xref: /linux-6.15/include/linux/netdevice.h (revision 211a741c)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <[email protected]>
13  *		Corey Minyard <[email protected]>
14  *		Donald J. Becker, <[email protected]>
15  *		Alan Cox, <[email protected]>
16  *		Bjorn Ekwall. <[email protected]>
17  *              Pekka Riikonen <[email protected]>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <net/net_namespace.h>
38 #ifdef CONFIG_DCB
39 #include <net/dcbnl.h>
40 #endif
41 #include <net/netprio_cgroup.h>
42 #include <net/xdp.h>
43 
44 #include <linux/netdev_features.h>
45 #include <linux/neighbour.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <linux/hashtable.h>
50 
51 struct netpoll_info;
52 struct device;
53 struct ethtool_ops;
54 struct phy_device;
55 struct dsa_port;
56 struct ip_tunnel_parm;
57 struct macsec_context;
58 struct macsec_ops;
59 
60 struct sfp_bus;
61 /* 802.11 specific */
62 struct wireless_dev;
63 /* 802.15.4 specific */
64 struct wpan_dev;
65 struct mpls_dev;
66 /* UDP Tunnel offloads */
67 struct udp_tunnel_info;
68 struct udp_tunnel_nic_info;
69 struct udp_tunnel_nic;
70 struct bpf_prog;
71 struct xdp_buff;
72 
73 void synchronize_net(void);
74 void netdev_set_default_ethtool_ops(struct net_device *dev,
75 				    const struct ethtool_ops *ops);
76 
77 /* Backlog congestion levels */
78 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
79 #define NET_RX_DROP		1	/* packet dropped */
80 
81 #define MAX_NEST_DEV 8
82 
83 /*
84  * Transmit return codes: transmit return codes originate from three different
85  * namespaces:
86  *
87  * - qdisc return codes
88  * - driver transmit return codes
89  * - errno values
90  *
91  * Drivers are allowed to return any one of those in their hard_start_xmit()
92  * function. Real network devices commonly used with qdiscs should only return
93  * the driver transmit return codes though - when qdiscs are used, the actual
94  * transmission happens asynchronously, so the value is not propagated to
95  * higher layers. Virtual network devices transmit synchronously; in this case
96  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
97  * others are propagated to higher layers.
98  */
99 
100 /* qdisc ->enqueue() return codes. */
101 #define NET_XMIT_SUCCESS	0x00
102 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
103 #define NET_XMIT_CN		0x02	/* congestion notification	*/
104 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
105 
106 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
107  * indicates that the device will soon be dropping packets, or already drops
108  * some packets of the same priority; prompting us to send less aggressively. */
109 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
110 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
111 
112 /* Driver transmit return codes */
113 #define NETDEV_TX_MASK		0xf0
114 
115 enum netdev_tx {
116 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
117 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
118 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
119 };
120 typedef enum netdev_tx netdev_tx_t;
121 
122 /*
123  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
124  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
125  */
126 static inline bool dev_xmit_complete(int rc)
127 {
128 	/*
129 	 * Positive cases with an skb consumed by a driver:
130 	 * - successful transmission (rc == NETDEV_TX_OK)
131 	 * - error while transmitting (rc < 0)
132 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
133 	 */
134 	if (likely(rc < NET_XMIT_MASK))
135 		return true;
136 
137 	return false;
138 }
139 
140 /*
141  *	Compute the worst-case header length according to the protocols
142  *	used.
143  */
144 
145 #if defined(CONFIG_HYPERV_NET)
146 # define LL_MAX_HEADER 128
147 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
148 # if defined(CONFIG_MAC80211_MESH)
149 #  define LL_MAX_HEADER 128
150 # else
151 #  define LL_MAX_HEADER 96
152 # endif
153 #else
154 # define LL_MAX_HEADER 32
155 #endif
156 
157 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
158     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
159 #define MAX_HEADER LL_MAX_HEADER
160 #else
161 #define MAX_HEADER (LL_MAX_HEADER + 48)
162 #endif
163 
164 /*
165  *	Old network device statistics. Fields are native words
166  *	(unsigned long) so they can be read and written atomically.
167  */
168 
169 struct net_device_stats {
170 	unsigned long	rx_packets;
171 	unsigned long	tx_packets;
172 	unsigned long	rx_bytes;
173 	unsigned long	tx_bytes;
174 	unsigned long	rx_errors;
175 	unsigned long	tx_errors;
176 	unsigned long	rx_dropped;
177 	unsigned long	tx_dropped;
178 	unsigned long	multicast;
179 	unsigned long	collisions;
180 	unsigned long	rx_length_errors;
181 	unsigned long	rx_over_errors;
182 	unsigned long	rx_crc_errors;
183 	unsigned long	rx_frame_errors;
184 	unsigned long	rx_fifo_errors;
185 	unsigned long	rx_missed_errors;
186 	unsigned long	tx_aborted_errors;
187 	unsigned long	tx_carrier_errors;
188 	unsigned long	tx_fifo_errors;
189 	unsigned long	tx_heartbeat_errors;
190 	unsigned long	tx_window_errors;
191 	unsigned long	rx_compressed;
192 	unsigned long	tx_compressed;
193 };
194 
195 
196 #include <linux/cache.h>
197 #include <linux/skbuff.h>
198 
199 #ifdef CONFIG_RPS
200 #include <linux/static_key.h>
201 extern struct static_key_false rps_needed;
202 extern struct static_key_false rfs_needed;
203 #endif
204 
205 struct neighbour;
206 struct neigh_parms;
207 struct sk_buff;
208 
209 struct netdev_hw_addr {
210 	struct list_head	list;
211 	unsigned char		addr[MAX_ADDR_LEN];
212 	unsigned char		type;
213 #define NETDEV_HW_ADDR_T_LAN		1
214 #define NETDEV_HW_ADDR_T_SAN		2
215 #define NETDEV_HW_ADDR_T_UNICAST	3
216 #define NETDEV_HW_ADDR_T_MULTICAST	4
217 	bool			global_use;
218 	int			sync_cnt;
219 	int			refcount;
220 	int			synced;
221 	struct rcu_head		rcu_head;
222 };
223 
224 struct netdev_hw_addr_list {
225 	struct list_head	list;
226 	int			count;
227 };
228 
229 #define netdev_hw_addr_list_count(l) ((l)->count)
230 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
231 #define netdev_hw_addr_list_for_each(ha, l) \
232 	list_for_each_entry(ha, &(l)->list, list)
233 
234 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
235 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
236 #define netdev_for_each_uc_addr(ha, dev) \
237 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
238 
239 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
240 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
241 #define netdev_for_each_mc_addr(ha, dev) \
242 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
243 
244 struct hh_cache {
245 	unsigned int	hh_len;
246 	seqlock_t	hh_lock;
247 
248 	/* cached hardware header; allow for machine alignment needs.        */
249 #define HH_DATA_MOD	16
250 #define HH_DATA_OFF(__len) \
251 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
252 #define HH_DATA_ALIGN(__len) \
253 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
254 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
255 };
256 
257 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
258  * Alternative is:
259  *   dev->hard_header_len ? (dev->hard_header_len +
260  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
261  *
262  * We could use other alignment values, but we must maintain the
263  * relationship HH alignment <= LL alignment.
264  */
265 #define LL_RESERVED_SPACE(dev) \
266 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
267 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
268 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
269 
270 struct header_ops {
271 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
272 			   unsigned short type, const void *daddr,
273 			   const void *saddr, unsigned int len);
274 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
275 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
276 	void	(*cache_update)(struct hh_cache *hh,
277 				const struct net_device *dev,
278 				const unsigned char *haddr);
279 	bool	(*validate)(const char *ll_header, unsigned int len);
280 	__be16	(*parse_protocol)(const struct sk_buff *skb);
281 };
282 
283 /* These flag bits are private to the generic network queueing
284  * layer; they may not be explicitly referenced by any other
285  * code.
286  */
287 
288 enum netdev_state_t {
289 	__LINK_STATE_START,
290 	__LINK_STATE_PRESENT,
291 	__LINK_STATE_NOCARRIER,
292 	__LINK_STATE_LINKWATCH_PENDING,
293 	__LINK_STATE_DORMANT,
294 	__LINK_STATE_TESTING,
295 };
296 
297 
298 /*
299  * This structure holds boot-time configured netdevice settings. They
300  * are then used in the device probing.
301  */
302 struct netdev_boot_setup {
303 	char name[IFNAMSIZ];
304 	struct ifmap map;
305 };
306 #define NETDEV_BOOT_SETUP_MAX 8
307 
308 int __init netdev_boot_setup(char *str);
309 
310 struct gro_list {
311 	struct list_head	list;
312 	int			count;
313 };
314 
315 /*
316  * size of gro hash buckets, must less than bit number of
317  * napi_struct::gro_bitmask
318  */
319 #define GRO_HASH_BUCKETS	8
320 
321 /*
322  * Structure for NAPI scheduling similar to tasklet but with weighting
323  */
324 struct napi_struct {
325 	/* The poll_list must only be managed by the entity which
326 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
327 	 * whoever atomically sets that bit can add this napi_struct
328 	 * to the per-CPU poll_list, and whoever clears that bit
329 	 * can remove from the list right before clearing the bit.
330 	 */
331 	struct list_head	poll_list;
332 
333 	unsigned long		state;
334 	int			weight;
335 	int			defer_hard_irqs_count;
336 	unsigned long		gro_bitmask;
337 	int			(*poll)(struct napi_struct *, int);
338 #ifdef CONFIG_NETPOLL
339 	int			poll_owner;
340 #endif
341 	struct net_device	*dev;
342 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
343 	struct sk_buff		*skb;
344 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
345 	int			rx_count; /* length of rx_list */
346 	struct hrtimer		timer;
347 	struct list_head	dev_list;
348 	struct hlist_node	napi_hash_node;
349 	unsigned int		napi_id;
350 };
351 
352 enum {
353 	NAPI_STATE_SCHED,		/* Poll is scheduled */
354 	NAPI_STATE_MISSED,		/* reschedule a napi */
355 	NAPI_STATE_DISABLE,		/* Disable pending */
356 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
357 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
358 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
359 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
360 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
361 };
362 
363 enum {
364 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
365 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
366 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
367 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
368 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
369 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
370 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
371 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
372 };
373 
374 enum gro_result {
375 	GRO_MERGED,
376 	GRO_MERGED_FREE,
377 	GRO_HELD,
378 	GRO_NORMAL,
379 	GRO_CONSUMED,
380 };
381 typedef enum gro_result gro_result_t;
382 
383 /*
384  * enum rx_handler_result - Possible return values for rx_handlers.
385  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
386  * further.
387  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
388  * case skb->dev was changed by rx_handler.
389  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
390  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
391  *
392  * rx_handlers are functions called from inside __netif_receive_skb(), to do
393  * special processing of the skb, prior to delivery to protocol handlers.
394  *
395  * Currently, a net_device can only have a single rx_handler registered. Trying
396  * to register a second rx_handler will return -EBUSY.
397  *
398  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
399  * To unregister a rx_handler on a net_device, use
400  * netdev_rx_handler_unregister().
401  *
402  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
403  * do with the skb.
404  *
405  * If the rx_handler consumed the skb in some way, it should return
406  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
407  * the skb to be delivered in some other way.
408  *
409  * If the rx_handler changed skb->dev, to divert the skb to another
410  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
411  * new device will be called if it exists.
412  *
413  * If the rx_handler decides the skb should be ignored, it should return
414  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
415  * are registered on exact device (ptype->dev == skb->dev).
416  *
417  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
418  * delivered, it should return RX_HANDLER_PASS.
419  *
420  * A device without a registered rx_handler will behave as if rx_handler
421  * returned RX_HANDLER_PASS.
422  */
423 
424 enum rx_handler_result {
425 	RX_HANDLER_CONSUMED,
426 	RX_HANDLER_ANOTHER,
427 	RX_HANDLER_EXACT,
428 	RX_HANDLER_PASS,
429 };
430 typedef enum rx_handler_result rx_handler_result_t;
431 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
432 
433 void __napi_schedule(struct napi_struct *n);
434 void __napi_schedule_irqoff(struct napi_struct *n);
435 
436 static inline bool napi_disable_pending(struct napi_struct *n)
437 {
438 	return test_bit(NAPI_STATE_DISABLE, &n->state);
439 }
440 
441 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
442 {
443 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
444 }
445 
446 bool napi_schedule_prep(struct napi_struct *n);
447 
448 /**
449  *	napi_schedule - schedule NAPI poll
450  *	@n: NAPI context
451  *
452  * Schedule NAPI poll routine to be called if it is not already
453  * running.
454  */
455 static inline void napi_schedule(struct napi_struct *n)
456 {
457 	if (napi_schedule_prep(n))
458 		__napi_schedule(n);
459 }
460 
461 /**
462  *	napi_schedule_irqoff - schedule NAPI poll
463  *	@n: NAPI context
464  *
465  * Variant of napi_schedule(), assuming hard irqs are masked.
466  */
467 static inline void napi_schedule_irqoff(struct napi_struct *n)
468 {
469 	if (napi_schedule_prep(n))
470 		__napi_schedule_irqoff(n);
471 }
472 
473 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
474 static inline bool napi_reschedule(struct napi_struct *napi)
475 {
476 	if (napi_schedule_prep(napi)) {
477 		__napi_schedule(napi);
478 		return true;
479 	}
480 	return false;
481 }
482 
483 bool napi_complete_done(struct napi_struct *n, int work_done);
484 /**
485  *	napi_complete - NAPI processing complete
486  *	@n: NAPI context
487  *
488  * Mark NAPI processing as complete.
489  * Consider using napi_complete_done() instead.
490  * Return false if device should avoid rearming interrupts.
491  */
492 static inline bool napi_complete(struct napi_struct *n)
493 {
494 	return napi_complete_done(n, 0);
495 }
496 
497 /**
498  *	napi_disable - prevent NAPI from scheduling
499  *	@n: NAPI context
500  *
501  * Stop NAPI from being scheduled on this context.
502  * Waits till any outstanding processing completes.
503  */
504 void napi_disable(struct napi_struct *n);
505 
506 /**
507  *	napi_enable - enable NAPI scheduling
508  *	@n: NAPI context
509  *
510  * Resume NAPI from being scheduled on this context.
511  * Must be paired with napi_disable.
512  */
513 static inline void napi_enable(struct napi_struct *n)
514 {
515 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
516 	smp_mb__before_atomic();
517 	clear_bit(NAPI_STATE_SCHED, &n->state);
518 	clear_bit(NAPI_STATE_NPSVC, &n->state);
519 }
520 
521 /**
522  *	napi_synchronize - wait until NAPI is not running
523  *	@n: NAPI context
524  *
525  * Wait until NAPI is done being scheduled on this context.
526  * Waits till any outstanding processing completes but
527  * does not disable future activations.
528  */
529 static inline void napi_synchronize(const struct napi_struct *n)
530 {
531 	if (IS_ENABLED(CONFIG_SMP))
532 		while (test_bit(NAPI_STATE_SCHED, &n->state))
533 			msleep(1);
534 	else
535 		barrier();
536 }
537 
538 /**
539  *	napi_if_scheduled_mark_missed - if napi is running, set the
540  *	NAPIF_STATE_MISSED
541  *	@n: NAPI context
542  *
543  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
544  * NAPI is scheduled.
545  **/
546 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
547 {
548 	unsigned long val, new;
549 
550 	do {
551 		val = READ_ONCE(n->state);
552 		if (val & NAPIF_STATE_DISABLE)
553 			return true;
554 
555 		if (!(val & NAPIF_STATE_SCHED))
556 			return false;
557 
558 		new = val | NAPIF_STATE_MISSED;
559 	} while (cmpxchg(&n->state, val, new) != val);
560 
561 	return true;
562 }
563 
564 enum netdev_queue_state_t {
565 	__QUEUE_STATE_DRV_XOFF,
566 	__QUEUE_STATE_STACK_XOFF,
567 	__QUEUE_STATE_FROZEN,
568 };
569 
570 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
571 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
572 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
573 
574 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
575 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
576 					QUEUE_STATE_FROZEN)
577 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
578 					QUEUE_STATE_FROZEN)
579 
580 /*
581  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
582  * netif_tx_* functions below are used to manipulate this flag.  The
583  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
584  * queue independently.  The netif_xmit_*stopped functions below are called
585  * to check if the queue has been stopped by the driver or stack (either
586  * of the XOFF bits are set in the state).  Drivers should not need to call
587  * netif_xmit*stopped functions, they should only be using netif_tx_*.
588  */
589 
590 struct netdev_queue {
591 /*
592  * read-mostly part
593  */
594 	struct net_device	*dev;
595 	struct Qdisc __rcu	*qdisc;
596 	struct Qdisc		*qdisc_sleeping;
597 #ifdef CONFIG_SYSFS
598 	struct kobject		kobj;
599 #endif
600 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
601 	int			numa_node;
602 #endif
603 	unsigned long		tx_maxrate;
604 	/*
605 	 * Number of TX timeouts for this queue
606 	 * (/sys/class/net/DEV/Q/trans_timeout)
607 	 */
608 	unsigned long		trans_timeout;
609 
610 	/* Subordinate device that the queue has been assigned to */
611 	struct net_device	*sb_dev;
612 #ifdef CONFIG_XDP_SOCKETS
613 	struct xsk_buff_pool    *pool;
614 #endif
615 /*
616  * write-mostly part
617  */
618 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
619 	int			xmit_lock_owner;
620 	/*
621 	 * Time (in jiffies) of last Tx
622 	 */
623 	unsigned long		trans_start;
624 
625 	unsigned long		state;
626 
627 #ifdef CONFIG_BQL
628 	struct dql		dql;
629 #endif
630 } ____cacheline_aligned_in_smp;
631 
632 extern int sysctl_fb_tunnels_only_for_init_net;
633 extern int sysctl_devconf_inherit_init_net;
634 
635 /*
636  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
637  *                                     == 1 : For initns only
638  *                                     == 2 : For none.
639  */
640 static inline bool net_has_fallback_tunnels(const struct net *net)
641 {
642 	return !IS_ENABLED(CONFIG_SYSCTL) ||
643 	       !sysctl_fb_tunnels_only_for_init_net ||
644 	       (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1);
645 }
646 
647 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
648 {
649 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
650 	return q->numa_node;
651 #else
652 	return NUMA_NO_NODE;
653 #endif
654 }
655 
656 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
657 {
658 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
659 	q->numa_node = node;
660 #endif
661 }
662 
663 #ifdef CONFIG_RPS
664 /*
665  * This structure holds an RPS map which can be of variable length.  The
666  * map is an array of CPUs.
667  */
668 struct rps_map {
669 	unsigned int len;
670 	struct rcu_head rcu;
671 	u16 cpus[];
672 };
673 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
674 
675 /*
676  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
677  * tail pointer for that CPU's input queue at the time of last enqueue, and
678  * a hardware filter index.
679  */
680 struct rps_dev_flow {
681 	u16 cpu;
682 	u16 filter;
683 	unsigned int last_qtail;
684 };
685 #define RPS_NO_FILTER 0xffff
686 
687 /*
688  * The rps_dev_flow_table structure contains a table of flow mappings.
689  */
690 struct rps_dev_flow_table {
691 	unsigned int mask;
692 	struct rcu_head rcu;
693 	struct rps_dev_flow flows[];
694 };
695 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
696     ((_num) * sizeof(struct rps_dev_flow)))
697 
698 /*
699  * The rps_sock_flow_table contains mappings of flows to the last CPU
700  * on which they were processed by the application (set in recvmsg).
701  * Each entry is a 32bit value. Upper part is the high-order bits
702  * of flow hash, lower part is CPU number.
703  * rps_cpu_mask is used to partition the space, depending on number of
704  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
705  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
706  * meaning we use 32-6=26 bits for the hash.
