1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <[email protected]> 12 * Corey Minyard <[email protected]> 13 * Donald J. Becker, <[email protected]> 14 * Alan Cox, <[email protected]> 15 * Bjorn Ekwall. <[email protected]> 16 * Pekka Riikonen <[email protected]> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/timer.h> 29 #include <linux/bug.h> 30 #include <linux/delay.h> 31 #include <linux/atomic.h> 32 #include <linux/prefetch.h> 33 #include <asm/cache.h> 34 #include <asm/byteorder.h> 35 36 #include <linux/percpu.h> 37 #include <linux/rculist.h> 38 #include <linux/dmaengine.h> 39 #include <linux/workqueue.h> 40 #include <linux/dynamic_queue_limits.h> 41 42 #include <linux/ethtool.h> 43 #include <net/net_namespace.h> 44 #include <net/dsa.h> 45 #ifdef CONFIG_DCB 46 #include <net/dcbnl.h> 47 #endif 48 #include <net/netprio_cgroup.h> 49 50 #include <linux/netdev_features.h> 51 #include <linux/neighbour.h> 52 #include <uapi/linux/netdevice.h> 53 #include <uapi/linux/if_bonding.h> 54 #include <uapi/linux/pkt_cls.h> 55 #include <linux/hashtable.h> 56 57 struct netpoll_info; 58 struct device; 59 struct phy_device; 60 /* 802.11 specific */ 61 struct wireless_dev; 62 /* 802.15.4 specific */ 63 struct wpan_dev; 64 struct mpls_dev; 65 /* UDP Tunnel offloads */ 66 struct udp_tunnel_info; 67 struct bpf_prog; 68 69 void netdev_set_default_ethtool_ops(struct net_device *dev, 70 const struct ethtool_ops *ops); 71 72 /* Backlog congestion levels */ 73 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 74 #define NET_RX_DROP 1 /* packet dropped */ 75 76 /* 77 * Transmit return codes: transmit return codes originate from three different 78 * namespaces: 79 * 80 * - qdisc return codes 81 * - driver transmit return codes 82 * - errno values 83 * 84 * Drivers are allowed to return any one of those in their hard_start_xmit() 85 * function. Real network devices commonly used with qdiscs should only return 86 * the driver transmit return codes though - when qdiscs are used, the actual 87 * transmission happens asynchronously, so the value is not propagated to 88 * higher layers. Virtual network devices transmit synchronously; in this case 89 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 90 * others are propagated to higher layers. 91 */ 92 93 /* qdisc ->enqueue() return codes. */ 94 #define NET_XMIT_SUCCESS 0x00 95 #define NET_XMIT_DROP 0x01 /* skb dropped */ 96 #define NET_XMIT_CN 0x02 /* congestion notification */ 97 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 98 99 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 100 * indicates that the device will soon be dropping packets, or already drops 101 * some packets of the same priority; prompting us to send less aggressively. */ 102 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 103 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 104 105 /* Driver transmit return codes */ 106 #define NETDEV_TX_MASK 0xf0 107 108 enum netdev_tx { 109 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 110 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 111 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 112 }; 113 typedef enum netdev_tx netdev_tx_t; 114 115 /* 116 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 117 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 118 */ 119 static inline bool dev_xmit_complete(int rc) 120 { 121 /* 122 * Positive cases with an skb consumed by a driver: 123 * - successful transmission (rc == NETDEV_TX_OK) 124 * - error while transmitting (rc < 0) 125 * - error while queueing to a different device (rc & NET_XMIT_MASK) 126 */ 127 if (likely(rc < NET_XMIT_MASK)) 128 return true; 129 130 return false; 131 } 132 133 /* 134 * Compute the worst-case header length according to the protocols 135 * used. 136 */ 137 138 #if defined(CONFIG_HYPERV_NET) 139 # define LL_MAX_HEADER 128 140 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 141 # if defined(CONFIG_MAC80211_MESH) 142 # define LL_MAX_HEADER 128 143 # else 144 # define LL_MAX_HEADER 96 145 # endif 146 #else 147 # define LL_MAX_HEADER 32 148 #endif 149 150 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 151 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 152 #define MAX_HEADER LL_MAX_HEADER 153 #else 154 #define MAX_HEADER (LL_MAX_HEADER + 48) 155 #endif 156 157 /* 158 * Old network device statistics. Fields are native words 159 * (unsigned long) so they can be read and written atomically. 160 */ 161 162 struct net_device_stats { 163 unsigned long rx_packets; 164 unsigned long tx_packets; 165 unsigned long rx_bytes; 166 unsigned long tx_bytes; 167 unsigned long rx_errors; 168 unsigned long tx_errors; 169 unsigned long rx_dropped; 170 unsigned long tx_dropped; 171 unsigned long multicast; 172 unsigned long collisions; 173 unsigned long rx_length_errors; 174 unsigned long rx_over_errors; 175 unsigned long rx_crc_errors; 176 unsigned long rx_frame_errors; 177 unsigned long rx_fifo_errors; 178 unsigned long rx_missed_errors; 179 unsigned long tx_aborted_errors; 180 unsigned long tx_carrier_errors; 181 unsigned long tx_fifo_errors; 182 unsigned long tx_heartbeat_errors; 183 unsigned long tx_window_errors; 184 unsigned long rx_compressed; 185 unsigned long tx_compressed; 186 }; 187 188 189 #include <linux/cache.h> 190 #include <linux/skbuff.h> 191 192 #ifdef CONFIG_RPS 193 #include <linux/static_key.h> 194 extern struct static_key rps_needed; 195 extern struct static_key rfs_needed; 196 #endif 197 198 struct neighbour; 199 struct neigh_parms; 200 struct sk_buff; 201 202 struct netdev_hw_addr { 203 struct list_head list; 204 unsigned char addr[MAX_ADDR_LEN]; 205 unsigned char type; 206 #define NETDEV_HW_ADDR_T_LAN 1 207 #define NETDEV_HW_ADDR_T_SAN 2 208 #define NETDEV_HW_ADDR_T_SLAVE 3 209 #define NETDEV_HW_ADDR_T_UNICAST 4 210 #define NETDEV_HW_ADDR_T_MULTICAST 5 211 bool global_use; 212 int sync_cnt; 213 int refcount; 214 int synced; 215 struct rcu_head rcu_head; 216 }; 217 218 struct netdev_hw_addr_list { 219 struct list_head list; 220 int count; 221 }; 222 223 #define netdev_hw_addr_list_count(l) ((l)->count) 224 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 225 #define netdev_hw_addr_list_for_each(ha, l) \ 226 list_for_each_entry(ha, &(l)->list, list) 227 228 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 229 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 230 #define netdev_for_each_uc_addr(ha, dev) \ 231 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 232 233 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 234 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 235 #define netdev_for_each_mc_addr(ha, dev) \ 236 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 237 238 struct hh_cache { 239 u16 hh_len; 240 u16 __pad; 241 seqlock_t hh_lock; 242 243 /* cached hardware header; allow for machine alignment needs. */ 244 #define HH_DATA_MOD 16 245 #define HH_DATA_OFF(__len) \ 246 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 247 #define HH_DATA_ALIGN(__len) \ 248 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 249 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 250 }; 251 252 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 253 * Alternative is: 254 * dev->hard_header_len ? (dev->hard_header_len + 255 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 256 * 257 * We could use other alignment values, but we must maintain the 258 * relationship HH alignment <= LL alignment. 259 */ 260 #define LL_RESERVED_SPACE(dev) \ 261 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 263 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 264 265 struct header_ops { 266 int (*create) (struct sk_buff *skb, struct net_device *dev, 267 unsigned short type, const void *daddr, 268 const void *saddr, unsigned int len); 269 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 270 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 271 void (*cache_update)(struct hh_cache *hh, 272 const struct net_device *dev, 273 const unsigned char *haddr); 274 bool (*validate)(const char *ll_header, unsigned int len); 275 }; 276 277 /* These flag bits are private to the generic network queueing 278 * layer; they may not be explicitly referenced by any other 279 * code. 280 */ 281 282 enum netdev_state_t { 283 __LINK_STATE_START, 284 __LINK_STATE_PRESENT, 285 __LINK_STATE_NOCARRIER, 286 __LINK_STATE_LINKWATCH_PENDING, 287 __LINK_STATE_DORMANT, 288 }; 289 290 291 /* 292 * This structure holds boot-time configured netdevice settings. They 293 * are then used in the device probing. 294 */ 295 struct netdev_boot_setup { 296 char name[IFNAMSIZ]; 297 struct ifmap map; 298 }; 299 #define NETDEV_BOOT_SETUP_MAX 8 300 301 int __init netdev_boot_setup(char *str); 302 303 /* 304 * Structure for NAPI scheduling similar to tasklet but with weighting 305 */ 306 struct napi_struct { 307 /* The poll_list must only be managed by the entity which 308 * changes the state of the NAPI_STATE_SCHED bit. This means 309 * whoever atomically sets that bit can add this napi_struct 310 * to the per-CPU poll_list, and whoever clears that bit 311 * can remove from the list right before clearing the bit. 312 */ 313 struct list_head poll_list; 314 315 unsigned long state; 316 int weight; 317 unsigned int gro_count; 318 int (*poll)(struct napi_struct *, int); 319 #ifdef CONFIG_NETPOLL 320 int poll_owner; 321 #endif 322 struct net_device *dev; 323 struct sk_buff *gro_list; 324 struct sk_buff *skb; 325 struct hrtimer timer; 326 struct list_head dev_list; 327 struct hlist_node napi_hash_node; 328 unsigned int napi_id; 329 }; 330 331 enum { 332 NAPI_STATE_SCHED, /* Poll is scheduled */ 333 NAPI_STATE_DISABLE, /* Disable pending */ 334 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 335 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 336 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 337 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 338 }; 339 340 enum { 341 NAPIF_STATE_SCHED = (1UL << NAPI_STATE_SCHED), 342 NAPIF_STATE_DISABLE = (1UL << NAPI_STATE_DISABLE), 343 NAPIF_STATE_NPSVC = (1UL << NAPI_STATE_NPSVC), 344 NAPIF_STATE_HASHED = (1UL << NAPI_STATE_HASHED), 345 NAPIF_STATE_NO_BUSY_POLL = (1UL << NAPI_STATE_NO_BUSY_POLL), 346 NAPIF_STATE_IN_BUSY_POLL = (1UL << NAPI_STATE_IN_BUSY_POLL), 347 }; 348 349 enum gro_result { 350 GRO_MERGED, 351 GRO_MERGED_FREE, 352 GRO_HELD, 353 GRO_NORMAL, 354 GRO_DROP, 355 }; 356 typedef enum gro_result gro_result_t; 357 358 /* 359 * enum rx_handler_result - Possible return values for rx_handlers. 360 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 361 * further. 362 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 363 * case skb->dev was changed by rx_handler. 364 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 365 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 366 * 367 * rx_handlers are functions called from inside __netif_receive_skb(), to do 368 * special processing of the skb, prior to delivery to protocol handlers. 369 * 370 * Currently, a net_device can only have a single rx_handler registered. Trying 371 * to register a second rx_handler will return -EBUSY. 372 * 373 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 374 * To unregister a rx_handler on a net_device, use 375 * netdev_rx_handler_unregister(). 376 * 377 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 378 * do with the skb. 379 * 380 * If the rx_handler consumed the skb in some way, it should return 381 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 382 * the skb to be delivered in some other way. 383 * 384 * If the rx_handler changed skb->dev, to divert the skb to another 385 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 386 * new device will be called if it exists. 387 * 388 * If the rx_handler decides the skb should be ignored, it should return 389 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 390 * are registered on exact device (ptype->dev == skb->dev). 391 * 392 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 393 * delivered, it should return RX_HANDLER_PASS. 394 * 395 * A device without a registered rx_handler will behave as if rx_handler 396 * returned RX_HANDLER_PASS. 397 */ 398 399 enum rx_handler_result { 400 RX_HANDLER_CONSUMED, 401 RX_HANDLER_ANOTHER, 402 RX_HANDLER_EXACT, 403 RX_HANDLER_PASS, 404 }; 405 typedef enum rx_handler_result rx_handler_result_t; 406 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 407 408 void __napi_schedule(struct napi_struct *n); 409 void __napi_schedule_irqoff(struct napi_struct *n); 410 411 static inline bool napi_disable_pending(struct napi_struct *n) 412 { 413 return test_bit(NAPI_STATE_DISABLE, &n->state); 414 } 415 416 /** 417 * napi_schedule_prep - check if NAPI can be scheduled 418 * @n: NAPI context 419 * 420 * Test if NAPI routine is already running, and if not mark 421 * it as running. This is used as a condition variable to 422 * insure only one NAPI poll instance runs. We also make 423 * sure there is no pending NAPI disable. 424 */ 425 static inline bool napi_schedule_prep(struct napi_struct *n) 426 { 427 return !napi_disable_pending(n) && 428 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 429 } 430 431 /** 432 * napi_schedule - schedule NAPI poll 433 * @n: NAPI context 434 * 435 * Schedule NAPI poll routine to be called if it is not already 436 * running. 437 */ 438 static inline void napi_schedule(struct napi_struct *n) 439 { 440 if (napi_schedule_prep(n)) 441 __napi_schedule(n); 442 } 443 444 /** 445 * napi_schedule_irqoff - schedule NAPI poll 446 * @n: NAPI context 447 * 448 * Variant of napi_schedule(), assuming hard irqs are masked. 449 */ 450 static inline void napi_schedule_irqoff(struct napi_struct *n) 451 { 452 if (napi_schedule_prep(n)) 453 __napi_schedule_irqoff(n); 454 } 455 456 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 457 static inline bool napi_reschedule(struct napi_struct *napi) 458 { 459 if (napi_schedule_prep(napi)) { 460 __napi_schedule(napi); 461 return true; 462 } 463 return false; 464 } 465 466 bool __napi_complete(struct napi_struct *n); 467 bool napi_complete_done(struct napi_struct *n, int work_done); 468 /** 469 * napi_complete - NAPI processing complete 470 * @n: NAPI context 471 * 472 * Mark NAPI processing as complete. 473 * Consider using napi_complete_done() instead. 474 * Return false if device should avoid rearming interrupts. 475 */ 476 static inline bool napi_complete(struct napi_struct *n) 477 { 478 return napi_complete_done(n, 0); 479 } 480 481 /** 482 * napi_hash_del - remove a NAPI from global table 483 * @napi: NAPI context 484 * 485 * Warning: caller must observe RCU grace period 486 * before freeing memory containing @napi, if 487 * this function returns true. 488 * Note: core networking stack automatically calls it 489 * from netif_napi_del(). 490 * Drivers might want to call this helper to combine all 491 * the needed RCU grace periods into a single one. 492 */ 493 bool napi_hash_del(struct napi_struct *napi); 494 495 /** 496 * napi_disable - prevent NAPI from scheduling 497 * @n: NAPI context 498 * 499 * Stop NAPI from being scheduled on this context. 500 * Waits till any outstanding processing completes. 501 */ 502 void napi_disable(struct napi_struct *n); 503 504 /** 505 * napi_enable - enable NAPI scheduling 506 * @n: NAPI context 507 * 508 * Resume NAPI from being scheduled on this context. 509 * Must be paired with napi_disable. 510 */ 511 static inline void napi_enable(struct napi_struct *n) 512 { 513 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 514 smp_mb__before_atomic(); 515 clear_bit(NAPI_STATE_SCHED, &n->state); 516 clear_bit(NAPI_STATE_NPSVC, &n->state); 517 } 518 519 /** 520 * napi_synchronize - wait until NAPI is not running 521 * @n: NAPI context 522 * 523 * Wait until NAPI is done being scheduled on this context. 524 * Waits till any outstanding processing completes but 525 * does not disable future activations. 526 */ 527 static inline void napi_synchronize(const struct napi_struct *n) 528 { 529 if (IS_ENABLED(CONFIG_SMP)) 530 while (test_bit(NAPI_STATE_SCHED, &n->state)) 531 msleep(1); 532 else 533 barrier(); 534 } 535 536 enum netdev_queue_state_t { 537 __QUEUE_STATE_DRV_XOFF, 538 __QUEUE_STATE_STACK_XOFF, 539 __QUEUE_STATE_FROZEN, 540 }; 541 542 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 543 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 544 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 545 546 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 547 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 548 QUEUE_STATE_FROZEN) 549 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 550 QUEUE_STATE_FROZEN) 551 552 /* 553 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 554 * netif_tx_* functions below are used to manipulate this flag. The 555 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 556 * queue independently. The netif_xmit_*stopped functions below are called 557 * to check if the queue has been stopped by the driver or stack (either 558 * of the XOFF bits are set in the state). Drivers should not need to call 559 * netif_xmit*stopped functions, they should only be using netif_tx_*. 560 */ 561 562 struct netdev_queue { 563 /* 564 * read-mostly part 565 */ 566 struct net_device *dev; 567 struct Qdisc __rcu *qdisc; 568 struct Qdisc *qdisc_sleeping; 569 #ifdef CONFIG_SYSFS 570 struct kobject kobj; 571 #endif 572 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 573 int numa_node; 574 #endif 575 unsigned long tx_maxrate; 576 /* 577 * Number of TX timeouts for this queue 578 * (/sys/class/net/DEV/Q/trans_timeout) 579 */ 580 unsigned long trans_timeout; 581 /* 582 * write-mostly part 583 */ 584 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 585 int xmit_lock_owner; 586 /* 587 * Time (in jiffies) of last Tx 588 */ 589 unsigned long trans_start; 590 591 unsigned long state; 592 593 #ifdef CONFIG_BQL 594 struct dql dql; 595 #endif 596 } ____cacheline_aligned_in_smp; 597 598 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 599 { 600 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 601 return q->numa_node; 602 #else 603 return NUMA_NO_NODE; 604 #endif 605 } 606 607 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 608 { 609 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 610 q->numa_node = node; 611 #endif 612 } 613 614 #ifdef CONFIG_RPS 615 /* 616 * This structure holds an RPS map which can be of variable length. The 617 * map is an array of CPUs. 618 */ 619 struct rps_map { 620 unsigned int len; 621 struct rcu_head rcu; 622 u16 cpus[0]; 623 }; 624 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 625 626 /* 627 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 628 * tail pointer for that CPU's input queue at the time of last enqueue, and 629 * a hardware filter index. 