1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <[email protected]> 12 * Corey Minyard <[email protected]> 13 * Donald J. Becker, <[email protected]> 14 * Alan Cox, <[email protected]> 15 * Bjorn Ekwall. <[email protected]> 16 * Pekka Riikonen <[email protected]> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/timer.h> 29 #include <linux/bug.h> 30 #include <linux/delay.h> 31 #include <linux/atomic.h> 32 #include <linux/prefetch.h> 33 #include <asm/cache.h> 34 #include <asm/byteorder.h> 35 36 #include <linux/percpu.h> 37 #include <linux/rculist.h> 38 #include <linux/workqueue.h> 39 #include <linux/dynamic_queue_limits.h> 40 41 #include <linux/ethtool.h> 42 #include <net/net_namespace.h> 43 #ifdef CONFIG_DCB 44 #include <net/dcbnl.h> 45 #endif 46 #include <net/netprio_cgroup.h> 47 48 #include <linux/netdev_features.h> 49 #include <linux/neighbour.h> 50 #include <uapi/linux/netdevice.h> 51 #include <uapi/linux/if_bonding.h> 52 #include <uapi/linux/pkt_cls.h> 53 #include <linux/hashtable.h> 54 55 struct netpoll_info; 56 struct device; 57 struct phy_device; 58 struct dsa_port; 59 60 /* 802.11 specific */ 61 struct wireless_dev; 62 /* 802.15.4 specific */ 63 struct wpan_dev; 64 struct mpls_dev; 65 /* UDP Tunnel offloads */ 66 struct udp_tunnel_info; 67 struct bpf_prog; 68 struct xdp_buff; 69 70 void netdev_set_default_ethtool_ops(struct net_device *dev, 71 const struct ethtool_ops *ops); 72 73 /* Backlog congestion levels */ 74 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 75 #define NET_RX_DROP 1 /* packet dropped */ 76 77 /* 78 * Transmit return codes: transmit return codes originate from three different 79 * namespaces: 80 * 81 * - qdisc return codes 82 * - driver transmit return codes 83 * - errno values 84 * 85 * Drivers are allowed to return any one of those in their hard_start_xmit() 86 * function. Real network devices commonly used with qdiscs should only return 87 * the driver transmit return codes though - when qdiscs are used, the actual 88 * transmission happens asynchronously, so the value is not propagated to 89 * higher layers. Virtual network devices transmit synchronously; in this case 90 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 91 * others are propagated to higher layers. 92 */ 93 94 /* qdisc ->enqueue() return codes. */ 95 #define NET_XMIT_SUCCESS 0x00 96 #define NET_XMIT_DROP 0x01 /* skb dropped */ 97 #define NET_XMIT_CN 0x02 /* congestion notification */ 98 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 99 100 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 101 * indicates that the device will soon be dropping packets, or already drops 102 * some packets of the same priority; prompting us to send less aggressively. */ 103 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 104 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 105 106 /* Driver transmit return codes */ 107 #define NETDEV_TX_MASK 0xf0 108 109 enum netdev_tx { 110 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 111 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 112 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 113 }; 114 typedef enum netdev_tx netdev_tx_t; 115 116 /* 117 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 118 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 119 */ 120 static inline bool dev_xmit_complete(int rc) 121 { 122 /* 123 * Positive cases with an skb consumed by a driver: 124 * - successful transmission (rc == NETDEV_TX_OK) 125 * - error while transmitting (rc < 0) 126 * - error while queueing to a different device (rc & NET_XMIT_MASK) 127 */ 128 if (likely(rc < NET_XMIT_MASK)) 129 return true; 130 131 return false; 132 } 133 134 /* 135 * Compute the worst-case header length according to the protocols 136 * used. 137 */ 138 139 #if defined(CONFIG_HYPERV_NET) 140 # define LL_MAX_HEADER 128 141 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 142 # if defined(CONFIG_MAC80211_MESH) 143 # define LL_MAX_HEADER 128 144 # else 145 # define LL_MAX_HEADER 96 146 # endif 147 #else 148 # define LL_MAX_HEADER 32 149 #endif 150 151 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 152 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 153 #define MAX_HEADER LL_MAX_HEADER 154 #else 155 #define MAX_HEADER (LL_MAX_HEADER + 48) 156 #endif 157 158 /* 159 * Old network device statistics. Fields are native words 160 * (unsigned long) so they can be read and written atomically. 161 */ 162 163 struct net_device_stats { 164 unsigned long rx_packets; 165 unsigned long tx_packets; 166 unsigned long rx_bytes; 167 unsigned long tx_bytes; 168 unsigned long rx_errors; 169 unsigned long tx_errors; 170 unsigned long rx_dropped; 171 unsigned long tx_dropped; 172 unsigned long multicast; 173 unsigned long collisions; 174 unsigned long rx_length_errors; 175 unsigned long rx_over_errors; 176 unsigned long rx_crc_errors; 177 unsigned long rx_frame_errors; 178 unsigned long rx_fifo_errors; 179 unsigned long rx_missed_errors; 180 unsigned long tx_aborted_errors; 181 unsigned long tx_carrier_errors; 182 unsigned long tx_fifo_errors; 183 unsigned long tx_heartbeat_errors; 184 unsigned long tx_window_errors; 185 unsigned long rx_compressed; 186 unsigned long tx_compressed; 187 }; 188 189 190 #include <linux/cache.h> 191 #include <linux/skbuff.h> 192 193 #ifdef CONFIG_RPS 194 #include <linux/static_key.h> 195 extern struct static_key rps_needed; 196 extern struct static_key rfs_needed; 197 #endif 198 199 struct neighbour; 200 struct neigh_parms; 201 struct sk_buff; 202 203 struct netdev_hw_addr { 204 struct list_head list; 205 unsigned char addr[MAX_ADDR_LEN]; 206 unsigned char type; 207 #define NETDEV_HW_ADDR_T_LAN 1 208 #define NETDEV_HW_ADDR_T_SAN 2 209 #define NETDEV_HW_ADDR_T_SLAVE 3 210 #define NETDEV_HW_ADDR_T_UNICAST 4 211 #define NETDEV_HW_ADDR_T_MULTICAST 5 212 bool global_use; 213 int sync_cnt; 214 int refcount; 215 int synced; 216 struct rcu_head rcu_head; 217 }; 218 219 struct netdev_hw_addr_list { 220 struct list_head list; 221 int count; 222 }; 223 224 #define netdev_hw_addr_list_count(l) ((l)->count) 225 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 226 #define netdev_hw_addr_list_for_each(ha, l) \ 227 list_for_each_entry(ha, &(l)->list, list) 228 229 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 230 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 231 #define netdev_for_each_uc_addr(ha, dev) \ 232 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 233 234 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 235 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 236 #define netdev_for_each_mc_addr(ha, dev) \ 237 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 238 239 struct hh_cache { 240 unsigned int hh_len; 241 seqlock_t hh_lock; 242 243 /* cached hardware header; allow for machine alignment needs. */ 244 #define HH_DATA_MOD 16 245 #define HH_DATA_OFF(__len) \ 246 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 247 #define HH_DATA_ALIGN(__len) \ 248 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 249 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 250 }; 251 252 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 253 * Alternative is: 254 * dev->hard_header_len ? (dev->hard_header_len + 255 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 256 * 257 * We could use other alignment values, but we must maintain the 258 * relationship HH alignment <= LL alignment. 259 */ 260 #define LL_RESERVED_SPACE(dev) \ 261 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 263 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 264 265 struct header_ops { 266 int (*create) (struct sk_buff *skb, struct net_device *dev, 267 unsigned short type, const void *daddr, 268 const void *saddr, unsigned int len); 269 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 270 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 271 void (*cache_update)(struct hh_cache *hh, 272 const struct net_device *dev, 273 const unsigned char *haddr); 274 bool (*validate)(const char *ll_header, unsigned int len); 275 }; 276 277 /* These flag bits are private to the generic network queueing 278 * layer; they may not be explicitly referenced by any other 279 * code. 280 */ 281 282 enum netdev_state_t { 283 __LINK_STATE_START, 284 __LINK_STATE_PRESENT, 285 __LINK_STATE_NOCARRIER, 286 __LINK_STATE_LINKWATCH_PENDING, 287 __LINK_STATE_DORMANT, 288 }; 289 290 291 /* 292 * This structure holds boot-time configured netdevice settings. They 293 * are then used in the device probing. 294 */ 295 struct netdev_boot_setup { 296 char name[IFNAMSIZ]; 297 struct ifmap map; 298 }; 299 #define NETDEV_BOOT_SETUP_MAX 8 300 301 int __init netdev_boot_setup(char *str); 302 303 /* 304 * Structure for NAPI scheduling similar to tasklet but with weighting 305 */ 306 struct napi_struct { 307 /* The poll_list must only be managed by the entity which 308 * changes the state of the NAPI_STATE_SCHED bit. This means 309 * whoever atomically sets that bit can add this napi_struct 310 * to the per-CPU poll_list, and whoever clears that bit 311 * can remove from the list right before clearing the bit. 312 */ 313 struct list_head poll_list; 314 315 unsigned long state; 316 int weight; 317 unsigned int gro_count; 318 int (*poll)(struct napi_struct *, int); 319 #ifdef CONFIG_NETPOLL 320 int poll_owner; 321 #endif 322 struct net_device *dev; 323 struct sk_buff *gro_list; 324 struct sk_buff *skb; 325 struct hrtimer timer; 326 struct list_head dev_list; 327 struct hlist_node napi_hash_node; 328 unsigned int napi_id; 329 }; 330 331 enum { 332 NAPI_STATE_SCHED, /* Poll is scheduled */ 333 NAPI_STATE_MISSED, /* reschedule a napi */ 334 NAPI_STATE_DISABLE, /* Disable pending */ 335 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 336 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 337 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 338 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 339 }; 340 341 enum { 342 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 343 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 344 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 345 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 346 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED), 347 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 348 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 349 }; 350 351 enum gro_result { 352 GRO_MERGED, 353 GRO_MERGED_FREE, 354 GRO_HELD, 355 GRO_NORMAL, 356 GRO_DROP, 357 GRO_CONSUMED, 358 }; 359 typedef enum gro_result gro_result_t; 360 361 /* 362 * enum rx_handler_result - Possible return values for rx_handlers. 363 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 364 * further. 365 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 366 * case skb->dev was changed by rx_handler. 367 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 368 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 369 * 370 * rx_handlers are functions called from inside __netif_receive_skb(), to do 371 * special processing of the skb, prior to delivery to protocol handlers. 372 * 373 * Currently, a net_device can only have a single rx_handler registered. Trying 374 * to register a second rx_handler will return -EBUSY. 375 * 376 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 377 * To unregister a rx_handler on a net_device, use 378 * netdev_rx_handler_unregister(). 379 * 380 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 381 * do with the skb. 382 * 383 * If the rx_handler consumed the skb in some way, it should return 384 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 385 * the skb to be delivered in some other way. 386 * 387 * If the rx_handler changed skb->dev, to divert the skb to another 388 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 389 * new device will be called if it exists. 390 * 391 * If the rx_handler decides the skb should be ignored, it should return 392 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 393 * are registered on exact device (ptype->dev == skb->dev). 394 * 395 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 396 * delivered, it should return RX_HANDLER_PASS. 397 * 398 * A device without a registered rx_handler will behave as if rx_handler 399 * returned RX_HANDLER_PASS. 400 */ 401 402 enum rx_handler_result { 403 RX_HANDLER_CONSUMED, 404 RX_HANDLER_ANOTHER, 405 RX_HANDLER_EXACT, 406 RX_HANDLER_PASS, 407 }; 408 typedef enum rx_handler_result rx_handler_result_t; 409 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 410 411 void __napi_schedule(struct napi_struct *n); 412 void __napi_schedule_irqoff(struct napi_struct *n); 413 414 static inline bool napi_disable_pending(struct napi_struct *n) 415 { 416 return test_bit(NAPI_STATE_DISABLE, &n->state); 417 } 418 419 bool napi_schedule_prep(struct napi_struct *n); 420 421 /** 422 * napi_schedule - schedule NAPI poll 423 * @n: NAPI context 424 * 425 * Schedule NAPI poll routine to be called if it is not already 426 * running. 427 */ 428 static inline void napi_schedule(struct napi_struct *n) 429 { 430 if (napi_schedule_prep(n)) 431 __napi_schedule(n); 432 } 433 434 /** 435 * napi_schedule_irqoff - schedule NAPI poll 436 * @n: NAPI context 437 * 438 * Variant of napi_schedule(), assuming hard irqs are masked. 439 */ 440 static inline void napi_schedule_irqoff(struct napi_struct *n) 441 { 442 if (napi_schedule_prep(n)) 443 __napi_schedule_irqoff(n); 444 } 445 446 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 447 static inline bool napi_reschedule(struct napi_struct *napi) 448 { 449 if (napi_schedule_prep(napi)) { 450 __napi_schedule(napi); 451 return true; 452 } 453 return false; 454 } 455 456 bool napi_complete_done(struct napi_struct *n, int work_done); 457 /** 458 * napi_complete - NAPI processing complete 459 * @n: NAPI context 460 * 461 * Mark NAPI processing as complete. 462 * Consider using napi_complete_done() instead. 463 * Return false if device should avoid rearming interrupts. 464 */ 465 static inline bool napi_complete(struct napi_struct *n) 466 { 467 return napi_complete_done(n, 0); 468 } 469 470 /** 471 * napi_hash_del - remove a NAPI from global table 472 * @napi: NAPI context 473 * 474 * Warning: caller must observe RCU grace period 475 * before freeing memory containing @napi, if 476 * this function returns true. 477 * Note: core networking stack automatically calls it 478 * from netif_napi_del(). 479 * Drivers might want to call this helper to combine all 480 * the needed RCU grace periods into a single one. 481 */ 482 bool napi_hash_del(struct napi_struct *napi); 483 484 /** 485 * napi_disable - prevent NAPI from scheduling 486 * @n: NAPI context 487 * 488 * Stop NAPI from being scheduled on this context. 489 * Waits till any outstanding processing completes. 490 */ 491 void napi_disable(struct napi_struct *n); 492 493 /** 494 * napi_enable - enable NAPI scheduling 495 * @n: NAPI context 496 * 497 * Resume NAPI from being scheduled on this context. 498 * Must be paired with napi_disable. 499 */ 500 static inline void napi_enable(struct napi_struct *n) 501 { 502 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 503 smp_mb__before_atomic(); 504 clear_bit(NAPI_STATE_SCHED, &n->state); 505 clear_bit(NAPI_STATE_NPSVC, &n->state); 506 } 507 508 /** 509 * napi_synchronize - wait until NAPI is not running 510 * @n: NAPI context 511 * 512 * Wait until NAPI is done being scheduled on this context. 513 * Waits till any outstanding processing completes but 514 * does not disable future activations. 515 */ 516 static inline void napi_synchronize(const struct napi_struct *n) 517 { 518 if (IS_ENABLED(CONFIG_SMP)) 519 while (test_bit(NAPI_STATE_SCHED, &n->state)) 520 msleep(1); 521 else 522 barrier(); 523 } 524 525 enum netdev_queue_state_t { 526 __QUEUE_STATE_DRV_XOFF, 527 __QUEUE_STATE_STACK_XOFF, 528 __QUEUE_STATE_FROZEN, 529 }; 530 531 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 532 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 533 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 534 535 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 536 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 537 QUEUE_STATE_FROZEN) 538 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 539 QUEUE_STATE_FROZEN) 540 541 /* 542 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 543 * netif_tx_* functions below are used to manipulate this flag. The 544 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 545 * queue independently. The netif_xmit_*stopped functions below are called 546 * to check if the queue has been stopped by the driver or stack (either 547 * of the XOFF bits are set in the state). Drivers should not need to call 548 * netif_xmit*stopped functions, they should only be using netif_tx_*. 549 */ 550 551 struct netdev_queue { 552 /* 553 * read-mostly part 554 */ 555 struct net_device *dev; 556 struct Qdisc __rcu *qdisc; 557 struct Qdisc *qdisc_sleeping; 558 #ifdef CONFIG_SYSFS 559 struct kobject kobj; 560 #endif 561 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 562 int numa_node; 563 #endif 564 unsigned long tx_maxrate; 565 /* 566 * Number of TX timeouts for this queue 567 * (/sys/class/net/DEV/Q/trans_timeout) 568 */ 569 unsigned long trans_timeout; 570 /* 571 * write-mostly part 572 */ 573 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 574 int xmit_lock_owner; 575 /* 576 * Time (in jiffies) of last Tx 577 */ 578 unsigned long trans_start; 579 580 unsigned long state; 581 582 #ifdef CONFIG_BQL 583 struct dql dql; 584 #endif 585 } ____cacheline_aligned_in_smp; 586 587 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 588 { 589 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 590 return q->numa_node; 591 #else 592 return NUMA_NO_NODE; 593 #endif 594 } 595 596 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 597 { 598 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 599 q->numa_node = node; 600 #endif 601 } 602 603 #ifdef CONFIG_RPS 604 /* 605 * This structure holds an RPS map which can be of variable length. The 606 * map is an array of CPUs. 607 */ 608 struct rps_map { 609 unsigned int len; 610 struct rcu_head rcu; 611 u16 cpus[0]; 612 }; 613 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 614 615 /* 616 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 617 * tail pointer for that CPU's input queue at the time of last enqueue, and 618 * a hardware filter index. 