707  */
708 struct rps_sock_flow_table {
709 	u32	mask;
710 
711 	u32	ents[] ____cacheline_aligned_in_smp;
712 };
713 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
714 
715 #define RPS_NO_CPU 0xffff
716 
717 extern u32 rps_cpu_mask;
718 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
719 
720 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
721 					u32 hash)
722 {
723 	if (table && hash) {
724 		unsigned int index = hash & table->mask;
725 		u32 val = hash & ~rps_cpu_mask;
726 
727 		/* We only give a hint, preemption can change CPU under us */
728 		val |= raw_smp_processor_id();
729 
730 		if (table->ents[index] != val)
731 			table->ents[index] = val;
732 	}
733 }
734 
735 #ifdef CONFIG_RFS_ACCEL
736 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
737 			 u16 filter_id);
738 #endif
739 #endif /* CONFIG_RPS */
740 
741 /* This structure contains an instance of an RX queue. */
742 struct netdev_rx_queue {
743 #ifdef CONFIG_RPS
744 	struct rps_map __rcu		*rps_map;
745 	struct rps_dev_flow_table __rcu	*rps_flow_table;
746 #endif
747 	struct kobject			kobj;
748 	struct net_device		*dev;
749 	struct xdp_rxq_info		xdp_rxq;
750 #ifdef CONFIG_XDP_SOCKETS
751 	struct xsk_buff_pool            *pool;
752 #endif
753 } ____cacheline_aligned_in_smp;
754 
755 /*
756  * RX queue sysfs structures and functions.
757  */
758 struct rx_queue_attribute {
759 	struct attribute attr;
760 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
761 	ssize_t (*store)(struct netdev_rx_queue *queue,
762 			 const char *buf, size_t len);
763 };
764 
765 #ifdef CONFIG_XPS
766 /*
767  * This structure holds an XPS map which can be of variable length.  The
768  * map is an array of queues.
769  */
770 struct xps_map {
771 	unsigned int len;
772 	unsigned int alloc_len;
773 	struct rcu_head rcu;
774 	u16 queues[];
775 };
776 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
777 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
778        - sizeof(struct xps_map)) / sizeof(u16))
779 
780 /*
781  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
782  */
783 struct xps_dev_maps {
784 	struct rcu_head rcu;
785 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
786 };
787 
788 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
789 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
790 
791 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
792 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
793 
794 #endif /* CONFIG_XPS */
795 
796 #define TC_MAX_QUEUE	16
797 #define TC_BITMASK	15
798 /* HW offloaded queuing disciplines txq count and offset maps */
799 struct netdev_tc_txq {
800 	u16 count;
801 	u16 offset;
802 };
803 
804 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
805 /*
806  * This structure is to hold information about the device
807  * configured to run FCoE protocol stack.
808  */
809 struct netdev_fcoe_hbainfo {
810 	char	manufacturer[64];
811 	char	serial_number[64];
812 	char	hardware_version[64];
813 	char	driver_version[64];
814 	char	optionrom_version[64];
815 	char	firmware_version[64];
816 	char	model[256];
817 	char	model_description[256];
818 };
819 #endif
820 
821 #define MAX_PHYS_ITEM_ID_LEN 32
822 
823 /* This structure holds a unique identifier to identify some
824  * physical item (port for example) used by a netdevice.
825  */
826 struct netdev_phys_item_id {
827 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
828 	unsigned char id_len;
829 };
830 
831 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
832 					    struct netdev_phys_item_id *b)
833 {
834 	return a->id_len == b->id_len &&
835 	       memcmp(a->id, b->id, a->id_len) == 0;
836 }
837 
838 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
839 				       struct sk_buff *skb,
840 				       struct net_device *sb_dev);
841 
842 enum tc_setup_type {
843 	TC_SETUP_QDISC_MQPRIO,
844 	TC_SETUP_CLSU32,
845 	TC_SETUP_CLSFLOWER,
846 	TC_SETUP_CLSMATCHALL,
847 	TC_SETUP_CLSBPF,
848 	TC_SETUP_BLOCK,
849 	TC_SETUP_QDISC_CBS,
850 	TC_SETUP_QDISC_RED,
851 	TC_SETUP_QDISC_PRIO,
852 	TC_SETUP_QDISC_MQ,
853 	TC_SETUP_QDISC_ETF,
854 	TC_SETUP_ROOT_QDISC,
855 	TC_SETUP_QDISC_GRED,
856 	TC_SETUP_QDISC_TAPRIO,
857 	TC_SETUP_FT,
858 	TC_SETUP_QDISC_ETS,
859 	TC_SETUP_QDISC_TBF,
860 	TC_SETUP_QDISC_FIFO,
861 };
862 
863 /* These structures hold the attributes of bpf state that are being passed
864  * to the netdevice through the bpf op.
865  */
866 enum bpf_netdev_command {
867 	/* Set or clear a bpf program used in the earliest stages of packet
868 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
869 	 * is responsible for calling bpf_prog_put on any old progs that are
870 	 * stored. In case of error, the callee need not release the new prog
871 	 * reference, but on success it takes ownership and must bpf_prog_put
872 	 * when it is no longer used.
873 	 */
874 	XDP_SETUP_PROG,
875 	XDP_SETUP_PROG_HW,
876 	/* BPF program for offload callbacks, invoked at program load time. */
877 	BPF_OFFLOAD_MAP_ALLOC,
878 	BPF_OFFLOAD_MAP_FREE,
879 	XDP_SETUP_XSK_POOL,
880 };
881 
882 struct bpf_prog_offload_ops;
883 struct netlink_ext_ack;
884 struct xdp_umem;
885 struct xdp_dev_bulk_queue;
886 struct bpf_xdp_link;
887 
888 enum bpf_xdp_mode {
889 	XDP_MODE_SKB = 0,
890 	XDP_MODE_DRV = 1,
891 	XDP_MODE_HW = 2,
892 	__MAX_XDP_MODE
893 };
894 
895 struct bpf_xdp_entity {
896 	struct bpf_prog *prog;
897 	struct bpf_xdp_link *link;
898 };
899 
900 struct netdev_bpf {
901 	enum bpf_netdev_command command;
902 	union {
903 		/* XDP_SETUP_PROG */
904 		struct {
905 			u32 flags;
906 			struct bpf_prog *prog;
907 			struct netlink_ext_ack *extack;
908 		};
909 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
910 		struct {
911 			struct bpf_offloaded_map *offmap;
912 		};
913 		/* XDP_SETUP_XSK_POOL */
914 		struct {
915 			struct xsk_buff_pool *pool;
916 			u16 queue_id;
917 		} xsk;
918 	};
919 };
920 
921 /* Flags for ndo_xsk_wakeup. */
922 #define XDP_WAKEUP_RX (1 << 0)
923 #define XDP_WAKEUP_TX (1 << 1)
924 
925 #ifdef CONFIG_XFRM_OFFLOAD
926 struct xfrmdev_ops {
927 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
928 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
929 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
930 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
931 				       struct xfrm_state *x);
932 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
933 };
934 #endif
935 
936 struct dev_ifalias {
937 	struct rcu_head rcuhead;
938 	char ifalias[];
939 };
940 
941 struct devlink;
942 struct tlsdev_ops;
943 
944 struct netdev_name_node {
945 	struct hlist_node hlist;
946 	struct list_head list;
947 	struct net_device *dev;
948 	const char *name;
949 };
950 
951 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
952 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
953 
954 struct netdev_net_notifier {
955 	struct list_head list;
956 	struct notifier_block *nb;
957 };
958 
959 /*
960  * This structure defines the management hooks for network devices.
961  * The following hooks can be defined; unless noted otherwise, they are
962  * optional and can be filled with a null pointer.
963  *
964  * int (*ndo_init)(struct net_device *dev);
965  *     This function is called once when a network device is registered.
966  *     The network device can use this for any late stage initialization
967  *     or semantic validation. It can fail with an error code which will
968  *     be propagated back to register_netdev.
969  *
970  * void (*ndo_uninit)(struct net_device *dev);
971  *     This function is called when device is unregistered or when registration
972  *     fails. It is not called if init fails.
973  *
974  * int (*ndo_open)(struct net_device *dev);
975  *     This function is called when a network device transitions to the up
976  *     state.
977  *
978  * int (*ndo_stop)(struct net_device *dev);
979  *     This function is called when a network device transitions to the down
980  *     state.
981  *
982  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
983  *                               struct net_device *dev);
984  *	Called when a packet needs to be transmitted.
985  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
986  *	the queue before that can happen; it's for obsolete devices and weird
987  *	corner cases, but the stack really does a non-trivial amount
988  *	of useless work if you return NETDEV_TX_BUSY.
989  *	Required; cannot be NULL.
990  *
991  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
992  *					   struct net_device *dev
993  *					   netdev_features_t features);
994  *	Called by core transmit path to determine if device is capable of
995  *	performing offload operations on a given packet. This is to give
996  *	the device an opportunity to implement any restrictions that cannot
997  *	be otherwise expressed by feature flags. The check is called with
998  *	the set of features that the stack has calculated and it returns
999  *	those the driver believes to be appropriate.
1000  *
1001  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1002  *                         struct net_device *sb_dev);
1003  *	Called to decide which queue to use when device supports multiple
1004  *	transmit queues.
1005  *
1006  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1007  *	This function is called to allow device receiver to make
1008  *	changes to configuration when multicast or promiscuous is enabled.
1009  *
1010  * void (*ndo_set_rx_mode)(struct net_device *dev);
1011  *	This function is called device changes address list filtering.
1012  *	If driver handles unicast address filtering, it should set
1013  *	IFF_UNICAST_FLT in its priv_flags.
1014  *
1015  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1016  *	This function  is called when the Media Access Control address
1017  *	needs to be changed. If this interface is not defined, the
1018  *	MAC address can not be changed.
1019  *
1020  * int (*ndo_validate_addr)(struct net_device *dev);
1021  *	Test if Media Access Control address is valid for the device.
1022  *
1023  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1024  *	Called when a user requests an ioctl which can't be handled by
1025  *	the generic interface code. If not defined ioctls return
1026  *	not supported error code.
1027  *
1028  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1029  *	Used to set network devices bus interface parameters. This interface
1030  *	is retained for legacy reasons; new devices should use the bus
1031  *	interface (PCI) for low level management.
1032  *
1033  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1034  *	Called when a user wants to change the Maximum Transfer Unit
1035  *	of a device.
1036  *
1037  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1038  *	Callback used when the transmitter has not made any progress
1039  *	for dev->watchdog ticks.
1040  *
1041  * void (*ndo_get_stats64)(struct net_device *dev,
1042  *                         struct rtnl_link_stats64 *storage);
1043  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1044  *	Called when a user wants to get the network device usage
1045  *	statistics. Drivers must do one of the following:
1046  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1047  *	   rtnl_link_stats64 structure passed by the caller.
1048  *	2. Define @ndo_get_stats to update a net_device_stats structure
1049  *	   (which should normally be dev->stats) and return a pointer to
1050  *	   it. The structure may be changed asynchronously only if each
1051  *	   field is written atomically.
1052  *	3. Update dev->stats asynchronously and atomically, and define
1053  *	   neither operation.
1054  *
1055  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1056  *	Return true if this device supports offload stats of this attr_id.
1057  *
1058  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1059  *	void *attr_data)
1060  *	Get statistics for offload operations by attr_id. Write it into the
1061  *	attr_data pointer.
1062  *
1063  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1064  *	If device supports VLAN filtering this function is called when a
1065  *	VLAN id is registered.
1066  *
1067  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1068  *	If device supports VLAN filtering this function is called when a
1069  *	VLAN id is unregistered.
1070  *
1071  * void (*ndo_poll_controller)(struct net_device *dev);
1072  *
1073  *	SR-IOV management functions.
1074  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1075  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1076  *			  u8 qos, __be16 proto);
1077  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1078  *			  int max_tx_rate);
1079  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1080  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1081  * int (*ndo_get_vf_config)(struct net_device *dev,
1082  *			    int vf, struct ifla_vf_info *ivf);
1083  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1084  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1085  *			  struct nlattr *port[]);
1086  *
1087  *      Enable or disable the VF ability to query its RSS Redirection Table and
1088  *      Hash Key. This is needed since on some devices VF share this information
1089  *      with PF and querying it may introduce a theoretical security risk.
1090  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1091  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1092  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1093  *		       void *type_data);
1094  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1095  *	This is always called from the stack with the rtnl lock held and netif
1096  *	tx queues stopped. This allows the netdevice to perform queue
1097  *	management safely.
1098  *
1099  *	Fiber Channel over Ethernet (FCoE) offload functions.
1100  * int (*ndo_fcoe_enable)(struct net_device *dev);
1101  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1102  *	so the underlying device can perform whatever needed configuration or
1103  *	initialization to support acceleration of FCoE traffic.
1104  *
1105  * int (*ndo_fcoe_disable)(struct net_device *dev);
1106  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1107  *	so the underlying device can perform whatever needed clean-ups to
1108  *	stop supporting acceleration of FCoE traffic.
1109  *
1110  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1111  *			     struct scatterlist *sgl, unsigned int sgc);
1112  *	Called when the FCoE Initiator wants to initialize an I/O that
1113  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1114  *	perform necessary setup and returns 1 to indicate the device is set up
1115  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1116  *
1117  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1118  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1119  *	indicated by the FC exchange id 'xid', so the underlying device can
1120  *	clean up and reuse resources for later DDP requests.
1121  *
1122  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1123  *			      struct scatterlist *sgl, unsigned int sgc);
1124  *	Called when the FCoE Target wants to initialize an I/O that
1125  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1126  *	perform necessary setup and returns 1 to indicate the device is set up
1127  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1128  *
1129  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1130  *			       struct netdev_fcoe_hbainfo *hbainfo);
1131  *	Called when the FCoE Protocol stack wants information on the underlying
1132  *	device. This information is utilized by the FCoE protocol stack to
1133  *	register attributes with Fiber Channel management service as per the
1134  *	FC-GS Fabric Device Management Information(FDMI) specification.
1135  *
1136  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1137  *	Called when the underlying device wants to override default World Wide
1138  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1139  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1140  *	protocol stack to use.
1141  *
1142  *	RFS acceleration.
1143  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1144  *			    u16 rxq_index, u32 flow_id);
1145  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1146  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1147  *	Return the filter ID on success, or a negative error code.
1148  *
1149  *	Slave management functions (for bridge, bonding, etc).
1150  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1151  *	Called to make another netdev an underling.
1152  *
1153  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1154  *	Called to release previously enslaved netdev.
1155  *
1156  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1157  *					    struct sk_buff *skb,
1158  *					    bool all_slaves);
1159  *	Get the xmit slave of master device. If all_slaves is true, function
1160  *	assume all the slaves can transmit.
1161  *
1162  *      Feature/offload setting functions.
1163  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1164  *		netdev_features_t features);
1165  *	Adjusts the requested feature flags according to device-specific
1166  *	constraints, and returns the resulting flags. Must not modify
1167  *	the device state.
1168  *
1169  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1170  *	Called to update device configuration to new features. Passed
1171  *	feature set might be less than what was returned by ndo_fix_features()).
1172  *	Must return >0 or -errno if it changed dev->features itself.
1173  *
1174  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1175  *		      struct net_device *dev,
1176  *		      const unsigned char *addr, u16 vid, u16 flags,
1177  *		      struct netlink_ext_ack *extack);
1178  *	Adds an FDB entry to dev for addr.
1179  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1180  *		      struct net_device *dev,
1181  *		      const unsigned char *addr, u16 vid)
1182  *	Deletes the FDB entry from dev coresponding to addr.
1183  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1184  *		       struct net_device *dev, struct net_device *filter_dev,
1185  *		       int *idx)
1186  *	Used to add FDB entries to dump requests. Implementers should add
1187  *	entries to skb and update idx with the number of entries.
1188  *
1189  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1190  *			     u16 flags, struct netlink_ext_ack *extack)
1191  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1192  *			     struct net_device *dev, u32 filter_mask,
1193  *			     int nlflags)
1194  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1195  *			     u16 flags);
1196  *
1197  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1198  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1199  *	which do not represent real hardware may define this to allow their
1200  *	userspace components to manage their virtual carrier state. Devices
1201  *	that determine carrier state from physical hardware properties (eg
1202  *	network cables) or protocol-dependent mechanisms (eg
1203  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1204  *
1205  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1206  *			       struct netdev_phys_item_id *ppid);
1207  *	Called to get ID of physical port of this device. If driver does
1208  *	not implement this, it is assumed that the hw is not able to have
1209  *	multiple net devices on single physical port.
1210  *
1211  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1212  *				 struct netdev_phys_item_id *ppid)
1213  *	Called to get the parent ID of the physical port of this device.
1214  *
1215  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1216  *				 struct net_device *dev)
1217  *	Called by upper layer devices to accelerate switching or other
1218  *	station functionality into hardware. 'pdev is the lowerdev
1219  *	to use for the offload and 'dev' is the net device that will
1220  *	back the offload. Returns a pointer to the private structure
1221  *	the upper layer will maintain.
1222  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1223  *	Called by upper layer device to delete the station created
1224  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1225  *	the station and priv is the structure returned by the add
1226  *	operation.
1227  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1228  *			     int queue_index, u32 maxrate);
1229  *	Called when a user wants to set a max-rate limitation of specific
1230  *	TX queue.
1231  * int (*ndo_get_iflink)(const struct net_device *dev);
1232  *	Called to get the iflink value of this device.
1233  * void (*ndo_change_proto_down)(struct net_device *dev,
1234  *				 bool proto_down);
1235  *	This function is used to pass protocol port error state information
1236  *	to the switch driver. The switch driver can react to the proto_down
1237  *      by doing a phys down on the associated switch port.
1238  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1239  *	This function is used to get egress tunnel information for given skb.
1240  *	This is useful for retrieving outer tunnel header parameters while
1241  *	sampling packet.
1242  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1243  *	This function is used to specify the headroom that the skb must
1244  *	consider when allocation skb during packet reception. Setting
1245  *	appropriate rx headroom value allows avoiding skb head copy on
1246  *	forward. Setting a negative value resets the rx headroom to the
1247  *	default value.
1248  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1249  *	This function is used to set or query state related to XDP on the
1250  *	netdevice and manage BPF offload. See definition of
1251  *	enum bpf_netdev_command for details.
1252  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1253  *			u32 flags);
1254  *	This function is used to submit @n XDP packets for transmit on a
1255  *	netdevice. Returns number of frames successfully transmitted, frames
1256  *	that got dropped are freed/returned via xdp_return_frame().
1257  *	Returns negative number, means general error invoking ndo, meaning
1258  *	no frames were xmit'ed and core-caller will free all frames.
1259  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1260  *      This function is used to wake up the softirq, ksoftirqd or kthread
1261  *	responsible for sending and/or receiving packets on a specific
1262  *	queue id bound to an AF_XDP socket. The flags field specifies if
1263  *	only RX, only Tx, or both should be woken up using the flags
1264  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1265  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1266  *	Get devlink port instance associated with a given netdev.
1267  *	Called with a reference on the netdevice and devlink locks only,
1268  *	rtnl_lock is not held.
1269  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1270  *			 int cmd);
1271  *	Add, change, delete or get information on an IPv4 tunnel.
1272  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1273  *	If a device is paired with a peer device, return the peer instance.
1274  *	The caller must be under RCU read context.