630 */ 631 struct rps_dev_flow { 632 u16 cpu; 633 u16 filter; 634 unsigned int last_qtail; 635 }; 636 #define RPS_NO_FILTER 0xffff 637 638 /* 639 * The rps_dev_flow_table structure contains a table of flow mappings. 640 */ 641 struct rps_dev_flow_table { 642 unsigned int mask; 643 struct rcu_head rcu; 644 struct rps_dev_flow flows[0]; 645 }; 646 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 647 ((_num) * sizeof(struct rps_dev_flow))) 648 649 /* 650 * The rps_sock_flow_table contains mappings of flows to the last CPU 651 * on which they were processed by the application (set in recvmsg). 652 * Each entry is a 32bit value. Upper part is the high-order bits 653 * of flow hash, lower part is CPU number. 654 * rps_cpu_mask is used to partition the space, depending on number of 655 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 656 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 657 * meaning we use 32-6=26 bits for the hash. 658 */ 659 struct rps_sock_flow_table { 660 u32 mask; 661 662 u32 ents[0] ____cacheline_aligned_in_smp; 663 }; 664 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 665 666 #define RPS_NO_CPU 0xffff 667 668 extern u32 rps_cpu_mask; 669 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 670 671 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 672 u32 hash) 673 { 674 if (table && hash) { 675 unsigned int index = hash & table->mask; 676 u32 val = hash & ~rps_cpu_mask; 677 678 /* We only give a hint, preemption can change CPU under us */ 679 val |= raw_smp_processor_id(); 680 681 if (table->ents[index] != val) 682 table->ents[index] = val; 683 } 684 } 685 686 #ifdef CONFIG_RFS_ACCEL 687 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 688 u16 filter_id); 689 #endif 690 #endif /* CONFIG_RPS */ 691 692 /* This structure contains an instance of an RX queue. */ 693 struct netdev_rx_queue { 694 #ifdef CONFIG_RPS 695 struct rps_map __rcu *rps_map; 696 struct rps_dev_flow_table __rcu *rps_flow_table; 697 #endif 698 struct kobject kobj; 699 struct net_device *dev; 700 } ____cacheline_aligned_in_smp; 701 702 /* 703 * RX queue sysfs structures and functions. 704 */ 705 struct rx_queue_attribute { 706 struct attribute attr; 707 ssize_t (*show)(struct netdev_rx_queue *queue, 708 struct rx_queue_attribute *attr, char *buf); 709 ssize_t (*store)(struct netdev_rx_queue *queue, 710 struct rx_queue_attribute *attr, const char *buf, size_t len); 711 }; 712 713 #ifdef CONFIG_XPS 714 /* 715 * This structure holds an XPS map which can be of variable length. The 716 * map is an array of queues. 717 */ 718 struct xps_map { 719 unsigned int len; 720 unsigned int alloc_len; 721 struct rcu_head rcu; 722 u16 queues[0]; 723 }; 724 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 725 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 726 - sizeof(struct xps_map)) / sizeof(u16)) 727 728 /* 729 * This structure holds all XPS maps for device. Maps are indexed by CPU. 730 */ 731 struct xps_dev_maps { 732 struct rcu_head rcu; 733 struct xps_map __rcu *cpu_map[0]; 734 }; 735 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 736 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 737 #endif /* CONFIG_XPS */ 738 739 #define TC_MAX_QUEUE 16 740 #define TC_BITMASK 15 741 /* HW offloaded queuing disciplines txq count and offset maps */ 742 struct netdev_tc_txq { 743 u16 count; 744 u16 offset; 745 }; 746 747 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 748 /* 749 * This structure is to hold information about the device 750 * configured to run FCoE protocol stack. 751 */ 752 struct netdev_fcoe_hbainfo { 753 char manufacturer[64]; 754 char serial_number[64]; 755 char hardware_version[64]; 756 char driver_version[64]; 757 char optionrom_version[64]; 758 char firmware_version[64]; 759 char model[256]; 760 char model_description[256]; 761 }; 762 #endif 763 764 #define MAX_PHYS_ITEM_ID_LEN 32 765 766 /* This structure holds a unique identifier to identify some 767 * physical item (port for example) used by a netdevice. 768 */ 769 struct netdev_phys_item_id { 770 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 771 unsigned char id_len; 772 }; 773 774 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 775 struct netdev_phys_item_id *b) 776 { 777 return a->id_len == b->id_len && 778 memcmp(a->id, b->id, a->id_len) == 0; 779 } 780 781 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 782 struct sk_buff *skb); 783 784 /* These structures hold the attributes of qdisc and classifiers 785 * that are being passed to the netdevice through the setup_tc op. 786 */ 787 enum { 788 TC_SETUP_MQPRIO, 789 TC_SETUP_CLSU32, 790 TC_SETUP_CLSFLOWER, 791 TC_SETUP_MATCHALL, 792 TC_SETUP_CLSBPF, 793 }; 794 795 struct tc_cls_u32_offload; 796 797 struct tc_to_netdev { 798 unsigned int type; 799 union { 800 u8 tc; 801 struct tc_cls_u32_offload *cls_u32; 802 struct tc_cls_flower_offload *cls_flower; 803 struct tc_cls_matchall_offload *cls_mall; 804 struct tc_cls_bpf_offload *cls_bpf; 805 }; 806 bool egress_dev; 807 }; 808 809 /* These structures hold the attributes of xdp state that are being passed 810 * to the netdevice through the xdp op. 811 */ 812 enum xdp_netdev_command { 813 /* Set or clear a bpf program used in the earliest stages of packet 814 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 815 * is responsible for calling bpf_prog_put on any old progs that are 816 * stored. In case of error, the callee need not release the new prog 817 * reference, but on success it takes ownership and must bpf_prog_put 818 * when it is no longer used. 819 */ 820 XDP_SETUP_PROG, 821 /* Check if a bpf program is set on the device. The callee should 822 * return true if a program is currently attached and running. 823 */ 824 XDP_QUERY_PROG, 825 }; 826 827 struct netdev_xdp { 828 enum xdp_netdev_command command; 829 union { 830 /* XDP_SETUP_PROG */ 831 struct bpf_prog *prog; 832 /* XDP_QUERY_PROG */ 833 bool prog_attached; 834 }; 835 }; 836 837 /* 838 * This structure defines the management hooks for network devices. 839 * The following hooks can be defined; unless noted otherwise, they are 840 * optional and can be filled with a null pointer. 841 * 842 * int (*ndo_init)(struct net_device *dev); 843 * This function is called once when a network device is registered. 844 * The network device can use this for any late stage initialization 845 * or semantic validation. It can fail with an error code which will 846 * be propagated back to register_netdev. 847 * 848 * void (*ndo_uninit)(struct net_device *dev); 849 * This function is called when device is unregistered or when registration 850 * fails. It is not called if init fails. 851 * 852 * int (*ndo_open)(struct net_device *dev); 853 * This function is called when a network device transitions to the up 854 * state. 855 * 856 * int (*ndo_stop)(struct net_device *dev); 857 * This function is called when a network device transitions to the down 858 * state. 859 * 860 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 861 * struct net_device *dev); 862 * Called when a packet needs to be transmitted. 863 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 864 * the queue before that can happen; it's for obsolete devices and weird 865 * corner cases, but the stack really does a non-trivial amount 866 * of useless work if you return NETDEV_TX_BUSY. 867 * Required; cannot be NULL. 868 * 869 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 870 * struct net_device *dev 871 * netdev_features_t features); 872 * Called by core transmit path to determine if device is capable of 873 * performing offload operations on a given packet. This is to give 874 * the device an opportunity to implement any restrictions that cannot 875 * be otherwise expressed by feature flags. The check is called with 876 * the set of features that the stack has calculated and it returns 877 * those the driver believes to be appropriate. 878 * 879 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 880 * void *accel_priv, select_queue_fallback_t fallback); 881 * Called to decide which queue to use when device supports multiple 882 * transmit queues. 883 * 884 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 885 * This function is called to allow device receiver to make 886 * changes to configuration when multicast or promiscuous is enabled. 887 * 888 * void (*ndo_set_rx_mode)(struct net_device *dev); 889 * This function is called device changes address list filtering. 890 * If driver handles unicast address filtering, it should set 891 * IFF_UNICAST_FLT in its priv_flags. 892 * 893 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 894 * This function is called when the Media Access Control address 895 * needs to be changed. If this interface is not defined, the 896 * MAC address can not be changed. 897 * 898 * int (*ndo_validate_addr)(struct net_device *dev); 899 * Test if Media Access Control address is valid for the device. 900 * 901 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 902 * Called when a user requests an ioctl which can't be handled by 903 * the generic interface code. If not defined ioctls return 904 * not supported error code. 905 * 906 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 907 * Used to set network devices bus interface parameters. This interface 908 * is retained for legacy reasons; new devices should use the bus 909 * interface (PCI) for low level management. 910 * 911 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 912 * Called when a user wants to change the Maximum Transfer Unit 913 * of a device. If not defined, any request to change MTU will 914 * will return an error. 915 * 916 * void (*ndo_tx_timeout)(struct net_device *dev); 917 * Callback used when the transmitter has not made any progress 918 * for dev->watchdog ticks. 919 * 920 * void (*ndo_get_stats64)(struct net_device *dev, 921 * struct rtnl_link_stats64 *storage); 922 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 923 * Called when a user wants to get the network device usage 924 * statistics. Drivers must do one of the following: 925 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 926 * rtnl_link_stats64 structure passed by the caller. 927 * 2. Define @ndo_get_stats to update a net_device_stats structure 928 * (which should normally be dev->stats) and return a pointer to 929 * it. The structure may be changed asynchronously only if each 930 * field is written atomically. 931 * 3. Update dev->stats asynchronously and atomically, and define 932 * neither operation. 933 * 934 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 935 * Return true if this device supports offload stats of this attr_id. 936 * 937 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 938 * void *attr_data) 939 * Get statistics for offload operations by attr_id. Write it into the 940 * attr_data pointer. 941 * 942 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 943 * If device supports VLAN filtering this function is called when a 944 * VLAN id is registered. 945 * 946 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 947 * If device supports VLAN filtering this function is called when a 948 * VLAN id is unregistered. 949 * 950 * void (*ndo_poll_controller)(struct net_device *dev); 951 * 952 * SR-IOV management functions. 953 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 954 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 955 * u8 qos, __be16 proto); 956 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 957 * int max_tx_rate); 958 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 959 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 960 * int (*ndo_get_vf_config)(struct net_device *dev, 961 * int vf, struct ifla_vf_info *ivf); 962 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 963 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 964 * struct nlattr *port[]); 965 * 966 * Enable or disable the VF ability to query its RSS Redirection Table and 967 * Hash Key. This is needed since on some devices VF share this information 968 * with PF and querying it may introduce a theoretical security risk. 969 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 970 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 971 * int (*ndo_setup_tc)(struct net_device *dev, u32 handle, 972 * __be16 protocol, struct tc_to_netdev *tc); 973 * Called to setup any 'tc' scheduler, classifier or action on @dev. 974 * This is always called from the stack with the rtnl lock held and netif 975 * tx queues stopped. This allows the netdevice to perform queue 976 * management safely. 977 * 978 * Fiber Channel over Ethernet (FCoE) offload functions. 979 * int (*ndo_fcoe_enable)(struct net_device *dev); 980 * Called when the FCoE protocol stack wants to start using LLD for FCoE 981 * so the underlying device can perform whatever needed configuration or 982 * initialization to support acceleration of FCoE traffic. 983 * 984 * int (*ndo_fcoe_disable)(struct net_device *dev); 985 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 986 * so the underlying device can perform whatever needed clean-ups to 987 * stop supporting acceleration of FCoE traffic. 988 * 989 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 990 * struct scatterlist *sgl, unsigned int sgc); 991 * Called when the FCoE Initiator wants to initialize an I/O that 992 * is a possible candidate for Direct Data Placement (DDP). The LLD can 993 * perform necessary setup and returns 1 to indicate the device is set up 994 * successfully to perform DDP on this I/O, otherwise this returns 0. 995 * 996 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 997 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 998 * indicated by the FC exchange id 'xid', so the underlying device can 999 * clean up and reuse resources for later DDP requests. 1000 * 1001 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1002 * struct scatterlist *sgl, unsigned int sgc); 1003 * Called when the FCoE Target wants to initialize an I/O that 1004 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1005 * perform necessary setup and returns 1 to indicate the device is set up 1006 * successfully to perform DDP on this I/O, otherwise this returns 0. 1007 * 1008 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1009 * struct netdev_fcoe_hbainfo *hbainfo); 1010 * Called when the FCoE Protocol stack wants information on the underlying 1011 * device. This information is utilized by the FCoE protocol stack to 1012 * register attributes with Fiber Channel management service as per the 1013 * FC-GS Fabric Device Management Information(FDMI) specification. 1014 * 1015 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1016 * Called when the underlying device wants to override default World Wide 1017 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1018 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1019 * protocol stack to use. 1020 * 1021 * RFS acceleration. 1022 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1023 * u16 rxq_index, u32 flow_id); 1024 * Set hardware filter for RFS. rxq_index is the target queue index; 1025 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1026 * Return the filter ID on success, or a negative error code. 1027 * 1028 * Slave management functions (for bridge, bonding, etc). 1029 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1030 * Called to make another netdev an underling. 1031 * 1032 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1033 * Called to release previously enslaved netdev. 1034 * 1035 * Feature/offload setting functions. 1036 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1037 * netdev_features_t features); 1038 * Adjusts the requested feature flags according to device-specific 1039 * constraints, and returns the resulting flags. Must not modify 1040 * the device state. 1041 * 1042 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1043 * Called to update device configuration to new features. Passed 1044 * feature set might be less than what was returned by ndo_fix_features()). 1045 * Must return >0 or -errno if it changed dev->features itself. 1046 * 1047 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1048 * struct net_device *dev, 1049 * const unsigned char *addr, u16 vid, u16 flags) 1050 * Adds an FDB entry to dev for addr. 1051 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1052 * struct net_device *dev, 1053 * const unsigned char *addr, u16 vid) 1054 * Deletes the FDB entry from dev coresponding to addr. 1055 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1056 * struct net_device *dev, struct net_device *filter_dev, 1057 * int *idx) 1058 * Used to add FDB entries to dump requests. Implementers should add 1059 * entries to skb and update idx with the number of entries. 