xref: /linux-6.15/include/linux/netdevice.h (revision 19fbcb36)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <[email protected]>
13  *		Corey Minyard <[email protected]>
14  *		Donald J. Becker, <[email protected]>
15  *		Alan Cox, <[email protected]>
16  *		Bjorn Ekwall. <[email protected]>
17  *              Pekka Riikonen <[email protected]>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <linux/ethtool.h>
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 
52 struct netpoll_info;
53 struct device;
54 struct phy_device;
55 struct dsa_port;
56 struct ip_tunnel_parm;
57 struct macsec_context;
58 struct macsec_ops;
59 
60 struct sfp_bus;
61 /* 802.11 specific */
62 struct wireless_dev;
63 /* 802.15.4 specific */
64 struct wpan_dev;
65 struct mpls_dev;
66 /* UDP Tunnel offloads */
67 struct udp_tunnel_info;
68 struct udp_tunnel_nic_info;
69 struct udp_tunnel_nic;
70 struct bpf_prog;
71 struct xdp_buff;
72 
73 void synchronize_net(void);
74 void netdev_set_default_ethtool_ops(struct net_device *dev,
75 				    const struct ethtool_ops *ops);
76 
77 /* Backlog congestion levels */
78 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
79 #define NET_RX_DROP		1	/* packet dropped */
80 
81 #define MAX_NEST_DEV 8
82 
83 /*
84  * Transmit return codes: transmit return codes originate from three different
85  * namespaces:
86  *
87  * - qdisc return codes
88  * - driver transmit return codes
89  * - errno values
90  *
91  * Drivers are allowed to return any one of those in their hard_start_xmit()
92  * function. Real network devices commonly used with qdiscs should only return
93  * the driver transmit return codes though - when qdiscs are used, the actual
94  * transmission happens asynchronously, so the value is not propagated to
95  * higher layers. Virtual network devices transmit synchronously; in this case
96  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
97  * others are propagated to higher layers.
98  */
99 
100 /* qdisc ->enqueue() return codes. */
101 #define NET_XMIT_SUCCESS	0x00
102 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
103 #define NET_XMIT_CN		0x02	/* congestion notification	*/
104 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
105 
106 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
107  * indicates that the device will soon be dropping packets, or already drops
108  * some packets of the same priority; prompting us to send less aggressively. */
109 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
110 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
111 
112 /* Driver transmit return codes */
113 #define NETDEV_TX_MASK		0xf0
114 
115 enum netdev_tx {
116 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
117 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
118 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
119 };
120 typedef enum netdev_tx netdev_tx_t;
121 
122 /*
123  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
124  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
125  */
126 static inline bool dev_xmit_complete(int rc)
127 {
128 	/*
129 	 * Positive cases with an skb consumed by a driver:
130 	 * - successful transmission (rc == NETDEV_TX_OK)
131 	 * - error while transmitting (rc < 0)
132 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
133 	 */
134 	if (likely(rc < NET_XMIT_MASK))
135 		return true;
136 
137 	return false;
138 }
139 
140 /*
141  *	Compute the worst-case header length according to the protocols
142  *	used.
143  */
144 
145 #if defined(CONFIG_HYPERV_NET)
146 # define LL_MAX_HEADER 128
147 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
148 # if defined(CONFIG_MAC80211_MESH)
149 #  define LL_MAX_HEADER 128
150 # else
151 #  define LL_MAX_HEADER 96
152 # endif
153 #else
154 # define LL_MAX_HEADER 32
155 #endif
156 
157 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
158     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
159 #define MAX_HEADER LL_MAX_HEADER
160 #else
161 #define MAX_HEADER (LL_MAX_HEADER + 48)
162 #endif
163 
164 /*
165  *	Old network device statistics. Fields are native words
166  *	(unsigned long) so they can be read and written atomically.
167  */
168 
169 struct net_device_stats {
170 	unsigned long	rx_packets;
171 	unsigned long	tx_packets;
172 	unsigned long	rx_bytes;
173 	unsigned long	tx_bytes;
174 	unsigned long	rx_errors;
175 	unsigned long	tx_errors;
176 	unsigned long	rx_dropped;
177 	unsigned long	tx_dropped;
178 	unsigned long	multicast;
179 	unsigned long	collisions;
180 	unsigned long	rx_length_errors;
181 	unsigned long	rx_over_errors;
182 	unsigned long	rx_crc_errors;
183 	unsigned long	rx_frame_errors;
184 	unsigned long	rx_fifo_errors;
185 	unsigned long	rx_missed_errors;
186 	unsigned long	tx_aborted_errors;
187 	unsigned long	tx_carrier_errors;
188 	unsigned long	tx_fifo_errors;
189 	unsigned long	tx_heartbeat_errors;
190 	unsigned long	tx_window_errors;
191 	unsigned long	rx_compressed;
192 	unsigned long	tx_compressed;
193 };
194 
195 
196 #include <linux/cache.h>
197 #include <linux/skbuff.h>
198 
199 #ifdef CONFIG_RPS
200 #include <linux/static_key.h>
201 extern struct static_key_false rps_needed;
202 extern struct static_key_false rfs_needed;
203 #endif
204 
205 struct neighbour;
206 struct neigh_parms;
207 struct sk_buff;
208 
209 struct netdev_hw_addr {
210 	struct list_head	list;
211 	unsigned char		addr[MAX_ADDR_LEN];
212 	unsigned char		type;
213 #define NETDEV_HW_ADDR_T_LAN		1
214 #define NETDEV_HW_ADDR_T_SAN		2
215 #define NETDEV_HW_ADDR_T_UNICAST	3
216 #define NETDEV_HW_ADDR_T_MULTICAST	4
217 	bool			global_use;
218 	int			sync_cnt;
219 	int			refcount;
220 	int			synced;
221 	struct rcu_head		rcu_head;
222 };
223 
224 struct netdev_hw_addr_list {
225 	struct list_head	list;
226 	int			count;
227 };
228 
229 #define netdev_hw_addr_list_count(l) ((l)->count)
230 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
231 #define netdev_hw_addr_list_for_each(ha, l) \
232 	list_for_each_entry(ha, &(l)->list, list)
233 
234 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
235 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
236 #define netdev_for_each_uc_addr(ha, dev) \
237 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
238 
239 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
240 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
241 #define netdev_for_each_mc_addr(ha, dev) \
242 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
243 
244 struct hh_cache {
245 	unsigned int	hh_len;
246 	seqlock_t	hh_lock;
247 
248 	/* cached hardware header; allow for machine alignment needs.        */
249 #define HH_DATA_MOD	16
250 #define HH_DATA_OFF(__len) \
251 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
252 #define HH_DATA_ALIGN(__len) \
253 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
254 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
255 };
256 
257 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
258  * Alternative is:
259  *   dev->hard_header_len ? (dev->hard_header_len +
260  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
261  *
262  * We could use other alignment values, but we must maintain the
263  * relationship HH alignment <= LL alignment.
264  */
265 #define LL_RESERVED_SPACE(dev) \
266 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
267 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
268 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
269 
270 struct header_ops {
271 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
272 			   unsigned short type, const void *daddr,
273 			   const void *saddr, unsigned int len);
274 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
275 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
276 	void	(*cache_update)(struct hh_cache *hh,
277 				const struct net_device *dev,
278 				const unsigned char *haddr);
279 	bool	(*validate)(const char *ll_header, unsigned int len);
280 	__be16	(*parse_protocol)(const struct sk_buff *skb);
281 };
282 
283 /* These flag bits are private to the generic network queueing
284  * layer; they may not be explicitly referenced by any other
285  * code.
286  */
287 
288 enum netdev_state_t {
289 	__LINK_STATE_START,
290 	__LINK_STATE_PRESENT,
291 	__LINK_STATE_NOCARRIER,
292 	__LINK_STATE_LINKWATCH_PENDING,
293 	__LINK_STATE_DORMANT,
294 	__LINK_STATE_TESTING,
295 };
296 
297 
298 /*
299  * This structure holds boot-time configured netdevice settings. They
300  * are then used in the device probing.
301  */
302 struct netdev_boot_setup {
303 	char name[IFNAMSIZ];
304 	struct ifmap map;
305 };
306 #define NETDEV_BOOT_SETUP_MAX 8
307 
308 int __init netdev_boot_setup(char *str);
309 
310 struct gro_list {
311 	struct list_head	list;
312 	int			count;
313 };
314 
315 /*
316  * size of gro hash buckets, must less than bit number of
317  * napi_struct::gro_bitmask
318  */
319 #define GRO_HASH_BUCKETS	8
320 
321 /*
322  * Structure for NAPI scheduling similar to tasklet but with weighting
323  */
324 struct napi_struct {
325 	/* The poll_list must only be managed by the entity which
326 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
327 	 * whoever atomically sets that bit can add this napi_struct
328 	 * to the per-CPU poll_list, and whoever clears that bit
329 	 * can remove from the list right before clearing the bit.
330 	 */
331 	struct list_head	poll_list;
332 
333 	unsigned long		state;
334 	int			weight;
335 	int			defer_hard_irqs_count;
336 	unsigned long		gro_bitmask;
337 	int			(*poll)(struct napi_struct *, int);
338 #ifdef CONFIG_NETPOLL
339 	int			poll_owner;
340 #endif
341 	struct net_device	*dev;
342 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
343 	struct sk_buff		*skb;
344 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
345 	int			rx_count; /* length of rx_list */
346 	struct hrtimer		timer;
347 	struct list_head	dev_list;
348 	struct hlist_node	napi_hash_node;
349 	unsigned int		napi_id;
350 };
351 
352 enum {
353 	NAPI_STATE_SCHED,	/* Poll is scheduled */
354 	NAPI_STATE_MISSED,	/* reschedule a napi */
355 	NAPI_STATE_DISABLE,	/* Disable pending */
356 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
357 	NAPI_STATE_LISTED,	/* NAPI added to system lists */
358 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
359 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
360 };
361 
362 enum {
363 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
364 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
365 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
366 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
367 	NAPIF_STATE_LISTED	 = BIT(NAPI_STATE_LISTED),
368 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
369 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
370 };
371 
372 enum gro_result {
373 	GRO_MERGED,
374 	GRO_MERGED_FREE,
375 	GRO_HELD,
376 	GRO_NORMAL,
377 	GRO_DROP,
378 	GRO_CONSUMED,
379 };
380 typedef enum gro_result gro_result_t;
381 
382 /*
383  * enum rx_handler_result - Possible return values for rx_handlers.
384  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
385  * further.
386  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
387  * case skb->dev was changed by rx_handler.
388  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
389  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
390  *
391  * rx_handlers are functions called from inside __netif_receive_skb(), to do
392  * special processing of the skb, prior to delivery to protocol handlers.
393  *
394  * Currently, a net_device can only have a single rx_handler registered. Trying
395  * to register a second rx_handler will return -EBUSY.
396  *
397  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
398  * To unregister a rx_handler on a net_device, use
399  * netdev_rx_handler_unregister().
400  *
401  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
402  * do with the skb.
403  *
404  * If the rx_handler consumed the skb in some way, it should return
405  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
406  * the skb to be delivered in some other way.
407  *
408  * If the rx_handler changed skb->dev, to divert the skb to another
409  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
410  * new device will be called if it exists.
411  *
412  * If the rx_handler decides the skb should be ignored, it should return
413  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
414  * are registered on exact device (ptype->dev == skb->dev).
415  *
416  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
417  * delivered, it should return RX_HANDLER_PASS.
418  *
419  * A device without a registered rx_handler will behave as if rx_handler
420  * returned RX_HANDLER_PASS.
421  */
422 
423 enum rx_handler_result {
424 	RX_HANDLER_CONSUMED,
425 	RX_HANDLER_ANOTHER,
426 	RX_HANDLER_EXACT,
427 	RX_HANDLER_PASS,
428 };
429 typedef enum rx_handler_result rx_handler_result_t;
430 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
431 
432 void __napi_schedule(struct napi_struct *n);
433 void __napi_schedule_irqoff(struct napi_struct *n);
434 
435 static inline bool napi_disable_pending(struct napi_struct *n)
436 {
437 	return test_bit(NAPI_STATE_DISABLE, &n->state);
438 }
439 
440 bool napi_schedule_prep(struct napi_struct *n);
441 
442 /**
443  *	napi_schedule - schedule NAPI poll
444  *	@n: NAPI context
445  *
446  * Schedule NAPI poll routine to be called if it is not already
447  * running.
448  */
449 static inline void napi_schedule(struct napi_struct *n)
450 {
451 	if (napi_schedule_prep(n))
452 		__napi_schedule(n);
453 }
454 
455 /**
456  *	napi_schedule_irqoff - schedule NAPI poll
457  *	@n: NAPI context
458  *
459  * Variant of napi_schedule(), assuming hard irqs are masked.
460  */
461 static inline void napi_schedule_irqoff(struct napi_struct *n)
462 {
463 	if (napi_schedule_prep(n))
464 		__napi_schedule_irqoff(n);
465 }
466 
467 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
468 static inline bool napi_reschedule(struct napi_struct *napi)
469 {
470 	if (napi_schedule_prep(napi)) {
471 		__napi_schedule(napi);
472 		return true;
473 	}
474 	return false;
475 }
476 
477 bool napi_complete_done(struct napi_struct *n, int work_done);
478 /**
479  *	napi_complete - NAPI processing complete
480  *	@n: NAPI context
481  *
482  * Mark NAPI processing as complete.
483  * Consider using napi_complete_done() instead.
484  * Return false if device should avoid rearming interrupts.
485  */
486 static inline bool napi_complete(struct napi_struct *n)
487 {
488 	return napi_complete_done(n, 0);
489 }
490 
491 /**
492  *	napi_disable - prevent NAPI from scheduling
493  *	@n: NAPI context
494  *
495  * Stop NAPI from being scheduled on this context.
496  * Waits till any outstanding processing completes.
497  */
498 void napi_disable(struct napi_struct *n);
499 
500 /**
501  *	napi_enable - enable NAPI scheduling
502  *	@n: NAPI context
503  *
504  * Resume NAPI from being scheduled on this context.
505  * Must be paired with napi_disable.
506  */
507 static inline void napi_enable(struct napi_struct *n)
508 {
509 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
510 	smp_mb__before_atomic();
511 	clear_bit(NAPI_STATE_SCHED, &n->state);
512 	clear_bit(NAPI_STATE_NPSVC, &n->state);
513 }
514 
515 /**
516  *	napi_synchronize - wait until NAPI is not running
517  *	@n: NAPI context
518  *
519  * Wait until NAPI is done being scheduled on this context.
520  * Waits till any outstanding processing completes but
521  * does not disable future activations.
522  */
523 static inline void napi_synchronize(const struct napi_struct *n)
524 {
525 	if (IS_ENABLED(CONFIG_SMP))
526 		while (test_bit(NAPI_STATE_SCHED, &n->state))
527 			msleep(1);
528 	else
529 		barrier();
530 }
531 
532 /**
533  *	napi_if_scheduled_mark_missed - if napi is running, set the
534  *	NAPIF_STATE_MISSED
535  *	@n: NAPI context
536  *
537  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
538  * NAPI is scheduled.
539  **/
540 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
541 {
542 	unsigned long val, new;
543 
544 	do {
545 		val = READ_ONCE(n->state);
546 		if (val & NAPIF_STATE_DISABLE)
547 			return true;
548 
549 		if (!(val & NAPIF_STATE_SCHED))
550 			return false;
551 
552 		new = val | NAPIF_STATE_MISSED;
553 	} while (cmpxchg(&n->state, val, new) != val);
554 
555 	return true;
556 }
557 
558 enum netdev_queue_state_t {
559 	__QUEUE_STATE_DRV_XOFF,
560 	__QUEUE_STATE_STACK_XOFF,
561 	__QUEUE_STATE_FROZEN,
562 };
563 
564 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
565 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
566 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
567 
568 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
569 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
570 					QUEUE_STATE_FROZEN)
571 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
572 					QUEUE_STATE_FROZEN)
573 
574 /*
575  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
576  * netif_tx_* functions below are used to manipulate this flag.  The
577  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
578  * queue independently.  The netif_xmit_*stopped functions below are called
579  * to check if the queue has been stopped by the driver or stack (either
580  * of the XOFF bits are set in the state).  Drivers should not need to call
581  * netif_xmit*stopped functions, they should only be using netif_tx_*.
582  */
583 
584 struct netdev_queue {
585 /*
586  * read-mostly part
587  */
588 	struct net_device	*dev;
589 	struct Qdisc __rcu	*qdisc;
590 	struct Qdisc		*qdisc_sleeping;
591 #ifdef CONFIG_SYSFS
592 	struct kobject		kobj;
593 #endif
594 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
595 	int			numa_node;
596 #endif
597 	unsigned long		tx_maxrate;
598 	/*
599 	 * Number of TX timeouts for this queue
600 	 * (/sys/class/net/DEV/Q/trans_timeout)
601 	 */
602 	unsigned long		trans_timeout;
603 
604 	/* Subordinate device that the queue has been assigned to */
605 	struct net_device	*sb_dev;
606 #ifdef CONFIG_XDP_SOCKETS
607 	struct xsk_buff_pool    *pool;
608 #endif
609 /*
610  * write-mostly part
611  */
612 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
613 	int			xmit_lock_owner;
614 	/*
615 	 * Time (in jiffies) of last Tx
616 	 */
617 	unsigned long		trans_start;
618 
619 	unsigned long		state;
620 
621 #ifdef CONFIG_BQL
622 	struct dql		dql;
623 #endif
624 } ____cacheline_aligned_in_smp;
625 
626 extern int sysctl_fb_tunnels_only_for_init_net;
627 extern int sysctl_devconf_inherit_init_net;
628 
629 /*
630  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
631  *                                     == 1 : For initns only
632  *                                     == 2 : For none.
633  */
634 static inline bool net_has_fallback_tunnels(const struct net *net)
635 {
636 	return !IS_ENABLED(CONFIG_SYSCTL) ||
637 	       !sysctl_fb_tunnels_only_for_init_net ||
638 	       (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1);
639 }
640 
641 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
642 {
643 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
644 	return q->numa_node;
645 #else
646 	return NUMA_NO_NODE;
647 #endif
648 }
649 
650 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
651 {
652 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
653 	q->numa_node = node;
654 #endif
655 }
656 
657 #ifdef CONFIG_RPS
658 /*
659  * This structure holds an RPS map which can be of variable length.  The
660  * map is an array of CPUs.
661  */
662 struct rps_map {
663 	unsigned int len;
664 	struct rcu_head rcu;
665 	u16 cpus[];
666 };
667 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
668 
669 /*
670  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
671  * tail pointer for that CPU's input queue at the time of last enqueue, and
672  * a hardware filter index.
673  */
674 struct rps_dev_flow {
675 	u16 cpu;
676 	u16 filter;
677 	unsigned int last_qtail;
678 };
679 #define RPS_NO_FILTER 0xffff
680 
681 /*
682  * The rps_dev_flow_table structure contains a table of flow mappings.
683  */
684 struct rps_dev_flow_table {
685 	unsigned int mask;
686 	struct rcu_head rcu;
687 	struct rps_dev_flow flows[];
688 };
689 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
690     ((_num) * sizeof(struct rps_dev_flow)))
691 
692 /*
693  * The rps_sock_flow_table contains mappings of flows to the last CPU
694  * on which they were processed by the application (set in recvmsg).
695  * Each entry is a 32bit value. Upper part is the high-order bits
696  * of flow hash, lower part is CPU number.
697  * rps_cpu_mask is used to partition the space, depending on number of
698  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
699  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
700  * meaning we use 32-6=26 bits for the hash.
