xref: /linux-6.15/include/linux/netdevice.h (revision 18fd64d2)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <[email protected]>
13  *		Corey Minyard <[email protected]>
14  *		Donald J. Becker, <[email protected]>
15  *		Alan Cox, <[email protected]>
16  *		Bjorn Ekwall. <[email protected]>
17  *              Pekka Riikonen <[email protected]>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 
44 #include <linux/netdev_features.h>
45 #include <linux/neighbour.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <uapi/linux/netdev.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 #include <net/net_debug.h>
54 #include <net/dropreason-core.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct ethtool_ops;
59 struct kernel_hwtstamp_config;
60 struct phy_device;
61 struct dsa_port;
62 struct ip_tunnel_parm;
63 struct macsec_context;
64 struct macsec_ops;
65 struct netdev_name_node;
66 struct sd_flow_limit;
67 struct sfp_bus;
68 /* 802.11 specific */
69 struct wireless_dev;
70 /* 802.15.4 specific */
71 struct wpan_dev;
72 struct mpls_dev;
73 /* UDP Tunnel offloads */
74 struct udp_tunnel_info;
75 struct udp_tunnel_nic_info;
76 struct udp_tunnel_nic;
77 struct bpf_prog;
78 struct xdp_buff;
79 struct xdp_frame;
80 struct xdp_metadata_ops;
81 struct xdp_md;
82 /* DPLL specific */
83 struct dpll_pin;
84 
85 typedef u32 xdp_features_t;
86 
87 void synchronize_net(void);
88 void netdev_set_default_ethtool_ops(struct net_device *dev,
89 				    const struct ethtool_ops *ops);
90 void netdev_sw_irq_coalesce_default_on(struct net_device *dev);
91 
92 /* Backlog congestion levels */
93 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
94 #define NET_RX_DROP		1	/* packet dropped */
95 
96 #define MAX_NEST_DEV 8
97 
98 /*
99  * Transmit return codes: transmit return codes originate from three different
100  * namespaces:
101  *
102  * - qdisc return codes
103  * - driver transmit return codes
104  * - errno values
105  *
106  * Drivers are allowed to return any one of those in their hard_start_xmit()
107  * function. Real network devices commonly used with qdiscs should only return
108  * the driver transmit return codes though - when qdiscs are used, the actual
109  * transmission happens asynchronously, so the value is not propagated to
110  * higher layers. Virtual network devices transmit synchronously; in this case
111  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
112  * others are propagated to higher layers.
113  */
114 
115 /* qdisc ->enqueue() return codes. */
116 #define NET_XMIT_SUCCESS	0x00
117 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
118 #define NET_XMIT_CN		0x02	/* congestion notification	*/
119 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
120 
121 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
122  * indicates that the device will soon be dropping packets, or already drops
123  * some packets of the same priority; prompting us to send less aggressively. */
124 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
125 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
126 
127 /* Driver transmit return codes */
128 #define NETDEV_TX_MASK		0xf0
129 
130 enum netdev_tx {
131 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
132 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
133 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
134 };
135 typedef enum netdev_tx netdev_tx_t;
136 
137 /*
138  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
139  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
140  */
141 static inline bool dev_xmit_complete(int rc)
142 {
143 	/*
144 	 * Positive cases with an skb consumed by a driver:
145 	 * - successful transmission (rc == NETDEV_TX_OK)
146 	 * - error while transmitting (rc < 0)
147 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
148 	 */
149 	if (likely(rc < NET_XMIT_MASK))
150 		return true;
151 
152 	return false;
153 }
154 
155 /*
156  *	Compute the worst-case header length according to the protocols
157  *	used.
158  */
159 
160 #if defined(CONFIG_HYPERV_NET)
161 # define LL_MAX_HEADER 128
162 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
163 # if defined(CONFIG_MAC80211_MESH)
164 #  define LL_MAX_HEADER 128
165 # else
166 #  define LL_MAX_HEADER 96
167 # endif
168 #else
169 # define LL_MAX_HEADER 32
170 #endif
171 
172 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
173     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
174 #define MAX_HEADER LL_MAX_HEADER
175 #else
176 #define MAX_HEADER (LL_MAX_HEADER + 48)
177 #endif
178 
179 /*
180  *	Old network device statistics. Fields are native words
181  *	(unsigned long) so they can be read and written atomically.