1275  */
1276 struct net_device_ops {
1277 	int			(*ndo_init)(struct net_device *dev);
1278 	void			(*ndo_uninit)(struct net_device *dev);
1279 	int			(*ndo_open)(struct net_device *dev);
1280 	int			(*ndo_stop)(struct net_device *dev);
1281 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1282 						  struct net_device *dev);
1283 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1284 						      struct net_device *dev,
1285 						      netdev_features_t features);
1286 	u16			(*ndo_select_queue)(struct net_device *dev,
1287 						    struct sk_buff *skb,
1288 						    struct net_device *sb_dev);
1289 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1290 						       int flags);
1291 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1292 	int			(*ndo_set_mac_address)(struct net_device *dev,
1293 						       void *addr);
1294 	int			(*ndo_validate_addr)(struct net_device *dev);
1295 	int			(*ndo_do_ioctl)(struct net_device *dev,
1296 					        struct ifreq *ifr, int cmd);
1297 	int			(*ndo_set_config)(struct net_device *dev,
1298 					          struct ifmap *map);
1299 	int			(*ndo_change_mtu)(struct net_device *dev,
1300 						  int new_mtu);
1301 	int			(*ndo_neigh_setup)(struct net_device *dev,
1302 						   struct neigh_parms *);
1303 	void			(*ndo_tx_timeout) (struct net_device *dev,
1304 						   unsigned int txqueue);
1305 
1306 	void			(*ndo_get_stats64)(struct net_device *dev,
1307 						   struct rtnl_link_stats64 *storage);
1308 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1309 	int			(*ndo_get_offload_stats)(int attr_id,
1310 							 const struct net_device *dev,
1311 							 void *attr_data);
1312 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1313 
1314 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1315 						       __be16 proto, u16 vid);
1316 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1317 						        __be16 proto, u16 vid);
1318 #ifdef CONFIG_NET_POLL_CONTROLLER
1319 	void                    (*ndo_poll_controller)(struct net_device *dev);
1320 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1321 						     struct netpoll_info *info);
1322 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1323 #endif
1324 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1325 						  int queue, u8 *mac);
1326 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1327 						   int queue, u16 vlan,
1328 						   u8 qos, __be16 proto);
1329 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1330 						   int vf, int min_tx_rate,
1331 						   int max_tx_rate);
1332 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1333 						       int vf, bool setting);
1334 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1335 						    int vf, bool setting);
1336 	int			(*ndo_get_vf_config)(struct net_device *dev,
1337 						     int vf,
1338 						     struct ifla_vf_info *ivf);
1339 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1340 							 int vf, int link_state);
1341 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1342 						    int vf,
1343 						    struct ifla_vf_stats
1344 						    *vf_stats);
1345 	int			(*ndo_set_vf_port)(struct net_device *dev,
1346 						   int vf,
1347 						   struct nlattr *port[]);
1348 	int			(*ndo_get_vf_port)(struct net_device *dev,
1349 						   int vf, struct sk_buff *skb);
1350 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1351 						   int vf,
1352 						   struct ifla_vf_guid *node_guid,
1353 						   struct ifla_vf_guid *port_guid);
1354 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1355 						   int vf, u64 guid,
1356 						   int guid_type);
1357 	int			(*ndo_set_vf_rss_query_en)(
1358 						   struct net_device *dev,
1359 						   int vf, bool setting);
1360 	int			(*ndo_setup_tc)(struct net_device *dev,
1361 						enum tc_setup_type type,
1362 						void *type_data);
1363 #if IS_ENABLED(CONFIG_FCOE)
1364 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1365 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1366 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1367 						      u16 xid,
1368 						      struct scatterlist *sgl,
1369 						      unsigned int sgc);
1370 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1371 						     u16 xid);
1372 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1373 						       u16 xid,
1374 						       struct scatterlist *sgl,
1375 						       unsigned int sgc);
1376 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1377 							struct netdev_fcoe_hbainfo *hbainfo);
1378 #endif
1379 
1380 #if IS_ENABLED(CONFIG_LIBFCOE)
1381 #define NETDEV_FCOE_WWNN 0
1382 #define NETDEV_FCOE_WWPN 1
1383 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1384 						    u64 *wwn, int type);
1385 #endif
1386 
1387 #ifdef CONFIG_RFS_ACCEL
1388 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1389 						     const struct sk_buff *skb,
1390 						     u16 rxq_index,
1391 						     u32 flow_id);
1392 #endif
1393 	int			(*ndo_add_slave)(struct net_device *dev,
1394 						 struct net_device *slave_dev,
1395 						 struct netlink_ext_ack *extack);
1396 	int			(*ndo_del_slave)(struct net_device *dev,
1397 						 struct net_device *slave_dev);
1398 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1399 						      struct sk_buff *skb,
1400 						      bool all_slaves);
1401 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1402 							struct sock *sk);
1403 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1404 						    netdev_features_t features);
1405 	int			(*ndo_set_features)(struct net_device *dev,
1406 						    netdev_features_t features);
1407 	int			(*ndo_neigh_construct)(struct net_device *dev,
1408 						       struct neighbour *n);
1409 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1410 						     struct neighbour *n);
1411 
1412 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1413 					       struct nlattr *tb[],
1414 					       struct net_device *dev,
1415 					       const unsigned char *addr,
1416 					       u16 vid,
1417 					       u16 flags,
1418 					       struct netlink_ext_ack *extack);
1419 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1420 					       struct nlattr *tb[],
1421 					       struct net_device *dev,
1422 					       const unsigned char *addr,
1423 					       u16 vid);
1424 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1425 						struct netlink_callback *cb,
1426 						struct net_device *dev,
1427 						struct net_device *filter_dev,
1428 						int *idx);
1429 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1430 					       struct nlattr *tb[],
1431 					       struct net_device *dev,
1432 					       const unsigned char *addr,
1433 					       u16 vid, u32 portid, u32 seq,
1434 					       struct netlink_ext_ack *extack);
1435 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1436 						      struct nlmsghdr *nlh,
1437 						      u16 flags,
1438 						      struct netlink_ext_ack *extack);
1439 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1440 						      u32 pid, u32 seq,
1441 						      struct net_device *dev,
1442 						      u32 filter_mask,
1443 						      int nlflags);
1444 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1445 						      struct nlmsghdr *nlh,
1446 						      u16 flags);
1447 	int			(*ndo_change_carrier)(struct net_device *dev,
1448 						      bool new_carrier);
1449 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1450 							struct netdev_phys_item_id *ppid);
1451 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1452 							  struct netdev_phys_item_id *ppid);
1453 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1454 							  char *name, size_t len);
1455 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1456 							struct net_device *dev);
1457 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1458 							void *priv);
1459 
1460 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1461 						      int queue_index,
1462 						      u32 maxrate);
1463 	int			(*ndo_get_iflink)(const struct net_device *dev);
1464 	int			(*ndo_change_proto_down)(struct net_device *dev,
1465 							 bool proto_down);
1466 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1467 						       struct sk_buff *skb);
1468 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1469 						       int needed_headroom);
1470 	int			(*ndo_bpf)(struct net_device *dev,
1471 					   struct netdev_bpf *bpf);
1472 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1473 						struct xdp_frame **xdp,
1474 						u32 flags);
1475 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1476 						  u32 queue_id, u32 flags);
1477 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1478 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1479 						  struct ip_tunnel_parm *p, int cmd);
1480 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1481 };
1482 
1483 /**
1484  * enum netdev_priv_flags - &struct net_device priv_flags
1485  *
1486  * These are the &struct net_device, they are only set internally
1487  * by drivers and used in the kernel. These flags are invisible to
1488  * userspace; this means that the order of these flags can change
1489  * during any kernel release.
1490  *
1491  * You should have a pretty good reason to be extending these flags.
1492  *
1493  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1494  * @IFF_EBRIDGE: Ethernet bridging device
1495  * @IFF_BONDING: bonding master or slave
1496  * @IFF_ISATAP: ISATAP interface (RFC4214)
1497  * @IFF_WAN_HDLC: WAN HDLC device
1498  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1499  *	release skb->dst
1500  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1501  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1502  * @IFF_MACVLAN_PORT: device used as macvlan port
1503  * @IFF_BRIDGE_PORT: device used as bridge port
1504  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1505  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1506  * @IFF_UNICAST_FLT: Supports unicast filtering
1507  * @IFF_TEAM_PORT: device used as team port
1508  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1509  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1510  *	change when it's running
1511  * @IFF_MACVLAN: Macvlan device
1512  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1513  *	underlying stacked devices
1514  * @IFF_L3MDEV_MASTER: device is an L3 master device
1515  * @IFF_NO_QUEUE: device can run without qdisc attached
1516  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1517  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1518  * @IFF_TEAM: device is a team device
1519  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1520  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1521  *	entity (i.e. the master device for bridged veth)
1522  * @IFF_MACSEC: device is a MACsec device
1523  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1524  * @IFF_FAILOVER: device is a failover master device
1525  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1526  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1527  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1528  */
1529 enum netdev_priv_flags {
1530 	IFF_802_1Q_VLAN			= 1<<0,
1531 	IFF_EBRIDGE			= 1<<1,
1532 	IFF_BONDING			= 1<<2,
1533 	IFF_ISATAP			= 1<<3,
1534 	IFF_WAN_HDLC			= 1<<4,
1535 	IFF_XMIT_DST_RELEASE		= 1<<5,
1536 	IFF_DONT_BRIDGE			= 1<<6,
1537 	IFF_DISABLE_NETPOLL		= 1<<7,
1538 	IFF_MACVLAN_PORT		= 1<<8,
1539 	IFF_BRIDGE_PORT			= 1<<9,
1540 	IFF_OVS_DATAPATH		= 1<<10,
1541 	IFF_TX_SKB_SHARING		= 1<<11,
1542 	IFF_UNICAST_FLT			= 1<<12,
1543 	IFF_TEAM_PORT			= 1<<13,
1544 	IFF_SUPP_NOFCS			= 1<<14,
1545 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1546 	IFF_MACVLAN			= 1<<16,
1547 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1548 	IFF_L3MDEV_MASTER		= 1<<18,
1549 	IFF_NO_QUEUE			= 1<<19,
1550 	IFF_OPENVSWITCH			= 1<<20,
1551 	IFF_L3MDEV_SLAVE		= 1<<21,
1552 	IFF_TEAM			= 1<<22,
1553 	IFF_RXFH_CONFIGURED		= 1<<23,
1554 	IFF_PHONY_HEADROOM		= 1<<24,
1555 	IFF_MACSEC			= 1<<25,
1556 	IFF_NO_RX_HANDLER		= 1<<26,
1557 	IFF_FAILOVER			= 1<<27,
1558 	IFF_FAILOVER_SLAVE		= 1<<28,
1559 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1560 	IFF_LIVE_RENAME_OK		= 1<<30,
1561 };
1562 
1563 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1564 #define IFF_EBRIDGE			IFF_EBRIDGE
1565 #define IFF_BONDING			IFF_BONDING
1566 #define IFF_ISATAP			IFF_ISATAP
1567 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1568 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1569 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1570 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1571 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1572 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1573 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1574 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1575 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1576 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1577 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1578 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1579 #define IFF_MACVLAN			IFF_MACVLAN
1580 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1581 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1582 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1583 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1584 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1585 #define IFF_TEAM			IFF_TEAM
1586 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1587 #define IFF_MACSEC			IFF_MACSEC
1588 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1589 #define IFF_FAILOVER			IFF_FAILOVER
1590 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1591 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1592 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1593 
1594 /**
1595  *	struct net_device - The DEVICE structure.
1596  *
1597  *	Actually, this whole structure is a big mistake.  It mixes I/O
1598  *	data with strictly "high-level" data, and it has to know about
1599  *	almost every data structure used in the INET module.
1600  *
1601  *	@name:	This is the first field of the "visible" part of this structure
1602  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1603  *		of the interface.
1604  *
1605  *	@name_node:	Name hashlist node
1606  *	@ifalias:	SNMP alias
1607  *	@mem_end:	Shared memory end
1608  *	@mem_start:	Shared memory start
1609  *	@base_addr:	Device I/O address
1610  *	@irq:		Device IRQ number
1611  *
1612  *	@state:		Generic network queuing layer state, see netdev_state_t
1613  *	@dev_list:	The global list of network devices
1614  *	@napi_list:	List entry used for polling NAPI devices
1615  *	@unreg_list:	List entry  when we are unregistering the
1616  *			device; see the function unregister_netdev
1617  *	@close_list:	List entry used when we are closing the device
1618  *	@ptype_all:     Device-specific packet handlers for all protocols
1619  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1620  *
1621  *	@adj_list:	Directly linked devices, like slaves for bonding
1622  *	@features:	Currently active device features
1623  *	@hw_features:	User-changeable features
1624  *
1625  *	@wanted_features:	User-requested features
1626  *	@vlan_features:		Mask of features inheritable by VLAN devices
1627  *
1628  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1629  *				This field indicates what encapsulation
1630  *				offloads the hardware is capable of doing,
1631  *				and drivers will need to set them appropriately.
1632  *
1633  *	@mpls_features:	Mask of features inheritable by MPLS
1634  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1635  *
1636  *	@ifindex:	interface index
1637  *	@group:		The group the device belongs to
1638  *
1639  *	@stats:		Statistics struct, which was left as a legacy, use
1640  *			rtnl_link_stats64 instead
1641  *
1642  *	@rx_dropped:	Dropped packets by core network,
1643  *			do not use this in drivers
1644  *	@tx_dropped:	Dropped packets by core network,
1645  *			do not use this in drivers
1646  *	@rx_nohandler:	nohandler dropped packets by core network on
1647  *			inactive devices, do not use this in drivers
1648  *	@carrier_up_count:	Number of times the carrier has been up
1649  *	@carrier_down_count:	Number of times the carrier has been down
1650  *
1651  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1652  *				instead of ioctl,
1653  *				see <net/iw_handler.h> for details.
1654  *	@wireless_data:	Instance data managed by the core of wireless extensions
1655  *
1656  *	@netdev_ops:	Includes several pointers to callbacks,
1657  *			if one wants to override the ndo_*() functions
1658  *	@ethtool_ops:	Management operations
1659  *	@l3mdev_ops:	Layer 3 master device operations
1660  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1661  *			discovery handling. Necessary for e.g. 6LoWPAN.
1662  *	@xfrmdev_ops:	Transformation offload operations
1663  *	@tlsdev_ops:	Transport Layer Security offload operations
1664  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1665  *			of Layer 2 headers.
1666  *
1667  *	@flags:		Interface flags (a la BSD)
1668  *	@priv_flags:	Like 'flags' but invisible to userspace,
1669  *			see if.h for the definitions
1670  *	@gflags:	Global flags ( kept as legacy )
1671  *	@padded:	How much padding added by alloc_netdev()
1672  *	@operstate:	RFC2863 operstate
1673  *	@link_mode:	Mapping policy to operstate
1674  *	@if_port:	Selectable AUI, TP, ...
1675  *	@dma:		DMA channel
1676  *	@mtu:		Interface MTU value
1677  *	@min_mtu:	Interface Minimum MTU value
1678  *	@max_mtu:	Interface Maximum MTU value
1679  *	@type:		Interface hardware type
1680  *	@hard_header_len: Maximum hardware header length.
1681  *	@min_header_len:  Minimum hardware header length
1682  *
1683  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1684  *			  cases can this be guaranteed
1685  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1686  *			  cases can this be guaranteed. Some cases also use
1687  *			  LL_MAX_HEADER instead to allocate the skb
1688  *
1689  *	interface address info:
1690  *
1691  * 	@perm_addr:		Permanent hw address
1692  * 	@addr_assign_type:	Hw address assignment type
1693  * 	@addr_len:		Hardware address length
1694  *	@upper_level:		Maximum depth level of upper devices.
1695  *	@lower_level:		Maximum depth level of lower devices.
1696  *	@neigh_priv_len:	Used in neigh_alloc()
1697  * 	@dev_id:		Used to differentiate devices that share
1698  * 				the same link layer address
1699  * 	@dev_port:		Used to differentiate devices that share
1700  * 				the same function
1701  *	@addr_list_lock:	XXX: need comments on this one
1702  *	@name_assign_type:	network interface name assignment type
1703  *	@uc_promisc:		Counter that indicates promiscuous mode
1704  *				has been enabled due to the need to listen to
1705  *				additional unicast addresses in a device that
1706  *				does not implement ndo_set_rx_mode()
1707  *	@uc:			unicast mac addresses
1708  *	@mc:			multicast mac addresses
1709  *	@dev_addrs:		list of device hw addresses
1710  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1711  *	@promiscuity:		Number of times the NIC is told to work in
1712  *				promiscuous mode; if it becomes 0 the NIC will
1713  *				exit promiscuous mode
1714  *	@allmulti:		Counter, enables or disables allmulticast mode
1715  *
1716  *	@vlan_info:	VLAN info
1717  *	@dsa_ptr:	dsa specific data
1718  *	@tipc_ptr:	TIPC specific data
1719  *	@atalk_ptr:	AppleTalk link
1720  *	@ip_ptr:	IPv4 specific data
1721  *	@dn_ptr:	DECnet specific data
1722  *	@ip6_ptr:	IPv6 specific data
1723  *	@ax25_ptr:	AX.25 specific data
1724  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1725  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1726  *			 device struct
1727  *	@mpls_ptr:	mpls_dev struct pointer
1728  *
1729  *	@dev_addr:	Hw address (before bcast,
1730  *			because most packets are unicast)
1731  *
1732  *	@_rx:			Array of RX queues
1733  *	@num_rx_queues:		Number of RX queues
1734  *				allocated at register_netdev() time
1735  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1736  *	@xdp_prog:		XDP sockets filter program pointer
1737  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1738  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1739  *				allow to avoid NIC hard IRQ, on busy queues.
1740  *
1741  *	@rx_handler:		handler for received packets
1742  *	@rx_handler_data: 	XXX: need comments on this one
1743  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1744  *				ingress processing
1745  *	@ingress_queue:		XXX: need comments on this one
1746  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1747  *	@broadcast:		hw bcast address
1748  *
1749  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1750  *			indexed by RX queue number. Assigned by driver.
1751  *			This must only be set if the ndo_rx_flow_steer
1752  *			operation is defined
1753  *	@index_hlist:		Device index hash chain
1754  *
1755  *	@_tx:			Array of TX queues
1756  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1757  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1758  *	@qdisc:			Root qdisc from userspace point of view
1759  *	@tx_queue_len:		Max frames per queue allowed
1760  *	@tx_global_lock: 	XXX: need comments on this one
1761  *	@xdp_bulkq:		XDP device bulk queue
1762  *	@xps_cpus_map:		all CPUs map for XPS device
1763  *	@xps_rxqs_map:		all RXQs map for XPS device
1764  *
1765  *	@xps_maps:	XXX: need comments on this one
1766  *	@miniq_egress:		clsact qdisc specific data for
1767  *				egress processing
1768  *	@qdisc_hash:		qdisc hash table
1769  *	@watchdog_timeo:	Represents the timeout that is used by
1770  *				the watchdog (see dev_watchdog())
1771  *	@watchdog_timer:	List of timers
1772  *
1773  *	@proto_down_reason:	reason a netdev interface is held down
1774  *	@pcpu_refcnt:		Number of references to this device
1775  *	@todo_list:		Delayed register/unregister
1776  *	@link_watch_list:	XXX: need comments on this one
1777  *
1778  *	@reg_state:		Register/unregister state machine
1779  *	@dismantle:		Device is going to be freed
1780  *	@rtnl_link_state:	This enum represents the phases of creating
1781  *				a new link
1782  *
1783  *	@needs_free_netdev:	Should unregister perform free_netdev?
1784  *	@priv_destructor:	Called from unregister
1785  *	@npinfo:		XXX: need comments on this one
1786  * 	@nd_net:		Network namespace this network device is inside
1787  *
1788  * 	@ml_priv:	Mid-layer private
1789  * 	@lstats:	Loopback statistics
1790  * 	@tstats:	Tunnel statistics
1791  * 	@dstats:	Dummy statistics
1792  * 	@vstats:	Virtual ethernet statistics
1793  *
1794  *	@garp_port:	GARP
1795  *	@mrp_port:	MRP
1796  *
1797  *	@dev:		Class/net/name entry
1798  *	@sysfs_groups:	Space for optional device, statistics and wireless
1799  *			sysfs groups
1800  *
1801  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1802  *	@rtnl_link_ops:	Rtnl_link_ops
1803  *
1804  *	@gso_max_size:	Maximum size of generic segmentation offload
1805  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1806  *			NIC for GSO
1807  *
1808  *	@dcbnl_ops:	Data Center Bridging netlink ops
1809  *	@num_tc:	Number of traffic classes in the net device
1810  *	@tc_to_txq:	XXX: need comments on this one
1811  *	@prio_tc_map:	XXX: need comments on this one
1812  *
1813  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1814  *
1815  *	@priomap:	XXX: need comments on this one
1816  *	@phydev:	Physical device may attach itself
1817  *			for hardware timestamping
1818  *	@sfp_bus:	attached &struct sfp_bus structure.
1819  *
1820  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1821  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1822  *
1823  *	@proto_down:	protocol port state information can be sent to the
1824  *			switch driver and used to set the phys state of the
1825  *			switch port.
1826  *
1827  *	@wol_enabled:	Wake-on-LAN is enabled
1828  *
1829  *	@net_notifier_list:	List of per-net netdev notifier block
1830  *				that follow this device when it is moved
1831  *				to another network namespace.
1832  *
1833  *	@macsec_ops:    MACsec offloading ops
1834  *
1835  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1836  *				offload capabilities of the device
1837  *	@udp_tunnel_nic:	UDP tunnel offload state
1838  *	@xdp_state:		stores info on attached XDP BPF programs
1839  *
1840  *	@nested_level:	Used as as a parameter of spin_lock_nested() of
1841  *			dev->addr_list_lock.
1842  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1843  *			keep a list of interfaces to be deleted.
1844  *
1845  *	FIXME: cleanup struct net_device such that network protocol info
1846  *	moves out.