701  */
702 struct rps_sock_flow_table {
703 	u32	mask;
704 
705 	u32	ents[] ____cacheline_aligned_in_smp;
706 };
707 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
708 
709 #define RPS_NO_CPU 0xffff
710 
711 extern u32 rps_cpu_mask;
712 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
713 
714 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
715 					u32 hash)
716 {
717 	if (table && hash) {
718 		unsigned int index = hash & table->mask;
719 		u32 val = hash & ~rps_cpu_mask;
720 
721 		/* We only give a hint, preemption can change CPU under us */
722 		val |= raw_smp_processor_id();
723 
724 		if (table->ents[index] != val)
725 			table->ents[index] = val;
726 	}
727 }
728 
729 #ifdef CONFIG_RFS_ACCEL
730 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
731 			 u16 filter_id);
732 #endif
733 #endif /* CONFIG_RPS */
734 
735 /* This structure contains an instance of an RX queue. */
736 struct netdev_rx_queue {
737 #ifdef CONFIG_RPS
738 	struct rps_map __rcu		*rps_map;
739 	struct rps_dev_flow_table __rcu	*rps_flow_table;
740 #endif
741 	struct kobject			kobj;
742 	struct net_device		*dev;
743 	struct xdp_rxq_info		xdp_rxq;
744 #ifdef CONFIG_XDP_SOCKETS
745 	struct xsk_buff_pool            *pool;
746 #endif
747 } ____cacheline_aligned_in_smp;
748 
749 /*
750  * RX queue sysfs structures and functions.
751  */
752 struct rx_queue_attribute {
753 	struct attribute attr;
754 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
755 	ssize_t (*store)(struct netdev_rx_queue *queue,
756 			 const char *buf, size_t len);
757 };
758 
759 #ifdef CONFIG_XPS
760 /*
761  * This structure holds an XPS map which can be of variable length.  The
762  * map is an array of queues.
763  */
764 struct xps_map {
765 	unsigned int len;
766 	unsigned int alloc_len;
767 	struct rcu_head rcu;
768 	u16 queues[];
769 };
770 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
771 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
772        - sizeof(struct xps_map)) / sizeof(u16))
773 
774 /*
775  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
776  */
777 struct xps_dev_maps {
778 	struct rcu_head rcu;
779 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
780 };
781 
782 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
783 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
784 
785 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
786 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
787 
788 #endif /* CONFIG_XPS */
789 
790 #define TC_MAX_QUEUE	16
791 #define TC_BITMASK	15
792 /* HW offloaded queuing disciplines txq count and offset maps */
793 struct netdev_tc_txq {
794 	u16 count;
795 	u16 offset;
796 };
797 
798 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
799 /*
800  * This structure is to hold information about the device
801  * configured to run FCoE protocol stack.
802  */
803 struct netdev_fcoe_hbainfo {
804 	char	manufacturer[64];
805 	char	serial_number[64];
806 	char	hardware_version[64];
807 	char	driver_version[64];
808 	char	optionrom_version[64];
809 	char	firmware_version[64];
810 	char	model[256];
811 	char	model_description[256];
812 };
813 #endif
814 
815 #define MAX_PHYS_ITEM_ID_LEN 32
816 
817 /* This structure holds a unique identifier to identify some
818  * physical item (port for example) used by a netdevice.
819  */
820 struct netdev_phys_item_id {
821 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
822 	unsigned char id_len;
823 };
824 
825 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
826 					    struct netdev_phys_item_id *b)
827 {
828 	return a->id_len == b->id_len &&
829 	       memcmp(a->id, b->id, a->id_len) == 0;
830 }
831 
832 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
833 				       struct sk_buff *skb,
834 				       struct net_device *sb_dev);
835 
836 enum tc_setup_type {
837 	TC_SETUP_QDISC_MQPRIO,
838 	TC_SETUP_CLSU32,
839 	TC_SETUP_CLSFLOWER,
840 	TC_SETUP_CLSMATCHALL,
841 	TC_SETUP_CLSBPF,
842 	TC_SETUP_BLOCK,
843 	TC_SETUP_QDISC_CBS,
844 	TC_SETUP_QDISC_RED,
845 	TC_SETUP_QDISC_PRIO,
846 	TC_SETUP_QDISC_MQ,
847 	TC_SETUP_QDISC_ETF,
848 	TC_SETUP_ROOT_QDISC,
849 	TC_SETUP_QDISC_GRED,
850 	TC_SETUP_QDISC_TAPRIO,
851 	TC_SETUP_FT,
852 	TC_SETUP_QDISC_ETS,
853 	TC_SETUP_QDISC_TBF,
854 	TC_SETUP_QDISC_FIFO,
855 };
856 
857 /* These structures hold the attributes of bpf state that are being passed
858  * to the netdevice through the bpf op.
859  */
860 enum bpf_netdev_command {
861 	/* Set or clear a bpf program used in the earliest stages of packet
862 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
863 	 * is responsible for calling bpf_prog_put on any old progs that are
864 	 * stored. In case of error, the callee need not release the new prog
865 	 * reference, but on success it takes ownership and must bpf_prog_put
866 	 * when it is no longer used.
867 	 */
868 	XDP_SETUP_PROG,
869 	XDP_SETUP_PROG_HW,
870 	/* BPF program for offload callbacks, invoked at program load time. */
871 	BPF_OFFLOAD_MAP_ALLOC,
872 	BPF_OFFLOAD_MAP_FREE,
873 	XDP_SETUP_XSK_POOL,
874 };
875 
876 struct bpf_prog_offload_ops;
877 struct netlink_ext_ack;
878 struct xdp_umem;
879 struct xdp_dev_bulk_queue;
880 struct bpf_xdp_link;
881 
882 enum bpf_xdp_mode {
883 	XDP_MODE_SKB = 0,
884 	XDP_MODE_DRV = 1,
885 	XDP_MODE_HW = 2,
886 	__MAX_XDP_MODE
887 };
888 
889 struct bpf_xdp_entity {
890 	struct bpf_prog *prog;
891 	struct bpf_xdp_link *link;
892 };
893 
894 struct netdev_bpf {
895 	enum bpf_netdev_command command;
896 	union {
897 		/* XDP_SETUP_PROG */
898 		struct {
899 			u32 flags;
900 			struct bpf_prog *prog;
901 			struct netlink_ext_ack *extack;
902 		};
903 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
904 		struct {
905 			struct bpf_offloaded_map *offmap;
906 		};
907 		/* XDP_SETUP_XSK_POOL */
908 		struct {
909 			struct xsk_buff_pool *pool;
910 			u16 queue_id;
911 		} xsk;
912 	};
913 };
914 
915 /* Flags for ndo_xsk_wakeup. */
916 #define XDP_WAKEUP_RX (1 << 0)
917 #define XDP_WAKEUP_TX (1 << 1)
918 
919 #ifdef CONFIG_XFRM_OFFLOAD
920 struct xfrmdev_ops {
921 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
922 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
923 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
924 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
925 				       struct xfrm_state *x);
926 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
927 };
928 #endif
929 
930 struct dev_ifalias {
931 	struct rcu_head rcuhead;
932 	char ifalias[];
933 };
934 
935 struct devlink;
936 struct tlsdev_ops;
937 
938 struct netdev_name_node {
939 	struct hlist_node hlist;
940 	struct list_head list;
941 	struct net_device *dev;
942 	const char *name;
943 };
944 
945 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
946 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
947 
948 struct netdev_net_notifier {
949 	struct list_head list;
950 	struct notifier_block *nb;
951 };
952 
953 /*
954  * This structure defines the management hooks for network devices.
955  * The following hooks can be defined; unless noted otherwise, they are
956  * optional and can be filled with a null pointer.
957  *
958  * int (*ndo_init)(struct net_device *dev);
959  *     This function is called once when a network device is registered.
960  *     The network device can use this for any late stage initialization
961  *     or semantic validation. It can fail with an error code which will
962  *     be propagated back to register_netdev.
963  *
964  * void (*ndo_uninit)(struct net_device *dev);
965  *     This function is called when device is unregistered or when registration
966  *     fails. It is not called if init fails.
967  *
968  * int (*ndo_open)(struct net_device *dev);
969  *     This function is called when a network device transitions to the up
970  *     state.
971  *
972  * int (*ndo_stop)(struct net_device *dev);
973  *     This function is called when a network device transitions to the down
974  *     state.
975  *
976  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
977  *                               struct net_device *dev);
978  *	Called when a packet needs to be transmitted.
979  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
980  *	the queue before that can happen; it's for obsolete devices and weird
981  *	corner cases, but the stack really does a non-trivial amount
982  *	of useless work if you return NETDEV_TX_BUSY.
983  *	Required; cannot be NULL.
984  *
985  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
986  *					   struct net_device *dev
987  *					   netdev_features_t features);
988  *	Called by core transmit path to determine if device is capable of
989  *	performing offload operations on a given packet. This is to give
990  *	the device an opportunity to implement any restrictions that cannot
991  *	be otherwise expressed by feature flags. The check is called with
992  *	the set of features that the stack has calculated and it returns
993  *	those the driver believes to be appropriate.
994  *
995  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
996  *                         struct net_device *sb_dev);
997  *	Called to decide which queue to use when device supports multiple
998  *	transmit queues.
999  *
1000  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1001  *	This function is called to allow device receiver to make
1002  *	changes to configuration when multicast or promiscuous is enabled.
1003  *
1004  * void (*ndo_set_rx_mode)(struct net_device *dev);
1005  *	This function is called device changes address list filtering.
1006  *	If driver handles unicast address filtering, it should set
1007  *	IFF_UNICAST_FLT in its priv_flags.
1008  *
1009  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1010  *	This function  is called when the Media Access Control address
1011  *	needs to be changed. If this interface is not defined, the
1012  *	MAC address can not be changed.
1013  *
1014  * int (*ndo_validate_addr)(struct net_device *dev);
1015  *	Test if Media Access Control address is valid for the device.
1016  *
1017  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1018  *	Called when a user requests an ioctl which can't be handled by
1019  *	the generic interface code. If not defined ioctls return
1020  *	not supported error code.
1021  *
1022  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1023  *	Used to set network devices bus interface parameters. This interface
1024  *	is retained for legacy reasons; new devices should use the bus
1025  *	interface (PCI) for low level management.
1026  *
1027  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1028  *	Called when a user wants to change the Maximum Transfer Unit
1029  *	of a device.
1030  *
1031  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1032  *	Callback used when the transmitter has not made any progress
1033  *	for dev->watchdog ticks.
1034  *
1035  * void (*ndo_get_stats64)(struct net_device *dev,
1036  *                         struct rtnl_link_stats64 *storage);
1037  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1038  *	Called when a user wants to get the network device usage
1039  *	statistics. Drivers must do one of the following:
1040  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1041  *	   rtnl_link_stats64 structure passed by the caller.
1042  *	2. Define @ndo_get_stats to update a net_device_stats structure
1043  *	   (which should normally be dev->stats) and return a pointer to
1044  *	   it. The structure may be changed asynchronously only if each
1045  *	   field is written atomically.
1046  *	3. Update dev->stats asynchronously and atomically, and define
1047  *	   neither operation.
1048  *
1049  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1050  *	Return true if this device supports offload stats of this attr_id.
1051  *
1052  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1053  *	void *attr_data)
1054  *	Get statistics for offload operations by attr_id. Write it into the
1055  *	attr_data pointer.
1056  *
1057  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1058  *	If device supports VLAN filtering this function is called when a
1059  *	VLAN id is registered.
1060  *
1061  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1062  *	If device supports VLAN filtering this function is called when a
1063  *	VLAN id is unregistered.
1064  *
1065  * void (*ndo_poll_controller)(struct net_device *dev);
1066  *
1067  *	SR-IOV management functions.
1068  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1069  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1070  *			  u8 qos, __be16 proto);
1071  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1072  *			  int max_tx_rate);
1073  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1074  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1075  * int (*ndo_get_vf_config)(struct net_device *dev,
1076  *			    int vf, struct ifla_vf_info *ivf);
1077  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1078  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1079  *			  struct nlattr *port[]);
1080  *
1081  *      Enable or disable the VF ability to query its RSS Redirection Table and
1082  *      Hash Key. This is needed since on some devices VF share this information
1083  *      with PF and querying it may introduce a theoretical security risk.
1084  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1085  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1086  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1087  *		       void *type_data);
1088  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1089  *	This is always called from the stack with the rtnl lock held and netif
1090  *	tx queues stopped. This allows the netdevice to perform queue
1091  *	management safely.
1092  *
1093  *	Fiber Channel over Ethernet (FCoE) offload functions.
1094  * int (*ndo_fcoe_enable)(struct net_device *dev);
1095  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1096  *	so the underlying device can perform whatever needed configuration or
1097  *	initialization to support acceleration of FCoE traffic.
1098  *
1099  * int (*ndo_fcoe_disable)(struct net_device *dev);
1100  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1101  *	so the underlying device can perform whatever needed clean-ups to
1102  *	stop supporting acceleration of FCoE traffic.
1103  *
1104  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1105  *			     struct scatterlist *sgl, unsigned int sgc);
1106  *	Called when the FCoE Initiator wants to initialize an I/O that
1107  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1108  *	perform necessary setup and returns 1 to indicate the device is set up
1109  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1110  *
1111  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1112  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1113  *	indicated by the FC exchange id 'xid', so the underlying device can
1114  *	clean up and reuse resources for later DDP requests.
1115  *
1116  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1117  *			      struct scatterlist *sgl, unsigned int sgc);
1118  *	Called when the FCoE Target wants to initialize an I/O that
1119  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1120  *	perform necessary setup and returns 1 to indicate the device is set up
1121  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1122  *
1123  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1124  *			       struct netdev_fcoe_hbainfo *hbainfo);
1125  *	Called when the FCoE Protocol stack wants information on the underlying
1126  *	device. This information is utilized by the FCoE protocol stack to
1127  *	register attributes with Fiber Channel management service as per the
1128  *	FC-GS Fabric Device Management Information(FDMI) specification.
1129  *
1130  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1131  *	Called when the underlying device wants to override default World Wide
1132  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1133  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1134  *	protocol stack to use.
1135  *
1136  *	RFS acceleration.
1137  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1138  *			    u16 rxq_index, u32 flow_id);
1139  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1140  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1141  *	Return the filter ID on success, or a negative error code.
1142  *
1143  *	Slave management functions (for bridge, bonding, etc).
1144  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1145  *	Called to make another netdev an underling.
1146  *
1147  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1148  *	Called to release previously enslaved netdev.
1149  *
1150  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1151  *					    struct sk_buff *skb,
1152  *					    bool all_slaves);
1153  *	Get the xmit slave of master device. If all_slaves is true, function
1154  *	assume all the slaves can transmit.
1155  *
1156  *      Feature/offload setting functions.
1157  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1158  *		netdev_features_t features);
1159  *	Adjusts the requested feature flags according to device-specific
1160  *	constraints, and returns the resulting flags. Must not modify
1161  *	the device state.
1162  *
1163  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1164  *	Called to update device configuration to new features. Passed
1165  *	feature set might be less than what was returned by ndo_fix_features()).
1166  *	Must return >0 or -errno if it changed dev->features itself.
1167  *
1168  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1169  *		      struct net_device *dev,
1170  *		      const unsigned char *addr, u16 vid, u16 flags,
1171  *		      struct netlink_ext_ack *extack);
1172  *	Adds an FDB entry to dev for addr.
1173  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1174  *		      struct net_device *dev,
1175  *		      const unsigned char *addr, u16 vid)
1176  *	Deletes the FDB entry from dev coresponding to addr.
1177  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1178  *		       struct net_device *dev, struct net_device *filter_dev,
1179  *		       int *idx)
1180  *	Used to add FDB entries to dump requests. Implementers should add
1181  *	entries to skb and update idx with the number of entries.
1182  *
1183  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1184  *			     u16 flags, struct netlink_ext_ack *extack)
1185  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1186  *			     struct net_device *dev, u32 filter_mask,
1187  *			     int nlflags)
1188  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1189  *			     u16 flags);
1190  *
1191  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1192  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1193  *	which do not represent real hardware may define this to allow their
1194  *	userspace components to manage their virtual carrier state. Devices
1195  *	that determine carrier state from physical hardware properties (eg
1196  *	network cables) or protocol-dependent mechanisms (eg
1197  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1198  *
1199  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1200  *			       struct netdev_phys_item_id *ppid);
1201  *	Called to get ID of physical port of this device. If driver does
1202  *	not implement this, it is assumed that the hw is not able to have
1203  *	multiple net devices on single physical port.
1204  *
1205  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1206  *				 struct netdev_phys_item_id *ppid)
1207  *	Called to get the parent ID of the physical port of this device.
1208  *
1209  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1210  *			      struct udp_tunnel_info *ti);
1211  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1212  *	address family that a UDP tunnel is listnening to. It is called only
1213  *	when a new port starts listening. The operation is protected by the
1214  *	RTNL.
1215  *
1216  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1217  *			      struct udp_tunnel_info *ti);
1218  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1219  *	address family that the UDP tunnel is not listening to anymore. The
1220  *	operation is protected by the RTNL.
1221  *
1222  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1223  *				 struct net_device *dev)
1224  *	Called by upper layer devices to accelerate switching or other
1225  *	station functionality into hardware. 'pdev is the lowerdev
1226  *	to use for the offload and 'dev' is the net device that will
1227  *	back the offload. Returns a pointer to the private structure
1228  *	the upper layer will maintain.
1229  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1230  *	Called by upper layer device to delete the station created
1231  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1232  *	the station and priv is the structure returned by the add
1233  *	operation.
1234  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1235  *			     int queue_index, u32 maxrate);
1236  *	Called when a user wants to set a max-rate limitation of specific
1237  *	TX queue.
1238  * int (*ndo_get_iflink)(const struct net_device *dev);
1239  *	Called to get the iflink value of this device.
1240  * void (*ndo_change_proto_down)(struct net_device *dev,
1241  *				 bool proto_down);
1242  *	This function is used to pass protocol port error state information
1243  *	to the switch driver. The switch driver can react to the proto_down
1244  *      by doing a phys down on the associated switch port.
1245  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1246  *	This function is used to get egress tunnel information for given skb.
1247  *	This is useful for retrieving outer tunnel header parameters while
1248  *	sampling packet.
1249  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1250  *	This function is used to specify the headroom that the skb must
1251  *	consider when allocation skb during packet reception. Setting
1252  *	appropriate rx headroom value allows avoiding skb head copy on
1253  *	forward. Setting a negative value resets the rx headroom to the
1254  *	default value.
1255  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1256  *	This function is used to set or query state related to XDP on the
1257  *	netdevice and manage BPF offload. See definition of
1258  *	enum bpf_netdev_command for details.
1259  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1260  *			u32 flags);
1261  *	This function is used to submit @n XDP packets for transmit on a
1262  *	netdevice. Returns number of frames successfully transmitted, frames
1263  *	that got dropped are freed/returned via xdp_return_frame().
1264  *	Returns negative number, means general error invoking ndo, meaning
1265  *	no frames were xmit'ed and core-caller will free all frames.
1266  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1267  *      This function is used to wake up the softirq, ksoftirqd or kthread
1268  *	responsible for sending and/or receiving packets on a specific
1269  *	queue id bound to an AF_XDP socket. The flags field specifies if
1270  *	only RX, only Tx, or both should be woken up using the flags
1271  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1272  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1273  *	Get devlink port instance associated with a given netdev.
1274  *	Called with a reference on the netdevice and devlink locks only,
1275  *	rtnl_lock is not held.
1276  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1277  *			 int cmd);
1278  *	Add, change, delete or get information on an IPv4 tunnel.