619 */ 620 struct rps_dev_flow { 621 u16 cpu; 622 u16 filter; 623 unsigned int last_qtail; 624 }; 625 #define RPS_NO_FILTER 0xffff 626 627 /* 628 * The rps_dev_flow_table structure contains a table of flow mappings. 629 */ 630 struct rps_dev_flow_table { 631 unsigned int mask; 632 struct rcu_head rcu; 633 struct rps_dev_flow flows[0]; 634 }; 635 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 636 ((_num) * sizeof(struct rps_dev_flow))) 637 638 /* 639 * The rps_sock_flow_table contains mappings of flows to the last CPU 640 * on which they were processed by the application (set in recvmsg). 641 * Each entry is a 32bit value. Upper part is the high-order bits 642 * of flow hash, lower part is CPU number. 643 * rps_cpu_mask is used to partition the space, depending on number of 644 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 645 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 646 * meaning we use 32-6=26 bits for the hash. 647 */ 648 struct rps_sock_flow_table { 649 u32 mask; 650 651 u32 ents[0] ____cacheline_aligned_in_smp; 652 }; 653 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 654 655 #define RPS_NO_CPU 0xffff 656 657 extern u32 rps_cpu_mask; 658 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 659 660 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 661 u32 hash) 662 { 663 if (table && hash) { 664 unsigned int index = hash & table->mask; 665 u32 val = hash & ~rps_cpu_mask; 666 667 /* We only give a hint, preemption can change CPU under us */ 668 val |= raw_smp_processor_id(); 669 670 if (table->ents[index] != val) 671 table->ents[index] = val; 672 } 673 } 674 675 #ifdef CONFIG_RFS_ACCEL 676 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 677 u16 filter_id); 678 #endif 679 #endif /* CONFIG_RPS */ 680 681 /* This structure contains an instance of an RX queue. */ 682 struct netdev_rx_queue { 683 #ifdef CONFIG_RPS 684 struct rps_map __rcu *rps_map; 685 struct rps_dev_flow_table __rcu *rps_flow_table; 686 #endif 687 struct kobject kobj; 688 struct net_device *dev; 689 } ____cacheline_aligned_in_smp; 690 691 /* 692 * RX queue sysfs structures and functions. 693 */ 694 struct rx_queue_attribute { 695 struct attribute attr; 696 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 697 ssize_t (*store)(struct netdev_rx_queue *queue, 698 const char *buf, size_t len); 699 }; 700 701 #ifdef CONFIG_XPS 702 /* 703 * This structure holds an XPS map which can be of variable length. The 704 * map is an array of queues. 705 */ 706 struct xps_map { 707 unsigned int len; 708 unsigned int alloc_len; 709 struct rcu_head rcu; 710 u16 queues[0]; 711 }; 712 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 713 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 714 - sizeof(struct xps_map)) / sizeof(u16)) 715 716 /* 717 * This structure holds all XPS maps for device. Maps are indexed by CPU. 718 */ 719 struct xps_dev_maps { 720 struct rcu_head rcu; 721 struct xps_map __rcu *cpu_map[0]; 722 }; 723 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 724 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 725 #endif /* CONFIG_XPS */ 726 727 #define TC_MAX_QUEUE 16 728 #define TC_BITMASK 15 729 /* HW offloaded queuing disciplines txq count and offset maps */ 730 struct netdev_tc_txq { 731 u16 count; 732 u16 offset; 733 }; 734 735 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 736 /* 737 * This structure is to hold information about the device 738 * configured to run FCoE protocol stack. 739 */ 740 struct netdev_fcoe_hbainfo { 741 char manufacturer[64]; 742 char serial_number[64]; 743 char hardware_version[64]; 744 char driver_version[64]; 745 char optionrom_version[64]; 746 char firmware_version[64]; 747 char model[256]; 748 char model_description[256]; 749 }; 750 #endif 751 752 #define MAX_PHYS_ITEM_ID_LEN 32 753 754 /* This structure holds a unique identifier to identify some 755 * physical item (port for example) used by a netdevice. 756 */ 757 struct netdev_phys_item_id { 758 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 759 unsigned char id_len; 760 }; 761 762 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 763 struct netdev_phys_item_id *b) 764 { 765 return a->id_len == b->id_len && 766 memcmp(a->id, b->id, a->id_len) == 0; 767 } 768 769 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 770 struct sk_buff *skb); 771 772 enum tc_setup_type { 773 TC_SETUP_MQPRIO, 774 TC_SETUP_CLSU32, 775 TC_SETUP_CLSFLOWER, 776 TC_SETUP_CLSMATCHALL, 777 TC_SETUP_CLSBPF, 778 TC_SETUP_BLOCK, 779 TC_SETUP_CBS, 780 }; 781 782 /* These structures hold the attributes of xdp state that are being passed 783 * to the netdevice through the xdp op. 784 */ 785 enum xdp_netdev_command { 786 /* Set or clear a bpf program used in the earliest stages of packet 787 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 788 * is responsible for calling bpf_prog_put on any old progs that are 789 * stored. In case of error, the callee need not release the new prog 790 * reference, but on success it takes ownership and must bpf_prog_put 791 * when it is no longer used. 792 */ 793 XDP_SETUP_PROG, 794 XDP_SETUP_PROG_HW, 795 /* Check if a bpf program is set on the device. The callee should 796 * set @prog_attached to one of XDP_ATTACHED_* values, note that "true" 797 * is equivalent to XDP_ATTACHED_DRV. 798 */ 799 XDP_QUERY_PROG, 800 }; 801 802 struct netlink_ext_ack; 803 804 struct netdev_xdp { 805 enum xdp_netdev_command command; 806 union { 807 /* XDP_SETUP_PROG */ 808 struct { 809 u32 flags; 810 struct bpf_prog *prog; 811 struct netlink_ext_ack *extack; 812 }; 813 /* XDP_QUERY_PROG */ 814 struct { 815 u8 prog_attached; 816 u32 prog_id; 817 }; 818 }; 819 }; 820 821 #ifdef CONFIG_XFRM_OFFLOAD 822 struct xfrmdev_ops { 823 int (*xdo_dev_state_add) (struct xfrm_state *x); 824 void (*xdo_dev_state_delete) (struct xfrm_state *x); 825 void (*xdo_dev_state_free) (struct xfrm_state *x); 826 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 827 struct xfrm_state *x); 828 }; 829 #endif 830 831 struct dev_ifalias { 832 struct rcu_head rcuhead; 833 char ifalias[]; 834 }; 835 836 /* 837 * This structure defines the management hooks for network devices. 838 * The following hooks can be defined; unless noted otherwise, they are 839 * optional and can be filled with a null pointer. 840 * 841 * int (*ndo_init)(struct net_device *dev); 842 * This function is called once when a network device is registered. 843 * The network device can use this for any late stage initialization 844 * or semantic validation. It can fail with an error code which will 845 * be propagated back to register_netdev. 846 * 847 * void (*ndo_uninit)(struct net_device *dev); 848 * This function is called when device is unregistered or when registration 849 * fails. It is not called if init fails. 850 * 851 * int (*ndo_open)(struct net_device *dev); 852 * This function is called when a network device transitions to the up 853 * state. 854 * 855 * int (*ndo_stop)(struct net_device *dev); 856 * This function is called when a network device transitions to the down 857 * state. 858 * 859 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 860 * struct net_device *dev); 861 * Called when a packet needs to be transmitted. 862 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 863 * the queue before that can happen; it's for obsolete devices and weird 864 * corner cases, but the stack really does a non-trivial amount 865 * of useless work if you return NETDEV_TX_BUSY. 866 * Required; cannot be NULL. 867 * 868 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 869 * struct net_device *dev 870 * netdev_features_t features); 871 * Called by core transmit path to determine if device is capable of 872 * performing offload operations on a given packet. This is to give 873 * the device an opportunity to implement any restrictions that cannot 874 * be otherwise expressed by feature flags. The check is called with 875 * the set of features that the stack has calculated and it returns 876 * those the driver believes to be appropriate. 877 * 878 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 879 * void *accel_priv, select_queue_fallback_t fallback); 880 * Called to decide which queue to use when device supports multiple 881 * transmit queues. 882 * 883 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 884 * This function is called to allow device receiver to make 885 * changes to configuration when multicast or promiscuous is enabled. 886 * 887 * void (*ndo_set_rx_mode)(struct net_device *dev); 888 * This function is called device changes address list filtering. 889 * If driver handles unicast address filtering, it should set 890 * IFF_UNICAST_FLT in its priv_flags. 891 * 892 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 893 * This function is called when the Media Access Control address 894 * needs to be changed. If this interface is not defined, the 895 * MAC address can not be changed. 896 * 897 * int (*ndo_validate_addr)(struct net_device *dev); 898 * Test if Media Access Control address is valid for the device. 899 * 900 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 901 * Called when a user requests an ioctl which can't be handled by 902 * the generic interface code. If not defined ioctls return 903 * not supported error code. 904 * 905 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 906 * Used to set network devices bus interface parameters. This interface 907 * is retained for legacy reasons; new devices should use the bus 908 * interface (PCI) for low level management. 909 * 910 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 911 * Called when a user wants to change the Maximum Transfer Unit 912 * of a device. 913 * 914 * void (*ndo_tx_timeout)(struct net_device *dev); 915 * Callback used when the transmitter has not made any progress 916 * for dev->watchdog ticks. 917 * 918 * void (*ndo_get_stats64)(struct net_device *dev, 919 * struct rtnl_link_stats64 *storage); 920 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 921 * Called when a user wants to get the network device usage 922 * statistics. Drivers must do one of the following: 923 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 924 * rtnl_link_stats64 structure passed by the caller. 925 * 2. Define @ndo_get_stats to update a net_device_stats structure 926 * (which should normally be dev->stats) and return a pointer to 927 * it. The structure may be changed asynchronously only if each 928 * field is written atomically. 929 * 3. Update dev->stats asynchronously and atomically, and define 930 * neither operation. 931 * 932 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 933 * Return true if this device supports offload stats of this attr_id. 934 * 935 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 936 * void *attr_data) 937 * Get statistics for offload operations by attr_id. Write it into the 938 * attr_data pointer. 939 * 940 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 941 * If device supports VLAN filtering this function is called when a 942 * VLAN id is registered. 943 * 944 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 945 * If device supports VLAN filtering this function is called when a 946 * VLAN id is unregistered. 947 * 948 * void (*ndo_poll_controller)(struct net_device *dev); 949 * 950 * SR-IOV management functions. 951 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 952 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 953 * u8 qos, __be16 proto); 954 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 955 * int max_tx_rate); 956 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 957 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 958 * int (*ndo_get_vf_config)(struct net_device *dev, 959 * int vf, struct ifla_vf_info *ivf); 960 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 961 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 962 * struct nlattr *port[]); 963 * 964 * Enable or disable the VF ability to query its RSS Redirection Table and 965 * Hash Key. This is needed since on some devices VF share this information 966 * with PF and querying it may introduce a theoretical security risk. 967 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 968 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 969 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 970 * void *type_data); 971 * Called to setup any 'tc' scheduler, classifier or action on @dev. 972 * This is always called from the stack with the rtnl lock held and netif 973 * tx queues stopped. This allows the netdevice to perform queue 974 * management safely. 975 * 976 * Fiber Channel over Ethernet (FCoE) offload functions. 977 * int (*ndo_fcoe_enable)(struct net_device *dev); 978 * Called when the FCoE protocol stack wants to start using LLD for FCoE 979 * so the underlying device can perform whatever needed configuration or 980 * initialization to support acceleration of FCoE traffic. 981 * 982 * int (*ndo_fcoe_disable)(struct net_device *dev); 983 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 984 * so the underlying device can perform whatever needed clean-ups to 985 * stop supporting acceleration of FCoE traffic. 986 * 987 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 988 * struct scatterlist *sgl, unsigned int sgc); 989 * Called when the FCoE Initiator wants to initialize an I/O that 990 * is a possible candidate for Direct Data Placement (DDP). The LLD can 991 * perform necessary setup and returns 1 to indicate the device is set up 992 * successfully to perform DDP on this I/O, otherwise this returns 0. 993 * 994 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 995 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 996 * indicated by the FC exchange id 'xid', so the underlying device can 997 * clean up and reuse resources for later DDP requests. 998 * 999 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1000 * struct scatterlist *sgl, unsigned int sgc); 1001 * Called when the FCoE Target wants to initialize an I/O that 1002 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1003 * perform necessary setup and returns 1 to indicate the device is set up 1004 * successfully to perform DDP on this I/O, otherwise this returns 0. 1005 * 1006 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1007 * struct netdev_fcoe_hbainfo *hbainfo); 1008 * Called when the FCoE Protocol stack wants information on the underlying 1009 * device. This information is utilized by the FCoE protocol stack to 1010 * register attributes with Fiber Channel management service as per the 1011 * FC-GS Fabric Device Management Information(FDMI) specification. 1012 * 1013 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1014 * Called when the underlying device wants to override default World Wide 1015 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1016 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1017 * protocol stack to use. 1018 * 1019 * RFS acceleration. 1020 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1021 * u16 rxq_index, u32 flow_id); 1022 * Set hardware filter for RFS. rxq_index is the target queue index; 1023 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1024 * Return the filter ID on success, or a negative error code. 1025 * 1026 * Slave management functions (for bridge, bonding, etc). 1027 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1028 * Called to make another netdev an underling. 1029 * 1030 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1031 * Called to release previously enslaved netdev. 1032 * 1033 * Feature/offload setting functions. 1034 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1035 * netdev_features_t features); 1036 * Adjusts the requested feature flags according to device-specific 1037 * constraints, and returns the resulting flags. Must not modify 1038 * the device state. 1039 * 1040 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1041 * Called to update device configuration to new features. Passed 1042 * feature set might be less than what was returned by ndo_fix_features()). 1043 * Must return >0 or -errno if it changed dev->features itself. 1044 * 1045 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1046 * struct net_device *dev, 1047 * const unsigned char *addr, u16 vid, u16 flags) 1048 * Adds an FDB entry to dev for addr. 1049 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1050 * struct net_device *dev, 1051 * const unsigned char *addr, u16 vid) 1052 * Deletes the FDB entry from dev coresponding to addr. 1053 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1054 * struct net_device *dev, struct net_device *filter_dev, 1055 * int *idx) 1056 * Used to add FDB entries to dump requests. Implementers should add 1057 * entries to skb and update idx with the number of entries. 1058 * 1059 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1060 * u16 flags) 1061 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1062 * struct net_device *dev, u32 filter_mask, 1063 * int nlflags) 1064 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1065 * u16 flags); 1066 * 1067 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1068 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1069 * which do not represent real hardware may define this to allow their 1070 * userspace components to manage their virtual carrier state. Devices 1071 * that determine carrier state from physical hardware properties (eg 1072 * network cables) or protocol-dependent mechanisms (eg 1073 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1074 * 1075 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1076 * struct netdev_phys_item_id *ppid); 1077 * Called to get ID of physical port of this device. If driver does 1078 * not implement this, it is assumed that the hw is not able to have 1079 * multiple net devices on single physical port. 1080 * 1081 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1082 * struct udp_tunnel_info *ti); 1083 * Called by UDP tunnel to notify a driver about the UDP port and socket 1084 * address family that a UDP tunnel is listnening to. It is called only 1085 * when a new port starts listening. The operation is protected by the 1086 * RTNL. 1087 * 1088 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1089 * struct udp_tunnel_info *ti); 1090 * Called by UDP tunnel to notify the driver about a UDP port and socket 1091 * address family that the UDP tunnel is not listening to anymore. The 1092 * operation is protected by the RTNL. 1093 * 1094 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1095 * struct net_device *dev) 1096 * Called by upper layer devices to accelerate switching or other 1097 * station functionality into hardware. 