
299 	struct ifmap map;
300 };
301 #define NETDEV_BOOT_SETUP_MAX 8
302 
303 int __init netdev_boot_setup(char *str);
304 
305 struct gro_list {
306 	struct list_head	list;
307 	int			count;
308 };
309 
310 /*
311  * size of gro hash buckets, must less than bit number of
312  * napi_struct::gro_bitmask
313  */
314 #define GRO_HASH_BUCKETS	8
315 
316 /*
317  * Structure for NAPI scheduling similar to tasklet but with weighting
318  */
319 struct napi_struct {
320 	/* The poll_list must only be managed by the entity which
321 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
322 	 * whoever atomically sets that bit can add this napi_struct
323 	 * to the per-CPU poll_list, and whoever clears that bit
324 	 * can remove from the list right before clearing the bit.
325 	 */
326 	struct list_head	poll_list;
327 
328 	unsigned long		state;
329 	int			weight;
330 	unsigned long		gro_bitmask;
331 	int			(*poll)(struct napi_struct *, int);
332 #ifdef CONFIG_NETPOLL
333 	int			poll_owner;
334 #endif
335 	struct net_device	*dev;
336 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
337 	struct sk_buff		*skb;
338 	struct hrtimer		timer;
339 	struct list_head	dev_list;
340 	struct hlist_node	napi_hash_node;
341 	unsigned int		napi_id;
342 };
343 
344 enum {
345 	NAPI_STATE_SCHED,	/* Poll is scheduled */
346 	NAPI_STATE_MISSED,	/* reschedule a napi */
347 	NAPI_STATE_DISABLE,	/* Disable pending */
348 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
349 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
350 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
351 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
352 };
353 
354 enum {
355 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
356 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
357 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
358 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
359 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
360 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
361 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
362 };
363 
364 enum gro_result {
365 	GRO_MERGED,
366 	GRO_MERGED_FREE,
367 	GRO_HELD,
368 	GRO_NORMAL,
369 	GRO_DROP,
370 	GRO_CONSUMED,
371 };
372 typedef enum gro_result gro_result_t;
373 
374 /*
375  * enum rx_handler_result - Possible return values for rx_handlers.
376  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
377  * further.
378  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
379  * case skb->dev was changed by rx_handler.
380  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
381  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
382  *
383  * rx_handlers are functions called from inside __netif_receive_skb(), to do
384  * special processing of the skb, prior to delivery to protocol handlers.
385  *
386  * Currently, a net_device can only have a single rx_handler registered. Trying
387  * to register a second rx_handler will return -EBUSY.
388  *
389  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
390  * To unregister a rx_handler on a net_device, use
391  * netdev_rx_handler_unregister().
392  *
393  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
394  * do with the skb.
395  *
396  * If the rx_handler consumed the skb in some way, it should return
397  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
398  * the skb to be delivered in some other way.
399  *
400  * If the rx_handler changed skb->dev, to divert the skb to another
401  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
402  * new device will be called if it exists.
403  *
404  * If the rx_handler decides the skb should be ignored, it should return
405  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
406  * are registered on exact device (ptype->dev == skb->dev).
407  *
408  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
409  * delivered, it should return RX_HANDLER_PASS.
410  *
411  * A device without a registered rx_handler will behave as if rx_handler
412  * returned RX_HANDLER_PASS.
413  */
414 
415 enum rx_handler_result {
416 	RX_HANDLER_CONSUMED,
417 	RX_HANDLER_ANOTHER,
418 	RX_HANDLER_EXACT,
419 	RX_HANDLER_PASS,
420 };
421 typedef enum rx_handler_result rx_handler_result_t;
422 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
423 
424 void __napi_schedule(struct napi_struct *n);
425 void __napi_schedule_irqoff(struct napi_struct *n);
426 
427 static inline bool napi_disable_pending(struct napi_struct *n)
428 {
429 	return test_bit(NAPI_STATE_DISABLE, &n->state);
430 }
431 
432 bool napi_schedule_prep(struct napi_struct *n);
433 
434 /**
435  *	napi_schedule - schedule NAPI poll
436  *	@n: NAPI context
437  *
438  * Schedule NAPI poll routine to be called if it is not already
439  * running.
440  */
441 static inline void napi_schedule(struct napi_struct *n)
442 {
443 	if (napi_schedule_prep(n))
444 		__napi_schedule(n);
445 }
446 
447 /**
448  *	napi_schedule_irqoff - schedule NAPI poll
449  *	@n: NAPI context
450  *
451  * Variant of napi_schedule(), assuming hard irqs are masked.
452  */
453 static inline void napi_schedule_irqoff(struct napi_struct *n)
454 {
455 	if (napi_schedule_prep(n))
456 		__napi_schedule_irqoff(n);
457 }
458 
459 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
460 static inline bool napi_reschedule(struct napi_struct *napi)
461 {
462 	if (napi_schedule_prep(napi)) {
463 		__napi_schedule(napi);
464 		return true;
465 	}
466 	return false;
467 }
468 
469 bool napi_complete_done(struct napi_struct *n, int work_done);
470 /**
471  *	napi_complete - NAPI processing complete
472  *	@n: NAPI context
473  *
474  * Mark NAPI processing as complete.
475  * Consider using napi_complete_done() instead.
476  * Return false if device should avoid rearming interrupts.
477  */
478 static inline bool napi_complete(struct napi_struct *n)
479 {
480 	return napi_complete_done(n, 0);
481 }
482 
483 /**
484  *	napi_hash_del - remove a NAPI from global table
485  *	@napi: NAPI context
486  *
487  * Warning: caller must observe RCU grace period
488  * before freeing memory containing @napi, if
489  * this function returns true.
490  * Note: core networking stack automatically calls it
491  * from netif_napi_del().
492  * Drivers might want to call this helper to combine all
493  * the needed RCU grace periods into a single one.
494  */
495 bool napi_hash_del(struct napi_struct *napi);
496 
497 /**
498  *	napi_disable - prevent NAPI from scheduling
499  *	@n: NAPI context
500  *
501  * Stop NAPI from being scheduled on this context.
502  * Waits till any outstanding processing completes.
503  */
504 void napi_disable(struct napi_struct *n);
505 
506 /**
507  *	napi_enable - enable NAPI scheduling
508  *	@n: NAPI context
509  *
510  * Resume NAPI from being scheduled on this context.
511  * Must be paired with napi_disable.
512  */
513 static inline void napi_enable(struct napi_struct *n)
514 {
515 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
516 	smp_mb__before_atomic();
517 	clear_bit(NAPI_STATE_SCHED, &n->state);
518 	clear_bit(NAPI_STATE_NPSVC, &n->state);
519 }
520 
521 /**
522  *	napi_synchronize - wait until NAPI is not running
523  *	@n: NAPI context
524  *
525  * Wait until NAPI is done being scheduled on this context.
526  * Waits till any outstanding processing completes but
527  * does not disable future activations.
528  */
529 static inline void napi_synchronize(const struct napi_struct *n)
530 {
531 	if (IS_ENABLED(CONFIG_SMP))
532 		while (test_bit(NAPI_STATE_SCHED, &n->state))
533 			msleep(1);
534 	else
535 		barrier();
536 }
537 
538 /**
539  *	napi_if_scheduled_mark_missed - if napi is running, set the
540  *	NAPIF_STATE_MISSED
541  *	@n: NAPI context
542  *
543  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
544  * NAPI is scheduled.
545  **/
546 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
547 {
548 	unsigned long val, new;
549 
550 	do {
551 		val = READ_ONCE(n->state);
552 		if (val & NAPIF_STATE_DISABLE)
553 			return true;
554 
555 		if (!(val & NAPIF_STATE_SCHED))
556 			return false;
557 
558 		new = val | NAPIF_STATE_MISSED;
559 	} while (cmpxchg(&n->state, val, new) != val);
560 
561 	return true;
562 }
563 
564 enum netdev_queue_state_t {
565 	__QUEUE_STATE_DRV_XOFF,
566 	__QUEUE_STATE_STACK_XOFF,
567 	__QUEUE_STATE_FROZEN,
568 };
569 
570 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
571 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
572 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
573 
574 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
575 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
576 					QUEUE_STATE_FROZEN)
577 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
578 					QUEUE_STATE_FROZEN)
579 
580 /*
581  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
582  * netif_tx_* functions below are used to manipulate this flag.  The
583  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
584  * queue independently.  The netif_xmit_*stopped functions below are called
585  * to check if the queue has been stopped by the driver or stack (either
586  * of the XOFF bits are set in the state).  Drivers should not need to call
587  * netif_xmit*stopped functions, they should only be using netif_tx_*.
588  */
589 
590 struct netdev_queue {
591 /*
592  * read-mostly part
593  */
594 	struct net_device	*dev;
595 	struct Qdisc __rcu	*qdisc;
596 	struct Qdisc		*qdisc_sleeping;
597 #ifdef CONFIG_SYSFS
598 	struct kobject		kobj;
599 #endif
600 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
601 	int			numa_node;
602 #endif
603 	unsigned long		tx_maxrate;
604 	/*
605 	 * Number of TX timeouts for this queue
606 	 * (/sys/class/net/DEV/Q/trans_timeout)
607 	 */
608 	unsigned long		trans_timeout;
609 
610 	/* Subordinate device that the queue has been assigned to */
611 	struct net_device	*sb_dev;
612 #ifdef CONFIG_XDP_SOCKETS
613 	struct xdp_umem         *umem;
614 #endif
615 /*
616  * write-mostly part
617  */
618 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
619 	int			xmit_lock_owner;
620 	/*
621 	 * Time (in jiffies) of last Tx
622 	 */
623 	unsigned long		trans_start;
624 
625 	unsigned long		state;
626 
627 #ifdef CONFIG_BQL
628 	struct dql		dql;
629 #endif
630 } ____cacheline_aligned_in_smp;
631 
632 extern int sysctl_fb_tunnels_only_for_init_net;
633 extern int sysctl_devconf_inherit_init_net;
634 
635 static inline bool net_has_fallback_tunnels(const struct net *net)
636 {
637 	return net == &init_net ||
638 	       !IS_ENABLED(CONFIG_SYSCTL) ||
639 	       !sysctl_fb_tunnels_only_for_init_net;
640 }
641 
642 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
643 {
644 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
645 	return q->numa_node;
646 #else
647 	return NUMA_NO_NODE;
648 #endif
649 }
650 
651 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
652 {
653 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
654 	q->numa_node = node;
655 #endif
656 }
657 
658 #ifdef CONFIG_RPS
659 /*
660  * This structure holds an RPS map which can be of variable length.  The
661  * map is an array of CPUs.
662  */
663 struct rps_map {
664 	unsigned int len;
665 	struct rcu_head rcu;
666 	u16 cpus[0];
667 };
668 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
669 
670 /*
671  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
672  * tail pointer for that CPU's input queue at the time of last enqueue, and
673  * a hardware filter index.
674  */
675 struct rps_dev_flow {
676 	u16 cpu;
677 	u16 filter;
678 	unsigned int last_qtail;
679 };
680 #define RPS_NO_FILTER 0xffff
681 
682 /*
683  * The rps_dev_flow_table structure contains a table of flow mappings.
684  */
685 struct rps_dev_flow_table {
686 	unsigned int mask;
687 	struct rcu_head rcu;
688 	struct rps_dev_flow flows[0];
689 };
690 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
691     ((_num) * sizeof(struct rps_dev_flow)))
692 
693 /*
694  * The rps_sock_flow_table contains mappings of flows to the last CPU
695  * on which they were processed by the application (set in recvmsg).
696  * Each entry is a 32bit value. Upper part is the high-order bits
697  * of flow hash, lower part is CPU number.
698  * rps_cpu_mask is used to partition the space, depending on number of
699  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
700  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
701  * meaning we use 32-6=26 bits for the hash.
702  */
703 struct rps_sock_flow_table {
704 	u32	mask;
705 
706 	u32	ents[0] ____cacheline_aligned_in_smp;
707 };
708 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
709 
710 #define RPS_NO_CPU 0xffff
711 
712 extern u32 rps_cpu_mask;
713 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
714 
715 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
716 					u32 hash)
717 {
718 	if (table && hash) {
719 		unsigned int index = hash & table->mask;
720 		u32 val = hash & ~rps_cpu_mask;
721 
722 		/* We only give a hint, preemption can change CPU under us */
723 		val |= raw_smp_processor_id();
724 
725 		if (table->ents[index] != val)
726 			table->ents[index] = val;
727 	}
728 }
729 
730 #ifdef CONFIG_RFS_ACCEL
731 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
732 			 u16 filter_id);
733 #endif
734 #endif /* CONFIG_RPS */
735 
736 /* This structure contains an instance of an RX queue. */
737 struct netdev_rx_queue {
738 #ifdef CONFIG_RPS
739 	struct rps_map __rcu		*rps_map;
740 	struct rps_dev_flow_table __rcu	*rps_flow_table;
741 #endif
742 	struct kobject			kobj;
743 	struct net_device		*dev;
744 	struct xdp_rxq_info		xdp_rxq;
745 #ifdef CONFIG_XDP_SOCKETS
746 	struct xdp_umem                 *umem;
747 #endif
748 } ____cacheline_aligned_in_smp;
749 
750 /*
751  * RX queue sysfs structures and functions.
752  */
753 struct rx_queue_attribute {
754 	struct attribute attr;
755 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
756 	ssize_t (*store)(struct netdev_rx_queue *queue,
757 			 const char *buf, size_t len);
758 };
759 
760 #ifdef CONFIG_XPS
761 /*
762  * This structure holds an XPS map which can be of variable length.  The
763  * map is an array of queues.
764  */
765 struct xps_map {
766 	unsigned int len;
767 	unsigned int alloc_len;
768 	struct rcu_head rcu;
769 	u16 queues[0];
770 };
771 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
772 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
773        - sizeof(struct xps_map)) / sizeof(u16))
774 
775 /*
776  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
777  */
778 struct xps_dev_maps {
779 	struct rcu_head rcu;
780 	struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */
781 };
782 
783 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
784 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
785 
786 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
787 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
788 
789 #endif /* CONFIG_XPS */
790 
791 #define TC_MAX_QUEUE	16
792 #define TC_BITMASK	15
793 /* HW offloaded queuing disciplines txq count and offset maps */
794 struct netdev_tc_txq {
795 	u16 count;
796 	u16 offset;
797 };
798 
799 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
800 /*
801  * This structure is to hold information about the device
802  * configured to run FCoE protocol stack.
803  */
804 struct netdev_fcoe_hbainfo {
805 	char	manufacturer[64];
806 	char	serial_number[64];
807 	char	hardware_version[64];
808 	char	driver_version[64];
809 	char	optionrom_version[64];
810 	char	firmware_version[64];
811 	char	model[256];
812 	char	model_description[256];
813 };
814 #endif
815 
816 #define MAX_PHYS_ITEM_ID_LEN 32
817 
818 /* This structure holds a unique identifier to identify some
819  * physical item (port for example) used by a netdevice.
820  */
821 struct netdev_phys_item_id {
822 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
823 	unsigned char id_len;
824 };
825 
826 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
827 					    struct netdev_phys_item_id *b)
828 {
829 	return a->id_len == b->id_len &&
830 	       memcmp(a->id, b->id, a->id_len) == 0;
831 }
832 
833 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
834 				       struct sk_buff *skb,
835 				       struct net_device *sb_dev);
836 
837 enum tc_setup_type {
838 	TC_SETUP_QDISC_MQPRIO,
839 	TC_SETUP_CLSU32,
840 	TC_SETUP_CLSFLOWER,
841 	TC_SETUP_CLSMATCHALL,
842 	TC_SETUP_CLSBPF,
843 	TC_SETUP_BLOCK,
844 	TC_SETUP_QDISC_CBS,
845 	TC_SETUP_QDISC_RED,
846 	TC_SETUP_QDISC_PRIO,
847 	TC_SETUP_QDISC_MQ,
848 	TC_SETUP_QDISC_ETF,
849 	TC_SETUP_ROOT_QDISC,
850 	TC_SETUP_QDISC_GRED,
851 };
852 
853 /* These structures hold the attributes of bpf state that are being passed
854  * to the netdevice through the bpf op.
855  */
856 enum bpf_netdev_command {
857 	/* Set or clear a bpf program used in the earliest stages of packet
858 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
859 	 * is responsible for calling bpf_prog_put on any old progs that are
860 	 * stored. In case of error, the callee need not release the new prog
861 	 * reference, but on success it takes ownership and must bpf_prog_put
862 	 * when it is no longer used.
863 	 */
864 	XDP_SETUP_PROG,
865 	XDP_SETUP_PROG_HW,
866 	XDP_QUERY_PROG,
867 	XDP_QUERY_PROG_HW,
868 	/* BPF program for offload callbacks, invoked at program load time. */
869 	BPF_OFFLOAD_MAP_ALLOC,
870 	BPF_OFFLOAD_MAP_FREE,
871 	XDP_QUERY_XSK_UMEM,
872 	XDP_SETUP_XSK_UMEM,
873 };
874 
875 struct bpf_prog_offload_ops;
876 struct netlink_ext_ack;
877 struct xdp_umem;
878 
879 struct netdev_bpf {
880 	enum bpf_netdev_command command;
881 	union {
882 		/* XDP_SETUP_PROG */
883 		struct {
884 			u32 flags;
885 			struct bpf_prog *prog;
886 			struct netlink_ext_ack *extack;
887 		};
888 		/* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
889 		struct {
890 			u32 prog_id;
891 			/* flags with which program was installed */
892 			u32 prog_flags;
893 		};
894 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
895 		struct {
896 			struct bpf_offloaded_map *offmap;
897 		};
898 		/* XDP_QUERY_XSK_UMEM, XDP_SETUP_XSK_UMEM */
899 		struct {
900 			struct xdp_umem *umem; /* out for query*/
901 			u16 queue_id; /* in for query */
902 		} xsk;
903 	};
904 };
905 
906 #ifdef CONFIG_XFRM_OFFLOAD
907 struct xfrmdev_ops {
908 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
909 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
910 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
911 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
912 				       struct xfrm_state *x);
913 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
914 };
915 #endif
916 
917 #if IS_ENABLED(CONFIG_TLS_DEVICE)
918 enum tls_offload_ctx_dir {
919 	TLS_OFFLOAD_CTX_DIR_RX,
920 	TLS_OFFLOAD_CTX_DIR_TX,
921 };
922 
923 struct tls_crypto_info;
924 struct tls_context;
925 
926 struct tlsdev_ops {
927 	int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
928 			   enum tls_offload_ctx_dir direction,
929 			   struct tls_crypto_info *crypto_info,
930 			   u32 start_offload_tcp_sn);
931 	void (*tls_dev_del)(struct net_device *netdev,
932 			    struct tls_context *ctx,
933 			    enum tls_offload_ctx_dir direction);
934 	void (*tls_dev_resync_rx)(struct net_device *netdev,
935 				  struct sock *sk, u32 seq, u64 rcd_sn);
936 };
937 #endif
938 
939 struct dev_ifalias {
940 	struct rcu_head rcuhead;
941 	char ifalias[];
942 };
943 
944 /*
945  * This structure defines the management hooks for network devices.