1279  */
1280 struct net_device_ops {
1281 	int			(*ndo_init)(struct net_device *dev);
1282 	void			(*ndo_uninit)(struct net_device *dev);
1283 	int			(*ndo_open)(struct net_device *dev);
1284 	int			(*ndo_stop)(struct net_device *dev);
1285 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1286 						  struct net_device *dev);
1287 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1288 						      struct net_device *dev,
1289 						      netdev_features_t features);
1290 	u16			(*ndo_select_queue)(struct net_device *dev,
1291 						    struct sk_buff *skb,
1292 						    struct net_device *sb_dev);
1293 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1294 						       int flags);
1295 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1296 	int			(*ndo_set_mac_address)(struct net_device *dev,
1297 						       void *addr);
1298 	int			(*ndo_validate_addr)(struct net_device *dev);
1299 	int			(*ndo_do_ioctl)(struct net_device *dev,
1300 					        struct ifreq *ifr, int cmd);
1301 	int			(*ndo_set_config)(struct net_device *dev,
1302 					          struct ifmap *map);
1303 	int			(*ndo_change_mtu)(struct net_device *dev,
1304 						  int new_mtu);
1305 	int			(*ndo_neigh_setup)(struct net_device *dev,
1306 						   struct neigh_parms *);
1307 	void			(*ndo_tx_timeout) (struct net_device *dev,
1308 						   unsigned int txqueue);
1309 
1310 	void			(*ndo_get_stats64)(struct net_device *dev,
1311 						   struct rtnl_link_stats64 *storage);
1312 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1313 	int			(*ndo_get_offload_stats)(int attr_id,
1314 							 const struct net_device *dev,
1315 							 void *attr_data);
1316 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1317 
1318 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1319 						       __be16 proto, u16 vid);
1320 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1321 						        __be16 proto, u16 vid);
1322 #ifdef CONFIG_NET_POLL_CONTROLLER
1323 	void                    (*ndo_poll_controller)(struct net_device *dev);
1324 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1325 						     struct netpoll_info *info);
1326 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1327 #endif
1328 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1329 						  int queue, u8 *mac);
1330 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1331 						   int queue, u16 vlan,
1332 						   u8 qos, __be16 proto);
1333 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1334 						   int vf, int min_tx_rate,
1335 						   int max_tx_rate);
1336 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1337 						       int vf, bool setting);
1338 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1339 						    int vf, bool setting);
1340 	int			(*ndo_get_vf_config)(struct net_device *dev,
1341 						     int vf,
1342 						     struct ifla_vf_info *ivf);
1343 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1344 							 int vf, int link_state);
1345 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1346 						    int vf,
1347 						    struct ifla_vf_stats
1348 						    *vf_stats);
1349 	int			(*ndo_set_vf_port)(struct net_device *dev,
1350 						   int vf,
1351 						   struct nlattr *port[]);
1352 	int			(*ndo_get_vf_port)(struct net_device *dev,
1353 						   int vf, struct sk_buff *skb);
1354 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1355 						   int vf,
1356 						   struct ifla_vf_guid *node_guid,
1357 						   struct ifla_vf_guid *port_guid);
1358 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1359 						   int vf, u64 guid,
1360 						   int guid_type);
1361 	int			(*ndo_set_vf_rss_query_en)(
1362 						   struct net_device *dev,
1363 						   int vf, bool setting);
1364 	int			(*ndo_setup_tc)(struct net_device *dev,
1365 						enum tc_setup_type type,
1366 						void *type_data);
1367 #if IS_ENABLED(CONFIG_FCOE)
1368 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1369 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1370 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1371 						      u16 xid,
1372 						      struct scatterlist *sgl,
1373 						      unsigned int sgc);
1374 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1375 						     u16 xid);
1376 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1377 						       u16 xid,
1378 						       struct scatterlist *sgl,
1379 						       unsigned int sgc);
1380 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1381 							struct netdev_fcoe_hbainfo *hbainfo);
1382 #endif
1383 
1384 #if IS_ENABLED(CONFIG_LIBFCOE)
1385 #define NETDEV_FCOE_WWNN 0
1386 #define NETDEV_FCOE_WWPN 1
1387 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1388 						    u64 *wwn, int type);
1389 #endif
1390 
1391 #ifdef CONFIG_RFS_ACCEL
1392 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1393 						     const struct sk_buff *skb,
1394 						     u16 rxq_index,
1395 						     u32 flow_id);
1396 #endif
1397 	int			(*ndo_add_slave)(struct net_device *dev,
1398 						 struct net_device *slave_dev,
1399 						 struct netlink_ext_ack *extack);
1400 	int			(*ndo_del_slave)(struct net_device *dev,
1401 						 struct net_device *slave_dev);
1402 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1403 						      struct sk_buff *skb,
1404 						      bool all_slaves);
1405 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1406 						    netdev_features_t features);
1407 	int			(*ndo_set_features)(struct net_device *dev,
1408 						    netdev_features_t features);
1409 	int			(*ndo_neigh_construct)(struct net_device *dev,
1410 						       struct neighbour *n);
1411 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1412 						     struct neighbour *n);
1413 
1414 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1415 					       struct nlattr *tb[],
1416 					       struct net_device *dev,
1417 					       const unsigned char *addr,
1418 					       u16 vid,
1419 					       u16 flags,
1420 					       struct netlink_ext_ack *extack);
1421 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1422 					       struct nlattr *tb[],
1423 					       struct net_device *dev,
1424 					       const unsigned char *addr,
1425 					       u16 vid);
1426 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1427 						struct netlink_callback *cb,
1428 						struct net_device *dev,
1429 						struct net_device *filter_dev,
1430 						int *idx);
1431 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1432 					       struct nlattr *tb[],
1433 					       struct net_device *dev,
1434 					       const unsigned char *addr,
1435 					       u16 vid, u32 portid, u32 seq,
1436 					       struct netlink_ext_ack *extack);
1437 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1438 						      struct nlmsghdr *nlh,
1439 						      u16 flags,
1440 						      struct netlink_ext_ack *extack);
1441 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1442 						      u32 pid, u32 seq,
1443 						      struct net_device *dev,
1444 						      u32 filter_mask,
1445 						      int nlflags);
1446 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1447 						      struct nlmsghdr *nlh,
1448 						      u16 flags);
1449 	int			(*ndo_change_carrier)(struct net_device *dev,
1450 						      bool new_carrier);
1451 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1452 							struct netdev_phys_item_id *ppid);
1453 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1454 							  struct netdev_phys_item_id *ppid);
1455 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1456 							  char *name, size_t len);
1457 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1458 						      struct udp_tunnel_info *ti);
1459 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1460 						      struct udp_tunnel_info *ti);
1461 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1462 							struct net_device *dev);
1463 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1464 							void *priv);
1465 
1466 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1467 						      int queue_index,
1468 						      u32 maxrate);
1469 	int			(*ndo_get_iflink)(const struct net_device *dev);
1470 	int			(*ndo_change_proto_down)(struct net_device *dev,
1471 							 bool proto_down);
1472 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1473 						       struct sk_buff *skb);
1474 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1475 						       int needed_headroom);
1476 	int			(*ndo_bpf)(struct net_device *dev,
1477 					   struct netdev_bpf *bpf);
1478 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1479 						struct xdp_frame **xdp,
1480 						u32 flags);
1481 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1482 						  u32 queue_id, u32 flags);
1483 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1484 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1485 						  struct ip_tunnel_parm *p, int cmd);
1486 };
1487 
1488 /**
1489  * enum net_device_priv_flags - &struct net_device priv_flags
1490  *
1491  * These are the &struct net_device, they are only set internally
1492  * by drivers and used in the kernel. These flags are invisible to
1493  * userspace; this means that the order of these flags can change
1494  * during any kernel release.
1495  *
1496  * You should have a pretty good reason to be extending these flags.
1497  *
1498  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1499  * @IFF_EBRIDGE: Ethernet bridging device
1500  * @IFF_BONDING: bonding master or slave
1501  * @IFF_ISATAP: ISATAP interface (RFC4214)
1502  * @IFF_WAN_HDLC: WAN HDLC device
1503  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1504  *	release skb->dst
1505  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1506  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1507  * @IFF_MACVLAN_PORT: device used as macvlan port
1508  * @IFF_BRIDGE_PORT: device used as bridge port
1509  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1510  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1511  * @IFF_UNICAST_FLT: Supports unicast filtering
1512  * @IFF_TEAM_PORT: device used as team port
1513  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1514  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1515  *	change when it's running
1516  * @IFF_MACVLAN: Macvlan device
1517  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1518  *	underlying stacked devices
1519  * @IFF_L3MDEV_MASTER: device is an L3 master device
1520  * @IFF_NO_QUEUE: device can run without qdisc attached
1521  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1522  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1523  * @IFF_TEAM: device is a team device
1524  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1525  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1526  *	entity (i.e. the master device for bridged veth)
1527  * @IFF_MACSEC: device is a MACsec device
1528  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1529  * @IFF_FAILOVER: device is a failover master device
1530  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1531  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1532  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1533  */
1534 enum netdev_priv_flags {
1535 	IFF_802_1Q_VLAN			= 1<<0,
1536 	IFF_EBRIDGE			= 1<<1,
1537 	IFF_BONDING			= 1<<2,
1538 	IFF_ISATAP			= 1<<3,
1539 	IFF_WAN_HDLC			= 1<<4,
1540 	IFF_XMIT_DST_RELEASE		= 1<<5,
1541 	IFF_DONT_BRIDGE			= 1<<6,
1542 	IFF_DISABLE_NETPOLL		= 1<<7,
1543 	IFF_MACVLAN_PORT		= 1<<8,
1544 	IFF_BRIDGE_PORT			= 1<<9,
1545 	IFF_OVS_DATAPATH		= 1<<10,
1546 	IFF_TX_SKB_SHARING		= 1<<11,
1547 	IFF_UNICAST_FLT			= 1<<12,
1548 	IFF_TEAM_PORT			= 1<<13,
1549 	IFF_SUPP_NOFCS			= 1<<14,
1550 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1551 	IFF_MACVLAN			= 1<<16,
1552 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1553 	IFF_L3MDEV_MASTER		= 1<<18,
1554 	IFF_NO_QUEUE			= 1<<19,
1555 	IFF_OPENVSWITCH			= 1<<20,
1556 	IFF_L3MDEV_SLAVE		= 1<<21,
1557 	IFF_TEAM			= 1<<22,
1558 	IFF_RXFH_CONFIGURED		= 1<<23,
1559 	IFF_PHONY_HEADROOM		= 1<<24,
1560 	IFF_MACSEC			= 1<<25,
1561 	IFF_NO_RX_HANDLER		= 1<<26,
1562 	IFF_FAILOVER			= 1<<27,
1563 	IFF_FAILOVER_SLAVE		= 1<<28,
1564 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1565 	IFF_LIVE_RENAME_OK		= 1<<30,
1566 };
1567 
1568 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1569 #define IFF_EBRIDGE			IFF_EBRIDGE
1570 #define IFF_BONDING			IFF_BONDING
1571 #define IFF_ISATAP			IFF_ISATAP
1572 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1573 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1574 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1575 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1576 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1577 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1578 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1579 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1580 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1581 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1582 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1583 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1584 #define IFF_MACVLAN			IFF_MACVLAN
1585 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1586 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1587 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1588 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1589 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1590 #define IFF_TEAM			IFF_TEAM
1591 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1592 #define IFF_MACSEC			IFF_MACSEC
1593 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1594 #define IFF_FAILOVER			IFF_FAILOVER
1595 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1596 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1597 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1598 
1599 /**
1600  *	struct net_device - The DEVICE structure.
1601  *
1602  *	Actually, this whole structure is a big mistake.  It mixes I/O
1603  *	data with strictly "high-level" data, and it has to know about
1604  *	almost every data structure used in the INET module.
1605  *
1606  *	@name:	This is the first field of the "visible" part of this structure
1607  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1608  *		of the interface.
1609  *
1610  *	@name_node:	Name hashlist node
1611  *	@ifalias:	SNMP alias
1612  *	@mem_end:	Shared memory end
1613  *	@mem_start:	Shared memory start
1614  *	@base_addr:	Device I/O address
1615  *	@irq:		Device IRQ number
1616  *
1617  *	@state:		Generic network queuing layer state, see netdev_state_t
1618  *	@dev_list:	The global list of network devices
1619  *	@napi_list:	List entry used for polling NAPI devices
1620  *	@unreg_list:	List entry  when we are unregistering the
1621  *			device; see the function unregister_netdev
1622  *	@close_list:	List entry used when we are closing the device
1623  *	@ptype_all:     Device-specific packet handlers for all protocols
1624  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1625  *
1626  *	@adj_list:	Directly linked devices, like slaves for bonding
1627  *	@features:	Currently active device features
1628  *	@hw_features:	User-changeable features
1629  *
1630  *	@wanted_features:	User-requested features
1631  *	@vlan_features:		Mask of features inheritable by VLAN devices
1632  *
1633  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1634  *				This field indicates what encapsulation
1635  *				offloads the hardware is capable of doing,
1636  *				and drivers will need to set them appropriately.
1637  *
1638  *	@mpls_features:	Mask of features inheritable by MPLS
1639  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1640  *
1641  *	@ifindex:	interface index
1642  *	@group:		The group the device belongs to
1643  *
1644  *	@stats:		Statistics struct, which was left as a legacy, use
1645  *			rtnl_link_stats64 instead
1646  *
1647  *	@rx_dropped:	Dropped packets by core network,
1648  *			do not use this in drivers
1649  *	@tx_dropped:	Dropped packets by core network,
1650  *			do not use this in drivers
1651  *	@rx_nohandler:	nohandler dropped packets by core network on
1652  *			inactive devices, do not use this in drivers
1653  *	@carrier_up_count:	Number of times the carrier has been up
1654  *	@carrier_down_count:	Number of times the carrier has been down
1655  *
1656  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1657  *				instead of ioctl,
1658  *				see <net/iw_handler.h> for details.
1659  *	@wireless_data:	Instance data managed by the core of wireless extensions
1660  *
1661  *	@netdev_ops:	Includes several pointers to callbacks,
1662  *			if one wants to override the ndo_*() functions
1663  *	@ethtool_ops:	Management operations
1664  *	@l3mdev_ops:	Layer 3 master device operations
1665  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1666  *			discovery handling. Necessary for e.g. 6LoWPAN.
1667  *	@xfrmdev_ops:	Transformation offload operations
1668  *	@tlsdev_ops:	Transport Layer Security offload operations
1669  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1670  *			of Layer 2 headers.
1671  *
1672  *	@flags:		Interface flags (a la BSD)
1673  *	@priv_flags:	Like 'flags' but invisible to userspace,
1674  *			see if.h for the definitions
1675  *	@gflags:	Global flags ( kept as legacy )
1676  *	@padded:	How much padding added by alloc_netdev()
1677  *	@operstate:	RFC2863 operstate
1678  *	@link_mode:	Mapping policy to operstate
1679  *	@if_port:	Selectable AUI, TP, ...
1680  *	@dma:		DMA channel
1681  *	@mtu:		Interface MTU value
1682  *	@min_mtu:	Interface Minimum MTU value
1683  *	@max_mtu:	Interface Maximum MTU value
1684  *	@type:		Interface hardware type
1685  *	@hard_header_len: Maximum hardware header length.
1686  *	@min_header_len:  Minimum hardware header length
1687  *
1688  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1689  *			  cases can this be guaranteed
1690  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1691  *			  cases can this be guaranteed. Some cases also use
1692  *			  LL_MAX_HEADER instead to allocate the skb
1693  *
1694  *	interface address info:
1695  *
1696  * 	@perm_addr:		Permanent hw address
1697  * 	@addr_assign_type:	Hw address assignment type
1698  * 	@addr_len:		Hardware address length
1699  *	@upper_level:		Maximum depth level of upper devices.
1700  *	@lower_level:		Maximum depth level of lower devices.
1701  *	@neigh_priv_len:	Used in neigh_alloc()
1702  * 	@dev_id:		Used to differentiate devices that share
1703  * 				the same link layer address
1704  * 	@dev_port:		Used to differentiate devices that share
1705  * 				the same function
1706  *	@addr_list_lock:	XXX: need comments on this one
1707  *	@name_assign_type:	network interface name assignment type
1708  *	@uc_promisc:		Counter that indicates promiscuous mode
1709  *				has been enabled due to the need to listen to
1710  *				additional unicast addresses in a device that
1711  *				does not implement ndo_set_rx_mode()
1712  *	@uc:			unicast mac addresses
1713  *	@mc:			multicast mac addresses
1714  *	@dev_addrs:		list of device hw addresses
1715  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1716  *	@promiscuity:		Number of times the NIC is told to work in
1717  *				promiscuous mode; if it becomes 0 the NIC will
1718  *				exit promiscuous mode
1719  *	@allmulti:		Counter, enables or disables allmulticast mode
1720  *
1721  *	@vlan_info:	VLAN info
1722  *	@dsa_ptr:	dsa specific data
1723  *	@tipc_ptr:	TIPC specific data
1724  *	@atalk_ptr:	AppleTalk link
1725  *	@ip_ptr:	IPv4 specific data
1726  *	@dn_ptr:	DECnet specific data
1727  *	@ip6_ptr:	IPv6 specific data
1728  *	@ax25_ptr:	AX.25 specific data
1729  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1730  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1731  *			 device struct
1732  *	@mpls_ptr:	mpls_dev struct pointer
1733  *
1734  *	@dev_addr:	Hw address (before bcast,
1735  *			because most packets are unicast)
1736  *
1737  *	@_rx:			Array of RX queues
1738  *	@num_rx_queues:		Number of RX queues
1739  *				allocated at register_netdev() time
1740  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1741  *	@xdp_prog:		XDP sockets filter program pointer
1742  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1743  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1744  *				allow to avoid NIC hard IRQ, on busy queues.
1745  *
1746  *	@rx_handler:		handler for received packets
1747  *	@rx_handler_data: 	XXX: need comments on this one
1748  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1749  *				ingress processing
1750  *	@ingress_queue:		XXX: need comments on this one
1751  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1752  *	@broadcast:		hw bcast address
1753  *
1754  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1755  *			indexed by RX queue number. Assigned by driver.
1756  *			This must only be set if the ndo_rx_flow_steer
1757  *			operation is defined
1758  *	@index_hlist:		Device index hash chain
1759  *
1760  *	@_tx:			Array of TX queues
1761  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1762  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1763  *	@qdisc:			Root qdisc from userspace point of view
1764  *	@tx_queue_len:		Max frames per queue allowed
1765  *	@tx_global_lock: 	XXX: need comments on this one
1766  *	@xdp_bulkq:		XDP device bulk queue
1767  *	@xps_cpus_map:		all CPUs map for XPS device
1768  *	@xps_rxqs_map:		all RXQs map for XPS device
1769  *
1770  *	@xps_maps:	XXX: need comments on this one
1771  *	@miniq_egress:		clsact qdisc specific data for
1772  *				egress processing
1773  *	@qdisc_hash:		qdisc hash table
1774  *	@watchdog_timeo:	Represents the timeout that is used by
1775  *				the watchdog (see dev_watchdog())
1776  *	@watchdog_timer:	List of timers
1777  *
1778  *	@proto_down_reason:	reason a netdev interface is held down
1779  *	@pcpu_refcnt:		Number of references to this device
1780  *	@todo_list:		Delayed register/unregister
1781  *	@link_watch_list:	XXX: need comments on this one
1782  *
1783  *	@reg_state:		Register/unregister state machine
1784  *	@dismantle:		Device is going to be freed
1785  *	@rtnl_link_state:	This enum represents the phases of creating
1786  *				a new link
1787  *
1788  *	@needs_free_netdev:	Should unregister perform free_netdev?
1789  *	@priv_destructor:	Called from unregister
1790  *	@npinfo:		XXX: need comments on this one
1791  * 	@nd_net:		Network namespace this network device is inside
1792  *
1793  * 	@ml_priv:	Mid-layer private
1794  * 	@lstats:	Loopback statistics
1795  * 	@tstats:	Tunnel statistics
1796  * 	@dstats:	Dummy statistics
1797  * 	@vstats:	Virtual ethernet statistics
1798  *
1799  *	@garp_port:	GARP
1800  *	@mrp_port:	MRP
1801  *
1802  *	@dev:		Class/net/name entry
1803  *	@sysfs_groups:	Space for optional device, statistics and wireless
1804  *			sysfs groups
1805  *
1806  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1807  *	@rtnl_link_ops:	Rtnl_link_ops
1808  *
1809  *	@gso_max_size:	Maximum size of generic segmentation offload
1810  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1811  *			NIC for GSO
1812  *
1813  *	@dcbnl_ops:	Data Center Bridging netlink ops
1814  *	@num_tc:	Number of traffic classes in the net device
1815  *	@tc_to_txq:	XXX: need comments on this one
1816  *	@prio_tc_map:	XXX: need comments on this one
1817  *
1818  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1819  *
1820  *	@priomap:	XXX: need comments on this one
1821  *	@phydev:	Physical device may attach itself
1822  *			for hardware timestamping
1823  *	@sfp_bus:	attached &struct sfp_bus structure.