1847  */
1848 
1849 struct net_device {
1850 	char			name[IFNAMSIZ];
1851 	struct netdev_name_node	*name_node;
1852 	struct dev_ifalias	__rcu *ifalias;
1853 	/*
1854 	 *	I/O specific fields
1855 	 *	FIXME: Merge these and struct ifmap into one
1856 	 */
1857 	unsigned long		mem_end;
1858 	unsigned long		mem_start;
1859 	unsigned long		base_addr;
1860 	int			irq;
1861 
1862 	/*
1863 	 *	Some hardware also needs these fields (state,dev_list,
1864 	 *	napi_list,unreg_list,close_list) but they are not
1865 	 *	part of the usual set specified in Space.c.
1866 	 */
1867 
1868 	unsigned long		state;
1869 
1870 	struct list_head	dev_list;
1871 	struct list_head	napi_list;
1872 	struct list_head	unreg_list;
1873 	struct list_head	close_list;
1874 	struct list_head	ptype_all;
1875 	struct list_head	ptype_specific;
1876 
1877 	struct {
1878 		struct list_head upper;
1879 		struct list_head lower;
1880 	} adj_list;
1881 
1882 	netdev_features_t	features;
1883 	netdev_features_t	hw_features;
1884 	netdev_features_t	wanted_features;
1885 	netdev_features_t	vlan_features;
1886 	netdev_features_t	hw_enc_features;
1887 	netdev_features_t	mpls_features;
1888 	netdev_features_t	gso_partial_features;
1889 
1890 	int			ifindex;
1891 	int			group;
1892 
1893 	struct net_device_stats	stats;
1894 
1895 	atomic_long_t		rx_dropped;
1896 	atomic_long_t		tx_dropped;
1897 	atomic_long_t		rx_nohandler;
1898 
1899 	/* Stats to monitor link on/off, flapping */
1900 	atomic_t		carrier_up_count;
1901 	atomic_t		carrier_down_count;
1902 
1903 #ifdef CONFIG_WIRELESS_EXT
1904 	const struct iw_handler_def *wireless_handlers;
1905 	struct iw_public_data	*wireless_data;
1906 #endif
1907 	const struct net_device_ops *netdev_ops;
1908 	const struct ethtool_ops *ethtool_ops;
1909 #ifdef CONFIG_NET_L3_MASTER_DEV
1910 	const struct l3mdev_ops	*l3mdev_ops;
1911 #endif
1912 #if IS_ENABLED(CONFIG_IPV6)
1913 	const struct ndisc_ops *ndisc_ops;
1914 #endif
1915 
1916 #ifdef CONFIG_XFRM_OFFLOAD
1917 	const struct xfrmdev_ops *xfrmdev_ops;
1918 #endif
1919 
1920 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1921 	const struct tlsdev_ops *tlsdev_ops;
1922 #endif
1923 
1924 	const struct header_ops *header_ops;
1925 
1926 	unsigned int		flags;
1927 	unsigned int		priv_flags;
1928 
1929 	unsigned short		gflags;
1930 	unsigned short		padded;
1931 
1932 	unsigned char		operstate;
1933 	unsigned char		link_mode;
1934 
1935 	unsigned char		if_port;
1936 	unsigned char		dma;
1937 
1938 	/* Note : dev->mtu is often read without holding a lock.
1939 	 * Writers usually hold RTNL.
1940 	 * It is recommended to use READ_ONCE() to annotate the reads,
1941 	 * and to use WRITE_ONCE() to annotate the writes.
1942 	 */
1943 	unsigned int		mtu;
1944 	unsigned int		min_mtu;
1945 	unsigned int		max_mtu;
1946 	unsigned short		type;
1947 	unsigned short		hard_header_len;
1948 	unsigned char		min_header_len;
1949 	unsigned char		name_assign_type;
1950 
1951 	unsigned short		needed_headroom;
1952 	unsigned short		needed_tailroom;
1953 
1954 	/* Interface address info. */
1955 	unsigned char		perm_addr[MAX_ADDR_LEN];
1956 	unsigned char		addr_assign_type;
1957 	unsigned char		addr_len;
1958 	unsigned char		upper_level;
1959 	unsigned char		lower_level;
1960 
1961 	unsigned short		neigh_priv_len;
1962 	unsigned short          dev_id;
1963 	unsigned short          dev_port;
1964 	spinlock_t		addr_list_lock;
1965 
1966 	struct netdev_hw_addr_list	uc;
1967 	struct netdev_hw_addr_list	mc;
1968 	struct netdev_hw_addr_list	dev_addrs;
1969 
1970 #ifdef CONFIG_SYSFS
1971 	struct kset		*queues_kset;
1972 #endif
1973 #ifdef CONFIG_LOCKDEP
1974 	struct list_head	unlink_list;
1975 #endif
1976 	unsigned int		promiscuity;
1977 	unsigned int		allmulti;
1978 	bool			uc_promisc;
1979 #ifdef CONFIG_LOCKDEP
1980 	unsigned char		nested_level;
1981 #endif
1982 
1983 
1984 	/* Protocol-specific pointers */
1985 
1986 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1987 	struct vlan_info __rcu	*vlan_info;
1988 #endif
1989 #if IS_ENABLED(CONFIG_NET_DSA)
1990 	struct dsa_port		*dsa_ptr;
1991 #endif
1992 #if IS_ENABLED(CONFIG_TIPC)
1993 	struct tipc_bearer __rcu *tipc_ptr;
1994 #endif
1995 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1996 	void 			*atalk_ptr;
1997 #endif
1998 	struct in_device __rcu	*ip_ptr;
1999 #if IS_ENABLED(CONFIG_DECNET)
2000 	struct dn_dev __rcu     *dn_ptr;
2001 #endif
2002 	struct inet6_dev __rcu	*ip6_ptr;
2003 #if IS_ENABLED(CONFIG_AX25)
2004 	void			*ax25_ptr;
2005 #endif
2006 	struct wireless_dev	*ieee80211_ptr;
2007 	struct wpan_dev		*ieee802154_ptr;
2008 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2009 	struct mpls_dev __rcu	*mpls_ptr;
2010 #endif
2011 
2012 /*
2013  * Cache lines mostly used on receive path (including eth_type_trans())
2014  */
2015 	/* Interface address info used in eth_type_trans() */
2016 	unsigned char		*dev_addr;
2017 
2018 	struct netdev_rx_queue	*_rx;
2019 	unsigned int		num_rx_queues;
2020 	unsigned int		real_num_rx_queues;
2021 
2022 	struct bpf_prog __rcu	*xdp_prog;
2023 	unsigned long		gro_flush_timeout;
2024 	int			napi_defer_hard_irqs;
2025 	rx_handler_func_t __rcu	*rx_handler;
2026 	void __rcu		*rx_handler_data;
2027 
2028 #ifdef CONFIG_NET_CLS_ACT
2029 	struct mini_Qdisc __rcu	*miniq_ingress;
2030 #endif
2031 	struct netdev_queue __rcu *ingress_queue;
2032 #ifdef CONFIG_NETFILTER_INGRESS
2033 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2034 #endif
2035 
2036 	unsigned char		broadcast[MAX_ADDR_LEN];
2037 #ifdef CONFIG_RFS_ACCEL
2038 	struct cpu_rmap		*rx_cpu_rmap;
2039 #endif
2040 	struct hlist_node	index_hlist;
2041 
2042 /*
2043  * Cache lines mostly used on transmit path
2044  */
2045 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2046 	unsigned int		num_tx_queues;
2047 	unsigned int		real_num_tx_queues;
2048 	struct Qdisc		*qdisc;
2049 	unsigned int		tx_queue_len;
2050 	spinlock_t		tx_global_lock;
2051 
2052 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2053 
2054 #ifdef CONFIG_XPS
2055 	struct xps_dev_maps __rcu *xps_cpus_map;
2056 	struct xps_dev_maps __rcu *xps_rxqs_map;
2057 #endif
2058 #ifdef CONFIG_NET_CLS_ACT
2059 	struct mini_Qdisc __rcu	*miniq_egress;
2060 #endif
2061 
2062 #ifdef CONFIG_NET_SCHED
2063 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2064 #endif
2065 	/* These may be needed for future network-power-down code. */
2066 	struct timer_list	watchdog_timer;
2067 	int			watchdog_timeo;
2068 
2069 	u32                     proto_down_reason;
2070 
2071 	struct list_head	todo_list;
2072 	int __percpu		*pcpu_refcnt;
2073 
2074 	struct list_head	link_watch_list;
2075 
2076 	enum { NETREG_UNINITIALIZED=0,
2077 	       NETREG_REGISTERED,	/* completed register_netdevice */
2078 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2079 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2080 	       NETREG_RELEASED,		/* called free_netdev */
2081 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2082 	} reg_state:8;
2083 
2084 	bool dismantle;
2085 
2086 	enum {
2087 		RTNL_LINK_INITIALIZED,
2088 		RTNL_LINK_INITIALIZING,
2089 	} rtnl_link_state:16;
2090 
2091 	bool needs_free_netdev;
2092 	void (*priv_destructor)(struct net_device *dev);
2093 
2094 #ifdef CONFIG_NETPOLL
2095 	struct netpoll_info __rcu	*npinfo;
2096 #endif
2097 
2098 	possible_net_t			nd_net;
2099 
2100 	/* mid-layer private */
2101 	union {
2102 		void					*ml_priv;
2103 		struct pcpu_lstats __percpu		*lstats;
2104 		struct pcpu_sw_netstats __percpu	*tstats;
2105 		struct pcpu_dstats __percpu		*dstats;
2106 	};
2107 
2108 #if IS_ENABLED(CONFIG_GARP)
2109 	struct garp_port __rcu	*garp_port;
2110 #endif
2111 #if IS_ENABLED(CONFIG_MRP)
2112 	struct mrp_port __rcu	*mrp_port;
2113 #endif
2114 
2115 	struct device		dev;
2116 	const struct attribute_group *sysfs_groups[4];
2117 	const struct attribute_group *sysfs_rx_queue_group;
2118 
2119 	const struct rtnl_link_ops *rtnl_link_ops;
2120 
2121 	/* for setting kernel sock attribute on TCP connection setup */
2122 #define GSO_MAX_SIZE		65536
2123 	unsigned int		gso_max_size;
2124 #define GSO_MAX_SEGS		65535
2125 	u16			gso_max_segs;
2126 
2127 #ifdef CONFIG_DCB
2128 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2129 #endif
2130 	s16			num_tc;
2131 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2132 	u8			prio_tc_map[TC_BITMASK + 1];
2133 
2134 #if IS_ENABLED(CONFIG_FCOE)
2135 	unsigned int		fcoe_ddp_xid;
2136 #endif
2137 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2138 	struct netprio_map __rcu *priomap;
2139 #endif
2140 	struct phy_device	*phydev;
2141 	struct sfp_bus		*sfp_bus;
2142 	struct lock_class_key	*qdisc_tx_busylock;
2143 	struct lock_class_key	*qdisc_running_key;
2144 	bool			proto_down;
2145 	unsigned		wol_enabled:1;
2146 
2147 	struct list_head	net_notifier_list;
2148 
2149 #if IS_ENABLED(CONFIG_MACSEC)
2150 	/* MACsec management functions */
2151 	const struct macsec_ops *macsec_ops;
2152 #endif
2153 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2154 	struct udp_tunnel_nic	*udp_tunnel_nic;
2155 
2156 	/* protected by rtnl_lock */
2157 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2158 };
2159 #define to_net_dev(d) container_of(d, struct net_device, dev)
2160 
2161 static inline bool netif_elide_gro(const struct net_device *dev)
2162 {
2163 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2164 		return true;
2165 	return false;
2166 }
2167 
2168 #define	NETDEV_ALIGN		32
2169 
2170 static inline
2171 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2172 {
2173 	return dev->prio_tc_map[prio & TC_BITMASK];
2174 }
2175 
2176 static inline
2177 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2178 {
2179 	if (tc >= dev->num_tc)
2180 		return -EINVAL;
2181 
2182 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2183 	return 0;
2184 }
2185 
2186 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2187 void netdev_reset_tc(struct net_device *dev);
2188 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2189 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2190 
2191 static inline
2192 int netdev_get_num_tc(struct net_device *dev)
2193 {
2194 	return dev->num_tc;
2195 }
2196 
2197 static inline void net_prefetch(void *p)
2198 {
2199 	prefetch(p);
2200 #if L1_CACHE_BYTES < 128
2201 	prefetch((u8 *)p + L1_CACHE_BYTES);
2202 #endif
2203 }
2204 
2205 static inline void net_prefetchw(void *p)
2206 {
2207 	prefetchw(p);
2208 #if L1_CACHE_BYTES < 128
2209 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2210 #endif
2211 }
2212 
2213 void netdev_unbind_sb_channel(struct net_device *dev,
2214 			      struct net_device *sb_dev);
2215 int netdev_bind_sb_channel_queue(struct net_device *dev,
2216 				 struct net_device *sb_dev,
2217 				 u8 tc, u16 count, u16 offset);
2218 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2219 static inline int netdev_get_sb_channel(struct net_device *dev)
2220 {
2221 	return max_t(int, -dev->num_tc, 0);
2222 }
2223 
2224 static inline
2225 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2226 					 unsigned int index)
2227 {
2228 	return &dev->_tx[index];
2229 }
2230 
2231 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2232 						    const struct sk_buff *skb)
2233 {
2234 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2235 }
2236 
2237 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2238 					    void (*f)(struct net_device *,
2239 						      struct netdev_queue *,
2240 						      void *),
2241 					    void *arg)
2242 {
2243 	unsigned int i;
2244 
2245 	for (i = 0; i < dev->num_tx_queues; i++)
2246 		f(dev, &dev->_tx[i], arg);
2247 }
2248 
2249 #define netdev_lockdep_set_classes(dev)				\
2250 {								\
2251 	static struct lock_class_key qdisc_tx_busylock_key;	\
2252 	static struct lock_class_key qdisc_running_key;		\
2253 	static struct lock_class_key qdisc_xmit_lock_key;	\
2254 	static struct lock_class_key dev_addr_list_lock_key;	\
2255 	unsigned int i;						\
2256 								\
2257 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2258 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2259 	lockdep_set_class(&(dev)->addr_list_lock,		\
2260 			  &dev_addr_list_lock_key);		\
2261 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2262 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2263 				  &qdisc_xmit_lock_key);	\
2264 }
2265 
2266 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2267 		     struct net_device *sb_dev);
2268 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2269 					 struct sk_buff *skb,
2270 					 struct net_device *sb_dev);
2271 
2272 /* returns the headroom that the master device needs to take in account
2273  * when forwarding to this dev
2274  */
2275 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2276 {
2277 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2278 }
2279 
2280 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2281 {
2282 	if (dev->netdev_ops->ndo_set_rx_headroom)
2283 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2284 }
2285 
2286 /* set the device rx headroom to the dev's default */
2287 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2288 {
2289 	netdev_set_rx_headroom(dev, -1);
2290 }
2291 
2292 /*
2293  * Net namespace inlines
2294  */
2295 static inline
2296 struct net *dev_net(const struct net_device *dev)
2297 {
2298 	return read_pnet(&dev->nd_net);
2299 }
2300 
2301 static inline
2302 void dev_net_set(struct net_device *dev, struct net *net)
2303 {
2304 	write_pnet(&dev->nd_net, net);
2305 }
2306 
2307 /**
2308  *	netdev_priv - access network device private data
2309  *	@dev: network device
2310  *
2311  * Get network device private data
2312  */
2313 static inline void *netdev_priv(const struct net_device *dev)
2314 {
2315 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2316 }
2317 
2318 /* Set the sysfs physical device reference for the network logical device
2319  * if set prior to registration will cause a symlink during initialization.
2320  */
2321 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2322 
2323 /* Set the sysfs device type for the network logical device to allow
2324  * fine-grained identification of different network device types. For
2325  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2326  */
2327 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2328 
2329 /* Default NAPI poll() weight
2330  * Device drivers are strongly advised to not use bigger value
2331  */
2332 #define NAPI_POLL_WEIGHT 64
2333 
2334 /**
2335  *	netif_napi_add - initialize a NAPI context
2336  *	@dev:  network device
2337  *	@napi: NAPI context
2338  *	@poll: polling function
2339  *	@weight: default weight
2340  *
2341  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2342  * *any* of the other NAPI-related functions.
2343  */
2344 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2345 		    int (*poll)(struct napi_struct *, int), int weight);
2346 
2347 /**
2348  *	netif_tx_napi_add - initialize a NAPI context
2349  *	@dev:  network device
2350  *	@napi: NAPI context
2351  *	@poll: polling function
2352  *	@weight: default weight
2353  *
2354  * This variant of netif_napi_add() should be used from drivers using NAPI
2355  * to exclusively poll a TX queue.
2356  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2357  */
2358 static inline void netif_tx_napi_add(struct net_device *dev,
2359 				     struct napi_struct *napi,
2360 				     int (*poll)(struct napi_struct *, int),
2361 				     int weight)
2362 {
2363 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2364 	netif_napi_add(dev, napi, poll, weight);
2365 }
2366 
2367 /**
2368  *  __netif_napi_del - remove a NAPI context
2369  *  @napi: NAPI context
2370  *
2371  * Warning: caller must observe RCU grace period before freeing memory
2372  * containing @napi. Drivers might want to call this helper to combine
2373  * all the needed RCU grace periods into a single one.