946  * The following hooks can be defined; unless noted otherwise, they are
947  * optional and can be filled with a null pointer.
948  *
949  * int (*ndo_init)(struct net_device *dev);
950  *     This function is called once when a network device is registered.
951  *     The network device can use this for any late stage initialization
952  *     or semantic validation. It can fail with an error code which will
953  *     be propagated back to register_netdev.
954  *
955  * void (*ndo_uninit)(struct net_device *dev);
956  *     This function is called when device is unregistered or when registration
957  *     fails. It is not called if init fails.
958  *
959  * int (*ndo_open)(struct net_device *dev);
960  *     This function is called when a network device transitions to the up
961  *     state.
962  *
963  * int (*ndo_stop)(struct net_device *dev);
964  *     This function is called when a network device transitions to the down
965  *     state.
966  *
967  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
968  *                               struct net_device *dev);
969  *	Called when a packet needs to be transmitted.
970  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
971  *	the queue before that can happen; it's for obsolete devices and weird
972  *	corner cases, but the stack really does a non-trivial amount
973  *	of useless work if you return NETDEV_TX_BUSY.
974  *	Required; cannot be NULL.
975  *
976  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
977  *					   struct net_device *dev
978  *					   netdev_features_t features);
979  *	Called by core transmit path to determine if device is capable of
980  *	performing offload operations on a given packet. This is to give
981  *	the device an opportunity to implement any restrictions that cannot
982  *	be otherwise expressed by feature flags. The check is called with
983  *	the set of features that the stack has calculated and it returns
984  *	those the driver believes to be appropriate.
985  *
986  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
987  *                         struct net_device *sb_dev,
988  *                         select_queue_fallback_t fallback);
989  *	Called to decide which queue to use when device supports multiple
990  *	transmit queues.
991  *
992  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
993  *	This function is called to allow device receiver to make
994  *	changes to configuration when multicast or promiscuous is enabled.
995  *
996  * void (*ndo_set_rx_mode)(struct net_device *dev);
997  *	This function is called device changes address list filtering.
998  *	If driver handles unicast address filtering, it should set
999  *	IFF_UNICAST_FLT in its priv_flags.
1000  *
1001  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1002  *	This function  is called when the Media Access Control address
1003  *	needs to be changed. If this interface is not defined, the
1004  *	MAC address can not be changed.
1005  *
1006  * int (*ndo_validate_addr)(struct net_device *dev);
1007  *	Test if Media Access Control address is valid for the device.
1008  *
1009  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1010  *	Called when a user requests an ioctl which can't be handled by
1011  *	the generic interface code. If not defined ioctls return
1012  *	not supported error code.
1013  *
1014  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1015  *	Used to set network devices bus interface parameters. This interface
1016  *	is retained for legacy reasons; new devices should use the bus
1017  *	interface (PCI) for low level management.
1018  *
1019  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1020  *	Called when a user wants to change the Maximum Transfer Unit
1021  *	of a device.
1022  *
1023  * void (*ndo_tx_timeout)(struct net_device *dev);
1024  *	Callback used when the transmitter has not made any progress
1025  *	for dev->watchdog ticks.
1026  *
1027  * void (*ndo_get_stats64)(struct net_device *dev,
1028  *                         struct rtnl_link_stats64 *storage);
1029  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1030  *	Called when a user wants to get the network device usage
1031  *	statistics. Drivers must do one of the following:
1032  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1033  *	   rtnl_link_stats64 structure passed by the caller.
1034  *	2. Define @ndo_get_stats to update a net_device_stats structure
1035  *	   (which should normally be dev->stats) and return a pointer to
1036  *	   it. The structure may be changed asynchronously only if each
1037  *	   field is written atomically.
1038  *	3. Update dev->stats asynchronously and atomically, and define
1039  *	   neither operation.
1040  *
1041  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1042  *	Return true if this device supports offload stats of this attr_id.
1043  *
1044  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1045  *	void *attr_data)
1046  *	Get statistics for offload operations by attr_id. Write it into the
1047  *	attr_data pointer.
1048  *
1049  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1050  *	If device supports VLAN filtering this function is called when a
1051  *	VLAN id is registered.
1052  *
1053  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1054  *	If device supports VLAN filtering this function is called when a
1055  *	VLAN id is unregistered.
1056  *
1057  * void (*ndo_poll_controller)(struct net_device *dev);
1058  *
1059  *	SR-IOV management functions.
1060  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1061  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1062  *			  u8 qos, __be16 proto);
1063  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1064  *			  int max_tx_rate);
1065  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1066  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1067  * int (*ndo_get_vf_config)(struct net_device *dev,
1068  *			    int vf, struct ifla_vf_info *ivf);
1069  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1070  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1071  *			  struct nlattr *port[]);
1072  *
1073  *      Enable or disable the VF ability to query its RSS Redirection Table and
1074  *      Hash Key. This is needed since on some devices VF share this information
1075  *      with PF and querying it may introduce a theoretical security risk.
1076  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1077  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1078  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1079  *		       void *type_data);
1080  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1081  *	This is always called from the stack with the rtnl lock held and netif
1082  *	tx queues stopped. This allows the netdevice to perform queue
1083  *	management safely.
1084  *
1085  *	Fiber Channel over Ethernet (FCoE) offload functions.
1086  * int (*ndo_fcoe_enable)(struct net_device *dev);
1087  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1088  *	so the underlying device can perform whatever needed configuration or
1089  *	initialization to support acceleration of FCoE traffic.
1090  *
1091  * int (*ndo_fcoe_disable)(struct net_device *dev);
1092  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1093  *	so the underlying device can perform whatever needed clean-ups to
1094  *	stop supporting acceleration of FCoE traffic.
1095  *
1096  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1097  *			     struct scatterlist *sgl, unsigned int sgc);
1098  *	Called when the FCoE Initiator wants to initialize an I/O that
1099  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1100  *	perform necessary setup and returns 1 to indicate the device is set up
1101  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1102  *
1103  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1104  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1105  *	indicated by the FC exchange id 'xid', so the underlying device can
1106  *	clean up and reuse resources for later DDP requests.
1107  *
1108  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1109  *			      struct scatterlist *sgl, unsigned int sgc);
1110  *	Called when the FCoE Target wants to initialize an I/O that
1111  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1112  *	perform necessary setup and returns 1 to indicate the device is set up
1113  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1114  *
1115  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1116  *			       struct netdev_fcoe_hbainfo *hbainfo);
1117  *	Called when the FCoE Protocol stack wants information on the underlying
1118  *	device. This information is utilized by the FCoE protocol stack to
1119  *	register attributes with Fiber Channel management service as per the
1120  *	FC-GS Fabric Device Management Information(FDMI) specification.
1121  *
1122  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1123  *	Called when the underlying device wants to override default World Wide
1124  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1125  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1126  *	protocol stack to use.
1127  *
1128  *	RFS acceleration.
1129  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1130  *			    u16 rxq_index, u32 flow_id);
1131  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1132  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1133  *	Return the filter ID on success, or a negative error code.
1134  *
1135  *	Slave management functions (for bridge, bonding, etc).
1136  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1137  *	Called to make another netdev an underling.
1138  *
1139  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1140  *	Called to release previously enslaved netdev.
1141  *
1142  *      Feature/offload setting functions.
1143  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1144  *		netdev_features_t features);
1145  *	Adjusts the requested feature flags according to device-specific
1146  *	constraints, and returns the resulting flags. Must not modify
1147  *	the device state.
1148  *
1149  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1150  *	Called to update device configuration to new features. Passed
1151  *	feature set might be less than what was returned by ndo_fix_features()).
1152  *	Must return >0 or -errno if it changed dev->features itself.
1153  *
1154  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1155  *		      struct net_device *dev,
1156  *		      const unsigned char *addr, u16 vid, u16 flags,
1157  *		      struct netlink_ext_ack *extack);
1158  *	Adds an FDB entry to dev for addr.
1159  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1160  *		      struct net_device *dev,
1161  *		      const unsigned char *addr, u16 vid)
1162  *	Deletes the FDB entry from dev coresponding to addr.
1163  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1164  *		       struct net_device *dev, struct net_device *filter_dev,
1165  *		       int *idx)
1166  *	Used to add FDB entries to dump requests. Implementers should add
1167  *	entries to skb and update idx with the number of entries.
1168  *
1169  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1170  *			     u16 flags, struct netlink_ext_ack *extack)
1171  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1172  *			     struct net_device *dev, u32 filter_mask,
1173  *			     int nlflags)
1174  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1175  *			     u16 flags);
1176  *
1177  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1178  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1179  *	which do not represent real hardware may define this to allow their
1180  *	userspace components to manage their virtual carrier state. Devices
1181  *	that determine carrier state from physical hardware properties (eg
1182  *	network cables) or protocol-dependent mechanisms (eg
1183  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1184  *
1185  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1186  *			       struct netdev_phys_item_id *ppid);
1187  *	Called to get ID of physical port of this device. If driver does
1188  *	not implement this, it is assumed that the hw is not able to have
1189  *	multiple net devices on single physical port.
1190  *
1191  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1192  *				 struct netdev_phys_item_id *ppid)
1193  *	Called to get the parent ID of the physical port of this device.
1194  *
1195  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1196  *			      struct udp_tunnel_info *ti);
1197  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1198  *	address family that a UDP tunnel is listnening to. It is called only
1199  *	when a new port starts listening. The operation is protected by the
1200  *	RTNL.
1201  *
1202  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1203  *			      struct udp_tunnel_info *ti);
1204  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1205  *	address family that the UDP tunnel is not listening to anymore. The
1206  *	operation is protected by the RTNL.
1207  *
1208  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1209  *				 struct net_device *dev)
1210  *	Called by upper layer devices to accelerate switching or other
1211  *	station functionality into hardware. 'pdev is the lowerdev
1212  *	to use for the offload and 'dev' is the net device that will
1213  *	back the offload. Returns a pointer to the private structure
1214  *	the upper layer will maintain.
1215  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1216  *	Called by upper layer device to delete the station created
1217  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1218  *	the station and priv is the structure returned by the add
1219  *	operation.
1220  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1221  *			     int queue_index, u32 maxrate);
1222  *	Called when a user wants to set a max-rate limitation of specific
1223  *	TX queue.
1224  * int (*ndo_get_iflink)(const struct net_device *dev);
1225  *	Called to get the iflink value of this device.
1226  * void (*ndo_change_proto_down)(struct net_device *dev,
1227  *				 bool proto_down);
1228  *	This function is used to pass protocol port error state information
1229  *	to the switch driver. The switch driver can react to the proto_down
1230  *      by doing a phys down on the associated switch port.
1231  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1232  *	This function is used to get egress tunnel information for given skb.
1233  *	This is useful for retrieving outer tunnel header parameters while
1234  *	sampling packet.
1235  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1236  *	This function is used to specify the headroom that the skb must
1237  *	consider when allocation skb during packet reception. Setting
1238  *	appropriate rx headroom value allows avoiding skb head copy on
1239  *	forward. Setting a negative value resets the rx headroom to the
1240  *	default value.
1241  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1242  *	This function is used to set or query state related to XDP on the
1243  *	netdevice and manage BPF offload. See definition of
1244  *	enum bpf_netdev_command for details.
1245  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1246  *			u32 flags);
1247  *	This function is used to submit @n XDP packets for transmit on a
1248  *	netdevice. Returns number of frames successfully transmitted, frames
1249  *	that got dropped are freed/returned via xdp_return_frame().
1250  *	Returns negative number, means general error invoking ndo, meaning
1251  *	no frames were xmit'ed and core-caller will free all frames.
1252  */
1253 struct net_device_ops {
1254 	int			(*ndo_init)(struct net_device *dev);
1255 	void			(*ndo_uninit)(struct net_device *dev);
1256 	int			(*ndo_open)(struct net_device *dev);
1257 	int			(*ndo_stop)(struct net_device *dev);
1258 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1259 						  struct net_device *dev);
1260 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1261 						      struct net_device *dev,
1262 						      netdev_features_t features);
1263 	u16			(*ndo_select_queue)(struct net_device *dev,
1264 						    struct sk_buff *skb,
1265 						    struct net_device *sb_dev,
1266 						    select_queue_fallback_t fallback);
1267 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1268 						       int flags);
1269 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1270 	int			(*ndo_set_mac_address)(struct net_device *dev,
1271 						       void *addr);
1272 	int			(*ndo_validate_addr)(struct net_device *dev);
1273 	int			(*ndo_do_ioctl)(struct net_device *dev,
1274 					        struct ifreq *ifr, int cmd);
1275 	int			(*ndo_set_config)(struct net_device *dev,
1276 					          struct ifmap *map);
1277 	int			(*ndo_change_mtu)(struct net_device *dev,
1278 						  int new_mtu);
1279 	int			(*ndo_neigh_setup)(struct net_device *dev,
1280 						   struct neigh_parms *);
1281 	void			(*ndo_tx_timeout) (struct net_device *dev);
1282 
1283 	void			(*ndo_get_stats64)(struct net_device *dev,
1284 						   struct rtnl_link_stats64 *storage);
1285 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1286 	int			(*ndo_get_offload_stats)(int attr_id,
1287 							 const struct net_device *dev,
1288 							 void *attr_data);
1289 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1290 
1291 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1292 						       __be16 proto, u16 vid);
1293 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1294 						        __be16 proto, u16 vid);
1295 #ifdef CONFIG_NET_POLL_CONTROLLER
1296 	void                    (*ndo_poll_controller)(struct net_device *dev);
1297 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1298 						     struct netpoll_info *info);
1299 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1300 #endif
1301 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1302 						  int queue, u8 *mac);
1303 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1304 						   int queue, u16 vlan,
1305 						   u8 qos, __be16 proto);
1306 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1307 						   int vf, int min_tx_rate,
1308 						   int max_tx_rate);
1309 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1310 						       int vf, bool setting);
1311 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1312 						    int vf, bool setting);
1313 	int			(*ndo_get_vf_config)(struct net_device *dev,
1314 						     int vf,
1315 						     struct ifla_vf_info *ivf);
1316 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1317 							 int vf, int link_state);
1318 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1319 						    int vf,
1320 						    struct ifla_vf_stats
1321 						    *vf_stats);
1322 	int			(*ndo_set_vf_port)(struct net_device *dev,
1323 						   int vf,
1324 						   struct nlattr *port[]);
1325 	int			(*ndo_get_vf_port)(struct net_device *dev,
1326 						   int vf, struct sk_buff *skb);
1327 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1328 						   int vf, u64 guid,
1329 						   int guid_type);
1330 	int			(*ndo_set_vf_rss_query_en)(
1331 						   struct net_device *dev,
1332 						   int vf, bool setting);
1333 	int			(*ndo_setup_tc)(struct net_device *dev,
1334 						enum tc_setup_type type,
1335 						void *type_data);
1336 #if IS_ENABLED(CONFIG_FCOE)
1337 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1338 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1339 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1340 						      u16 xid,
1341 						      struct scatterlist *sgl,
1342 						      unsigned int sgc);
1343 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1344 						     u16 xid);
1345 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1346 						       u16 xid,
1347 						       struct scatterlist *sgl,
1348 						       unsigned int sgc);
1349 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1350 							struct netdev_fcoe_hbainfo *hbainfo);
1351 #endif
1352 
1353 #if IS_ENABLED(CONFIG_LIBFCOE)
1354 #define NETDEV_FCOE_WWNN 0
1355 #define NETDEV_FCOE_WWPN 1
1356 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1357 						    u64 *wwn, int type);
1358 #endif
1359 
1360 #ifdef CONFIG_RFS_ACCEL
1361 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1362 						     const struct sk_buff *skb,
1363 						     u16 rxq_index,
1364 						     u32 flow_id);
1365 #endif
1366 	int			(*ndo_add_slave)(struct net_device *dev,
1367 						 struct net_device *slave_dev,
1368 						 struct netlink_ext_ack *extack);
1369 	int			(*ndo_del_slave)(struct net_device *dev,
1370 						 struct net_device *slave_dev);
1371 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1372 						    netdev_features_t features);
1373 	int			(*ndo_set_features)(struct net_device *dev,
1374 						    netdev_features_t features);
1375 	int			(*ndo_neigh_construct)(struct net_device *dev,
1376 						       struct neighbour *n);
1377 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1378 						     struct neighbour *n);
1379 
1380 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1381 					       struct nlattr *tb[],
1382 					       struct net_device *dev,
1383 					       const unsigned char *addr,
1384 					       u16 vid,
1385 					       u16 flags,
1386 					       struct netlink_ext_ack *extack);
1387 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1388 					       struct nlattr *tb[],
1389 					       struct net_device *dev,
1390 					       const unsigned char *addr,
1391 					       u16 vid);
1392 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1393 						struct netlink_callback *cb,
1394 						struct net_device *dev,
1395 						struct net_device *filter_dev,
1396 						int *idx);
1397 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1398 					       struct nlattr *tb[],
1399 					       struct net_device *dev,
1400 					       const unsigned char *addr,
1401 					       u16 vid, u32 portid, u32 seq,
1402 					       struct netlink_ext_ack *extack);
1403 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1404 						      struct nlmsghdr *nlh,
1405 						      u16 flags,
1406 						      struct netlink_ext_ack *extack);
1407 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1408 						      u32 pid, u32 seq,
1409 						      struct net_device *dev,
1410 						      u32 filter_mask,
1411 						      int nlflags);
1412 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1413 						      struct nlmsghdr *nlh,
1414 						      u16 flags);
1415 	int			(*ndo_change_carrier)(struct net_device *dev,
1416 						      bool new_carrier);
1417 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1418 							struct netdev_phys_item_id *ppid);
1419 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1420 							  struct netdev_phys_item_id *ppid);
1421 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1422 							  char *name, size_t len);
1423 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1424 						      struct udp_tunnel_info *ti);
1425 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1426 						      struct udp_tunnel_info *ti);
1427 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1428 							struct net_device *dev);
1429 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1430 							void *priv);
1431 
1432 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1433 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1434 						      int queue_index,
1435 						      u32 maxrate);
1436 	int			(*ndo_get_iflink)(const struct net_device *dev);
1437 	int			(*ndo_change_proto_down)(struct net_device *dev,
1438 							 bool proto_down);
1439 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1440 						       struct sk_buff *skb);
1441 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1442 						       int needed_headroom);
1443 	int			(*ndo_bpf)(struct net_device *dev,
1444 					   struct netdev_bpf *bpf);
1445 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1446 						struct xdp_frame **xdp,
1447 						u32 flags);
1448 	int			(*ndo_xsk_async_xmit)(struct net_device *dev,
1449 						      u32 queue_id);
1450 };
1451 
1452 /**
1453  * enum net_device_priv_flags - &struct net_device priv_flags
1454  *
1455  * These are the &struct net_device, they are only set internally
1456  * by drivers and used in the kernel. These flags are invisible to
1457  * userspace; this means that the order of these flags can change
1458  * during any kernel release.