1824  *
1825  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1826  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1827  *
1828  *	@proto_down:	protocol port state information can be sent to the
1829  *			switch driver and used to set the phys state of the
1830  *			switch port.
1831  *
1832  *	@wol_enabled:	Wake-on-LAN is enabled
1833  *
1834  *	@net_notifier_list:	List of per-net netdev notifier block
1835  *				that follow this device when it is moved
1836  *				to another network namespace.
1837  *
1838  *	@macsec_ops:    MACsec offloading ops
1839  *
1840  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1841  *				offload capabilities of the device
1842  *	@udp_tunnel_nic:	UDP tunnel offload state
1843  *	@xdp_state:		stores info on attached XDP BPF programs
1844  *
1845  *	FIXME: cleanup struct net_device such that network protocol info
1846  *	moves out.
1847  */
1848 
1849 struct net_device {
1850 	char			name[IFNAMSIZ];
1851 	struct netdev_name_node	*name_node;
1852 	struct dev_ifalias	__rcu *ifalias;
1853 	/*
1854 	 *	I/O specific fields
1855 	 *	FIXME: Merge these and struct ifmap into one
1856 	 */
1857 	unsigned long		mem_end;
1858 	unsigned long		mem_start;
1859 	unsigned long		base_addr;
1860 	int			irq;
1861 
1862 	/*
1863 	 *	Some hardware also needs these fields (state,dev_list,
1864 	 *	napi_list,unreg_list,close_list) but they are not
1865 	 *	part of the usual set specified in Space.c.
1866 	 */
1867 
1868 	unsigned long		state;
1869 
1870 	struct list_head	dev_list;
1871 	struct list_head	napi_list;
1872 	struct list_head	unreg_list;
1873 	struct list_head	close_list;
1874 	struct list_head	ptype_all;
1875 	struct list_head	ptype_specific;
1876 
1877 	struct {
1878 		struct list_head upper;
1879 		struct list_head lower;
1880 	} adj_list;
1881 
1882 	netdev_features_t	features;
1883 	netdev_features_t	hw_features;
1884 	netdev_features_t	wanted_features;
1885 	netdev_features_t	vlan_features;
1886 	netdev_features_t	hw_enc_features;
1887 	netdev_features_t	mpls_features;
1888 	netdev_features_t	gso_partial_features;
1889 
1890 	int			ifindex;
1891 	int			group;
1892 
1893 	struct net_device_stats	stats;
1894 
1895 	atomic_long_t		rx_dropped;
1896 	atomic_long_t		tx_dropped;
1897 	atomic_long_t		rx_nohandler;
1898 
1899 	/* Stats to monitor link on/off, flapping */
1900 	atomic_t		carrier_up_count;
1901 	atomic_t		carrier_down_count;
1902 
1903 #ifdef CONFIG_WIRELESS_EXT
1904 	const struct iw_handler_def *wireless_handlers;
1905 	struct iw_public_data	*wireless_data;
1906 #endif
1907 	const struct net_device_ops *netdev_ops;
1908 	const struct ethtool_ops *ethtool_ops;
1909 #ifdef CONFIG_NET_L3_MASTER_DEV
1910 	const struct l3mdev_ops	*l3mdev_ops;
1911 #endif
1912 #if IS_ENABLED(CONFIG_IPV6)
1913 	const struct ndisc_ops *ndisc_ops;
1914 #endif
1915 
1916 #ifdef CONFIG_XFRM_OFFLOAD
1917 	const struct xfrmdev_ops *xfrmdev_ops;
1918 #endif
1919 
1920 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1921 	const struct tlsdev_ops *tlsdev_ops;
1922 #endif
1923 
1924 	const struct header_ops *header_ops;
1925 
1926 	unsigned int		flags;
1927 	unsigned int		priv_flags;
1928 
1929 	unsigned short		gflags;
1930 	unsigned short		padded;
1931 
1932 	unsigned char		operstate;
1933 	unsigned char		link_mode;
1934 
1935 	unsigned char		if_port;
1936 	unsigned char		dma;
1937 
1938 	/* Note : dev->mtu is often read without holding a lock.
1939 	 * Writers usually hold RTNL.
1940 	 * It is recommended to use READ_ONCE() to annotate the reads,
1941 	 * and to use WRITE_ONCE() to annotate the writes.
1942 	 */
1943 	unsigned int		mtu;
1944 	unsigned int		min_mtu;
1945 	unsigned int		max_mtu;
1946 	unsigned short		type;
1947 	unsigned short		hard_header_len;
1948 	unsigned char		min_header_len;
1949 
1950 	unsigned short		needed_headroom;
1951 	unsigned short		needed_tailroom;
1952 
1953 	/* Interface address info. */
1954 	unsigned char		perm_addr[MAX_ADDR_LEN];
1955 	unsigned char		addr_assign_type;
1956 	unsigned char		addr_len;
1957 	unsigned char		upper_level;
1958 	unsigned char		lower_level;
1959 	unsigned short		neigh_priv_len;
1960 	unsigned short          dev_id;
1961 	unsigned short          dev_port;
1962 	spinlock_t		addr_list_lock;
1963 	unsigned char		name_assign_type;
1964 	bool			uc_promisc;
1965 	struct netdev_hw_addr_list	uc;
1966 	struct netdev_hw_addr_list	mc;
1967 	struct netdev_hw_addr_list	dev_addrs;
1968 
1969 #ifdef CONFIG_SYSFS
1970 	struct kset		*queues_kset;
1971 #endif
1972 	unsigned int		promiscuity;
1973 	unsigned int		allmulti;
1974 
1975 
1976 	/* Protocol-specific pointers */
1977 
1978 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1979 	struct vlan_info __rcu	*vlan_info;
1980 #endif
1981 #if IS_ENABLED(CONFIG_NET_DSA)
1982 	struct dsa_port		*dsa_ptr;
1983 #endif
1984 #if IS_ENABLED(CONFIG_TIPC)
1985 	struct tipc_bearer __rcu *tipc_ptr;
1986 #endif
1987 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1988 	void 			*atalk_ptr;
1989 #endif
1990 	struct in_device __rcu	*ip_ptr;
1991 #if IS_ENABLED(CONFIG_DECNET)
1992 	struct dn_dev __rcu     *dn_ptr;
1993 #endif
1994 	struct inet6_dev __rcu	*ip6_ptr;
1995 #if IS_ENABLED(CONFIG_AX25)
1996 	void			*ax25_ptr;
1997 #endif
1998 	struct wireless_dev	*ieee80211_ptr;
1999 	struct wpan_dev		*ieee802154_ptr;
2000 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2001 	struct mpls_dev __rcu	*mpls_ptr;
2002 #endif
2003 
2004 /*
2005  * Cache lines mostly used on receive path (including eth_type_trans())
2006  */
2007 	/* Interface address info used in eth_type_trans() */
2008 	unsigned char		*dev_addr;
2009 
2010 	struct netdev_rx_queue	*_rx;
2011 	unsigned int		num_rx_queues;
2012 	unsigned int		real_num_rx_queues;
2013 
2014 	struct bpf_prog __rcu	*xdp_prog;
2015 	unsigned long		gro_flush_timeout;
2016 	int			napi_defer_hard_irqs;
2017 	rx_handler_func_t __rcu	*rx_handler;
2018 	void __rcu		*rx_handler_data;
2019 
2020 #ifdef CONFIG_NET_CLS_ACT
2021 	struct mini_Qdisc __rcu	*miniq_ingress;
2022 #endif
2023 	struct netdev_queue __rcu *ingress_queue;
2024 #ifdef CONFIG_NETFILTER_INGRESS
2025 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2026 #endif
2027 
2028 	unsigned char		broadcast[MAX_ADDR_LEN];
2029 #ifdef CONFIG_RFS_ACCEL
2030 	struct cpu_rmap		*rx_cpu_rmap;
2031 #endif
2032 	struct hlist_node	index_hlist;
2033 
2034 /*
2035  * Cache lines mostly used on transmit path
2036  */
2037 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2038 	unsigned int		num_tx_queues;
2039 	unsigned int		real_num_tx_queues;
2040 	struct Qdisc		*qdisc;
2041 	unsigned int		tx_queue_len;
2042 	spinlock_t		tx_global_lock;
2043 
2044 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2045 
2046 #ifdef CONFIG_XPS
2047 	struct xps_dev_maps __rcu *xps_cpus_map;
2048 	struct xps_dev_maps __rcu *xps_rxqs_map;
2049 #endif
2050 #ifdef CONFIG_NET_CLS_ACT
2051 	struct mini_Qdisc __rcu	*miniq_egress;
2052 #endif
2053 
2054 #ifdef CONFIG_NET_SCHED
2055 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2056 #endif
2057 	/* These may be needed for future network-power-down code. */
2058 	struct timer_list	watchdog_timer;
2059 	int			watchdog_timeo;
2060 
2061 	u32                     proto_down_reason;
2062 
2063 	struct list_head	todo_list;
2064 	int __percpu		*pcpu_refcnt;
2065 
2066 	struct list_head	link_watch_list;
2067 
2068 	enum { NETREG_UNINITIALIZED=0,
2069 	       NETREG_REGISTERED,	/* completed register_netdevice */
2070 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2071 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2072 	       NETREG_RELEASED,		/* called free_netdev */
2073 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2074 	} reg_state:8;
2075 
2076 	bool dismantle;
2077 
2078 	enum {
2079 		RTNL_LINK_INITIALIZED,
2080 		RTNL_LINK_INITIALIZING,
2081 	} rtnl_link_state:16;
2082 
2083 	bool needs_free_netdev;
2084 	void (*priv_destructor)(struct net_device *dev);
2085 
2086 #ifdef CONFIG_NETPOLL
2087 	struct netpoll_info __rcu	*npinfo;
2088 #endif
2089 
2090 	possible_net_t			nd_net;
2091 
2092 	/* mid-layer private */
2093 	union {
2094 		void					*ml_priv;
2095 		struct pcpu_lstats __percpu		*lstats;
2096 		struct pcpu_sw_netstats __percpu	*tstats;
2097 		struct pcpu_dstats __percpu		*dstats;
2098 	};
2099 
2100 #if IS_ENABLED(CONFIG_GARP)
2101 	struct garp_port __rcu	*garp_port;
2102 #endif
2103 #if IS_ENABLED(CONFIG_MRP)
2104 	struct mrp_port __rcu	*mrp_port;
2105 #endif
2106 
2107 	struct device		dev;
2108 	const struct attribute_group *sysfs_groups[4];
2109 	const struct attribute_group *sysfs_rx_queue_group;
2110 
2111 	const struct rtnl_link_ops *rtnl_link_ops;
2112 
2113 	/* for setting kernel sock attribute on TCP connection setup */
2114 #define GSO_MAX_SIZE		65536
2115 	unsigned int		gso_max_size;
2116 #define GSO_MAX_SEGS		65535
2117 	u16			gso_max_segs;
2118 
2119 #ifdef CONFIG_DCB
2120 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2121 #endif
2122 	s16			num_tc;
2123 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2124 	u8			prio_tc_map[TC_BITMASK + 1];
2125 
2126 #if IS_ENABLED(CONFIG_FCOE)
2127 	unsigned int		fcoe_ddp_xid;
2128 #endif
2129 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2130 	struct netprio_map __rcu *priomap;
2131 #endif
2132 	struct phy_device	*phydev;
2133 	struct sfp_bus		*sfp_bus;
2134 	struct lock_class_key	*qdisc_tx_busylock;
2135 	struct lock_class_key	*qdisc_running_key;
2136 	bool			proto_down;
2137 	unsigned		wol_enabled:1;
2138 
2139 	struct list_head	net_notifier_list;
2140 
2141 #if IS_ENABLED(CONFIG_MACSEC)
2142 	/* MACsec management functions */
2143 	const struct macsec_ops *macsec_ops;
2144 #endif
2145 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2146 	struct udp_tunnel_nic	*udp_tunnel_nic;
2147 
2148 	/* protected by rtnl_lock */
2149 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2150 };
2151 #define to_net_dev(d) container_of(d, struct net_device, dev)
2152 
2153 static inline bool netif_elide_gro(const struct net_device *dev)
2154 {
2155 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2156 		return true;
2157 	return false;
2158 }
2159 
2160 #define	NETDEV_ALIGN		32
2161 
2162 static inline
2163 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2164 {
2165 	return dev->prio_tc_map[prio & TC_BITMASK];
2166 }
2167 
2168 static inline
2169 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2170 {
2171 	if (tc >= dev->num_tc)
2172 		return -EINVAL;
2173 
2174 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2175 	return 0;
2176 }
2177 
2178 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2179 void netdev_reset_tc(struct net_device *dev);
2180 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2181 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2182 
2183 static inline
2184 int netdev_get_num_tc(struct net_device *dev)
2185 {
2186 	return dev->num_tc;
2187 }
2188 
2189 static inline void net_prefetch(void *p)
2190 {
2191 	prefetch(p);
2192 #if L1_CACHE_BYTES < 128
2193 	prefetch((u8 *)p + L1_CACHE_BYTES);
2194 #endif
2195 }
2196 
2197 static inline void net_prefetchw(void *p)
2198 {
2199 	prefetchw(p);
2200 #if L1_CACHE_BYTES < 128
2201 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2202 #endif
2203 }
2204 
2205 void netdev_unbind_sb_channel(struct net_device *dev,
2206 			      struct net_device *sb_dev);
2207 int netdev_bind_sb_channel_queue(struct net_device *dev,
2208 				 struct net_device *sb_dev,
2209 				 u8 tc, u16 count, u16 offset);
2210 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2211 static inline int netdev_get_sb_channel(struct net_device *dev)
2212 {
2213 	return max_t(int, -dev->num_tc, 0);
2214 }
2215 
2216 static inline
2217 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2218 					 unsigned int index)
2219 {
2220 	return &dev->_tx[index];
2221 }
2222 
2223 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2224 						    const struct sk_buff *skb)
2225 {
2226 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2227 }
2228 
2229 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2230 					    void (*f)(struct net_device *,
2231 						      struct netdev_queue *,
2232 						      void *),
2233 					    void *arg)
2234 {
2235 	unsigned int i;
2236 
2237 	for (i = 0; i < dev->num_tx_queues; i++)
2238 		f(dev, &dev->_tx[i], arg);
2239 }
2240 
2241 #define netdev_lockdep_set_classes(dev)				\
2242 {								\
2243 	static struct lock_class_key qdisc_tx_busylock_key;	\
2244 	static struct lock_class_key qdisc_running_key;		\
2245 	static struct lock_class_key qdisc_xmit_lock_key;	\
2246 	static struct lock_class_key dev_addr_list_lock_key;	\
2247 	unsigned int i;						\
2248 								\
2249 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2250 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2251 	lockdep_set_class(&(dev)->addr_list_lock,		\
2252 			  &dev_addr_list_lock_key);		\
2253 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2254 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2255 				  &qdisc_xmit_lock_key);	\
2256 }
2257 
2258 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2259 		     struct net_device *sb_dev);
2260 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2261 					 struct sk_buff *skb,
2262 					 struct net_device *sb_dev);
2263 
2264 /* returns the headroom that the master device needs to take in account
2265  * when forwarding to this dev
2266  */
2267 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2268 {
2269 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2270 }
2271 
2272 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2273 {
2274 	if (dev->netdev_ops->ndo_set_rx_headroom)
2275 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2276 }
2277 
2278 /* set the device rx headroom to the dev's default */
2279 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2280 {
2281 	netdev_set_rx_headroom(dev, -1);
2282 }
2283 
2284 /*
2285  * Net namespace inlines
2286  */
2287 static inline
2288 struct net *dev_net(const struct net_device *dev)
2289 {
2290 	return read_pnet(&dev->nd_net);
2291 }
2292 
2293 static inline
2294 void dev_net_set(struct net_device *dev, struct net *net)
2295 {
2296 	write_pnet(&dev->nd_net, net);
2297 }
2298 
2299 /**
2300  *	netdev_priv - access network device private data
2301  *	@dev: network device
2302  *
2303  * Get network device private data
2304  */
2305 static inline void *netdev_priv(const struct net_device *dev)
2306 {
2307 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2308 }
2309 
2310 /* Set the sysfs physical device reference for the network logical device
2311  * if set prior to registration will cause a symlink during initialization.
2312  */
2313 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2314 
2315 /* Set the sysfs device type for the network logical device to allow
2316  * fine-grained identification of different network device types. For
2317  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2318  */
2319 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2320 
2321 /* Default NAPI poll() weight
2322  * Device drivers are strongly advised to not use bigger value
2323  */
2324 #define NAPI_POLL_WEIGHT 64
2325 
2326 /**
2327  *	netif_napi_add - initialize a NAPI context
2328  *	@dev:  network device
2329  *	@napi: NAPI context
2330  *	@poll: polling function
2331  *	@weight: default weight
2332  *
2333  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2334  * *any* of the other NAPI-related functions.
2335  */
2336 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2337 		    int (*poll)(struct napi_struct *, int), int weight);
2338 
2339 /**
2340  *	netif_tx_napi_add - initialize a NAPI context
2341  *	@dev:  network device
2342  *	@napi: NAPI context
2343  *	@poll: polling function
2344  *	@weight: default weight
2345  *
2346  * This variant of netif_napi_add() should be used from drivers using NAPI
2347  * to exclusively poll a TX queue.
2348  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2349  */
2350 static inline void netif_tx_napi_add(struct net_device *dev,
2351 				     struct napi_struct *napi,
2352 				     int (*poll)(struct napi_struct *, int),
2353 				     int weight)
2354 {
2355 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2356 	netif_napi_add(dev, napi, poll, weight);
2357 }
2358 
2359 /**
2360  *  __netif_napi_del - remove a NAPI context
2361  *  @napi: NAPI context
2362  *
2363  * Warning: caller must observe RCU grace period before freeing memory
2364  * containing @napi. Drivers might want to call this helper to combine
2365  * all the needed RCU grace periods into a single one.