'pdev is the lowerdev 1098 * to use for the offload and 'dev' is the net device that will 1099 * back the offload. Returns a pointer to the private structure 1100 * the upper layer will maintain. 1101 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1102 * Called by upper layer device to delete the station created 1103 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1104 * the station and priv is the structure returned by the add 1105 * operation. 1106 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1107 * int queue_index, u32 maxrate); 1108 * Called when a user wants to set a max-rate limitation of specific 1109 * TX queue. 1110 * int (*ndo_get_iflink)(const struct net_device *dev); 1111 * Called to get the iflink value of this device. 1112 * void (*ndo_change_proto_down)(struct net_device *dev, 1113 * bool proto_down); 1114 * This function is used to pass protocol port error state information 1115 * to the switch driver. The switch driver can react to the proto_down 1116 * by doing a phys down on the associated switch port. 1117 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1118 * This function is used to get egress tunnel information for given skb. 1119 * This is useful for retrieving outer tunnel header parameters while 1120 * sampling packet. 1121 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1122 * This function is used to specify the headroom that the skb must 1123 * consider when allocation skb during packet reception. Setting 1124 * appropriate rx headroom value allows avoiding skb head copy on 1125 * forward. Setting a negative value resets the rx headroom to the 1126 * default value. 1127 * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp); 1128 * This function is used to set or query state related to XDP on the 1129 * netdevice. See definition of enum xdp_netdev_command for details. 1130 * int (*ndo_xdp_xmit)(struct net_device *dev, struct xdp_buff *xdp); 1131 * This function is used to submit a XDP packet for transmit on a 1132 * netdevice. 1133 * void (*ndo_xdp_flush)(struct net_device *dev); 1134 * This function is used to inform the driver to flush a particular 1135 * xdp tx queue. Must be called on same CPU as xdp_xmit. 1136 */ 1137 struct net_device_ops { 1138 int (*ndo_init)(struct net_device *dev); 1139 void (*ndo_uninit)(struct net_device *dev); 1140 int (*ndo_open)(struct net_device *dev); 1141 int (*ndo_stop)(struct net_device *dev); 1142 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1143 struct net_device *dev); 1144 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1145 struct net_device *dev, 1146 netdev_features_t features); 1147 u16 (*ndo_select_queue)(struct net_device *dev, 1148 struct sk_buff *skb, 1149 void *accel_priv, 1150 select_queue_fallback_t fallback); 1151 void (*ndo_change_rx_flags)(struct net_device *dev, 1152 int flags); 1153 void (*ndo_set_rx_mode)(struct net_device *dev); 1154 int (*ndo_set_mac_address)(struct net_device *dev, 1155 void *addr); 1156 int (*ndo_validate_addr)(struct net_device *dev); 1157 int (*ndo_do_ioctl)(struct net_device *dev, 1158 struct ifreq *ifr, int cmd); 1159 int (*ndo_set_config)(struct net_device *dev, 1160 struct ifmap *map); 1161 int (*ndo_change_mtu)(struct net_device *dev, 1162 int new_mtu); 1163 int (*ndo_neigh_setup)(struct net_device *dev, 1164 struct neigh_parms *); 1165 void (*ndo_tx_timeout) (struct net_device *dev); 1166 1167 void (*ndo_get_stats64)(struct net_device *dev, 1168 struct rtnl_link_stats64 *storage); 1169 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1170 int (*ndo_get_offload_stats)(int attr_id, 1171 const struct net_device *dev, 1172 void *attr_data); 1173 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1174 1175 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1176 __be16 proto, u16 vid); 1177 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1178 __be16 proto, u16 vid); 1179 #ifdef CONFIG_NET_POLL_CONTROLLER 1180 void (*ndo_poll_controller)(struct net_device *dev); 1181 int (*ndo_netpoll_setup)(struct net_device *dev, 1182 struct netpoll_info *info); 1183 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1184 #endif 1185 int (*ndo_set_vf_mac)(struct net_device *dev, 1186 int queue, u8 *mac); 1187 int (*ndo_set_vf_vlan)(struct net_device *dev, 1188 int queue, u16 vlan, 1189 u8 qos, __be16 proto); 1190 int (*ndo_set_vf_rate)(struct net_device *dev, 1191 int vf, int min_tx_rate, 1192 int max_tx_rate); 1193 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1194 int vf, bool setting); 1195 int (*ndo_set_vf_trust)(struct net_device *dev, 1196 int vf, bool setting); 1197 int (*ndo_get_vf_config)(struct net_device *dev, 1198 int vf, 1199 struct ifla_vf_info *ivf); 1200 int (*ndo_set_vf_link_state)(struct net_device *dev, 1201 int vf, int link_state); 1202 int (*ndo_get_vf_stats)(struct net_device *dev, 1203 int vf, 1204 struct ifla_vf_stats 1205 *vf_stats); 1206 int (*ndo_set_vf_port)(struct net_device *dev, 1207 int vf, 1208 struct nlattr *port[]); 1209 int (*ndo_get_vf_port)(struct net_device *dev, 1210 int vf, struct sk_buff *skb); 1211 int (*ndo_set_vf_guid)(struct net_device *dev, 1212 int vf, u64 guid, 1213 int guid_type); 1214 int (*ndo_set_vf_rss_query_en)( 1215 struct net_device *dev, 1216 int vf, bool setting); 1217 int (*ndo_setup_tc)(struct net_device *dev, 1218 enum tc_setup_type type, 1219 void *type_data); 1220 #if IS_ENABLED(CONFIG_FCOE) 1221 int (*ndo_fcoe_enable)(struct net_device *dev); 1222 int (*ndo_fcoe_disable)(struct net_device *dev); 1223 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1224 u16 xid, 1225 struct scatterlist *sgl, 1226 unsigned int sgc); 1227 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1228 u16 xid); 1229 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1230 u16 xid, 1231 struct scatterlist *sgl, 1232 unsigned int sgc); 1233 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1234 struct netdev_fcoe_hbainfo *hbainfo); 1235 #endif 1236 1237 #if IS_ENABLED(CONFIG_LIBFCOE) 1238 #define NETDEV_FCOE_WWNN 0 1239 #define NETDEV_FCOE_WWPN 1 1240 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1241 u64 *wwn, int type); 1242 #endif 1243 1244 #ifdef CONFIG_RFS_ACCEL 1245 int (*ndo_rx_flow_steer)(struct net_device *dev, 1246 const struct sk_buff *skb, 1247 u16 rxq_index, 1248 u32 flow_id); 1249 #endif 1250 int (*ndo_add_slave)(struct net_device *dev, 1251 struct net_device *slave_dev, 1252 struct netlink_ext_ack *extack); 1253 int (*ndo_del_slave)(struct net_device *dev, 1254 struct net_device *slave_dev); 1255 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1256 netdev_features_t features); 1257 int (*ndo_set_features)(struct net_device *dev, 1258 netdev_features_t features); 1259 int (*ndo_neigh_construct)(struct net_device *dev, 1260 struct neighbour *n); 1261 void (*ndo_neigh_destroy)(struct net_device *dev, 1262 struct neighbour *n); 1263 1264 int (*ndo_fdb_add)(struct ndmsg *ndm, 1265 struct nlattr *tb[], 1266 struct net_device *dev, 1267 const unsigned char *addr, 1268 u16 vid, 1269 u16 flags); 1270 int (*ndo_fdb_del)(struct ndmsg *ndm, 1271 struct nlattr *tb[], 1272 struct net_device *dev, 1273 const unsigned char *addr, 1274 u16 vid); 1275 int (*ndo_fdb_dump)(struct sk_buff *skb, 1276 struct netlink_callback *cb, 1277 struct net_device *dev, 1278 struct net_device *filter_dev, 1279 int *idx); 1280 1281 int (*ndo_bridge_setlink)(struct net_device *dev, 1282 struct nlmsghdr *nlh, 1283 u16 flags); 1284 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1285 u32 pid, u32 seq, 1286 struct net_device *dev, 1287 u32 filter_mask, 1288 int nlflags); 1289 int (*ndo_bridge_dellink)(struct net_device *dev, 1290 struct nlmsghdr *nlh, 1291 u16 flags); 1292 int (*ndo_change_carrier)(struct net_device *dev, 1293 bool new_carrier); 1294 int (*ndo_get_phys_port_id)(struct net_device *dev, 1295 struct netdev_phys_item_id *ppid); 1296 int (*ndo_get_phys_port_name)(struct net_device *dev, 1297 char *name, size_t len); 1298 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1299 struct udp_tunnel_info *ti); 1300 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1301 struct udp_tunnel_info *ti); 1302 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1303 struct net_device *dev); 1304 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1305 void *priv); 1306 1307 int (*ndo_get_lock_subclass)(struct net_device *dev); 1308 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1309 int queue_index, 1310 u32 maxrate); 1311 int (*ndo_get_iflink)(const struct net_device *dev); 1312 int (*ndo_change_proto_down)(struct net_device *dev, 1313 bool proto_down); 1314 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1315 struct sk_buff *skb); 1316 void (*ndo_set_rx_headroom)(struct net_device *dev, 1317 int needed_headroom); 1318 int (*ndo_xdp)(struct net_device *dev, 1319 struct netdev_xdp *xdp); 1320 int (*ndo_xdp_xmit)(struct net_device *dev, 1321 struct xdp_buff *xdp); 1322 void (*ndo_xdp_flush)(struct net_device *dev); 1323 }; 1324 1325 /** 1326 * enum net_device_priv_flags - &struct net_device priv_flags 1327 * 1328 * These are the &struct net_device, they are only set internally 1329 * by drivers and used in the kernel. These flags are invisible to 1330 * userspace; this means that the order of these flags can change 1331 * during any kernel release. 1332 * 1333 * You should have a pretty good reason to be extending these flags. 1334 * 1335 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1336 * @IFF_EBRIDGE: Ethernet bridging device 1337 * @IFF_BONDING: bonding master or slave 1338 * @IFF_ISATAP: ISATAP interface (RFC4214) 1339 * @IFF_WAN_HDLC: WAN HDLC device 1340 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1341 * release skb->dst 1342 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1343 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1344 * @IFF_MACVLAN_PORT: device used as macvlan port 1345 * @IFF_BRIDGE_PORT: device used as bridge port 1346 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1347 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1348 * @IFF_UNICAST_FLT: Supports unicast filtering 1349 * @IFF_TEAM_PORT: device used as team port 1350 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1351 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1352 * change when it's running 1353 * @IFF_MACVLAN: Macvlan device 1354 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1355 * underlying stacked devices 1356 * @IFF_IPVLAN_MASTER: IPvlan master device 1357 * @IFF_IPVLAN_SLAVE: IPvlan slave device 1358 * @IFF_L3MDEV_MASTER: device is an L3 master device 1359 * @IFF_NO_QUEUE: device can run without qdisc attached 1360 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1361 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1362 * @IFF_TEAM: device is a team device 1363 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1364 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1365 * entity (i.e. the master device for bridged veth) 1366 * @IFF_MACSEC: device is a MACsec device 1367 */ 1368 enum netdev_priv_flags { 1369 IFF_802_1Q_VLAN = 1<<0, 1370 IFF_EBRIDGE = 1<<1, 1371 IFF_BONDING = 1<<2, 1372 IFF_ISATAP = 1<<3, 1373 IFF_WAN_HDLC = 1<<4, 1374 IFF_XMIT_DST_RELEASE = 1<<5, 1375 IFF_DONT_BRIDGE = 1<<6, 1376 IFF_DISABLE_NETPOLL = 1<<7, 1377 IFF_MACVLAN_PORT = 1<<8, 1378 IFF_BRIDGE_PORT = 1<<9, 1379 IFF_OVS_DATAPATH = 1<<10, 1380 IFF_TX_SKB_SHARING = 1<<11, 1381 IFF_UNICAST_FLT = 1<<12, 1382 IFF_TEAM_PORT = 1<<13, 1383 IFF_SUPP_NOFCS = 1<<14, 1384 IFF_LIVE_ADDR_CHANGE = 1<<15, 1385 IFF_MACVLAN = 1<<16, 1386 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1387 IFF_IPVLAN_MASTER = 1<<18, 1388 IFF_IPVLAN_SLAVE = 1<<19, 1389 IFF_L3MDEV_MASTER = 1<<20, 1390 IFF_NO_QUEUE = 1<<21, 1391 IFF_OPENVSWITCH = 1<<22, 1392 IFF_L3MDEV_SLAVE = 1<<23, 1393 IFF_TEAM = 1<<24, 1394 IFF_RXFH_CONFIGURED = 1<<25, 1395 IFF_PHONY_HEADROOM = 1<<26, 1396 IFF_MACSEC = 1<<27, 1397 }; 1398 1399 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1400 #define IFF_EBRIDGE IFF_EBRIDGE 1401 #define IFF_BONDING IFF_BONDING 1402 #define IFF_ISATAP IFF_ISATAP 1403 #define IFF_WAN_HDLC IFF_WAN_HDLC 1404 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1405 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1406 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1407 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1408 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1409 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1410 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1411 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1412 #define IFF_TEAM_PORT IFF_TEAM_PORT 1413 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1414 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1415 #define IFF_MACVLAN IFF_MACVLAN 1416 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1417 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER 1418 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE 1419 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1420 #define IFF_NO_QUEUE IFF_NO_QUEUE 1421 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1422 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1423 #define IFF_TEAM IFF_TEAM 1424 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1425 #define IFF_MACSEC IFF_MACSEC 1426 1427 /** 1428 * struct net_device - The DEVICE structure. 1429 * 1430 * Actually, this whole structure is a big mistake. It mixes I/O 1431 * data with strictly "high-level" data, and it has to know about 1432 * almost every data structure used in the INET module. 1433 * 1434 * @name: This is the first field of the "visible" part of this structure 1435 * (i.e. as seen by users in the "Space.c" file). It is the name 1436 * of the interface. 1437 * 1438 * @name_hlist: Device name hash chain, please keep it close to name[] 1439 * @ifalias: SNMP alias 1440 * @mem_end: Shared memory end 1441 * @mem_start: Shared memory start 1442 * @base_addr: Device I/O address 1443 * @irq: Device IRQ number 1444 * 1445 * @carrier_changes: Stats to monitor carrier on<->off transitions 1446 * 1447 * @state: Generic network queuing layer state, see netdev_state_t 1448 * @dev_list: The global list of network devices 1449 * @napi_list: List entry used for polling NAPI devices 1450 * @unreg_list: List entry when we are unregistering the 1451 * device; see the function unregister_netdev 1452 * @close_list: List entry used when we are closing the device 1453 * @ptype_all: Device-specific packet handlers for all protocols 1454 * @ptype_specific: Device-specific, protocol-specific packet handlers 1455 * 1456 * @adj_list: Directly linked devices, like slaves for bonding 1457 * @features: Currently active device features 1458 * @hw_features: User-changeable features 1459 * 1460 * @wanted_features: User-requested features 1461 * @vlan_features: Mask of features inheritable by VLAN devices 1462 * 1463 * @hw_enc_features: Mask of features inherited by encapsulating devices 1464 * This field indicates what encapsulation 1465 * offloads the hardware is capable of doing, 1466 * and drivers will need to set them appropriately. 1467 * 1468 * @mpls_features: Mask of features inheritable by MPLS 1469 * 1470 * @ifindex: interface index 1471 * @group: The group the device belongs to 1472 * 1473 * @stats: Statistics struct, which was left as a legacy, use 1474 * rtnl_link_stats64 instead 1475 * 1476 * @rx_dropped: Dropped packets by core network, 1477 * do not use this in drivers 1478 * @tx_dropped: Dropped packets by core network, 1479 * do not use this in drivers 1480 * @rx_nohandler: nohandler dropped packets by core network on 1481 * inactive devices, do not use this in drivers 1482 * 1483 * @wireless_handlers: List of functions to handle Wireless Extensions, 1484 * instead of ioctl, 1485 * see <net/iw_handler.h> for details. 1486 * @wireless_data: Instance data managed by the core of wireless extensions 1487 * 1488 * @netdev_ops: Includes several pointers to callbacks, 1489 * if one wants to override the ndo_*() functions 1490 * @ethtool_ops: Management operations 1491 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1492 * discovery handling. Necessary for e.g. 6LoWPAN. 1493 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1494 * of Layer 2 headers. 1495 * 1496 * @flags: Interface flags (a la BSD) 1497 * @priv_flags: Like 'flags' but invisible to userspace, 1498 * see if.h for the definitions 1499 * @gflags: Global flags ( kept as legacy ) 1500 * @padded: How much padding added by alloc_netdev() 1501 * @operstate: RFC2863 operstate 1502 * @link_mode: Mapping policy to operstate 1503 * @if_port: Selectable AUI, TP, ... 1504 * @dma: DMA channel 1505 * @mtu: Interface MTU value 1506 * @min_mtu: Interface Minimum MTU value 1507 * @max_mtu: Interface Maximum MTU value 1508 * @type: Interface hardware type 1509 * @hard_header_len: Maximum hardware header length. 