1060 * 1061 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1062 * u16 flags) 1063 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1064 * struct net_device *dev, u32 filter_mask, 1065 * int nlflags) 1066 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1067 * u16 flags); 1068 * 1069 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1070 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1071 * which do not represent real hardware may define this to allow their 1072 * userspace components to manage their virtual carrier state. Devices 1073 * that determine carrier state from physical hardware properties (eg 1074 * network cables) or protocol-dependent mechanisms (eg 1075 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1076 * 1077 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1078 * struct netdev_phys_item_id *ppid); 1079 * Called to get ID of physical port of this device. If driver does 1080 * not implement this, it is assumed that the hw is not able to have 1081 * multiple net devices on single physical port. 1082 * 1083 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1084 * struct udp_tunnel_info *ti); 1085 * Called by UDP tunnel to notify a driver about the UDP port and socket 1086 * address family that a UDP tunnel is listnening to. It is called only 1087 * when a new port starts listening. The operation is protected by the 1088 * RTNL. 1089 * 1090 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1091 * struct udp_tunnel_info *ti); 1092 * Called by UDP tunnel to notify the driver about a UDP port and socket 1093 * address family that the UDP tunnel is not listening to anymore. The 1094 * operation is protected by the RTNL. 1095 * 1096 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1097 * struct net_device *dev) 1098 * Called by upper layer devices to accelerate switching or other 1099 * station functionality into hardware. 'pdev is the lowerdev 1100 * to use for the offload and 'dev' is the net device that will 1101 * back the offload. Returns a pointer to the private structure 1102 * the upper layer will maintain. 1103 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1104 * Called by upper layer device to delete the station created 1105 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1106 * the station and priv is the structure returned by the add 1107 * operation. 1108 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb, 1109 * struct net_device *dev, 1110 * void *priv); 1111 * Callback to use for xmit over the accelerated station. This 1112 * is used in place of ndo_start_xmit on accelerated net 1113 * devices. 1114 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1115 * int queue_index, u32 maxrate); 1116 * Called when a user wants to set a max-rate limitation of specific 1117 * TX queue. 1118 * int (*ndo_get_iflink)(const struct net_device *dev); 1119 * Called to get the iflink value of this device. 1120 * void (*ndo_change_proto_down)(struct net_device *dev, 1121 * bool proto_down); 1122 * This function is used to pass protocol port error state information 1123 * to the switch driver. The switch driver can react to the proto_down 1124 * by doing a phys down on the associated switch port. 1125 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1126 * This function is used to get egress tunnel information for given skb. 1127 * This is useful for retrieving outer tunnel header parameters while 1128 * sampling packet. 1129 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1130 * This function is used to specify the headroom that the skb must 1131 * consider when allocation skb during packet reception. Setting 1132 * appropriate rx headroom value allows avoiding skb head copy on 1133 * forward. Setting a negative value resets the rx headroom to the 1134 * default value. 1135 * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp); 1136 * This function is used to set or query state related to XDP on the 1137 * netdevice. See definition of enum xdp_netdev_command for details. 1138 * 1139 */ 1140 struct net_device_ops { 1141 int (*ndo_init)(struct net_device *dev); 1142 void (*ndo_uninit)(struct net_device *dev); 1143 int (*ndo_open)(struct net_device *dev); 1144 int (*ndo_stop)(struct net_device *dev); 1145 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1146 struct net_device *dev); 1147 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1148 struct net_device *dev, 1149 netdev_features_t features); 1150 u16 (*ndo_select_queue)(struct net_device *dev, 1151 struct sk_buff *skb, 1152 void *accel_priv, 1153 select_queue_fallback_t fallback); 1154 void (*ndo_change_rx_flags)(struct net_device *dev, 1155 int flags); 1156 void (*ndo_set_rx_mode)(struct net_device *dev); 1157 int (*ndo_set_mac_address)(struct net_device *dev, 1158 void *addr); 1159 int (*ndo_validate_addr)(struct net_device *dev); 1160 int (*ndo_do_ioctl)(struct net_device *dev, 1161 struct ifreq *ifr, int cmd); 1162 int (*ndo_set_config)(struct net_device *dev, 1163 struct ifmap *map); 1164 int (*ndo_change_mtu)(struct net_device *dev, 1165 int new_mtu); 1166 int (*ndo_neigh_setup)(struct net_device *dev, 1167 struct neigh_parms *); 1168 void (*ndo_tx_timeout) (struct net_device *dev); 1169 1170 void (*ndo_get_stats64)(struct net_device *dev, 1171 struct rtnl_link_stats64 *storage); 1172 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1173 int (*ndo_get_offload_stats)(int attr_id, 1174 const struct net_device *dev, 1175 void *attr_data); 1176 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1177 1178 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1179 __be16 proto, u16 vid); 1180 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1181 __be16 proto, u16 vid); 1182 #ifdef CONFIG_NET_POLL_CONTROLLER 1183 void (*ndo_poll_controller)(struct net_device *dev); 1184 int (*ndo_netpoll_setup)(struct net_device *dev, 1185 struct netpoll_info *info); 1186 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1187 #endif 1188 #ifdef CONFIG_NET_RX_BUSY_POLL 1189 int (*ndo_busy_poll)(struct napi_struct *dev); 1190 #endif 1191 int (*ndo_set_vf_mac)(struct net_device *dev, 1192 int queue, u8 *mac); 1193 int (*ndo_set_vf_vlan)(struct net_device *dev, 1194 int queue, u16 vlan, 1195 u8 qos, __be16 proto); 1196 int (*ndo_set_vf_rate)(struct net_device *dev, 1197 int vf, int min_tx_rate, 1198 int max_tx_rate); 1199 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1200 int vf, bool setting); 1201 int (*ndo_set_vf_trust)(struct net_device *dev, 1202 int vf, bool setting); 1203 int (*ndo_get_vf_config)(struct net_device *dev, 1204 int vf, 1205 struct ifla_vf_info *ivf); 1206 int (*ndo_set_vf_link_state)(struct net_device *dev, 1207 int vf, int link_state); 1208 int (*ndo_get_vf_stats)(struct net_device *dev, 1209 int vf, 1210 struct ifla_vf_stats 1211 *vf_stats); 1212 int (*ndo_set_vf_port)(struct net_device *dev, 1213 int vf, 1214 struct nlattr *port[]); 1215 int (*ndo_get_vf_port)(struct net_device *dev, 1216 int vf, struct sk_buff *skb); 1217 int (*ndo_set_vf_guid)(struct net_device *dev, 1218 int vf, u64 guid, 1219 int guid_type); 1220 int (*ndo_set_vf_rss_query_en)( 1221 struct net_device *dev, 1222 int vf, bool setting); 1223 int (*ndo_setup_tc)(struct net_device *dev, 1224 u32 handle, 1225 __be16 protocol, 1226 struct tc_to_netdev *tc); 1227 #if IS_ENABLED(CONFIG_FCOE) 1228 int (*ndo_fcoe_enable)(struct net_device *dev); 1229 int (*ndo_fcoe_disable)(struct net_device *dev); 1230 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1231 u16 xid, 1232 struct scatterlist *sgl, 1233 unsigned int sgc); 1234 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1235 u16 xid); 1236 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1237 u16 xid, 1238 struct scatterlist *sgl, 1239 unsigned int sgc); 1240 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1241 struct netdev_fcoe_hbainfo *hbainfo); 1242 #endif 1243 1244 #if IS_ENABLED(CONFIG_LIBFCOE) 1245 #define NETDEV_FCOE_WWNN 0 1246 #define NETDEV_FCOE_WWPN 1 1247 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1248 u64 *wwn, int type); 1249 #endif 1250 1251 #ifdef CONFIG_RFS_ACCEL 1252 int (*ndo_rx_flow_steer)(struct net_device *dev, 1253 const struct sk_buff *skb, 1254 u16 rxq_index, 1255 u32 flow_id); 1256 #endif 1257 int (*ndo_add_slave)(struct net_device *dev, 1258 struct net_device *slave_dev); 1259 int (*ndo_del_slave)(struct net_device *dev, 1260 struct net_device *slave_dev); 1261 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1262 netdev_features_t features); 1263 int (*ndo_set_features)(struct net_device *dev, 1264 netdev_features_t features); 1265 int (*ndo_neigh_construct)(struct net_device *dev, 1266 struct neighbour *n); 1267 void (*ndo_neigh_destroy)(struct net_device *dev, 1268 struct neighbour *n); 1269 1270 int (*ndo_fdb_add)(struct ndmsg *ndm, 1271 struct nlattr *tb[], 1272 struct net_device *dev, 1273 const unsigned char *addr, 1274 u16 vid, 1275 u16 flags); 1276 int (*ndo_fdb_del)(struct ndmsg *ndm, 1277 struct nlattr *tb[], 1278 struct net_device *dev, 1279 const unsigned char *addr, 1280 u16 vid); 1281 int (*ndo_fdb_dump)(struct sk_buff *skb, 1282 struct netlink_callback *cb, 1283 struct net_device *dev, 1284 struct net_device *filter_dev, 1285 int *idx); 1286 1287 int (*ndo_bridge_setlink)(struct net_device *dev, 1288 struct nlmsghdr *nlh, 1289 u16 flags); 1290 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1291 u32 pid, u32 seq, 1292 struct net_device *dev, 1293 u32 filter_mask, 1294 int nlflags); 1295 int (*ndo_bridge_dellink)(struct net_device *dev, 1296 struct nlmsghdr *nlh, 1297 u16 flags); 1298 int (*ndo_change_carrier)(struct net_device *dev, 1299 bool new_carrier); 1300 int (*ndo_get_phys_port_id)(struct net_device *dev, 1301 struct netdev_phys_item_id *ppid); 1302 int (*ndo_get_phys_port_name)(struct net_device *dev, 1303 char *name, size_t len); 1304 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1305 struct udp_tunnel_info *ti); 1306 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1307 struct udp_tunnel_info *ti); 1308 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1309 struct net_device *dev); 1310 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1311 void *priv); 1312 1313 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb, 1314 struct net_device *dev, 1315 void *priv); 1316 int (*ndo_get_lock_subclass)(struct net_device *dev); 1317 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1318 int queue_index, 1319 u32 maxrate); 1320 int (*ndo_get_iflink)(const struct net_device *dev); 1321 int (*ndo_change_proto_down)(struct net_device *dev, 1322 bool proto_down); 1323 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1324 struct sk_buff *skb); 1325 void (*ndo_set_rx_headroom)(struct net_device *dev, 1326 int needed_headroom); 1327 int (*ndo_xdp)(struct net_device *dev, 1328 struct netdev_xdp *xdp); 1329 }; 1330 1331 /** 1332 * enum net_device_priv_flags - &struct net_device priv_flags 1333 * 1334 * These are the &struct net_device, they are only set internally 1335 * by drivers and used in the kernel. These flags are invisible to 1336 * userspace; this means that the order of these flags can change 1337 * during any kernel release. 1338 * 1339 * You should have a pretty good reason to be extending these flags. 1340 * 1341 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1342 * @IFF_EBRIDGE: Ethernet bridging device 1343 * @IFF_BONDING: bonding master or slave 1344 * @IFF_ISATAP: ISATAP interface (RFC4214) 1345 * @IFF_WAN_HDLC: WAN HDLC device 1346 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1347 * release skb->dst 1348 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1349 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1350 * @IFF_MACVLAN_PORT: device used as macvlan port 1351 * @IFF_BRIDGE_PORT: device used as bridge port 1352 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1353 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1354 * @IFF_UNICAST_FLT: Supports unicast filtering 1355 * @IFF_TEAM_PORT: device used as team port 1356 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1357 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1358 * change when it's running 1359 * @IFF_MACVLAN: Macvlan device 1360 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1361 * underlying stacked devices 1362 * @IFF_IPVLAN_MASTER: IPvlan master device 1363 * @IFF_IPVLAN_SLAVE: IPvlan slave device 1364 * @IFF_L3MDEV_MASTER: device is an L3 master device 1365 * @IFF_NO_QUEUE: device can run without qdisc attached 1366 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1367 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1368 * @IFF_TEAM: device is a team device 1369 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1370 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1371 * entity (i.e. the master device for bridged veth) 1372 * @IFF_MACSEC: device is a MACsec device 1373 */ 1374 enum netdev_priv_flags { 1375 IFF_802_1Q_VLAN = 1<<0, 1376 IFF_EBRIDGE = 1<<1, 1377 IFF_BONDING = 1<<2, 1378 IFF_ISATAP = 1<<3, 1379 IFF_WAN_HDLC = 1<<4, 1380 IFF_XMIT_DST_RELEASE = 1<<5, 1381 IFF_DONT_BRIDGE = 1<<6, 1382 IFF_DISABLE_NETPOLL = 1<<7, 1383 IFF_MACVLAN_PORT = 1<<8, 1384 IFF_BRIDGE_PORT = 1<<9, 1385 IFF_OVS_DATAPATH = 1<<10, 1386 IFF_TX_SKB_SHARING = 1<<11, 1387 IFF_UNICAST_FLT = 1<<12, 1388 IFF_TEAM_PORT = 1<<13, 1389 IFF_SUPP_NOFCS = 1<<14, 1390 IFF_LIVE_ADDR_CHANGE = 1<<15, 1391 IFF_MACVLAN = 1<<16, 1392 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1393 IFF_IPVLAN_MASTER = 1<<18, 1394 IFF_IPVLAN_SLAVE = 1<<19, 1395 IFF_L3MDEV_MASTER = 1<<20, 1396 IFF_NO_QUEUE = 1<<21, 1397 IFF_OPENVSWITCH = 1<<22, 1398 IFF_L3MDEV_SLAVE = 1<<23, 1399 IFF_TEAM = 1<<24, 1400 IFF_RXFH_CONFIGURED = 1<<25, 1401 IFF_PHONY_HEADROOM = 1<<26, 1402 IFF_MACSEC = 1<<27, 1403 }; 1404 1405 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1406 #define IFF_EBRIDGE IFF_EBRIDGE 1407 #define IFF_BONDING IFF_BONDING 1408 #define IFF_ISATAP IFF_ISATAP 1409 #define IFF_WAN_HDLC IFF_WAN_HDLC 1410 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1411 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1412 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1413 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1414 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1415 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1416 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1417 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1418 #define IFF_TEAM_PORT IFF_TEAM_PORT 1419 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1420 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1421 #define IFF_MACVLAN IFF_MACVLAN 1422 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1423 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER 1424 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE 1425 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1426 #define IFF_NO_QUEUE IFF_NO_QUEUE 1427 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1428 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1429 #define IFF_TEAM IFF_TEAM 1430 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1431 #define IFF_MACSEC IFF_MACSEC 1432 1433 /** 1434 * struct net_device - The DEVICE structure. 1435 * Actually, this whole structure is a big mistake. It mixes I/O 1436 * data with strictly "high-level" data, and it has to know about 1437 * almost every data structure used in the INET module. 1438 * 1439 * @name: This is the first field of the "visible" part of this structure 1440 * (i.e. as seen by users in the "Space.c" file). It is the name 1441 * of the interface. 1442 * 1443 * @name_hlist: Device name hash chain, please keep it close to name[] 1444 * @ifalias: SNMP alias 1445 * @mem_end: Shared memory end 1446 * @mem_start: Shared memory start 1447 * @base_addr: Device I/O address 1448 * @irq: Device IRQ number 1449 * 1450 * @carrier_changes: Stats to monitor carrier on<->off transitions 1451 * 1452 * @state: Generic network queuing layer state, see netdev_state_t 1453 * @dev_list: The global list of network devices 1454 * @napi_list: List entry used for polling NAPI devices 1455 * @unreg_list: List entry when we are unregistering the 1456 * device; see the function unregister_netdev 1457 * @close_list: List entry used when we are closing the device 1458 * @ptype_all: Device-specific packet handlers for all protocols 1459 * @ptype_specific: Device-specific, protocol-specific packet handlers 1460 * 1461 * @adj_list: Directly linked devices, like slaves for bonding 1462 * @features: Currently active device features 1463 * @hw_features: User-changeable features 1464 * 1465 * @wanted_features: User-requested features 1466 * @vlan_features: Mask of features inheritable by VLAN devices 1467 * 1468 * @hw_enc_features: Mask of features inherited by encapsulating devices 1469 * This field indicates what encapsulation 1470 * offloads the hardware is capable of doing, 1471 * and drivers will need to set them appropriately. 1472 * 1473 * @mpls_features: Mask of features inheritable by MPLS 1474 * 1475 * @ifindex: interface index 1476 * @group: The group the device belongs to 1477 * 1478 * @stats: Statistics struct, which was left as a legacy, use 1479 * rtnl_link_stats64 instead 1480 * 1481 * @rx_dropped: Dropped packets by core network, 1482 * do not use this in drivers 1483 * @tx_dropped: Dropped packets by core network, 1484 * do not use this in drivers 1485 * @rx_nohandler: nohandler dropped packets by core network on 1486 * inactive devices, do not use this in drivers 1487 * 1488 * @wireless_handlers: List of functions to handle Wireless Extensions, 1489 * instead of ioctl, 1490 * see <net/iw_handler.h> for details. 1491 * @wireless_data: Instance data managed by the core of wireless extensions 1492 * 1493 * @netdev_ops: Includes several pointers to callbacks, 1494 * if one wants to override the ndo_*() functions 1495 * @ethtool_ops: Management operations 1496 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1497 * discovery handling. Necessary for e.g. 6LoWPAN. 1498 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1499 * of Layer 2 headers. 1500 * 1501 * @flags: Interface flags (a la BSD) 1502 * @priv_flags: Like 'flags' but invisible to userspace, 1503 * see if.h for the definitions 1504 * @gflags: Global flags ( kept as legacy ) 1505 * @padded: How much padding added by alloc_netdev() 1506 * @operstate: RFC2863 operstate 1507 * @link_mode: Mapping policy to operstate 1508 * @if_port: Selectable AUI, TP, ... 1509 * @dma: DMA channel 1510 * @mtu: Interface MTU value 1511 * @min_mtu: Interface Minimum MTU value 1512 * @max_mtu: Interface Maximum MTU value 1513 * @type: Interface hardware type 1514 * @hard_header_len: Maximum hardware header length. 