2366  */
2367 void __netif_napi_del(struct napi_struct *napi);
2368 
2369 /**
2370  *  netif_napi_del - remove a NAPI context
2371  *  @napi: NAPI context
2372  *
2373  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2374  */
2375 static inline void netif_napi_del(struct napi_struct *napi)
2376 {
2377 	__netif_napi_del(napi);
2378 	synchronize_net();
2379 }
2380 
2381 struct napi_gro_cb {
2382 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2383 	void	*frag0;
2384 
2385 	/* Length of frag0. */
2386 	unsigned int frag0_len;
2387 
2388 	/* This indicates where we are processing relative to skb->data. */
2389 	int	data_offset;
2390 
2391 	/* This is non-zero if the packet cannot be merged with the new skb. */
2392 	u16	flush;
2393 
2394 	/* Save the IP ID here and check when we get to the transport layer */
2395 	u16	flush_id;
2396 
2397 	/* Number of segments aggregated. */
2398 	u16	count;
2399 
2400 	/* Start offset for remote checksum offload */
2401 	u16	gro_remcsum_start;
2402 
2403 	/* jiffies when first packet was created/queued */
2404 	unsigned long age;
2405 
2406 	/* Used in ipv6_gro_receive() and foo-over-udp */
2407 	u16	proto;
2408 
2409 	/* This is non-zero if the packet may be of the same flow. */
2410 	u8	same_flow:1;
2411 
2412 	/* Used in tunnel GRO receive */
2413 	u8	encap_mark:1;
2414 
2415 	/* GRO checksum is valid */
2416 	u8	csum_valid:1;
2417 
2418 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2419 	u8	csum_cnt:3;
2420 
2421 	/* Free the skb? */
2422 	u8	free:2;
2423 #define NAPI_GRO_FREE		  1
2424 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2425 
2426 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2427 	u8	is_ipv6:1;
2428 
2429 	/* Used in GRE, set in fou/gue_gro_receive */
2430 	u8	is_fou:1;
2431 
2432 	/* Used to determine if flush_id can be ignored */
2433 	u8	is_atomic:1;
2434 
2435 	/* Number of gro_receive callbacks this packet already went through */
2436 	u8 recursion_counter:4;
2437 
2438 	/* GRO is done by frag_list pointer chaining. */
2439 	u8	is_flist:1;
2440 
2441 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2442 	__wsum	csum;
2443 
2444 	/* used in skb_gro_receive() slow path */
2445 	struct sk_buff *last;
2446 };
2447 
2448 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2449 
2450 #define GRO_RECURSION_LIMIT 15
2451 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2452 {
2453 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2454 }
2455 
2456 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2457 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2458 					       struct list_head *head,
2459 					       struct sk_buff *skb)
2460 {
2461 	if (unlikely(gro_recursion_inc_test(skb))) {
2462 		NAPI_GRO_CB(skb)->flush |= 1;
2463 		return NULL;
2464 	}
2465 
2466 	return cb(head, skb);
2467 }
2468 
2469 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2470 					    struct sk_buff *);
2471 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2472 						  struct sock *sk,
2473 						  struct list_head *head,
2474 						  struct sk_buff *skb)
2475 {
2476 	if (unlikely(gro_recursion_inc_test(skb))) {
2477 		NAPI_GRO_CB(skb)->flush |= 1;
2478 		return NULL;
2479 	}
2480 
2481 	return cb(sk, head, skb);
2482 }
2483 
2484 struct packet_type {
2485 	__be16			type;	/* This is really htons(ether_type). */
2486 	bool			ignore_outgoing;
2487 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2488 	int			(*func) (struct sk_buff *,
2489 					 struct net_device *,
2490 					 struct packet_type *,
2491 					 struct net_device *);
2492 	void			(*list_func) (struct list_head *,
2493 					      struct packet_type *,
2494 					      struct net_device *);
2495 	bool			(*id_match)(struct packet_type *ptype,
2496 					    struct sock *sk);
2497 	void			*af_packet_priv;
2498 	struct list_head	list;
2499 };
2500 
2501 struct offload_callbacks {
2502 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2503 						netdev_features_t features);
2504 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2505 						struct sk_buff *skb);
2506 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2507 };
2508 
2509 struct packet_offload {
2510 	__be16			 type;	/* This is really htons(ether_type). */
2511 	u16			 priority;
2512 	struct offload_callbacks callbacks;
2513 	struct list_head	 list;
2514 };
2515 
2516 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2517 struct pcpu_sw_netstats {
2518 	u64     rx_packets;
2519 	u64     rx_bytes;
2520 	u64     tx_packets;
2521 	u64     tx_bytes;
2522 	struct u64_stats_sync   syncp;
2523 } __aligned(4 * sizeof(u64));
2524 
2525 struct pcpu_lstats {
2526 	u64_stats_t packets;
2527 	u64_stats_t bytes;
2528 	struct u64_stats_sync syncp;
2529 } __aligned(2 * sizeof(u64));
2530 
2531 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2532 
2533 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2534 {
2535 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2536 
2537 	u64_stats_update_begin(&lstats->syncp);
2538 	u64_stats_add(&lstats->bytes, len);
2539 	u64_stats_inc(&lstats->packets);
2540 	u64_stats_update_end(&lstats->syncp);
2541 }
2542 
2543 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2544 ({									\
2545 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2546 	if (pcpu_stats)	{						\
2547 		int __cpu;						\
2548 		for_each_possible_cpu(__cpu) {				\
2549 			typeof(type) *stat;				\
2550 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2551 			u64_stats_init(&stat->syncp);			\
2552 		}							\
2553 	}								\
2554 	pcpu_stats;							\
2555 })
2556 
2557 #define netdev_alloc_pcpu_stats(type)					\
2558 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2559 
2560 enum netdev_lag_tx_type {
2561 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2562 	NETDEV_LAG_TX_TYPE_RANDOM,
2563 	NETDEV_LAG_TX_TYPE_BROADCAST,
2564 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2565 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2566 	NETDEV_LAG_TX_TYPE_HASH,
2567 };
2568 
2569 enum netdev_lag_hash {
2570 	NETDEV_LAG_HASH_NONE,
2571 	NETDEV_LAG_HASH_L2,
2572 	NETDEV_LAG_HASH_L34,
2573 	NETDEV_LAG_HASH_L23,
2574 	NETDEV_LAG_HASH_E23,
2575 	NETDEV_LAG_HASH_E34,
2576 	NETDEV_LAG_HASH_UNKNOWN,
2577 };
2578 
2579 struct netdev_lag_upper_info {
2580 	enum netdev_lag_tx_type tx_type;
2581 	enum netdev_lag_hash hash_type;
2582 };
2583 
2584 struct netdev_lag_lower_state_info {
2585 	u8 link_up : 1,
2586 	   tx_enabled : 1;
2587 };
2588 
2589 #include <linux/notifier.h>
2590 
2591 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2592  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2593  * adding new types.
2594  */
2595 enum netdev_cmd {
2596 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2597 	NETDEV_DOWN,
2598 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2599 				   detected a hardware crash and restarted
2600 				   - we can use this eg to kick tcp sessions
2601 				   once done */
2602 	NETDEV_CHANGE,		/* Notify device state change */
2603 	NETDEV_REGISTER,
2604 	NETDEV_UNREGISTER,
2605 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2606 	NETDEV_CHANGEADDR,	/* notify after the address change */
2607 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2608 	NETDEV_GOING_DOWN,
2609 	NETDEV_CHANGENAME,
2610 	NETDEV_FEAT_CHANGE,
2611 	NETDEV_BONDING_FAILOVER,
2612 	NETDEV_PRE_UP,
2613 	NETDEV_PRE_TYPE_CHANGE,
2614 	NETDEV_POST_TYPE_CHANGE,
2615 	NETDEV_POST_INIT,
2616 	NETDEV_RELEASE,
2617 	NETDEV_NOTIFY_PEERS,
2618 	NETDEV_JOIN,
2619 	NETDEV_CHANGEUPPER,
2620 	NETDEV_RESEND_IGMP,
2621 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2622 	NETDEV_CHANGEINFODATA,
2623 	NETDEV_BONDING_INFO,
2624 	NETDEV_PRECHANGEUPPER,
2625 	NETDEV_CHANGELOWERSTATE,
2626 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2627 	NETDEV_UDP_TUNNEL_DROP_INFO,
2628 	NETDEV_CHANGE_TX_QUEUE_LEN,
2629 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2630 	NETDEV_CVLAN_FILTER_DROP_INFO,
2631 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2632 	NETDEV_SVLAN_FILTER_DROP_INFO,
2633 };
2634 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2635 
2636 int register_netdevice_notifier(struct notifier_block *nb);
2637 int unregister_netdevice_notifier(struct notifier_block *nb);
2638 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2639 int unregister_netdevice_notifier_net(struct net *net,
2640 				      struct notifier_block *nb);
2641 int register_netdevice_notifier_dev_net(struct net_device *dev,
2642 					struct notifier_block *nb,
2643 					struct netdev_net_notifier *nn);
2644 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2645 					  struct notifier_block *nb,
2646 					  struct netdev_net_notifier *nn);
2647 
2648 struct netdev_notifier_info {
2649 	struct net_device	*dev;
2650 	struct netlink_ext_ack	*extack;
2651 };
2652 
2653 struct netdev_notifier_info_ext {
2654 	struct netdev_notifier_info info; /* must be first */
2655 	union {
2656 		u32 mtu;
2657 	} ext;
2658 };
2659 
2660 struct netdev_notifier_change_info {
2661 	struct netdev_notifier_info info; /* must be first */
2662 	unsigned int flags_changed;
2663 };
2664 
2665 struct netdev_notifier_changeupper_info {
2666 	struct netdev_notifier_info info; /* must be first */
2667 	struct net_device *upper_dev; /* new upper dev */
2668 	bool master; /* is upper dev master */
2669 	bool linking; /* is the notification for link or unlink */
2670 	void *upper_info; /* upper dev info */
2671 };
2672 
2673 struct netdev_notifier_changelowerstate_info {
2674 	struct netdev_notifier_info info; /* must be first */
2675 	void *lower_state_info; /* is lower dev state */
2676 };
2677 
2678 struct netdev_notifier_pre_changeaddr_info {
2679 	struct netdev_notifier_info info; /* must be first */
2680 	const unsigned char *dev_addr;
2681 };
2682 
2683 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2684 					     struct net_device *dev)
2685 {
2686 	info->dev = dev;
2687 	info->extack = NULL;
2688 }
2689 
2690 static inline struct net_device *
2691 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2692 {
2693 	return info->dev;
2694 }
2695 
2696 static inline struct netlink_ext_ack *
2697 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2698 {
2699 	return info->extack;
2700 }
2701 
2702 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2703 
2704 
2705 extern rwlock_t				dev_base_lock;		/* Device list lock */
2706 
2707 #define for_each_netdev(net, d)		\
2708 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2709 #define for_each_netdev_reverse(net, d)	\
2710 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2711 #define for_each_netdev_rcu(net, d)		\
2712 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2713 #define for_each_netdev_safe(net, d, n)	\
2714 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2715 #define for_each_netdev_continue(net, d)		\
2716 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2717 #define for_each_netdev_continue_reverse(net, d)		\
2718 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2719 						     dev_list)
2720 #define for_each_netdev_continue_rcu(net, d)		\
2721 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2722 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2723 		for_each_netdev_rcu(&init_net, slave)	\
2724 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2725 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2726 
2727 static inline struct net_device *next_net_device(struct net_device *dev)
2728 {
2729 	struct list_head *lh;
2730 	struct net *net;
2731 
2732 	net = dev_net(dev);
2733 	lh = dev->dev_list.next;
2734 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2735 }
2736 
2737 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2738 {
2739 	struct list_head *lh;
2740 	struct net *net;
2741 
2742 	net = dev_net(dev);
2743 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2744 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2745 }
2746 
2747 static inline struct net_device *first_net_device(struct net *net)
2748 {
2749 	return list_empty(&net->dev_base_head) ? NULL :
2750 		net_device_entry(net->dev_base_head.next);
2751 }
2752 
2753 static inline struct net_device *first_net_device_rcu(struct net *net)
2754 {
2755 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2756 
2757 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2758 }
2759 
2760 int netdev_boot_setup_check(struct net_device *dev);
2761 unsigned long netdev_boot_base(const char *prefix, int unit);
2762 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2763 				       const char *hwaddr);
2764 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2765 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2766 void dev_add_pack(struct packet_type *pt);
2767 void dev_remove_pack(struct packet_type *pt);
2768 void __dev_remove_pack(struct packet_type *pt);
2769 void dev_add_offload(struct packet_offload *po);
2770 void dev_remove_offload(struct packet_offload *po);
2771 
2772 int dev_get_iflink(const struct net_device *dev);
2773 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2774 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2775 				      unsigned short mask);
2776 struct net_device *dev_get_by_name(struct net *net, const char *name);
2777 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2778 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2779 int dev_alloc_name(struct net_device *dev, const char *name);
2780 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2781 void dev_close(struct net_device *dev);
2782 void dev_close_many(struct list_head *head, bool unlink);
2783 void dev_disable_lro(struct net_device *dev);
2784 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2785 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2786 		     struct net_device *sb_dev);
2787 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2788 		       struct net_device *sb_dev);
2789 int dev_queue_xmit(struct sk_buff *skb);
2790 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2791 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2792 int register_netdevice(struct net_device *dev);
2793 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2794 void unregister_netdevice_many(struct list_head *head);
2795 static inline void unregister_netdevice(struct net_device *dev)
2796 {
2797 	unregister_netdevice_queue(dev, NULL);
2798 }
2799 
2800 int netdev_refcnt_read(const struct net_device *dev);
2801 void free_netdev(struct net_device *dev);
2802 void netdev_freemem(struct net_device *dev);
2803 int init_dummy_netdev(struct net_device *dev);
2804 
2805 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2806 					 struct sk_buff *skb,
2807 					 bool all_slaves);
2808 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2809 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2810 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2811 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2812 int netdev_get_name(struct net *net, char *name, int ifindex);
2813 int dev_restart(struct net_device *dev);
2814 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2815 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2816 
2817 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2818 {
2819 	return NAPI_GRO_CB(skb)->data_offset;
2820 }
2821 
2822 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2823 {
2824 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2825 }
2826 
2827 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2828 {
2829 	NAPI_GRO_CB(skb)->data_offset += len;
2830 }
2831 
2832 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2833 					unsigned int offset)
2834 {
2835 	return NAPI_GRO_CB(skb)->frag0 + offset;
2836 }
2837 
2838 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2839 {
2840 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2841 }
2842 
2843 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2844 {
2845 	NAPI_GRO_CB(skb)->frag0 = NULL;
2846 	NAPI_GRO_CB(skb)->frag0_len = 0;
2847 }
2848 
2849 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2850 					unsigned int offset)
2851 {
2852 	if (!pskb_may_pull(skb, hlen))
2853 		return NULL;
2854 
2855 	skb_gro_frag0_invalidate(skb);
2856 	return skb->data + offset;
2857 }
2858 
2859 static inline void *skb_gro_network_header(struct sk_buff *skb)
2860 {
2861 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2862 	       skb_network_offset(skb);
2863 }
2864 
2865 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2866 					const void *start, unsigned int len)
2867 {
2868 	if (NAPI_GRO_CB(skb)->csum_valid)
2869 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2870 						  csum_partial(start, len, 0));
2871 }
2872 
2873 /* GRO checksum functions. These are logical equivalents of the normal
2874  * checksum functions (in skbuff.h) except that they operate on the GRO
2875  * offsets and fields in sk_buff.
2876  */
2877 
2878 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2879 
2880 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2881 {
2882 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2883 }
2884 
2885 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2886 						      bool zero_okay,
2887 						      __sum16 check)
2888 {
2889 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2890 		skb_checksum_start_offset(skb) <
2891 		 skb_gro_offset(skb)) &&
2892 		!skb_at_gro_remcsum_start(skb) &&
2893 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2894 		(!zero_okay || check));
2895 }
2896 
2897 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2898 							   __wsum psum)
2899 {
2900 	if (NAPI_GRO_CB(skb)->csum_valid &&
2901 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2902 		return 0;
2903 
2904 	NAPI_GRO_CB(skb)->csum = psum;
2905 
2906 	return __skb_gro_checksum_complete(skb);
2907 }
2908 
2909 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2910 {
2911 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2912 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2913 		NAPI_GRO_CB(skb)->csum_cnt--;
2914 	} else {
2915 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2916 		 * verified a new top level checksum or an encapsulated one
2917 		 * during GRO. This saves work if we fallback to normal path.
2918 		 */
2919 		__skb_incr_checksum_unnecessary(skb);
2920 	}
2921 }
2922 
2923 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2924 				    compute_pseudo)			\
2925 ({									\
2926 	__sum16 __ret = 0;						\
2927 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2928 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2929 				compute_pseudo(skb, proto));		\
2930 	if (!__ret)							\
2931 		skb_gro_incr_csum_unnecessary(skb);			\
2932 	__ret;								\
2933 })
2934 
2935 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2936 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2937 
2938 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2939 					     compute_pseudo)		\
2940 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2941 
2942 #define skb_gro_checksum_simple_validate(skb)				\
2943 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2944 
2945 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2946 {
2947 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2948 		!NAPI_GRO_CB(skb)->csum_valid);
2949 }
2950 
2951 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2952 					      __wsum pseudo)
2953 {
2954 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2955 	NAPI_GRO_CB(skb)->csum_valid = 1;
2956 }
2957 
2958 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)	\
2959 do {									\
2960 	if (__skb_gro_checksum_convert_check(skb))			\
2961 		__skb_gro_checksum_convert(skb, 			\
2962 					   compute_pseudo(skb, proto));	\
2963 } while (0)
2964 
2965 struct gro_remcsum {
2966 	int offset;
2967 	__wsum delta;
2968 };
2969 
2970 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2971 {
2972 	grc->offset = 0;
2973 	grc->delta = 0;
2974 }
2975 
2976 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2977 					    unsigned int off, size_t hdrlen,
2978 					    int start, int offset,
2979 					    struct gro_remcsum *grc,
2980 					    bool nopartial)
2981 {
2982 	__wsum delta;
2983 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2984 
2985 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2986 
2987 	if (!nopartial) {
2988 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2989 		return ptr;
2990 	}
2991 
2992 	ptr = skb_gro_header_fast(skb, off);
2993 	if (skb_gro_header_hard(skb, off + plen)) {
2994 		ptr = skb_gro_header_slow(skb, off + plen, off);
2995 		if (!ptr)
2996 			return NULL;
2997 	}
2998 
2999 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
3000 			       start, offset);
3001 
3002 	/* Adjust skb->csum since we changed the packet */
3003 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
3004 
3005 	grc->offset = off + hdrlen + offset;
3006 	grc->delta = delta;
3007 
3008 	return ptr;
3009 }
3010 
3011 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
3012 					   struct gro_remcsum *grc)
3013 {
3014 	void *ptr;
3015 	size_t plen = grc->offset + sizeof(u16);
3016 
3017 	if (!grc->delta)
3018 		return;
3019 
3020 	ptr = skb_gro_header_fast(skb, grc->offset);
3021 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3022 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
3023 		if (!ptr)
3024 			return;
3025 	}
3026 
3027 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
3028 }
3029 
3030 #ifdef CONFIG_XFRM_OFFLOAD
3031 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3032 {
3033 	if (PTR_ERR(pp) != -EINPROGRESS)
3034 		NAPI_GRO_CB(skb)->flush |= flush;
3035 }
3036 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3037 					       struct sk_buff *pp,
3038 					       int flush,
3039 					       struct gro_remcsum *grc)
3040 {
3041 	if (PTR_ERR(pp) != -EINPROGRESS) {
3042 		NAPI_GRO_CB(skb)->flush |= flush;
3043 		skb_gro_remcsum_cleanup(skb, grc);
3044 		skb->remcsum_offload = 0;
3045 	}
3046 }
3047 #else
3048 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3049 {
3050 	NAPI_GRO_CB(skb)->flush |= flush;
3051 }
3052 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3053 					       struct sk_buff *pp,
3054 					       int flush,
3055 					       struct gro_remcsum *grc)
3056 {
3057 	NAPI_GRO_CB(skb)->flush |= flush;
3058 	skb_gro_remcsum_cleanup(skb, grc);
3059 	skb->remcsum_offload = 0;
3060 }
3061 #endif
3062 
3063 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3064 				  unsigned short type,
3065 				  const void *daddr, const void *saddr,
3066 				  unsigned int len)
3067 {
3068 	if (!dev->header_ops || !dev->header_ops->create)
3069 		return 0;
3070 
3071 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3072 }
3073 
3074 static inline int dev_parse_header(const struct sk_buff *skb,
3075 				   unsigned char *haddr)
3076 {
3077 	const struct net_device *dev = skb->dev;
3078 
3079 	if (!dev->header_ops || !dev->header_ops->parse)
3080 		return 0;
3081 	return dev->header_ops->parse(skb, haddr);
3082 }
3083 
3084 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3085 {
3086 	const struct net_device *dev = skb->dev;
3087 
3088 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3089 		return 0;
3090 	return dev->header_ops->parse_protocol(skb);
3091 }
3092 
3093 /* ll_header must have at least hard_header_len allocated */
3094 static inline bool dev_validate_header(const struct net_device *dev,
3095 				       char *ll_header, int len)
3096 {
3097 	if (likely(len >= dev->hard_header_len))
3098 		return true;
3099 	if (len < dev->min_header_len)
3100 		return false;
3101 
3102 	if (capable(CAP_SYS_RAWIO)) {
3103 		memset(ll_header + len, 0, dev->hard_header_len - len);
3104 		return true;
3105 	}
3106 
3107 	if (dev->header_ops && dev->header_ops->validate)
3108 		return dev->header_ops->validate(ll_header, len);
3109 
3110 	return false;
3111 }
3112 
3113 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3114 			   int len, int size);
3115 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3116 static inline int unregister_gifconf(unsigned int family)
3117 {
3118 	return register_gifconf(family, NULL);
3119 }
3120 
3121 #ifdef CONFIG_NET_FLOW_LIMIT
3122 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3123 struct sd_flow_limit {
3124 	u64			count;
3125 	unsigned int		num_buckets;
3126 	unsigned int		history_head;
3127 	u16			history[FLOW_LIMIT_HISTORY];
3128 	u8			buckets[];
3129 };
3130 
3131 extern int netdev_flow_limit_table_len;
3132 #endif /* CONFIG_NET_FLOW_LIMIT */
3133 
3134 /*
3135  * Incoming packets are placed on per-CPU queues
3136  */
3137 struct softnet_data {
3138 	struct list_head	poll_list;
3139 	struct sk_buff_head	process_queue;
3140 
3141 	/* stats */
3142 	unsigned int		processed;
3143 	unsigned int		time_squeeze;
3144 	unsigned int		received_rps;
3145 #ifdef CONFIG_RPS
3146 	struct softnet_data	*rps_ipi_list;
3147 #endif
3148 #ifdef CONFIG_NET_FLOW_LIMIT
3149 	struct sd_flow_limit __rcu *flow_limit;
3150 #endif
3151 	struct Qdisc		*output_queue;
3152 	struct Qdisc		**output_queue_tailp;
3153 	struct sk_buff		*completion_queue;
3154 #ifdef CONFIG_XFRM_OFFLOAD
3155 	struct sk_buff_head	xfrm_backlog;
3156 #endif
3157 	/* written and read only by owning cpu: */
3158 	struct {
3159 		u16 recursion;
3160 		u8  more;
3161 	} xmit;
3162 #ifdef CONFIG_RPS
3163 	/* input_queue_head should be written by cpu owning this struct,
3164 	 * and only read by other cpus. Worth using a cache line.