2374  */
2375 void __netif_napi_del(struct napi_struct *napi);
2376 
2377 /**
2378  *  netif_napi_del - remove a NAPI context
2379  *  @napi: NAPI context
2380  *
2381  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2382  */
2383 static inline void netif_napi_del(struct napi_struct *napi)
2384 {
2385 	__netif_napi_del(napi);
2386 	synchronize_net();
2387 }
2388 
2389 struct napi_gro_cb {
2390 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2391 	void	*frag0;
2392 
2393 	/* Length of frag0. */
2394 	unsigned int frag0_len;
2395 
2396 	/* This indicates where we are processing relative to skb->data. */
2397 	int	data_offset;
2398 
2399 	/* This is non-zero if the packet cannot be merged with the new skb. */
2400 	u16	flush;
2401 
2402 	/* Save the IP ID here and check when we get to the transport layer */
2403 	u16	flush_id;
2404 
2405 	/* Number of segments aggregated. */
2406 	u16	count;
2407 
2408 	/* Start offset for remote checksum offload */
2409 	u16	gro_remcsum_start;
2410 
2411 	/* jiffies when first packet was created/queued */
2412 	unsigned long age;
2413 
2414 	/* Used in ipv6_gro_receive() and foo-over-udp */
2415 	u16	proto;
2416 
2417 	/* This is non-zero if the packet may be of the same flow. */
2418 	u8	same_flow:1;
2419 
2420 	/* Used in tunnel GRO receive */
2421 	u8	encap_mark:1;
2422 
2423 	/* GRO checksum is valid */
2424 	u8	csum_valid:1;
2425 
2426 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2427 	u8	csum_cnt:3;
2428 
2429 	/* Free the skb? */
2430 	u8	free:2;
2431 #define NAPI_GRO_FREE		  1
2432 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2433 
2434 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2435 	u8	is_ipv6:1;
2436 
2437 	/* Used in GRE, set in fou/gue_gro_receive */
2438 	u8	is_fou:1;
2439 
2440 	/* Used to determine if flush_id can be ignored */
2441 	u8	is_atomic:1;
2442 
2443 	/* Number of gro_receive callbacks this packet already went through */
2444 	u8 recursion_counter:4;
2445 
2446 	/* GRO is done by frag_list pointer chaining. */
2447 	u8	is_flist:1;
2448 
2449 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2450 	__wsum	csum;
2451 
2452 	/* used in skb_gro_receive() slow path */
2453 	struct sk_buff *last;
2454 };
2455 
2456 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2457 
2458 #define GRO_RECURSION_LIMIT 15
2459 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2460 {
2461 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2462 }
2463 
2464 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2465 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2466 					       struct list_head *head,
2467 					       struct sk_buff *skb)
2468 {
2469 	if (unlikely(gro_recursion_inc_test(skb))) {
2470 		NAPI_GRO_CB(skb)->flush |= 1;
2471 		return NULL;
2472 	}
2473 
2474 	return cb(head, skb);
2475 }
2476 
2477 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2478 					    struct sk_buff *);
2479 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2480 						  struct sock *sk,
2481 						  struct list_head *head,
2482 						  struct sk_buff *skb)
2483 {
2484 	if (unlikely(gro_recursion_inc_test(skb))) {
2485 		NAPI_GRO_CB(skb)->flush |= 1;
2486 		return NULL;
2487 	}
2488 
2489 	return cb(sk, head, skb);
2490 }
2491 
2492 struct packet_type {
2493 	__be16			type;	/* This is really htons(ether_type). */
2494 	bool			ignore_outgoing;
2495 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2496 	int			(*func) (struct sk_buff *,
2497 					 struct net_device *,
2498 					 struct packet_type *,
2499 					 struct net_device *);
2500 	void			(*list_func) (struct list_head *,
2501 					      struct packet_type *,
2502 					      struct net_device *);
2503 	bool			(*id_match)(struct packet_type *ptype,
2504 					    struct sock *sk);
2505 	void			*af_packet_priv;
2506 	struct list_head	list;
2507 };
2508 
2509 struct offload_callbacks {
2510 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2511 						netdev_features_t features);
2512 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2513 						struct sk_buff *skb);
2514 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2515 };
2516 
2517 struct packet_offload {
2518 	__be16			 type;	/* This is really htons(ether_type). */
2519 	u16			 priority;
2520 	struct offload_callbacks callbacks;
2521 	struct list_head	 list;
2522 };
2523 
2524 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2525 struct pcpu_sw_netstats {
2526 	u64     rx_packets;
2527 	u64     rx_bytes;
2528 	u64     tx_packets;
2529 	u64     tx_bytes;
2530 	struct u64_stats_sync   syncp;
2531 } __aligned(4 * sizeof(u64));
2532 
2533 struct pcpu_lstats {
2534 	u64_stats_t packets;
2535 	u64_stats_t bytes;
2536 	struct u64_stats_sync syncp;
2537 } __aligned(2 * sizeof(u64));
2538 
2539 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2540 
2541 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2542 {
2543 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2544 
2545 	u64_stats_update_begin(&tstats->syncp);
2546 	tstats->rx_bytes += len;
2547 	tstats->rx_packets++;
2548 	u64_stats_update_end(&tstats->syncp);
2549 }
2550 
2551 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2552 					  unsigned int packets,
2553 					  unsigned int len)
2554 {
2555 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2556 
2557 	u64_stats_update_begin(&tstats->syncp);
2558 	tstats->tx_bytes += len;
2559 	tstats->tx_packets += packets;
2560 	u64_stats_update_end(&tstats->syncp);
2561 }
2562 
2563 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2564 {
2565 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2566 
2567 	u64_stats_update_begin(&lstats->syncp);
2568 	u64_stats_add(&lstats->bytes, len);
2569 	u64_stats_inc(&lstats->packets);
2570 	u64_stats_update_end(&lstats->syncp);
2571 }
2572 
2573 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2574 ({									\
2575 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2576 	if (pcpu_stats)	{						\
2577 		int __cpu;						\
2578 		for_each_possible_cpu(__cpu) {				\
2579 			typeof(type) *stat;				\
2580 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2581 			u64_stats_init(&stat->syncp);			\
2582 		}							\
2583 	}								\
2584 	pcpu_stats;							\
2585 })
2586 
2587 #define netdev_alloc_pcpu_stats(type)					\
2588 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2589 
2590 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2591 ({									\
2592 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2593 	if (pcpu_stats) {						\
2594 		int __cpu;						\
2595 		for_each_possible_cpu(__cpu) {				\
2596 			typeof(type) *stat;				\
2597 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2598 			u64_stats_init(&stat->syncp);			\
2599 		}							\
2600 	}								\
2601 	pcpu_stats;							\
2602 })
2603 
2604 enum netdev_lag_tx_type {
2605 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2606 	NETDEV_LAG_TX_TYPE_RANDOM,
2607 	NETDEV_LAG_TX_TYPE_BROADCAST,
2608 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2609 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2610 	NETDEV_LAG_TX_TYPE_HASH,
2611 };
2612 
2613 enum netdev_lag_hash {
2614 	NETDEV_LAG_HASH_NONE,
2615 	NETDEV_LAG_HASH_L2,
2616 	NETDEV_LAG_HASH_L34,
2617 	NETDEV_LAG_HASH_L23,
2618 	NETDEV_LAG_HASH_E23,
2619 	NETDEV_LAG_HASH_E34,
2620 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2621 	NETDEV_LAG_HASH_UNKNOWN,
2622 };
2623 
2624 struct netdev_lag_upper_info {
2625 	enum netdev_lag_tx_type tx_type;
2626 	enum netdev_lag_hash hash_type;
2627 };
2628 
2629 struct netdev_lag_lower_state_info {
2630 	u8 link_up : 1,
2631 	   tx_enabled : 1;
2632 };
2633 
2634 #include <linux/notifier.h>
2635 
2636 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2637  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2638  * adding new types.
2639  */
2640 enum netdev_cmd {
2641 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2642 	NETDEV_DOWN,
2643 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2644 				   detected a hardware crash and restarted
2645 				   - we can use this eg to kick tcp sessions
2646 				   once done */
2647 	NETDEV_CHANGE,		/* Notify device state change */
2648 	NETDEV_REGISTER,
2649 	NETDEV_UNREGISTER,
2650 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2651 	NETDEV_CHANGEADDR,	/* notify after the address change */
2652 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2653 	NETDEV_GOING_DOWN,
2654 	NETDEV_CHANGENAME,
2655 	NETDEV_FEAT_CHANGE,
2656 	NETDEV_BONDING_FAILOVER,
2657 	NETDEV_PRE_UP,
2658 	NETDEV_PRE_TYPE_CHANGE,
2659 	NETDEV_POST_TYPE_CHANGE,
2660 	NETDEV_POST_INIT,
2661 	NETDEV_RELEASE,
2662 	NETDEV_NOTIFY_PEERS,
2663 	NETDEV_JOIN,
2664 	NETDEV_CHANGEUPPER,
2665 	NETDEV_RESEND_IGMP,
2666 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2667 	NETDEV_CHANGEINFODATA,
2668 	NETDEV_BONDING_INFO,
2669 	NETDEV_PRECHANGEUPPER,
2670 	NETDEV_CHANGELOWERSTATE,
2671 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2672 	NETDEV_UDP_TUNNEL_DROP_INFO,
2673 	NETDEV_CHANGE_TX_QUEUE_LEN,
2674 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2675 	NETDEV_CVLAN_FILTER_DROP_INFO,
2676 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2677 	NETDEV_SVLAN_FILTER_DROP_INFO,
2678 };
2679 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2680 
2681 int register_netdevice_notifier(struct notifier_block *nb);
2682 int unregister_netdevice_notifier(struct notifier_block *nb);
2683 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2684 int unregister_netdevice_notifier_net(struct net *net,
2685 				      struct notifier_block *nb);
2686 int register_netdevice_notifier_dev_net(struct net_device *dev,
2687 					struct notifier_block *nb,
2688 					struct netdev_net_notifier *nn);
2689 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2690 					  struct notifier_block *nb,
2691 					  struct netdev_net_notifier *nn);
2692 
2693 struct netdev_notifier_info {
2694 	struct net_device	*dev;
2695 	struct netlink_ext_ack	*extack;
2696 };
2697 
2698 struct netdev_notifier_info_ext {
2699 	struct netdev_notifier_info info; /* must be first */
2700 	union {
2701 		u32 mtu;
2702 	} ext;
2703 };
2704 
2705 struct netdev_notifier_change_info {
2706 	struct netdev_notifier_info info; /* must be first */
2707 	unsigned int flags_changed;
2708 };
2709 
2710 struct netdev_notifier_changeupper_info {
2711 	struct netdev_notifier_info info; /* must be first */
2712 	struct net_device *upper_dev; /* new upper dev */
2713 	bool master; /* is upper dev master */
2714 	bool linking; /* is the notification for link or unlink */
2715 	void *upper_info; /* upper dev info */
2716 };
2717 
2718 struct netdev_notifier_changelowerstate_info {
2719 	struct netdev_notifier_info info; /* must be first */
2720 	void *lower_state_info; /* is lower dev state */
2721 };
2722 
2723 struct netdev_notifier_pre_changeaddr_info {
2724 	struct netdev_notifier_info info; /* must be first */
2725 	const unsigned char *dev_addr;
2726 };
2727 
2728 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2729 					     struct net_device *dev)
2730 {
2731 	info->dev = dev;
2732 	info->extack = NULL;
2733 }
2734 
2735 static inline struct net_device *
2736 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2737 {
2738 	return info->dev;
2739 }
2740 
2741 static inline struct netlink_ext_ack *
2742 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2743 {
2744 	return info->extack;
2745 }
2746 
2747 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2748 
2749 
2750 extern rwlock_t				dev_base_lock;		/* Device list lock */
2751 
2752 #define for_each_netdev(net, d)		\
2753 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2754 #define for_each_netdev_reverse(net, d)	\
2755 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2756 #define for_each_netdev_rcu(net, d)		\
2757 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2758 #define for_each_netdev_safe(net, d, n)	\
2759 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2760 #define for_each_netdev_continue(net, d)		\
2761 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2762 #define for_each_netdev_continue_reverse(net, d)		\
2763 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2764 						     dev_list)
2765 #define for_each_netdev_continue_rcu(net, d)		\
2766 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2767 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2768 		for_each_netdev_rcu(&init_net, slave)	\
2769 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2770 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2771 
2772 static inline struct net_device *next_net_device(struct net_device *dev)
2773 {
2774 	struct list_head *lh;
2775 	struct net *net;
2776 
2777 	net = dev_net(dev);
2778 	lh = dev->dev_list.next;
2779 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2780 }
2781 
2782 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2783 {
2784 	struct list_head *lh;
2785 	struct net *net;
2786 
2787 	net = dev_net(dev);
2788 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2789 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2790 }
2791 
2792 static inline struct net_device *first_net_device(struct net *net)
2793 {
2794 	return list_empty(&net->dev_base_head) ? NULL :
2795 		net_device_entry(net->dev_base_head.next);
2796 }
2797 
2798 static inline struct net_device *first_net_device_rcu(struct net *net)
2799 {
2800 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2801 
2802 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2803 }
2804 
2805 int netdev_boot_setup_check(struct net_device *dev);
2806 unsigned long netdev_boot_base(const char *prefix, int unit);
2807 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2808 				       const char *hwaddr);
2809 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2810 void dev_add_pack(struct packet_type *pt);
2811 void dev_remove_pack(struct packet_type *pt);
2812 void __dev_remove_pack(struct packet_type *pt);
2813 void dev_add_offload(struct packet_offload *po);
2814 void dev_remove_offload(struct packet_offload *po);
2815 
2816 int dev_get_iflink(const struct net_device *dev);
2817 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2818 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2819 				      unsigned short mask);
2820 struct net_device *dev_get_by_name(struct net *net, const char *name);
2821 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2822 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2823 int dev_alloc_name(struct net_device *dev, const char *name);
2824 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2825 void dev_close(struct net_device *dev);
2826 void dev_close_many(struct list_head *head, bool unlink);
2827 void dev_disable_lro(struct net_device *dev);
2828 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2829 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2830 		     struct net_device *sb_dev);
2831 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2832 		       struct net_device *sb_dev);
2833 
2834 int dev_queue_xmit(struct sk_buff *skb);
2835 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2836 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2837 
2838 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
2839 {
2840 	int ret;
2841 
2842 	ret = __dev_direct_xmit(skb, queue_id);
2843 	if (!dev_xmit_complete(ret))
2844 		kfree_skb(skb);
2845 	return ret;
2846 }
2847 
2848 int register_netdevice(struct net_device *dev);
2849 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2850 void unregister_netdevice_many(struct list_head *head);
2851 static inline void unregister_netdevice(struct net_device *dev)
2852 {
2853 	unregister_netdevice_queue(dev, NULL);
2854 }
2855 
2856 int netdev_refcnt_read(const struct net_device *dev);
2857 void free_netdev(struct net_device *dev);
2858 void netdev_freemem(struct net_device *dev);
2859 int init_dummy_netdev(struct net_device *dev);
2860 
2861 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2862 					 struct sk_buff *skb,
2863 					 bool all_slaves);
2864 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
2865 					    struct sock *sk);
2866 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2867 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2868 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2869 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2870 int netdev_get_name(struct net *net, char *name, int ifindex);
2871 int dev_restart(struct net_device *dev);
2872 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2873 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2874 
2875 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2876 {
2877 	return NAPI_GRO_CB(skb)->data_offset;
2878 }
2879 
2880 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2881 {
2882 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2883 }
2884 
2885 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2886 {
2887 	NAPI_GRO_CB(skb)->data_offset += len;
2888 }
2889 
2890 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2891 					unsigned int offset)
2892 {
2893 	return NAPI_GRO_CB(skb)->frag0 + offset;
2894 }
2895 
2896 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2897 {
2898 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2899 }
2900 
2901 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2902 {
2903 	NAPI_GRO_CB(skb)->frag0 = NULL;
2904 	NAPI_GRO_CB(skb)->frag0_len = 0;
2905 }
2906 
2907 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2908 					unsigned int offset)
2909 {
2910 	if (!pskb_may_pull(skb, hlen))
2911 		return NULL;
2912 
2913 	skb_gro_frag0_invalidate(skb);
2914 	return skb->data + offset;
2915 }
2916 
2917 static inline void *skb_gro_network_header(struct sk_buff *skb)
2918 {
2919 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2920 	       skb_network_offset(skb);
2921 }
2922 
2923 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2924 					const void *start, unsigned int len)
2925 {
2926 	if (NAPI_GRO_CB(skb)->csum_valid)
2927 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2928 						  csum_partial(start, len, 0));
2929 }
2930 
2931 /* GRO checksum functions. These are logical equivalents of the normal
2932  * checksum functions (in skbuff.h) except that they operate on the GRO
2933  * offsets and fields in sk_buff.
2934  */
2935 
2936 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2937 
2938 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2939 {
2940 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2941 }
2942 
2943 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2944 						      bool zero_okay,
2945 						      __sum16 check)
2946 {
2947 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2948 		skb_checksum_start_offset(skb) <
2949 		 skb_gro_offset(skb)) &&
2950 		!skb_at_gro_remcsum_start(skb) &&
2951 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2952 		(!zero_okay || check));
2953 }
2954 
2955 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2956 							   __wsum psum)
2957 {
2958 	if (NAPI_GRO_CB(skb)->csum_valid &&
2959 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2960 		return 0;
2961 
2962 	NAPI_GRO_CB(skb)->csum = psum;
2963 
2964 	return __skb_gro_checksum_complete(skb);
2965 }
2966 
2967 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2968 {
2969 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2970 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2971 		NAPI_GRO_CB(skb)->csum_cnt--;
2972 	} else {
2973 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2974 		 * verified a new top level checksum or an encapsulated one
2975 		 * during GRO. This saves work if we fallback to normal path.
2976 		 */
2977 		__skb_incr_checksum_unnecessary(skb);
2978 	}
2979 }
2980 
2981 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2982 				    compute_pseudo)			\
2983 ({									\
2984 	__sum16 __ret = 0;						\
2985 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2986 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2987 				compute_pseudo(skb, proto));		\
2988 	if (!__ret)							\
2989 		skb_gro_incr_csum_unnecessary(skb);			\
2990 	__ret;								\
2991 })
2992 
2993 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2994 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2995 
2996 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2997 					     compute_pseudo)		\
2998 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2999 
3000 #define skb_gro_checksum_simple_validate(skb)				\
3001 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
3002 
3003 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
3004 {
3005 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
3006 		!NAPI_GRO_CB(skb)->csum_valid);
3007 }
3008 
3009 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
3010 					      __wsum pseudo)
3011 {
3012 	NAPI_GRO_CB(skb)->csum = ~pseudo;
3013 	NAPI_GRO_CB(skb)->csum_valid = 1;
3014 }
3015 
3016 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)	\
3017 do {									\
3018 	if (__skb_gro_checksum_convert_check(skb))			\
3019 		__skb_gro_checksum_convert(skb, 			\
3020 					   compute_pseudo(skb, proto));	\
3021 } while (0)
3022 
3023 struct gro_remcsum {
3024 	int offset;
3025 	__wsum delta;
3026 };
3027 
3028 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
3029 {
3030 	grc->offset = 0;
3031 	grc->delta = 0;
3032 }
3033 
3034 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
3035 					    unsigned int off, size_t hdrlen,
3036 					    int start, int offset,
3037 					    struct gro_remcsum *grc,
3038 					    bool nopartial)
3039 {
3040 	__wsum delta;
3041 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
3042 
3043 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
3044 
3045 	if (!nopartial) {
3046 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
3047 		return ptr;
3048 	}
3049 
3050 	ptr = skb_gro_header_fast(skb, off);
3051 	if (skb_gro_header_hard(skb, off + plen)) {
3052 		ptr = skb_gro_header_slow(skb, off + plen, off);
3053 		if (!ptr)
3054 			return NULL;
3055 	}
3056 
3057 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
3058 			       start, offset);
3059 
3060 	/* Adjust skb->csum since we changed the packet */
3061 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
3062 
3063 	grc->offset = off + hdrlen + offset;
3064 	grc->delta = delta;
3065 
3066 	return ptr;
3067 }
3068 
3069 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
3070 					   struct gro_remcsum *grc)
3071 {
3072 	void *ptr;
3073 	size_t plen = grc->offset + sizeof(u16);
3074 
3075 	if (!grc->delta)
3076 		return;
3077 
3078 	ptr = skb_gro_header_fast(skb, grc->offset);
3079 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3080 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
3081 		if (!ptr)
3082 			return;
3083 	}
3084 
3085 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
3086 }
3087 
3088 #ifdef CONFIG_XFRM_OFFLOAD
3089 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3090 {
3091 	if (PTR_ERR(pp) != -EINPROGRESS)
3092 		NAPI_GRO_CB(skb)->flush |= flush;
3093 }
3094 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3095 					       struct sk_buff *pp,
3096 					       int flush,
3097 					       struct gro_remcsum *grc)
3098 {
3099 	if (PTR_ERR(pp) != -EINPROGRESS) {
3100 		NAPI_GRO_CB(skb)->flush |= flush;
3101 		skb_gro_remcsum_cleanup(skb, grc);
3102 		skb->remcsum_offload = 0;
3103 	}
3104 }
3105 #else
3106 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3107 {
3108 	NAPI_GRO_CB(skb)->flush |= flush;
3109 }
3110 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3111 					       struct sk_buff *pp,
3112 					       int flush,
3113 					       struct gro_remcsum *grc)
3114 {
3115 	NAPI_GRO_CB(skb)->flush |= flush;
3116 	skb_gro_remcsum_cleanup(skb, grc);
3117 	skb->remcsum_offload = 0;
3118 }
3119 #endif
3120 
3121 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3122 				  unsigned short type,
3123 				  const void *daddr, const void *saddr,
3124 				  unsigned int len)
3125 {
3126 	if (!dev->header_ops || !dev->header_ops->create)
3127 		return 0;
3128 
3129 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3130 }
3131 
3132 static inline int dev_parse_header(const struct sk_buff *skb,
3133 				   unsigned char *haddr)
3134 {
3135 	const struct net_device *dev = skb->dev;
3136 
3137 	if (!dev->header_ops || !dev->header_ops->parse)
3138 		return 0;
3139 	return dev->header_ops->parse(skb, haddr);
3140 }
3141 
3142 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3143 {
3144 	const struct net_device *dev = skb->dev;
3145 
3146 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3147 		return 0;
3148 	return dev->header_ops->parse_protocol(skb);
3149 }
3150 
3151 /* ll_header must have at least hard_header_len allocated */
3152 static inline bool dev_validate_header(const struct net_device *dev,
3153 				       char *ll_header, int len)
3154 {
3155 	if (likely(len >= dev->hard_header_len))
3156 		return true;
3157 	if (len < dev->min_header_len)
3158 		return false;
3159 
3160 	if (capable(CAP_SYS_RAWIO)) {
3161 		memset(ll_header + len, 0, dev->hard_header_len - len);
3162 		return true;
3163 	}
3164 
3165 	if (dev->header_ops && dev->header_ops->validate)
3166 		return dev->header_ops->validate(ll_header, len);
3167 
3168 	return false;
3169 }
3170 
3171 static inline bool dev_has_header(const struct net_device *dev)
3172 {
3173 	return dev->header_ops && dev->header_ops->create;
3174 }
3175 
3176 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3177 			   int len, int size);
3178 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3179 static inline int unregister_gifconf(unsigned int family)
3180 {
3181 	return register_gifconf(family, NULL);
3182 }
3183 
3184 #ifdef CONFIG_NET_FLOW_LIMIT
3185 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3186 struct sd_flow_limit {
3187 	u64			count;
3188 	unsigned int		num_buckets;
3189 	unsigned int		history_head;
3190 	u16			history[FLOW_LIMIT_HISTORY];
3191 	u8			buckets[];
3192 };
3193 
3194 extern int netdev_flow_limit_table_len;
3195 #endif /* CONFIG_NET_FLOW_LIMIT */
3196 
3197 /*
3198  * Incoming packets are placed on per-CPU queues
3199  */
3200 struct softnet_data {
3201 	struct list_head	poll_list;
3202 	struct sk_buff_head	process_queue;
3203 
3204 	/* stats */
3205 	unsigned int		processed;
3206 	unsigned int		time_squeeze;
3207 	unsigned int		received_rps;
3208 #ifdef CONFIG_RPS
3209 	struct softnet_data	*rps_ipi_list;
3210 #endif
3211 #ifdef CONFIG_NET_FLOW_LIMIT
3212 	struct sd_flow_limit __rcu *flow_limit;
3213 #endif
3214 	struct Qdisc		*output_queue;
3215 	struct Qdisc		**output_queue_tailp;
3216 	struct sk_buff		*completion_queue;
3217 #ifdef CONFIG_XFRM_OFFLOAD
3218 	struct sk_buff_head	xfrm_backlog;
3219 #endif
3220 	/* written and read only by owning cpu: */
3221 	struct {
3222 		u16 recursion;
3223 		u8  more;
3224 	} xmit;
3225 #ifdef CONFIG_RPS
3226 	/* input_queue_head should be written by cpu owning this struct,
3227 	 * and only read by other cpus. Worth using a cache line.