1459  *
1460  * You should have a pretty good reason to be extending these flags.
1461  *
1462  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1463  * @IFF_EBRIDGE: Ethernet bridging device
1464  * @IFF_BONDING: bonding master or slave
1465  * @IFF_ISATAP: ISATAP interface (RFC4214)
1466  * @IFF_WAN_HDLC: WAN HDLC device
1467  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1468  *	release skb->dst
1469  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1470  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1471  * @IFF_MACVLAN_PORT: device used as macvlan port
1472  * @IFF_BRIDGE_PORT: device used as bridge port
1473  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1474  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1475  * @IFF_UNICAST_FLT: Supports unicast filtering
1476  * @IFF_TEAM_PORT: device used as team port
1477  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1478  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1479  *	change when it's running
1480  * @IFF_MACVLAN: Macvlan device
1481  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1482  *	underlying stacked devices
1483  * @IFF_L3MDEV_MASTER: device is an L3 master device
1484  * @IFF_NO_QUEUE: device can run without qdisc attached
1485  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1486  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1487  * @IFF_TEAM: device is a team device
1488  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1489  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1490  *	entity (i.e. the master device for bridged veth)
1491  * @IFF_MACSEC: device is a MACsec device
1492  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1493  * @IFF_FAILOVER: device is a failover master device
1494  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1495  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1496  */
1497 enum netdev_priv_flags {
1498 	IFF_802_1Q_VLAN			= 1<<0,
1499 	IFF_EBRIDGE			= 1<<1,
1500 	IFF_BONDING			= 1<<2,
1501 	IFF_ISATAP			= 1<<3,
1502 	IFF_WAN_HDLC			= 1<<4,
1503 	IFF_XMIT_DST_RELEASE		= 1<<5,
1504 	IFF_DONT_BRIDGE			= 1<<6,
1505 	IFF_DISABLE_NETPOLL		= 1<<7,
1506 	IFF_MACVLAN_PORT		= 1<<8,
1507 	IFF_BRIDGE_PORT			= 1<<9,
1508 	IFF_OVS_DATAPATH		= 1<<10,
1509 	IFF_TX_SKB_SHARING		= 1<<11,
1510 	IFF_UNICAST_FLT			= 1<<12,
1511 	IFF_TEAM_PORT			= 1<<13,
1512 	IFF_SUPP_NOFCS			= 1<<14,
1513 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1514 	IFF_MACVLAN			= 1<<16,
1515 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1516 	IFF_L3MDEV_MASTER		= 1<<18,
1517 	IFF_NO_QUEUE			= 1<<19,
1518 	IFF_OPENVSWITCH			= 1<<20,
1519 	IFF_L3MDEV_SLAVE		= 1<<21,
1520 	IFF_TEAM			= 1<<22,
1521 	IFF_RXFH_CONFIGURED		= 1<<23,
1522 	IFF_PHONY_HEADROOM		= 1<<24,
1523 	IFF_MACSEC			= 1<<25,
1524 	IFF_NO_RX_HANDLER		= 1<<26,
1525 	IFF_FAILOVER			= 1<<27,
1526 	IFF_FAILOVER_SLAVE		= 1<<28,
1527 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1528 };
1529 
1530 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1531 #define IFF_EBRIDGE			IFF_EBRIDGE
1532 #define IFF_BONDING			IFF_BONDING
1533 #define IFF_ISATAP			IFF_ISATAP
1534 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1535 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1536 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1537 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1538 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1539 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1540 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1541 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1542 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1543 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1544 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1545 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1546 #define IFF_MACVLAN			IFF_MACVLAN
1547 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1548 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1549 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1550 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1551 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1552 #define IFF_TEAM			IFF_TEAM
1553 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1554 #define IFF_MACSEC			IFF_MACSEC
1555 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1556 #define IFF_FAILOVER			IFF_FAILOVER
1557 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1558 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1559 
1560 /**
1561  *	struct net_device - The DEVICE structure.
1562  *
1563  *	Actually, this whole structure is a big mistake.  It mixes I/O
1564  *	data with strictly "high-level" data, and it has to know about
1565  *	almost every data structure used in the INET module.
1566  *
1567  *	@name:	This is the first field of the "visible" part of this structure
1568  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1569  *		of the interface.
1570  *
1571  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1572  *	@ifalias:	SNMP alias
1573  *	@mem_end:	Shared memory end
1574  *	@mem_start:	Shared memory start
1575  *	@base_addr:	Device I/O address
1576  *	@irq:		Device IRQ number
1577  *
1578  *	@state:		Generic network queuing layer state, see netdev_state_t
1579  *	@dev_list:	The global list of network devices
1580  *	@napi_list:	List entry used for polling NAPI devices
1581  *	@unreg_list:	List entry  when we are unregistering the
1582  *			device; see the function unregister_netdev
1583  *	@close_list:	List entry used when we are closing the device
1584  *	@ptype_all:     Device-specific packet handlers for all protocols
1585  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1586  *
1587  *	@adj_list:	Directly linked devices, like slaves for bonding
1588  *	@features:	Currently active device features
1589  *	@hw_features:	User-changeable features
1590  *
1591  *	@wanted_features:	User-requested features
1592  *	@vlan_features:		Mask of features inheritable by VLAN devices
1593  *
1594  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1595  *				This field indicates what encapsulation
1596  *				offloads the hardware is capable of doing,
1597  *				and drivers will need to set them appropriately.
1598  *
1599  *	@mpls_features:	Mask of features inheritable by MPLS
1600  *
1601  *	@ifindex:	interface index
1602  *	@group:		The group the device belongs to
1603  *
1604  *	@stats:		Statistics struct, which was left as a legacy, use
1605  *			rtnl_link_stats64 instead
1606  *
1607  *	@rx_dropped:	Dropped packets by core network,
1608  *			do not use this in drivers
1609  *	@tx_dropped:	Dropped packets by core network,
1610  *			do not use this in drivers
1611  *	@rx_nohandler:	nohandler dropped packets by core network on
1612  *			inactive devices, do not use this in drivers
1613  *	@carrier_up_count:	Number of times the carrier has been up
1614  *	@carrier_down_count:	Number of times the carrier has been down
1615  *
1616  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1617  *				instead of ioctl,
1618  *				see <net/iw_handler.h> for details.
1619  *	@wireless_data:	Instance data managed by the core of wireless extensions
1620  *
1621  *	@netdev_ops:	Includes several pointers to callbacks,
1622  *			if one wants to override the ndo_*() functions
1623  *	@ethtool_ops:	Management operations
1624  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1625  *			discovery handling. Necessary for e.g. 6LoWPAN.
1626  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1627  *			of Layer 2 headers.
1628  *
1629  *	@flags:		Interface flags (a la BSD)
1630  *	@priv_flags:	Like 'flags' but invisible to userspace,
1631  *			see if.h for the definitions
1632  *	@gflags:	Global flags ( kept as legacy )
1633  *	@padded:	How much padding added by alloc_netdev()
1634  *	@operstate:	RFC2863 operstate
1635  *	@link_mode:	Mapping policy to operstate
1636  *	@if_port:	Selectable AUI, TP, ...
1637  *	@dma:		DMA channel
1638  *	@mtu:		Interface MTU value
1639  *	@min_mtu:	Interface Minimum MTU value
1640  *	@max_mtu:	Interface Maximum MTU value
1641  *	@type:		Interface hardware type
1642  *	@hard_header_len: Maximum hardware header length.
1643  *	@min_header_len:  Minimum hardware header length
1644  *
1645  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1646  *			  cases can this be guaranteed
1647  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1648  *			  cases can this be guaranteed. Some cases also use
1649  *			  LL_MAX_HEADER instead to allocate the skb
1650  *
1651  *	interface address info:
1652  *
1653  * 	@perm_addr:		Permanent hw address
1654  * 	@addr_assign_type:	Hw address assignment type
1655  * 	@addr_len:		Hardware address length
1656  *	@neigh_priv_len:	Used in neigh_alloc()
1657  * 	@dev_id:		Used to differentiate devices that share
1658  * 				the same link layer address
1659  * 	@dev_port:		Used to differentiate devices that share
1660  * 				the same function
1661  *	@addr_list_lock:	XXX: need comments on this one
1662  *	@uc_promisc:		Counter that indicates promiscuous mode
1663  *				has been enabled due to the need to listen to
1664  *				additional unicast addresses in a device that
1665  *				does not implement ndo_set_rx_mode()
1666  *	@uc:			unicast mac addresses
1667  *	@mc:			multicast mac addresses
1668  *	@dev_addrs:		list of device hw addresses
1669  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1670  *	@promiscuity:		Number of times the NIC is told to work in
1671  *				promiscuous mode; if it becomes 0 the NIC will
1672  *				exit promiscuous mode
1673  *	@allmulti:		Counter, enables or disables allmulticast mode
1674  *
1675  *	@vlan_info:	VLAN info
1676  *	@dsa_ptr:	dsa specific data
1677  *	@tipc_ptr:	TIPC specific data
1678  *	@atalk_ptr:	AppleTalk link
1679  *	@ip_ptr:	IPv4 specific data
1680  *	@dn_ptr:	DECnet specific data
1681  *	@ip6_ptr:	IPv6 specific data
1682  *	@ax25_ptr:	AX.25 specific data
1683  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1684  *
1685  *	@dev_addr:	Hw address (before bcast,
1686  *			because most packets are unicast)
1687  *
1688  *	@_rx:			Array of RX queues
1689  *	@num_rx_queues:		Number of RX queues
1690  *				allocated at register_netdev() time
1691  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1692  *
1693  *	@rx_handler:		handler for received packets
1694  *	@rx_handler_data: 	XXX: need comments on this one
1695  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1696  *				ingress processing
1697  *	@ingress_queue:		XXX: need comments on this one
1698  *	@broadcast:		hw bcast address
1699  *
1700  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1701  *			indexed by RX queue number. Assigned by driver.
1702  *			This must only be set if the ndo_rx_flow_steer
1703  *			operation is defined
1704  *	@index_hlist:		Device index hash chain
1705  *
1706  *	@_tx:			Array of TX queues
1707  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1708  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1709  *	@qdisc:			Root qdisc from userspace point of view
1710  *	@tx_queue_len:		Max frames per queue allowed
1711  *	@tx_global_lock: 	XXX: need comments on this one
1712  *
1713  *	@xps_maps:	XXX: need comments on this one
1714  *	@miniq_egress:		clsact qdisc specific data for
1715  *				egress processing
1716  *	@watchdog_timeo:	Represents the timeout that is used by
1717  *				the watchdog (see dev_watchdog())
1718  *	@watchdog_timer:	List of timers
1719  *
1720  *	@pcpu_refcnt:		Number of references to this device
1721  *	@todo_list:		Delayed register/unregister
1722  *	@link_watch_list:	XXX: need comments on this one
1723  *
1724  *	@reg_state:		Register/unregister state machine
1725  *	@dismantle:		Device is going to be freed
1726  *	@rtnl_link_state:	This enum represents the phases of creating
1727  *				a new link
1728  *
1729  *	@needs_free_netdev:	Should unregister perform free_netdev?
1730  *	@priv_destructor:	Called from unregister
1731  *	@npinfo:		XXX: need comments on this one
1732  * 	@nd_net:		Network namespace this network device is inside
1733  *
1734  * 	@ml_priv:	Mid-layer private
1735  * 	@lstats:	Loopback statistics
1736  * 	@tstats:	Tunnel statistics
1737  * 	@dstats:	Dummy statistics
1738  * 	@vstats:	Virtual ethernet statistics
1739  *
1740  *	@garp_port:	GARP
1741  *	@mrp_port:	MRP
1742  *
1743  *	@dev:		Class/net/name entry
1744  *	@sysfs_groups:	Space for optional device, statistics and wireless
1745  *			sysfs groups
1746  *
1747  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1748  *	@rtnl_link_ops:	Rtnl_link_ops
1749  *
1750  *	@gso_max_size:	Maximum size of generic segmentation offload
1751  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1752  *			NIC for GSO
1753  *
1754  *	@dcbnl_ops:	Data Center Bridging netlink ops
1755  *	@num_tc:	Number of traffic classes in the net device
1756  *	@tc_to_txq:	XXX: need comments on this one
1757  *	@prio_tc_map:	XXX: need comments on this one
1758  *
1759  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1760  *
1761  *	@priomap:	XXX: need comments on this one
1762  *	@phydev:	Physical device may attach itself
1763  *			for hardware timestamping
1764  *	@sfp_bus:	attached &struct sfp_bus structure.
1765  *
1766  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1767  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1768  *
1769  *	@proto_down:	protocol port state information can be sent to the
1770  *			switch driver and used to set the phys state of the
1771  *			switch port.
1772  *
1773  *	@wol_enabled:	Wake-on-LAN is enabled
1774  *
1775  *	FIXME: cleanup struct net_device such that network protocol info
1776  *	moves out.
1777  */
1778 
1779 struct net_device {
1780 	char			name[IFNAMSIZ];
1781 	struct hlist_node	name_hlist;
1782 	struct dev_ifalias	__rcu *ifalias;
1783 	/*
1784 	 *	I/O specific fields
1785 	 *	FIXME: Merge these and struct ifmap into one
1786 	 */
1787 	unsigned long		mem_end;
1788 	unsigned long		mem_start;
1789 	unsigned long		base_addr;
1790 	int			irq;
1791 
1792 	/*
1793 	 *	Some hardware also needs these fields (state,dev_list,
1794 	 *	napi_list,unreg_list,close_list) but they are not
1795 	 *	part of the usual set specified in Space.c.