3165 	 */
3166 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3167 
3168 	/* Elements below can be accessed between CPUs for RPS/RFS */
3169 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3170 	struct softnet_data	*rps_ipi_next;
3171 	unsigned int		cpu;
3172 	unsigned int		input_queue_tail;
3173 #endif
3174 	unsigned int		dropped;
3175 	struct sk_buff_head	input_pkt_queue;
3176 	struct napi_struct	backlog;
3177 
3178 };
3179 
3180 static inline void input_queue_head_incr(struct softnet_data *sd)
3181 {
3182 #ifdef CONFIG_RPS
3183 	sd->input_queue_head++;
3184 #endif
3185 }
3186 
3187 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3188 					      unsigned int *qtail)
3189 {
3190 #ifdef CONFIG_RPS
3191 	*qtail = ++sd->input_queue_tail;
3192 #endif
3193 }
3194 
3195 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3196 
3197 static inline int dev_recursion_level(void)
3198 {
3199 	return this_cpu_read(softnet_data.xmit.recursion);
3200 }
3201 
3202 #define XMIT_RECURSION_LIMIT	8
3203 static inline bool dev_xmit_recursion(void)
3204 {
3205 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3206 			XMIT_RECURSION_LIMIT);
3207 }
3208 
3209 static inline void dev_xmit_recursion_inc(void)
3210 {
3211 	__this_cpu_inc(softnet_data.xmit.recursion);
3212 }
3213 
3214 static inline void dev_xmit_recursion_dec(void)
3215 {
3216 	__this_cpu_dec(softnet_data.xmit.recursion);
3217 }
3218 
3219 void __netif_schedule(struct Qdisc *q);
3220 void netif_schedule_queue(struct netdev_queue *txq);
3221 
3222 static inline void netif_tx_schedule_all(struct net_device *dev)
3223 {
3224 	unsigned int i;
3225 
3226 	for (i = 0; i < dev->num_tx_queues; i++)
3227 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3228 }
3229 
3230 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3231 {
3232 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3233 }
3234 
3235 /**
3236  *	netif_start_queue - allow transmit
3237  *	@dev: network device
3238  *
3239  *	Allow upper layers to call the device hard_start_xmit routine.
3240  */
3241 static inline void netif_start_queue(struct net_device *dev)
3242 {
3243 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3244 }
3245 
3246 static inline void netif_tx_start_all_queues(struct net_device *dev)
3247 {
3248 	unsigned int i;
3249 
3250 	for (i = 0; i < dev->num_tx_queues; i++) {
3251 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3252 		netif_tx_start_queue(txq);
3253 	}
3254 }
3255 
3256 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3257 
3258 /**
3259  *	netif_wake_queue - restart transmit
3260  *	@dev: network device
3261  *
3262  *	Allow upper layers to call the device hard_start_xmit routine.
3263  *	Used for flow control when transmit resources are available.
3264  */
3265 static inline void netif_wake_queue(struct net_device *dev)
3266 {
3267 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3268 }
3269 
3270 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3271 {
3272 	unsigned int i;
3273 
3274 	for (i = 0; i < dev->num_tx_queues; i++) {
3275 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3276 		netif_tx_wake_queue(txq);
3277 	}
3278 }
3279 
3280 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3281 {
3282 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3283 }
3284 
3285 /**
3286  *	netif_stop_queue - stop transmitted packets
3287  *	@dev: network device
3288  *
3289  *	Stop upper layers calling the device hard_start_xmit routine.
3290  *	Used for flow control when transmit resources are unavailable.
3291  */
3292 static inline void netif_stop_queue(struct net_device *dev)
3293 {
3294 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3295 }
3296 
3297 void netif_tx_stop_all_queues(struct net_device *dev);
3298 
3299 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3300 {
3301 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3302 }
3303 
3304 /**
3305  *	netif_queue_stopped - test if transmit queue is flowblocked
3306  *	@dev: network device
3307  *
3308  *	Test if transmit queue on device is currently unable to send.
3309  */
3310 static inline bool netif_queue_stopped(const struct net_device *dev)
3311 {
3312 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3313 }
3314 
3315 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3316 {
3317 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3318 }
3319 
3320 static inline bool
3321 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3322 {
3323 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3324 }
3325 
3326 static inline bool
3327 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3328 {
3329 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3330 }
3331 
3332 /**
3333  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3334  *	@dev_queue: pointer to transmit queue
3335  *
3336  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3337  * to give appropriate hint to the CPU.
3338  */
3339 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3340 {
3341 #ifdef CONFIG_BQL
3342 	prefetchw(&dev_queue->dql.num_queued);
3343 #endif
3344 }
3345 
3346 /**
3347  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3348  *	@dev_queue: pointer to transmit queue
3349  *
3350  * BQL enabled drivers might use this helper in their TX completion path,
3351  * to give appropriate hint to the CPU.
3352  */
3353 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3354 {
3355 #ifdef CONFIG_BQL
3356 	prefetchw(&dev_queue->dql.limit);
3357 #endif
3358 }
3359 
3360 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3361 					unsigned int bytes)
3362 {
3363 #ifdef CONFIG_BQL
3364 	dql_queued(&dev_queue->dql, bytes);
3365 
3366 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3367 		return;
3368 
3369 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3370 
3371 	/*
3372 	 * The XOFF flag must be set before checking the dql_avail below,
3373 	 * because in netdev_tx_completed_queue we update the dql_completed
3374 	 * before checking the XOFF flag.
3375 	 */
3376 	smp_mb();
3377 
3378 	/* check again in case another CPU has just made room avail */
3379 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3380 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3381 #endif
3382 }
3383 
3384 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3385  * that they should not test BQL status themselves.
3386  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3387  * skb of a batch.
3388  * Returns true if the doorbell must be used to kick the NIC.
3389  */
3390 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3391 					  unsigned int bytes,
3392 					  bool xmit_more)
3393 {
3394 	if (xmit_more) {
3395 #ifdef CONFIG_BQL
3396 		dql_queued(&dev_queue->dql, bytes);
3397 #endif
3398 		return netif_tx_queue_stopped(dev_queue);
3399 	}
3400 	netdev_tx_sent_queue(dev_queue, bytes);
3401 	return true;
3402 }
3403 
3404 /**
3405  * 	netdev_sent_queue - report the number of bytes queued to hardware
3406  * 	@dev: network device
3407  * 	@bytes: number of bytes queued to the hardware device queue
3408  *
3409  * 	Report the number of bytes queued for sending/completion to the network
3410  * 	device hardware queue. @bytes should be a good approximation and should
3411  * 	exactly match netdev_completed_queue() @bytes
3412  */
3413 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3414 {
3415 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3416 }
3417 
3418 static inline bool __netdev_sent_queue(struct net_device *dev,
3419 				       unsigned int bytes,
3420 				       bool xmit_more)
3421 {
3422 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3423 				      xmit_more);
3424 }
3425 
3426 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3427 					     unsigned int pkts, unsigned int bytes)
3428 {
3429 #ifdef CONFIG_BQL
3430 	if (unlikely(!bytes))
3431 		return;
3432 
3433 	dql_completed(&dev_queue->dql, bytes);
3434 
3435 	/*
3436 	 * Without the memory barrier there is a small possiblity that
3437 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3438 	 * be stopped forever
3439 	 */
3440 	smp_mb();
3441 
3442 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3443 		return;
3444 
3445 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3446 		netif_schedule_queue(dev_queue);
3447 #endif
3448 }
3449 
3450 /**
3451  * 	netdev_completed_queue - report bytes and packets completed by device
3452  * 	@dev: network device
3453  * 	@pkts: actual number of packets sent over the medium
3454  * 	@bytes: actual number of bytes sent over the medium
3455  *
3456  * 	Report the number of bytes and packets transmitted by the network device
3457  * 	hardware queue over the physical medium, @bytes must exactly match the
3458  * 	@bytes amount passed to netdev_sent_queue()
3459  */
3460 static inline void netdev_completed_queue(struct net_device *dev,
3461 					  unsigned int pkts, unsigned int bytes)
3462 {
3463 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3464 }
3465 
3466 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3467 {
3468 #ifdef CONFIG_BQL
3469 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3470 	dql_reset(&q->dql);
3471 #endif
3472 }
3473 
3474 /**
3475  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3476  * 	@dev_queue: network device
3477  *
3478  * 	Reset the bytes and packet count of a network device and clear the
3479  * 	software flow control OFF bit for this network device
3480  */
3481 static inline void netdev_reset_queue(struct net_device *dev_queue)
3482 {
3483 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3484 }
3485 
3486 /**
3487  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3488  * 	@dev: network device
3489  * 	@queue_index: given tx queue index
3490  *
3491  * 	Returns 0 if given tx queue index >= number of device tx queues,
3492  * 	otherwise returns the originally passed tx queue index.
3493  */
3494 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3495 {
3496 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3497 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3498 				     dev->name, queue_index,
3499 				     dev->real_num_tx_queues);
3500 		return 0;
3501 	}
3502 
3503 	return queue_index;
3504 }
3505 
3506 /**
3507  *	netif_running - test if up
3508  *	@dev: network device
3509  *
3510  *	Test if the device has been brought up.
3511  */
3512 static inline bool netif_running(const struct net_device *dev)
3513 {
3514 	return test_bit(__LINK_STATE_START, &dev->state);
3515 }
3516 
3517 /*
3518  * Routines to manage the subqueues on a device.  We only need start,
3519  * stop, and a check if it's stopped.  All other device management is
3520  * done at the overall netdevice level.
3521  * Also test the device if we're multiqueue.
3522  */
3523 
3524 /**
3525  *	netif_start_subqueue - allow sending packets on subqueue
3526  *	@dev: network device
3527  *	@queue_index: sub queue index
3528  *
3529  * Start individual transmit queue of a device with multiple transmit queues.
3530  */
3531 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3532 {
3533 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3534 
3535 	netif_tx_start_queue(txq);
3536 }
3537 
3538 /**
3539  *	netif_stop_subqueue - stop sending packets on subqueue
3540  *	@dev: network device
3541  *	@queue_index: sub queue index
3542  *
3543  * Stop individual transmit queue of a device with multiple transmit queues.
3544  */
3545 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3546 {
3547 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3548 	netif_tx_stop_queue(txq);
3549 }
3550 
3551 /**
3552  *	netif_subqueue_stopped - test status of subqueue
3553  *	@dev: network device
3554  *	@queue_index: sub queue index
3555  *
3556  * Check individual transmit queue of a device with multiple transmit queues.
3557  */
3558 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3559 					    u16 queue_index)
3560 {
3561 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3562 
3563 	return netif_tx_queue_stopped(txq);
3564 }
3565 
3566 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3567 					  struct sk_buff *skb)
3568 {
3569 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3570 }
3571 
3572 /**
3573  *	netif_wake_subqueue - allow sending packets on subqueue
3574  *	@dev: network device
3575  *	@queue_index: sub queue index
3576  *
3577  * Resume individual transmit queue of a device with multiple transmit queues.
3578  */
3579 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3580 {
3581 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3582 
3583 	netif_tx_wake_queue(txq);
3584 }
3585 
3586 #ifdef CONFIG_XPS
3587 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3588 			u16 index);
3589 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3590 			  u16 index, bool is_rxqs_map);
3591 
3592 /**
3593  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3594  *	@j: CPU/Rx queue index
3595  *	@mask: bitmask of all cpus/rx queues
3596  *	@nr_bits: number of bits in the bitmask
3597  *
3598  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3599  */
3600 static inline bool netif_attr_test_mask(unsigned long j,
3601 					const unsigned long *mask,
3602 					unsigned int nr_bits)
3603 {
3604 	cpu_max_bits_warn(j, nr_bits);
3605 	return test_bit(j, mask);
3606 }
3607 
3608 /**
3609  *	netif_attr_test_online - Test for online CPU/Rx queue
3610  *	@j: CPU/Rx queue index
3611  *	@online_mask: bitmask for CPUs/Rx queues that are online
3612  *	@nr_bits: number of bits in the bitmask
3613  *
3614  * Returns true if a CPU/Rx queue is online.
3615  */
3616 static inline bool netif_attr_test_online(unsigned long j,
3617 					  const unsigned long *online_mask,
3618 					  unsigned int nr_bits)
3619 {
3620 	cpu_max_bits_warn(j, nr_bits);
3621 
3622 	if (online_mask)
3623 		return test_bit(j, online_mask);
3624 
3625 	return (j < nr_bits);
3626 }
3627 
3628 /**
3629  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3630  *	@n: CPU/Rx queue index
3631  *	@srcp: the cpumask/Rx queue mask pointer
3632  *	@nr_bits: number of bits in the bitmask
3633  *
3634  * Returns >= nr_bits if no further CPUs/Rx queues set.
3635  */
3636 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3637 					       unsigned int nr_bits)
3638 {
3639 	/* -1 is a legal arg here. */
3640 	if (n != -1)
3641 		cpu_max_bits_warn(n, nr_bits);
3642 
3643 	if (srcp)
3644 		return find_next_bit(srcp, nr_bits, n + 1);
3645 
3646 	return n + 1;
3647 }
3648 
3649 /**
3650  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3651  *	@n: CPU/Rx queue index
3652  *	@src1p: the first CPUs/Rx queues mask pointer
3653  *	@src2p: the second CPUs/Rx queues mask pointer
3654  *	@nr_bits: number of bits in the bitmask
3655  *
3656  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3657  */
3658 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3659 					  const unsigned long *src2p,
3660 					  unsigned int nr_bits)
3661 {
3662 	/* -1 is a legal arg here. */
3663 	if (n != -1)
3664 		cpu_max_bits_warn(n, nr_bits);
3665 
3666 	if (src1p && src2p)
3667 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3668 	else if (src1p)
3669 		return find_next_bit(src1p, nr_bits, n + 1);
3670 	else if (src2p)
3671 		return find_next_bit(src2p, nr_bits, n + 1);
3672 
3673 	return n + 1;
3674 }
3675 #else
3676 static inline int netif_set_xps_queue(struct net_device *dev,
3677 				      const struct cpumask *mask,
3678 				      u16 index)
3679 {
3680 	return 0;
3681 }
3682 
3683 static inline int __netif_set_xps_queue(struct net_device *dev,
3684 					const unsigned long *mask,
3685 					u16 index, bool is_rxqs_map)
3686 {
3687 	return 0;
3688 }
3689 #endif
3690 
3691 /**
3692  *	netif_is_multiqueue - test if device has multiple transmit queues
3693  *	@dev: network device
3694  *
3695  * Check if device has multiple transmit queues
3696  */
3697 static inline bool netif_is_multiqueue(const struct net_device *dev)
3698 {
3699 	return dev->num_tx_queues > 1;
3700 }
3701 
3702 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3703 
3704 #ifdef CONFIG_SYSFS
3705 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3706 #else
3707 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3708 						unsigned int rxqs)
3709 {
3710 	dev->real_num_rx_queues = rxqs;
3711 	return 0;
3712 }
3713 #endif
3714 
3715 static inline struct netdev_rx_queue *
3716 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3717 {
3718 	return dev->_rx + rxq;
3719 }
3720 
3721 #ifdef CONFIG_SYSFS
3722 static inline unsigned int get_netdev_rx_queue_index(
3723 		struct netdev_rx_queue *queue)
3724 {
3725 	struct net_device *dev = queue->dev;
3726 	int index = queue - dev->_rx;
3727 
3728 	BUG_ON(index >= dev->num_rx_queues);
3729 	return index;
3730 }
3731 #endif
3732 
3733 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3734 int netif_get_num_default_rss_queues(void);
3735 
3736 enum skb_free_reason {
3737 	SKB_REASON_CONSUMED,
3738 	SKB_REASON_DROPPED,
3739 };
3740 
3741 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3742 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3743 
3744 /*
3745  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3746  * interrupt context or with hardware interrupts being disabled.