1510 * @min_header_len: Minimum hardware header length 1511 * 1512 * @needed_headroom: Extra headroom the hardware may need, but not in all 1513 * cases can this be guaranteed 1514 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1515 * cases can this be guaranteed. Some cases also use 1516 * LL_MAX_HEADER instead to allocate the skb 1517 * 1518 * interface address info: 1519 * 1520 * @perm_addr: Permanent hw address 1521 * @addr_assign_type: Hw address assignment type 1522 * @addr_len: Hardware address length 1523 * @neigh_priv_len: Used in neigh_alloc() 1524 * @dev_id: Used to differentiate devices that share 1525 * the same link layer address 1526 * @dev_port: Used to differentiate devices that share 1527 * the same function 1528 * @addr_list_lock: XXX: need comments on this one 1529 * @uc_promisc: Counter that indicates promiscuous mode 1530 * has been enabled due to the need to listen to 1531 * additional unicast addresses in a device that 1532 * does not implement ndo_set_rx_mode() 1533 * @uc: unicast mac addresses 1534 * @mc: multicast mac addresses 1535 * @dev_addrs: list of device hw addresses 1536 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1537 * @promiscuity: Number of times the NIC is told to work in 1538 * promiscuous mode; if it becomes 0 the NIC will 1539 * exit promiscuous mode 1540 * @allmulti: Counter, enables or disables allmulticast mode 1541 * 1542 * @vlan_info: VLAN info 1543 * @dsa_ptr: dsa specific data 1544 * @tipc_ptr: TIPC specific data 1545 * @atalk_ptr: AppleTalk link 1546 * @ip_ptr: IPv4 specific data 1547 * @dn_ptr: DECnet specific data 1548 * @ip6_ptr: IPv6 specific data 1549 * @ax25_ptr: AX.25 specific data 1550 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1551 * 1552 * @dev_addr: Hw address (before bcast, 1553 * because most packets are unicast) 1554 * 1555 * @_rx: Array of RX queues 1556 * @num_rx_queues: Number of RX queues 1557 * allocated at register_netdev() time 1558 * @real_num_rx_queues: Number of RX queues currently active in device 1559 * 1560 * @rx_handler: handler for received packets 1561 * @rx_handler_data: XXX: need comments on this one 1562 * @ingress_queue: XXX: need comments on this one 1563 * @broadcast: hw bcast address 1564 * 1565 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1566 * indexed by RX queue number. Assigned by driver. 1567 * This must only be set if the ndo_rx_flow_steer 1568 * operation is defined 1569 * @index_hlist: Device index hash chain 1570 * 1571 * @_tx: Array of TX queues 1572 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1573 * @real_num_tx_queues: Number of TX queues currently active in device 1574 * @qdisc: Root qdisc from userspace point of view 1575 * @tx_queue_len: Max frames per queue allowed 1576 * @tx_global_lock: XXX: need comments on this one 1577 * 1578 * @xps_maps: XXX: need comments on this one 1579 * 1580 * @watchdog_timeo: Represents the timeout that is used by 1581 * the watchdog (see dev_watchdog()) 1582 * @watchdog_timer: List of timers 1583 * 1584 * @pcpu_refcnt: Number of references to this device 1585 * @todo_list: Delayed register/unregister 1586 * @link_watch_list: XXX: need comments on this one 1587 * 1588 * @reg_state: Register/unregister state machine 1589 * @dismantle: Device is going to be freed 1590 * @rtnl_link_state: This enum represents the phases of creating 1591 * a new link 1592 * 1593 * @needs_free_netdev: Should unregister perform free_netdev? 1594 * @priv_destructor: Called from unregister 1595 * @npinfo: XXX: need comments on this one 1596 * @nd_net: Network namespace this network device is inside 1597 * 1598 * @ml_priv: Mid-layer private 1599 * @lstats: Loopback statistics 1600 * @tstats: Tunnel statistics 1601 * @dstats: Dummy statistics 1602 * @vstats: Virtual ethernet statistics 1603 * 1604 * @garp_port: GARP 1605 * @mrp_port: MRP 1606 * 1607 * @dev: Class/net/name entry 1608 * @sysfs_groups: Space for optional device, statistics and wireless 1609 * sysfs groups 1610 * 1611 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1612 * @rtnl_link_ops: Rtnl_link_ops 1613 * 1614 * @gso_max_size: Maximum size of generic segmentation offload 1615 * @gso_max_segs: Maximum number of segments that can be passed to the 1616 * NIC for GSO 1617 * 1618 * @dcbnl_ops: Data Center Bridging netlink ops 1619 * @num_tc: Number of traffic classes in the net device 1620 * @tc_to_txq: XXX: need comments on this one 1621 * @prio_tc_map: XXX: need comments on this one 1622 * 1623 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1624 * 1625 * @priomap: XXX: need comments on this one 1626 * @phydev: Physical device may attach itself 1627 * for hardware timestamping 1628 * 1629 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1630 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1631 * 1632 * @proto_down: protocol port state information can be sent to the 1633 * switch driver and used to set the phys state of the 1634 * switch port. 1635 * 1636 * FIXME: cleanup struct net_device such that network protocol info 1637 * moves out. 1638 */ 1639 1640 struct net_device { 1641 char name[IFNAMSIZ]; 1642 struct hlist_node name_hlist; 1643 struct dev_ifalias __rcu *ifalias; 1644 /* 1645 * I/O specific fields 1646 * FIXME: Merge these and struct ifmap into one 1647 */ 1648 unsigned long mem_end; 1649 unsigned long mem_start; 1650 unsigned long base_addr; 1651 int irq; 1652 1653 atomic_t carrier_changes; 1654 1655 /* 1656 * Some hardware also needs these fields (state,dev_list, 1657 * napi_list,unreg_list,close_list) but they are not 1658 * part of the usual set specified in Space.c. 1659 */ 1660 1661 unsigned long state; 1662 1663 struct list_head dev_list; 1664 struct list_head napi_list; 1665 struct list_head unreg_list; 1666 struct list_head close_list; 1667 struct list_head ptype_all; 1668 struct list_head ptype_specific; 1669 1670 struct { 1671 struct list_head upper; 1672 struct list_head lower; 1673 } adj_list; 1674 1675 netdev_features_t features; 1676 netdev_features_t hw_features; 1677 netdev_features_t wanted_features; 1678 netdev_features_t vlan_features; 1679 netdev_features_t hw_enc_features; 1680 netdev_features_t mpls_features; 1681 netdev_features_t gso_partial_features; 1682 1683 int ifindex; 1684 int group; 1685 1686 struct net_device_stats stats; 1687 1688 atomic_long_t rx_dropped; 1689 atomic_long_t tx_dropped; 1690 atomic_long_t rx_nohandler; 1691 1692 #ifdef CONFIG_WIRELESS_EXT 1693 const struct iw_handler_def *wireless_handlers; 1694 struct iw_public_data *wireless_data; 1695 #endif 1696 const struct net_device_ops *netdev_ops; 1697 const struct ethtool_ops *ethtool_ops; 1698 #ifdef CONFIG_NET_SWITCHDEV 1699 const struct switchdev_ops *switchdev_ops; 1700 #endif 1701 #ifdef CONFIG_NET_L3_MASTER_DEV 1702 const struct l3mdev_ops *l3mdev_ops; 1703 #endif 1704 #if IS_ENABLED(CONFIG_IPV6) 1705 const struct ndisc_ops *ndisc_ops; 1706 #endif 1707 1708 #ifdef CONFIG_XFRM 1709 const struct xfrmdev_ops *xfrmdev_ops; 1710 #endif 1711 1712 const struct header_ops *header_ops; 1713 1714 unsigned int flags; 1715 unsigned int priv_flags; 1716 1717 unsigned short gflags; 1718 unsigned short padded; 1719 1720 unsigned char operstate; 1721 unsigned char link_mode; 1722 1723 unsigned char if_port; 1724 unsigned char dma; 1725 1726 unsigned int mtu; 1727 unsigned int min_mtu; 1728 unsigned int max_mtu; 1729 unsigned short type; 1730 unsigned short hard_header_len; 1731 unsigned char min_header_len; 1732 1733 unsigned short needed_headroom; 1734 unsigned short needed_tailroom; 1735 1736 /* Interface address info. */ 1737 unsigned char perm_addr[MAX_ADDR_LEN]; 1738 unsigned char addr_assign_type; 1739 unsigned char addr_len; 1740 unsigned short neigh_priv_len; 1741 unsigned short dev_id; 1742 unsigned short dev_port; 1743 spinlock_t addr_list_lock; 1744 unsigned char name_assign_type; 1745 bool uc_promisc; 1746 struct netdev_hw_addr_list uc; 1747 struct netdev_hw_addr_list mc; 1748 struct netdev_hw_addr_list dev_addrs; 1749 1750 #ifdef CONFIG_SYSFS 1751 struct kset *queues_kset; 1752 #endif 1753 unsigned int promiscuity; 1754 unsigned int allmulti; 1755 1756 1757 /* Protocol-specific pointers */ 1758 1759 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1760 struct vlan_info __rcu *vlan_info; 1761 #endif 1762 #if IS_ENABLED(CONFIG_NET_DSA) 1763 struct dsa_port *dsa_ptr; 1764 #endif 1765 #if IS_ENABLED(CONFIG_TIPC) 1766 struct tipc_bearer __rcu *tipc_ptr; 1767 #endif 1768 void *atalk_ptr; 1769 struct in_device __rcu *ip_ptr; 1770 struct dn_dev __rcu *dn_ptr; 1771 struct inet6_dev __rcu *ip6_ptr; 1772 void *ax25_ptr; 1773 struct wireless_dev *ieee80211_ptr; 1774 struct wpan_dev *ieee802154_ptr; 1775 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 1776 struct mpls_dev __rcu *mpls_ptr; 1777 #endif 1778 1779 /* 1780 * Cache lines mostly used on receive path (including eth_type_trans()) 1781 */ 1782 /* Interface address info used in eth_type_trans() */ 1783 unsigned char *dev_addr; 1784 1785 #ifdef CONFIG_SYSFS 1786 struct netdev_rx_queue *_rx; 1787 1788 unsigned int num_rx_queues; 1789 unsigned int real_num_rx_queues; 1790 #endif 1791 1792 struct bpf_prog __rcu *xdp_prog; 1793 unsigned long gro_flush_timeout; 1794 rx_handler_func_t __rcu *rx_handler; 1795 void __rcu *rx_handler_data; 1796 1797 #ifdef CONFIG_NET_CLS_ACT 1798 struct tcf_proto __rcu *ingress_cl_list; 1799 #endif 1800 struct netdev_queue __rcu *ingress_queue; 1801 #ifdef CONFIG_NETFILTER_INGRESS 1802 struct nf_hook_entries __rcu *nf_hooks_ingress; 1803 #endif 1804 1805 unsigned char broadcast[MAX_ADDR_LEN]; 1806 #ifdef CONFIG_RFS_ACCEL 1807 struct cpu_rmap *rx_cpu_rmap; 1808 #endif 1809 struct hlist_node index_hlist; 1810 1811 /* 1812 * Cache lines mostly used on transmit path 1813 */ 1814 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1815 unsigned int num_tx_queues; 1816 unsigned int real_num_tx_queues; 1817 struct Qdisc *qdisc; 1818 #ifdef CONFIG_NET_SCHED 1819 DECLARE_HASHTABLE (qdisc_hash, 4); 1820 #endif 1821 unsigned int tx_queue_len; 1822 spinlock_t tx_global_lock; 1823 int watchdog_timeo; 1824 1825 #ifdef CONFIG_XPS 1826 struct xps_dev_maps __rcu *xps_maps; 1827 #endif 1828 #ifdef CONFIG_NET_CLS_ACT 1829 struct tcf_proto __rcu *egress_cl_list; 1830 #endif 1831 1832 /* These may be needed for future network-power-down code. */ 1833 struct timer_list watchdog_timer; 1834 1835 int __percpu *pcpu_refcnt; 1836 struct list_head todo_list; 1837 1838 struct list_head link_watch_list; 1839 1840 enum { NETREG_UNINITIALIZED=0, 1841 NETREG_REGISTERED, /* completed register_netdevice */ 1842 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1843 NETREG_UNREGISTERED, /* completed unregister todo */ 1844 NETREG_RELEASED, /* called free_netdev */ 1845 NETREG_DUMMY, /* dummy device for NAPI poll */ 1846 } reg_state:8; 1847 1848 bool dismantle; 1849 1850 enum { 1851 RTNL_LINK_INITIALIZED, 1852 RTNL_LINK_INITIALIZING, 1853 } rtnl_link_state:16; 1854 1855 bool needs_free_netdev; 1856 void (*priv_destructor)(struct net_device *dev); 1857 1858 #ifdef CONFIG_NETPOLL 1859 struct netpoll_info __rcu *npinfo; 1860 #endif 1861 1862 possible_net_t nd_net; 1863 1864 /* mid-layer private */ 1865 union { 1866 void *ml_priv; 1867 struct pcpu_lstats __percpu *lstats; 1868 struct pcpu_sw_netstats __percpu *tstats; 1869 struct pcpu_dstats __percpu *dstats; 1870 struct pcpu_vstats __percpu *vstats; 1871 }; 1872 1873 #if IS_ENABLED(CONFIG_GARP) 1874 struct garp_port __rcu *garp_port; 1875 #endif 1876 #if IS_ENABLED(CONFIG_MRP) 1877 struct mrp_port __rcu *mrp_port; 1878 #endif 1879 1880 struct device dev; 1881 const struct attribute_group *sysfs_groups[4]; 1882 const struct attribute_group *sysfs_rx_queue_group; 1883 1884 const struct rtnl_link_ops *rtnl_link_ops; 1885 1886 /* for setting kernel sock attribute on TCP connection setup */ 1887 #define GSO_MAX_SIZE 65536 1888 unsigned int gso_max_size; 1889 #define GSO_MAX_SEGS 65535 1890 u16 gso_max_segs; 1891 1892 #ifdef CONFIG_DCB 1893 const struct dcbnl_rtnl_ops *dcbnl_ops; 1894 #endif 1895 u8 num_tc; 1896 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1897 u8 prio_tc_map[TC_BITMASK + 1]; 1898 1899 #if IS_ENABLED(CONFIG_FCOE) 1900 unsigned int fcoe_ddp_xid; 1901 #endif 1902 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1903 struct netprio_map __rcu *priomap; 1904 #endif 1905 struct phy_device *phydev; 1906 struct lock_class_key *qdisc_tx_busylock; 1907 struct lock_class_key *qdisc_running_key; 1908 bool proto_down; 1909 }; 1910 #define to_net_dev(d) container_of(d, struct net_device, dev) 1911 1912 static inline bool netif_elide_gro(const struct net_device *dev) 1913 { 1914 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 1915 return true; 1916 return false; 1917 } 1918 1919 #define NETDEV_ALIGN 32 1920 1921 static inline 1922 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1923 { 1924 return dev->prio_tc_map[prio & TC_BITMASK]; 1925 } 1926 1927 static inline 1928 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1929 { 1930 if (tc >= dev->num_tc) 1931 return -EINVAL; 1932 1933 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1934 return 0; 1935 } 1936 1937 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 1938 void netdev_reset_tc(struct net_device *dev); 1939 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 1940 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 1941 1942 static inline 1943 int netdev_get_num_tc(struct net_device *dev) 1944 { 1945 return dev->num_tc; 1946 } 1947 1948 static inline 1949 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1950 unsigned int index) 1951 { 1952 return &dev->_tx[index]; 1953 } 1954 1955 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 1956 const struct sk_buff *skb) 1957 { 1958 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 1959 } 1960 1961 static inline void netdev_for_each_tx_queue(struct net_device *dev, 1962 void (*f)(struct net_device *, 1963 struct netdev_queue *, 1964 void *), 1965 void *arg) 1966 { 1967 unsigned int i; 1968 1969 for (i = 0; i < dev->num_tx_queues; i++) 1970 f(dev, &dev->_tx[i], arg); 1971 } 1972 1973 #define netdev_lockdep_set_classes(dev) \ 1974 { \ 1975 static struct lock_class_key qdisc_tx_busylock_key; \ 1976 static struct lock_class_key qdisc_running_key; \ 1977 static struct lock_class_key qdisc_xmit_lock_key; \ 1978 static struct lock_class_key dev_addr_list_lock_key; \ 1979 unsigned int i; \ 1980 \ 1981 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 1982 (dev)->qdisc_running_key = &qdisc_running_key; \ 1983 lockdep_set_class(&(dev)->addr_list_lock, \ 1984 &dev_addr_list_lock_key); \ 1985 for (i = 0; i < (dev)->num_tx_queues; i++) \ 1986 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 1987 &qdisc_xmit_lock_key); \ 1988 } 1989 1990 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 1991 struct sk_buff *skb, 1992 void *accel_priv); 1993 1994 /* returns the headroom that the master device needs to take in account 1995 * when forwarding to this dev 1996 */ 1997 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 1998 { 1999 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2000 } 2001 2002 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2003 { 2004 if (dev->netdev_ops->ndo_set_rx_headroom) 2005 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2006 } 2007 2008 /* set the device rx headroom to the dev's default */ 2009 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2010 { 2011 netdev_set_rx_headroom(dev, -1); 2012 } 2013 2014 /* 2015 * Net namespace inlines 2016 */ 2017 static inline 2018 struct net *dev_net(const struct net_device *dev) 2019 { 2020 return read_pnet(&dev->nd_net); 2021 } 2022 2023 static inline 2024 void dev_net_set(struct net_device *dev, struct net *net) 2025 { 2026 write_pnet(&dev->nd_net, net); 2027 } 2028 2029 /** 2030 * netdev_priv - access network device private data 2031 * @dev: network device 2032 * 2033 * Get network device private data 2034 */ 2035 static inline void *netdev_priv(const struct net_device *dev) 2036 { 2037 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2038 } 2039 2040 /* Set the sysfs physical device reference for the network logical device 2041 * if set prior to registration will cause a symlink during initialization. 2042 */ 2043 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2044 2045 /* Set the sysfs device type for the network logical device to allow 2046 * fine-grained identification of different network device types. For 2047 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2048 */ 2049 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2050 2051 /* Default NAPI poll() weight 2052 * Device drivers are strongly advised to not use bigger value 2053 */ 2054 #define NAPI_POLL_WEIGHT 64 2055 2056 /** 2057 * netif_napi_add - initialize a NAPI context 2058 * @dev: network device 2059 * @napi: NAPI context 2060 * @poll: polling function 2061 * @weight: default weight 2062 * 2063 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2064 * *any* of the other NAPI-related functions. 2065 */ 2066 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2067 int (*poll)(struct napi_struct *, int), int weight); 2068 2069 /** 2070 * netif_tx_napi_add - initialize a NAPI context 2071 * @dev: network device 2072 * @napi: NAPI context 2073 * @poll: polling function 2074 * @weight: default weight 2075 * 2076 * This variant of netif_napi_add() should be used from drivers using NAPI 2077 * to exclusively poll a TX queue. 