1796 	 */
1797 
1798 	unsigned long		state;
1799 
1800 	struct list_head	dev_list;
1801 	struct list_head	napi_list;
1802 	struct list_head	unreg_list;
1803 	struct list_head	close_list;
1804 	struct list_head	ptype_all;
1805 	struct list_head	ptype_specific;
1806 
1807 	struct {
1808 		struct list_head upper;
1809 		struct list_head lower;
1810 	} adj_list;
1811 
1812 	netdev_features_t	features;
1813 	netdev_features_t	hw_features;
1814 	netdev_features_t	wanted_features;
1815 	netdev_features_t	vlan_features;
1816 	netdev_features_t	hw_enc_features;
1817 	netdev_features_t	mpls_features;
1818 	netdev_features_t	gso_partial_features;
1819 
1820 	int			ifindex;
1821 	int			group;
1822 
1823 	struct net_device_stats	stats;
1824 
1825 	atomic_long_t		rx_dropped;
1826 	atomic_long_t		tx_dropped;
1827 	atomic_long_t		rx_nohandler;
1828 
1829 	/* Stats to monitor link on/off, flapping */
1830 	atomic_t		carrier_up_count;
1831 	atomic_t		carrier_down_count;
1832 
1833 #ifdef CONFIG_WIRELESS_EXT
1834 	const struct iw_handler_def *wireless_handlers;
1835 	struct iw_public_data	*wireless_data;
1836 #endif
1837 	const struct net_device_ops *netdev_ops;
1838 	const struct ethtool_ops *ethtool_ops;
1839 #ifdef CONFIG_NET_SWITCHDEV
1840 	const struct switchdev_ops *switchdev_ops;
1841 #endif
1842 #ifdef CONFIG_NET_L3_MASTER_DEV
1843 	const struct l3mdev_ops	*l3mdev_ops;
1844 #endif
1845 #if IS_ENABLED(CONFIG_IPV6)
1846 	const struct ndisc_ops *ndisc_ops;
1847 #endif
1848 
1849 #ifdef CONFIG_XFRM_OFFLOAD
1850 	const struct xfrmdev_ops *xfrmdev_ops;
1851 #endif
1852 
1853 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1854 	const struct tlsdev_ops *tlsdev_ops;
1855 #endif
1856 
1857 	const struct header_ops *header_ops;
1858 
1859 	unsigned int		flags;
1860 	unsigned int		priv_flags;
1861 
1862 	unsigned short		gflags;
1863 	unsigned short		padded;
1864 
1865 	unsigned char		operstate;
1866 	unsigned char		link_mode;
1867 
1868 	unsigned char		if_port;
1869 	unsigned char		dma;
1870 
1871 	unsigned int		mtu;
1872 	unsigned int		min_mtu;
1873 	unsigned int		max_mtu;
1874 	unsigned short		type;
1875 	unsigned short		hard_header_len;
1876 	unsigned char		min_header_len;
1877 
1878 	unsigned short		needed_headroom;
1879 	unsigned short		needed_tailroom;
1880 
1881 	/* Interface address info. */
1882 	unsigned char		perm_addr[MAX_ADDR_LEN];
1883 	unsigned char		addr_assign_type;
1884 	unsigned char		addr_len;
1885 	unsigned short		neigh_priv_len;
1886 	unsigned short          dev_id;
1887 	unsigned short          dev_port;
1888 	spinlock_t		addr_list_lock;
1889 	unsigned char		name_assign_type;
1890 	bool			uc_promisc;
1891 	struct netdev_hw_addr_list	uc;
1892 	struct netdev_hw_addr_list	mc;
1893 	struct netdev_hw_addr_list	dev_addrs;
1894 
1895 #ifdef CONFIG_SYSFS
1896 	struct kset		*queues_kset;
1897 #endif
1898 	unsigned int		promiscuity;
1899 	unsigned int		allmulti;
1900 
1901 
1902 	/* Protocol-specific pointers */
1903 
1904 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1905 	struct vlan_info __rcu	*vlan_info;
1906 #endif
1907 #if IS_ENABLED(CONFIG_NET_DSA)
1908 	struct dsa_port		*dsa_ptr;
1909 #endif
1910 #if IS_ENABLED(CONFIG_TIPC)
1911 	struct tipc_bearer __rcu *tipc_ptr;
1912 #endif
1913 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1914 	void 			*atalk_ptr;
1915 #endif
1916 	struct in_device __rcu	*ip_ptr;
1917 #if IS_ENABLED(CONFIG_DECNET)
1918 	struct dn_dev __rcu     *dn_ptr;
1919 #endif
1920 	struct inet6_dev __rcu	*ip6_ptr;
1921 #if IS_ENABLED(CONFIG_AX25)
1922 	void			*ax25_ptr;
1923 #endif
1924 	struct wireless_dev	*ieee80211_ptr;
1925 	struct wpan_dev		*ieee802154_ptr;
1926 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1927 	struct mpls_dev __rcu	*mpls_ptr;
1928 #endif
1929 
1930 /*
1931  * Cache lines mostly used on receive path (including eth_type_trans())
1932  */
1933 	/* Interface address info used in eth_type_trans() */
1934 	unsigned char		*dev_addr;
1935 
1936 	struct netdev_rx_queue	*_rx;
1937 	unsigned int		num_rx_queues;
1938 	unsigned int		real_num_rx_queues;
1939 
1940 	struct bpf_prog __rcu	*xdp_prog;
1941 	unsigned long		gro_flush_timeout;
1942 	rx_handler_func_t __rcu	*rx_handler;
1943 	void __rcu		*rx_handler_data;
1944 
1945 #ifdef CONFIG_NET_CLS_ACT
1946 	struct mini_Qdisc __rcu	*miniq_ingress;
1947 #endif
1948 	struct netdev_queue __rcu *ingress_queue;
1949 #ifdef CONFIG_NETFILTER_INGRESS
1950 	struct nf_hook_entries __rcu *nf_hooks_ingress;
1951 #endif
1952 
1953 	unsigned char		broadcast[MAX_ADDR_LEN];
1954 #ifdef CONFIG_RFS_ACCEL
1955 	struct cpu_rmap		*rx_cpu_rmap;
1956 #endif
1957 	struct hlist_node	index_hlist;
1958 
1959 /*
1960  * Cache lines mostly used on transmit path
1961  */
1962 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1963 	unsigned int		num_tx_queues;
1964 	unsigned int		real_num_tx_queues;
1965 	struct Qdisc		*qdisc;
1966 #ifdef CONFIG_NET_SCHED
1967 	DECLARE_HASHTABLE	(qdisc_hash, 4);
1968 #endif
1969 	unsigned int		tx_queue_len;
1970 	spinlock_t		tx_global_lock;
1971 	int			watchdog_timeo;
1972 
1973 #ifdef CONFIG_XPS
1974 	struct xps_dev_maps __rcu *xps_cpus_map;
1975 	struct xps_dev_maps __rcu *xps_rxqs_map;
1976 #endif
1977 #ifdef CONFIG_NET_CLS_ACT
1978 	struct mini_Qdisc __rcu	*miniq_egress;
1979 #endif
1980 
1981 	/* These may be needed for future network-power-down code. */
1982 	struct timer_list	watchdog_timer;
1983 
1984 	int __percpu		*pcpu_refcnt;
1985 	struct list_head	todo_list;
1986 
1987 	struct list_head	link_watch_list;
1988 
1989 	enum { NETREG_UNINITIALIZED=0,
1990 	       NETREG_REGISTERED,	/* completed register_netdevice */
1991 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1992 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1993 	       NETREG_RELEASED,		/* called free_netdev */
1994 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1995 	} reg_state:8;
1996 
1997 	bool dismantle;
1998 
1999 	enum {
2000 		RTNL_LINK_INITIALIZED,
2001 		RTNL_LINK_INITIALIZING,
2002 	} rtnl_link_state:16;
2003 
2004 	bool needs_free_netdev;
2005 	void (*priv_destructor)(struct net_device *dev);
2006 
2007 #ifdef CONFIG_NETPOLL
2008 	struct netpoll_info __rcu	*npinfo;
2009 #endif
2010 
2011 	possible_net_t			nd_net;
2012 
2013 	/* mid-layer private */
2014 	union {
2015 		void					*ml_priv;
2016 		struct pcpu_lstats __percpu		*lstats;
2017 		struct pcpu_sw_netstats __percpu	*tstats;
2018 		struct pcpu_dstats __percpu		*dstats;
2019 	};
2020 
2021 #if IS_ENABLED(CONFIG_GARP)
2022 	struct garp_port __rcu	*garp_port;
2023 #endif
2024 #if IS_ENABLED(CONFIG_MRP)
2025 	struct mrp_port __rcu	*mrp_port;
2026 #endif
2027 
2028 	struct device		dev;
2029 	const struct attribute_group *sysfs_groups[4];
2030 	const struct attribute_group *sysfs_rx_queue_group;
2031 
2032 	const struct rtnl_link_ops *rtnl_link_ops;
2033 
2034 	/* for setting kernel sock attribute on TCP connection setup */
2035 #define GSO_MAX_SIZE		65536
2036 	unsigned int		gso_max_size;
2037 #define GSO_MAX_SEGS		65535
2038 	u16			gso_max_segs;
2039 
2040 #ifdef CONFIG_DCB
2041 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2042 #endif
2043 	s16			num_tc;
2044 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2045 	u8			prio_tc_map[TC_BITMASK + 1];
2046 
2047 #if IS_ENABLED(CONFIG_FCOE)
2048 	unsigned int		fcoe_ddp_xid;
2049 #endif
2050 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2051 	struct netprio_map __rcu *priomap;
2052 #endif
2053 	struct phy_device	*phydev;
2054 	struct sfp_bus		*sfp_bus;
2055 	struct lock_class_key	*qdisc_tx_busylock;
2056 	struct lock_class_key	*qdisc_running_key;
2057 	bool			proto_down;
2058 	unsigned		wol_enabled:1;
2059 };
2060 #define to_net_dev(d) container_of(d, struct net_device, dev)
2061 
2062 static inline bool netif_elide_gro(const struct net_device *dev)
2063 {
2064 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2065 		return true;
2066 	return false;
2067 }
2068 
2069 #define	NETDEV_ALIGN		32
2070 
2071 static inline
2072 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2073 {
2074 	return dev->prio_tc_map[prio & TC_BITMASK];
2075 }
2076 
2077 static inline
2078 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2079 {
2080 	if (tc >= dev->num_tc)
2081 		return -EINVAL;
2082 
2083 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2084 	return 0;
2085 }
2086 
2087 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2088 void netdev_reset_tc(struct net_device *dev);
2089 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2090 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2091 
2092 static inline
2093 int netdev_get_num_tc(struct net_device *dev)
2094 {
2095 	return dev->num_tc;
2096 }
2097 
2098 void netdev_unbind_sb_channel(struct net_device *dev,
2099 			      struct net_device *sb_dev);
2100 int netdev_bind_sb_channel_queue(struct net_device *dev,
2101 				 struct net_device *sb_dev,
2102 				 u8 tc, u16 count, u16 offset);
2103 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2104 static inline int netdev_get_sb_channel(struct net_device *dev)
2105 {
2106 	return max_t(int, -dev->num_tc, 0);
2107 }
2108 
2109 static inline
2110 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2111 					 unsigned int index)
2112 {
2113 	return &dev->_tx[index];
2114 }
2115 
2116 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2117 						    const struct sk_buff *skb)
2118 {
2119 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2120 }
2121 
2122 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2123 					    void (*f)(struct net_device *,
2124 						      struct netdev_queue *,
2125 						      void *),
2126 					    void *arg)
2127 {
2128 	unsigned int i;
2129 
2130 	for (i = 0; i < dev->num_tx_queues; i++)
2131 		f(dev, &dev->_tx[i], arg);
2132 }
2133 
2134 #define netdev_lockdep_set_classes(dev)				\
2135 {								\
2136 	static struct lock_class_key qdisc_tx_busylock_key;	\
2137 	static struct lock_class_key qdisc_running_key;		\
2138 	static struct lock_class_key qdisc_xmit_lock_key;	\
2139 	static struct lock_class_key dev_addr_list_lock_key;	\
2140 	unsigned int i;						\
2141 								\
2142 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2143 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2144 	lockdep_set_class(&(dev)->addr_list_lock,		\
2145 			  &dev_addr_list_lock_key); 		\
2146 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2147 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2148 				  &qdisc_xmit_lock_key);	\
2149 }
2150 
2151 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2152 				    struct sk_buff *skb,
2153 				    struct net_device *sb_dev);
2154 
2155 /* returns the headroom that the master device needs to take in account
2156  * when forwarding to this dev
2157  */
2158 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2159 {
2160 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2161 }
2162 
2163 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2164 {
2165 	if (dev->netdev_ops->ndo_set_rx_headroom)
2166 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2167 }
2168 
2169 /* set the device rx headroom to the dev's default */
2170 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2171 {
2172 	netdev_set_rx_headroom(dev, -1);
2173 }
2174 
2175 /*
2176  * Net namespace inlines
2177  */
2178 static inline
2179 struct net *dev_net(const struct net_device *dev)
2180 {
2181 	return read_pnet(&dev->nd_net);
2182 }
2183 
2184 static inline
2185 void dev_net_set(struct net_device *dev, struct net *net)
2186 {
2187 	write_pnet(&dev->nd_net, net);
2188 }
2189 
2190 /**
2191  *	netdev_priv - access network device private data
2192  *	@dev: network device
2193  *
2194  * Get network device private data
2195  */
2196 static inline void *netdev_priv(const struct net_device *dev)
2197 {
2198 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2199 }
2200 
2201 /* Set the sysfs physical device reference for the network logical device
2202  * if set prior to registration will cause a symlink during initialization.
2203  */
2204 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2205 
2206 /* Set the sysfs device type for the network logical device to allow
2207  * fine-grained identification of different network device types. For
2208  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2209  */
2210 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2211 
2212 /* Default NAPI poll() weight
2213  * Device drivers are strongly advised to not use bigger value
2214  */
2215 #define NAPI_POLL_WEIGHT 64
2216 
2217 /**
2218  *	netif_napi_add - initialize a NAPI context
2219  *	@dev:  network device
2220  *	@napi: NAPI context
2221  *	@poll: polling function
2222  *	@weight: default weight
2223  *
2224  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2225  * *any* of the other NAPI-related functions.
2226  */
2227 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2228 		    int (*poll)(struct napi_struct *, int), int weight);
2229 
2230 /**
2231  *	netif_tx_napi_add - initialize a NAPI context
2232  *	@dev:  network device
2233  *	@napi: NAPI context
2234  *	@poll: polling function
2235  *	@weight: default weight
2236  *
2237  * This variant of netif_napi_add() should be used from drivers using NAPI
2238  * to exclusively poll a TX queue.
2239  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2240  */
2241 static inline void netif_tx_napi_add(struct net_device *dev,
2242 				     struct napi_struct *napi,
2243 				     int (*poll)(struct napi_struct *, int),
2244 				     int weight)
2245 {
2246 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2247 	netif_napi_add(dev, napi, poll, weight);
2248 }
2249 
2250 /**
2251  *  netif_napi_del - remove a NAPI context
2252  *  @napi: NAPI context
2253  *
2254  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2255  */
2256 void netif_napi_del(struct napi_struct *napi);
2257 
2258 struct napi_gro_cb {
2259 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2260 	void	*frag0;
2261 
2262 	/* Length of frag0. */
2263 	unsigned int frag0_len;
2264 
2265 	/* This indicates where we are processing relative to skb->data. */
2266 	int	data_offset;
2267 
2268 	/* This is non-zero if the packet cannot be merged with the new skb. */
2269 	u16	flush;
2270 
2271 	/* Save the IP ID here and check when we get to the transport layer */
2272 	u16	flush_id;
2273 
2274 	/* Number of segments aggregated. */
2275 	u16	count;
2276 
2277 	/* Start offset for remote checksum offload */
2278 	u16	gro_remcsum_start;
2279 
2280 	/* jiffies when first packet was created/queued */
2281 	unsigned long age;
2282 
2283 	/* Used in ipv6_gro_receive() and foo-over-udp */
2284 	u16	proto;
2285 
2286 	/* This is non-zero if the packet may be of the same flow. */
2287 	u8	same_flow:1;
2288 
2289 	/* Used in tunnel GRO receive */
2290 	u8	encap_mark:1;
2291 
2292 	/* GRO checksum is valid */
2293 	u8	csum_valid:1;
2294 
2295 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2296 	u8	csum_cnt:3;
2297 
2298 	/* Free the skb? */
2299 	u8	free:2;
2300 #define NAPI_GRO_FREE		  1
2301 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2302 
2303 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2304 	u8	is_ipv6:1;
2305 
2306 	/* Used in GRE, set in fou/gue_gro_receive */
2307 	u8	is_fou:1;
2308 
2309 	/* Used to determine if flush_id can be ignored */
2310 	u8	is_atomic:1;
2311 
2312 	/* Number of gro_receive callbacks this packet already went through */
2313 	u8 recursion_counter:4;
2314 
2315 	/* 1 bit hole */
2316 
2317 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2318 	__wsum	csum;
2319 
2320 	/* used in skb_gro_receive() slow path */
2321 	struct sk_buff *last;
2322 };
2323 
2324 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2325 
2326 #define GRO_RECURSION_LIMIT 15
2327 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2328 {
2329 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2330 }
2331 
2332 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2333 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2334 					       struct list_head *head,
2335 					       struct sk_buff *skb)
2336 {
2337 	if (unlikely(gro_recursion_inc_test(skb))) {
2338 		NAPI_GRO_CB(skb)->flush |= 1;
2339 		return NULL;
2340 	}
2341 
2342 	return cb(head, skb);
2343 }
2344 
2345 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2346 					    struct sk_buff *);
2347 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2348 						  struct sock *sk,
2349 						  struct list_head *head,
2350 						  struct sk_buff *skb)
2351 {
2352 	if (unlikely(gro_recursion_inc_test(skb))) {
2353 		NAPI_GRO_CB(skb)->flush |= 1;
2354 		return NULL;
2355 	}
2356 
2357 	return cb(sk, head, skb);
2358 }
2359 
2360 struct packet_type {
2361 	__be16			type;	/* This is really htons(ether_type). */
2362 	bool			ignore_outgoing;
2363 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2364 	int			(*func) (struct sk_buff *,
2365 					 struct net_device *,
2366 					 struct packet_type *,
2367 					 struct net_device *);
2368 	void			(*list_func) (struct list_head *,
2369 					      struct packet_type *,
2370 					      struct net_device *);
2371 	bool			(*id_match)(struct packet_type *ptype,
2372 					    struct sock *sk);
2373 	void			*af_packet_priv;
2374 	struct list_head	list;
2375 };
2376 
2377 struct offload_callbacks {
2378 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2379 						netdev_features_t features);
2380 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2381 						struct sk_buff *skb);
2382 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2383 };
2384 
2385 struct packet_offload {
2386 	__be16			 type;	/* This is really htons(ether_type). */
2387 	u16			 priority;
2388 	struct offload_callbacks callbacks;
2389 	struct list_head	 list;
2390 };
2391 
2392 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2393 struct pcpu_sw_netstats {
2394 	u64     rx_packets;
2395 	u64     rx_bytes;
2396 	u64     tx_packets;
2397 	u64     tx_bytes;
2398 	struct u64_stats_sync   syncp;
2399 } __aligned(4 * sizeof(u64));
2400 
2401 struct pcpu_lstats {
2402 	u64 packets;
2403 	u64 bytes;
2404 	struct u64_stats_sync syncp;
2405 } __aligned(2 * sizeof(u64));
2406 
2407 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2408 ({									\
2409 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2410 	if (pcpu_stats)	{						\
2411 		int __cpu;						\
2412 		for_each_possible_cpu(__cpu) {				\
2413 			typeof(type) *stat;				\
2414 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2415 			u64_stats_init(&stat->syncp);			\
2416 		}							\
2417 	}								\
2418 	pcpu_stats;							\
2419 })
2420 
2421 #define netdev_alloc_pcpu_stats(type)					\
2422 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2423 
2424 enum netdev_lag_tx_type {
2425 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2426 	NETDEV_LAG_TX_TYPE_RANDOM,
2427 	NETDEV_LAG_TX_TYPE_BROADCAST,
2428 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2429 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2430 	NETDEV_LAG_TX_TYPE_HASH,
2431 };
2432 
2433 enum netdev_lag_hash {
2434 	NETDEV_LAG_HASH_NONE,
2435 	NETDEV_LAG_HASH_L2,
2436 	NETDEV_LAG_HASH_L34,
2437 	NETDEV_LAG_HASH_L23,
2438 	NETDEV_LAG_HASH_E23,
2439 	NETDEV_LAG_HASH_E34,
2440 	NETDEV_LAG_HASH_UNKNOWN,
2441 };
2442 
2443 struct netdev_lag_upper_info {
2444 	enum netdev_lag_tx_type tx_type;
2445 	enum netdev_lag_hash hash_type;
2446 };
2447 
2448 struct netdev_lag_lower_state_info {
2449 	u8 link_up : 1,
2450 	   tx_enabled : 1;
2451 };
2452 
2453 #include <linux/notifier.h>
2454 
2455 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2456  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2457  * adding new types.