1515 * 1516 * @needed_headroom: Extra headroom the hardware may need, but not in all 1517 * cases can this be guaranteed 1518 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1519 * cases can this be guaranteed. Some cases also use 1520 * LL_MAX_HEADER instead to allocate the skb 1521 * 1522 * interface address info: 1523 * 1524 * @perm_addr: Permanent hw address 1525 * @addr_assign_type: Hw address assignment type 1526 * @addr_len: Hardware address length 1527 * @neigh_priv_len: Used in neigh_alloc() 1528 * @dev_id: Used to differentiate devices that share 1529 * the same link layer address 1530 * @dev_port: Used to differentiate devices that share 1531 * the same function 1532 * @addr_list_lock: XXX: need comments on this one 1533 * @uc_promisc: Counter that indicates promiscuous mode 1534 * has been enabled due to the need to listen to 1535 * additional unicast addresses in a device that 1536 * does not implement ndo_set_rx_mode() 1537 * @uc: unicast mac addresses 1538 * @mc: multicast mac addresses 1539 * @dev_addrs: list of device hw addresses 1540 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1541 * @promiscuity: Number of times the NIC is told to work in 1542 * promiscuous mode; if it becomes 0 the NIC will 1543 * exit promiscuous mode 1544 * @allmulti: Counter, enables or disables allmulticast mode 1545 * 1546 * @vlan_info: VLAN info 1547 * @dsa_ptr: dsa specific data 1548 * @tipc_ptr: TIPC specific data 1549 * @atalk_ptr: AppleTalk link 1550 * @ip_ptr: IPv4 specific data 1551 * @dn_ptr: DECnet specific data 1552 * @ip6_ptr: IPv6 specific data 1553 * @ax25_ptr: AX.25 specific data 1554 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1555 * 1556 * @dev_addr: Hw address (before bcast, 1557 * because most packets are unicast) 1558 * 1559 * @_rx: Array of RX queues 1560 * @num_rx_queues: Number of RX queues 1561 * allocated at register_netdev() time 1562 * @real_num_rx_queues: Number of RX queues currently active in device 1563 * 1564 * @rx_handler: handler for received packets 1565 * @rx_handler_data: XXX: need comments on this one 1566 * @ingress_queue: XXX: need comments on this one 1567 * @broadcast: hw bcast address 1568 * 1569 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1570 * indexed by RX queue number. Assigned by driver. 1571 * This must only be set if the ndo_rx_flow_steer 1572 * operation is defined 1573 * @index_hlist: Device index hash chain 1574 * 1575 * @_tx: Array of TX queues 1576 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1577 * @real_num_tx_queues: Number of TX queues currently active in device 1578 * @qdisc: Root qdisc from userspace point of view 1579 * @tx_queue_len: Max frames per queue allowed 1580 * @tx_global_lock: XXX: need comments on this one 1581 * 1582 * @xps_maps: XXX: need comments on this one 1583 * 1584 * @watchdog_timeo: Represents the timeout that is used by 1585 * the watchdog (see dev_watchdog()) 1586 * @watchdog_timer: List of timers 1587 * 1588 * @pcpu_refcnt: Number of references to this device 1589 * @todo_list: Delayed register/unregister 1590 * @link_watch_list: XXX: need comments on this one 1591 * 1592 * @reg_state: Register/unregister state machine 1593 * @dismantle: Device is going to be freed 1594 * @rtnl_link_state: This enum represents the phases of creating 1595 * a new link 1596 * 1597 * @destructor: Called from unregister, 1598 * can be used to call free_netdev 1599 * @npinfo: XXX: need comments on this one 1600 * @nd_net: Network namespace this network device is inside 1601 * 1602 * @ml_priv: Mid-layer private 1603 * @lstats: Loopback statistics 1604 * @tstats: Tunnel statistics 1605 * @dstats: Dummy statistics 1606 * @vstats: Virtual ethernet statistics 1607 * 1608 * @garp_port: GARP 1609 * @mrp_port: MRP 1610 * 1611 * @dev: Class/net/name entry 1612 * @sysfs_groups: Space for optional device, statistics and wireless 1613 * sysfs groups 1614 * 1615 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1616 * @rtnl_link_ops: Rtnl_link_ops 1617 * 1618 * @gso_max_size: Maximum size of generic segmentation offload 1619 * @gso_max_segs: Maximum number of segments that can be passed to the 1620 * NIC for GSO 1621 * 1622 * @dcbnl_ops: Data Center Bridging netlink ops 1623 * @num_tc: Number of traffic classes in the net device 1624 * @tc_to_txq: XXX: need comments on this one 1625 * @prio_tc_map: XXX: need comments on this one 1626 * 1627 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1628 * 1629 * @priomap: XXX: need comments on this one 1630 * @phydev: Physical device may attach itself 1631 * for hardware timestamping 1632 * 1633 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1634 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1635 * 1636 * @proto_down: protocol port state information can be sent to the 1637 * switch driver and used to set the phys state of the 1638 * switch port. 1639 * 1640 * FIXME: cleanup struct net_device such that network protocol info 1641 * moves out. 1642 */ 1643 1644 struct net_device { 1645 char name[IFNAMSIZ]; 1646 struct hlist_node name_hlist; 1647 char *ifalias; 1648 /* 1649 * I/O specific fields 1650 * FIXME: Merge these and struct ifmap into one 1651 */ 1652 unsigned long mem_end; 1653 unsigned long mem_start; 1654 unsigned long base_addr; 1655 int irq; 1656 1657 atomic_t carrier_changes; 1658 1659 /* 1660 * Some hardware also needs these fields (state,dev_list, 1661 * napi_list,unreg_list,close_list) but they are not 1662 * part of the usual set specified in Space.c. 1663 */ 1664 1665 unsigned long state; 1666 1667 struct list_head dev_list; 1668 struct list_head napi_list; 1669 struct list_head unreg_list; 1670 struct list_head close_list; 1671 struct list_head ptype_all; 1672 struct list_head ptype_specific; 1673 1674 struct { 1675 struct list_head upper; 1676 struct list_head lower; 1677 } adj_list; 1678 1679 netdev_features_t features; 1680 netdev_features_t hw_features; 1681 netdev_features_t wanted_features; 1682 netdev_features_t vlan_features; 1683 netdev_features_t hw_enc_features; 1684 netdev_features_t mpls_features; 1685 netdev_features_t gso_partial_features; 1686 1687 int ifindex; 1688 int group; 1689 1690 struct net_device_stats stats; 1691 1692 atomic_long_t rx_dropped; 1693 atomic_long_t tx_dropped; 1694 atomic_long_t rx_nohandler; 1695 1696 #ifdef CONFIG_WIRELESS_EXT 1697 const struct iw_handler_def *wireless_handlers; 1698 struct iw_public_data *wireless_data; 1699 #endif 1700 const struct net_device_ops *netdev_ops; 1701 const struct ethtool_ops *ethtool_ops; 1702 #ifdef CONFIG_NET_SWITCHDEV 1703 const struct switchdev_ops *switchdev_ops; 1704 #endif 1705 #ifdef CONFIG_NET_L3_MASTER_DEV 1706 const struct l3mdev_ops *l3mdev_ops; 1707 #endif 1708 #if IS_ENABLED(CONFIG_IPV6) 1709 const struct ndisc_ops *ndisc_ops; 1710 #endif 1711 1712 const struct header_ops *header_ops; 1713 1714 unsigned int flags; 1715 unsigned int priv_flags; 1716 1717 unsigned short gflags; 1718 unsigned short padded; 1719 1720 unsigned char operstate; 1721 unsigned char link_mode; 1722 1723 unsigned char if_port; 1724 unsigned char dma; 1725 1726 unsigned int mtu; 1727 unsigned int min_mtu; 1728 unsigned int max_mtu; 1729 unsigned short type; 1730 unsigned short hard_header_len; 1731 1732 unsigned short needed_headroom; 1733 unsigned short needed_tailroom; 1734 1735 /* Interface address info. */ 1736 unsigned char perm_addr[MAX_ADDR_LEN]; 1737 unsigned char addr_assign_type; 1738 unsigned char addr_len; 1739 unsigned short neigh_priv_len; 1740 unsigned short dev_id; 1741 unsigned short dev_port; 1742 spinlock_t addr_list_lock; 1743 unsigned char name_assign_type; 1744 bool uc_promisc; 1745 struct netdev_hw_addr_list uc; 1746 struct netdev_hw_addr_list mc; 1747 struct netdev_hw_addr_list dev_addrs; 1748 1749 #ifdef CONFIG_SYSFS 1750 struct kset *queues_kset; 1751 #endif 1752 unsigned int promiscuity; 1753 unsigned int allmulti; 1754 1755 1756 /* Protocol-specific pointers */ 1757 1758 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1759 struct vlan_info __rcu *vlan_info; 1760 #endif 1761 #if IS_ENABLED(CONFIG_NET_DSA) 1762 struct dsa_switch_tree *dsa_ptr; 1763 #endif 1764 #if IS_ENABLED(CONFIG_TIPC) 1765 struct tipc_bearer __rcu *tipc_ptr; 1766 #endif 1767 void *atalk_ptr; 1768 struct in_device __rcu *ip_ptr; 1769 struct dn_dev __rcu *dn_ptr; 1770 struct inet6_dev __rcu *ip6_ptr; 1771 void *ax25_ptr; 1772 struct wireless_dev *ieee80211_ptr; 1773 struct wpan_dev *ieee802154_ptr; 1774 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 1775 struct mpls_dev __rcu *mpls_ptr; 1776 #endif 1777 1778 /* 1779 * Cache lines mostly used on receive path (including eth_type_trans()) 1780 */ 1781 /* Interface address info used in eth_type_trans() */ 1782 unsigned char *dev_addr; 1783 1784 #ifdef CONFIG_SYSFS 1785 struct netdev_rx_queue *_rx; 1786 1787 unsigned int num_rx_queues; 1788 unsigned int real_num_rx_queues; 1789 #endif 1790 1791 unsigned long gro_flush_timeout; 1792 rx_handler_func_t __rcu *rx_handler; 1793 void __rcu *rx_handler_data; 1794 1795 #ifdef CONFIG_NET_CLS_ACT 1796 struct tcf_proto __rcu *ingress_cl_list; 1797 #endif 1798 struct netdev_queue __rcu *ingress_queue; 1799 #ifdef CONFIG_NETFILTER_INGRESS 1800 struct nf_hook_entry __rcu *nf_hooks_ingress; 1801 #endif 1802 1803 unsigned char broadcast[MAX_ADDR_LEN]; 1804 #ifdef CONFIG_RFS_ACCEL 1805 struct cpu_rmap *rx_cpu_rmap; 1806 #endif 1807 struct hlist_node index_hlist; 1808 1809 /* 1810 * Cache lines mostly used on transmit path 1811 */ 1812 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1813 unsigned int num_tx_queues; 1814 unsigned int real_num_tx_queues; 1815 struct Qdisc *qdisc; 1816 #ifdef CONFIG_NET_SCHED 1817 DECLARE_HASHTABLE (qdisc_hash, 4); 1818 #endif 1819 unsigned long tx_queue_len; 1820 spinlock_t tx_global_lock; 1821 int watchdog_timeo; 1822 1823 #ifdef CONFIG_XPS 1824 struct xps_dev_maps __rcu *xps_maps; 1825 #endif 1826 #ifdef CONFIG_NET_CLS_ACT 1827 struct tcf_proto __rcu *egress_cl_list; 1828 #endif 1829 1830 /* These may be needed for future network-power-down code. */ 1831 struct timer_list watchdog_timer; 1832 1833 int __percpu *pcpu_refcnt; 1834 struct list_head todo_list; 1835 1836 struct list_head link_watch_list; 1837 1838 enum { NETREG_UNINITIALIZED=0, 1839 NETREG_REGISTERED, /* completed register_netdevice */ 1840 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1841 NETREG_UNREGISTERED, /* completed unregister todo */ 1842 NETREG_RELEASED, /* called free_netdev */ 1843 NETREG_DUMMY, /* dummy device for NAPI poll */ 1844 } reg_state:8; 1845 1846 bool dismantle; 1847 1848 enum { 1849 RTNL_LINK_INITIALIZED, 1850 RTNL_LINK_INITIALIZING, 1851 } rtnl_link_state:16; 1852 1853 void (*destructor)(struct net_device *dev); 1854 1855 #ifdef CONFIG_NETPOLL 1856 struct netpoll_info __rcu *npinfo; 1857 #endif 1858 1859 possible_net_t nd_net; 1860 1861 /* mid-layer private */ 1862 union { 1863 void *ml_priv; 1864 struct pcpu_lstats __percpu *lstats; 1865 struct pcpu_sw_netstats __percpu *tstats; 1866 struct pcpu_dstats __percpu *dstats; 1867 struct pcpu_vstats __percpu *vstats; 1868 }; 1869 1870 struct garp_port __rcu *garp_port; 1871 struct mrp_port __rcu *mrp_port; 1872 1873 struct device dev; 1874 const struct attribute_group *sysfs_groups[4]; 1875 const struct attribute_group *sysfs_rx_queue_group; 1876 1877 const struct rtnl_link_ops *rtnl_link_ops; 1878 1879 /* for setting kernel sock attribute on TCP connection setup */ 1880 #define GSO_MAX_SIZE 65536 1881 unsigned int gso_max_size; 1882 #define GSO_MAX_SEGS 65535 1883 u16 gso_max_segs; 1884 1885 #ifdef CONFIG_DCB 1886 const struct dcbnl_rtnl_ops *dcbnl_ops; 1887 #endif 1888 u8 num_tc; 1889 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1890 u8 prio_tc_map[TC_BITMASK + 1]; 1891 1892 #if IS_ENABLED(CONFIG_FCOE) 1893 unsigned int fcoe_ddp_xid; 1894 #endif 1895 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1896 struct netprio_map __rcu *priomap; 1897 #endif 1898 struct phy_device *phydev; 1899 struct lock_class_key *qdisc_tx_busylock; 1900 struct lock_class_key *qdisc_running_key; 1901 bool proto_down; 1902 }; 1903 #define to_net_dev(d) container_of(d, struct net_device, dev) 1904 1905 #define NETDEV_ALIGN 32 1906 1907 static inline 1908 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1909 { 1910 return dev->prio_tc_map[prio & TC_BITMASK]; 1911 } 1912 1913 static inline 1914 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1915 { 1916 if (tc >= dev->num_tc) 1917 return -EINVAL; 1918 1919 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1920 return 0; 1921 } 1922 1923 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 1924 void netdev_reset_tc(struct net_device *dev); 1925 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 1926 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 1927 1928 static inline 1929 int netdev_get_num_tc(struct net_device *dev) 1930 { 1931 return dev->num_tc; 1932 } 1933 1934 static inline 1935 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1936 unsigned int index) 1937 { 1938 return &dev->_tx[index]; 1939 } 1940 1941 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 1942 const struct sk_buff *skb) 1943 { 1944 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 1945 } 1946 1947 static inline void netdev_for_each_tx_queue(struct net_device *dev, 1948 void (*f)(struct net_device *, 1949 struct netdev_queue *, 1950 void *), 1951 void *arg) 1952 { 1953 unsigned int i; 1954 1955 for (i = 0; i < dev->num_tx_queues; i++) 1956 f(dev, &dev->_tx[i], arg); 1957 } 1958 1959 #define netdev_lockdep_set_classes(dev) \ 1960 { \ 1961 static struct lock_class_key qdisc_tx_busylock_key; \ 1962 static struct lock_class_key qdisc_running_key; \ 1963 static struct lock_class_key qdisc_xmit_lock_key; \ 1964 static struct lock_class_key dev_addr_list_lock_key; \ 1965 unsigned int i; \ 1966 \ 1967 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 1968 (dev)->qdisc_running_key = &qdisc_running_key; \ 1969 lockdep_set_class(&(dev)->addr_list_lock, \ 1970 &dev_addr_list_lock_key); \ 1971 for (i = 0; i < (dev)->num_tx_queues; i++) \ 1972 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 1973 &qdisc_xmit_lock_key); \ 1974 } 1975 1976 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 1977 struct sk_buff *skb, 1978 void *accel_priv); 1979 1980 /* returns the headroom that the master device needs to take in account 1981 * when forwarding to this dev 1982 */ 1983 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 1984 { 1985 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 1986 } 1987 1988 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 1989 { 1990 if (dev->netdev_ops->ndo_set_rx_headroom) 1991 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 1992 } 1993 1994 /* set the device rx headroom to the dev's default */ 1995 static inline void netdev_reset_rx_headroom(struct net_device *dev) 1996 { 1997 netdev_set_rx_headroom(dev, -1); 1998 } 1999 2000 /* 2001 * Net namespace inlines 2002 */ 2003 static inline 2004 struct net *dev_net(const struct net_device *dev) 2005 { 2006 return read_pnet(&dev->nd_net); 2007 } 2008 2009 static inline 2010 void dev_net_set(struct net_device *dev, struct net *net) 2011 { 2012 write_pnet(&dev->nd_net, net); 2013 } 2014 2015 static inline bool netdev_uses_dsa(struct net_device *dev) 2016 { 2017 #if IS_ENABLED(CONFIG_NET_DSA) 2018 if (dev->dsa_ptr != NULL) 2019 return dsa_uses_tagged_protocol(dev->dsa_ptr); 2020 #endif 2021 return false; 2022 } 2023 2024 /** 2025 * netdev_priv - access network device private data 2026 * @dev: network device 2027 * 2028 * Get network device private data 2029 */ 2030 static inline void *netdev_priv(const struct net_device *dev) 2031 { 2032 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2033 } 2034 2035 /* Set the sysfs physical device reference for the network logical device 2036 * if set prior to registration will cause a symlink during initialization. 2037 */ 2038 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2039 2040 /* Set the sysfs device type for the network logical device to allow 2041 * fine-grained identification of different network device types. For 2042 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2043 */ 2044 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2045 2046 /* Default NAPI poll() weight 2047 * Device drivers are strongly advised to not use bigger value 2048 */ 2049 #define NAPI_POLL_WEIGHT 64 2050 2051 /** 2052 * netif_napi_add - initialize a NAPI context 2053 * @dev: network device 2054 * @napi: NAPI context 2055 * @poll: polling function 2056 * @weight: default weight 2057 * 2058 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2059 * *any* of the other NAPI-related functions. 2060 */ 2061 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2062 int (*poll)(struct napi_struct *, int), int weight); 2063 2064 /** 2065 * netif_tx_napi_add - initialize a NAPI context 2066 * @dev: network device 2067 * @napi: NAPI context 2068 * @poll: polling function 2069 * @weight: default weight 2070 * 2071 * This variant of netif_napi_add() should be used from drivers using NAPI 2072 * to exclusively poll a TX queue. 