3747  * (in_irq() || irqs_disabled())
3748  *
3749  * We provide four helpers that can be used in following contexts :
3750  *
3751  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3752  *  replacing kfree_skb(skb)
3753  *
3754  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3755  *  Typically used in place of consume_skb(skb) in TX completion path
3756  *
3757  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3758  *  replacing kfree_skb(skb)
3759  *
3760  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3761  *  and consumed a packet. Used in place of consume_skb(skb)
3762  */
3763 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3764 {
3765 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3766 }
3767 
3768 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3769 {
3770 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3771 }
3772 
3773 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3774 {
3775 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3776 }
3777 
3778 static inline void dev_consume_skb_any(struct sk_buff *skb)
3779 {
3780 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3781 }
3782 
3783 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3784 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3785 int netif_rx(struct sk_buff *skb);
3786 int netif_rx_ni(struct sk_buff *skb);
3787 int netif_rx_any_context(struct sk_buff *skb);
3788 int netif_receive_skb(struct sk_buff *skb);
3789 int netif_receive_skb_core(struct sk_buff *skb);
3790 void netif_receive_skb_list(struct list_head *head);
3791 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3792 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3793 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3794 gro_result_t napi_gro_frags(struct napi_struct *napi);
3795 struct packet_offload *gro_find_receive_by_type(__be16 type);
3796 struct packet_offload *gro_find_complete_by_type(__be16 type);
3797 
3798 static inline void napi_free_frags(struct napi_struct *napi)
3799 {
3800 	kfree_skb(napi->skb);
3801 	napi->skb = NULL;
3802 }
3803 
3804 bool netdev_is_rx_handler_busy(struct net_device *dev);
3805 int netdev_rx_handler_register(struct net_device *dev,
3806 			       rx_handler_func_t *rx_handler,
3807 			       void *rx_handler_data);
3808 void netdev_rx_handler_unregister(struct net_device *dev);
3809 
3810 bool dev_valid_name(const char *name);
3811 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3812 		bool *need_copyout);
3813 int dev_ifconf(struct net *net, struct ifconf *, int);
3814 int dev_ethtool(struct net *net, struct ifreq *);
3815 unsigned int dev_get_flags(const struct net_device *);
3816 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3817 		       struct netlink_ext_ack *extack);
3818 int dev_change_flags(struct net_device *dev, unsigned int flags,
3819 		     struct netlink_ext_ack *extack);
3820 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3821 			unsigned int gchanges);
3822 int dev_change_name(struct net_device *, const char *);
3823 int dev_set_alias(struct net_device *, const char *, size_t);
3824 int dev_get_alias(const struct net_device *, char *, size_t);
3825 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3826 int __dev_set_mtu(struct net_device *, int);
3827 int dev_validate_mtu(struct net_device *dev, int mtu,
3828 		     struct netlink_ext_ack *extack);
3829 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3830 		    struct netlink_ext_ack *extack);
3831 int dev_set_mtu(struct net_device *, int);
3832 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3833 void dev_set_group(struct net_device *, int);
3834 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3835 			      struct netlink_ext_ack *extack);
3836 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3837 			struct netlink_ext_ack *extack);
3838 int dev_change_carrier(struct net_device *, bool new_carrier);
3839 int dev_get_phys_port_id(struct net_device *dev,
3840 			 struct netdev_phys_item_id *ppid);
3841 int dev_get_phys_port_name(struct net_device *dev,
3842 			   char *name, size_t len);
3843 int dev_get_port_parent_id(struct net_device *dev,
3844 			   struct netdev_phys_item_id *ppid, bool recurse);
3845 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3846 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3847 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3848 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3849 				  u32 value);
3850 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3851 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3852 				    struct netdev_queue *txq, int *ret);
3853 
3854 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3855 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3856 		      int fd, int expected_fd, u32 flags);
3857 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3858 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3859 
3860 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3861 
3862 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3863 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3864 bool is_skb_forwardable(const struct net_device *dev,
3865 			const struct sk_buff *skb);
3866 
3867 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3868 					       struct sk_buff *skb)
3869 {
3870 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3871 	    unlikely(!is_skb_forwardable(dev, skb))) {
3872 		atomic_long_inc(&dev->rx_dropped);
3873 		kfree_skb(skb);
3874 		return NET_RX_DROP;
3875 	}
3876 
3877 	skb_scrub_packet(skb, true);
3878 	skb->priority = 0;
3879 	return 0;
3880 }
3881 
3882 bool dev_nit_active(struct net_device *dev);
3883 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3884 
3885 extern int		netdev_budget;
3886 extern unsigned int	netdev_budget_usecs;
3887 
3888 /* Called by rtnetlink.c:rtnl_unlock() */
3889 void netdev_run_todo(void);
3890 
3891 /**
3892  *	dev_put - release reference to device
3893  *	@dev: network device
3894  *
3895  * Release reference to device to allow it to be freed.
3896  */
3897 static inline void dev_put(struct net_device *dev)
3898 {
3899 	this_cpu_dec(*dev->pcpu_refcnt);
3900 }
3901 
3902 /**
3903  *	dev_hold - get reference to device
3904  *	@dev: network device
3905  *
3906  * Hold reference to device to keep it from being freed.
3907  */
3908 static inline void dev_hold(struct net_device *dev)
3909 {
3910 	this_cpu_inc(*dev->pcpu_refcnt);
3911 }
3912 
3913 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3914  * and _off may be called from IRQ context, but it is caller
3915  * who is responsible for serialization of these calls.
3916  *
3917  * The name carrier is inappropriate, these functions should really be
3918  * called netif_lowerlayer_*() because they represent the state of any
3919  * kind of lower layer not just hardware media.
3920  */
3921 
3922 void linkwatch_init_dev(struct net_device *dev);
3923 void linkwatch_fire_event(struct net_device *dev);
3924 void linkwatch_forget_dev(struct net_device *dev);
3925 
3926 /**
3927  *	netif_carrier_ok - test if carrier present
3928  *	@dev: network device
3929  *
3930  * Check if carrier is present on device
3931  */
3932 static inline bool netif_carrier_ok(const struct net_device *dev)
3933 {
3934 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3935 }
3936 
3937 unsigned long dev_trans_start(struct net_device *dev);
3938 
3939 void __netdev_watchdog_up(struct net_device *dev);
3940 
3941 void netif_carrier_on(struct net_device *dev);
3942 
3943 void netif_carrier_off(struct net_device *dev);
3944 
3945 /**
3946  *	netif_dormant_on - mark device as dormant.
3947  *	@dev: network device
3948  *
3949  * Mark device as dormant (as per RFC2863).
3950  *
3951  * The dormant state indicates that the relevant interface is not
3952  * actually in a condition to pass packets (i.e., it is not 'up') but is
3953  * in a "pending" state, waiting for some external event.  For "on-
3954  * demand" interfaces, this new state identifies the situation where the
3955  * interface is waiting for events to place it in the up state.
3956  */
3957 static inline void netif_dormant_on(struct net_device *dev)
3958 {
3959 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3960 		linkwatch_fire_event(dev);
3961 }
3962 
3963 /**
3964  *	netif_dormant_off - set device as not dormant.
3965  *	@dev: network device
3966  *
3967  * Device is not in dormant state.
3968  */
3969 static inline void netif_dormant_off(struct net_device *dev)
3970 {
3971 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3972 		linkwatch_fire_event(dev);
3973 }
3974 
3975 /**
3976  *	netif_dormant - test if device is dormant
3977  *	@dev: network device
3978  *
3979  * Check if device is dormant.
3980  */
3981 static inline bool netif_dormant(const struct net_device *dev)
3982 {
3983 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3984 }
3985 
3986 
3987 /**
3988  *	netif_testing_on - mark device as under test.
3989  *	@dev: network device
3990  *
3991  * Mark device as under test (as per RFC2863).
3992  *
3993  * The testing state indicates that some test(s) must be performed on
3994  * the interface. After completion, of the test, the interface state
3995  * will change to up, dormant, or down, as appropriate.
3996  */
3997 static inline void netif_testing_on(struct net_device *dev)
3998 {
3999 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4000 		linkwatch_fire_event(dev);
4001 }
4002 
4003 /**
4004  *	netif_testing_off - set device as not under test.
4005  *	@dev: network device
4006  *
4007  * Device is not in testing state.
4008  */
4009 static inline void netif_testing_off(struct net_device *dev)
4010 {
4011 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4012 		linkwatch_fire_event(dev);
4013 }
4014 
4015 /**
4016  *	netif_testing - test if device is under test
4017  *	@dev: network device
4018  *
4019  * Check if device is under test
4020  */
4021 static inline bool netif_testing(const struct net_device *dev)
4022 {
4023 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4024 }
4025 
4026 
4027 /**
4028  *	netif_oper_up - test if device is operational
4029  *	@dev: network device
4030  *
4031  * Check if carrier is operational
4032  */
4033 static inline bool netif_oper_up(const struct net_device *dev)
4034 {
4035 	return (dev->operstate == IF_OPER_UP ||
4036 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4037 }
4038 
4039 /**
4040  *	netif_device_present - is device available or removed
4041  *	@dev: network device
4042  *
4043  * Check if device has not been removed from system.
4044  */
4045 static inline bool netif_device_present(struct net_device *dev)
4046 {
4047 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4048 }
4049 
4050 void netif_device_detach(struct net_device *dev);
4051 
4052 void netif_device_attach(struct net_device *dev);
4053 
4054 /*
4055  * Network interface message level settings
4056  */
4057 
4058 enum {
4059 	NETIF_MSG_DRV_BIT,
4060 	NETIF_MSG_PROBE_BIT,
4061 	NETIF_MSG_LINK_BIT,
4062 	NETIF_MSG_TIMER_BIT,
4063 	NETIF_MSG_IFDOWN_BIT,
4064 	NETIF_MSG_IFUP_BIT,
4065 	NETIF_MSG_RX_ERR_BIT,
4066 	NETIF_MSG_TX_ERR_BIT,
4067 	NETIF_MSG_TX_QUEUED_BIT,
4068 	NETIF_MSG_INTR_BIT,
4069 	NETIF_MSG_TX_DONE_BIT,
4070 	NETIF_MSG_RX_STATUS_BIT,
4071 	NETIF_MSG_PKTDATA_BIT,
4072 	NETIF_MSG_HW_BIT,
4073 	NETIF_MSG_WOL_BIT,
4074 
4075 	/* When you add a new bit above, update netif_msg_class_names array
4076 	 * in net/ethtool/common.c
4077 	 */
4078 	NETIF_MSG_CLASS_COUNT,
4079 };
4080 /* Both ethtool_ops interface and internal driver implementation use u32 */
4081 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4082 
4083 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4084 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4085 
4086 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4087 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4088 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4089 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4090 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4091 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4092 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4093 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4094 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4095 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4096 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4097 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4098 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4099 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4100 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4101 
4102 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4103 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4104 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4105 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4106 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4107 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4108 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4109 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4110 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4111 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4112 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4113 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4114 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4115 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4116 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4117 
4118 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4119 {
4120 	/* use default */
4121 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4122 		return default_msg_enable_bits;
4123 	if (debug_value == 0)	/* no output */
4124 		return 0;
4125 	/* set low N bits */
4126 	return (1U << debug_value) - 1;
4127 }
4128 
4129 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4130 {
4131 	spin_lock(&txq->_xmit_lock);
4132 	txq->xmit_lock_owner = cpu;
4133 }
4134 
4135 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4136 {
4137 	__acquire(&txq->_xmit_lock);
4138 	return true;
4139 }
4140 
4141 static inline void __netif_tx_release(struct netdev_queue *txq)
4142 {
4143 	__release(&txq->_xmit_lock);
4144 }
4145 
4146 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4147 {
4148 	spin_lock_bh(&txq->_xmit_lock);
4149 	txq->xmit_lock_owner = smp_processor_id();
4150 }
4151 
4152 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4153 {
4154 	bool ok = spin_trylock(&txq->_xmit_lock);
4155 	if (likely(ok))
4156 		txq->xmit_lock_owner = smp_processor_id();
4157 	return ok;
4158 }
4159 
4160 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4161 {
4162 	txq->xmit_lock_owner = -1;
4163 	spin_unlock(&txq->_xmit_lock);
4164 }
4165 
4166 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4167 {
4168 	txq->xmit_lock_owner = -1;
4169 	spin_unlock_bh(&txq->_xmit_lock);
4170 }
4171 
4172 static inline void txq_trans_update(struct netdev_queue *txq)
4173 {
4174 	if (txq->xmit_lock_owner != -1)
4175 		txq->trans_start = jiffies;
4176 }
4177 
4178 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4179 static inline void netif_trans_update(struct net_device *dev)
4180 {
4181 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4182 
4183 	if (txq->trans_start != jiffies)
4184 		txq->trans_start = jiffies;
4185 }
4186 
4187 /**
4188  *	netif_tx_lock - grab network device transmit lock
4189  *	@dev: network device
4190  *
4191  * Get network device transmit lock
4192  */
4193 static inline void netif_tx_lock(struct net_device *dev)
4194 {
4195 	unsigned int i;
4196 	int cpu;
4197 
4198 	spin_lock(&dev->tx_global_lock);
4199 	cpu = smp_processor_id();
4200 	for (i = 0; i < dev->num_tx_queues; i++) {
4201 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4202 
4203 		/* We are the only thread of execution doing a
4204 		 * freeze, but we have to grab the _xmit_lock in
4205 		 * order to synchronize with threads which are in
4206 		 * the ->hard_start_xmit() handler and already
4207 		 * checked the frozen bit.
4208 		 */
4209 		__netif_tx_lock(txq, cpu);
4210 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4211 		__netif_tx_unlock(txq);
4212 	}
4213 }
4214 
4215 static inline void netif_tx_lock_bh(struct net_device *dev)
4216 {
4217 	local_bh_disable();
4218 	netif_tx_lock(dev);
4219 }
4220 
4221 static inline void netif_tx_unlock(struct net_device *dev)
4222 {
4223 	unsigned int i;
4224 
4225 	for (i = 0; i < dev->num_tx_queues; i++) {
4226 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4227 
4228 		/* No need to grab the _xmit_lock here.  If the
4229 		 * queue is not stopped for another reason, we
4230 		 * force a schedule.
4231 		 */
4232 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4233 		netif_schedule_queue(txq);
4234 	}
4235 	spin_unlock(&dev->tx_global_lock);
4236 }
4237 
4238 static inline void netif_tx_unlock_bh(struct net_device *dev)
4239 {
4240 	netif_tx_unlock(dev);
4241 	local_bh_enable();
4242 }
4243 
4244 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4245 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4246 		__netif_tx_lock(txq, cpu);		\
4247 	} else {					\
4248 		__netif_tx_acquire(txq);		\
4249 	}						\
4250 }
4251 
4252 #define HARD_TX_TRYLOCK(dev, txq)			\
4253 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4254 		__netif_tx_trylock(txq) :		\
4255 		__netif_tx_acquire(txq))
4256 
4257 #define HARD_TX_UNLOCK(dev, txq) {			\
4258 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4259 		__netif_tx_unlock(txq);			\
4260 	} else {					\
4261 		__netif_tx_release(txq);		\
4262 	}						\
4263 }
4264 
4265 static inline void netif_tx_disable(struct net_device *dev)
4266 {
4267 	unsigned int i;
4268 	int cpu;
4269 
4270 	local_bh_disable();
4271 	cpu = smp_processor_id();
4272 	for (i = 0; i < dev->num_tx_queues; i++) {
4273 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4274 
4275 		__netif_tx_lock(txq, cpu);
4276 		netif_tx_stop_queue(txq);
4277 		__netif_tx_unlock(txq);
4278 	}
4279 	local_bh_enable();
4280 }
4281 
4282 static inline void netif_addr_lock(struct net_device *dev)
4283 {
4284 	spin_lock(&dev->addr_list_lock);
4285 }
4286 
4287 static inline void netif_addr_lock_nested(struct net_device *dev)
4288 {
4289 	spin_lock_nested(&dev->addr_list_lock, dev->lower_level);
4290 }
4291 
4292 static inline void netif_addr_lock_bh(struct net_device *dev)
4293 {
4294 	spin_lock_bh(&dev->addr_list_lock);
4295 }
4296 
4297 static inline void netif_addr_unlock(struct net_device *dev)
4298 {
4299 	spin_unlock(&dev->addr_list_lock);
4300 }
4301 
4302 static inline void netif_addr_unlock_bh(struct net_device *dev)
4303 {
4304 	spin_unlock_bh(&dev->addr_list_lock);
4305 }
4306 
4307 /*
4308  * dev_addrs walker. Should be used only for read access. Call with
4309  * rcu_read_lock held.
4310  */
4311 #define for_each_dev_addr(dev, ha) \
4312 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4313 
4314 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4315 
4316 void ether_setup(struct net_device *dev);
4317 
4318 /* Support for loadable net-drivers */
4319 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4320 				    unsigned char name_assign_type,
4321 				    void (*setup)(struct net_device *),
4322 				    unsigned int txqs, unsigned int rxqs);
4323 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4324 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4325 
4326 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4327 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4328 			 count)
4329 
4330 int register_netdev(struct net_device *dev);
4331 void unregister_netdev(struct net_device *dev);
4332 
4333 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4334 
4335 /* General hardware address lists handling functions */
4336 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4337 		   struct netdev_hw_addr_list *from_list, int addr_len);
4338 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4339 		      struct netdev_hw_addr_list *from_list, int addr_len);
4340 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4341 		       struct net_device *dev,
4342 		       int (*sync)(struct net_device *, const unsigned char *),
4343 		       int (*unsync)(struct net_device *,
4344 				     const unsigned char *));
4345 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4346 			   struct net_device *dev,
4347 			   int (*sync)(struct net_device *,
4348 				       const unsigned char *, int),
4349 			   int (*unsync)(struct net_device *,
4350 					 const unsigned char *, int));
4351 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4352 			      struct net_device *dev,
4353 			      int (*unsync)(struct net_device *,
4354 					    const unsigned char *, int));
4355 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4356 			  struct net_device *dev,
4357 			  int (*unsync)(struct net_device *,
4358 					const unsigned char *));
4359 void __hw_addr_init(struct netdev_hw_addr_list *list);
4360 
4361 /* Functions used for device addresses handling */
4362 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4363 		 unsigned char addr_type);
4364 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4365 		 unsigned char addr_type);
4366 void dev_addr_flush(struct net_device *dev);
4367 int dev_addr_init(struct net_device *dev);
4368 
4369 /* Functions used for unicast addresses handling */
4370 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4371 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4372 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4373 int dev_uc_sync(struct net_device *to, struct net_device *from);
4374 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4375 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4376 void dev_uc_flush(struct net_device *dev);
4377 void dev_uc_init(struct net_device *dev);
4378 
4379 /**
4380  *  __dev_uc_sync - Synchonize device's unicast list
4381  *  @dev:  device to sync
4382  *  @sync: function to call if address should be added
4383  *  @unsync: function to call if address should be removed
4384  *
4385  *  Add newly added addresses to the interface, and release
4386  *  addresses that have been deleted.
4387  */
4388 static inline int __dev_uc_sync(struct net_device *dev,
4389 				int (*sync)(struct net_device *,
4390 					    const unsigned char *),
4391 				int (*unsync)(struct net_device *,
4392 					      const unsigned char *))
4393 {
4394 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4395 }
4396 
4397 /**
4398  *  __dev_uc_unsync - Remove synchronized addresses from device
4399  *  @dev:  device to sync
4400  *  @unsync: function to call if address should be removed
4401  *
4402  *  Remove all addresses that were added to the device by dev_uc_sync().
4403  */
4404 static inline void __dev_uc_unsync(struct net_device *dev,
4405 				   int (*unsync)(struct net_device *,
4406 						 const unsigned char *))
4407 {
4408 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4409 }
4410 
4411 /* Functions used for multicast addresses handling */
4412 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4413 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4414 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4415 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4416 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4417 int dev_mc_sync(struct net_device *to, struct net_device *from);
4418 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4419 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4420 void dev_mc_flush(struct net_device *dev);
4421 void dev_mc_init(struct net_device *dev);
4422 
4423 /**
4424  *  __dev_mc_sync - Synchonize device's multicast list
4425  *  @dev:  device to sync
4426  *  @sync: function to call if address should be added
4427  *  @unsync: function to call if address should be removed
4428  *
4429  *  Add newly added addresses to the interface, and release
4430  *  addresses that have been deleted.
4431  */
4432 static inline int __dev_mc_sync(struct net_device *dev,
4433 				int (*sync)(struct net_device *,
4434 					    const unsigned char *),
4435 				int (*unsync)(struct net_device *,
4436 					      const unsigned char *))
4437 {
4438 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4439 }
4440 
4441 /**
4442  *  __dev_mc_unsync - Remove synchronized addresses from device
4443  *  @dev:  device to sync
4444  *  @unsync: function to call if address should be removed
4445  *
4446  *  Remove all addresses that were added to the device by dev_mc_sync().