182  */
183 
184 #define NET_DEV_STAT(FIELD)			\
185 	union {					\
186 		unsigned long FIELD;		\
187 		atomic_long_t __##FIELD;	\
188 	}
189 
190 struct net_device_stats {
191 	NET_DEV_STAT(rx_packets);
192 	NET_DEV_STAT(tx_packets);
193 	NET_DEV_STAT(rx_bytes);
194 	NET_DEV_STAT(tx_bytes);
195 	NET_DEV_STAT(rx_errors);
196 	NET_DEV_STAT(tx_errors);
197 	NET_DEV_STAT(rx_dropped);
198 	NET_DEV_STAT(tx_dropped);
199 	NET_DEV_STAT(multicast);
200 	NET_DEV_STAT(collisions);
201 	NET_DEV_STAT(rx_length_errors);
202 	NET_DEV_STAT(rx_over_errors);
203 	NET_DEV_STAT(rx_crc_errors);
204 	NET_DEV_STAT(rx_frame_errors);
205 	NET_DEV_STAT(rx_fifo_errors);
206 	NET_DEV_STAT(rx_missed_errors);
207 	NET_DEV_STAT(tx_aborted_errors);
208 	NET_DEV_STAT(tx_carrier_errors);
209 	NET_DEV_STAT(tx_fifo_errors);
210 	NET_DEV_STAT(tx_heartbeat_errors);
211 	NET_DEV_STAT(tx_window_errors);
212 	NET_DEV_STAT(rx_compressed);
213 	NET_DEV_STAT(tx_compressed);
214 };
215 #undef NET_DEV_STAT
216 
217 /* per-cpu stats, allocated on demand.
218  * Try to fit them in a single cache line, for dev_get_stats() sake.
219  */
220 struct net_device_core_stats {
221 	unsigned long	rx_dropped;
222 	unsigned long	tx_dropped;
223 	unsigned long	rx_nohandler;
224 	unsigned long	rx_otherhost_dropped;
225 } __aligned(4 * sizeof(unsigned long));
226 
227 #include <linux/cache.h>
228 #include <linux/skbuff.h>
229 
230 #ifdef CONFIG_RPS
231 #include <linux/static_key.h>
232 extern struct static_key_false rps_needed;
233 extern struct static_key_false rfs_needed;
234 #endif
235 
236 struct neighbour;
237 struct neigh_parms;
238 struct sk_buff;
239 
240 struct netdev_hw_addr {
241 	struct list_head	list;
242 	struct rb_node		node;
243 	unsigned char		addr[MAX_ADDR_LEN];
244 	unsigned char		type;
245 #define NETDEV_HW_ADDR_T_LAN		1
246 #define NETDEV_HW_ADDR_T_SAN		2
247 #define NETDEV_HW_ADDR_T_UNICAST	3
248 #define NETDEV_HW_ADDR_T_MULTICAST	4
249 	bool			global_use;
250 	int			sync_cnt;
251 	int			refcount;
252 	int			synced;
253 	struct rcu_head		rcu_head;
254 };
255 
256 struct netdev_hw_addr_list {
257 	struct list_head	list;
258 	int			count;
259 
260 	/* Auxiliary tree for faster lookup on addition and deletion */
261 	struct rb_root		tree;
262 };
263 
264 #define netdev_hw_addr_list_count(l) ((l)->count)
265 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
266 #define netdev_hw_addr_list_for_each(ha, l) \
267 	list_for_each_entry(ha, &(l)->list, list)
268 
269 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
270 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
271 #define netdev_for_each_uc_addr(ha, dev) \
272 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
273 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
274 	netdev_for_each_uc_addr((_ha), (_dev)) \
275 		if ((_ha)->sync_cnt)
276 
277 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
278 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
279 #define netdev_for_each_mc_addr(ha, dev) \
280 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
281 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
282 	netdev_for_each_mc_addr((_ha), (_dev)) \
283 		if ((_ha)->sync_cnt)
284 
285 struct hh_cache {
286 	unsigned int	hh_len;
287 	seqlock_t	hh_lock;
288 
289 	/* cached hardware header; allow for machine alignment needs.        */
290 #define HH_DATA_MOD	16
291 #define HH_DATA_OFF(__len) \
292 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
293 #define HH_DATA_ALIGN(__len) \
294 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
295 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
296 };
297 
298 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
299  * Alternative is:
300  *   dev->hard_header_len ? (dev->hard_header_len +
301  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
302  *
303  * We could use other alignment values, but we must maintain the
304  * relationship HH alignment <= LL alignment.