2458  */
2459 enum netdev_cmd {
2460 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2461 	NETDEV_DOWN,
2462 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2463 				   detected a hardware crash and restarted
2464 				   - we can use this eg to kick tcp sessions
2465 				   once done */
2466 	NETDEV_CHANGE,		/* Notify device state change */
2467 	NETDEV_REGISTER,
2468 	NETDEV_UNREGISTER,
2469 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2470 	NETDEV_CHANGEADDR,	/* notify after the address change */
2471 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2472 	NETDEV_GOING_DOWN,
2473 	NETDEV_CHANGENAME,
2474 	NETDEV_FEAT_CHANGE,
2475 	NETDEV_BONDING_FAILOVER,
2476 	NETDEV_PRE_UP,
2477 	NETDEV_PRE_TYPE_CHANGE,
2478 	NETDEV_POST_TYPE_CHANGE,
2479 	NETDEV_POST_INIT,
2480 	NETDEV_RELEASE,
2481 	NETDEV_NOTIFY_PEERS,
2482 	NETDEV_JOIN,
2483 	NETDEV_CHANGEUPPER,
2484 	NETDEV_RESEND_IGMP,
2485 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2486 	NETDEV_CHANGEINFODATA,
2487 	NETDEV_BONDING_INFO,
2488 	NETDEV_PRECHANGEUPPER,
2489 	NETDEV_CHANGELOWERSTATE,
2490 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2491 	NETDEV_UDP_TUNNEL_DROP_INFO,
2492 	NETDEV_CHANGE_TX_QUEUE_LEN,
2493 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2494 	NETDEV_CVLAN_FILTER_DROP_INFO,
2495 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2496 	NETDEV_SVLAN_FILTER_DROP_INFO,
2497 };
2498 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2499 
2500 int register_netdevice_notifier(struct notifier_block *nb);
2501 int unregister_netdevice_notifier(struct notifier_block *nb);
2502 
2503 struct netdev_notifier_info {
2504 	struct net_device	*dev;
2505 	struct netlink_ext_ack	*extack;
2506 };
2507 
2508 struct netdev_notifier_info_ext {
2509 	struct netdev_notifier_info info; /* must be first */
2510 	union {
2511 		u32 mtu;
2512 	} ext;
2513 };
2514 
2515 struct netdev_notifier_change_info {
2516 	struct netdev_notifier_info info; /* must be first */
2517 	unsigned int flags_changed;
2518 };
2519 
2520 struct netdev_notifier_changeupper_info {
2521 	struct netdev_notifier_info info; /* must be first */
2522 	struct net_device *upper_dev; /* new upper dev */
2523 	bool master; /* is upper dev master */
2524 	bool linking; /* is the notification for link or unlink */
2525 	void *upper_info; /* upper dev info */
2526 };
2527 
2528 struct netdev_notifier_changelowerstate_info {
2529 	struct netdev_notifier_info info; /* must be first */
2530 	void *lower_state_info; /* is lower dev state */
2531 };
2532 
2533 struct netdev_notifier_pre_changeaddr_info {
2534 	struct netdev_notifier_info info; /* must be first */
2535 	const unsigned char *dev_addr;
2536 };
2537 
2538 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2539 					     struct net_device *dev)
2540 {
2541 	info->dev = dev;
2542 	info->extack = NULL;
2543 }
2544 
2545 static inline struct net_device *
2546 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2547 {
2548 	return info->dev;
2549 }
2550 
2551 static inline struct netlink_ext_ack *
2552 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2553 {
2554 	return info->extack;
2555 }
2556 
2557 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2558 
2559 
2560 extern rwlock_t				dev_base_lock;		/* Device list lock */
2561 
2562 #define for_each_netdev(net, d)		\
2563 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2564 #define for_each_netdev_reverse(net, d)	\
2565 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2566 #define for_each_netdev_rcu(net, d)		\
2567 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2568 #define for_each_netdev_safe(net, d, n)	\
2569 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2570 #define for_each_netdev_continue(net, d)		\
2571 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2572 #define for_each_netdev_continue_rcu(net, d)		\
2573 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2574 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2575 		for_each_netdev_rcu(&init_net, slave)	\
2576 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2577 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2578 
2579 static inline struct net_device *next_net_device(struct net_device *dev)
2580 {
2581 	struct list_head *lh;
2582 	struct net *net;
2583 
2584 	net = dev_net(dev);
2585 	lh = dev->dev_list.next;
2586 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2587 }
2588 
2589 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2590 {
2591 	struct list_head *lh;
2592 	struct net *net;
2593 
2594 	net = dev_net(dev);
2595 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2596 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2597 }
2598 
2599 static inline struct net_device *first_net_device(struct net *net)
2600 {
2601 	return list_empty(&net->dev_base_head) ? NULL :
2602 		net_device_entry(net->dev_base_head.next);
2603 }
2604 
2605 static inline struct net_device *first_net_device_rcu(struct net *net)
2606 {
2607 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2608 
2609 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2610 }
2611 
2612 int netdev_boot_setup_check(struct net_device *dev);
2613 unsigned long netdev_boot_base(const char *prefix, int unit);
2614 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2615 				       const char *hwaddr);
2616 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2617 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2618 void dev_add_pack(struct packet_type *pt);
2619 void dev_remove_pack(struct packet_type *pt);
2620 void __dev_remove_pack(struct packet_type *pt);
2621 void dev_add_offload(struct packet_offload *po);
2622 void dev_remove_offload(struct packet_offload *po);
2623 
2624 int dev_get_iflink(const struct net_device *dev);
2625 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2626 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2627 				      unsigned short mask);
2628 struct net_device *dev_get_by_name(struct net *net, const char *name);
2629 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2630 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2631 int dev_alloc_name(struct net_device *dev, const char *name);
2632 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2633 void dev_close(struct net_device *dev);
2634 void dev_close_many(struct list_head *head, bool unlink);
2635 void dev_disable_lro(struct net_device *dev);
2636 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2637 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2638 		     struct net_device *sb_dev,
2639 		     select_queue_fallback_t fallback);
2640 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2641 		       struct net_device *sb_dev,
2642 		       select_queue_fallback_t fallback);
2643 int dev_queue_xmit(struct sk_buff *skb);
2644 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2645 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2646 int register_netdevice(struct net_device *dev);
2647 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2648 void unregister_netdevice_many(struct list_head *head);
2649 static inline void unregister_netdevice(struct net_device *dev)
2650 {
2651 	unregister_netdevice_queue(dev, NULL);
2652 }
2653 
2654 int netdev_refcnt_read(const struct net_device *dev);
2655 void free_netdev(struct net_device *dev);
2656 void netdev_freemem(struct net_device *dev);
2657 void synchronize_net(void);
2658 int init_dummy_netdev(struct net_device *dev);
2659 
2660 DECLARE_PER_CPU(int, xmit_recursion);
2661 #define XMIT_RECURSION_LIMIT	10
2662 
2663 static inline int dev_recursion_level(void)
2664 {
2665 	return this_cpu_read(xmit_recursion);
2666 }
2667 
2668 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2669 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2670 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2671 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2672 int netdev_get_name(struct net *net, char *name, int ifindex);
2673 int dev_restart(struct net_device *dev);
2674 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2675 
2676 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2677 {
2678 	return NAPI_GRO_CB(skb)->data_offset;
2679 }
2680 
2681 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2682 {
2683 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2684 }
2685 
2686 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2687 {
2688 	NAPI_GRO_CB(skb)->data_offset += len;
2689 }
2690 
2691 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2692 					unsigned int offset)
2693 {
2694 	return NAPI_GRO_CB(skb)->frag0 + offset;
2695 }
2696 
2697 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2698 {
2699 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2700 }
2701 
2702 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2703 {
2704 	NAPI_GRO_CB(skb)->frag0 = NULL;
2705 	NAPI_GRO_CB(skb)->frag0_len = 0;
2706 }
2707 
2708 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2709 					unsigned int offset)
2710 {
2711 	if (!pskb_may_pull(skb, hlen))
2712 		return NULL;
2713 
2714 	skb_gro_frag0_invalidate(skb);
2715 	return skb->data + offset;
2716 }
2717 
2718 static inline void *skb_gro_network_header(struct sk_buff *skb)
2719 {
2720 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2721 	       skb_network_offset(skb);
2722 }
2723 
2724 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2725 					const void *start, unsigned int len)
2726 {
2727 	if (NAPI_GRO_CB(skb)->csum_valid)
2728 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2729 						  csum_partial(start, len, 0));
2730 }
2731 
2732 /* GRO checksum functions. These are logical equivalents of the normal
2733  * checksum functions (in skbuff.h) except that they operate on the GRO
2734  * offsets and fields in sk_buff.
2735  */
2736 
2737 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2738 
2739 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2740 {
2741 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2742 }
2743 
2744 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2745 						      bool zero_okay,
2746 						      __sum16 check)
2747 {
2748 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2749 		skb_checksum_start_offset(skb) <
2750 		 skb_gro_offset(skb)) &&
2751 		!skb_at_gro_remcsum_start(skb) &&
2752 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2753 		(!zero_okay || check));
2754 }
2755 
2756 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2757 							   __wsum psum)
2758 {
2759 	if (NAPI_GRO_CB(skb)->csum_valid &&
2760 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2761 		return 0;
2762 
2763 	NAPI_GRO_CB(skb)->csum = psum;
2764 
2765 	return __skb_gro_checksum_complete(skb);
2766 }
2767 
2768 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2769 {
2770 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2771 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2772 		NAPI_GRO_CB(skb)->csum_cnt--;
2773 	} else {
2774 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2775 		 * verified a new top level checksum or an encapsulated one
2776 		 * during GRO. This saves work if we fallback to normal path.
2777 		 */
2778 		__skb_incr_checksum_unnecessary(skb);
2779 	}
2780 }
2781 
2782 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2783 				    compute_pseudo)			\
2784 ({									\
2785 	__sum16 __ret = 0;						\
2786 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2787 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2788 				compute_pseudo(skb, proto));		\
2789 	if (!__ret)							\
2790 		skb_gro_incr_csum_unnecessary(skb);			\
2791 	__ret;								\
2792 })
2793 
2794 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2795 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2796 
2797 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2798 					     compute_pseudo)		\
2799 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2800 
2801 #define skb_gro_checksum_simple_validate(skb)				\
2802 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2803 
2804 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2805 {
2806 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2807 		!NAPI_GRO_CB(skb)->csum_valid);
2808 }
2809 
2810 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2811 					      __sum16 check, __wsum pseudo)
2812 {
2813 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2814 	NAPI_GRO_CB(skb)->csum_valid = 1;
2815 }
2816 
2817 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2818 do {									\
2819 	if (__skb_gro_checksum_convert_check(skb))			\
2820 		__skb_gro_checksum_convert(skb, check,			\
2821 					   compute_pseudo(skb, proto));	\
2822 } while (0)
2823 
2824 struct gro_remcsum {
2825 	int offset;
2826 	__wsum delta;
2827 };
2828 
2829 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2830 {
2831 	grc->offset = 0;
2832 	grc->delta = 0;
2833 }
2834 
2835 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2836 					    unsigned int off, size_t hdrlen,
2837 					    int start, int offset,
2838 					    struct gro_remcsum *grc,
2839 					    bool nopartial)
2840 {
2841 	__wsum delta;
2842 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2843 
2844 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2845 
2846 	if (!nopartial) {
2847 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2848 		return ptr;
2849 	}
2850 
2851 	ptr = skb_gro_header_fast(skb, off);
2852 	if (skb_gro_header_hard(skb, off + plen)) {
2853 		ptr = skb_gro_header_slow(skb, off + plen, off);
2854 		if (!ptr)
2855 			return NULL;
2856 	}
2857 
2858 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2859 			       start, offset);
2860 
2861 	/* Adjust skb->csum since we changed the packet */
2862 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2863 
2864 	grc->offset = off + hdrlen + offset;
2865 	grc->delta = delta;
2866 
2867 	return ptr;
2868 }
2869 
2870 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2871 					   struct gro_remcsum *grc)
2872 {
2873 	void *ptr;
2874 	size_t plen = grc->offset + sizeof(u16);
2875 
2876 	if (!grc->delta)
2877 		return;
2878 
2879 	ptr = skb_gro_header_fast(skb, grc->offset);
2880 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2881 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2882 		if (!ptr)
2883 			return;
2884 	}
2885 
2886 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2887 }
2888 
2889 #ifdef CONFIG_XFRM_OFFLOAD
2890 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2891 {
2892 	if (PTR_ERR(pp) != -EINPROGRESS)
2893 		NAPI_GRO_CB(skb)->flush |= flush;
2894 }
2895 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2896 					       struct sk_buff *pp,
2897 					       int flush,
2898 					       struct gro_remcsum *grc)
2899 {
2900 	if (PTR_ERR(pp) != -EINPROGRESS) {
2901 		NAPI_GRO_CB(skb)->flush |= flush;
2902 		skb_gro_remcsum_cleanup(skb, grc);
2903 		skb->remcsum_offload = 0;
2904 	}
2905 }
2906 #else
2907 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2908 {
2909 	NAPI_GRO_CB(skb)->flush |= flush;
2910 }
2911 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2912 					       struct sk_buff *pp,
2913 					       int flush,
2914 					       struct gro_remcsum *grc)
2915 {
2916 	NAPI_GRO_CB(skb)->flush |= flush;
2917 	skb_gro_remcsum_cleanup(skb, grc);
2918 	skb->remcsum_offload = 0;
2919 }
2920 #endif
2921 
2922 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2923 				  unsigned short type,
2924 				  const void *daddr, const void *saddr,
2925 				  unsigned int len)
2926 {
2927 	if (!dev->header_ops || !dev->header_ops->create)
2928 		return 0;
2929 
2930 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2931 }
2932 
2933 static inline int dev_parse_header(const struct sk_buff *skb,
2934 				   unsigned char *haddr)
2935 {
2936 	const struct net_device *dev = skb->dev;
2937 
2938 	if (!dev->header_ops || !dev->header_ops->parse)
2939 		return 0;
2940 	return dev->header_ops->parse(skb, haddr);
2941 }
2942 
2943 /* ll_header must have at least hard_header_len allocated */
2944 static inline bool dev_validate_header(const struct net_device *dev,
2945 				       char *ll_header, int len)
2946 {
2947 	if (likely(len >= dev->hard_header_len))
2948 		return true;
2949 	if (len < dev->min_header_len)
2950 		return false;
2951 
2952 	if (capable(CAP_SYS_RAWIO)) {
2953 		memset(ll_header + len, 0, dev->hard_header_len - len);
2954 		return true;
2955 	}
2956 
2957 	if (dev->header_ops && dev->header_ops->validate)
2958 		return dev->header_ops->validate(ll_header, len);
2959 
2960 	return false;
2961 }
2962 
2963 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
2964 			   int len, int size);
2965 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2966 static inline int unregister_gifconf(unsigned int family)
2967 {
2968 	return register_gifconf(family, NULL);
2969 }
2970 
2971 #ifdef CONFIG_NET_FLOW_LIMIT
2972 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2973 struct sd_flow_limit {
2974 	u64			count;
2975 	unsigned int		num_buckets;
2976 	unsigned int		history_head;
2977 	u16			history[FLOW_LIMIT_HISTORY];
2978 	u8			buckets[];
2979 };
2980 
2981 extern int netdev_flow_limit_table_len;
2982 #endif /* CONFIG_NET_FLOW_LIMIT */
2983 
2984 /*
2985  * Incoming packets are placed on per-CPU queues
2986  */
2987 struct softnet_data {
2988 	struct list_head	poll_list;
2989 	struct sk_buff_head	process_queue;
2990 
2991 	/* stats */
2992 	unsigned int		processed;
2993 	unsigned int		time_squeeze;
2994 	unsigned int		received_rps;
2995 #ifdef CONFIG_RPS
2996 	struct softnet_data	*rps_ipi_list;
2997 #endif
2998 #ifdef CONFIG_NET_FLOW_LIMIT
2999 	struct sd_flow_limit __rcu *flow_limit;
3000 #endif
3001 	struct Qdisc		*output_queue;
3002 	struct Qdisc		**output_queue_tailp;
3003 	struct sk_buff		*completion_queue;
3004 #ifdef CONFIG_XFRM_OFFLOAD
3005 	struct sk_buff_head	xfrm_backlog;
3006 #endif
3007 #ifdef CONFIG_RPS
3008 	/* input_queue_head should be written by cpu owning this struct,
3009 	 * and only read by other cpus. Worth using a cache line.
3010 	 */
3011 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3012 
3013 	/* Elements below can be accessed between CPUs for RPS/RFS */
3014 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3015 	struct softnet_data	*rps_ipi_next;
3016 	unsigned int		cpu;
3017 	unsigned int		input_queue_tail;
3018 #endif
3019 	unsigned int		dropped;
3020 	struct sk_buff_head	input_pkt_queue;
3021 	struct napi_struct	backlog;
3022 
3023 };
3024 
3025 static inline void input_queue_head_incr(struct softnet_data *sd)
3026 {
3027 #ifdef CONFIG_RPS
3028 	sd->input_queue_head++;
3029 #endif
3030 }
3031 
3032 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3033 					      unsigned int *qtail)
3034 {
3035 #ifdef CONFIG_RPS
3036 	*qtail = ++sd->input_queue_tail;
3037 #endif
3038 }
3039 
3040 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3041 
3042 void __netif_schedule(struct Qdisc *q);
3043 void netif_schedule_queue(struct netdev_queue *txq);
3044 
3045 static inline void netif_tx_schedule_all(struct net_device *dev)
3046 {
3047 	unsigned int i;
3048 
3049 	for (i = 0; i < dev->num_tx_queues; i++)
3050 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3051 }
3052 
3053 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3054 {
3055 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3056 }
3057 
3058 /**
3059  *	netif_start_queue - allow transmit
3060  *	@dev: network device
3061  *
3062  *	Allow upper layers to call the device hard_start_xmit routine.