2078 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2079 */ 2080 static inline void netif_tx_napi_add(struct net_device *dev, 2081 struct napi_struct *napi, 2082 int (*poll)(struct napi_struct *, int), 2083 int weight) 2084 { 2085 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2086 netif_napi_add(dev, napi, poll, weight); 2087 } 2088 2089 /** 2090 * netif_napi_del - remove a NAPI context 2091 * @napi: NAPI context 2092 * 2093 * netif_napi_del() removes a NAPI context from the network device NAPI list 2094 */ 2095 void netif_napi_del(struct napi_struct *napi); 2096 2097 struct napi_gro_cb { 2098 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2099 void *frag0; 2100 2101 /* Length of frag0. */ 2102 unsigned int frag0_len; 2103 2104 /* This indicates where we are processing relative to skb->data. */ 2105 int data_offset; 2106 2107 /* This is non-zero if the packet cannot be merged with the new skb. */ 2108 u16 flush; 2109 2110 /* Save the IP ID here and check when we get to the transport layer */ 2111 u16 flush_id; 2112 2113 /* Number of segments aggregated. */ 2114 u16 count; 2115 2116 /* Start offset for remote checksum offload */ 2117 u16 gro_remcsum_start; 2118 2119 /* jiffies when first packet was created/queued */ 2120 unsigned long age; 2121 2122 /* Used in ipv6_gro_receive() and foo-over-udp */ 2123 u16 proto; 2124 2125 /* This is non-zero if the packet may be of the same flow. */ 2126 u8 same_flow:1; 2127 2128 /* Used in tunnel GRO receive */ 2129 u8 encap_mark:1; 2130 2131 /* GRO checksum is valid */ 2132 u8 csum_valid:1; 2133 2134 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2135 u8 csum_cnt:3; 2136 2137 /* Free the skb? */ 2138 u8 free:2; 2139 #define NAPI_GRO_FREE 1 2140 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2141 2142 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2143 u8 is_ipv6:1; 2144 2145 /* Used in GRE, set in fou/gue_gro_receive */ 2146 u8 is_fou:1; 2147 2148 /* Used to determine if flush_id can be ignored */ 2149 u8 is_atomic:1; 2150 2151 /* Number of gro_receive callbacks this packet already went through */ 2152 u8 recursion_counter:4; 2153 2154 /* 1 bit hole */ 2155 2156 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2157 __wsum csum; 2158 2159 /* used in skb_gro_receive() slow path */ 2160 struct sk_buff *last; 2161 }; 2162 2163 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2164 2165 #define GRO_RECURSION_LIMIT 15 2166 static inline int gro_recursion_inc_test(struct sk_buff *skb) 2167 { 2168 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2169 } 2170 2171 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *); 2172 static inline struct sk_buff **call_gro_receive(gro_receive_t cb, 2173 struct sk_buff **head, 2174 struct sk_buff *skb) 2175 { 2176 if (unlikely(gro_recursion_inc_test(skb))) { 2177 NAPI_GRO_CB(skb)->flush |= 1; 2178 return NULL; 2179 } 2180 2181 return cb(head, skb); 2182 } 2183 2184 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **, 2185 struct sk_buff *); 2186 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb, 2187 struct sock *sk, 2188 struct sk_buff **head, 2189 struct sk_buff *skb) 2190 { 2191 if (unlikely(gro_recursion_inc_test(skb))) { 2192 NAPI_GRO_CB(skb)->flush |= 1; 2193 return NULL; 2194 } 2195 2196 return cb(sk, head, skb); 2197 } 2198 2199 struct packet_type { 2200 __be16 type; /* This is really htons(ether_type). */ 2201 struct net_device *dev; /* NULL is wildcarded here */ 2202 int (*func) (struct sk_buff *, 2203 struct net_device *, 2204 struct packet_type *, 2205 struct net_device *); 2206 bool (*id_match)(struct packet_type *ptype, 2207 struct sock *sk); 2208 void *af_packet_priv; 2209 struct list_head list; 2210 }; 2211 2212 struct offload_callbacks { 2213 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2214 netdev_features_t features); 2215 struct sk_buff **(*gro_receive)(struct sk_buff **head, 2216 struct sk_buff *skb); 2217 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2218 }; 2219 2220 struct packet_offload { 2221 __be16 type; /* This is really htons(ether_type). */ 2222 u16 priority; 2223 struct offload_callbacks callbacks; 2224 struct list_head list; 2225 }; 2226 2227 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2228 struct pcpu_sw_netstats { 2229 u64 rx_packets; 2230 u64 rx_bytes; 2231 u64 tx_packets; 2232 u64 tx_bytes; 2233 struct u64_stats_sync syncp; 2234 }; 2235 2236 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2237 ({ \ 2238 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2239 if (pcpu_stats) { \ 2240 int __cpu; \ 2241 for_each_possible_cpu(__cpu) { \ 2242 typeof(type) *stat; \ 2243 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2244 u64_stats_init(&stat->syncp); \ 2245 } \ 2246 } \ 2247 pcpu_stats; \ 2248 }) 2249 2250 #define netdev_alloc_pcpu_stats(type) \ 2251 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2252 2253 enum netdev_lag_tx_type { 2254 NETDEV_LAG_TX_TYPE_UNKNOWN, 2255 NETDEV_LAG_TX_TYPE_RANDOM, 2256 NETDEV_LAG_TX_TYPE_BROADCAST, 2257 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2258 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2259 NETDEV_LAG_TX_TYPE_HASH, 2260 }; 2261 2262 struct netdev_lag_upper_info { 2263 enum netdev_lag_tx_type tx_type; 2264 }; 2265 2266 struct netdev_lag_lower_state_info { 2267 u8 link_up : 1, 2268 tx_enabled : 1; 2269 }; 2270 2271 #include <linux/notifier.h> 2272 2273 /* netdevice notifier chain. Please remember to update the rtnetlink 2274 * notification exclusion list in rtnetlink_event() when adding new 2275 * types. 2276 */ 2277 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 2278 #define NETDEV_DOWN 0x0002 2279 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 2280 detected a hardware crash and restarted 2281 - we can use this eg to kick tcp sessions 2282 once done */ 2283 #define NETDEV_CHANGE 0x0004 /* Notify device state change */ 2284 #define NETDEV_REGISTER 0x0005 2285 #define NETDEV_UNREGISTER 0x0006 2286 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */ 2287 #define NETDEV_CHANGEADDR 0x0008 2288 #define NETDEV_GOING_DOWN 0x0009 2289 #define NETDEV_CHANGENAME 0x000A 2290 #define NETDEV_FEAT_CHANGE 0x000B 2291 #define NETDEV_BONDING_FAILOVER 0x000C 2292 #define NETDEV_PRE_UP 0x000D 2293 #define NETDEV_PRE_TYPE_CHANGE 0x000E 2294 #define NETDEV_POST_TYPE_CHANGE 0x000F 2295 #define NETDEV_POST_INIT 0x0010 2296 #define NETDEV_UNREGISTER_FINAL 0x0011 2297 #define NETDEV_RELEASE 0x0012 2298 #define NETDEV_NOTIFY_PEERS 0x0013 2299 #define NETDEV_JOIN 0x0014 2300 #define NETDEV_CHANGEUPPER 0x0015 2301 #define NETDEV_RESEND_IGMP 0x0016 2302 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */ 2303 #define NETDEV_CHANGEINFODATA 0x0018 2304 #define NETDEV_BONDING_INFO 0x0019 2305 #define NETDEV_PRECHANGEUPPER 0x001A 2306 #define NETDEV_CHANGELOWERSTATE 0x001B 2307 #define NETDEV_UDP_TUNNEL_PUSH_INFO 0x001C 2308 #define NETDEV_UDP_TUNNEL_DROP_INFO 0x001D 2309 #define NETDEV_CHANGE_TX_QUEUE_LEN 0x001E 2310 2311 int register_netdevice_notifier(struct notifier_block *nb); 2312 int unregister_netdevice_notifier(struct notifier_block *nb); 2313 2314 struct netdev_notifier_info { 2315 struct net_device *dev; 2316 struct netlink_ext_ack *extack; 2317 }; 2318 2319 struct netdev_notifier_change_info { 2320 struct netdev_notifier_info info; /* must be first */ 2321 unsigned int flags_changed; 2322 }; 2323 2324 struct netdev_notifier_changeupper_info { 2325 struct netdev_notifier_info info; /* must be first */ 2326 struct net_device *upper_dev; /* new upper dev */ 2327 bool master; /* is upper dev master */ 2328 bool linking; /* is the notification for link or unlink */ 2329 void *upper_info; /* upper dev info */ 2330 }; 2331 2332 struct netdev_notifier_changelowerstate_info { 2333 struct netdev_notifier_info info; /* must be first */ 2334 void *lower_state_info; /* is lower dev state */ 2335 }; 2336 2337 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2338 struct net_device *dev) 2339 { 2340 info->dev = dev; 2341 info->extack = NULL; 2342 } 2343 2344 static inline struct net_device * 2345 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2346 { 2347 return info->dev; 2348 } 2349 2350 static inline struct netlink_ext_ack * 2351 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2352 { 2353 return info->extack; 2354 } 2355 2356 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2357 2358 2359 extern rwlock_t dev_base_lock; /* Device list lock */ 2360 2361 #define for_each_netdev(net, d) \ 2362 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2363 #define for_each_netdev_reverse(net, d) \ 2364 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2365 #define for_each_netdev_rcu(net, d) \ 2366 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2367 #define for_each_netdev_safe(net, d, n) \ 2368 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2369 #define for_each_netdev_continue(net, d) \ 2370 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2371 #define for_each_netdev_continue_rcu(net, d) \ 2372 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2373 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2374 for_each_netdev_rcu(&init_net, slave) \ 2375 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2376 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2377 2378 static inline struct net_device *next_net_device(struct net_device *dev) 2379 { 2380 struct list_head *lh; 2381 struct net *net; 2382 2383 net = dev_net(dev); 2384 lh = dev->dev_list.next; 2385 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2386 } 2387 2388 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2389 { 2390 struct list_head *lh; 2391 struct net *net; 2392 2393 net = dev_net(dev); 2394 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2395 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2396 } 2397 2398 static inline struct net_device *first_net_device(struct net *net) 2399 { 2400 return list_empty(&net->dev_base_head) ? NULL : 2401 net_device_entry(net->dev_base_head.next); 2402 } 2403 2404 static inline struct net_device *first_net_device_rcu(struct net *net) 2405 { 2406 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2407 2408 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2409 } 2410 2411 int netdev_boot_setup_check(struct net_device *dev); 2412 unsigned long netdev_boot_base(const char *prefix, int unit); 2413 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2414 const char *hwaddr); 2415 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2416 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2417 void dev_add_pack(struct packet_type *pt); 2418 void dev_remove_pack(struct packet_type *pt); 2419 void __dev_remove_pack(struct packet_type *pt); 2420 void dev_add_offload(struct packet_offload *po); 2421 void dev_remove_offload(struct packet_offload *po); 2422 2423 int dev_get_iflink(const struct net_device *dev); 2424 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2425 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2426 unsigned short mask); 2427 struct net_device *dev_get_by_name(struct net *net, const char *name); 2428 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2429 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2430 int dev_alloc_name(struct net_device *dev, const char *name); 2431 int dev_open(struct net_device *dev); 2432 void dev_close(struct net_device *dev); 2433 void dev_close_many(struct list_head *head, bool unlink); 2434 void dev_disable_lro(struct net_device *dev); 2435 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2436 int dev_queue_xmit(struct sk_buff *skb); 2437 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv); 2438 int register_netdevice(struct net_device *dev); 2439 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2440 void unregister_netdevice_many(struct list_head *head); 2441 static inline void unregister_netdevice(struct net_device *dev) 2442 { 2443 unregister_netdevice_queue(dev, NULL); 2444 } 2445 2446 int netdev_refcnt_read(const struct net_device *dev); 2447 void free_netdev(struct net_device *dev); 2448 void netdev_freemem(struct net_device *dev); 2449 void synchronize_net(void); 2450 int init_dummy_netdev(struct net_device *dev); 2451 2452 DECLARE_PER_CPU(int, xmit_recursion); 2453 #define XMIT_RECURSION_LIMIT 10 2454 2455 static inline int dev_recursion_level(void) 2456 { 2457 return this_cpu_read(xmit_recursion); 2458 } 2459 2460 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2461 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2462 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2463 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 2464 int netdev_get_name(struct net *net, char *name, int ifindex); 2465 int dev_restart(struct net_device *dev); 2466 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); 2467 2468 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2469 { 2470 return NAPI_GRO_CB(skb)->data_offset; 2471 } 2472 2473 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2474 { 2475 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2476 } 2477 2478 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2479 { 2480 NAPI_GRO_CB(skb)->data_offset += len; 2481 } 2482 2483 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2484 unsigned int offset) 2485 { 2486 return NAPI_GRO_CB(skb)->frag0 + offset; 2487 } 2488 2489 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2490 { 2491 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2492 } 2493 2494 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2495 { 2496 NAPI_GRO_CB(skb)->frag0 = NULL; 2497 NAPI_GRO_CB(skb)->frag0_len = 0; 2498 } 2499 2500 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2501 unsigned int offset) 2502 { 2503 if (!pskb_may_pull(skb, hlen)) 2504 return NULL; 2505 2506 skb_gro_frag0_invalidate(skb); 2507 return skb->data + offset; 2508 } 2509 2510 static inline void *skb_gro_network_header(struct sk_buff *skb) 2511 { 2512 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2513 skb_network_offset(skb); 2514 } 2515 2516 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2517 const void *start, unsigned int len) 2518 { 2519 if (NAPI_GRO_CB(skb)->csum_valid) 2520 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2521 csum_partial(start, len, 0)); 2522 } 2523 2524 /* GRO checksum functions. These are logical equivalents of the normal 2525 * checksum functions (in skbuff.h) except that they operate on the GRO 2526 * offsets and fields in sk_buff. 2527 */ 2528 2529 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2530 2531 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2532 { 2533 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2534 } 2535 2536 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2537 bool zero_okay, 2538 __sum16 check) 2539 { 2540 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2541 skb_checksum_start_offset(skb) < 2542 skb_gro_offset(skb)) && 2543 !skb_at_gro_remcsum_start(skb) && 2544 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2545 (!zero_okay || check)); 2546 } 2547 2548 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2549 __wsum psum) 2550 { 2551 if (NAPI_GRO_CB(skb)->csum_valid && 2552 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2553 return 0; 2554 2555 NAPI_GRO_CB(skb)->csum = psum; 2556 2557 return __skb_gro_checksum_complete(skb); 2558 } 2559 2560 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2561 { 2562 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2563 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2564 NAPI_GRO_CB(skb)->csum_cnt--; 2565 } else { 2566 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2567 * verified a new top level checksum or an encapsulated one 2568 * during GRO. This saves work if we fallback to normal path. 2569 */ 2570 __skb_incr_checksum_unnecessary(skb); 2571 } 2572 } 2573 2574 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2575 compute_pseudo) \ 2576 ({ \ 2577 __sum16 __ret = 0; \ 2578 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2579 __ret = __skb_gro_checksum_validate_complete(skb, \ 2580 compute_pseudo(skb, proto)); \ 2581 if (!__ret) \ 2582 skb_gro_incr_csum_unnecessary(skb); \ 2583 __ret; \ 2584 }) 2585 2586 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2587 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2588 2589 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2590 compute_pseudo) \ 2591 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2592 2593 #define skb_gro_checksum_simple_validate(skb) \ 2594 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2595 2596 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2597 { 2598 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2599 !NAPI_GRO_CB(skb)->csum_valid); 2600 } 2601 2602 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2603 __sum16 check, __wsum pseudo) 2604 { 2605 NAPI_GRO_CB(skb)->csum = ~pseudo; 2606 NAPI_GRO_CB(skb)->csum_valid = 1; 2607 } 2608 2609 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2610 do { \ 2611 if (__skb_gro_checksum_convert_check(skb)) \ 2612 __skb_gro_checksum_convert(skb, check, \ 2613 compute_pseudo(skb, proto)); \ 2614 } while (0) 2615 2616 struct gro_remcsum { 2617 int offset; 2618 __wsum delta; 2619 }; 2620 2621 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2622 { 2623 grc->offset = 0; 2624 grc->delta = 0; 2625 } 2626 2627 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2628 unsigned int off, size_t hdrlen, 2629 int start, int offset, 2630 struct gro_remcsum *grc, 2631 bool nopartial) 2632 { 2633 __wsum delta; 2634 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2635 2636 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2637 2638 if (!nopartial) { 2639 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2640 return ptr; 2641 } 2642 2643 ptr = skb_gro_header_fast(skb, off); 2644 if (skb_gro_header_hard(skb, off + plen)) { 2645 ptr = skb_gro_header_slow(skb, off + plen, off); 2646 if (!ptr) 2647 return NULL; 2648 } 2649 2650 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2651 start, offset); 2652 2653 /* Adjust skb->csum since we changed the packet */ 2654 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2655 2656 grc->offset = off + hdrlen + offset; 2657 grc->delta = delta; 2658 2659 return ptr; 2660 } 2661 2662 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2663 struct gro_remcsum *grc) 2664 { 2665 void *ptr; 2666 size_t plen = grc->offset + sizeof(u16); 2667 2668 if (!grc->delta) 2669 return; 2670 2671 ptr = skb_gro_header_fast(skb, grc->offset); 2672 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2673 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2674 if (!ptr) 2675 return; 2676 } 2677 2678 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2679 } 2680 2681 #ifdef CONFIG_XFRM_OFFLOAD 2682 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush) 2683 { 2684 if (PTR_ERR(pp) != -EINPROGRESS) 2685 NAPI_GRO_CB(skb)->flush |= flush; 2686 } 2687 #else 2688 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush) 2689 { 2690 NAPI_GRO_CB(skb)->flush |= flush; 2691 } 2692 #endif 2693 2694 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2695 unsigned short type, 2696 const void *daddr, const void *saddr, 2697 unsigned int len) 2698 { 2699 if (!dev->header_ops || !dev->header_ops->create) 2700 return 0; 2701 2702 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2703 } 2704 2705 static inline int dev_parse_header(const struct sk_buff *skb, 2706 unsigned char *haddr) 2707 { 2708 const struct net_device *dev = skb->dev; 2709 2710 if (!dev->header_ops || !dev->header_ops->parse) 2711 return 0; 2712 return dev->header_ops->parse(skb, haddr); 2713 } 2714 2715 /* ll_header must have at least hard_header_len allocated */ 2716 static inline bool dev_validate_header(const struct net_device *dev, 2717 char *ll_header, int len) 2718 { 2719 if (likely(len >= dev->hard_header_len)) 2720 return true; 2721 if (len < dev->min_header_len) 2722 return false; 2723 2724 if (capable(CAP_SYS_RAWIO)) { 2725 memset(ll_header + len, 0, dev->hard_header_len - len); 2726 return true; 2727 } 2728 2729 if (dev->header_ops && dev->header_ops->validate) 2730 return dev->header_ops->validate(ll_header, len); 2731 2732 return false; 2733 } 2734 2735 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 2736 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2737 static inline int unregister_gifconf(unsigned int family) 2738 { 2739 return register_gifconf(family, NULL); 2740 } 2741 2742 #ifdef CONFIG_NET_FLOW_LIMIT 2743 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2744 struct sd_flow_limit { 2745 u64 count; 2746 unsigned int num_buckets; 2747 unsigned int history_head; 2748 u16 history[FLOW_LIMIT_HISTORY]; 2749 u8 buckets[]; 2750 }; 2751 2752 extern int netdev_flow_limit_table_len; 2753 #endif /* CONFIG_NET_FLOW_LIMIT */ 2754 2755 /* 2756 * Incoming packets are placed on per-CPU queues 2757 */ 2758 struct softnet_data { 2759 struct list_head poll_list; 2760 struct sk_buff_head process_queue; 2761 2762 /* stats */ 2763 unsigned int processed; 2764 unsigned int time_squeeze; 2765 unsigned int received_rps; 2766 #ifdef CONFIG_RPS 2767 struct softnet_data *rps_ipi_list; 2768 #endif 2769 #ifdef CONFIG_NET_FLOW_LIMIT 2770 struct sd_flow_limit __rcu *flow_limit; 2771 #endif 2772 struct Qdisc *output_queue; 2773 struct Qdisc **output_queue_tailp; 2774 struct sk_buff *completion_queue; 2775 2776 #ifdef CONFIG_RPS 2777 /* input_queue_head should be written by cpu owning this struct, 2778 * and only read by other cpus. Worth using a cache line. 2779 */ 2780 unsigned int input_queue_head ____cacheline_aligned_in_smp; 2781 2782 /* Elements below can be accessed between CPUs for RPS/RFS */ 2783 call_single_data_t csd ____cacheline_aligned_in_smp; 2784 struct softnet_data *rps_ipi_next; 2785 unsigned int cpu; 2786 unsigned int input_queue_tail; 2787 #endif 2788 unsigned int dropped; 2789 struct sk_buff_head input_pkt_queue; 2790 struct napi_struct backlog; 2791 2792 }; 2793 2794 static inline void input_queue_head_incr(struct softnet_data *sd) 2795 { 2796 #ifdef CONFIG_RPS 2797 sd->input_queue_head++; 2798 #endif 2799 } 2800 2801 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 2802 unsigned int *qtail) 2803 { 2804 #ifdef CONFIG_RPS 2805 *qtail = ++sd->input_queue_tail; 2806 #endif 2807 } 2808 2809 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 2810 2811 void __netif_schedule(struct Qdisc *q); 2812 void netif_schedule_queue(struct netdev_queue *txq); 2813 2814 static inline void netif_tx_schedule_all(struct net_device *dev) 2815 { 2816 unsigned int i; 2817 2818 for (i = 0; i < dev->num_tx_queues; i++) 2819 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 2820 } 2821 2822 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 2823 { 2824 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2825 } 2826 2827 /** 2828 * netif_start_queue - allow transmit 2829 * @dev: network device 2830 * 2831 * Allow upper layers to call the device hard_start_xmit routine. 