2073 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2074 */ 2075 static inline void netif_tx_napi_add(struct net_device *dev, 2076 struct napi_struct *napi, 2077 int (*poll)(struct napi_struct *, int), 2078 int weight) 2079 { 2080 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2081 netif_napi_add(dev, napi, poll, weight); 2082 } 2083 2084 /** 2085 * netif_napi_del - remove a NAPI context 2086 * @napi: NAPI context 2087 * 2088 * netif_napi_del() removes a NAPI context from the network device NAPI list 2089 */ 2090 void netif_napi_del(struct napi_struct *napi); 2091 2092 struct napi_gro_cb { 2093 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2094 void *frag0; 2095 2096 /* Length of frag0. */ 2097 unsigned int frag0_len; 2098 2099 /* This indicates where we are processing relative to skb->data. */ 2100 int data_offset; 2101 2102 /* This is non-zero if the packet cannot be merged with the new skb. */ 2103 u16 flush; 2104 2105 /* Save the IP ID here and check when we get to the transport layer */ 2106 u16 flush_id; 2107 2108 /* Number of segments aggregated. */ 2109 u16 count; 2110 2111 /* Start offset for remote checksum offload */ 2112 u16 gro_remcsum_start; 2113 2114 /* jiffies when first packet was created/queued */ 2115 unsigned long age; 2116 2117 /* Used in ipv6_gro_receive() and foo-over-udp */ 2118 u16 proto; 2119 2120 /* This is non-zero if the packet may be of the same flow. */ 2121 u8 same_flow:1; 2122 2123 /* Used in tunnel GRO receive */ 2124 u8 encap_mark:1; 2125 2126 /* GRO checksum is valid */ 2127 u8 csum_valid:1; 2128 2129 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2130 u8 csum_cnt:3; 2131 2132 /* Free the skb? */ 2133 u8 free:2; 2134 #define NAPI_GRO_FREE 1 2135 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2136 2137 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2138 u8 is_ipv6:1; 2139 2140 /* Used in GRE, set in fou/gue_gro_receive */ 2141 u8 is_fou:1; 2142 2143 /* Used to determine if flush_id can be ignored */ 2144 u8 is_atomic:1; 2145 2146 /* Number of gro_receive callbacks this packet already went through */ 2147 u8 recursion_counter:4; 2148 2149 /* 1 bit hole */ 2150 2151 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2152 __wsum csum; 2153 2154 /* used in skb_gro_receive() slow path */ 2155 struct sk_buff *last; 2156 }; 2157 2158 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2159 2160 #define GRO_RECURSION_LIMIT 15 2161 static inline int gro_recursion_inc_test(struct sk_buff *skb) 2162 { 2163 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2164 } 2165 2166 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *); 2167 static inline struct sk_buff **call_gro_receive(gro_receive_t cb, 2168 struct sk_buff **head, 2169 struct sk_buff *skb) 2170 { 2171 if (unlikely(gro_recursion_inc_test(skb))) { 2172 NAPI_GRO_CB(skb)->flush |= 1; 2173 return NULL; 2174 } 2175 2176 return cb(head, skb); 2177 } 2178 2179 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **, 2180 struct sk_buff *); 2181 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb, 2182 struct sock *sk, 2183 struct sk_buff **head, 2184 struct sk_buff *skb) 2185 { 2186 if (unlikely(gro_recursion_inc_test(skb))) { 2187 NAPI_GRO_CB(skb)->flush |= 1; 2188 return NULL; 2189 } 2190 2191 return cb(sk, head, skb); 2192 } 2193 2194 struct packet_type { 2195 __be16 type; /* This is really htons(ether_type). */ 2196 struct net_device *dev; /* NULL is wildcarded here */ 2197 int (*func) (struct sk_buff *, 2198 struct net_device *, 2199 struct packet_type *, 2200 struct net_device *); 2201 bool (*id_match)(struct packet_type *ptype, 2202 struct sock *sk); 2203 void *af_packet_priv; 2204 struct list_head list; 2205 }; 2206 2207 struct offload_callbacks { 2208 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2209 netdev_features_t features); 2210 struct sk_buff **(*gro_receive)(struct sk_buff **head, 2211 struct sk_buff *skb); 2212 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2213 }; 2214 2215 struct packet_offload { 2216 __be16 type; /* This is really htons(ether_type). */ 2217 u16 priority; 2218 struct offload_callbacks callbacks; 2219 struct list_head list; 2220 }; 2221 2222 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2223 struct pcpu_sw_netstats { 2224 u64 rx_packets; 2225 u64 rx_bytes; 2226 u64 tx_packets; 2227 u64 tx_bytes; 2228 struct u64_stats_sync syncp; 2229 }; 2230 2231 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2232 ({ \ 2233 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2234 if (pcpu_stats) { \ 2235 int __cpu; \ 2236 for_each_possible_cpu(__cpu) { \ 2237 typeof(type) *stat; \ 2238 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2239 u64_stats_init(&stat->syncp); \ 2240 } \ 2241 } \ 2242 pcpu_stats; \ 2243 }) 2244 2245 #define netdev_alloc_pcpu_stats(type) \ 2246 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2247 2248 enum netdev_lag_tx_type { 2249 NETDEV_LAG_TX_TYPE_UNKNOWN, 2250 NETDEV_LAG_TX_TYPE_RANDOM, 2251 NETDEV_LAG_TX_TYPE_BROADCAST, 2252 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2253 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2254 NETDEV_LAG_TX_TYPE_HASH, 2255 }; 2256 2257 struct netdev_lag_upper_info { 2258 enum netdev_lag_tx_type tx_type; 2259 }; 2260 2261 struct netdev_lag_lower_state_info { 2262 u8 link_up : 1, 2263 tx_enabled : 1; 2264 }; 2265 2266 #include <linux/notifier.h> 2267 2268 /* netdevice notifier chain. Please remember to update the rtnetlink 2269 * notification exclusion list in rtnetlink_event() when adding new 2270 * types. 2271 */ 2272 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 2273 #define NETDEV_DOWN 0x0002 2274 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 2275 detected a hardware crash and restarted 2276 - we can use this eg to kick tcp sessions 2277 once done */ 2278 #define NETDEV_CHANGE 0x0004 /* Notify device state change */ 2279 #define NETDEV_REGISTER 0x0005 2280 #define NETDEV_UNREGISTER 0x0006 2281 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */ 2282 #define NETDEV_CHANGEADDR 0x0008 2283 #define NETDEV_GOING_DOWN 0x0009 2284 #define NETDEV_CHANGENAME 0x000A 2285 #define NETDEV_FEAT_CHANGE 0x000B 2286 #define NETDEV_BONDING_FAILOVER 0x000C 2287 #define NETDEV_PRE_UP 0x000D 2288 #define NETDEV_PRE_TYPE_CHANGE 0x000E 2289 #define NETDEV_POST_TYPE_CHANGE 0x000F 2290 #define NETDEV_POST_INIT 0x0010 2291 #define NETDEV_UNREGISTER_FINAL 0x0011 2292 #define NETDEV_RELEASE 0x0012 2293 #define NETDEV_NOTIFY_PEERS 0x0013 2294 #define NETDEV_JOIN 0x0014 2295 #define NETDEV_CHANGEUPPER 0x0015 2296 #define NETDEV_RESEND_IGMP 0x0016 2297 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */ 2298 #define NETDEV_CHANGEINFODATA 0x0018 2299 #define NETDEV_BONDING_INFO 0x0019 2300 #define NETDEV_PRECHANGEUPPER 0x001A 2301 #define NETDEV_CHANGELOWERSTATE 0x001B 2302 #define NETDEV_UDP_TUNNEL_PUSH_INFO 0x001C 2303 #define NETDEV_CHANGE_TX_QUEUE_LEN 0x001E 2304 2305 int register_netdevice_notifier(struct notifier_block *nb); 2306 int unregister_netdevice_notifier(struct notifier_block *nb); 2307 2308 struct netdev_notifier_info { 2309 struct net_device *dev; 2310 }; 2311 2312 struct netdev_notifier_change_info { 2313 struct netdev_notifier_info info; /* must be first */ 2314 unsigned int flags_changed; 2315 }; 2316 2317 struct netdev_notifier_changeupper_info { 2318 struct netdev_notifier_info info; /* must be first */ 2319 struct net_device *upper_dev; /* new upper dev */ 2320 bool master; /* is upper dev master */ 2321 bool linking; /* is the notification for link or unlink */ 2322 void *upper_info; /* upper dev info */ 2323 }; 2324 2325 struct netdev_notifier_changelowerstate_info { 2326 struct netdev_notifier_info info; /* must be first */ 2327 void *lower_state_info; /* is lower dev state */ 2328 }; 2329 2330 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2331 struct net_device *dev) 2332 { 2333 info->dev = dev; 2334 } 2335 2336 static inline struct net_device * 2337 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2338 { 2339 return info->dev; 2340 } 2341 2342 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2343 2344 2345 extern rwlock_t dev_base_lock; /* Device list lock */ 2346 2347 #define for_each_netdev(net, d) \ 2348 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2349 #define for_each_netdev_reverse(net, d) \ 2350 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2351 #define for_each_netdev_rcu(net, d) \ 2352 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2353 #define for_each_netdev_safe(net, d, n) \ 2354 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2355 #define for_each_netdev_continue(net, d) \ 2356 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2357 #define for_each_netdev_continue_rcu(net, d) \ 2358 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2359 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2360 for_each_netdev_rcu(&init_net, slave) \ 2361 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2362 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2363 2364 static inline struct net_device *next_net_device(struct net_device *dev) 2365 { 2366 struct list_head *lh; 2367 struct net *net; 2368 2369 net = dev_net(dev); 2370 lh = dev->dev_list.next; 2371 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2372 } 2373 2374 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2375 { 2376 struct list_head *lh; 2377 struct net *net; 2378 2379 net = dev_net(dev); 2380 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2381 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2382 } 2383 2384 static inline struct net_device *first_net_device(struct net *net) 2385 { 2386 return list_empty(&net->dev_base_head) ? NULL : 2387 net_device_entry(net->dev_base_head.next); 2388 } 2389 2390 static inline struct net_device *first_net_device_rcu(struct net *net) 2391 { 2392 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2393 2394 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2395 } 2396 2397 int netdev_boot_setup_check(struct net_device *dev); 2398 unsigned long netdev_boot_base(const char *prefix, int unit); 2399 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2400 const char *hwaddr); 2401 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2402 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2403 void dev_add_pack(struct packet_type *pt); 2404 void dev_remove_pack(struct packet_type *pt); 2405 void __dev_remove_pack(struct packet_type *pt); 2406 void dev_add_offload(struct packet_offload *po); 2407 void dev_remove_offload(struct packet_offload *po); 2408 2409 int dev_get_iflink(const struct net_device *dev); 2410 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2411 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2412 unsigned short mask); 2413 struct net_device *dev_get_by_name(struct net *net, const char *name); 2414 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2415 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2416 int dev_alloc_name(struct net_device *dev, const char *name); 2417 int dev_open(struct net_device *dev); 2418 int dev_close(struct net_device *dev); 2419 int dev_close_many(struct list_head *head, bool unlink); 2420 void dev_disable_lro(struct net_device *dev); 2421 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2422 int dev_queue_xmit(struct sk_buff *skb); 2423 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv); 2424 int register_netdevice(struct net_device *dev); 2425 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2426 void unregister_netdevice_many(struct list_head *head); 2427 static inline void unregister_netdevice(struct net_device *dev) 2428 { 2429 unregister_netdevice_queue(dev, NULL); 2430 } 2431 2432 int netdev_refcnt_read(const struct net_device *dev); 2433 void free_netdev(struct net_device *dev); 2434 void netdev_freemem(struct net_device *dev); 2435 void synchronize_net(void); 2436 int init_dummy_netdev(struct net_device *dev); 2437 2438 DECLARE_PER_CPU(int, xmit_recursion); 2439 #define XMIT_RECURSION_LIMIT 10 2440 2441 static inline int dev_recursion_level(void) 2442 { 2443 return this_cpu_read(xmit_recursion); 2444 } 2445 2446 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2447 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2448 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2449 int netdev_get_name(struct net *net, char *name, int ifindex); 2450 int dev_restart(struct net_device *dev); 2451 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); 2452 2453 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2454 { 2455 return NAPI_GRO_CB(skb)->data_offset; 2456 } 2457 2458 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2459 { 2460 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2461 } 2462 2463 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2464 { 2465 NAPI_GRO_CB(skb)->data_offset += len; 2466 } 2467 2468 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2469 unsigned int offset) 2470 { 2471 return NAPI_GRO_CB(skb)->frag0 + offset; 2472 } 2473 2474 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2475 { 2476 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2477 } 2478 2479 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2480 { 2481 NAPI_GRO_CB(skb)->frag0 = NULL; 2482 NAPI_GRO_CB(skb)->frag0_len = 0; 2483 } 2484 2485 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2486 unsigned int offset) 2487 { 2488 if (!pskb_may_pull(skb, hlen)) 2489 return NULL; 2490 2491 skb_gro_frag0_invalidate(skb); 2492 return skb->data + offset; 2493 } 2494 2495 static inline void *skb_gro_network_header(struct sk_buff *skb) 2496 { 2497 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2498 skb_network_offset(skb); 2499 } 2500 2501 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2502 const void *start, unsigned int len) 2503 { 2504 if (NAPI_GRO_CB(skb)->csum_valid) 2505 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2506 csum_partial(start, len, 0)); 2507 } 2508 2509 /* GRO checksum functions. These are logical equivalents of the normal 2510 * checksum functions (in skbuff.h) except that they operate on the GRO 2511 * offsets and fields in sk_buff. 2512 */ 2513 2514 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2515 2516 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2517 { 2518 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2519 } 2520 2521 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2522 bool zero_okay, 2523 __sum16 check) 2524 { 2525 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2526 skb_checksum_start_offset(skb) < 2527 skb_gro_offset(skb)) && 2528 !skb_at_gro_remcsum_start(skb) && 2529 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2530 (!zero_okay || check)); 2531 } 2532 2533 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2534 __wsum psum) 2535 { 2536 if (NAPI_GRO_CB(skb)->csum_valid && 2537 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2538 return 0; 2539 2540 NAPI_GRO_CB(skb)->csum = psum; 2541 2542 return __skb_gro_checksum_complete(skb); 2543 } 2544 2545 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2546 { 2547 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2548 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2549 NAPI_GRO_CB(skb)->csum_cnt--; 2550 } else { 2551 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2552 * verified a new top level checksum or an encapsulated one 2553 * during GRO. This saves work if we fallback to normal path. 2554 */ 2555 __skb_incr_checksum_unnecessary(skb); 2556 } 2557 } 2558 2559 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2560 compute_pseudo) \ 2561 ({ \ 2562 __sum16 __ret = 0; \ 2563 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2564 __ret = __skb_gro_checksum_validate_complete(skb, \ 2565 compute_pseudo(skb, proto)); \ 2566 if (__ret) \ 2567 __skb_mark_checksum_bad(skb); \ 2568 else \ 2569 skb_gro_incr_csum_unnecessary(skb); \ 2570 __ret; \ 2571 }) 2572 2573 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2574 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2575 2576 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2577 compute_pseudo) \ 2578 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2579 2580 #define skb_gro_checksum_simple_validate(skb) \ 2581 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2582 2583 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2584 { 2585 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2586 !NAPI_GRO_CB(skb)->csum_valid); 2587 } 2588 2589 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2590 __sum16 check, __wsum pseudo) 2591 { 2592 NAPI_GRO_CB(skb)->csum = ~pseudo; 2593 NAPI_GRO_CB(skb)->csum_valid = 1; 2594 } 2595 2596 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2597 do { \ 2598 if (__skb_gro_checksum_convert_check(skb)) \ 2599 __skb_gro_checksum_convert(skb, check, \ 2600 compute_pseudo(skb, proto)); \ 2601 } while (0) 2602 2603 struct gro_remcsum { 2604 int offset; 2605 __wsum delta; 2606 }; 2607 2608 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2609 { 2610 grc->offset = 0; 2611 grc->delta = 0; 2612 } 2613 2614 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2615 unsigned int off, size_t hdrlen, 2616 int start, int offset, 2617 struct gro_remcsum *grc, 2618 bool nopartial) 2619 { 2620 __wsum delta; 2621 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2622 2623 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2624 2625 if (!nopartial) { 2626 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2627 return ptr; 2628 } 2629 2630 ptr = skb_gro_header_fast(skb, off); 2631 if (skb_gro_header_hard(skb, off + plen)) { 2632 ptr = skb_gro_header_slow(skb, off + plen, off); 2633 if (!ptr) 2634 return NULL; 2635 } 2636 2637 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2638 start, offset); 2639 2640 /* Adjust skb->csum since we changed the packet */ 2641 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2642 2643 grc->offset = off + hdrlen + offset; 2644 grc->delta = delta; 2645 2646 return ptr; 2647 } 2648 2649 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2650 struct gro_remcsum *grc) 2651 { 2652 void *ptr; 2653 size_t plen = grc->offset + sizeof(u16); 2654 2655 if (!grc->delta) 2656 return; 2657 2658 ptr = skb_gro_header_fast(skb, grc->offset); 2659 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2660 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2661 if (!ptr) 2662 return; 2663 } 2664 2665 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2666 } 2667 2668 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2669 unsigned short type, 2670 const void *daddr, const void *saddr, 2671 unsigned int len) 2672 { 2673 if (!dev->header_ops || !dev->header_ops->create) 2674 return 0; 2675 2676 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2677 } 2678 2679 static inline int dev_parse_header(const struct sk_buff *skb, 2680 unsigned char *haddr) 2681 { 2682 const struct net_device *dev = skb->dev; 2683 2684 if (!dev->header_ops || !dev->header_ops->parse) 2685 return 0; 2686 return dev->header_ops->parse(skb, haddr); 2687 } 2688 2689 /* ll_header must have at least hard_header_len allocated */ 2690 static inline bool dev_validate_header(const struct net_device *dev, 2691 char *ll_header, int len) 2692 { 2693 if (likely(len >= dev->hard_header_len)) 2694 return true; 2695 2696 if (capable(CAP_SYS_RAWIO)) { 2697 memset(ll_header + len, 0, dev->hard_header_len - len); 2698 return true; 2699 } 2700 2701 if (dev->header_ops && dev->header_ops->validate) 2702 return dev->header_ops->validate(ll_header, len); 2703 2704 return false; 2705 } 2706 2707 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 2708 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2709 static inline int unregister_gifconf(unsigned int family) 2710 { 2711 return register_gifconf(family, NULL); 2712 } 2713 2714 #ifdef CONFIG_NET_FLOW_LIMIT 2715 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2716 struct sd_flow_limit { 2717 u64 count; 2718 unsigned int num_buckets; 2719 unsigned int history_head; 2720 u16 history[FLOW_LIMIT_HISTORY]; 2721 u8 buckets[]; 2722 }; 2723 2724 extern int netdev_flow_limit_table_len; 2725 #endif /* CONFIG_NET_FLOW_LIMIT */ 2726 2727 /* 2728 * Incoming packets are placed on per-CPU queues 2729 */ 2730 struct softnet_data { 2731 struct list_head poll_list; 2732 struct sk_buff_head process_queue; 2733 2734 /* stats */ 2735 unsigned int processed; 2736 unsigned int time_squeeze; 2737 unsigned int received_rps; 2738 #ifdef CONFIG_RPS 2739 struct softnet_data *rps_ipi_list; 2740 #endif 2741 #ifdef CONFIG_NET_FLOW_LIMIT 2742 struct sd_flow_limit __rcu *flow_limit; 2743 #endif 2744 struct Qdisc *output_queue; 2745 struct Qdisc **output_queue_tailp; 2746 struct sk_buff *completion_queue; 2747 2748 #ifdef CONFIG_RPS 2749 /* input_queue_head should be written by cpu owning this struct, 2750 * and only read by other cpus. Worth using a cache line. 2751 */ 2752 unsigned int input_queue_head ____cacheline_aligned_in_smp; 2753 2754 /* Elements below can be accessed between CPUs for RPS/RFS */ 2755 struct call_single_data csd ____cacheline_aligned_in_smp; 2756 struct softnet_data *rps_ipi_next; 2757 unsigned int cpu; 2758 unsigned int input_queue_tail; 2759 #endif 2760 unsigned int dropped; 2761 struct sk_buff_head input_pkt_queue; 2762 struct napi_struct backlog; 2763 2764 }; 2765 2766 static inline void input_queue_head_incr(struct softnet_data *sd) 2767 { 2768 #ifdef CONFIG_RPS 2769 sd->input_queue_head++; 2770 #endif 2771 } 2772 2773 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 2774 unsigned int *qtail) 2775 { 2776 #ifdef CONFIG_RPS 2777 *qtail = ++sd->input_queue_tail; 2778 #endif 2779 } 2780 2781 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 2782 2783 void __netif_schedule(struct Qdisc *q); 2784 void netif_schedule_queue(struct netdev_queue *txq); 2785 2786 static inline void netif_tx_schedule_all(struct net_device *dev) 2787 { 2788 unsigned int i; 2789 2790 for (i = 0; i < dev->num_tx_queues; i++) 2791 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 2792 } 2793 2794 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 2795 { 2796 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2797 } 2798 2799 /** 2800 * netif_start_queue - allow transmit 2801 * @dev: network device 2802 * 2803 * Allow upper layers to call the device hard_start_xmit routine. 2804 */ 2805 static inline void netif_start_queue(struct net_device *dev) 2806 { 2807 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 2808 } 2809 2810 static inline void netif_tx_start_all_queues(struct net_device *dev) 2811 { 2812 unsigned int i; 2813 2814 for (i = 0; i < dev->num_tx_queues; i++) { 2815 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2816 netif_tx_start_queue(txq); 2817 } 2818 } 2819 2820 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 2821 2822 /** 2823 * netif_wake_queue - restart transmit 2824 * @dev: network device 2825 * 2826 * Allow upper layers to call the device hard_start_xmit routine. 2827 * Used for flow control when transmit resources are available. 2828 */ 2829 static inline void netif_wake_queue(struct net_device *dev) 2830 { 2831 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 2832 } 2833 2834 static inline void netif_tx_wake_all_queues(struct net_device *dev) 2835 { 2836 unsigned int i; 2837 2838 for (i = 0; i < dev->num_tx_queues; i++) { 2839 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2840 netif_tx_wake_queue(txq); 2841 } 2842 } 2843 2844 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 2845 { 2846 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2847 } 2848 2849 /** 2850 * netif_stop_queue - stop transmitted packets 2851 * @dev: network device 2852 * 2853 * Stop upper layers calling the device hard_start_xmit routine. 2854 * Used for flow control when transmit resources are unavailable. 2855 */ 2856 static inline void netif_stop_queue(struct net_device *dev) 2857 { 2858 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 2859 } 2860 2861 void netif_tx_stop_all_queues(struct net_device *dev); 2862 2863 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 2864 { 2865 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2866 } 2867 2868 /** 2869 * netif_queue_stopped - test if transmit queue is flowblocked 2870 * @dev: network device 2871 * 2872 * Test if transmit queue on device is currently unable to send. 2873 */ 2874 static inline bool netif_queue_stopped(const struct net_device *dev) 2875 { 2876 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 2877 } 2878 2879 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 2880 { 2881 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 2882 } 2883 2884 static inline bool 2885 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 2886 { 2887 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 2888 } 2889 2890 static inline bool 2891 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 2892 { 2893 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 2894 } 2895 2896 /** 2897 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 2898 * @dev_queue: pointer to transmit queue 2899 * 2900 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 2901 * to give appropriate hint to the CPU. 2902 */ 2903 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 2904 { 2905 #ifdef CONFIG_BQL 2906 prefetchw(&dev_queue->dql.num_queued); 2907 #endif 2908 } 2909 2910 /** 2911 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 2912 * @dev_queue: pointer to transmit queue 2913 * 2914 * BQL enabled drivers might use this helper in their TX completion path, 2915 * to give appropriate hint to the CPU. 2916 */ 2917 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 2918 { 2919 #ifdef CONFIG_BQL 2920 prefetchw(&dev_queue->dql.limit); 2921 #endif 2922 } 2923 2924 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 2925 unsigned int bytes) 2926 { 2927 #ifdef CONFIG_BQL 2928 dql_queued(&dev_queue->dql, bytes); 2929 2930 if (likely(dql_avail(&dev_queue->dql) >= 0)) 2931 return; 2932 2933 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2934 2935 /* 2936 * The XOFF flag must be set before checking the dql_avail below, 2937 * because in netdev_tx_completed_queue we update the dql_completed 2938 * before checking the XOFF flag. 2939 */ 2940 smp_mb(); 2941 2942 /* check again in case another CPU has just made room avail */ 2943 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 2944 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2945 #endif 2946 } 2947 2948 /** 2949 * netdev_sent_queue - report the number of bytes queued to hardware 2950 * @dev: network device 2951 * @bytes: number of bytes queued to the hardware device queue 2952 * 2953 * Report the number of bytes queued for sending/completion to the network 2954 * device hardware queue. @bytes should be a good approximation and should 2955 * exactly match netdev_completed_queue() @bytes 2956 */ 2957 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 2958 { 2959 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 2960 } 2961 2962 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 2963 unsigned int pkts, unsigned int bytes) 2964 { 2965 #ifdef CONFIG_BQL 2966 if (unlikely(!bytes)) 2967 return; 2968 2969 dql_completed(&dev_queue->dql, bytes); 2970 2971 /* 2972 * Without the memory barrier there is a small possiblity that 2973 * netdev_tx_sent_queue will miss the update and cause the queue to 2974 * be stopped forever 2975 */ 2976 smp_mb(); 2977 2978 if (dql_avail(&dev_queue->dql) < 0) 2979 return; 2980 2981 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 2982 netif_schedule_queue(dev_queue); 2983 #endif 2984 } 2985 2986 /** 2987 * netdev_completed_queue - report bytes and packets completed by device 2988 * @dev: network device 2989 * @pkts: actual number of packets sent over the medium 2990 * @bytes: actual number of bytes sent over the medium 2991 * 2992 * Report the number of bytes and packets transmitted by the network device 2993 * hardware queue over the physical medium, @bytes must exactly match the 2994 * @bytes amount passed to netdev_sent_queue() 2995 */ 2996 static inline void netdev_completed_queue(struct net_device *dev, 2997 unsigned int pkts, unsigned int bytes) 2998 { 2999 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3000 } 3001 3002 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3003 { 3004 #ifdef CONFIG_BQL 3005 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3006 dql_reset(&q->dql); 3007 #endif 3008 } 3009 3010 /** 3011 * netdev_reset_queue - reset the packets and bytes count of a network device 3012 * @dev_queue: network device 3013 * 3014 * Reset the bytes and packet count of a network device and clear the 3015 * software flow control OFF bit for this network device 3016 */ 3017 static inline void netdev_reset_queue(struct net_device *dev_queue) 3018 { 3019 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3020 } 3021 3022 /** 3023 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3024 * @dev: network device 3025 * @queue_index: given tx queue index 3026 * 3027 * Returns 0 if given tx queue index >= number of device tx queues, 3028 * otherwise returns the originally passed tx queue index. 3029 */ 3030 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3031 { 3032 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3033 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3034 dev->name, queue_index, 3035 dev->real_num_tx_queues); 3036 return 0; 3037 } 3038 3039 return queue_index; 3040 } 3041 3042 /** 3043 * netif_running - test if up 3044 * @dev: network device 3045 * 3046 * Test if the device has been brought up. 3047 */ 3048 static inline bool netif_running(const struct net_device *dev) 3049 { 3050 return test_bit(__LINK_STATE_START, &dev->state); 3051 } 3052 3053 /* 3054 * Routines to manage the subqueues on a device. We only need start, 3055 * stop, and a check if it's stopped. All other device management is 3056 * done at the overall netdevice level. 3057 * Also test the device if we're multiqueue. 3058 */ 3059 3060 /** 3061 * netif_start_subqueue - allow sending packets on subqueue 3062 * @dev: network device 3063 * @queue_index: sub queue index 3064 * 3065 * Start individual transmit queue of a device with multiple transmit queues. 3066 */ 3067 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3068 { 3069 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3070 3071 netif_tx_start_queue(txq); 3072 } 3073 3074 /** 3075 * netif_stop_subqueue - stop sending packets on subqueue 3076 * @dev: network device 3077 * @queue_index: sub queue index 3078 * 3079 * Stop individual transmit queue of a device with multiple transmit queues. 3080 */ 3081 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3082 { 3083 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3084 netif_tx_stop_queue(txq); 3085 } 3086 3087 /** 3088 * netif_subqueue_stopped - test status of subqueue 3089 * @dev: network device 3090 * @queue_index: sub queue index 3091 * 3092 * Check individual transmit queue of a device with multiple transmit queues. 3093 */ 3094 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3095 u16 queue_index) 3096 { 3097 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3098 3099 return netif_tx_queue_stopped(txq); 3100 } 3101 3102 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3103 struct sk_buff *skb) 3104 { 3105 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3106 } 3107 3108 /** 3109 * netif_wake_subqueue - allow sending packets on subqueue 3110 * @dev: network device 3111 * @queue_index: sub queue index 3112 * 3113 * Resume individual transmit queue of a device with multiple transmit queues. 3114 */ 3115 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3116 { 3117 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3118 3119 netif_tx_wake_queue(txq); 3120 } 3121 3122 #ifdef CONFIG_XPS 3123 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3124 u16 index); 3125 #else 3126 static inline int netif_set_xps_queue(struct net_device *dev, 3127 const struct cpumask *mask, 3128 u16 index) 3129 { 3130 return 0; 3131 } 3132 #endif 3133 3134 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 3135 unsigned int num_tx_queues); 3136 3137 /* 3138 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 3139 * as a distribution range limit for the returned value. 3140 */ 3141 static inline u16 skb_tx_hash(const struct net_device *dev, 3142 struct sk_buff *skb) 3143 { 3144 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 3145 } 3146 3147 /** 3148 * netif_is_multiqueue - test if device has multiple transmit queues 3149 * @dev: network device 3150 * 3151 * Check if device has multiple transmit queues 3152 */ 3153 static inline bool netif_is_multiqueue(const struct net_device *dev) 3154 { 3155 return dev->num_tx_queues > 1; 3156 } 3157 3158 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3159 3160 #ifdef CONFIG_SYSFS 3161 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3162 #else 3163 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3164 unsigned int rxq) 3165 { 3166 return 0; 3167 } 3168 #endif 3169 3170 #ifdef CONFIG_SYSFS 3171 static inline unsigned int get_netdev_rx_queue_index( 3172 struct netdev_rx_queue *queue) 3173 { 3174 struct net_device *dev = queue->dev; 3175 int index = queue - dev->_rx; 3176 3177 BUG_ON(index >= dev->num_rx_queues); 3178 return index; 3179 } 3180 #endif 3181 3182 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3183 int netif_get_num_default_rss_queues(void); 3184 3185 enum skb_free_reason { 3186 SKB_REASON_CONSUMED, 3187 SKB_REASON_DROPPED, 3188 }; 3189 3190 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3191 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3192 3193 /* 3194 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3195 * interrupt context or with hardware interrupts being disabled. 3196 * (in_irq() || irqs_disabled()) 3197 * 3198 * We provide four helpers that can be used in following contexts : 3199 * 3200 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3201 * replacing kfree_skb(skb) 3202 * 3203 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3204 * Typically used in place of consume_skb(skb) in TX completion path 3205 * 3206 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3207 * replacing kfree_skb(skb) 3208 * 3209 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3210 * and consumed a packet. Used in place of consume_skb(skb) 3211 */ 3212 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3213 { 3214 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3215 } 3216 3217 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3218 { 3219 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3220 } 3221 3222 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3223 { 3224 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3225 } 3226 3227 static inline void dev_consume_skb_any(struct sk_buff *skb) 3228 { 3229 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3230 } 3231 3232 int netif_rx(struct sk_buff *skb); 3233 int netif_rx_ni(struct sk_buff *skb); 3234 int netif_receive_skb(struct sk_buff *skb); 3235 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3236 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3237 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3238 gro_result_t napi_gro_frags(struct napi_struct *napi); 3239 struct packet_offload *gro_find_receive_by_type(__be16 type); 3240 struct packet_offload *gro_find_complete_by_type(__be16 type); 3241 3242 static inline void napi_free_frags(struct napi_struct *napi) 3243 { 3244 kfree_skb(napi->skb); 3245 napi->skb = NULL; 3246 } 3247 3248 bool netdev_is_rx_handler_busy(struct net_device *dev); 3249 int netdev_rx_handler_register(struct net_device *dev, 3250 rx_handler_func_t *rx_handler, 3251 void *rx_handler_data); 3252 void netdev_rx_handler_unregister(struct net_device *dev); 3253 3254 bool dev_valid_name(const char *name); 3255 int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 3256 int dev_ethtool(struct net *net, struct ifreq *); 3257 unsigned int dev_get_flags(const struct net_device *); 3258 int __dev_change_flags(struct net_device *, unsigned int flags); 3259 int dev_change_flags(struct net_device *, unsigned int); 3260 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3261 unsigned int gchanges); 3262 int dev_change_name(struct net_device *, const char *); 3263 int dev_set_alias(struct net_device *, const char *, size_t); 3264 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3265 int dev_set_mtu(struct net_device *, int); 3266 void dev_set_group(struct net_device *, int); 3267 int dev_set_mac_address(struct net_device *, struct sockaddr *); 3268 int dev_change_carrier(struct net_device *, bool new_carrier); 3269 int dev_get_phys_port_id(struct net_device *dev, 3270 struct netdev_phys_item_id *ppid); 3271 int dev_get_phys_port_name(struct net_device *dev, 3272 char *name, size_t len); 3273 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3274 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags); 3275 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev); 3276 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3277 struct netdev_queue *txq, int *ret); 3278 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3279 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3280 bool is_skb_forwardable(const struct net_device *dev, 3281 const struct sk_buff *skb); 3282 3283 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3284 struct sk_buff *skb) 3285 { 3286 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3287 unlikely(!is_skb_forwardable(dev, skb))) { 3288 atomic_long_inc(&dev->rx_dropped); 3289 kfree_skb(skb); 3290 return NET_RX_DROP; 3291 } 3292 3293 skb_scrub_packet(skb, true); 3294 skb->priority = 0; 3295 return 0; 3296 } 3297 3298 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3299 3300 extern int netdev_budget; 3301 3302 /* Called by rtnetlink.c:rtnl_unlock() */ 3303 void netdev_run_todo(void); 3304 3305 /** 3306 * dev_put - release reference to device 3307 * @dev: network device 3308 * 3309 * Release reference to device to allow it to be freed. 