3063  */
3064 static inline void netif_start_queue(struct net_device *dev)
3065 {
3066 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3067 }
3068 
3069 static inline void netif_tx_start_all_queues(struct net_device *dev)
3070 {
3071 	unsigned int i;
3072 
3073 	for (i = 0; i < dev->num_tx_queues; i++) {
3074 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3075 		netif_tx_start_queue(txq);
3076 	}
3077 }
3078 
3079 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3080 
3081 /**
3082  *	netif_wake_queue - restart transmit
3083  *	@dev: network device
3084  *
3085  *	Allow upper layers to call the device hard_start_xmit routine.
3086  *	Used for flow control when transmit resources are available.
3087  */
3088 static inline void netif_wake_queue(struct net_device *dev)
3089 {
3090 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3091 }
3092 
3093 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3094 {
3095 	unsigned int i;
3096 
3097 	for (i = 0; i < dev->num_tx_queues; i++) {
3098 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3099 		netif_tx_wake_queue(txq);
3100 	}
3101 }
3102 
3103 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3104 {
3105 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3106 }
3107 
3108 /**
3109  *	netif_stop_queue - stop transmitted packets
3110  *	@dev: network device
3111  *
3112  *	Stop upper layers calling the device hard_start_xmit routine.
3113  *	Used for flow control when transmit resources are unavailable.
3114  */
3115 static inline void netif_stop_queue(struct net_device *dev)
3116 {
3117 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3118 }
3119 
3120 void netif_tx_stop_all_queues(struct net_device *dev);
3121 
3122 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3123 {
3124 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3125 }
3126 
3127 /**
3128  *	netif_queue_stopped - test if transmit queue is flowblocked
3129  *	@dev: network device
3130  *
3131  *	Test if transmit queue on device is currently unable to send.
3132  */
3133 static inline bool netif_queue_stopped(const struct net_device *dev)
3134 {
3135 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3136 }
3137 
3138 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3139 {
3140 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3141 }
3142 
3143 static inline bool
3144 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3145 {
3146 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3147 }
3148 
3149 static inline bool
3150 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3151 {
3152 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3153 }
3154 
3155 /**
3156  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3157  *	@dev_queue: pointer to transmit queue
3158  *
3159  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3160  * to give appropriate hint to the CPU.
3161  */
3162 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3163 {
3164 #ifdef CONFIG_BQL
3165 	prefetchw(&dev_queue->dql.num_queued);
3166 #endif
3167 }
3168 
3169 /**
3170  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3171  *	@dev_queue: pointer to transmit queue
3172  *
3173  * BQL enabled drivers might use this helper in their TX completion path,
3174  * to give appropriate hint to the CPU.
3175  */
3176 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3177 {
3178 #ifdef CONFIG_BQL
3179 	prefetchw(&dev_queue->dql.limit);
3180 #endif
3181 }
3182 
3183 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3184 					unsigned int bytes)
3185 {
3186 #ifdef CONFIG_BQL
3187 	dql_queued(&dev_queue->dql, bytes);
3188 
3189 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3190 		return;
3191 
3192 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3193 
3194 	/*
3195 	 * The XOFF flag must be set before checking the dql_avail below,
3196 	 * because in netdev_tx_completed_queue we update the dql_completed
3197 	 * before checking the XOFF flag.
3198 	 */
3199 	smp_mb();
3200 
3201 	/* check again in case another CPU has just made room avail */
3202 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3203 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3204 #endif
3205 }
3206 
3207 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3208  * that they should not test BQL status themselves.
3209  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3210  * skb of a batch.
3211  * Returns true if the doorbell must be used to kick the NIC.
3212  */
3213 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3214 					  unsigned int bytes,
3215 					  bool xmit_more)
3216 {
3217 	if (xmit_more) {
3218 #ifdef CONFIG_BQL
3219 		dql_queued(&dev_queue->dql, bytes);
3220 #endif
3221 		return netif_tx_queue_stopped(dev_queue);
3222 	}
3223 	netdev_tx_sent_queue(dev_queue, bytes);
3224 	return true;
3225 }
3226 
3227 /**
3228  * 	netdev_sent_queue - report the number of bytes queued to hardware
3229  * 	@dev: network device
3230  * 	@bytes: number of bytes queued to the hardware device queue
3231  *
3232  * 	Report the number of bytes queued for sending/completion to the network
3233  * 	device hardware queue. @bytes should be a good approximation and should
3234  * 	exactly match netdev_completed_queue() @bytes
3235  */
3236 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3237 {
3238 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3239 }
3240 
3241 static inline bool __netdev_sent_queue(struct net_device *dev,
3242 				       unsigned int bytes,
3243 				       bool xmit_more)
3244 {
3245 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3246 				      xmit_more);
3247 }
3248 
3249 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3250 					     unsigned int pkts, unsigned int bytes)
3251 {
3252 #ifdef CONFIG_BQL
3253 	if (unlikely(!bytes))
3254 		return;
3255 
3256 	dql_completed(&dev_queue->dql, bytes);
3257 
3258 	/*
3259 	 * Without the memory barrier there is a small possiblity that
3260 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3261 	 * be stopped forever
3262 	 */
3263 	smp_mb();
3264 
3265 	if (dql_avail(&dev_queue->dql) < 0)
3266 		return;
3267 
3268 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3269 		netif_schedule_queue(dev_queue);
3270 #endif
3271 }
3272 
3273 /**
3274  * 	netdev_completed_queue - report bytes and packets completed by device
3275  * 	@dev: network device
3276  * 	@pkts: actual number of packets sent over the medium
3277  * 	@bytes: actual number of bytes sent over the medium
3278  *
3279  * 	Report the number of bytes and packets transmitted by the network device
3280  * 	hardware queue over the physical medium, @bytes must exactly match the
3281  * 	@bytes amount passed to netdev_sent_queue()
3282  */
3283 static inline void netdev_completed_queue(struct net_device *dev,
3284 					  unsigned int pkts, unsigned int bytes)
3285 {
3286 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3287 }
3288 
3289 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3290 {
3291 #ifdef CONFIG_BQL
3292 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3293 	dql_reset(&q->dql);
3294 #endif
3295 }
3296 
3297 /**
3298  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3299  * 	@dev_queue: network device
3300  *
3301  * 	Reset the bytes and packet count of a network device and clear the
3302  * 	software flow control OFF bit for this network device
3303  */
3304 static inline void netdev_reset_queue(struct net_device *dev_queue)
3305 {
3306 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3307 }
3308 
3309 /**
3310  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3311  * 	@dev: network device
3312  * 	@queue_index: given tx queue index
3313  *
3314  * 	Returns 0 if given tx queue index >= number of device tx queues,
3315  * 	otherwise returns the originally passed tx queue index.
3316  */
3317 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3318 {
3319 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3320 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3321 				     dev->name, queue_index,
3322 				     dev->real_num_tx_queues);
3323 		return 0;
3324 	}
3325 
3326 	return queue_index;
3327 }
3328 
3329 /**
3330  *	netif_running - test if up
3331  *	@dev: network device
3332  *
3333  *	Test if the device has been brought up.
3334  */
3335 static inline bool netif_running(const struct net_device *dev)
3336 {
3337 	return test_bit(__LINK_STATE_START, &dev->state);
3338 }
3339 
3340 /*
3341  * Routines to manage the subqueues on a device.  We only need start,
3342  * stop, and a check if it's stopped.  All other device management is
3343  * done at the overall netdevice level.
3344  * Also test the device if we're multiqueue.
3345  */
3346 
3347 /**
3348  *	netif_start_subqueue - allow sending packets on subqueue
3349  *	@dev: network device
3350  *	@queue_index: sub queue index
3351  *
3352  * Start individual transmit queue of a device with multiple transmit queues.
3353  */
3354 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3355 {
3356 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3357 
3358 	netif_tx_start_queue(txq);
3359 }
3360 
3361 /**
3362  *	netif_stop_subqueue - stop sending packets on subqueue
3363  *	@dev: network device
3364  *	@queue_index: sub queue index
3365  *
3366  * Stop individual transmit queue of a device with multiple transmit queues.
3367  */
3368 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3369 {
3370 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3371 	netif_tx_stop_queue(txq);
3372 }
3373 
3374 /**
3375  *	netif_subqueue_stopped - test status of subqueue
3376  *	@dev: network device
3377  *	@queue_index: sub queue index
3378  *
3379  * Check individual transmit queue of a device with multiple transmit queues.
3380  */
3381 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3382 					    u16 queue_index)
3383 {
3384 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3385 
3386 	return netif_tx_queue_stopped(txq);
3387 }
3388 
3389 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3390 					  struct sk_buff *skb)
3391 {
3392 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3393 }
3394 
3395 /**
3396  *	netif_wake_subqueue - allow sending packets on subqueue
3397  *	@dev: network device
3398  *	@queue_index: sub queue index
3399  *
3400  * Resume individual transmit queue of a device with multiple transmit queues.
3401  */
3402 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3403 {
3404 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3405 
3406 	netif_tx_wake_queue(txq);
3407 }
3408 
3409 #ifdef CONFIG_XPS
3410 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3411 			u16 index);
3412 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3413 			  u16 index, bool is_rxqs_map);
3414 
3415 /**
3416  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3417  *	@j: CPU/Rx queue index
3418  *	@mask: bitmask of all cpus/rx queues
3419  *	@nr_bits: number of bits in the bitmask
3420  *
3421  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3422  */
3423 static inline bool netif_attr_test_mask(unsigned long j,
3424 					const unsigned long *mask,
3425 					unsigned int nr_bits)
3426 {
3427 	cpu_max_bits_warn(j, nr_bits);
3428 	return test_bit(j, mask);
3429 }
3430 
3431 /**
3432  *	netif_attr_test_online - Test for online CPU/Rx queue
3433  *	@j: CPU/Rx queue index
3434  *	@online_mask: bitmask for CPUs/Rx queues that are online
3435  *	@nr_bits: number of bits in the bitmask
3436  *
3437  * Returns true if a CPU/Rx queue is online.
3438  */
3439 static inline bool netif_attr_test_online(unsigned long j,
3440 					  const unsigned long *online_mask,
3441 					  unsigned int nr_bits)
3442 {
3443 	cpu_max_bits_warn(j, nr_bits);
3444 
3445 	if (online_mask)
3446 		return test_bit(j, online_mask);
3447 
3448 	return (j < nr_bits);
3449 }
3450 
3451 /**
3452  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3453  *	@n: CPU/Rx queue index
3454  *	@srcp: the cpumask/Rx queue mask pointer
3455  *	@nr_bits: number of bits in the bitmask
3456  *
3457  * Returns >= nr_bits if no further CPUs/Rx queues set.
3458  */
3459 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3460 					       unsigned int nr_bits)
3461 {
3462 	/* -1 is a legal arg here. */
3463 	if (n != -1)
3464 		cpu_max_bits_warn(n, nr_bits);
3465 
3466 	if (srcp)
3467 		return find_next_bit(srcp, nr_bits, n + 1);
3468 
3469 	return n + 1;
3470 }
3471 
3472 /**
3473  *	netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p
3474  *	@n: CPU/Rx queue index
3475  *	@src1p: the first CPUs/Rx queues mask pointer
3476  *	@src2p: the second CPUs/Rx queues mask pointer
3477  *	@nr_bits: number of bits in the bitmask
3478  *
3479  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3480  */
3481 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3482 					  const unsigned long *src2p,
3483 					  unsigned int nr_bits)
3484 {
3485 	/* -1 is a legal arg here. */
3486 	if (n != -1)
3487 		cpu_max_bits_warn(n, nr_bits);
3488 
3489 	if (src1p && src2p)
3490 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3491 	else if (src1p)
3492 		return find_next_bit(src1p, nr_bits, n + 1);
3493 	else if (src2p)
3494 		return find_next_bit(src2p, nr_bits, n + 1);
3495 
3496 	return n + 1;
3497 }
3498 #else
3499 static inline int netif_set_xps_queue(struct net_device *dev,
3500 				      const struct cpumask *mask,
3501 				      u16 index)
3502 {
3503 	return 0;
3504 }
3505 
3506 static inline int __netif_set_xps_queue(struct net_device *dev,
3507 					const unsigned long *mask,
3508 					u16 index, bool is_rxqs_map)
3509 {
3510 	return 0;
3511 }
3512 #endif
3513 
3514 /**
3515  *	netif_is_multiqueue - test if device has multiple transmit queues
3516  *	@dev: network device
3517  *
3518  * Check if device has multiple transmit queues
3519  */
3520 static inline bool netif_is_multiqueue(const struct net_device *dev)
3521 {
3522 	return dev->num_tx_queues > 1;
3523 }
3524 
3525 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3526 
3527 #ifdef CONFIG_SYSFS
3528 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3529 #else
3530 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3531 						unsigned int rxqs)
3532 {
3533 	dev->real_num_rx_queues = rxqs;
3534 	return 0;
3535 }
3536 #endif
3537 
3538 static inline struct netdev_rx_queue *
3539 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3540 {
3541 	return dev->_rx + rxq;
3542 }
3543 
3544 #ifdef CONFIG_SYSFS
3545 static inline unsigned int get_netdev_rx_queue_index(
3546 		struct netdev_rx_queue *queue)
3547 {
3548 	struct net_device *dev = queue->dev;
3549 	int index = queue - dev->_rx;
3550 
3551 	BUG_ON(index >= dev->num_rx_queues);
3552 	return index;
3553 }
3554 #endif
3555 
3556 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3557 int netif_get_num_default_rss_queues(void);
3558 
3559 enum skb_free_reason {
3560 	SKB_REASON_CONSUMED,
3561 	SKB_REASON_DROPPED,
3562 };
3563 
3564 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3565 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3566 
3567 /*
3568  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3569  * interrupt context or with hardware interrupts being disabled.
3570  * (in_irq() || irqs_disabled())
3571  *
3572  * We provide four helpers that can be used in following contexts :
3573  *
3574  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3575  *  replacing kfree_skb(skb)
3576  *
3577  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3578  *  Typically used in place of consume_skb(skb) in TX completion path
3579  *
3580  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3581  *  replacing kfree_skb(skb)
3582  *
3583  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3584  *  and consumed a packet. Used in place of consume_skb(skb)
3585  */
3586 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3587 {
3588 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3589 }
3590 
3591 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3592 {
3593 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3594 }
3595 
3596 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3597 {
3598 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3599 }
3600 
3601 static inline void dev_consume_skb_any(struct sk_buff *skb)
3602 {
3603 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3604 }
3605 
3606 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3607 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3608 int netif_rx(struct sk_buff *skb);
3609 int netif_rx_ni(struct sk_buff *skb);
3610 int netif_receive_skb(struct sk_buff *skb);
3611 int netif_receive_skb_core(struct sk_buff *skb);
3612 void netif_receive_skb_list(struct list_head *head);
3613 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3614 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3615 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3616 gro_result_t napi_gro_frags(struct napi_struct *napi);
3617 struct packet_offload *gro_find_receive_by_type(__be16 type);
3618 struct packet_offload *gro_find_complete_by_type(__be16 type);
3619 
3620 static inline void napi_free_frags(struct napi_struct *napi)
3621 {
3622 	kfree_skb(napi->skb);
3623 	napi->skb = NULL;
3624 }
3625 
3626 bool netdev_is_rx_handler_busy(struct net_device *dev);
3627 int netdev_rx_handler_register(struct net_device *dev,
3628 			       rx_handler_func_t *rx_handler,
3629 			       void *rx_handler_data);
3630 void netdev_rx_handler_unregister(struct net_device *dev);
3631 
3632 bool dev_valid_name(const char *name);
3633 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3634 		bool *need_copyout);
3635 int dev_ifconf(struct net *net, struct ifconf *, int);
3636 int dev_ethtool(struct net *net, struct ifreq *);
3637 unsigned int dev_get_flags(const struct net_device *);
3638 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3639 		       struct netlink_ext_ack *extack);
3640 int dev_change_flags(struct net_device *dev, unsigned int flags,
3641 		     struct netlink_ext_ack *extack);
3642 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3643 			unsigned int gchanges);
3644 int dev_change_name(struct net_device *, const char *);
3645 int dev_set_alias(struct net_device *, const char *, size_t);
3646 int dev_get_alias(const struct net_device *, char *, size_t);
3647 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3648 int __dev_set_mtu(struct net_device *, int);
3649 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3650 		    struct netlink_ext_ack *extack);
3651 int dev_set_mtu(struct net_device *, int);
3652 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3653 void dev_set_group(struct net_device *, int);
3654 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3655 			      struct netlink_ext_ack *extack);
3656 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3657 			struct netlink_ext_ack *extack);
3658 int dev_change_carrier(struct net_device *, bool new_carrier);
3659 int dev_get_phys_port_id(struct net_device *dev,
3660 			 struct netdev_phys_item_id *ppid);
3661 int dev_get_phys_port_name(struct net_device *dev,
3662 			   char *name, size_t len);
3663 int dev_get_port_parent_id(struct net_device *dev,
3664 			   struct netdev_phys_item_id *ppid, bool recurse);
3665 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3666 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3667 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3668 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3669 				    struct netdev_queue *txq, int *ret);
3670 
3671 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3672 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3673 		      int fd, u32 flags);
3674 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3675 		    enum bpf_netdev_command cmd);
3676 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3677 
3678 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3679 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3680 bool is_skb_forwardable(const struct net_device *dev,
3681 			const struct sk_buff *skb);
3682 
3683 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3684 					       struct sk_buff *skb)
3685 {
3686 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3687 	    unlikely(!is_skb_forwardable(dev, skb))) {
3688 		atomic_long_inc(&dev->rx_dropped);
3689 		kfree_skb(skb);
3690 		return NET_RX_DROP;
3691 	}
3692 
3693 	skb_scrub_packet(skb, true);
3694 	skb->priority = 0;
3695 	return 0;
3696 }
3697 
3698 bool dev_nit_active(struct net_device *dev);
3699 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3700 
3701 extern int		netdev_budget;
3702 extern unsigned int	netdev_budget_usecs;
3703 
3704 /* Called by rtnetlink.c:rtnl_unlock() */
3705 void netdev_run_todo(void);
3706 
3707 /**
3708  *	dev_put - release reference to device
3709  *	@dev: network device
3710  *
3711  * Release reference to device to allow it to be freed.