3228 	 */
3229 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3230 
3231 	/* Elements below can be accessed between CPUs for RPS/RFS */
3232 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3233 	struct softnet_data	*rps_ipi_next;
3234 	unsigned int		cpu;
3235 	unsigned int		input_queue_tail;
3236 #endif
3237 	unsigned int		dropped;
3238 	struct sk_buff_head	input_pkt_queue;
3239 	struct napi_struct	backlog;
3240 
3241 };
3242 
3243 static inline void input_queue_head_incr(struct softnet_data *sd)
3244 {
3245 #ifdef CONFIG_RPS
3246 	sd->input_queue_head++;
3247 #endif
3248 }
3249 
3250 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3251 					      unsigned int *qtail)
3252 {
3253 #ifdef CONFIG_RPS
3254 	*qtail = ++sd->input_queue_tail;
3255 #endif
3256 }
3257 
3258 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3259 
3260 static inline int dev_recursion_level(void)
3261 {
3262 	return this_cpu_read(softnet_data.xmit.recursion);
3263 }
3264 
3265 #define XMIT_RECURSION_LIMIT	8
3266 static inline bool dev_xmit_recursion(void)
3267 {
3268 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3269 			XMIT_RECURSION_LIMIT);
3270 }
3271 
3272 static inline void dev_xmit_recursion_inc(void)
3273 {
3274 	__this_cpu_inc(softnet_data.xmit.recursion);
3275 }
3276 
3277 static inline void dev_xmit_recursion_dec(void)
3278 {
3279 	__this_cpu_dec(softnet_data.xmit.recursion);
3280 }
3281 
3282 void __netif_schedule(struct Qdisc *q);
3283 void netif_schedule_queue(struct netdev_queue *txq);
3284 
3285 static inline void netif_tx_schedule_all(struct net_device *dev)
3286 {
3287 	unsigned int i;
3288 
3289 	for (i = 0; i < dev->num_tx_queues; i++)
3290 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3291 }
3292 
3293 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3294 {
3295 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3296 }
3297 
3298 /**
3299  *	netif_start_queue - allow transmit
3300  *	@dev: network device
3301  *
3302  *	Allow upper layers to call the device hard_start_xmit routine.
3303  */
3304 static inline void netif_start_queue(struct net_device *dev)
3305 {
3306 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3307 }
3308 
3309 static inline void netif_tx_start_all_queues(struct net_device *dev)
3310 {
3311 	unsigned int i;
3312 
3313 	for (i = 0; i < dev->num_tx_queues; i++) {
3314 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3315 		netif_tx_start_queue(txq);
3316 	}
3317 }
3318 
3319 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3320 
3321 /**
3322  *	netif_wake_queue - restart transmit
3323  *	@dev: network device
3324  *
3325  *	Allow upper layers to call the device hard_start_xmit routine.
3326  *	Used for flow control when transmit resources are available.
3327  */
3328 static inline void netif_wake_queue(struct net_device *dev)
3329 {
3330 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3331 }
3332 
3333 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3334 {
3335 	unsigned int i;
3336 
3337 	for (i = 0; i < dev->num_tx_queues; i++) {
3338 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3339 		netif_tx_wake_queue(txq);
3340 	}
3341 }
3342 
3343 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3344 {
3345 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3346 }
3347 
3348 /**
3349  *	netif_stop_queue - stop transmitted packets
3350  *	@dev: network device
3351  *
3352  *	Stop upper layers calling the device hard_start_xmit routine.
3353  *	Used for flow control when transmit resources are unavailable.
3354  */
3355 static inline void netif_stop_queue(struct net_device *dev)
3356 {
3357 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3358 }
3359 
3360 void netif_tx_stop_all_queues(struct net_device *dev);
3361 
3362 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3363 {
3364 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3365 }
3366 
3367 /**
3368  *	netif_queue_stopped - test if transmit queue is flowblocked
3369  *	@dev: network device
3370  *
3371  *	Test if transmit queue on device is currently unable to send.
3372  */
3373 static inline bool netif_queue_stopped(const struct net_device *dev)
3374 {
3375 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3376 }
3377 
3378 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3379 {
3380 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3381 }
3382 
3383 static inline bool
3384 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3385 {
3386 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3387 }
3388 
3389 static inline bool
3390 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3391 {
3392 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3393 }
3394 
3395 /**
3396  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3397  *	@dev_queue: pointer to transmit queue
3398  *
3399  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3400  * to give appropriate hint to the CPU.
3401  */
3402 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3403 {
3404 #ifdef CONFIG_BQL
3405 	prefetchw(&dev_queue->dql.num_queued);
3406 #endif
3407 }
3408 
3409 /**
3410  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3411  *	@dev_queue: pointer to transmit queue
3412  *
3413  * BQL enabled drivers might use this helper in their TX completion path,
3414  * to give appropriate hint to the CPU.
3415  */
3416 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3417 {
3418 #ifdef CONFIG_BQL
3419 	prefetchw(&dev_queue->dql.limit);
3420 #endif
3421 }
3422 
3423 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3424 					unsigned int bytes)
3425 {
3426 #ifdef CONFIG_BQL
3427 	dql_queued(&dev_queue->dql, bytes);
3428 
3429 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3430 		return;
3431 
3432 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3433 
3434 	/*
3435 	 * The XOFF flag must be set before checking the dql_avail below,
3436 	 * because in netdev_tx_completed_queue we update the dql_completed
3437 	 * before checking the XOFF flag.
3438 	 */
3439 	smp_mb();
3440 
3441 	/* check again in case another CPU has just made room avail */
3442 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3443 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3444 #endif
3445 }
3446 
3447 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3448  * that they should not test BQL status themselves.
3449  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3450  * skb of a batch.
3451  * Returns true if the doorbell must be used to kick the NIC.
3452  */
3453 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3454 					  unsigned int bytes,
3455 					  bool xmit_more)
3456 {
3457 	if (xmit_more) {
3458 #ifdef CONFIG_BQL
3459 		dql_queued(&dev_queue->dql, bytes);
3460 #endif
3461 		return netif_tx_queue_stopped(dev_queue);
3462 	}
3463 	netdev_tx_sent_queue(dev_queue, bytes);
3464 	return true;
3465 }
3466 
3467 /**
3468  * 	netdev_sent_queue - report the number of bytes queued to hardware
3469  * 	@dev: network device
3470  * 	@bytes: number of bytes queued to the hardware device queue
3471  *
3472  * 	Report the number of bytes queued for sending/completion to the network
3473  * 	device hardware queue. @bytes should be a good approximation and should
3474  * 	exactly match netdev_completed_queue() @bytes
3475  */
3476 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3477 {
3478 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3479 }
3480 
3481 static inline bool __netdev_sent_queue(struct net_device *dev,
3482 				       unsigned int bytes,
3483 				       bool xmit_more)
3484 {
3485 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3486 				      xmit_more);
3487 }
3488 
3489 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3490 					     unsigned int pkts, unsigned int bytes)
3491 {
3492 #ifdef CONFIG_BQL
3493 	if (unlikely(!bytes))
3494 		return;
3495 
3496 	dql_completed(&dev_queue->dql, bytes);
3497 
3498 	/*
3499 	 * Without the memory barrier there is a small possiblity that
3500 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3501 	 * be stopped forever
3502 	 */
3503 	smp_mb();
3504 
3505 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3506 		return;
3507 
3508 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3509 		netif_schedule_queue(dev_queue);
3510 #endif
3511 }
3512 
3513 /**
3514  * 	netdev_completed_queue - report bytes and packets completed by device
3515  * 	@dev: network device
3516  * 	@pkts: actual number of packets sent over the medium
3517  * 	@bytes: actual number of bytes sent over the medium
3518  *
3519  * 	Report the number of bytes and packets transmitted by the network device
3520  * 	hardware queue over the physical medium, @bytes must exactly match the
3521  * 	@bytes amount passed to netdev_sent_queue()
3522  */
3523 static inline void netdev_completed_queue(struct net_device *dev,
3524 					  unsigned int pkts, unsigned int bytes)
3525 {
3526 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3527 }
3528 
3529 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3530 {
3531 #ifdef CONFIG_BQL
3532 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3533 	dql_reset(&q->dql);
3534 #endif
3535 }
3536 
3537 /**
3538  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3539  * 	@dev_queue: network device
3540  *
3541  * 	Reset the bytes and packet count of a network device and clear the
3542  * 	software flow control OFF bit for this network device
3543  */
3544 static inline void netdev_reset_queue(struct net_device *dev_queue)
3545 {
3546 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3547 }
3548 
3549 /**
3550  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3551  * 	@dev: network device
3552  * 	@queue_index: given tx queue index
3553  *
3554  * 	Returns 0 if given tx queue index >= number of device tx queues,
3555  * 	otherwise returns the originally passed tx queue index.
3556  */
3557 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3558 {
3559 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3560 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3561 				     dev->name, queue_index,
3562 				     dev->real_num_tx_queues);
3563 		return 0;
3564 	}
3565 
3566 	return queue_index;
3567 }
3568 
3569 /**
3570  *	netif_running - test if up
3571  *	@dev: network device
3572  *
3573  *	Test if the device has been brought up.
3574  */
3575 static inline bool netif_running(const struct net_device *dev)
3576 {
3577 	return test_bit(__LINK_STATE_START, &dev->state);
3578 }
3579 
3580 /*
3581  * Routines to manage the subqueues on a device.  We only need start,
3582  * stop, and a check if it's stopped.  All other device management is
3583  * done at the overall netdevice level.
3584  * Also test the device if we're multiqueue.
3585  */
3586 
3587 /**
3588  *	netif_start_subqueue - allow sending packets on subqueue
3589  *	@dev: network device
3590  *	@queue_index: sub queue index
3591  *
3592  * Start individual transmit queue of a device with multiple transmit queues.
3593  */
3594 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3595 {
3596 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3597 
3598 	netif_tx_start_queue(txq);
3599 }
3600 
3601 /**
3602  *	netif_stop_subqueue - stop sending packets on subqueue
3603  *	@dev: network device
3604  *	@queue_index: sub queue index
3605  *
3606  * Stop individual transmit queue of a device with multiple transmit queues.
3607  */
3608 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3609 {
3610 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3611 	netif_tx_stop_queue(txq);
3612 }
3613 
3614 /**
3615  *	__netif_subqueue_stopped - test status of subqueue
3616  *	@dev: network device
3617  *	@queue_index: sub queue index
3618  *
3619  * Check individual transmit queue of a device with multiple transmit queues.
3620  */
3621 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3622 					    u16 queue_index)
3623 {
3624 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3625 
3626 	return netif_tx_queue_stopped(txq);
3627 }
3628 
3629 /**
3630  *	netif_subqueue_stopped - test status of subqueue
3631  *	@dev: network device
3632  *	@skb: sub queue buffer pointer
3633  *
3634  * Check individual transmit queue of a device with multiple transmit queues.
3635  */
3636 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3637 					  struct sk_buff *skb)
3638 {
3639 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3640 }
3641 
3642 /**
3643  *	netif_wake_subqueue - allow sending packets on subqueue
3644  *	@dev: network device
3645  *	@queue_index: sub queue index
3646  *
3647  * Resume individual transmit queue of a device with multiple transmit queues.
3648  */
3649 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3650 {
3651 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3652 
3653 	netif_tx_wake_queue(txq);
3654 }
3655 
3656 #ifdef CONFIG_XPS
3657 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3658 			u16 index);
3659 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3660 			  u16 index, bool is_rxqs_map);
3661 
3662 /**
3663  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3664  *	@j: CPU/Rx queue index
3665  *	@mask: bitmask of all cpus/rx queues
3666  *	@nr_bits: number of bits in the bitmask
3667  *
3668  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3669  */
3670 static inline bool netif_attr_test_mask(unsigned long j,
3671 					const unsigned long *mask,
3672 					unsigned int nr_bits)
3673 {
3674 	cpu_max_bits_warn(j, nr_bits);
3675 	return test_bit(j, mask);
3676 }
3677 
3678 /**
3679  *	netif_attr_test_online - Test for online CPU/Rx queue
3680  *	@j: CPU/Rx queue index
3681  *	@online_mask: bitmask for CPUs/Rx queues that are online
3682  *	@nr_bits: number of bits in the bitmask
3683  *
3684  * Returns true if a CPU/Rx queue is online.
3685  */
3686 static inline bool netif_attr_test_online(unsigned long j,
3687 					  const unsigned long *online_mask,
3688 					  unsigned int nr_bits)
3689 {
3690 	cpu_max_bits_warn(j, nr_bits);
3691 
3692 	if (online_mask)
3693 		return test_bit(j, online_mask);
3694 
3695 	return (j < nr_bits);
3696 }
3697 
3698 /**
3699  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3700  *	@n: CPU/Rx queue index
3701  *	@srcp: the cpumask/Rx queue mask pointer
3702  *	@nr_bits: number of bits in the bitmask
3703  *
3704  * Returns >= nr_bits if no further CPUs/Rx queues set.
3705  */
3706 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3707 					       unsigned int nr_bits)
3708 {
3709 	/* -1 is a legal arg here. */
3710 	if (n != -1)
3711 		cpu_max_bits_warn(n, nr_bits);
3712 
3713 	if (srcp)
3714 		return find_next_bit(srcp, nr_bits, n + 1);
3715 
3716 	return n + 1;
3717 }
3718 
3719 /**
3720  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3721  *	@n: CPU/Rx queue index
3722  *	@src1p: the first CPUs/Rx queues mask pointer
3723  *	@src2p: the second CPUs/Rx queues mask pointer
3724  *	@nr_bits: number of bits in the bitmask
3725  *
3726  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3727  */
3728 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3729 					  const unsigned long *src2p,
3730 					  unsigned int nr_bits)
3731 {
3732 	/* -1 is a legal arg here. */
3733 	if (n != -1)
3734 		cpu_max_bits_warn(n, nr_bits);
3735 
3736 	if (src1p && src2p)
3737 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3738 	else if (src1p)
3739 		return find_next_bit(src1p, nr_bits, n + 1);
3740 	else if (src2p)
3741 		return find_next_bit(src2p, nr_bits, n + 1);
3742 
3743 	return n + 1;
3744 }
3745 #else
3746 static inline int netif_set_xps_queue(struct net_device *dev,
3747 				      const struct cpumask *mask,
3748 				      u16 index)
3749 {
3750 	return 0;
3751 }
3752 
3753 static inline int __netif_set_xps_queue(struct net_device *dev,
3754 					const unsigned long *mask,
3755 					u16 index, bool is_rxqs_map)
3756 {
3757 	return 0;
3758 }
3759 #endif
3760 
3761 /**
3762  *	netif_is_multiqueue - test if device has multiple transmit queues
3763  *	@dev: network device
3764  *
3765  * Check if device has multiple transmit queues
3766  */
3767 static inline bool netif_is_multiqueue(const struct net_device *dev)
3768 {
3769 	return dev->num_tx_queues > 1;
3770 }
3771 
3772 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3773 
3774 #ifdef CONFIG_SYSFS
3775 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3776 #else
3777 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3778 						unsigned int rxqs)
3779 {
3780 	dev->real_num_rx_queues = rxqs;
3781 	return 0;
3782 }
3783 #endif
3784 
3785 static inline struct netdev_rx_queue *
3786 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3787 {
3788 	return dev->_rx + rxq;
3789 }
3790 
3791 #ifdef CONFIG_SYSFS
3792 static inline unsigned int get_netdev_rx_queue_index(
3793 		struct netdev_rx_queue *queue)
3794 {
3795 	struct net_device *dev = queue->dev;
3796 	int index = queue - dev->_rx;
3797 
3798 	BUG_ON(index >= dev->num_rx_queues);
3799 	return index;
3800 }
3801 #endif
3802 
3803 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3804 int netif_get_num_default_rss_queues(void);
3805 
3806 enum skb_free_reason {
3807 	SKB_REASON_CONSUMED,
3808 	SKB_REASON_DROPPED,
3809 };
3810 
3811 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3812 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3813 
3814 /*
3815  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3816  * interrupt context or with hardware interrupts being disabled.
3817  * (in_irq() || irqs_disabled())
3818  *
3819  * We provide four helpers that can be used in following contexts :
3820  *
3821  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3822  *  replacing kfree_skb(skb)
3823  *
3824  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3825  *  Typically used in place of consume_skb(skb) in TX completion path
3826  *
3827  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3828  *  replacing kfree_skb(skb)
3829  *
3830  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3831  *  and consumed a packet. Used in place of consume_skb(skb)
3832  */
3833 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3834 {
3835 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3836 }
3837 
3838 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3839 {
3840 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3841 }
3842 
3843 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3844 {
3845 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3846 }
3847 
3848 static inline void dev_consume_skb_any(struct sk_buff *skb)
3849 {
3850 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3851 }
3852 
3853 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3854 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3855 int netif_rx(struct sk_buff *skb);
3856 int netif_rx_ni(struct sk_buff *skb);
3857 int netif_rx_any_context(struct sk_buff *skb);
3858 int netif_receive_skb(struct sk_buff *skb);
3859 int netif_receive_skb_core(struct sk_buff *skb);
3860 void netif_receive_skb_list(struct list_head *head);
3861 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3862 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3863 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3864 gro_result_t napi_gro_frags(struct napi_struct *napi);
3865 struct packet_offload *gro_find_receive_by_type(__be16 type);
3866 struct packet_offload *gro_find_complete_by_type(__be16 type);
3867 
3868 static inline void napi_free_frags(struct napi_struct *napi)
3869 {
3870 	kfree_skb(napi->skb);
3871 	napi->skb = NULL;
3872 }
3873 
3874 bool netdev_is_rx_handler_busy(struct net_device *dev);
3875 int netdev_rx_handler_register(struct net_device *dev,
3876 			       rx_handler_func_t *rx_handler,
3877 			       void *rx_handler_data);
3878 void netdev_rx_handler_unregister(struct net_device *dev);
3879 
3880 bool dev_valid_name(const char *name);
3881 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3882 		bool *need_copyout);
3883 int dev_ifconf(struct net *net, struct ifconf *, int);
3884 int dev_ethtool(struct net *net, struct ifreq *);
3885 unsigned int dev_get_flags(const struct net_device *);
3886 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3887 		       struct netlink_ext_ack *extack);
3888 int dev_change_flags(struct net_device *dev, unsigned int flags,
3889 		     struct netlink_ext_ack *extack);
3890 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3891 			unsigned int gchanges);
3892 int dev_change_name(struct net_device *, const char *);
3893 int dev_set_alias(struct net_device *, const char *, size_t);
3894 int dev_get_alias(const struct net_device *, char *, size_t);
3895 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3896 int __dev_set_mtu(struct net_device *, int);
3897 int dev_validate_mtu(struct net_device *dev, int mtu,
3898 		     struct netlink_ext_ack *extack);
3899 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3900 		    struct netlink_ext_ack *extack);
3901 int dev_set_mtu(struct net_device *, int);
3902 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3903 void dev_set_group(struct net_device *, int);
3904 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3905 			      struct netlink_ext_ack *extack);
3906 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3907 			struct netlink_ext_ack *extack);
3908 int dev_change_carrier(struct net_device *, bool new_carrier);
3909 int dev_get_phys_port_id(struct net_device *dev,
3910 			 struct netdev_phys_item_id *ppid);
3911 int dev_get_phys_port_name(struct net_device *dev,
3912 			   char *name, size_t len);
3913 int dev_get_port_parent_id(struct net_device *dev,
3914 			   struct netdev_phys_item_id *ppid, bool recurse);
3915 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3916 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3917 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3918 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3919 				  u32 value);
3920 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3921 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3922 				    struct netdev_queue *txq, int *ret);
3923 
3924 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3925 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3926 		      int fd, int expected_fd, u32 flags);
3927 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3928 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3929 
3930 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3931 
3932 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3933 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3934 bool is_skb_forwardable(const struct net_device *dev,
3935 			const struct sk_buff *skb);
3936 
3937 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3938 					       struct sk_buff *skb)
3939 {
3940 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3941 	    unlikely(!is_skb_forwardable(dev, skb))) {
3942 		atomic_long_inc(&dev->rx_dropped);
3943 		kfree_skb(skb);
3944 		return NET_RX_DROP;
3945 	}
3946 
3947 	skb_scrub_packet(skb, true);
3948 	skb->priority = 0;
3949 	return 0;
3950 }
3951 
3952 bool dev_nit_active(struct net_device *dev);
3953 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3954 
3955 extern int		netdev_budget;
3956 extern unsigned int	netdev_budget_usecs;
3957 
3958 /* Called by rtnetlink.c:rtnl_unlock() */
3959 void netdev_run_todo(void);
3960 
3961 /**
3962  *	dev_put - release reference to device
3963  *	@dev: network device
3964  *
3965  * Release reference to device to allow it to be freed.