2832 */ 2833 static inline void netif_start_queue(struct net_device *dev) 2834 { 2835 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 2836 } 2837 2838 static inline void netif_tx_start_all_queues(struct net_device *dev) 2839 { 2840 unsigned int i; 2841 2842 for (i = 0; i < dev->num_tx_queues; i++) { 2843 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2844 netif_tx_start_queue(txq); 2845 } 2846 } 2847 2848 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 2849 2850 /** 2851 * netif_wake_queue - restart transmit 2852 * @dev: network device 2853 * 2854 * Allow upper layers to call the device hard_start_xmit routine. 2855 * Used for flow control when transmit resources are available. 2856 */ 2857 static inline void netif_wake_queue(struct net_device *dev) 2858 { 2859 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 2860 } 2861 2862 static inline void netif_tx_wake_all_queues(struct net_device *dev) 2863 { 2864 unsigned int i; 2865 2866 for (i = 0; i < dev->num_tx_queues; i++) { 2867 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2868 netif_tx_wake_queue(txq); 2869 } 2870 } 2871 2872 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 2873 { 2874 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2875 } 2876 2877 /** 2878 * netif_stop_queue - stop transmitted packets 2879 * @dev: network device 2880 * 2881 * Stop upper layers calling the device hard_start_xmit routine. 2882 * Used for flow control when transmit resources are unavailable. 2883 */ 2884 static inline void netif_stop_queue(struct net_device *dev) 2885 { 2886 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 2887 } 2888 2889 void netif_tx_stop_all_queues(struct net_device *dev); 2890 2891 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 2892 { 2893 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2894 } 2895 2896 /** 2897 * netif_queue_stopped - test if transmit queue is flowblocked 2898 * @dev: network device 2899 * 2900 * Test if transmit queue on device is currently unable to send. 2901 */ 2902 static inline bool netif_queue_stopped(const struct net_device *dev) 2903 { 2904 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 2905 } 2906 2907 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 2908 { 2909 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 2910 } 2911 2912 static inline bool 2913 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 2914 { 2915 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 2916 } 2917 2918 static inline bool 2919 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 2920 { 2921 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 2922 } 2923 2924 /** 2925 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 2926 * @dev_queue: pointer to transmit queue 2927 * 2928 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 2929 * to give appropriate hint to the CPU. 2930 */ 2931 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 2932 { 2933 #ifdef CONFIG_BQL 2934 prefetchw(&dev_queue->dql.num_queued); 2935 #endif 2936 } 2937 2938 /** 2939 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 2940 * @dev_queue: pointer to transmit queue 2941 * 2942 * BQL enabled drivers might use this helper in their TX completion path, 2943 * to give appropriate hint to the CPU. 2944 */ 2945 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 2946 { 2947 #ifdef CONFIG_BQL 2948 prefetchw(&dev_queue->dql.limit); 2949 #endif 2950 } 2951 2952 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 2953 unsigned int bytes) 2954 { 2955 #ifdef CONFIG_BQL 2956 dql_queued(&dev_queue->dql, bytes); 2957 2958 if (likely(dql_avail(&dev_queue->dql) >= 0)) 2959 return; 2960 2961 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2962 2963 /* 2964 * The XOFF flag must be set before checking the dql_avail below, 2965 * because in netdev_tx_completed_queue we update the dql_completed 2966 * before checking the XOFF flag. 2967 */ 2968 smp_mb(); 2969 2970 /* check again in case another CPU has just made room avail */ 2971 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 2972 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2973 #endif 2974 } 2975 2976 /** 2977 * netdev_sent_queue - report the number of bytes queued to hardware 2978 * @dev: network device 2979 * @bytes: number of bytes queued to the hardware device queue 2980 * 2981 * Report the number of bytes queued for sending/completion to the network 2982 * device hardware queue. @bytes should be a good approximation and should 2983 * exactly match netdev_completed_queue() @bytes 2984 */ 2985 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 2986 { 2987 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 2988 } 2989 2990 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 2991 unsigned int pkts, unsigned int bytes) 2992 { 2993 #ifdef CONFIG_BQL 2994 if (unlikely(!bytes)) 2995 return; 2996 2997 dql_completed(&dev_queue->dql, bytes); 2998 2999 /* 3000 * Without the memory barrier there is a small possiblity that 3001 * netdev_tx_sent_queue will miss the update and cause the queue to 3002 * be stopped forever 3003 */ 3004 smp_mb(); 3005 3006 if (dql_avail(&dev_queue->dql) < 0) 3007 return; 3008 3009 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3010 netif_schedule_queue(dev_queue); 3011 #endif 3012 } 3013 3014 /** 3015 * netdev_completed_queue - report bytes and packets completed by device 3016 * @dev: network device 3017 * @pkts: actual number of packets sent over the medium 3018 * @bytes: actual number of bytes sent over the medium 3019 * 3020 * Report the number of bytes and packets transmitted by the network device 3021 * hardware queue over the physical medium, @bytes must exactly match the 3022 * @bytes amount passed to netdev_sent_queue() 3023 */ 3024 static inline void netdev_completed_queue(struct net_device *dev, 3025 unsigned int pkts, unsigned int bytes) 3026 { 3027 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3028 } 3029 3030 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3031 { 3032 #ifdef CONFIG_BQL 3033 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3034 dql_reset(&q->dql); 3035 #endif 3036 } 3037 3038 /** 3039 * netdev_reset_queue - reset the packets and bytes count of a network device 3040 * @dev_queue: network device 3041 * 3042 * Reset the bytes and packet count of a network device and clear the 3043 * software flow control OFF bit for this network device 3044 */ 3045 static inline void netdev_reset_queue(struct net_device *dev_queue) 3046 { 3047 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3048 } 3049 3050 /** 3051 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3052 * @dev: network device 3053 * @queue_index: given tx queue index 3054 * 3055 * Returns 0 if given tx queue index >= number of device tx queues, 3056 * otherwise returns the originally passed tx queue index. 3057 */ 3058 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3059 { 3060 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3061 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3062 dev->name, queue_index, 3063 dev->real_num_tx_queues); 3064 return 0; 3065 } 3066 3067 return queue_index; 3068 } 3069 3070 /** 3071 * netif_running - test if up 3072 * @dev: network device 3073 * 3074 * Test if the device has been brought up. 3075 */ 3076 static inline bool netif_running(const struct net_device *dev) 3077 { 3078 return test_bit(__LINK_STATE_START, &dev->state); 3079 } 3080 3081 /* 3082 * Routines to manage the subqueues on a device. We only need start, 3083 * stop, and a check if it's stopped. All other device management is 3084 * done at the overall netdevice level. 3085 * Also test the device if we're multiqueue. 3086 */ 3087 3088 /** 3089 * netif_start_subqueue - allow sending packets on subqueue 3090 * @dev: network device 3091 * @queue_index: sub queue index 3092 * 3093 * Start individual transmit queue of a device with multiple transmit queues. 3094 */ 3095 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3096 { 3097 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3098 3099 netif_tx_start_queue(txq); 3100 } 3101 3102 /** 3103 * netif_stop_subqueue - stop sending packets on subqueue 3104 * @dev: network device 3105 * @queue_index: sub queue index 3106 * 3107 * Stop individual transmit queue of a device with multiple transmit queues. 3108 */ 3109 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3110 { 3111 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3112 netif_tx_stop_queue(txq); 3113 } 3114 3115 /** 3116 * netif_subqueue_stopped - test status of subqueue 3117 * @dev: network device 3118 * @queue_index: sub queue index 3119 * 3120 * Check individual transmit queue of a device with multiple transmit queues. 3121 */ 3122 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3123 u16 queue_index) 3124 { 3125 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3126 3127 return netif_tx_queue_stopped(txq); 3128 } 3129 3130 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3131 struct sk_buff *skb) 3132 { 3133 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3134 } 3135 3136 /** 3137 * netif_wake_subqueue - allow sending packets on subqueue 3138 * @dev: network device 3139 * @queue_index: sub queue index 3140 * 3141 * Resume individual transmit queue of a device with multiple transmit queues. 3142 */ 3143 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3144 { 3145 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3146 3147 netif_tx_wake_queue(txq); 3148 } 3149 3150 #ifdef CONFIG_XPS 3151 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3152 u16 index); 3153 #else 3154 static inline int netif_set_xps_queue(struct net_device *dev, 3155 const struct cpumask *mask, 3156 u16 index) 3157 { 3158 return 0; 3159 } 3160 #endif 3161 3162 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 3163 unsigned int num_tx_queues); 3164 3165 /* 3166 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 3167 * as a distribution range limit for the returned value. 3168 */ 3169 static inline u16 skb_tx_hash(const struct net_device *dev, 3170 struct sk_buff *skb) 3171 { 3172 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 3173 } 3174 3175 /** 3176 * netif_is_multiqueue - test if device has multiple transmit queues 3177 * @dev: network device 3178 * 3179 * Check if device has multiple transmit queues 3180 */ 3181 static inline bool netif_is_multiqueue(const struct net_device *dev) 3182 { 3183 return dev->num_tx_queues > 1; 3184 } 3185 3186 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3187 3188 #ifdef CONFIG_SYSFS 3189 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3190 #else 3191 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3192 unsigned int rxq) 3193 { 3194 return 0; 3195 } 3196 #endif 3197 3198 #ifdef CONFIG_SYSFS 3199 static inline unsigned int get_netdev_rx_queue_index( 3200 struct netdev_rx_queue *queue) 3201 { 3202 struct net_device *dev = queue->dev; 3203 int index = queue - dev->_rx; 3204 3205 BUG_ON(index >= dev->num_rx_queues); 3206 return index; 3207 } 3208 #endif 3209 3210 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3211 int netif_get_num_default_rss_queues(void); 3212 3213 enum skb_free_reason { 3214 SKB_REASON_CONSUMED, 3215 SKB_REASON_DROPPED, 3216 }; 3217 3218 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3219 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3220 3221 /* 3222 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3223 * interrupt context or with hardware interrupts being disabled. 3224 * (in_irq() || irqs_disabled()) 3225 * 3226 * We provide four helpers that can be used in following contexts : 3227 * 3228 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3229 * replacing kfree_skb(skb) 3230 * 3231 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3232 * Typically used in place of consume_skb(skb) in TX completion path 3233 * 3234 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3235 * replacing kfree_skb(skb) 3236 * 3237 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3238 * and consumed a packet. Used in place of consume_skb(skb) 3239 */ 3240 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3241 { 3242 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3243 } 3244 3245 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3246 { 3247 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3248 } 3249 3250 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3251 { 3252 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3253 } 3254 3255 static inline void dev_consume_skb_any(struct sk_buff *skb) 3256 { 3257 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3258 } 3259 3260 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3261 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3262 int netif_rx(struct sk_buff *skb); 3263 int netif_rx_ni(struct sk_buff *skb); 3264 int netif_receive_skb(struct sk_buff *skb); 3265 int netif_receive_skb_core(struct sk_buff *skb); 3266 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3267 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3268 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3269 gro_result_t napi_gro_frags(struct napi_struct *napi); 3270 struct packet_offload *gro_find_receive_by_type(__be16 type); 3271 struct packet_offload *gro_find_complete_by_type(__be16 type); 3272 3273 static inline void napi_free_frags(struct napi_struct *napi) 3274 { 3275 kfree_skb(napi->skb); 3276 napi->skb = NULL; 3277 } 3278 3279 bool netdev_is_rx_handler_busy(struct net_device *dev); 3280 int netdev_rx_handler_register(struct net_device *dev, 3281 rx_handler_func_t *rx_handler, 3282 void *rx_handler_data); 3283 void netdev_rx_handler_unregister(struct net_device *dev); 3284 3285 bool dev_valid_name(const char *name); 3286 int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 3287 int dev_ethtool(struct net *net, struct ifreq *); 3288 unsigned int dev_get_flags(const struct net_device *); 3289 int __dev_change_flags(struct net_device *, unsigned int flags); 3290 int dev_change_flags(struct net_device *, unsigned int); 3291 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3292 unsigned int gchanges); 3293 int dev_change_name(struct net_device *, const char *); 3294 int dev_set_alias(struct net_device *, const char *, size_t); 3295 int dev_get_alias(const struct net_device *, char *, size_t); 3296 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3297 int __dev_set_mtu(struct net_device *, int); 3298 int dev_set_mtu(struct net_device *, int); 3299 void dev_set_group(struct net_device *, int); 3300 int dev_set_mac_address(struct net_device *, struct sockaddr *); 3301 int dev_change_carrier(struct net_device *, bool new_carrier); 3302 int dev_get_phys_port_id(struct net_device *dev, 3303 struct netdev_phys_item_id *ppid); 3304 int dev_get_phys_port_name(struct net_device *dev, 3305 char *name, size_t len); 3306 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3307 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev); 3308 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3309 struct netdev_queue *txq, int *ret); 3310 3311 typedef int (*xdp_op_t)(struct net_device *dev, struct netdev_xdp *xdp); 3312 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 3313 int fd, u32 flags); 3314 u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id); 3315 3316 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3317 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3318 bool is_skb_forwardable(const struct net_device *dev, 3319 const struct sk_buff *skb); 3320 3321 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3322 struct sk_buff *skb) 3323 { 3324 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3325 unlikely(!is_skb_forwardable(dev, skb))) { 3326 atomic_long_inc(&dev->rx_dropped); 3327 kfree_skb(skb); 3328 return NET_RX_DROP; 3329 } 3330 3331 skb_scrub_packet(skb, true); 3332 skb->priority = 0; 3333 return 0; 3334 } 3335 3336 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3337 3338 extern int netdev_budget; 3339 extern unsigned int netdev_budget_usecs; 3340 3341 /* Called by rtnetlink.c:rtnl_unlock() */ 3342 void netdev_run_todo(void); 3343 3344 /** 3345 * dev_put - release reference to device 3346 * @dev: network device 3347 * 3348 * Release reference to device to allow it to be freed. 