3712  */
3713 static inline void dev_put(struct net_device *dev)
3714 {
3715 	this_cpu_dec(*dev->pcpu_refcnt);
3716 }
3717 
3718 /**
3719  *	dev_hold - get reference to device
3720  *	@dev: network device
3721  *
3722  * Hold reference to device to keep it from being freed.
3723  */
3724 static inline void dev_hold(struct net_device *dev)
3725 {
3726 	this_cpu_inc(*dev->pcpu_refcnt);
3727 }
3728 
3729 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3730  * and _off may be called from IRQ context, but it is caller
3731  * who is responsible for serialization of these calls.
3732  *
3733  * The name carrier is inappropriate, these functions should really be
3734  * called netif_lowerlayer_*() because they represent the state of any
3735  * kind of lower layer not just hardware media.
3736  */
3737 
3738 void linkwatch_init_dev(struct net_device *dev);
3739 void linkwatch_fire_event(struct net_device *dev);
3740 void linkwatch_forget_dev(struct net_device *dev);
3741 
3742 /**
3743  *	netif_carrier_ok - test if carrier present
3744  *	@dev: network device
3745  *
3746  * Check if carrier is present on device
3747  */
3748 static inline bool netif_carrier_ok(const struct net_device *dev)
3749 {
3750 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3751 }
3752 
3753 unsigned long dev_trans_start(struct net_device *dev);
3754 
3755 void __netdev_watchdog_up(struct net_device *dev);
3756 
3757 void netif_carrier_on(struct net_device *dev);
3758 
3759 void netif_carrier_off(struct net_device *dev);
3760 
3761 /**
3762  *	netif_dormant_on - mark device as dormant.
3763  *	@dev: network device
3764  *
3765  * Mark device as dormant (as per RFC2863).
3766  *
3767  * The dormant state indicates that the relevant interface is not
3768  * actually in a condition to pass packets (i.e., it is not 'up') but is
3769  * in a "pending" state, waiting for some external event.  For "on-
3770  * demand" interfaces, this new state identifies the situation where the
3771  * interface is waiting for events to place it in the up state.
3772  */
3773 static inline void netif_dormant_on(struct net_device *dev)
3774 {
3775 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3776 		linkwatch_fire_event(dev);
3777 }
3778 
3779 /**
3780  *	netif_dormant_off - set device as not dormant.
3781  *	@dev: network device
3782  *
3783  * Device is not in dormant state.
3784  */
3785 static inline void netif_dormant_off(struct net_device *dev)
3786 {
3787 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3788 		linkwatch_fire_event(dev);
3789 }
3790 
3791 /**
3792  *	netif_dormant - test if device is dormant
3793  *	@dev: network device
3794  *
3795  * Check if device is dormant.
3796  */
3797 static inline bool netif_dormant(const struct net_device *dev)
3798 {
3799 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3800 }
3801 
3802 
3803 /**
3804  *	netif_oper_up - test if device is operational
3805  *	@dev: network device
3806  *
3807  * Check if carrier is operational
3808  */
3809 static inline bool netif_oper_up(const struct net_device *dev)
3810 {
3811 	return (dev->operstate == IF_OPER_UP ||
3812 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3813 }
3814 
3815 /**
3816  *	netif_device_present - is device available or removed
3817  *	@dev: network device
3818  *
3819  * Check if device has not been removed from system.
3820  */
3821 static inline bool netif_device_present(struct net_device *dev)
3822 {
3823 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3824 }
3825 
3826 void netif_device_detach(struct net_device *dev);
3827 
3828 void netif_device_attach(struct net_device *dev);
3829 
3830 /*
3831  * Network interface message level settings
3832  */
3833 
3834 enum {
3835 	NETIF_MSG_DRV		= 0x0001,
3836 	NETIF_MSG_PROBE		= 0x0002,
3837 	NETIF_MSG_LINK		= 0x0004,
3838 	NETIF_MSG_TIMER		= 0x0008,
3839 	NETIF_MSG_IFDOWN	= 0x0010,
3840 	NETIF_MSG_IFUP		= 0x0020,
3841 	NETIF_MSG_RX_ERR	= 0x0040,
3842 	NETIF_MSG_TX_ERR	= 0x0080,
3843 	NETIF_MSG_TX_QUEUED	= 0x0100,
3844 	NETIF_MSG_INTR		= 0x0200,
3845 	NETIF_MSG_TX_DONE	= 0x0400,
3846 	NETIF_MSG_RX_STATUS	= 0x0800,
3847 	NETIF_MSG_PKTDATA	= 0x1000,
3848 	NETIF_MSG_HW		= 0x2000,
3849 	NETIF_MSG_WOL		= 0x4000,
3850 };
3851 
3852 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3853 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3854 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3855 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3856 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3857 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3858 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3859 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3860 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3861 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3862 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3863 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3864 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3865 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3866 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3867 
3868 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3869 {
3870 	/* use default */
3871 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3872 		return default_msg_enable_bits;
3873 	if (debug_value == 0)	/* no output */
3874 		return 0;
3875 	/* set low N bits */
3876 	return (1 << debug_value) - 1;
3877 }
3878 
3879 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3880 {
3881 	spin_lock(&txq->_xmit_lock);
3882 	txq->xmit_lock_owner = cpu;
3883 }
3884 
3885 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3886 {
3887 	__acquire(&txq->_xmit_lock);
3888 	return true;
3889 }
3890 
3891 static inline void __netif_tx_release(struct netdev_queue *txq)
3892 {
3893 	__release(&txq->_xmit_lock);
3894 }
3895 
3896 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3897 {
3898 	spin_lock_bh(&txq->_xmit_lock);
3899 	txq->xmit_lock_owner = smp_processor_id();
3900 }
3901 
3902 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3903 {
3904 	bool ok = spin_trylock(&txq->_xmit_lock);
3905 	if (likely(ok))
3906 		txq->xmit_lock_owner = smp_processor_id();
3907 	return ok;
3908 }
3909 
3910 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3911 {
3912 	txq->xmit_lock_owner = -1;
3913 	spin_unlock(&txq->_xmit_lock);
3914 }
3915 
3916 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3917 {
3918 	txq->xmit_lock_owner = -1;
3919 	spin_unlock_bh(&txq->_xmit_lock);
3920 }
3921 
3922 static inline void txq_trans_update(struct netdev_queue *txq)
3923 {
3924 	if (txq->xmit_lock_owner != -1)
3925 		txq->trans_start = jiffies;
3926 }
3927 
3928 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3929 static inline void netif_trans_update(struct net_device *dev)
3930 {
3931 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3932 
3933 	if (txq->trans_start != jiffies)
3934 		txq->trans_start = jiffies;
3935 }
3936 
3937 /**
3938  *	netif_tx_lock - grab network device transmit lock
3939  *	@dev: network device
3940  *
3941  * Get network device transmit lock
3942  */
3943 static inline void netif_tx_lock(struct net_device *dev)
3944 {
3945 	unsigned int i;
3946 	int cpu;
3947 
3948 	spin_lock(&dev->tx_global_lock);
3949 	cpu = smp_processor_id();
3950 	for (i = 0; i < dev->num_tx_queues; i++) {
3951 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3952 
3953 		/* We are the only thread of execution doing a
3954 		 * freeze, but we have to grab the _xmit_lock in
3955 		 * order to synchronize with threads which are in
3956 		 * the ->hard_start_xmit() handler and already
3957 		 * checked the frozen bit.
3958 		 */
3959 		__netif_tx_lock(txq, cpu);
3960 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3961 		__netif_tx_unlock(txq);
3962 	}
3963 }
3964 
3965 static inline void netif_tx_lock_bh(struct net_device *dev)
3966 {
3967 	local_bh_disable();
3968 	netif_tx_lock(dev);
3969 }
3970 
3971 static inline void netif_tx_unlock(struct net_device *dev)
3972 {
3973 	unsigned int i;
3974 
3975 	for (i = 0; i < dev->num_tx_queues; i++) {
3976 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3977 
3978 		/* No need to grab the _xmit_lock here.  If the
3979 		 * queue is not stopped for another reason, we
3980 		 * force a schedule.
3981 		 */
3982 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3983 		netif_schedule_queue(txq);
3984 	}
3985 	spin_unlock(&dev->tx_global_lock);
3986 }
3987 
3988 static inline void netif_tx_unlock_bh(struct net_device *dev)
3989 {
3990 	netif_tx_unlock(dev);
3991 	local_bh_enable();
3992 }
3993 
3994 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3995 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3996 		__netif_tx_lock(txq, cpu);		\
3997 	} else {					\
3998 		__netif_tx_acquire(txq);		\
3999 	}						\
4000 }
4001 
4002 #define HARD_TX_TRYLOCK(dev, txq)			\
4003 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4004 		__netif_tx_trylock(txq) :		\
4005 		__netif_tx_acquire(txq))
4006 
4007 #define HARD_TX_UNLOCK(dev, txq) {			\
4008 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4009 		__netif_tx_unlock(txq);			\
4010 	} else {					\
4011 		__netif_tx_release(txq);		\
4012 	}						\
4013 }
4014 
4015 static inline void netif_tx_disable(struct net_device *dev)
4016 {
4017 	unsigned int i;
4018 	int cpu;
4019 
4020 	local_bh_disable();
4021 	cpu = smp_processor_id();
4022 	for (i = 0; i < dev->num_tx_queues; i++) {
4023 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4024 
4025 		__netif_tx_lock(txq, cpu);
4026 		netif_tx_stop_queue(txq);
4027 		__netif_tx_unlock(txq);
4028 	}
4029 	local_bh_enable();
4030 }
4031 
4032 static inline void netif_addr_lock(struct net_device *dev)
4033 {
4034 	spin_lock(&dev->addr_list_lock);
4035 }
4036 
4037 static inline void netif_addr_lock_nested(struct net_device *dev)
4038 {
4039 	int subclass = SINGLE_DEPTH_NESTING;
4040 
4041 	if (dev->netdev_ops->ndo_get_lock_subclass)
4042 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
4043 
4044 	spin_lock_nested(&dev->addr_list_lock, subclass);
4045 }
4046 
4047 static inline void netif_addr_lock_bh(struct net_device *dev)
4048 {
4049 	spin_lock_bh(&dev->addr_list_lock);
4050 }
4051 
4052 static inline void netif_addr_unlock(struct net_device *dev)
4053 {
4054 	spin_unlock(&dev->addr_list_lock);
4055 }
4056 
4057 static inline void netif_addr_unlock_bh(struct net_device *dev)
4058 {
4059 	spin_unlock_bh(&dev->addr_list_lock);
4060 }
4061 
4062 /*
4063  * dev_addrs walker. Should be used only for read access. Call with
4064  * rcu_read_lock held.
4065  */
4066 #define for_each_dev_addr(dev, ha) \
4067 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4068 
4069 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4070 
4071 void ether_setup(struct net_device *dev);
4072 
4073 /* Support for loadable net-drivers */
4074 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4075 				    unsigned char name_assign_type,
4076 				    void (*setup)(struct net_device *),
4077 				    unsigned int txqs, unsigned int rxqs);
4078 int dev_get_valid_name(struct net *net, struct net_device *dev,
4079 		       const char *name);
4080 
4081 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4082 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4083 
4084 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4085 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4086 			 count)
4087 
4088 int register_netdev(struct net_device *dev);
4089 void unregister_netdev(struct net_device *dev);
4090 
4091 /* General hardware address lists handling functions */
4092 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4093 		   struct netdev_hw_addr_list *from_list, int addr_len);
4094 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4095 		      struct netdev_hw_addr_list *from_list, int addr_len);
4096 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4097 		       struct net_device *dev,
4098 		       int (*sync)(struct net_device *, const unsigned char *),
4099 		       int (*unsync)(struct net_device *,
4100 				     const unsigned char *));
4101 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4102 			   struct net_device *dev,
4103 			   int (*sync)(struct net_device *,
4104 				       const unsigned char *, int),
4105 			   int (*unsync)(struct net_device *,
4106 					 const unsigned char *, int));
4107 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4108 			      struct net_device *dev,
4109 			      int (*unsync)(struct net_device *,
4110 					    const unsigned char *, int));
4111 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4112 			  struct net_device *dev,
4113 			  int (*unsync)(struct net_device *,
4114 					const unsigned char *));
4115 void __hw_addr_init(struct netdev_hw_addr_list *list);
4116 
4117 /* Functions used for device addresses handling */
4118 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4119 		 unsigned char addr_type);
4120 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4121 		 unsigned char addr_type);
4122 void dev_addr_flush(struct net_device *dev);
4123 int dev_addr_init(struct net_device *dev);
4124 
4125 /* Functions used for unicast addresses handling */
4126 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4127 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4128 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4129 int dev_uc_sync(struct net_device *to, struct net_device *from);
4130 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4131 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4132 void dev_uc_flush(struct net_device *dev);
4133 void dev_uc_init(struct net_device *dev);
4134 
4135 /**
4136  *  __dev_uc_sync - Synchonize device's unicast list
4137  *  @dev:  device to sync
4138  *  @sync: function to call if address should be added
4139  *  @unsync: function to call if address should be removed
4140  *
4141  *  Add newly added addresses to the interface, and release
4142  *  addresses that have been deleted.
4143  */
4144 static inline int __dev_uc_sync(struct net_device *dev,
4145 				int (*sync)(struct net_device *,
4146 					    const unsigned char *),
4147 				int (*unsync)(struct net_device *,
4148 					      const unsigned char *))
4149 {
4150 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4151 }
4152 
4153 /**
4154  *  __dev_uc_unsync - Remove synchronized addresses from device
4155  *  @dev:  device to sync
4156  *  @unsync: function to call if address should be removed
4157  *
4158  *  Remove all addresses that were added to the device by dev_uc_sync().
4159  */
4160 static inline void __dev_uc_unsync(struct net_device *dev,
4161 				   int (*unsync)(struct net_device *,
4162 						 const unsigned char *))
4163 {
4164 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4165 }
4166 
4167 /* Functions used for multicast addresses handling */
4168 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4169 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4170 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4171 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4172 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4173 int dev_mc_sync(struct net_device *to, struct net_device *from);
4174 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4175 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4176 void dev_mc_flush(struct net_device *dev);
4177 void dev_mc_init(struct net_device *dev);
4178 
4179 /**
4180  *  __dev_mc_sync - Synchonize device's multicast list
4181  *  @dev:  device to sync
4182  *  @sync: function to call if address should be added
4183  *  @unsync: function to call if address should be removed
4184  *
4185  *  Add newly added addresses to the interface, and release
4186  *  addresses that have been deleted.
4187  */
4188 static inline int __dev_mc_sync(struct net_device *dev,
4189 				int (*sync)(struct net_device *,
4190 					    const unsigned char *),
4191 				int (*unsync)(struct net_device *,
4192 					      const unsigned char *))
4193 {
4194 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4195 }
4196 
4197 /**
4198  *  __dev_mc_unsync - Remove synchronized addresses from device
4199  *  @dev:  device to sync
4200  *  @unsync: function to call if address should be removed
4201  *
4202  *  Remove all addresses that were added to the device by dev_mc_sync().