3966  */
3967 static inline void dev_put(struct net_device *dev)
3968 {
3969 	this_cpu_dec(*dev->pcpu_refcnt);
3970 }
3971 
3972 /**
3973  *	dev_hold - get reference to device
3974  *	@dev: network device
3975  *
3976  * Hold reference to device to keep it from being freed.
3977  */
3978 static inline void dev_hold(struct net_device *dev)
3979 {
3980 	this_cpu_inc(*dev->pcpu_refcnt);
3981 }
3982 
3983 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3984  * and _off may be called from IRQ context, but it is caller
3985  * who is responsible for serialization of these calls.
3986  *
3987  * The name carrier is inappropriate, these functions should really be
3988  * called netif_lowerlayer_*() because they represent the state of any
3989  * kind of lower layer not just hardware media.
3990  */
3991 
3992 void linkwatch_init_dev(struct net_device *dev);
3993 void linkwatch_fire_event(struct net_device *dev);
3994 void linkwatch_forget_dev(struct net_device *dev);
3995 
3996 /**
3997  *	netif_carrier_ok - test if carrier present
3998  *	@dev: network device
3999  *
4000  * Check if carrier is present on device
4001  */
4002 static inline bool netif_carrier_ok(const struct net_device *dev)
4003 {
4004 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4005 }
4006 
4007 unsigned long dev_trans_start(struct net_device *dev);
4008 
4009 void __netdev_watchdog_up(struct net_device *dev);
4010 
4011 void netif_carrier_on(struct net_device *dev);
4012 
4013 void netif_carrier_off(struct net_device *dev);
4014 
4015 /**
4016  *	netif_dormant_on - mark device as dormant.
4017  *	@dev: network device
4018  *
4019  * Mark device as dormant (as per RFC2863).
4020  *
4021  * The dormant state indicates that the relevant interface is not
4022  * actually in a condition to pass packets (i.e., it is not 'up') but is
4023  * in a "pending" state, waiting for some external event.  For "on-
4024  * demand" interfaces, this new state identifies the situation where the
4025  * interface is waiting for events to place it in the up state.
4026  */
4027 static inline void netif_dormant_on(struct net_device *dev)
4028 {
4029 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4030 		linkwatch_fire_event(dev);
4031 }
4032 
4033 /**
4034  *	netif_dormant_off - set device as not dormant.
4035  *	@dev: network device
4036  *
4037  * Device is not in dormant state.
4038  */
4039 static inline void netif_dormant_off(struct net_device *dev)
4040 {
4041 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4042 		linkwatch_fire_event(dev);
4043 }
4044 
4045 /**
4046  *	netif_dormant - test if device is dormant
4047  *	@dev: network device
4048  *
4049  * Check if device is dormant.
4050  */
4051 static inline bool netif_dormant(const struct net_device *dev)
4052 {
4053 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4054 }
4055 
4056 
4057 /**
4058  *	netif_testing_on - mark device as under test.
4059  *	@dev: network device
4060  *
4061  * Mark device as under test (as per RFC2863).
4062  *
4063  * The testing state indicates that some test(s) must be performed on
4064  * the interface. After completion, of the test, the interface state
4065  * will change to up, dormant, or down, as appropriate.
4066  */
4067 static inline void netif_testing_on(struct net_device *dev)
4068 {
4069 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4070 		linkwatch_fire_event(dev);
4071 }
4072 
4073 /**
4074  *	netif_testing_off - set device as not under test.
4075  *	@dev: network device
4076  *
4077  * Device is not in testing state.
4078  */
4079 static inline void netif_testing_off(struct net_device *dev)
4080 {
4081 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4082 		linkwatch_fire_event(dev);
4083 }
4084 
4085 /**
4086  *	netif_testing - test if device is under test
4087  *	@dev: network device
4088  *
4089  * Check if device is under test
4090  */
4091 static inline bool netif_testing(const struct net_device *dev)
4092 {
4093 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4094 }
4095 
4096 
4097 /**
4098  *	netif_oper_up - test if device is operational
4099  *	@dev: network device
4100  *
4101  * Check if carrier is operational
4102  */
4103 static inline bool netif_oper_up(const struct net_device *dev)
4104 {
4105 	return (dev->operstate == IF_OPER_UP ||
4106 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4107 }
4108 
4109 /**
4110  *	netif_device_present - is device available or removed
4111  *	@dev: network device
4112  *
4113  * Check if device has not been removed from system.
4114  */
4115 static inline bool netif_device_present(struct net_device *dev)
4116 {
4117 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4118 }
4119 
4120 void netif_device_detach(struct net_device *dev);
4121 
4122 void netif_device_attach(struct net_device *dev);
4123 
4124 /*
4125  * Network interface message level settings
4126  */
4127 
4128 enum {
4129 	NETIF_MSG_DRV_BIT,
4130 	NETIF_MSG_PROBE_BIT,
4131 	NETIF_MSG_LINK_BIT,
4132 	NETIF_MSG_TIMER_BIT,
4133 	NETIF_MSG_IFDOWN_BIT,
4134 	NETIF_MSG_IFUP_BIT,
4135 	NETIF_MSG_RX_ERR_BIT,
4136 	NETIF_MSG_TX_ERR_BIT,
4137 	NETIF_MSG_TX_QUEUED_BIT,
4138 	NETIF_MSG_INTR_BIT,
4139 	NETIF_MSG_TX_DONE_BIT,
4140 	NETIF_MSG_RX_STATUS_BIT,
4141 	NETIF_MSG_PKTDATA_BIT,
4142 	NETIF_MSG_HW_BIT,
4143 	NETIF_MSG_WOL_BIT,
4144 
4145 	/* When you add a new bit above, update netif_msg_class_names array
4146 	 * in net/ethtool/common.c
4147 	 */
4148 	NETIF_MSG_CLASS_COUNT,
4149 };
4150 /* Both ethtool_ops interface and internal driver implementation use u32 */
4151 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4152 
4153 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4154 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4155 
4156 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4157 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4158 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4159 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4160 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4161 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4162 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4163 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4164 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4165 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4166 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4167 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4168 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4169 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4170 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4171 
4172 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4173 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4174 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4175 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4176 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4177 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4178 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4179 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4180 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4181 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4182 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4183 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4184 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4185 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4186 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4187 
4188 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4189 {
4190 	/* use default */
4191 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4192 		return default_msg_enable_bits;
4193 	if (debug_value == 0)	/* no output */
4194 		return 0;
4195 	/* set low N bits */
4196 	return (1U << debug_value) - 1;
4197 }
4198 
4199 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4200 {
4201 	spin_lock(&txq->_xmit_lock);
4202 	txq->xmit_lock_owner = cpu;
4203 }
4204 
4205 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4206 {
4207 	__acquire(&txq->_xmit_lock);
4208 	return true;
4209 }
4210 
4211 static inline void __netif_tx_release(struct netdev_queue *txq)
4212 {
4213 	__release(&txq->_xmit_lock);
4214 }
4215 
4216 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4217 {
4218 	spin_lock_bh(&txq->_xmit_lock);
4219 	txq->xmit_lock_owner = smp_processor_id();
4220 }
4221 
4222 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4223 {
4224 	bool ok = spin_trylock(&txq->_xmit_lock);
4225 	if (likely(ok))
4226 		txq->xmit_lock_owner = smp_processor_id();
4227 	return ok;
4228 }
4229 
4230 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4231 {
4232 	txq->xmit_lock_owner = -1;
4233 	spin_unlock(&txq->_xmit_lock);
4234 }
4235 
4236 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4237 {
4238 	txq->xmit_lock_owner = -1;
4239 	spin_unlock_bh(&txq->_xmit_lock);
4240 }
4241 
4242 static inline void txq_trans_update(struct netdev_queue *txq)
4243 {
4244 	if (txq->xmit_lock_owner != -1)
4245 		txq->trans_start = jiffies;
4246 }
4247 
4248 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4249 static inline void netif_trans_update(struct net_device *dev)
4250 {
4251 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4252 
4253 	if (txq->trans_start != jiffies)
4254 		txq->trans_start = jiffies;
4255 }
4256 
4257 /**
4258  *	netif_tx_lock - grab network device transmit lock
4259  *	@dev: network device
4260  *
4261  * Get network device transmit lock
4262  */
4263 static inline void netif_tx_lock(struct net_device *dev)
4264 {
4265 	unsigned int i;
4266 	int cpu;
4267 
4268 	spin_lock(&dev->tx_global_lock);
4269 	cpu = smp_processor_id();
4270 	for (i = 0; i < dev->num_tx_queues; i++) {
4271 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4272 
4273 		/* We are the only thread of execution doing a
4274 		 * freeze, but we have to grab the _xmit_lock in
4275 		 * order to synchronize with threads which are in
4276 		 * the ->hard_start_xmit() handler and already
4277 		 * checked the frozen bit.
4278 		 */
4279 		__netif_tx_lock(txq, cpu);
4280 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4281 		__netif_tx_unlock(txq);
4282 	}
4283 }
4284 
4285 static inline void netif_tx_lock_bh(struct net_device *dev)
4286 {
4287 	local_bh_disable();
4288 	netif_tx_lock(dev);
4289 }
4290 
4291 static inline void netif_tx_unlock(struct net_device *dev)
4292 {
4293 	unsigned int i;
4294 
4295 	for (i = 0; i < dev->num_tx_queues; i++) {
4296 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4297 
4298 		/* No need to grab the _xmit_lock here.  If the
4299 		 * queue is not stopped for another reason, we
4300 		 * force a schedule.
4301 		 */
4302 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4303 		netif_schedule_queue(txq);
4304 	}
4305 	spin_unlock(&dev->tx_global_lock);
4306 }
4307 
4308 static inline void netif_tx_unlock_bh(struct net_device *dev)
4309 {
4310 	netif_tx_unlock(dev);
4311 	local_bh_enable();
4312 }
4313 
4314 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4315 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4316 		__netif_tx_lock(txq, cpu);		\
4317 	} else {					\
4318 		__netif_tx_acquire(txq);		\
4319 	}						\
4320 }
4321 
4322 #define HARD_TX_TRYLOCK(dev, txq)			\
4323 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4324 		__netif_tx_trylock(txq) :		\
4325 		__netif_tx_acquire(txq))
4326 
4327 #define HARD_TX_UNLOCK(dev, txq) {			\
4328 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4329 		__netif_tx_unlock(txq);			\
4330 	} else {					\
4331 		__netif_tx_release(txq);		\
4332 	}						\
4333 }
4334 
4335 static inline void netif_tx_disable(struct net_device *dev)
4336 {
4337 	unsigned int i;
4338 	int cpu;
4339 
4340 	local_bh_disable();
4341 	cpu = smp_processor_id();
4342 	for (i = 0; i < dev->num_tx_queues; i++) {
4343 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4344 
4345 		__netif_tx_lock(txq, cpu);
4346 		netif_tx_stop_queue(txq);
4347 		__netif_tx_unlock(txq);
4348 	}
4349 	local_bh_enable();
4350 }
4351 
4352 static inline void netif_addr_lock(struct net_device *dev)
4353 {
4354 	unsigned char nest_level = 0;
4355 
4356 #ifdef CONFIG_LOCKDEP
4357 	nest_level = dev->nested_level;
4358 #endif
4359 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4360 }
4361 
4362 static inline void netif_addr_lock_bh(struct net_device *dev)
4363 {
4364 	unsigned char nest_level = 0;
4365 
4366 #ifdef CONFIG_LOCKDEP
4367 	nest_level = dev->nested_level;
4368 #endif
4369 	local_bh_disable();
4370 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4371 }
4372 
4373 static inline void netif_addr_unlock(struct net_device *dev)
4374 {
4375 	spin_unlock(&dev->addr_list_lock);
4376 }
4377 
4378 static inline void netif_addr_unlock_bh(struct net_device *dev)
4379 {
4380 	spin_unlock_bh(&dev->addr_list_lock);
4381 }
4382 
4383 /*
4384  * dev_addrs walker. Should be used only for read access. Call with
4385  * rcu_read_lock held.
4386  */
4387 #define for_each_dev_addr(dev, ha) \
4388 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4389 
4390 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4391 
4392 void ether_setup(struct net_device *dev);
4393 
4394 /* Support for loadable net-drivers */
4395 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4396 				    unsigned char name_assign_type,
4397 				    void (*setup)(struct net_device *),
4398 				    unsigned int txqs, unsigned int rxqs);
4399 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4400 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4401 
4402 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4403 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4404 			 count)
4405 
4406 int register_netdev(struct net_device *dev);
4407 void unregister_netdev(struct net_device *dev);
4408 
4409 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4410 
4411 /* General hardware address lists handling functions */
4412 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4413 		   struct netdev_hw_addr_list *from_list, int addr_len);
4414 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4415 		      struct netdev_hw_addr_list *from_list, int addr_len);
4416 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4417 		       struct net_device *dev,
4418 		       int (*sync)(struct net_device *, const unsigned char *),
4419 		       int (*unsync)(struct net_device *,
4420 				     const unsigned char *));
4421 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4422 			   struct net_device *dev,
4423 			   int (*sync)(struct net_device *,
4424 				       const unsigned char *, int),
4425 			   int (*unsync)(struct net_device *,
4426 					 const unsigned char *, int));
4427 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4428 			      struct net_device *dev,
4429 			      int (*unsync)(struct net_device *,
4430 					    const unsigned char *, int));
4431 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4432 			  struct net_device *dev,
4433 			  int (*unsync)(struct net_device *,
4434 					const unsigned char *));
4435 void __hw_addr_init(struct netdev_hw_addr_list *list);
4436 
4437 /* Functions used for device addresses handling */
4438 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4439 		 unsigned char addr_type);
4440 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4441 		 unsigned char addr_type);
4442 void dev_addr_flush(struct net_device *dev);
4443 int dev_addr_init(struct net_device *dev);
4444 
4445 /* Functions used for unicast addresses handling */
4446 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4447 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4448 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4449 int dev_uc_sync(struct net_device *to, struct net_device *from);
4450 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4451 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4452 void dev_uc_flush(struct net_device *dev);
4453 void dev_uc_init(struct net_device *dev);
4454 
4455 /**
4456  *  __dev_uc_sync - Synchonize device's unicast list
4457  *  @dev:  device to sync
4458  *  @sync: function to call if address should be added
4459  *  @unsync: function to call if address should be removed
4460  *
4461  *  Add newly added addresses to the interface, and release
4462  *  addresses that have been deleted.
4463  */
4464 static inline int __dev_uc_sync(struct net_device *dev,
4465 				int (*sync)(struct net_device *,
4466 					    const unsigned char *),
4467 				int (*unsync)(struct net_device *,
4468 					      const unsigned char *))
4469 {
4470 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4471 }
4472 
4473 /**
4474  *  __dev_uc_unsync - Remove synchronized addresses from device
4475  *  @dev:  device to sync
4476  *  @unsync: function to call if address should be removed
4477  *
4478  *  Remove all addresses that were added to the device by dev_uc_sync().
4479  */
4480 static inline void __dev_uc_unsync(struct net_device *dev,
4481 				   int (*unsync)(struct net_device *,
4482 						 const unsigned char *))
4483 {
4484 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4485 }
4486 
4487 /* Functions used for multicast addresses handling */
4488 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4489 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4490 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4491 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4492 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4493 int dev_mc_sync(struct net_device *to, struct net_device *from);
4494 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4495 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4496 void dev_mc_flush(struct net_device *dev);
4497 void dev_mc_init(struct net_device *dev);
4498 
4499 /**
4500  *  __dev_mc_sync - Synchonize device's multicast list
4501  *  @dev:  device to sync
4502  *  @sync: function to call if address should be added
4503  *  @unsync: function to call if address should be removed
4504  *
4505  *  Add newly added addresses to the interface, and release
4506  *  addresses that have been deleted.
4507  */
4508 static inline int __dev_mc_sync(struct net_device *dev,
4509 				int (*sync)(struct net_device *,
4510 					    const unsigned char *),
4511 				int (*unsync)(struct net_device *,
4512 					      const unsigned char *))
4513 {
4514 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4515 }
4516 
4517 /**
4518  *  __dev_mc_unsync - Remove synchronized addresses from device
4519  *  @dev:  device to sync
4520  *  @unsync: function to call if address should be removed
4521  *
4522  *  Remove all addresses that were added to the device by dev_mc_sync().