4447  */
4448 static inline void __dev_mc_unsync(struct net_device *dev,
4449 				   int (*unsync)(struct net_device *,
4450 						 const unsigned char *))
4451 {
4452 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4453 }
4454 
4455 /* Functions used for secondary unicast and multicast support */
4456 void dev_set_rx_mode(struct net_device *dev);
4457 void __dev_set_rx_mode(struct net_device *dev);
4458 int dev_set_promiscuity(struct net_device *dev, int inc);
4459 int dev_set_allmulti(struct net_device *dev, int inc);
4460 void netdev_state_change(struct net_device *dev);
4461 void netdev_notify_peers(struct net_device *dev);
4462 void netdev_features_change(struct net_device *dev);
4463 /* Load a device via the kmod */
4464 void dev_load(struct net *net, const char *name);
4465 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4466 					struct rtnl_link_stats64 *storage);
4467 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4468 			     const struct net_device_stats *netdev_stats);
4469 
4470 extern int		netdev_max_backlog;
4471 extern int		netdev_tstamp_prequeue;
4472 extern int		weight_p;
4473 extern int		dev_weight_rx_bias;
4474 extern int		dev_weight_tx_bias;
4475 extern int		dev_rx_weight;
4476 extern int		dev_tx_weight;
4477 extern int		gro_normal_batch;
4478 
4479 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4480 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4481 						     struct list_head **iter);
4482 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4483 						     struct list_head **iter);
4484 
4485 /* iterate through upper list, must be called under RCU read lock */
4486 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4487 	for (iter = &(dev)->adj_list.upper, \
4488 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4489 	     updev; \
4490 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4491 
4492 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4493 				  int (*fn)(struct net_device *upper_dev,
4494 					    void *data),
4495 				  void *data);
4496 
4497 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4498 				  struct net_device *upper_dev);
4499 
4500 bool netdev_has_any_upper_dev(struct net_device *dev);
4501 
4502 void *netdev_lower_get_next_private(struct net_device *dev,
4503 				    struct list_head **iter);
4504 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4505 					struct list_head **iter);
4506 
4507 #define netdev_for_each_lower_private(dev, priv, iter) \
4508 	for (iter = (dev)->adj_list.lower.next, \
4509 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4510 	     priv; \
4511 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4512 
4513 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4514 	for (iter = &(dev)->adj_list.lower, \
4515 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4516 	     priv; \
4517 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4518 
4519 void *netdev_lower_get_next(struct net_device *dev,
4520 				struct list_head **iter);
4521 
4522 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4523 	for (iter = (dev)->adj_list.lower.next, \
4524 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4525 	     ldev; \
4526 	     ldev = netdev_lower_get_next(dev, &(iter)))
4527 
4528 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4529 					     struct list_head **iter);
4530 int netdev_walk_all_lower_dev(struct net_device *dev,
4531 			      int (*fn)(struct net_device *lower_dev,
4532 					void *data),
4533 			      void *data);
4534 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4535 				  int (*fn)(struct net_device *lower_dev,
4536 					    void *data),
4537 				  void *data);
4538 
4539 void *netdev_adjacent_get_private(struct list_head *adj_list);
4540 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4541 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4542 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4543 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4544 			  struct netlink_ext_ack *extack);
4545 int netdev_master_upper_dev_link(struct net_device *dev,
4546 				 struct net_device *upper_dev,
4547 				 void *upper_priv, void *upper_info,
4548 				 struct netlink_ext_ack *extack);
4549 void netdev_upper_dev_unlink(struct net_device *dev,
4550 			     struct net_device *upper_dev);
4551 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4552 				   struct net_device *new_dev,
4553 				   struct net_device *dev,
4554 				   struct netlink_ext_ack *extack);
4555 void netdev_adjacent_change_commit(struct net_device *old_dev,
4556 				   struct net_device *new_dev,
4557 				   struct net_device *dev);
4558 void netdev_adjacent_change_abort(struct net_device *old_dev,
4559 				  struct net_device *new_dev,
4560 				  struct net_device *dev);
4561 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4562 void *netdev_lower_dev_get_private(struct net_device *dev,
4563 				   struct net_device *lower_dev);
4564 void netdev_lower_state_changed(struct net_device *lower_dev,
4565 				void *lower_state_info);
4566 
4567 /* RSS keys are 40 or 52 bytes long */
4568 #define NETDEV_RSS_KEY_LEN 52
4569 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4570 void netdev_rss_key_fill(void *buffer, size_t len);
4571 
4572 int skb_checksum_help(struct sk_buff *skb);
4573 int skb_crc32c_csum_help(struct sk_buff *skb);
4574 int skb_csum_hwoffload_help(struct sk_buff *skb,
4575 			    const netdev_features_t features);
4576 
4577 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4578 				  netdev_features_t features, bool tx_path);
4579 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4580 				    netdev_features_t features);
4581 
4582 struct netdev_bonding_info {
4583 	ifslave	slave;
4584 	ifbond	master;
4585 };
4586 
4587 struct netdev_notifier_bonding_info {
4588 	struct netdev_notifier_info info; /* must be first */
4589 	struct netdev_bonding_info  bonding_info;
4590 };
4591 
4592 void netdev_bonding_info_change(struct net_device *dev,
4593 				struct netdev_bonding_info *bonding_info);
4594 
4595 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4596 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4597 #else
4598 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4599 				  const void *data)
4600 {
4601 }
4602 #endif
4603 
4604 static inline
4605 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4606 {
4607 	return __skb_gso_segment(skb, features, true);
4608 }
4609 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4610 
4611 static inline bool can_checksum_protocol(netdev_features_t features,
4612 					 __be16 protocol)
4613 {
4614 	if (protocol == htons(ETH_P_FCOE))
4615 		return !!(features & NETIF_F_FCOE_CRC);
4616 
4617 	/* Assume this is an IP checksum (not SCTP CRC) */
4618 
4619 	if (features & NETIF_F_HW_CSUM) {
4620 		/* Can checksum everything */
4621 		return true;
4622 	}
4623 
4624 	switch (protocol) {
4625 	case htons(ETH_P_IP):
4626 		return !!(features & NETIF_F_IP_CSUM);
4627 	case htons(ETH_P_IPV6):
4628 		return !!(features & NETIF_F_IPV6_CSUM);
4629 	default:
4630 		return false;
4631 	}
4632 }
4633 
4634 #ifdef CONFIG_BUG
4635 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4636 #else
4637 static inline void netdev_rx_csum_fault(struct net_device *dev,
4638 					struct sk_buff *skb)
4639 {
4640 }
4641 #endif
4642 /* rx skb timestamps */
4643 void net_enable_timestamp(void);
4644 void net_disable_timestamp(void);
4645 
4646 #ifdef CONFIG_PROC_FS
4647 int __init dev_proc_init(void);
4648 #else
4649 #define dev_proc_init() 0
4650 #endif
4651 
4652 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4653 					      struct sk_buff *skb, struct net_device *dev,
4654 					      bool more)
4655 {
4656 	__this_cpu_write(softnet_data.xmit.more, more);
4657 	return ops->ndo_start_xmit(skb, dev);
4658 }
4659 
4660 static inline bool netdev_xmit_more(void)
4661 {
4662 	return __this_cpu_read(softnet_data.xmit.more);
4663 }
4664 
4665 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4666 					    struct netdev_queue *txq, bool more)
4667 {
4668 	const struct net_device_ops *ops = dev->netdev_ops;
4669 	netdev_tx_t rc;
4670 
4671 	rc = __netdev_start_xmit(ops, skb, dev, more);
4672 	if (rc == NETDEV_TX_OK)
4673 		txq_trans_update(txq);
4674 
4675 	return rc;
4676 }
4677 
4678 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4679 				const void *ns);
4680 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4681 				 const void *ns);
4682 
4683 extern const struct kobj_ns_type_operations net_ns_type_operations;
4684 
4685 const char *netdev_drivername(const struct net_device *dev);
4686 
4687 void linkwatch_run_queue(void);
4688 
4689 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4690 							  netdev_features_t f2)
4691 {
4692 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4693 		if (f1 & NETIF_F_HW_CSUM)
4694 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4695 		else
4696 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4697 	}
4698 
4699 	return f1 & f2;
4700 }
4701 
4702 static inline netdev_features_t netdev_get_wanted_features(
4703 	struct net_device *dev)
4704 {
4705 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4706 }
4707 netdev_features_t netdev_increment_features(netdev_features_t all,
4708 	netdev_features_t one, netdev_features_t mask);
4709 
4710 /* Allow TSO being used on stacked device :
4711  * Performing the GSO segmentation before last device
4712  * is a performance improvement.
4713  */
4714 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4715 							netdev_features_t mask)
4716 {
4717 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4718 }
4719 
4720 int __netdev_update_features(struct net_device *dev);
4721 void netdev_update_features(struct net_device *dev);
4722 void netdev_change_features(struct net_device *dev);
4723 
4724 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4725 					struct net_device *dev);
4726 
4727 netdev_features_t passthru_features_check(struct sk_buff *skb,
4728 					  struct net_device *dev,
4729 					  netdev_features_t features);
4730 netdev_features_t netif_skb_features(struct sk_buff *skb);
4731 
4732 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4733 {
4734 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4735 
4736 	/* check flags correspondence */
4737 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4738 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4739 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4740 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4741 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4742 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4743 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4744 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4745 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4746 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4747 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4748 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4749 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4750 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4751 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4752 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4753 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4754 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4755 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4756 
4757 	return (features & feature) == feature;
4758 }
4759 
4760 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4761 {
4762 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4763 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4764 }
4765 
4766 static inline bool netif_needs_gso(struct sk_buff *skb,
4767 				   netdev_features_t features)
4768 {
4769 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4770 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4771 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4772 }
4773 
4774 static inline void netif_set_gso_max_size(struct net_device *dev,
4775 					  unsigned int size)
4776 {
4777 	dev->gso_max_size = size;
4778 }
4779 
4780 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4781 					int pulled_hlen, u16 mac_offset,
4782 					int mac_len)
4783 {
4784 	skb->protocol = protocol;
4785 	skb->encapsulation = 1;
4786 	skb_push(skb, pulled_hlen);
4787 	skb_reset_transport_header(skb);
4788 	skb->mac_header = mac_offset;
4789 	skb->network_header = skb->mac_header + mac_len;
4790 	skb->mac_len = mac_len;
4791 }
4792 
4793 static inline bool netif_is_macsec(const struct net_device *dev)
4794 {
4795 	return dev->priv_flags & IFF_MACSEC;
4796 }
4797 
4798 static inline bool netif_is_macvlan(const struct net_device *dev)
4799 {
4800 	return dev->priv_flags & IFF_MACVLAN;
4801 }
4802 
4803 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4804 {
4805 	return dev->priv_flags & IFF_MACVLAN_PORT;
4806 }
4807 
4808 static inline bool netif_is_bond_master(const struct net_device *dev)
4809 {
4810 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4811 }
4812 
4813 static inline bool netif_is_bond_slave(const struct net_device *dev)
4814 {
4815 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4816 }
4817 
4818 static inline bool netif_supports_nofcs(struct net_device *dev)
4819 {
4820 	return dev->priv_flags & IFF_SUPP_NOFCS;
4821 }
4822 
4823 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4824 {
4825 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4826 }
4827 
4828 static inline bool netif_is_l3_master(const struct net_device *dev)
4829 {
4830 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4831 }
4832 
4833 static inline bool netif_is_l3_slave(const struct net_device *dev)
4834 {
4835 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4836 }
4837 
4838 static inline bool netif_is_bridge_master(const struct net_device *dev)
4839 {
4840 	return dev->priv_flags & IFF_EBRIDGE;
4841 }
4842 
4843 static inline bool netif_is_bridge_port(const struct net_device *dev)
4844 {
4845 	return dev->priv_flags & IFF_BRIDGE_PORT;
4846 }
4847 
4848 static inline bool netif_is_ovs_master(const struct net_device *dev)
4849 {
4850 	return dev->priv_flags & IFF_OPENVSWITCH;
4851 }
4852 
4853 static inline bool netif_is_ovs_port(const struct net_device *dev)
4854 {
4855 	return dev->priv_flags & IFF_OVS_DATAPATH;
4856 }
4857 
4858 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
4859 {
4860 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
4861 }
4862 
4863 static inline bool netif_is_team_master(const struct net_device *dev)
4864 {
4865 	return dev->priv_flags & IFF_TEAM;
4866 }
4867 
4868 static inline bool netif_is_team_port(const struct net_device *dev)
4869 {
4870 	return dev->priv_flags & IFF_TEAM_PORT;
4871 }
4872 
4873 static inline bool netif_is_lag_master(const struct net_device *dev)
4874 {
4875 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4876 }
4877 
4878 static inline bool netif_is_lag_port(const struct net_device *dev)
4879 {
4880 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4881 }
4882 
4883 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4884 {
4885 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4886 }
4887 
4888 static inline bool netif_is_failover(const struct net_device *dev)
4889 {
4890 	return dev->priv_flags & IFF_FAILOVER;
4891 }
4892 
4893 static inline bool netif_is_failover_slave(const struct net_device *dev)
4894 {
4895 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4896 }
4897 
4898 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4899 static inline void netif_keep_dst(struct net_device *dev)
4900 {
4901 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4902 }
4903 
4904 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4905 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4906 {
4907 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4908 	return dev->priv_flags & IFF_MACSEC;
4909 }
4910 
4911 extern struct pernet_operations __net_initdata loopback_net_ops;
4912 
4913 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4914 
4915 /* netdev_printk helpers, similar to dev_printk */
4916 
4917 static inline const char *netdev_name(const struct net_device *dev)
4918 {
4919 	if (!dev->name[0] || strchr(dev->name, '%'))
4920 		return "(unnamed net_device)";
4921 	return dev->name;
4922 }
4923 
4924 static inline bool netdev_unregistering(const struct net_device *dev)
4925 {
4926 	return dev->reg_state == NETREG_UNREGISTERING;
4927 }
4928 
4929 static inline const char *netdev_reg_state(const struct net_device *dev)
4930 {
4931 	switch (dev->reg_state) {
4932 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4933 	case NETREG_REGISTERED: return "";
4934 	case NETREG_UNREGISTERING: return " (unregistering)";
4935 	case NETREG_UNREGISTERED: return " (unregistered)";
4936 	case NETREG_RELEASED: return " (released)";
4937 	case NETREG_DUMMY: return " (dummy)";
4938 	}
4939 
4940 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4941 	return " (unknown)";
4942 }
4943 
4944 __printf(3, 4) __cold
4945 void netdev_printk(const char *level, const struct net_device *dev,
4946 		   const char *format, ...);
4947 __printf(2, 3) __cold
4948 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4949 __printf(2, 3) __cold
4950 void netdev_alert(const struct net_device *dev, const char *format, ...);
4951 __printf(2, 3) __cold
4952 void netdev_crit(const struct net_device *dev, const char *format, ...);
4953 __printf(2, 3) __cold
4954 void netdev_err(const struct net_device *dev, const char *format, ...);
4955 __printf(2, 3) __cold
4956 void netdev_warn(const struct net_device *dev, const char *format, ...);
4957 __printf(2, 3) __cold
4958 void netdev_notice(const struct net_device *dev, const char *format, ...);
4959 __printf(2, 3) __cold
4960 void netdev_info(const struct net_device *dev, const char *format, ...);
4961 
4962 #define netdev_level_once(level, dev, fmt, ...)			\
4963 do {								\
4964 	static bool __print_once __read_mostly;			\
4965 								\
4966 	if (!__print_once) {					\
4967 		__print_once = true;				\
4968 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4969 	}							\
4970 } while (0)
4971 
4972 #define netdev_emerg_once(dev, fmt, ...) \
4973 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4974 #define netdev_alert_once(dev, fmt, ...) \
4975 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4976 #define netdev_crit_once(dev, fmt, ...) \
4977 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4978 #define netdev_err_once(dev, fmt, ...) \
4979 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4980 #define netdev_warn_once(dev, fmt, ...) \
4981 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4982 #define netdev_notice_once(dev, fmt, ...) \
4983 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4984 #define netdev_info_once(dev, fmt, ...) \
4985 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4986 
4987 #define MODULE_ALIAS_NETDEV(device) \
4988 	MODULE_ALIAS("netdev-" device)
4989 
4990 #if defined(CONFIG_DYNAMIC_DEBUG) || \
4991 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
4992 #define netdev_dbg(__dev, format, args...)			\
4993 do {								\
4994 	dynamic_netdev_dbg(__dev, format, ##args);		\
4995 } while (0)
4996 #elif defined(DEBUG)
4997 #define netdev_dbg(__dev, format, args...)			\
4998 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4999 #else
5000 #define netdev_dbg(__dev, format, args...)			\
5001 ({								\
5002 	if (0)							\
5003 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5004 })
5005 #endif
5006 
5007 #if defined(VERBOSE_DEBUG)
5008 #define netdev_vdbg	netdev_dbg
5009 #else
5010 
5011 #define netdev_vdbg(dev, format, args...)			\
5012 ({								\
5013 	if (0)							\
5014 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
5015 	0;							\
5016 })
5017 #endif
5018 
5019 /*
5020  * netdev_WARN() acts like dev_printk(), but with the key difference
5021  * of using a WARN/WARN_ON to get the message out, including the
5022  * file/line information and a backtrace.
5023  */
5024 #define netdev_WARN(dev, format, args...)			\
5025 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5026 	     netdev_reg_state(dev), ##args)
5027 
5028 #define netdev_WARN_ONCE(dev, format, args...)				\
5029 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5030 		  netdev_reg_state(dev), ##args)
5031 
5032 /* netif printk helpers, similar to netdev_printk */
5033 
5034 #define netif_printk(priv, type, level, dev, fmt, args...)	\
5035 do {					  			\
5036 	if (netif_msg_##type(priv))				\
5037 		netdev_printk(level, (dev), fmt, ##args);	\
5038 } while (0)
5039 
5040 #define netif_level(level, priv, type, dev, fmt, args...)	\
5041 do {								\
5042 	if (netif_msg_##type(priv))				\
5043 		netdev_##level(dev, fmt, ##args);		\
5044 } while (0)
5045 
5046 #define netif_emerg(priv, type, dev, fmt, args...)		\
5047 	netif_level(emerg, priv, type, dev, fmt, ##args)
5048 #define netif_alert(priv, type, dev, fmt, args...)		\
5049 	netif_level(alert, priv, type, dev, fmt, ##args)
5050 #define netif_crit(priv, type, dev, fmt, args...)		\
5051 	netif_level(crit, priv, type, dev, fmt, ##args)
5052 #define netif_err(priv, type, dev, fmt, args...)		\
5053 	netif_level(err, priv, type, dev, fmt, ##args)
5054 #define netif_warn(priv, type, dev, fmt, args...)		\
5055 	netif_level(warn, priv, type, dev, fmt, ##args)
5056 #define netif_notice(priv, type, dev, fmt, args...)		\
5057 	netif_level(notice, priv, type, dev, fmt, ##args)
5058 #define netif_info(priv, type, dev, fmt, args...)		\
5059 	netif_level(info, priv, type, dev, fmt, ##args)
5060 
5061 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5062 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5063 #define netif_dbg(priv, type, netdev, format, args...)		\
5064 do {								\
5065 	if (netif_msg_##type(priv))				\
5066 		dynamic_netdev_dbg(netdev, format, ##args);	\
5067 } while (0)
5068 #elif defined(DEBUG)
5069 #define netif_dbg(priv, type, dev, format, args...)		\
5070 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5071 #else
5072 #define netif_dbg(priv, type, dev, format, args...)			\
5073 ({									\
5074 	if (0)								\
5075 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5076 	0;								\
5077 })
5078 #endif
5079 
5080 /* if @cond then downgrade to debug, else print at @level */
5081 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5082 	do {                                                              \
5083 		if (cond)                                                 \
5084 			netif_dbg(priv, type, netdev, fmt, ##args);       \
5085 		else                                                      \
5086 			netif_ ## level(priv, type, netdev, fmt, ##args); \
5087 	} while (0)
5088 
5089 #if defined(VERBOSE_DEBUG)
5090 #define netif_vdbg	netif_dbg
5091 #else
5092 #define netif_vdbg(priv, type, dev, format, args...)		\
5093 ({								\
5094 	if (0)							\
5095 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5096 	0;							\
5097 })
5098 #endif
5099 
5100 /*
5101  *	The list of packet types we will receive (as opposed to discard)
5102  *	and the routines to invoke.
5103  *
5104  *	Why 16. Because with 16 the only overlap we get on a hash of the
5105  *	low nibble of the protocol value is RARP/SNAP/X.25.
5106  *
5107  *		0800	IP
5108  *		0001	802.3
5109  *		0002	AX.25
5110  *		0004	802.2
5111  *		8035	RARP
5112  *		0005	SNAP
5113  *		0805	X.25
5114  *		0806	ARP
5115  *		8137	IPX
5116  *		0009	Localtalk
5117  *		86DD	IPv6
5118  */
5119 #define PTYPE_HASH_SIZE	(16)
5120 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5121 
5122 extern struct net_device *blackhole_netdev;
5123 
5124 #endif	/* _LINUX_NETDEVICE_H */
5125