4203  */
4204 static inline void __dev_mc_unsync(struct net_device *dev,
4205 				   int (*unsync)(struct net_device *,
4206 						 const unsigned char *))
4207 {
4208 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4209 }
4210 
4211 /* Functions used for secondary unicast and multicast support */
4212 void dev_set_rx_mode(struct net_device *dev);
4213 void __dev_set_rx_mode(struct net_device *dev);
4214 int dev_set_promiscuity(struct net_device *dev, int inc);
4215 int dev_set_allmulti(struct net_device *dev, int inc);
4216 void netdev_state_change(struct net_device *dev);
4217 void netdev_notify_peers(struct net_device *dev);
4218 void netdev_features_change(struct net_device *dev);
4219 /* Load a device via the kmod */
4220 void dev_load(struct net *net, const char *name);
4221 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4222 					struct rtnl_link_stats64 *storage);
4223 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4224 			     const struct net_device_stats *netdev_stats);
4225 
4226 extern int		netdev_max_backlog;
4227 extern int		netdev_tstamp_prequeue;
4228 extern int		weight_p;
4229 extern int		dev_weight_rx_bias;
4230 extern int		dev_weight_tx_bias;
4231 extern int		dev_rx_weight;
4232 extern int		dev_tx_weight;
4233 
4234 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4235 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4236 						     struct list_head **iter);
4237 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4238 						     struct list_head **iter);
4239 
4240 /* iterate through upper list, must be called under RCU read lock */
4241 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4242 	for (iter = &(dev)->adj_list.upper, \
4243 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4244 	     updev; \
4245 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4246 
4247 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4248 				  int (*fn)(struct net_device *upper_dev,
4249 					    void *data),
4250 				  void *data);
4251 
4252 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4253 				  struct net_device *upper_dev);
4254 
4255 bool netdev_has_any_upper_dev(struct net_device *dev);
4256 
4257 void *netdev_lower_get_next_private(struct net_device *dev,
4258 				    struct list_head **iter);
4259 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4260 					struct list_head **iter);
4261 
4262 #define netdev_for_each_lower_private(dev, priv, iter) \
4263 	for (iter = (dev)->adj_list.lower.next, \
4264 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4265 	     priv; \
4266 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4267 
4268 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4269 	for (iter = &(dev)->adj_list.lower, \
4270 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4271 	     priv; \
4272 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4273 
4274 void *netdev_lower_get_next(struct net_device *dev,
4275 				struct list_head **iter);
4276 
4277 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4278 	for (iter = (dev)->adj_list.lower.next, \
4279 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4280 	     ldev; \
4281 	     ldev = netdev_lower_get_next(dev, &(iter)))
4282 
4283 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
4284 					     struct list_head **iter);
4285 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
4286 						 struct list_head **iter);
4287 
4288 int netdev_walk_all_lower_dev(struct net_device *dev,
4289 			      int (*fn)(struct net_device *lower_dev,
4290 					void *data),
4291 			      void *data);
4292 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4293 				  int (*fn)(struct net_device *lower_dev,
4294 					    void *data),
4295 				  void *data);
4296 
4297 void *netdev_adjacent_get_private(struct list_head *adj_list);
4298 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4299 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4300 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4301 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4302 			  struct netlink_ext_ack *extack);
4303 int netdev_master_upper_dev_link(struct net_device *dev,
4304 				 struct net_device *upper_dev,
4305 				 void *upper_priv, void *upper_info,
4306 				 struct netlink_ext_ack *extack);
4307 void netdev_upper_dev_unlink(struct net_device *dev,
4308 			     struct net_device *upper_dev);
4309 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4310 void *netdev_lower_dev_get_private(struct net_device *dev,
4311 				   struct net_device *lower_dev);
4312 void netdev_lower_state_changed(struct net_device *lower_dev,
4313 				void *lower_state_info);
4314 
4315 /* RSS keys are 40 or 52 bytes long */
4316 #define NETDEV_RSS_KEY_LEN 52
4317 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4318 void netdev_rss_key_fill(void *buffer, size_t len);
4319 
4320 int dev_get_nest_level(struct net_device *dev);
4321 int skb_checksum_help(struct sk_buff *skb);
4322 int skb_crc32c_csum_help(struct sk_buff *skb);
4323 int skb_csum_hwoffload_help(struct sk_buff *skb,
4324 			    const netdev_features_t features);
4325 
4326 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4327 				  netdev_features_t features, bool tx_path);
4328 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4329 				    netdev_features_t features);
4330 
4331 struct netdev_bonding_info {
4332 	ifslave	slave;
4333 	ifbond	master;
4334 };
4335 
4336 struct netdev_notifier_bonding_info {
4337 	struct netdev_notifier_info info; /* must be first */
4338 	struct netdev_bonding_info  bonding_info;
4339 };
4340 
4341 void netdev_bonding_info_change(struct net_device *dev,
4342 				struct netdev_bonding_info *bonding_info);
4343 
4344 static inline
4345 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4346 {
4347 	return __skb_gso_segment(skb, features, true);
4348 }
4349 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4350 
4351 static inline bool can_checksum_protocol(netdev_features_t features,
4352 					 __be16 protocol)
4353 {
4354 	if (protocol == htons(ETH_P_FCOE))
4355 		return !!(features & NETIF_F_FCOE_CRC);
4356 
4357 	/* Assume this is an IP checksum (not SCTP CRC) */
4358 
4359 	if (features & NETIF_F_HW_CSUM) {
4360 		/* Can checksum everything */
4361 		return true;
4362 	}
4363 
4364 	switch (protocol) {
4365 	case htons(ETH_P_IP):
4366 		return !!(features & NETIF_F_IP_CSUM);
4367 	case htons(ETH_P_IPV6):
4368 		return !!(features & NETIF_F_IPV6_CSUM);
4369 	default:
4370 		return false;
4371 	}
4372 }
4373 
4374 #ifdef CONFIG_BUG
4375 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4376 #else
4377 static inline void netdev_rx_csum_fault(struct net_device *dev,
4378 					struct sk_buff *skb)
4379 {
4380 }
4381 #endif
4382 /* rx skb timestamps */
4383 void net_enable_timestamp(void);
4384 void net_disable_timestamp(void);
4385 
4386 #ifdef CONFIG_PROC_FS
4387 int __init dev_proc_init(void);
4388 #else
4389 #define dev_proc_init() 0
4390 #endif
4391 
4392 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4393 					      struct sk_buff *skb, struct net_device *dev,
4394 					      bool more)
4395 {
4396 	skb->xmit_more = more ? 1 : 0;
4397 	return ops->ndo_start_xmit(skb, dev);
4398 }
4399 
4400 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4401 					    struct netdev_queue *txq, bool more)
4402 {
4403 	const struct net_device_ops *ops = dev->netdev_ops;
4404 	netdev_tx_t rc;
4405 
4406 	rc = __netdev_start_xmit(ops, skb, dev, more);
4407 	if (rc == NETDEV_TX_OK)
4408 		txq_trans_update(txq);
4409 
4410 	return rc;
4411 }
4412 
4413 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4414 				const void *ns);
4415 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4416 				 const void *ns);
4417 
4418 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4419 {
4420 	return netdev_class_create_file_ns(class_attr, NULL);
4421 }
4422 
4423 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4424 {
4425 	netdev_class_remove_file_ns(class_attr, NULL);
4426 }
4427 
4428 extern const struct kobj_ns_type_operations net_ns_type_operations;
4429 
4430 const char *netdev_drivername(const struct net_device *dev);
4431 
4432 void linkwatch_run_queue(void);
4433 
4434 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4435 							  netdev_features_t f2)
4436 {
4437 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4438 		if (f1 & NETIF_F_HW_CSUM)
4439 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4440 		else
4441 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4442 	}
4443 
4444 	return f1 & f2;
4445 }
4446 
4447 static inline netdev_features_t netdev_get_wanted_features(
4448 	struct net_device *dev)
4449 {
4450 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4451 }
4452 netdev_features_t netdev_increment_features(netdev_features_t all,
4453 	netdev_features_t one, netdev_features_t mask);
4454 
4455 /* Allow TSO being used on stacked device :
4456  * Performing the GSO segmentation before last device
4457  * is a performance improvement.
4458  */
4459 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4460 							netdev_features_t mask)
4461 {
4462 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4463 }
4464 
4465 int __netdev_update_features(struct net_device *dev);
4466 void netdev_update_features(struct net_device *dev);
4467 void netdev_change_features(struct net_device *dev);
4468 
4469 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4470 					struct net_device *dev);
4471 
4472 netdev_features_t passthru_features_check(struct sk_buff *skb,
4473 					  struct net_device *dev,
4474 					  netdev_features_t features);
4475 netdev_features_t netif_skb_features(struct sk_buff *skb);
4476 
4477 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4478 {
4479 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4480 
4481 	/* check flags correspondence */
4482 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4483 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4484 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4485 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4486 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4487 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4488 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4489 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4490 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4491 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4492 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4493 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4494 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4495 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4496 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4497 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4498 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4499 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4500 
4501 	return (features & feature) == feature;
4502 }
4503 
4504 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4505 {
4506 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4507 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4508 }
4509 
4510 static inline bool netif_needs_gso(struct sk_buff *skb,
4511 				   netdev_features_t features)
4512 {
4513 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4514 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4515 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4516 }
4517 
4518 static inline void netif_set_gso_max_size(struct net_device *dev,
4519 					  unsigned int size)
4520 {
4521 	dev->gso_max_size = size;
4522 }
4523 
4524 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4525 					int pulled_hlen, u16 mac_offset,
4526 					int mac_len)
4527 {
4528 	skb->protocol = protocol;
4529 	skb->encapsulation = 1;
4530 	skb_push(skb, pulled_hlen);
4531 	skb_reset_transport_header(skb);
4532 	skb->mac_header = mac_offset;
4533 	skb->network_header = skb->mac_header + mac_len;
4534 	skb->mac_len = mac_len;
4535 }
4536 
4537 static inline bool netif_is_macsec(const struct net_device *dev)
4538 {
4539 	return dev->priv_flags & IFF_MACSEC;
4540 }
4541 
4542 static inline bool netif_is_macvlan(const struct net_device *dev)
4543 {
4544 	return dev->priv_flags & IFF_MACVLAN;
4545 }
4546 
4547 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4548 {
4549 	return dev->priv_flags & IFF_MACVLAN_PORT;
4550 }
4551 
4552 static inline bool netif_is_bond_master(const struct net_device *dev)
4553 {
4554 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4555 }
4556 
4557 static inline bool netif_is_bond_slave(const struct net_device *dev)
4558 {
4559 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4560 }
4561 
4562 static inline bool netif_supports_nofcs(struct net_device *dev)
4563 {
4564 	return dev->priv_flags & IFF_SUPP_NOFCS;
4565 }
4566 
4567 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4568 {
4569 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4570 }
4571 
4572 static inline bool netif_is_l3_master(const struct net_device *dev)
4573 {
4574 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4575 }
4576 
4577 static inline bool netif_is_l3_slave(const struct net_device *dev)
4578 {
4579 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4580 }
4581 
4582 static inline bool netif_is_bridge_master(const struct net_device *dev)
4583 {
4584 	return dev->priv_flags & IFF_EBRIDGE;
4585 }
4586 
4587 static inline bool netif_is_bridge_port(const struct net_device *dev)
4588 {
4589 	return dev->priv_flags & IFF_BRIDGE_PORT;
4590 }
4591 
4592 static inline bool netif_is_ovs_master(const struct net_device *dev)
4593 {
4594 	return dev->priv_flags & IFF_OPENVSWITCH;
4595 }
4596 
4597 static inline bool netif_is_ovs_port(const struct net_device *dev)
4598 {
4599 	return dev->priv_flags & IFF_OVS_DATAPATH;
4600 }
4601 
4602 static inline bool netif_is_team_master(const struct net_device *dev)
4603 {
4604 	return dev->priv_flags & IFF_TEAM;
4605 }
4606 
4607 static inline bool netif_is_team_port(const struct net_device *dev)
4608 {
4609 	return dev->priv_flags & IFF_TEAM_PORT;
4610 }
4611 
4612 static inline bool netif_is_lag_master(const struct net_device *dev)
4613 {
4614 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4615 }
4616 
4617 static inline bool netif_is_lag_port(const struct net_device *dev)
4618 {
4619 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4620 }
4621 
4622 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4623 {
4624 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4625 }
4626 
4627 static inline bool netif_is_failover(const struct net_device *dev)
4628 {
4629 	return dev->priv_flags & IFF_FAILOVER;
4630 }
4631 
4632 static inline bool netif_is_failover_slave(const struct net_device *dev)
4633 {
4634 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4635 }
4636 
4637 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4638 static inline void netif_keep_dst(struct net_device *dev)
4639 {
4640 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4641 }
4642 
4643 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4644 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4645 {
4646 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4647 	return dev->priv_flags & IFF_MACSEC;
4648 }
4649 
4650 extern struct pernet_operations __net_initdata loopback_net_ops;
4651 
4652 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4653 
4654 /* netdev_printk helpers, similar to dev_printk */
4655 
4656 static inline const char *netdev_name(const struct net_device *dev)
4657 {
4658 	if (!dev->name[0] || strchr(dev->name, '%'))
4659 		return "(unnamed net_device)";
4660 	return dev->name;
4661 }
4662 
4663 static inline bool netdev_unregistering(const struct net_device *dev)
4664 {
4665 	return dev->reg_state == NETREG_UNREGISTERING;
4666 }
4667 
4668 static inline const char *netdev_reg_state(const struct net_device *dev)
4669 {
4670 	switch (dev->reg_state) {
4671 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4672 	case NETREG_REGISTERED: return "";
4673 	case NETREG_UNREGISTERING: return " (unregistering)";
4674 	case NETREG_UNREGISTERED: return " (unregistered)";
4675 	case NETREG_RELEASED: return " (released)";
4676 	case NETREG_DUMMY: return " (dummy)";
4677 	}
4678 
4679 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4680 	return " (unknown)";
4681 }
4682 
4683 __printf(3, 4) __cold
4684 void netdev_printk(const char *level, const struct net_device *dev,
4685 		   const char *format, ...);
4686 __printf(2, 3) __cold
4687 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4688 __printf(2, 3) __cold
4689 void netdev_alert(const struct net_device *dev, const char *format, ...);
4690 __printf(2, 3) __cold
4691 void netdev_crit(const struct net_device *dev, const char *format, ...);
4692 __printf(2, 3) __cold
4693 void netdev_err(const struct net_device *dev, const char *format, ...);
4694 __printf(2, 3) __cold
4695 void netdev_warn(const struct net_device *dev, const char *format, ...);
4696 __printf(2, 3) __cold
4697 void netdev_notice(const struct net_device *dev, const char *format, ...);
4698 __printf(2, 3) __cold
4699 void netdev_info(const struct net_device *dev, const char *format, ...);
4700 
4701 #define netdev_level_once(level, dev, fmt, ...)			\
4702 do {								\
4703 	static bool __print_once __read_mostly;			\
4704 								\
4705 	if (!__print_once) {					\
4706 		__print_once = true;				\
4707 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4708 	}							\
4709 } while (0)
4710 
4711 #define netdev_emerg_once(dev, fmt, ...) \
4712 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4713 #define netdev_alert_once(dev, fmt, ...) \
4714 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4715 #define netdev_crit_once(dev, fmt, ...) \
4716 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4717 #define netdev_err_once(dev, fmt, ...) \
4718 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4719 #define netdev_warn_once(dev, fmt, ...) \
4720 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4721 #define netdev_notice_once(dev, fmt, ...) \
4722 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4723 #define netdev_info_once(dev, fmt, ...) \
4724 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4725 
4726 #define MODULE_ALIAS_NETDEV(device) \
4727 	MODULE_ALIAS("netdev-" device)
4728 
4729 #if defined(CONFIG_DYNAMIC_DEBUG)
4730 #define netdev_dbg(__dev, format, args...)			\
4731 do {								\
4732 	dynamic_netdev_dbg(__dev, format, ##args);		\
4733 } while (0)
4734 #elif defined(DEBUG)
4735 #define netdev_dbg(__dev, format, args...)			\
4736 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4737 #else
4738 #define netdev_dbg(__dev, format, args...)			\
4739 ({								\
4740 	if (0)							\
4741 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4742 })
4743 #endif
4744 
4745 #if defined(VERBOSE_DEBUG)
4746 #define netdev_vdbg	netdev_dbg
4747 #else
4748 
4749 #define netdev_vdbg(dev, format, args...)			\
4750 ({								\
4751 	if (0)							\
4752 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4753 	0;							\
4754 })
4755 #endif
4756 
4757 /*
4758  * netdev_WARN() acts like dev_printk(), but with the key difference
4759  * of using a WARN/WARN_ON to get the message out, including the
4760  * file/line information and a backtrace.
4761  */
4762 #define netdev_WARN(dev, format, args...)			\
4763 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4764 	     netdev_reg_state(dev), ##args)
4765 
4766 #define netdev_WARN_ONCE(dev, format, args...)				\
4767 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4768 		  netdev_reg_state(dev), ##args)
4769 
4770 /* netif printk helpers, similar to netdev_printk */
4771 
4772 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4773 do {					  			\
4774 	if (netif_msg_##type(priv))				\
4775 		netdev_printk(level, (dev), fmt, ##args);	\
4776 } while (0)
4777 
4778 #define netif_level(level, priv, type, dev, fmt, args...)	\
4779 do {								\
4780 	if (netif_msg_##type(priv))				\
4781 		netdev_##level(dev, fmt, ##args);		\
4782 } while (0)
4783 
4784 #define netif_emerg(priv, type, dev, fmt, args...)		\
4785 	netif_level(emerg, priv, type, dev, fmt, ##args)
4786 #define netif_alert(priv, type, dev, fmt, args...)		\
4787 	netif_level(alert, priv, type, dev, fmt, ##args)
4788 #define netif_crit(priv, type, dev, fmt, args...)		\
4789 	netif_level(crit, priv, type, dev, fmt, ##args)
4790 #define netif_err(priv, type, dev, fmt, args...)		\
4791 	netif_level(err, priv, type, dev, fmt, ##args)
4792 #define netif_warn(priv, type, dev, fmt, args...)		\
4793 	netif_level(warn, priv, type, dev, fmt, ##args)
4794 #define netif_notice(priv, type, dev, fmt, args...)		\
4795 	netif_level(notice, priv, type, dev, fmt, ##args)
4796 #define netif_info(priv, type, dev, fmt, args...)		\
4797 	netif_level(info, priv, type, dev, fmt, ##args)
4798 
4799 #if defined(CONFIG_DYNAMIC_DEBUG)
4800 #define netif_dbg(priv, type, netdev, format, args...)		\
4801 do {								\
4802 	if (netif_msg_##type(priv))				\
4803 		dynamic_netdev_dbg(netdev, format, ##args);	\
4804 } while (0)
4805 #elif defined(DEBUG)
4806 #define netif_dbg(priv, type, dev, format, args...)		\
4807 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4808 #else
4809 #define netif_dbg(priv, type, dev, format, args...)			\
4810 ({									\
4811 	if (0)								\
4812 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4813 	0;								\
4814 })
4815 #endif
4816 
4817 /* if @cond then downgrade to debug, else print at @level */
4818 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4819 	do {                                                              \
4820 		if (cond)                                                 \
4821 			netif_dbg(priv, type, netdev, fmt, ##args);       \
4822 		else                                                      \
4823 			netif_ ## level(priv, type, netdev, fmt, ##args); \
4824 	} while (0)
4825 
4826 #if defined(VERBOSE_DEBUG)
4827 #define netif_vdbg	netif_dbg
4828 #else
4829 #define netif_vdbg(priv, type, dev, format, args...)		\
4830 ({								\
4831 	if (0)							\
4832 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4833 	0;							\
4834 })
4835 #endif
4836 
4837 /*
4838  *	The list of packet types we will receive (as opposed to discard)
4839  *	and the routines to invoke.
4840  *
4841  *	Why 16. Because with 16 the only overlap we get on a hash of the
4842  *	low nibble of the protocol value is RARP/SNAP/X.25.
4843  *
4844  *		0800	IP
4845  *		0001	802.3
4846  *		0002	AX.25
4847  *		0004	802.2
4848  *		8035	RARP
4849  *		0005	SNAP
4850  *		0805	X.25
4851  *		0806	ARP
4852  *		8137	IPX
4853  *		0009	Localtalk
4854  *		86DD	IPv6
4855  */
4856 #define PTYPE_HASH_SIZE	(16)
4857 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4858 
4859 #endif	/* _LINUX_NETDEVICE_H */
4860