3349 */ 3350 static inline void dev_put(struct net_device *dev) 3351 { 3352 this_cpu_dec(*dev->pcpu_refcnt); 3353 } 3354 3355 /** 3356 * dev_hold - get reference to device 3357 * @dev: network device 3358 * 3359 * Hold reference to device to keep it from being freed. 3360 */ 3361 static inline void dev_hold(struct net_device *dev) 3362 { 3363 this_cpu_inc(*dev->pcpu_refcnt); 3364 } 3365 3366 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3367 * and _off may be called from IRQ context, but it is caller 3368 * who is responsible for serialization of these calls. 3369 * 3370 * The name carrier is inappropriate, these functions should really be 3371 * called netif_lowerlayer_*() because they represent the state of any 3372 * kind of lower layer not just hardware media. 3373 */ 3374 3375 void linkwatch_init_dev(struct net_device *dev); 3376 void linkwatch_fire_event(struct net_device *dev); 3377 void linkwatch_forget_dev(struct net_device *dev); 3378 3379 /** 3380 * netif_carrier_ok - test if carrier present 3381 * @dev: network device 3382 * 3383 * Check if carrier is present on device 3384 */ 3385 static inline bool netif_carrier_ok(const struct net_device *dev) 3386 { 3387 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3388 } 3389 3390 unsigned long dev_trans_start(struct net_device *dev); 3391 3392 void __netdev_watchdog_up(struct net_device *dev); 3393 3394 void netif_carrier_on(struct net_device *dev); 3395 3396 void netif_carrier_off(struct net_device *dev); 3397 3398 /** 3399 * netif_dormant_on - mark device as dormant. 3400 * @dev: network device 3401 * 3402 * Mark device as dormant (as per RFC2863). 3403 * 3404 * The dormant state indicates that the relevant interface is not 3405 * actually in a condition to pass packets (i.e., it is not 'up') but is 3406 * in a "pending" state, waiting for some external event. For "on- 3407 * demand" interfaces, this new state identifies the situation where the 3408 * interface is waiting for events to place it in the up state. 3409 */ 3410 static inline void netif_dormant_on(struct net_device *dev) 3411 { 3412 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3413 linkwatch_fire_event(dev); 3414 } 3415 3416 /** 3417 * netif_dormant_off - set device as not dormant. 3418 * @dev: network device 3419 * 3420 * Device is not in dormant state. 3421 */ 3422 static inline void netif_dormant_off(struct net_device *dev) 3423 { 3424 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3425 linkwatch_fire_event(dev); 3426 } 3427 3428 /** 3429 * netif_dormant - test if device is dormant 3430 * @dev: network device 3431 * 3432 * Check if device is dormant. 3433 */ 3434 static inline bool netif_dormant(const struct net_device *dev) 3435 { 3436 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3437 } 3438 3439 3440 /** 3441 * netif_oper_up - test if device is operational 3442 * @dev: network device 3443 * 3444 * Check if carrier is operational 3445 */ 3446 static inline bool netif_oper_up(const struct net_device *dev) 3447 { 3448 return (dev->operstate == IF_OPER_UP || 3449 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3450 } 3451 3452 /** 3453 * netif_device_present - is device available or removed 3454 * @dev: network device 3455 * 3456 * Check if device has not been removed from system. 3457 */ 3458 static inline bool netif_device_present(struct net_device *dev) 3459 { 3460 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3461 } 3462 3463 void netif_device_detach(struct net_device *dev); 3464 3465 void netif_device_attach(struct net_device *dev); 3466 3467 /* 3468 * Network interface message level settings 3469 */ 3470 3471 enum { 3472 NETIF_MSG_DRV = 0x0001, 3473 NETIF_MSG_PROBE = 0x0002, 3474 NETIF_MSG_LINK = 0x0004, 3475 NETIF_MSG_TIMER = 0x0008, 3476 NETIF_MSG_IFDOWN = 0x0010, 3477 NETIF_MSG_IFUP = 0x0020, 3478 NETIF_MSG_RX_ERR = 0x0040, 3479 NETIF_MSG_TX_ERR = 0x0080, 3480 NETIF_MSG_TX_QUEUED = 0x0100, 3481 NETIF_MSG_INTR = 0x0200, 3482 NETIF_MSG_TX_DONE = 0x0400, 3483 NETIF_MSG_RX_STATUS = 0x0800, 3484 NETIF_MSG_PKTDATA = 0x1000, 3485 NETIF_MSG_HW = 0x2000, 3486 NETIF_MSG_WOL = 0x4000, 3487 }; 3488 3489 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3490 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3491 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3492 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3493 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3494 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3495 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3496 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3497 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3498 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3499 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3500 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3501 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3502 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3503 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3504 3505 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3506 { 3507 /* use default */ 3508 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3509 return default_msg_enable_bits; 3510 if (debug_value == 0) /* no output */ 3511 return 0; 3512 /* set low N bits */ 3513 return (1 << debug_value) - 1; 3514 } 3515 3516 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3517 { 3518 spin_lock(&txq->_xmit_lock); 3519 txq->xmit_lock_owner = cpu; 3520 } 3521 3522 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 3523 { 3524 __acquire(&txq->_xmit_lock); 3525 return true; 3526 } 3527 3528 static inline void __netif_tx_release(struct netdev_queue *txq) 3529 { 3530 __release(&txq->_xmit_lock); 3531 } 3532 3533 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3534 { 3535 spin_lock_bh(&txq->_xmit_lock); 3536 txq->xmit_lock_owner = smp_processor_id(); 3537 } 3538 3539 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3540 { 3541 bool ok = spin_trylock(&txq->_xmit_lock); 3542 if (likely(ok)) 3543 txq->xmit_lock_owner = smp_processor_id(); 3544 return ok; 3545 } 3546 3547 static inline void __netif_tx_unlock(struct netdev_queue *txq) 3548 { 3549 txq->xmit_lock_owner = -1; 3550 spin_unlock(&txq->_xmit_lock); 3551 } 3552 3553 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3554 { 3555 txq->xmit_lock_owner = -1; 3556 spin_unlock_bh(&txq->_xmit_lock); 3557 } 3558 3559 static inline void txq_trans_update(struct netdev_queue *txq) 3560 { 3561 if (txq->xmit_lock_owner != -1) 3562 txq->trans_start = jiffies; 3563 } 3564 3565 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3566 static inline void netif_trans_update(struct net_device *dev) 3567 { 3568 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3569 3570 if (txq->trans_start != jiffies) 3571 txq->trans_start = jiffies; 3572 } 3573 3574 /** 3575 * netif_tx_lock - grab network device transmit lock 3576 * @dev: network device 3577 * 3578 * Get network device transmit lock 3579 */ 3580 static inline void netif_tx_lock(struct net_device *dev) 3581 { 3582 unsigned int i; 3583 int cpu; 3584 3585 spin_lock(&dev->tx_global_lock); 3586 cpu = smp_processor_id(); 3587 for (i = 0; i < dev->num_tx_queues; i++) { 3588 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3589 3590 /* We are the only thread of execution doing a 3591 * freeze, but we have to grab the _xmit_lock in 3592 * order to synchronize with threads which are in 3593 * the ->hard_start_xmit() handler and already 3594 * checked the frozen bit. 3595 */ 3596 __netif_tx_lock(txq, cpu); 3597 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3598 __netif_tx_unlock(txq); 3599 } 3600 } 3601 3602 static inline void netif_tx_lock_bh(struct net_device *dev) 3603 { 3604 local_bh_disable(); 3605 netif_tx_lock(dev); 3606 } 3607 3608 static inline void netif_tx_unlock(struct net_device *dev) 3609 { 3610 unsigned int i; 3611 3612 for (i = 0; i < dev->num_tx_queues; i++) { 3613 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3614 3615 /* No need to grab the _xmit_lock here. If the 3616 * queue is not stopped for another reason, we 3617 * force a schedule. 3618 */ 3619 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3620 netif_schedule_queue(txq); 3621 } 3622 spin_unlock(&dev->tx_global_lock); 3623 } 3624 3625 static inline void netif_tx_unlock_bh(struct net_device *dev) 3626 { 3627 netif_tx_unlock(dev); 3628 local_bh_enable(); 3629 } 3630 3631 #define HARD_TX_LOCK(dev, txq, cpu) { \ 3632 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3633 __netif_tx_lock(txq, cpu); \ 3634 } else { \ 3635 __netif_tx_acquire(txq); \ 3636 } \ 3637 } 3638 3639 #define HARD_TX_TRYLOCK(dev, txq) \ 3640 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3641 __netif_tx_trylock(txq) : \ 3642 __netif_tx_acquire(txq)) 3643 3644 #define HARD_TX_UNLOCK(dev, txq) { \ 3645 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3646 __netif_tx_unlock(txq); \ 3647 } else { \ 3648 __netif_tx_release(txq); \ 3649 } \ 3650 } 3651 3652 static inline void netif_tx_disable(struct net_device *dev) 3653 { 3654 unsigned int i; 3655 int cpu; 3656 3657 local_bh_disable(); 3658 cpu = smp_processor_id(); 3659 for (i = 0; i < dev->num_tx_queues; i++) { 3660 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3661 3662 __netif_tx_lock(txq, cpu); 3663 netif_tx_stop_queue(txq); 3664 __netif_tx_unlock(txq); 3665 } 3666 local_bh_enable(); 3667 } 3668 3669 static inline void netif_addr_lock(struct net_device *dev) 3670 { 3671 spin_lock(&dev->addr_list_lock); 3672 } 3673 3674 static inline void netif_addr_lock_nested(struct net_device *dev) 3675 { 3676 int subclass = SINGLE_DEPTH_NESTING; 3677 3678 if (dev->netdev_ops->ndo_get_lock_subclass) 3679 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 3680 3681 spin_lock_nested(&dev->addr_list_lock, subclass); 3682 } 3683 3684 static inline void netif_addr_lock_bh(struct net_device *dev) 3685 { 3686 spin_lock_bh(&dev->addr_list_lock); 3687 } 3688 3689 static inline void netif_addr_unlock(struct net_device *dev) 3690 { 3691 spin_unlock(&dev->addr_list_lock); 3692 } 3693 3694 static inline void netif_addr_unlock_bh(struct net_device *dev) 3695 { 3696 spin_unlock_bh(&dev->addr_list_lock); 3697 } 3698 3699 /* 3700 * dev_addrs walker. Should be used only for read access. Call with 3701 * rcu_read_lock held. 3702 */ 3703 #define for_each_dev_addr(dev, ha) \ 3704 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 3705 3706 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 3707 3708 void ether_setup(struct net_device *dev); 3709 3710 /* Support for loadable net-drivers */ 3711 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 3712 unsigned char name_assign_type, 3713 void (*setup)(struct net_device *), 3714 unsigned int txqs, unsigned int rxqs); 3715 int dev_get_valid_name(struct net *net, struct net_device *dev, 3716 const char *name); 3717 3718 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 3719 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 3720 3721 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 3722 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 3723 count) 3724 3725 int register_netdev(struct net_device *dev); 3726 void unregister_netdev(struct net_device *dev); 3727 3728 /* General hardware address lists handling functions */ 3729 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3730 struct netdev_hw_addr_list *from_list, int addr_len); 3731 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3732 struct netdev_hw_addr_list *from_list, int addr_len); 3733 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 3734 struct net_device *dev, 3735 int (*sync)(struct net_device *, const unsigned char *), 3736 int (*unsync)(struct net_device *, 3737 const unsigned char *)); 3738 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 3739 struct net_device *dev, 3740 int (*unsync)(struct net_device *, 3741 const unsigned char *)); 3742 void __hw_addr_init(struct netdev_hw_addr_list *list); 3743 3744 /* Functions used for device addresses handling */ 3745 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 3746 unsigned char addr_type); 3747 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 3748 unsigned char addr_type); 3749 void dev_addr_flush(struct net_device *dev); 3750 int dev_addr_init(struct net_device *dev); 3751 3752 /* Functions used for unicast addresses handling */ 3753 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 3754 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 3755 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 3756 int dev_uc_sync(struct net_device *to, struct net_device *from); 3757 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 3758 void dev_uc_unsync(struct net_device *to, struct net_device *from); 3759 void dev_uc_flush(struct net_device *dev); 3760 void dev_uc_init(struct net_device *dev); 3761 3762 /** 3763 * __dev_uc_sync - Synchonize device's unicast list 3764 * @dev: device to sync 3765 * @sync: function to call if address should be added 3766 * @unsync: function to call if address should be removed 3767 * 3768 * Add newly added addresses to the interface, and release 3769 * addresses that have been deleted. 3770 */ 3771 static inline int __dev_uc_sync(struct net_device *dev, 3772 int (*sync)(struct net_device *, 3773 const unsigned char *), 3774 int (*unsync)(struct net_device *, 3775 const unsigned char *)) 3776 { 3777 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 3778 } 3779 3780 /** 3781 * __dev_uc_unsync - Remove synchronized addresses from device 3782 * @dev: device to sync 3783 * @unsync: function to call if address should be removed 3784 * 3785 * Remove all addresses that were added to the device by dev_uc_sync(). 3786 */ 3787 static inline void __dev_uc_unsync(struct net_device *dev, 3788 int (*unsync)(struct net_device *, 3789 const unsigned char *)) 3790 { 3791 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 3792 } 3793 3794 /* Functions used for multicast addresses handling */ 3795 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 3796 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 3797 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 3798 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 3799 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 3800 int dev_mc_sync(struct net_device *to, struct net_device *from); 3801 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 3802 void dev_mc_unsync(struct net_device *to, struct net_device *from); 3803 void dev_mc_flush(struct net_device *dev); 3804 void dev_mc_init(struct net_device *dev); 3805 3806 /** 3807 * __dev_mc_sync - Synchonize device's multicast list 3808 * @dev: device to sync 3809 * @sync: function to call if address should be added 3810 * @unsync: function to call if address should be removed 3811 * 3812 * Add newly added addresses to the interface, and release 3813 * addresses that have been deleted. 3814 */ 3815 static inline int __dev_mc_sync(struct net_device *dev, 3816 int (*sync)(struct net_device *, 3817 const unsigned char *), 3818 int (*unsync)(struct net_device *, 3819 const unsigned char *)) 3820 { 3821 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 3822 } 3823 3824 /** 3825 * __dev_mc_unsync - Remove synchronized addresses from device 3826 * @dev: device to sync 3827 * @unsync: function to call if address should be removed 3828 * 3829 * Remove all addresses that were added to the device by dev_mc_sync(). 