305  */
306 #define LL_RESERVED_SPACE(dev) \
307 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
308 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
309 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
310 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
311 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
312 
313 struct header_ops {
314 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
315 			   unsigned short type, const void *daddr,
316 			   const void *saddr, unsigned int len);
317 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
318 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
319 	void	(*cache_update)(struct hh_cache *hh,
320 				const struct net_device *dev,
321 				const unsigned char *haddr);
322 	bool	(*validate)(const char *ll_header, unsigned int len);
323 	__be16	(*parse_protocol)(const struct sk_buff *skb);
324 };
325 
326 /* These flag bits are private to the generic network queueing
327  * layer; they may not be explicitly referenced by any other
328  * code.
329  */
330 
331 enum netdev_state_t {
332 	__LINK_STATE_START,
333 	__LINK_STATE_PRESENT,
334 	__LINK_STATE_NOCARRIER,
335 	__LINK_STATE_LINKWATCH_PENDING,
336 	__LINK_STATE_DORMANT,
337 	__LINK_STATE_TESTING,
338 };
339 
340 struct gro_list {
341 	struct list_head	list;
342 	int			count;
343 };
344 
345 /*
346  * size of gro hash buckets, must less than bit number of
347  * napi_struct::gro_bitmask
348  */
349 #define GRO_HASH_BUCKETS	8
350 
351 /*
352  * Structure for NAPI scheduling similar to tasklet but with weighting
353  */
354 struct napi_struct {
355 	/* The poll_list must only be managed by the entity which
356 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
357 	 * whoever atomically sets that bit can add this napi_struct
358 	 * to the per-CPU poll_list, and whoever clears that bit
359 	 * can remove from the list right before clearing the bit.
360 	 */
361 	struct list_head	poll_list;
362 
363 	unsigned long		state;
364 	int			weight;
365 	int			defer_hard_irqs_count;
366 	unsigned long		gro_bitmask;
367 	int			(*poll)(struct napi_struct *, int);
368 #ifdef CONFIG_NETPOLL
369 	/* CPU actively polling if netpoll is configured */
370 	int			poll_owner;
371 #endif
372 	/* CPU on which NAPI has been scheduled for processing */
373 	int			list_owner;
374 	struct net_device	*dev;
375 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
376 	struct sk_buff		*skb;
377 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
378 	int			rx_count; /* length of rx_list */
379 	unsigned int		napi_id;
380 	struct hrtimer		timer;
381 	struct task_struct	*thread;
382 	/* control-path-only fields follow */
383 	struct list_head	dev_list;
384 	struct hlist_node	napi_hash_node;
385 };
386 
387 enum {
388 	NAPI_STATE_SCHED,		/* Poll is scheduled */
389 	NAPI_STATE_MISSED,		/* reschedule a napi */
390 	NAPI_STATE_DISABLE,		/* Disable pending */
391 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
392 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
393 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
394 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
395 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
396 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
397 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
398 };
399 
400 enum {
401 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
402 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
403 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
404 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
405 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
406 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
407 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
408 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
409 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
410 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
411 };
412 
413 enum gro_result {
414 	GRO_MERGED,
415 	GRO_MERGED_FREE,
416 	GRO_HELD,
417 	GRO_NORMAL,
418 	GRO_CONSUMED,
419 };
420 typedef enum gro_result gro_result_t;
421 
422 /*
423  * enum rx_handler_result - Possible return values for rx_handlers.