3310 */ 3311 static inline void dev_put(struct net_device *dev) 3312 { 3313 this_cpu_dec(*dev->pcpu_refcnt); 3314 } 3315 3316 /** 3317 * dev_hold - get reference to device 3318 * @dev: network device 3319 * 3320 * Hold reference to device to keep it from being freed. 3321 */ 3322 static inline void dev_hold(struct net_device *dev) 3323 { 3324 this_cpu_inc(*dev->pcpu_refcnt); 3325 } 3326 3327 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3328 * and _off may be called from IRQ context, but it is caller 3329 * who is responsible for serialization of these calls. 3330 * 3331 * The name carrier is inappropriate, these functions should really be 3332 * called netif_lowerlayer_*() because they represent the state of any 3333 * kind of lower layer not just hardware media. 3334 */ 3335 3336 void linkwatch_init_dev(struct net_device *dev); 3337 void linkwatch_fire_event(struct net_device *dev); 3338 void linkwatch_forget_dev(struct net_device *dev); 3339 3340 /** 3341 * netif_carrier_ok - test if carrier present 3342 * @dev: network device 3343 * 3344 * Check if carrier is present on device 3345 */ 3346 static inline bool netif_carrier_ok(const struct net_device *dev) 3347 { 3348 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3349 } 3350 3351 unsigned long dev_trans_start(struct net_device *dev); 3352 3353 void __netdev_watchdog_up(struct net_device *dev); 3354 3355 void netif_carrier_on(struct net_device *dev); 3356 3357 void netif_carrier_off(struct net_device *dev); 3358 3359 /** 3360 * netif_dormant_on - mark device as dormant. 3361 * @dev: network device 3362 * 3363 * Mark device as dormant (as per RFC2863). 3364 * 3365 * The dormant state indicates that the relevant interface is not 3366 * actually in a condition to pass packets (i.e., it is not 'up') but is 3367 * in a "pending" state, waiting for some external event. For "on- 3368 * demand" interfaces, this new state identifies the situation where the 3369 * interface is waiting for events to place it in the up state. 3370 */ 3371 static inline void netif_dormant_on(struct net_device *dev) 3372 { 3373 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3374 linkwatch_fire_event(dev); 3375 } 3376 3377 /** 3378 * netif_dormant_off - set device as not dormant. 3379 * @dev: network device 3380 * 3381 * Device is not in dormant state. 3382 */ 3383 static inline void netif_dormant_off(struct net_device *dev) 3384 { 3385 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3386 linkwatch_fire_event(dev); 3387 } 3388 3389 /** 3390 * netif_dormant - test if carrier present 3391 * @dev: network device 3392 * 3393 * Check if carrier is present on device 3394 */ 3395 static inline bool netif_dormant(const struct net_device *dev) 3396 { 3397 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3398 } 3399 3400 3401 /** 3402 * netif_oper_up - test if device is operational 3403 * @dev: network device 3404 * 3405 * Check if carrier is operational 3406 */ 3407 static inline bool netif_oper_up(const struct net_device *dev) 3408 { 3409 return (dev->operstate == IF_OPER_UP || 3410 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3411 } 3412 3413 /** 3414 * netif_device_present - is device available or removed 3415 * @dev: network device 3416 * 3417 * Check if device has not been removed from system. 3418 */ 3419 static inline bool netif_device_present(struct net_device *dev) 3420 { 3421 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3422 } 3423 3424 void netif_device_detach(struct net_device *dev); 3425 3426 void netif_device_attach(struct net_device *dev); 3427 3428 /* 3429 * Network interface message level settings 3430 */ 3431 3432 enum { 3433 NETIF_MSG_DRV = 0x0001, 3434 NETIF_MSG_PROBE = 0x0002, 3435 NETIF_MSG_LINK = 0x0004, 3436 NETIF_MSG_TIMER = 0x0008, 3437 NETIF_MSG_IFDOWN = 0x0010, 3438 NETIF_MSG_IFUP = 0x0020, 3439 NETIF_MSG_RX_ERR = 0x0040, 3440 NETIF_MSG_TX_ERR = 0x0080, 3441 NETIF_MSG_TX_QUEUED = 0x0100, 3442 NETIF_MSG_INTR = 0x0200, 3443 NETIF_MSG_TX_DONE = 0x0400, 3444 NETIF_MSG_RX_STATUS = 0x0800, 3445 NETIF_MSG_PKTDATA = 0x1000, 3446 NETIF_MSG_HW = 0x2000, 3447 NETIF_MSG_WOL = 0x4000, 3448 }; 3449 3450 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3451 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3452 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3453 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3454 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3455 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3456 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3457 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3458 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3459 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3460 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3461 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3462 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3463 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3464 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3465 3466 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3467 { 3468 /* use default */ 3469 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3470 return default_msg_enable_bits; 3471 if (debug_value == 0) /* no output */ 3472 return 0; 3473 /* set low N bits */ 3474 return (1 << debug_value) - 1; 3475 } 3476 3477 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3478 { 3479 spin_lock(&txq->_xmit_lock); 3480 txq->xmit_lock_owner = cpu; 3481 } 3482 3483 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 3484 { 3485 __acquire(&txq->_xmit_lock); 3486 return true; 3487 } 3488 3489 static inline void __netif_tx_release(struct netdev_queue *txq) 3490 { 3491 __release(&txq->_xmit_lock); 3492 } 3493 3494 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3495 { 3496 spin_lock_bh(&txq->_xmit_lock); 3497 txq->xmit_lock_owner = smp_processor_id(); 3498 } 3499 3500 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3501 { 3502 bool ok = spin_trylock(&txq->_xmit_lock); 3503 if (likely(ok)) 3504 txq->xmit_lock_owner = smp_processor_id(); 3505 return ok; 3506 } 3507 3508 static inline void __netif_tx_unlock(struct netdev_queue *txq) 3509 { 3510 txq->xmit_lock_owner = -1; 3511 spin_unlock(&txq->_xmit_lock); 3512 } 3513 3514 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3515 { 3516 txq->xmit_lock_owner = -1; 3517 spin_unlock_bh(&txq->_xmit_lock); 3518 } 3519 3520 static inline void txq_trans_update(struct netdev_queue *txq) 3521 { 3522 if (txq->xmit_lock_owner != -1) 3523 txq->trans_start = jiffies; 3524 } 3525 3526 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3527 static inline void netif_trans_update(struct net_device *dev) 3528 { 3529 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3530 3531 if (txq->trans_start != jiffies) 3532 txq->trans_start = jiffies; 3533 } 3534 3535 /** 3536 * netif_tx_lock - grab network device transmit lock 3537 * @dev: network device 3538 * 3539 * Get network device transmit lock 3540 */ 3541 static inline void netif_tx_lock(struct net_device *dev) 3542 { 3543 unsigned int i; 3544 int cpu; 3545 3546 spin_lock(&dev->tx_global_lock); 3547 cpu = smp_processor_id(); 3548 for (i = 0; i < dev->num_tx_queues; i++) { 3549 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3550 3551 /* We are the only thread of execution doing a 3552 * freeze, but we have to grab the _xmit_lock in 3553 * order to synchronize with threads which are in 3554 * the ->hard_start_xmit() handler and already 3555 * checked the frozen bit. 3556 */ 3557 __netif_tx_lock(txq, cpu); 3558 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3559 __netif_tx_unlock(txq); 3560 } 3561 } 3562 3563 static inline void netif_tx_lock_bh(struct net_device *dev) 3564 { 3565 local_bh_disable(); 3566 netif_tx_lock(dev); 3567 } 3568 3569 static inline void netif_tx_unlock(struct net_device *dev) 3570 { 3571 unsigned int i; 3572 3573 for (i = 0; i < dev->num_tx_queues; i++) { 3574 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3575 3576 /* No need to grab the _xmit_lock here. If the 3577 * queue is not stopped for another reason, we 3578 * force a schedule. 3579 */ 3580 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3581 netif_schedule_queue(txq); 3582 } 3583 spin_unlock(&dev->tx_global_lock); 3584 } 3585 3586 static inline void netif_tx_unlock_bh(struct net_device *dev) 3587 { 3588 netif_tx_unlock(dev); 3589 local_bh_enable(); 3590 } 3591 3592 #define HARD_TX_LOCK(dev, txq, cpu) { \ 3593 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3594 __netif_tx_lock(txq, cpu); \ 3595 } else { \ 3596 __netif_tx_acquire(txq); \ 3597 } \ 3598 } 3599 3600 #define HARD_TX_TRYLOCK(dev, txq) \ 3601 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3602 __netif_tx_trylock(txq) : \ 3603 __netif_tx_acquire(txq)) 3604 3605 #define HARD_TX_UNLOCK(dev, txq) { \ 3606 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3607 __netif_tx_unlock(txq); \ 3608 } else { \ 3609 __netif_tx_release(txq); \ 3610 } \ 3611 } 3612 3613 static inline void netif_tx_disable(struct net_device *dev) 3614 { 3615 unsigned int i; 3616 int cpu; 3617 3618 local_bh_disable(); 3619 cpu = smp_processor_id(); 3620 for (i = 0; i < dev->num_tx_queues; i++) { 3621 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3622 3623 __netif_tx_lock(txq, cpu); 3624 netif_tx_stop_queue(txq); 3625 __netif_tx_unlock(txq); 3626 } 3627 local_bh_enable(); 3628 } 3629 3630 static inline void netif_addr_lock(struct net_device *dev) 3631 { 3632 spin_lock(&dev->addr_list_lock); 3633 } 3634 3635 static inline void netif_addr_lock_nested(struct net_device *dev) 3636 { 3637 int subclass = SINGLE_DEPTH_NESTING; 3638 3639 if (dev->netdev_ops->ndo_get_lock_subclass) 3640 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 3641 3642 spin_lock_nested(&dev->addr_list_lock, subclass); 3643 } 3644 3645 static inline void netif_addr_lock_bh(struct net_device *dev) 3646 { 3647 spin_lock_bh(&dev->addr_list_lock); 3648 } 3649 3650 static inline void netif_addr_unlock(struct net_device *dev) 3651 { 3652 spin_unlock(&dev->addr_list_lock); 3653 } 3654 3655 static inline void netif_addr_unlock_bh(struct net_device *dev) 3656 { 3657 spin_unlock_bh(&dev->addr_list_lock); 3658 } 3659 3660 /* 3661 * dev_addrs walker. Should be used only for read access. Call with 3662 * rcu_read_lock held. 3663 */ 3664 #define for_each_dev_addr(dev, ha) \ 3665 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 3666 3667 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 3668 3669 void ether_setup(struct net_device *dev); 3670 3671 /* Support for loadable net-drivers */ 3672 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 3673 unsigned char name_assign_type, 3674 void (*setup)(struct net_device *), 3675 unsigned int txqs, unsigned int rxqs); 3676 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 3677 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 3678 3679 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 3680 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 3681 count) 3682 3683 int register_netdev(struct net_device *dev); 3684 void unregister_netdev(struct net_device *dev); 3685 3686 /* General hardware address lists handling functions */ 3687 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3688 struct netdev_hw_addr_list *from_list, int addr_len); 3689 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3690 struct netdev_hw_addr_list *from_list, int addr_len); 3691 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 3692 struct net_device *dev, 3693 int (*sync)(struct net_device *, const unsigned char *), 3694 int (*unsync)(struct net_device *, 3695 const unsigned char *)); 3696 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 3697 struct net_device *dev, 3698 int (*unsync)(struct net_device *, 3699 const unsigned char *)); 3700 void __hw_addr_init(struct netdev_hw_addr_list *list); 3701 3702 /* Functions used for device addresses handling */ 3703 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 3704 unsigned char addr_type); 3705 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 3706 unsigned char addr_type); 3707 void dev_addr_flush(struct net_device *dev); 3708 int dev_addr_init(struct net_device *dev); 3709 3710 /* Functions used for unicast addresses handling */ 3711 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 3712 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 3713 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 3714 int dev_uc_sync(struct net_device *to, struct net_device *from); 3715 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 3716 void dev_uc_unsync(struct net_device *to, struct net_device *from); 3717 void dev_uc_flush(struct net_device *dev); 3718 void dev_uc_init(struct net_device *dev); 3719 3720 /** 3721 * __dev_uc_sync - Synchonize device's unicast list 3722 * @dev: device to sync 3723 * @sync: function to call if address should be added 3724 * @unsync: function to call if address should be removed 3725 * 3726 * Add newly added addresses to the interface, and release 3727 * addresses that have been deleted. 3728 */ 3729 static inline int __dev_uc_sync(struct net_device *dev, 3730 int (*sync)(struct net_device *, 3731 const unsigned char *), 3732 int (*unsync)(struct net_device *, 3733 const unsigned char *)) 3734 { 3735 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 3736 } 3737 3738 /** 3739 * __dev_uc_unsync - Remove synchronized addresses from device 3740 * @dev: device to sync 3741 * @unsync: function to call if address should be removed 3742 * 3743 * Remove all addresses that were added to the device by dev_uc_sync(). 3744 */ 3745 static inline void __dev_uc_unsync(struct net_device *dev, 3746 int (*unsync)(struct net_device *, 3747 const unsigned char *)) 3748 { 3749 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 3750 } 3751 3752 /* Functions used for multicast addresses handling */ 3753 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 3754 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 3755 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 3756 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 3757 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 3758 int dev_mc_sync(struct net_device *to, struct net_device *from); 3759 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 3760 void dev_mc_unsync(struct net_device *to, struct net_device *from); 3761 void dev_mc_flush(struct net_device *dev); 3762 void dev_mc_init(struct net_device *dev); 3763 3764 /** 3765 * __dev_mc_sync - Synchonize device's multicast list 3766 * @dev: device to sync 3767 * @sync: function to call if address should be added 3768 * @unsync: function to call if address should be removed 3769 * 3770 * Add newly added addresses to the interface, and release 3771 * addresses that have been deleted. 3772 */ 3773 static inline int __dev_mc_sync(struct net_device *dev, 3774 int (*sync)(struct net_device *, 3775 const unsigned char *), 3776 int (*unsync)(struct net_device *, 3777 const unsigned char *)) 3778 { 3779 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 3780 } 3781 3782 /** 3783 * __dev_mc_unsync - Remove synchronized addresses from device 3784 * @dev: device to sync 3785 * @unsync: function to call if address should be removed 3786 * 3787 * Remove all addresses that were added to the device by dev_mc_sync(). 