3830 */ 3831 static inline void __dev_mc_unsync(struct net_device *dev, 3832 int (*unsync)(struct net_device *, 3833 const unsigned char *)) 3834 { 3835 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 3836 } 3837 3838 /* Functions used for secondary unicast and multicast support */ 3839 void dev_set_rx_mode(struct net_device *dev); 3840 void __dev_set_rx_mode(struct net_device *dev); 3841 int dev_set_promiscuity(struct net_device *dev, int inc); 3842 int dev_set_allmulti(struct net_device *dev, int inc); 3843 void netdev_state_change(struct net_device *dev); 3844 void netdev_notify_peers(struct net_device *dev); 3845 void netdev_features_change(struct net_device *dev); 3846 /* Load a device via the kmod */ 3847 void dev_load(struct net *net, const char *name); 3848 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 3849 struct rtnl_link_stats64 *storage); 3850 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 3851 const struct net_device_stats *netdev_stats); 3852 3853 extern int netdev_max_backlog; 3854 extern int netdev_tstamp_prequeue; 3855 extern int weight_p; 3856 extern int dev_weight_rx_bias; 3857 extern int dev_weight_tx_bias; 3858 extern int dev_rx_weight; 3859 extern int dev_tx_weight; 3860 3861 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 3862 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 3863 struct list_head **iter); 3864 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 3865 struct list_head **iter); 3866 3867 /* iterate through upper list, must be called under RCU read lock */ 3868 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 3869 for (iter = &(dev)->adj_list.upper, \ 3870 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 3871 updev; \ 3872 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 3873 3874 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 3875 int (*fn)(struct net_device *upper_dev, 3876 void *data), 3877 void *data); 3878 3879 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 3880 struct net_device *upper_dev); 3881 3882 bool netdev_has_any_upper_dev(struct net_device *dev); 3883 3884 void *netdev_lower_get_next_private(struct net_device *dev, 3885 struct list_head **iter); 3886 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 3887 struct list_head **iter); 3888 3889 #define netdev_for_each_lower_private(dev, priv, iter) \ 3890 for (iter = (dev)->adj_list.lower.next, \ 3891 priv = netdev_lower_get_next_private(dev, &(iter)); \ 3892 priv; \ 3893 priv = netdev_lower_get_next_private(dev, &(iter))) 3894 3895 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 3896 for (iter = &(dev)->adj_list.lower, \ 3897 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 3898 priv; \ 3899 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 3900 3901 void *netdev_lower_get_next(struct net_device *dev, 3902 struct list_head **iter); 3903 3904 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 3905 for (iter = (dev)->adj_list.lower.next, \ 3906 ldev = netdev_lower_get_next(dev, &(iter)); \ 3907 ldev; \ 3908 ldev = netdev_lower_get_next(dev, &(iter))) 3909 3910 struct net_device *netdev_all_lower_get_next(struct net_device *dev, 3911 struct list_head **iter); 3912 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 3913 struct list_head **iter); 3914 3915 int netdev_walk_all_lower_dev(struct net_device *dev, 3916 int (*fn)(struct net_device *lower_dev, 3917 void *data), 3918 void *data); 3919 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 3920 int (*fn)(struct net_device *lower_dev, 3921 void *data), 3922 void *data); 3923 3924 void *netdev_adjacent_get_private(struct list_head *adj_list); 3925 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 3926 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 3927 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 3928 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 3929 struct netlink_ext_ack *extack); 3930 int netdev_master_upper_dev_link(struct net_device *dev, 3931 struct net_device *upper_dev, 3932 void *upper_priv, void *upper_info, 3933 struct netlink_ext_ack *extack); 3934 void netdev_upper_dev_unlink(struct net_device *dev, 3935 struct net_device *upper_dev); 3936 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 3937 void *netdev_lower_dev_get_private(struct net_device *dev, 3938 struct net_device *lower_dev); 3939 void netdev_lower_state_changed(struct net_device *lower_dev, 3940 void *lower_state_info); 3941 3942 /* RSS keys are 40 or 52 bytes long */ 3943 #define NETDEV_RSS_KEY_LEN 52 3944 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 3945 void netdev_rss_key_fill(void *buffer, size_t len); 3946 3947 int dev_get_nest_level(struct net_device *dev); 3948 int skb_checksum_help(struct sk_buff *skb); 3949 int skb_crc32c_csum_help(struct sk_buff *skb); 3950 int skb_csum_hwoffload_help(struct sk_buff *skb, 3951 const netdev_features_t features); 3952 3953 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3954 netdev_features_t features, bool tx_path); 3955 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3956 netdev_features_t features); 3957 3958 struct netdev_bonding_info { 3959 ifslave slave; 3960 ifbond master; 3961 }; 3962 3963 struct netdev_notifier_bonding_info { 3964 struct netdev_notifier_info info; /* must be first */ 3965 struct netdev_bonding_info bonding_info; 3966 }; 3967 3968 void netdev_bonding_info_change(struct net_device *dev, 3969 struct netdev_bonding_info *bonding_info); 3970 3971 static inline 3972 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 3973 { 3974 return __skb_gso_segment(skb, features, true); 3975 } 3976 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 3977 3978 static inline bool can_checksum_protocol(netdev_features_t features, 3979 __be16 protocol) 3980 { 3981 if (protocol == htons(ETH_P_FCOE)) 3982 return !!(features & NETIF_F_FCOE_CRC); 3983 3984 /* Assume this is an IP checksum (not SCTP CRC) */ 3985 3986 if (features & NETIF_F_HW_CSUM) { 3987 /* Can checksum everything */ 3988 return true; 3989 } 3990 3991 switch (protocol) { 3992 case htons(ETH_P_IP): 3993 return !!(features & NETIF_F_IP_CSUM); 3994 case htons(ETH_P_IPV6): 3995 return !!(features & NETIF_F_IPV6_CSUM); 3996 default: 3997 return false; 3998 } 3999 } 4000 4001 #ifdef CONFIG_BUG 4002 void netdev_rx_csum_fault(struct net_device *dev); 4003 #else 4004 static inline void netdev_rx_csum_fault(struct net_device *dev) 4005 { 4006 } 4007 #endif 4008 /* rx skb timestamps */ 4009 void net_enable_timestamp(void); 4010 void net_disable_timestamp(void); 4011 4012 #ifdef CONFIG_PROC_FS 4013 int __init dev_proc_init(void); 4014 #else 4015 #define dev_proc_init() 0 4016 #endif 4017 4018 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4019 struct sk_buff *skb, struct net_device *dev, 4020 bool more) 4021 { 4022 skb->xmit_more = more ? 1 : 0; 4023 return ops->ndo_start_xmit(skb, dev); 4024 } 4025 4026 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4027 struct netdev_queue *txq, bool more) 4028 { 4029 const struct net_device_ops *ops = dev->netdev_ops; 4030 int rc; 4031 4032 rc = __netdev_start_xmit(ops, skb, dev, more); 4033 if (rc == NETDEV_TX_OK) 4034 txq_trans_update(txq); 4035 4036 return rc; 4037 } 4038 4039 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4040 const void *ns); 4041 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4042 const void *ns); 4043 4044 static inline int netdev_class_create_file(const struct class_attribute *class_attr) 4045 { 4046 return netdev_class_create_file_ns(class_attr, NULL); 4047 } 4048 4049 static inline void netdev_class_remove_file(const struct class_attribute *class_attr) 4050 { 4051 netdev_class_remove_file_ns(class_attr, NULL); 4052 } 4053 4054 extern const struct kobj_ns_type_operations net_ns_type_operations; 4055 4056 const char *netdev_drivername(const struct net_device *dev); 4057 4058 void linkwatch_run_queue(void); 4059 4060 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4061 netdev_features_t f2) 4062 { 4063 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4064 if (f1 & NETIF_F_HW_CSUM) 4065 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4066 else 4067 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4068 } 4069 4070 return f1 & f2; 4071 } 4072 4073 static inline netdev_features_t netdev_get_wanted_features( 4074 struct net_device *dev) 4075 { 4076 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4077 } 4078 netdev_features_t netdev_increment_features(netdev_features_t all, 4079 netdev_features_t one, netdev_features_t mask); 4080 4081 /* Allow TSO being used on stacked device : 4082 * Performing the GSO segmentation before last device 4083 * is a performance improvement. 4084 */ 4085 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4086 netdev_features_t mask) 4087 { 4088 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4089 } 4090 4091 int __netdev_update_features(struct net_device *dev); 4092 void netdev_update_features(struct net_device *dev); 4093 void netdev_change_features(struct net_device *dev); 4094 4095 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4096 struct net_device *dev); 4097 4098 netdev_features_t passthru_features_check(struct sk_buff *skb, 4099 struct net_device *dev, 4100 netdev_features_t features); 4101 netdev_features_t netif_skb_features(struct sk_buff *skb); 4102 4103 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4104 { 4105 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4106 4107 /* check flags correspondence */ 4108 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4109 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4110 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4111 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4112 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4113 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4114 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4115 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4116 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4117 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4118 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4119 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4120 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4121 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4122 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4123 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4124 4125 return (features & feature) == feature; 4126 } 4127 4128 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4129 { 4130 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4131 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4132 } 4133 4134 static inline bool netif_needs_gso(struct sk_buff *skb, 4135 netdev_features_t features) 4136 { 4137 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4138 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4139 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4140 } 4141 4142 static inline void netif_set_gso_max_size(struct net_device *dev, 4143 unsigned int size) 4144 { 4145 dev->gso_max_size = size; 4146 } 4147 4148 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4149 int pulled_hlen, u16 mac_offset, 4150 int mac_len) 4151 { 4152 skb->protocol = protocol; 4153 skb->encapsulation = 1; 4154 skb_push(skb, pulled_hlen); 4155 skb_reset_transport_header(skb); 4156 skb->mac_header = mac_offset; 4157 skb->network_header = skb->mac_header + mac_len; 4158 skb->mac_len = mac_len; 4159 } 4160 4161 static inline bool netif_is_macsec(const struct net_device *dev) 4162 { 4163 return dev->priv_flags & IFF_MACSEC; 4164 } 4165 4166 static inline bool netif_is_macvlan(const struct net_device *dev) 4167 { 4168 return dev->priv_flags & IFF_MACVLAN; 4169 } 4170 4171 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4172 { 4173 return dev->priv_flags & IFF_MACVLAN_PORT; 4174 } 4175 4176 static inline bool netif_is_ipvlan(const struct net_device *dev) 4177 { 4178 return dev->priv_flags & IFF_IPVLAN_SLAVE; 4179 } 4180 4181 static inline bool netif_is_ipvlan_port(const struct net_device *dev) 4182 { 4183 return dev->priv_flags & IFF_IPVLAN_MASTER; 4184 } 4185 4186 static inline bool netif_is_bond_master(const struct net_device *dev) 4187 { 4188 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4189 } 4190 4191 static inline bool netif_is_bond_slave(const struct net_device *dev) 4192 { 4193 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4194 } 4195 4196 static inline bool netif_supports_nofcs(struct net_device *dev) 4197 { 4198 return dev->priv_flags & IFF_SUPP_NOFCS; 4199 } 4200 4201 static inline bool netif_is_l3_master(const struct net_device *dev) 4202 { 4203 return dev->priv_flags & IFF_L3MDEV_MASTER; 4204 } 4205 4206 static inline bool netif_is_l3_slave(const struct net_device *dev) 4207 { 4208 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4209 } 4210 4211 static inline bool netif_is_bridge_master(const struct net_device *dev) 4212 { 4213 return dev->priv_flags & IFF_EBRIDGE; 4214 } 4215 4216 static inline bool netif_is_bridge_port(const struct net_device *dev) 4217 { 4218 return dev->priv_flags & IFF_BRIDGE_PORT; 4219 } 4220 4221 static inline bool netif_is_ovs_master(const struct net_device *dev) 4222 { 4223 return dev->priv_flags & IFF_OPENVSWITCH; 4224 } 4225 4226 static inline bool netif_is_ovs_port(const struct net_device *dev) 4227 { 4228 return dev->priv_flags & IFF_OVS_DATAPATH; 4229 } 4230 4231 static inline bool netif_is_team_master(const struct net_device *dev) 4232 { 4233 return dev->priv_flags & IFF_TEAM; 4234 } 4235 4236 static inline bool netif_is_team_port(const struct net_device *dev) 4237 { 4238 return dev->priv_flags & IFF_TEAM_PORT; 4239 } 4240 4241 static inline bool netif_is_lag_master(const struct net_device *dev) 4242 { 4243 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4244 } 4245 4246 static inline bool netif_is_lag_port(const struct net_device *dev) 4247 { 4248 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4249 } 4250 4251 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4252 { 4253 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4254 } 4255 4256 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4257 static inline void netif_keep_dst(struct net_device *dev) 4258 { 4259 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4260 } 4261 4262 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4263 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4264 { 4265 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4266 return dev->priv_flags & IFF_MACSEC; 4267 } 4268 4269 extern struct pernet_operations __net_initdata loopback_net_ops; 4270 4271 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 4272 4273 /* netdev_printk helpers, similar to dev_printk */ 4274 4275 static inline const char *netdev_name(const struct net_device *dev) 4276 { 4277 if (!dev->name[0] || strchr(dev->name, '%')) 4278 return "(unnamed net_device)"; 4279 return dev->name; 4280 } 4281 4282 static inline bool netdev_unregistering(const struct net_device *dev) 4283 { 4284 return dev->reg_state == NETREG_UNREGISTERING; 4285 } 4286 4287 static inline const char *netdev_reg_state(const struct net_device *dev) 4288 { 4289 switch (dev->reg_state) { 4290 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4291 case NETREG_REGISTERED: return ""; 4292 case NETREG_UNREGISTERING: return " (unregistering)"; 4293 case NETREG_UNREGISTERED: return " (unregistered)"; 4294 case NETREG_RELEASED: return " (released)"; 4295 case NETREG_DUMMY: return " (dummy)"; 4296 } 4297 4298 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4299 return " (unknown)"; 4300 } 4301 4302 __printf(3, 4) 4303 void netdev_printk(const char *level, const struct net_device *dev, 4304 const char *format, ...); 4305 __printf(2, 3) 4306 void netdev_emerg(const struct net_device *dev, const char *format, ...); 4307 __printf(2, 3) 4308 void netdev_alert(const struct net_device *dev, const char *format, ...); 4309 __printf(2, 3) 4310 void netdev_crit(const struct net_device *dev, const char *format, ...); 4311 __printf(2, 3) 4312 void netdev_err(const struct net_device *dev, const char *format, ...); 4313 __printf(2, 3) 4314 void netdev_warn(const struct net_device *dev, const char *format, ...); 4315 __printf(2, 3) 4316 void netdev_notice(const struct net_device *dev, const char *format, ...); 4317 __printf(2, 3) 4318 void netdev_info(const struct net_device *dev, const char *format, ...); 4319 4320 #define MODULE_ALIAS_NETDEV(device) \ 4321 MODULE_ALIAS("netdev-" device) 4322 4323 #if defined(CONFIG_DYNAMIC_DEBUG) 4324 #define netdev_dbg(__dev, format, args...) \ 4325 do { \ 4326 dynamic_netdev_dbg(__dev, format, ##args); \ 4327 } while (0) 4328 #elif defined(DEBUG) 4329 #define netdev_dbg(__dev, format, args...) \ 4330 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4331 #else 4332 #define netdev_dbg(__dev, format, args...) \ 4333 ({ \ 4334 if (0) \ 4335 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4336 }) 4337 #endif 4338 4339 #if defined(VERBOSE_DEBUG) 4340 #define netdev_vdbg netdev_dbg 4341 #else 4342 4343 #define netdev_vdbg(dev, format, args...) \ 4344 ({ \ 4345 if (0) \ 4346 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4347 0; \ 4348 }) 4349 #endif 4350 4351 /* 4352 * netdev_WARN() acts like dev_printk(), but with the key difference 4353 * of using a WARN/WARN_ON to get the message out, including the 4354 * file/line information and a backtrace. 4355 */ 4356 #define netdev_WARN(dev, format, args...) \ 4357 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \ 4358 netdev_reg_state(dev), ##args) 4359 4360 /* netif printk helpers, similar to netdev_printk */ 4361 4362 #define netif_printk(priv, type, level, dev, fmt, args...) \ 4363 do { \ 4364 if (netif_msg_##type(priv)) \ 4365 netdev_printk(level, (dev), fmt, ##args); \ 4366 } while (0) 4367 4368 #define netif_level(level, priv, type, dev, fmt, args...) \ 4369 do { \ 4370 if (netif_msg_##type(priv)) \ 4371 netdev_##level(dev, fmt, ##args); \ 4372 } while (0) 4373 4374 #define netif_emerg(priv, type, dev, fmt, args...) \ 4375 netif_level(emerg, priv, type, dev, fmt, ##args) 4376 #define netif_alert(priv, type, dev, fmt, args...) \ 4377 netif_level(alert, priv, type, dev, fmt, ##args) 4378 #define netif_crit(priv, type, dev, fmt, args...) \ 4379 netif_level(crit, priv, type, dev, fmt, ##args) 4380 #define netif_err(priv, type, dev, fmt, args...) \ 4381 netif_level(err, priv, type, dev, fmt, ##args) 4382 #define netif_warn(priv, type, dev, fmt, args...) \ 4383 netif_level(warn, priv, type, dev, fmt, ##args) 4384 #define netif_notice(priv, type, dev, fmt, args...) \ 4385 netif_level(notice, priv, type, dev, fmt, ##args) 4386 #define netif_info(priv, type, dev, fmt, args...) \ 4387 netif_level(info, priv, type, dev, fmt, ##args) 4388 4389 #if defined(CONFIG_DYNAMIC_DEBUG) 4390 #define netif_dbg(priv, type, netdev, format, args...) \ 4391 do { \ 4392 if (netif_msg_##type(priv)) \ 4393 dynamic_netdev_dbg(netdev, format, ##args); \ 4394 } while (0) 4395 #elif defined(DEBUG) 4396 #define netif_dbg(priv, type, dev, format, args...) \ 4397 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4398 #else 4399 #define netif_dbg(priv, type, dev, format, args...) \ 4400 ({ \ 4401 if (0) \ 4402 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4403 0; \ 4404 }) 4405 #endif 4406 4407 /* if @cond then downgrade to debug, else print at @level */ 4408 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 4409 do { \ 4410 if (cond) \ 4411 netif_dbg(priv, type, netdev, fmt, ##args); \ 4412 else \ 4413 netif_ ## level(priv, type, netdev, fmt, ##args); \ 4414 } while (0) 4415 4416 #if defined(VERBOSE_DEBUG) 4417 #define netif_vdbg netif_dbg 4418 #else 4419 #define netif_vdbg(priv, type, dev, format, args...) \ 4420 ({ \ 4421 if (0) \ 4422 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4423 0; \ 4424 }) 4425 #endif 4426 4427 /* 4428 * The list of packet types we will receive (as opposed to discard) 4429 * and the routines to invoke. 4430 * 4431 * Why 16. Because with 16 the only overlap we get on a hash of the 4432 * low nibble of the protocol value is RARP/SNAP/X.25. 4433 * 4434 * NOTE: That is no longer true with the addition of VLAN tags. Not 4435 * sure which should go first, but I bet it won't make much 4436 * difference if we are running VLANs. The good news is that 4437 * this protocol won't be in the list unless compiled in, so 4438 * the average user (w/out VLANs) will not be adversely affected. 4439 * --BLG 4440 * 4441 * 0800 IP 4442 * 8100 802.1Q VLAN 4443 * 0001 802.3 4444 * 0002 AX.25 4445 * 0004 802.2 4446 * 8035 RARP 4447 * 0005 SNAP 4448 * 0805 X.25 4449 * 0806 ARP 4450 * 8137 IPX 4451 * 0009 Localtalk 4452 * 86DD IPv6 4453 */ 4454 #define PTYPE_HASH_SIZE (16) 4455 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4456 4457 #endif /* _LINUX_NETDEVICE_H */ 4458