4523  */
4524 static inline void __dev_mc_unsync(struct net_device *dev,
4525 				   int (*unsync)(struct net_device *,
4526 						 const unsigned char *))
4527 {
4528 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4529 }
4530 
4531 /* Functions used for secondary unicast and multicast support */
4532 void dev_set_rx_mode(struct net_device *dev);
4533 void __dev_set_rx_mode(struct net_device *dev);
4534 int dev_set_promiscuity(struct net_device *dev, int inc);
4535 int dev_set_allmulti(struct net_device *dev, int inc);
4536 void netdev_state_change(struct net_device *dev);
4537 void __netdev_notify_peers(struct net_device *dev);
4538 void netdev_notify_peers(struct net_device *dev);
4539 void netdev_features_change(struct net_device *dev);
4540 /* Load a device via the kmod */
4541 void dev_load(struct net *net, const char *name);
4542 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4543 					struct rtnl_link_stats64 *storage);
4544 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4545 			     const struct net_device_stats *netdev_stats);
4546 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4547 			   const struct pcpu_sw_netstats __percpu *netstats);
4548 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4549 
4550 extern int		netdev_max_backlog;
4551 extern int		netdev_tstamp_prequeue;
4552 extern int		weight_p;
4553 extern int		dev_weight_rx_bias;
4554 extern int		dev_weight_tx_bias;
4555 extern int		dev_rx_weight;
4556 extern int		dev_tx_weight;
4557 extern int		gro_normal_batch;
4558 
4559 enum {
4560 	NESTED_SYNC_IMM_BIT,
4561 	NESTED_SYNC_TODO_BIT,
4562 };
4563 
4564 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4565 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4566 
4567 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4568 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4569 
4570 struct netdev_nested_priv {
4571 	unsigned char flags;
4572 	void *data;
4573 };
4574 
4575 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4576 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4577 						     struct list_head **iter);
4578 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4579 						     struct list_head **iter);
4580 
4581 #ifdef CONFIG_LOCKDEP
4582 static LIST_HEAD(net_unlink_list);
4583 
4584 static inline void net_unlink_todo(struct net_device *dev)
4585 {
4586 	if (list_empty(&dev->unlink_list))
4587 		list_add_tail(&dev->unlink_list, &net_unlink_list);
4588 }
4589 #endif
4590 
4591 /* iterate through upper list, must be called under RCU read lock */
4592 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4593 	for (iter = &(dev)->adj_list.upper, \
4594 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4595 	     updev; \
4596 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4597 
4598 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4599 				  int (*fn)(struct net_device *upper_dev,
4600 					    struct netdev_nested_priv *priv),
4601 				  struct netdev_nested_priv *priv);
4602 
4603 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4604 				  struct net_device *upper_dev);
4605 
4606 bool netdev_has_any_upper_dev(struct net_device *dev);
4607 
4608 void *netdev_lower_get_next_private(struct net_device *dev,
4609 				    struct list_head **iter);
4610 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4611 					struct list_head **iter);
4612 
4613 #define netdev_for_each_lower_private(dev, priv, iter) \
4614 	for (iter = (dev)->adj_list.lower.next, \
4615 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4616 	     priv; \
4617 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4618 
4619 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4620 	for (iter = &(dev)->adj_list.lower, \
4621 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4622 	     priv; \
4623 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4624 
4625 void *netdev_lower_get_next(struct net_device *dev,
4626 				struct list_head **iter);
4627 
4628 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4629 	for (iter = (dev)->adj_list.lower.next, \
4630 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4631 	     ldev; \
4632 	     ldev = netdev_lower_get_next(dev, &(iter)))
4633 
4634 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4635 					     struct list_head **iter);
4636 int netdev_walk_all_lower_dev(struct net_device *dev,
4637 			      int (*fn)(struct net_device *lower_dev,
4638 					struct netdev_nested_priv *priv),
4639 			      struct netdev_nested_priv *priv);
4640 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4641 				  int (*fn)(struct net_device *lower_dev,
4642 					    struct netdev_nested_priv *priv),
4643 				  struct netdev_nested_priv *priv);
4644 
4645 void *netdev_adjacent_get_private(struct list_head *adj_list);
4646 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4647 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4648 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4649 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4650 			  struct netlink_ext_ack *extack);
4651 int netdev_master_upper_dev_link(struct net_device *dev,
4652 				 struct net_device *upper_dev,
4653 				 void *upper_priv, void *upper_info,
4654 				 struct netlink_ext_ack *extack);
4655 void netdev_upper_dev_unlink(struct net_device *dev,
4656 			     struct net_device *upper_dev);
4657 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4658 				   struct net_device *new_dev,
4659 				   struct net_device *dev,
4660 				   struct netlink_ext_ack *extack);
4661 void netdev_adjacent_change_commit(struct net_device *old_dev,
4662 				   struct net_device *new_dev,
4663 				   struct net_device *dev);
4664 void netdev_adjacent_change_abort(struct net_device *old_dev,
4665 				  struct net_device *new_dev,
4666 				  struct net_device *dev);
4667 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4668 void *netdev_lower_dev_get_private(struct net_device *dev,
4669 				   struct net_device *lower_dev);
4670 void netdev_lower_state_changed(struct net_device *lower_dev,
4671 				void *lower_state_info);
4672 
4673 /* RSS keys are 40 or 52 bytes long */
4674 #define NETDEV_RSS_KEY_LEN 52
4675 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4676 void netdev_rss_key_fill(void *buffer, size_t len);
4677 
4678 int skb_checksum_help(struct sk_buff *skb);
4679 int skb_crc32c_csum_help(struct sk_buff *skb);
4680 int skb_csum_hwoffload_help(struct sk_buff *skb,
4681 			    const netdev_features_t features);
4682 
4683 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4684 				  netdev_features_t features, bool tx_path);
4685 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4686 				    netdev_features_t features);
4687 
4688 struct netdev_bonding_info {
4689 	ifslave	slave;
4690 	ifbond	master;
4691 };
4692 
4693 struct netdev_notifier_bonding_info {
4694 	struct netdev_notifier_info info; /* must be first */
4695 	struct netdev_bonding_info  bonding_info;
4696 };
4697 
4698 void netdev_bonding_info_change(struct net_device *dev,
4699 				struct netdev_bonding_info *bonding_info);
4700 
4701 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4702 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4703 #else
4704 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4705 				  const void *data)
4706 {
4707 }
4708 #endif
4709 
4710 static inline
4711 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4712 {
4713 	return __skb_gso_segment(skb, features, true);
4714 }
4715 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4716 
4717 static inline bool can_checksum_protocol(netdev_features_t features,
4718 					 __be16 protocol)
4719 {
4720 	if (protocol == htons(ETH_P_FCOE))
4721 		return !!(features & NETIF_F_FCOE_CRC);
4722 
4723 	/* Assume this is an IP checksum (not SCTP CRC) */
4724 
4725 	if (features & NETIF_F_HW_CSUM) {
4726 		/* Can checksum everything */
4727 		return true;
4728 	}
4729 
4730 	switch (protocol) {
4731 	case htons(ETH_P_IP):
4732 		return !!(features & NETIF_F_IP_CSUM);
4733 	case htons(ETH_P_IPV6):
4734 		return !!(features & NETIF_F_IPV6_CSUM);
4735 	default:
4736 		return false;
4737 	}
4738 }
4739 
4740 #ifdef CONFIG_BUG
4741 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4742 #else
4743 static inline void netdev_rx_csum_fault(struct net_device *dev,
4744 					struct sk_buff *skb)
4745 {
4746 }
4747 #endif
4748 /* rx skb timestamps */
4749 void net_enable_timestamp(void);
4750 void net_disable_timestamp(void);
4751 
4752 #ifdef CONFIG_PROC_FS
4753 int __init dev_proc_init(void);
4754 #else
4755 #define dev_proc_init() 0
4756 #endif
4757 
4758 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4759 					      struct sk_buff *skb, struct net_device *dev,
4760 					      bool more)
4761 {
4762 	__this_cpu_write(softnet_data.xmit.more, more);
4763 	return ops->ndo_start_xmit(skb, dev);
4764 }
4765 
4766 static inline bool netdev_xmit_more(void)
4767 {
4768 	return __this_cpu_read(softnet_data.xmit.more);
4769 }
4770 
4771 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4772 					    struct netdev_queue *txq, bool more)
4773 {
4774 	const struct net_device_ops *ops = dev->netdev_ops;
4775 	netdev_tx_t rc;
4776 
4777 	rc = __netdev_start_xmit(ops, skb, dev, more);
4778 	if (rc == NETDEV_TX_OK)
4779 		txq_trans_update(txq);
4780 
4781 	return rc;
4782 }
4783 
4784 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4785 				const void *ns);
4786 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4787 				 const void *ns);
4788 
4789 extern const struct kobj_ns_type_operations net_ns_type_operations;
4790 
4791 const char *netdev_drivername(const struct net_device *dev);
4792 
4793 void linkwatch_run_queue(void);
4794 
4795 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4796 							  netdev_features_t f2)
4797 {
4798 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4799 		if (f1 & NETIF_F_HW_CSUM)
4800 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4801 		else
4802 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4803 	}
4804 
4805 	return f1 & f2;
4806 }
4807 
4808 static inline netdev_features_t netdev_get_wanted_features(
4809 	struct net_device *dev)
4810 {
4811 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4812 }
4813 netdev_features_t netdev_increment_features(netdev_features_t all,
4814 	netdev_features_t one, netdev_features_t mask);
4815 
4816 /* Allow TSO being used on stacked device :
4817  * Performing the GSO segmentation before last device
4818  * is a performance improvement.
4819  */
4820 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4821 							netdev_features_t mask)
4822 {
4823 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4824 }
4825 
4826 int __netdev_update_features(struct net_device *dev);
4827 void netdev_update_features(struct net_device *dev);
4828 void netdev_change_features(struct net_device *dev);
4829 
4830 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4831 					struct net_device *dev);
4832 
4833 netdev_features_t passthru_features_check(struct sk_buff *skb,
4834 					  struct net_device *dev,
4835 					  netdev_features_t features);
4836 netdev_features_t netif_skb_features(struct sk_buff *skb);
4837 
4838 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4839 {
4840 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4841 
4842 	/* check flags correspondence */
4843 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4844 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4845 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4846 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4847 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4848 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4849 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4850 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4851 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4852 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4853 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4854 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4855 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4856 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4857 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4858 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4859 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4860 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4861 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4862 
4863 	return (features & feature) == feature;
4864 }
4865 
4866 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4867 {
4868 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4869 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4870 }
4871 
4872 static inline bool netif_needs_gso(struct sk_buff *skb,
4873 				   netdev_features_t features)
4874 {
4875 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4876 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4877 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4878 }
4879 
4880 static inline void netif_set_gso_max_size(struct net_device *dev,
4881 					  unsigned int size)
4882 {
4883 	dev->gso_max_size = size;
4884 }
4885 
4886 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4887 					int pulled_hlen, u16 mac_offset,
4888 					int mac_len)
4889 {
4890 	skb->protocol = protocol;
4891 	skb->encapsulation = 1;
4892 	skb_push(skb, pulled_hlen);
4893 	skb_reset_transport_header(skb);
4894 	skb->mac_header = mac_offset;
4895 	skb->network_header = skb->mac_header + mac_len;
4896 	skb->mac_len = mac_len;
4897 }
4898 
4899 static inline bool netif_is_macsec(const struct net_device *dev)
4900 {
4901 	return dev->priv_flags & IFF_MACSEC;
4902 }
4903 
4904 static inline bool netif_is_macvlan(const struct net_device *dev)
4905 {
4906 	return dev->priv_flags & IFF_MACVLAN;
4907 }
4908 
4909 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4910 {
4911 	return dev->priv_flags & IFF_MACVLAN_PORT;
4912 }
4913 
4914 static inline bool netif_is_bond_master(const struct net_device *dev)
4915 {
4916 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4917 }
4918 
4919 static inline bool netif_is_bond_slave(const struct net_device *dev)
4920 {
4921 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4922 }
4923 
4924 static inline bool netif_supports_nofcs(struct net_device *dev)
4925 {
4926 	return dev->priv_flags & IFF_SUPP_NOFCS;
4927 }
4928 
4929 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4930 {
4931 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4932 }
4933 
4934 static inline bool netif_is_l3_master(const struct net_device *dev)
4935 {
4936 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4937 }
4938 
4939 static inline bool netif_is_l3_slave(const struct net_device *dev)
4940 {
4941 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4942 }
4943 
4944 static inline bool netif_is_bridge_master(const struct net_device *dev)
4945 {
4946 	return dev->priv_flags & IFF_EBRIDGE;
4947 }
4948 
4949 static inline bool netif_is_bridge_port(const struct net_device *dev)
4950 {
4951 	return dev->priv_flags & IFF_BRIDGE_PORT;
4952 }
4953 
4954 static inline bool netif_is_ovs_master(const struct net_device *dev)
4955 {
4956 	return dev->priv_flags & IFF_OPENVSWITCH;
4957 }
4958 
4959 static inline bool netif_is_ovs_port(const struct net_device *dev)
4960 {
4961 	return dev->priv_flags & IFF_OVS_DATAPATH;
4962 }
4963 
4964 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
4965 {
4966 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
4967 }
4968 
4969 static inline bool netif_is_team_master(const struct net_device *dev)
4970 {
4971 	return dev->priv_flags & IFF_TEAM;
4972 }
4973 
4974 static inline bool netif_is_team_port(const struct net_device *dev)
4975 {
4976 	return dev->priv_flags & IFF_TEAM_PORT;
4977 }
4978 
4979 static inline bool netif_is_lag_master(const struct net_device *dev)
4980 {
4981 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4982 }
4983 
4984 static inline bool netif_is_lag_port(const struct net_device *dev)
4985 {
4986 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4987 }
4988 
4989 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4990 {
4991 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4992 }
4993 
4994 static inline bool netif_is_failover(const struct net_device *dev)
4995 {
4996 	return dev->priv_flags & IFF_FAILOVER;
4997 }
4998 
4999 static inline bool netif_is_failover_slave(const struct net_device *dev)
5000 {
5001 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5002 }
5003 
5004 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5005 static inline void netif_keep_dst(struct net_device *dev)
5006 {
5007 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5008 }
5009 
5010 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5011 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5012 {
5013 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5014 	return dev->priv_flags & IFF_MACSEC;
5015 }
5016 
5017 extern struct pernet_operations __net_initdata loopback_net_ops;
5018 
5019 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5020 
5021 /* netdev_printk helpers, similar to dev_printk */
5022 
5023 static inline const char *netdev_name(const struct net_device *dev)
5024 {
5025 	if (!dev->name[0] || strchr(dev->name, '%'))
5026 		return "(unnamed net_device)";
5027 	return dev->name;
5028 }
5029 
5030 static inline bool netdev_unregistering(const struct net_device *dev)
5031 {
5032 	return dev->reg_state == NETREG_UNREGISTERING;
5033 }
5034 
5035 static inline const char *netdev_reg_state(const struct net_device *dev)
5036 {
5037 	switch (dev->reg_state) {
5038 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5039 	case NETREG_REGISTERED: return "";
5040 	case NETREG_UNREGISTERING: return " (unregistering)";
5041 	case NETREG_UNREGISTERED: return " (unregistered)";
5042 	case NETREG_RELEASED: return " (released)";
5043 	case NETREG_DUMMY: return " (dummy)";
5044 	}
5045 
5046 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5047 	return " (unknown)";
5048 }
5049 
5050 __printf(3, 4) __cold
5051 void netdev_printk(const char *level, const struct net_device *dev,
5052 		   const char *format, ...);
5053 __printf(2, 3) __cold
5054 void netdev_emerg(const struct net_device *dev, const char *format, ...);
5055 __printf(2, 3) __cold
5056 void netdev_alert(const struct net_device *dev, const char *format, ...);
5057 __printf(2, 3) __cold
5058 void netdev_crit(const struct net_device *dev, const char *format, ...);
5059 __printf(2, 3) __cold
5060 void netdev_err(const struct net_device *dev, const char *format, ...);
5061 __printf(2, 3) __cold
5062 void netdev_warn(const struct net_device *dev, const char *format, ...);
5063 __printf(2, 3) __cold
5064 void netdev_notice(const struct net_device *dev, const char *format, ...);
5065 __printf(2, 3) __cold
5066 void netdev_info(const struct net_device *dev, const char *format, ...);
5067 
5068 #define netdev_level_once(level, dev, fmt, ...)			\
5069 do {								\
5070 	static bool __print_once __read_mostly;			\
5071 								\
5072 	if (!__print_once) {					\
5073 		__print_once = true;				\
5074 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
5075 	}							\
5076 } while (0)
5077 
5078 #define netdev_emerg_once(dev, fmt, ...) \
5079 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5080 #define netdev_alert_once(dev, fmt, ...) \
5081 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5082 #define netdev_crit_once(dev, fmt, ...) \
5083 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5084 #define netdev_err_once(dev, fmt, ...) \
5085 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5086 #define netdev_warn_once(dev, fmt, ...) \
5087 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5088 #define netdev_notice_once(dev, fmt, ...) \
5089 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5090 #define netdev_info_once(dev, fmt, ...) \
5091 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5092 
5093 #define MODULE_ALIAS_NETDEV(device) \
5094 	MODULE_ALIAS("netdev-" device)
5095 
5096 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5097 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5098 #define netdev_dbg(__dev, format, args...)			\
5099 do {								\
5100 	dynamic_netdev_dbg(__dev, format, ##args);		\
5101 } while (0)
5102 #elif defined(DEBUG)
5103 #define netdev_dbg(__dev, format, args...)			\
5104 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
5105 #else
5106 #define netdev_dbg(__dev, format, args...)			\
5107 ({								\
5108 	if (0)							\
5109 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5110 })
5111 #endif
5112 
5113 #if defined(VERBOSE_DEBUG)
5114 #define netdev_vdbg	netdev_dbg
5115 #else
5116 
5117 #define netdev_vdbg(dev, format, args...)			\
5118 ({								\
5119 	if (0)							\
5120 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
5121 	0;							\
5122 })
5123 #endif
5124 
5125 /*
5126  * netdev_WARN() acts like dev_printk(), but with the key difference
5127  * of using a WARN/WARN_ON to get the message out, including the
5128  * file/line information and a backtrace.
5129  */
5130 #define netdev_WARN(dev, format, args...)			\
5131 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5132 	     netdev_reg_state(dev), ##args)
5133 
5134 #define netdev_WARN_ONCE(dev, format, args...)				\
5135 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5136 		  netdev_reg_state(dev), ##args)
5137 
5138 /* netif printk helpers, similar to netdev_printk */
5139 
5140 #define netif_printk(priv, type, level, dev, fmt, args...)	\
5141 do {					  			\
5142 	if (netif_msg_##type(priv))				\
5143 		netdev_printk(level, (dev), fmt, ##args);	\
5144 } while (0)
5145 
5146 #define netif_level(level, priv, type, dev, fmt, args...)	\
5147 do {								\
5148 	if (netif_msg_##type(priv))				\
5149 		netdev_##level(dev, fmt, ##args);		\
5150 } while (0)
5151 
5152 #define netif_emerg(priv, type, dev, fmt, args...)		\
5153 	netif_level(emerg, priv, type, dev, fmt, ##args)
5154 #define netif_alert(priv, type, dev, fmt, args...)		\
5155 	netif_level(alert, priv, type, dev, fmt, ##args)
5156 #define netif_crit(priv, type, dev, fmt, args...)		\
5157 	netif_level(crit, priv, type, dev, fmt, ##args)
5158 #define netif_err(priv, type, dev, fmt, args...)		\
5159 	netif_level(err, priv, type, dev, fmt, ##args)
5160 #define netif_warn(priv, type, dev, fmt, args...)		\
5161 	netif_level(warn, priv, type, dev, fmt, ##args)
5162 #define netif_notice(priv, type, dev, fmt, args...)		\
5163 	netif_level(notice, priv, type, dev, fmt, ##args)
5164 #define netif_info(priv, type, dev, fmt, args...)		\
5165 	netif_level(info, priv, type, dev, fmt, ##args)
5166 
5167 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5168 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5169 #define netif_dbg(priv, type, netdev, format, args...)		\
5170 do {								\
5171 	if (netif_msg_##type(priv))				\
5172 		dynamic_netdev_dbg(netdev, format, ##args);	\
5173 } while (0)
5174 #elif defined(DEBUG)
5175 #define netif_dbg(priv, type, dev, format, args...)		\
5176 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5177 #else
5178 #define netif_dbg(priv, type, dev, format, args...)			\
5179 ({									\
5180 	if (0)								\
5181 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5182 	0;								\
5183 })
5184 #endif
5185 
5186 /* if @cond then downgrade to debug, else print at @level */
5187 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5188 	do {                                                              \
5189 		if (cond)                                                 \
5190 			netif_dbg(priv, type, netdev, fmt, ##args);       \
5191 		else                                                      \
5192 			netif_ ## level(priv, type, netdev, fmt, ##args); \
5193 	} while (0)
5194 
5195 #if defined(VERBOSE_DEBUG)
5196 #define netif_vdbg	netif_dbg
5197 #else
5198 #define netif_vdbg(priv, type, dev, format, args...)		\
5199 ({								\
5200 	if (0)							\
5201 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5202 	0;							\
5203 })
5204 #endif
5205 
5206 /*
5207  *	The list of packet types we will receive (as opposed to discard)
5208  *	and the routines to invoke.
5209  *
5210  *	Why 16. Because with 16 the only overlap we get on a hash of the
5211  *	low nibble of the protocol value is RARP/SNAP/X.25.
5212  *
5213  *		0800	IP
5214  *		0001	802.3
5215  *		0002	AX.25
5216  *		0004	802.2
5217  *		8035	RARP
5218  *		0005	SNAP
5219  *		0805	X.25
5220  *		0806	ARP
5221  *		8137	IPX
5222  *		0009	Localtalk
5223  *		86DD	IPv6
5224  */
5225 #define PTYPE_HASH_SIZE	(16)
5226 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5227 
5228 extern struct net_device *blackhole_netdev;
5229 
5230 #endif	/* _LINUX_NETDEVICE_H */
5231