3788 */ 3789 static inline void __dev_mc_unsync(struct net_device *dev, 3790 int (*unsync)(struct net_device *, 3791 const unsigned char *)) 3792 { 3793 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 3794 } 3795 3796 /* Functions used for secondary unicast and multicast support */ 3797 void dev_set_rx_mode(struct net_device *dev); 3798 void __dev_set_rx_mode(struct net_device *dev); 3799 int dev_set_promiscuity(struct net_device *dev, int inc); 3800 int dev_set_allmulti(struct net_device *dev, int inc); 3801 void netdev_state_change(struct net_device *dev); 3802 void netdev_notify_peers(struct net_device *dev); 3803 void netdev_features_change(struct net_device *dev); 3804 /* Load a device via the kmod */ 3805 void dev_load(struct net *net, const char *name); 3806 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 3807 struct rtnl_link_stats64 *storage); 3808 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 3809 const struct net_device_stats *netdev_stats); 3810 3811 extern int netdev_max_backlog; 3812 extern int netdev_tstamp_prequeue; 3813 extern int weight_p; 3814 extern int dev_weight_rx_bias; 3815 extern int dev_weight_tx_bias; 3816 extern int dev_rx_weight; 3817 extern int dev_tx_weight; 3818 3819 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 3820 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 3821 struct list_head **iter); 3822 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 3823 struct list_head **iter); 3824 3825 /* iterate through upper list, must be called under RCU read lock */ 3826 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 3827 for (iter = &(dev)->adj_list.upper, \ 3828 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 3829 updev; \ 3830 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 3831 3832 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 3833 int (*fn)(struct net_device *upper_dev, 3834 void *data), 3835 void *data); 3836 3837 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 3838 struct net_device *upper_dev); 3839 3840 void *netdev_lower_get_next_private(struct net_device *dev, 3841 struct list_head **iter); 3842 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 3843 struct list_head **iter); 3844 3845 #define netdev_for_each_lower_private(dev, priv, iter) \ 3846 for (iter = (dev)->adj_list.lower.next, \ 3847 priv = netdev_lower_get_next_private(dev, &(iter)); \ 3848 priv; \ 3849 priv = netdev_lower_get_next_private(dev, &(iter))) 3850 3851 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 3852 for (iter = &(dev)->adj_list.lower, \ 3853 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 3854 priv; \ 3855 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 3856 3857 void *netdev_lower_get_next(struct net_device *dev, 3858 struct list_head **iter); 3859 3860 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 3861 for (iter = (dev)->adj_list.lower.next, \ 3862 ldev = netdev_lower_get_next(dev, &(iter)); \ 3863 ldev; \ 3864 ldev = netdev_lower_get_next(dev, &(iter))) 3865 3866 struct net_device *netdev_all_lower_get_next(struct net_device *dev, 3867 struct list_head **iter); 3868 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 3869 struct list_head **iter); 3870 3871 int netdev_walk_all_lower_dev(struct net_device *dev, 3872 int (*fn)(struct net_device *lower_dev, 3873 void *data), 3874 void *data); 3875 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 3876 int (*fn)(struct net_device *lower_dev, 3877 void *data), 3878 void *data); 3879 3880 void *netdev_adjacent_get_private(struct list_head *adj_list); 3881 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 3882 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 3883 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 3884 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev); 3885 int netdev_master_upper_dev_link(struct net_device *dev, 3886 struct net_device *upper_dev, 3887 void *upper_priv, void *upper_info); 3888 void netdev_upper_dev_unlink(struct net_device *dev, 3889 struct net_device *upper_dev); 3890 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 3891 void *netdev_lower_dev_get_private(struct net_device *dev, 3892 struct net_device *lower_dev); 3893 void netdev_lower_state_changed(struct net_device *lower_dev, 3894 void *lower_state_info); 3895 int netdev_default_l2upper_neigh_construct(struct net_device *dev, 3896 struct neighbour *n); 3897 void netdev_default_l2upper_neigh_destroy(struct net_device *dev, 3898 struct neighbour *n); 3899 3900 /* RSS keys are 40 or 52 bytes long */ 3901 #define NETDEV_RSS_KEY_LEN 52 3902 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 3903 void netdev_rss_key_fill(void *buffer, size_t len); 3904 3905 int dev_get_nest_level(struct net_device *dev); 3906 int skb_checksum_help(struct sk_buff *skb); 3907 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3908 netdev_features_t features, bool tx_path); 3909 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3910 netdev_features_t features); 3911 3912 struct netdev_bonding_info { 3913 ifslave slave; 3914 ifbond master; 3915 }; 3916 3917 struct netdev_notifier_bonding_info { 3918 struct netdev_notifier_info info; /* must be first */ 3919 struct netdev_bonding_info bonding_info; 3920 }; 3921 3922 void netdev_bonding_info_change(struct net_device *dev, 3923 struct netdev_bonding_info *bonding_info); 3924 3925 static inline 3926 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 3927 { 3928 return __skb_gso_segment(skb, features, true); 3929 } 3930 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 3931 3932 static inline bool can_checksum_protocol(netdev_features_t features, 3933 __be16 protocol) 3934 { 3935 if (protocol == htons(ETH_P_FCOE)) 3936 return !!(features & NETIF_F_FCOE_CRC); 3937 3938 /* Assume this is an IP checksum (not SCTP CRC) */ 3939 3940 if (features & NETIF_F_HW_CSUM) { 3941 /* Can checksum everything */ 3942 return true; 3943 } 3944 3945 switch (protocol) { 3946 case htons(ETH_P_IP): 3947 return !!(features & NETIF_F_IP_CSUM); 3948 case htons(ETH_P_IPV6): 3949 return !!(features & NETIF_F_IPV6_CSUM); 3950 default: 3951 return false; 3952 } 3953 } 3954 3955 #ifdef CONFIG_BUG 3956 void netdev_rx_csum_fault(struct net_device *dev); 3957 #else 3958 static inline void netdev_rx_csum_fault(struct net_device *dev) 3959 { 3960 } 3961 #endif 3962 /* rx skb timestamps */ 3963 void net_enable_timestamp(void); 3964 void net_disable_timestamp(void); 3965 3966 #ifdef CONFIG_PROC_FS 3967 int __init dev_proc_init(void); 3968 #else 3969 #define dev_proc_init() 0 3970 #endif 3971 3972 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 3973 struct sk_buff *skb, struct net_device *dev, 3974 bool more) 3975 { 3976 skb->xmit_more = more ? 1 : 0; 3977 return ops->ndo_start_xmit(skb, dev); 3978 } 3979 3980 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 3981 struct netdev_queue *txq, bool more) 3982 { 3983 const struct net_device_ops *ops = dev->netdev_ops; 3984 int rc; 3985 3986 rc = __netdev_start_xmit(ops, skb, dev, more); 3987 if (rc == NETDEV_TX_OK) 3988 txq_trans_update(txq); 3989 3990 return rc; 3991 } 3992 3993 int netdev_class_create_file_ns(struct class_attribute *class_attr, 3994 const void *ns); 3995 void netdev_class_remove_file_ns(struct class_attribute *class_attr, 3996 const void *ns); 3997 3998 static inline int netdev_class_create_file(struct class_attribute *class_attr) 3999 { 4000 return netdev_class_create_file_ns(class_attr, NULL); 4001 } 4002 4003 static inline void netdev_class_remove_file(struct class_attribute *class_attr) 4004 { 4005 netdev_class_remove_file_ns(class_attr, NULL); 4006 } 4007 4008 extern struct kobj_ns_type_operations net_ns_type_operations; 4009 4010 const char *netdev_drivername(const struct net_device *dev); 4011 4012 void linkwatch_run_queue(void); 4013 4014 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4015 netdev_features_t f2) 4016 { 4017 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4018 if (f1 & NETIF_F_HW_CSUM) 4019 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4020 else 4021 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4022 } 4023 4024 return f1 & f2; 4025 } 4026 4027 static inline netdev_features_t netdev_get_wanted_features( 4028 struct net_device *dev) 4029 { 4030 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4031 } 4032 netdev_features_t netdev_increment_features(netdev_features_t all, 4033 netdev_features_t one, netdev_features_t mask); 4034 4035 /* Allow TSO being used on stacked device : 4036 * Performing the GSO segmentation before last device 4037 * is a performance improvement. 4038 */ 4039 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4040 netdev_features_t mask) 4041 { 4042 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4043 } 4044 4045 int __netdev_update_features(struct net_device *dev); 4046 void netdev_update_features(struct net_device *dev); 4047 void netdev_change_features(struct net_device *dev); 4048 4049 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4050 struct net_device *dev); 4051 4052 netdev_features_t passthru_features_check(struct sk_buff *skb, 4053 struct net_device *dev, 4054 netdev_features_t features); 4055 netdev_features_t netif_skb_features(struct sk_buff *skb); 4056 4057 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4058 { 4059 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4060 4061 /* check flags correspondence */ 4062 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4063 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 4064 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4065 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4066 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4067 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4068 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4069 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4070 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4071 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4072 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4073 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4074 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4075 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4076 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4077 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4078 4079 return (features & feature) == feature; 4080 } 4081 4082 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4083 { 4084 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4085 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4086 } 4087 4088 static inline bool netif_needs_gso(struct sk_buff *skb, 4089 netdev_features_t features) 4090 { 4091 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4092 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4093 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4094 } 4095 4096 static inline void netif_set_gso_max_size(struct net_device *dev, 4097 unsigned int size) 4098 { 4099 dev->gso_max_size = size; 4100 } 4101 4102 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4103 int pulled_hlen, u16 mac_offset, 4104 int mac_len) 4105 { 4106 skb->protocol = protocol; 4107 skb->encapsulation = 1; 4108 skb_push(skb, pulled_hlen); 4109 skb_reset_transport_header(skb); 4110 skb->mac_header = mac_offset; 4111 skb->network_header = skb->mac_header + mac_len; 4112 skb->mac_len = mac_len; 4113 } 4114 4115 static inline bool netif_is_macsec(const struct net_device *dev) 4116 { 4117 return dev->priv_flags & IFF_MACSEC; 4118 } 4119 4120 static inline bool netif_is_macvlan(const struct net_device *dev) 4121 { 4122 return dev->priv_flags & IFF_MACVLAN; 4123 } 4124 4125 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4126 { 4127 return dev->priv_flags & IFF_MACVLAN_PORT; 4128 } 4129 4130 static inline bool netif_is_ipvlan(const struct net_device *dev) 4131 { 4132 return dev->priv_flags & IFF_IPVLAN_SLAVE; 4133 } 4134 4135 static inline bool netif_is_ipvlan_port(const struct net_device *dev) 4136 { 4137 return dev->priv_flags & IFF_IPVLAN_MASTER; 4138 } 4139 4140 static inline bool netif_is_bond_master(const struct net_device *dev) 4141 { 4142 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4143 } 4144 4145 static inline bool netif_is_bond_slave(const struct net_device *dev) 4146 { 4147 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4148 } 4149 4150 static inline bool netif_supports_nofcs(struct net_device *dev) 4151 { 4152 return dev->priv_flags & IFF_SUPP_NOFCS; 4153 } 4154 4155 static inline bool netif_is_l3_master(const struct net_device *dev) 4156 { 4157 return dev->priv_flags & IFF_L3MDEV_MASTER; 4158 } 4159 4160 static inline bool netif_is_l3_slave(const struct net_device *dev) 4161 { 4162 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4163 } 4164 4165 static inline bool netif_is_bridge_master(const struct net_device *dev) 4166 { 4167 return dev->priv_flags & IFF_EBRIDGE; 4168 } 4169 4170 static inline bool netif_is_bridge_port(const struct net_device *dev) 4171 { 4172 return dev->priv_flags & IFF_BRIDGE_PORT; 4173 } 4174 4175 static inline bool netif_is_ovs_master(const struct net_device *dev) 4176 { 4177 return dev->priv_flags & IFF_OPENVSWITCH; 4178 } 4179 4180 static inline bool netif_is_team_master(const struct net_device *dev) 4181 { 4182 return dev->priv_flags & IFF_TEAM; 4183 } 4184 4185 static inline bool netif_is_team_port(const struct net_device *dev) 4186 { 4187 return dev->priv_flags & IFF_TEAM_PORT; 4188 } 4189 4190 static inline bool netif_is_lag_master(const struct net_device *dev) 4191 { 4192 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4193 } 4194 4195 static inline bool netif_is_lag_port(const struct net_device *dev) 4196 { 4197 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4198 } 4199 4200 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4201 { 4202 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4203 } 4204 4205 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4206 static inline void netif_keep_dst(struct net_device *dev) 4207 { 4208 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4209 } 4210 4211 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4212 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4213 { 4214 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4215 return dev->priv_flags & IFF_MACSEC; 4216 } 4217 4218 extern struct pernet_operations __net_initdata loopback_net_ops; 4219 4220 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 4221 4222 /* netdev_printk helpers, similar to dev_printk */ 4223 4224 static inline const char *netdev_name(const struct net_device *dev) 4225 { 4226 if (!dev->name[0] || strchr(dev->name, '%')) 4227 return "(unnamed net_device)"; 4228 return dev->name; 4229 } 4230 4231 static inline const char *netdev_reg_state(const struct net_device *dev) 4232 { 4233 switch (dev->reg_state) { 4234 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4235 case NETREG_REGISTERED: return ""; 4236 case NETREG_UNREGISTERING: return " (unregistering)"; 4237 case NETREG_UNREGISTERED: return " (unregistered)"; 4238 case NETREG_RELEASED: return " (released)"; 4239 case NETREG_DUMMY: return " (dummy)"; 4240 } 4241 4242 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4243 return " (unknown)"; 4244 } 4245 4246 __printf(3, 4) 4247 void netdev_printk(const char *level, const struct net_device *dev, 4248 const char *format, ...); 4249 __printf(2, 3) 4250 void netdev_emerg(const struct net_device *dev, const char *format, ...); 4251 __printf(2, 3) 4252 void netdev_alert(const struct net_device *dev, const char *format, ...); 4253 __printf(2, 3) 4254 void netdev_crit(const struct net_device *dev, const char *format, ...); 4255 __printf(2, 3) 4256 void netdev_err(const struct net_device *dev, const char *format, ...); 4257 __printf(2, 3) 4258 void netdev_warn(const struct net_device *dev, const char *format, ...); 4259 __printf(2, 3) 4260 void netdev_notice(const struct net_device *dev, const char *format, ...); 4261 __printf(2, 3) 4262 void netdev_info(const struct net_device *dev, const char *format, ...); 4263 4264 #define MODULE_ALIAS_NETDEV(device) \ 4265 MODULE_ALIAS("netdev-" device) 4266 4267 #if defined(CONFIG_DYNAMIC_DEBUG) 4268 #define netdev_dbg(__dev, format, args...) \ 4269 do { \ 4270 dynamic_netdev_dbg(__dev, format, ##args); \ 4271 } while (0) 4272 #elif defined(DEBUG) 4273 #define netdev_dbg(__dev, format, args...) \ 4274 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4275 #else 4276 #define netdev_dbg(__dev, format, args...) \ 4277 ({ \ 4278 if (0) \ 4279 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4280 }) 4281 #endif 4282 4283 #if defined(VERBOSE_DEBUG) 4284 #define netdev_vdbg netdev_dbg 4285 #else 4286 4287 #define netdev_vdbg(dev, format, args...) \ 4288 ({ \ 4289 if (0) \ 4290 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4291 0; \ 4292 }) 4293 #endif 4294 4295 /* 4296 * netdev_WARN() acts like dev_printk(), but with the key difference 4297 * of using a WARN/WARN_ON to get the message out, including the 4298 * file/line information and a backtrace. 4299 */ 4300 #define netdev_WARN(dev, format, args...) \ 4301 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \ 4302 netdev_reg_state(dev), ##args) 4303 4304 /* netif printk helpers, similar to netdev_printk */ 4305 4306 #define netif_printk(priv, type, level, dev, fmt, args...) \ 4307 do { \ 4308 if (netif_msg_##type(priv)) \ 4309 netdev_printk(level, (dev), fmt, ##args); \ 4310 } while (0) 4311 4312 #define netif_level(level, priv, type, dev, fmt, args...) \ 4313 do { \ 4314 if (netif_msg_##type(priv)) \ 4315 netdev_##level(dev, fmt, ##args); \ 4316 } while (0) 4317 4318 #define netif_emerg(priv, type, dev, fmt, args...) \ 4319 netif_level(emerg, priv, type, dev, fmt, ##args) 4320 #define netif_alert(priv, type, dev, fmt, args...) \ 4321 netif_level(alert, priv, type, dev, fmt, ##args) 4322 #define netif_crit(priv, type, dev, fmt, args...) \ 4323 netif_level(crit, priv, type, dev, fmt, ##args) 4324 #define netif_err(priv, type, dev, fmt, args...) \ 4325 netif_level(err, priv, type, dev, fmt, ##args) 4326 #define netif_warn(priv, type, dev, fmt, args...) \ 4327 netif_level(warn, priv, type, dev, fmt, ##args) 4328 #define netif_notice(priv, type, dev, fmt, args...) \ 4329 netif_level(notice, priv, type, dev, fmt, ##args) 4330 #define netif_info(priv, type, dev, fmt, args...) \ 4331 netif_level(info, priv, type, dev, fmt, ##args) 4332 4333 #if defined(CONFIG_DYNAMIC_DEBUG) 4334 #define netif_dbg(priv, type, netdev, format, args...) \ 4335 do { \ 4336 if (netif_msg_##type(priv)) \ 4337 dynamic_netdev_dbg(netdev, format, ##args); \ 4338 } while (0) 4339 #elif defined(DEBUG) 4340 #define netif_dbg(priv, type, dev, format, args...) \ 4341 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4342 #else 4343 #define netif_dbg(priv, type, dev, format, args...) \ 4344 ({ \ 4345 if (0) \ 4346 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4347 0; \ 4348 }) 4349 #endif 4350 4351 /* if @cond then downgrade to debug, else print at @level */ 4352 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 4353 do { \ 4354 if (cond) \ 4355 netif_dbg(priv, type, netdev, fmt, ##args); \ 4356 else \ 4357 netif_ ## level(priv, type, netdev, fmt, ##args); \ 4358 } while (0) 4359 4360 #if defined(VERBOSE_DEBUG) 4361 #define netif_vdbg netif_dbg 4362 #else 4363 #define netif_vdbg(priv, type, dev, format, args...) \ 4364 ({ \ 4365 if (0) \ 4366 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4367 0; \ 4368 }) 4369 #endif 4370 4371 /* 4372 * The list of packet types we will receive (as opposed to discard) 4373 * and the routines to invoke. 4374 * 4375 * Why 16. Because with 16 the only overlap we get on a hash of the 4376 * low nibble of the protocol value is RARP/SNAP/X.25. 4377 * 4378 * NOTE: That is no longer true with the addition of VLAN tags. Not 4379 * sure which should go first, but I bet it won't make much 4380 * difference if we are running VLANs. The good news is that 4381 * this protocol won't be in the list unless compiled in, so 4382 * the average user (w/out VLANs) will not be adversely affected. 4383 * --BLG 4384 * 4385 * 0800 IP 4386 * 8100 802.1Q VLAN 4387 * 0001 802.3 4388 * 0002 AX.25 4389 * 0004 802.2 4390 * 8035 RARP 4391 * 0005 SNAP 4392 * 0805 X.25 4393 * 0806 ARP 4394 * 8137 IPX 4395 * 0009 Localtalk 4396 * 86DD IPv6 4397 */ 4398 #define PTYPE_HASH_SIZE (16) 4399 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4400 4401 #endif /* _LINUX_NETDEVICE_H */ 4402