424  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
425  * further.
426  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
427  * case skb->dev was changed by rx_handler.
428  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
429  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
430  *
431  * rx_handlers are functions called from inside __netif_receive_skb(), to do
432  * special processing of the skb, prior to delivery to protocol handlers.
433  *
434  * Currently, a net_device can only have a single rx_handler registered. Trying
435  * to register a second rx_handler will return -EBUSY.
436  *
437  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
438  * To unregister a rx_handler on a net_device, use
439  * netdev_rx_handler_unregister().
440  *
441  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
442  * do with the skb.
443  *
444  * If the rx_handler consumed the skb in some way, it should return
445  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
446  * the skb to be delivered in some other way.
447  *
448  * If the rx_handler changed skb->dev, to divert the skb to another
449  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
450  * new device will be called if it exists.
451  *
452  * If the rx_handler decides the skb should be ignored, it should return
453  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
454  * are registered on exact device (ptype->dev == skb->dev).
455  *
456  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
457  * delivered, it should return RX_HANDLER_PASS.
458  *
459  * A device without a registered rx_handler will behave as if rx_handler
460  * returned RX_HANDLER_PASS.
461  */
462 
463 enum rx_handler_result {
464 	RX_HANDLER_CONSUMED,
465 	RX_HANDLER_ANOTHER,
466 	RX_HANDLER_EXACT,
467 	RX_HANDLER_PASS,
468 };
469 typedef enum rx_handler_result rx_handler_result_t;
470 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
471 
472 void __napi_schedule(struct napi_struct *n);
473 void __napi_schedule_irqoff(struct napi_struct *n);
474 
475 static inline bool napi_disable_pending(struct napi_struct *n)
476 {
477 	return test_bit(NAPI_STATE_DISABLE, &n->state);
478 }
479 
480 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
481 {
482 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
483 }
484 
485 /**
486  * napi_is_scheduled - test if NAPI is scheduled
487  * @n: NAPI context
488  *
489  * This check is "best-effort". With no locking implemented,
490  * a NAPI can be scheduled or terminate right after this check
491  * and produce not precise results.
492  *
493  * NAPI_STATE_SCHED is an internal state, napi_is_scheduled
494  * should not be used normally and napi_schedule should be
495  * used instead.
496  *
497  * Use only if the driver really needs to check if a NAPI
498  * is scheduled for example in the context of delayed timer
499  * that can be skipped if a NAPI is already scheduled.
500  *
501  * Return True if NAPI is scheduled, False otherwise.
502  */
503 static inline bool napi_is_scheduled(struct napi_struct *n)
504 {
505 	return test_bit(NAPI_STATE_SCHED, &n->state);
506 }
507 
508 bool napi_schedule_prep(struct napi_struct *n);
509 
510 /**
511  *	napi_schedule - schedule NAPI poll
512  *	@n: NAPI context
513  *
514  * Schedule NAPI poll routine to be called if it is not already
515  * running.
516  * Return true if we schedule a NAPI or false if not.
517  * Refer to napi_schedule_prep() for additional reason on why
518  * a NAPI might not be scheduled.
519  */
520 static inline bool napi_schedule(struct napi_struct *n)
521 {
522 	if (napi_schedule_prep(n)) {
523 		__napi_schedule(n);
524 		return true;
525 	}
526 
527 	return false;
528 }
529 
530 /**
531  *	napi_schedule_irqoff - schedule NAPI poll
532  *	@n: NAPI context
533  *
534  * Variant of napi_schedule(), assuming hard irqs are masked.
535  */
536 static inline void napi_schedule_irqoff(struct napi_struct *n)
537 {
538 	if (napi_schedule_prep(n))
539 		__napi_schedule_irqoff(n);
540 }
541 
542 /**
543  * napi_complete_done - NAPI processing complete
544  * @n: NAPI context
545  * @work_done: number of packets processed
546  *
547  * Mark NAPI processing as complete. Should only be called if poll budget
548  * has not been completely consumed.
549  * Prefer over napi_complete().
550  * Return false if device should avoid rearming interrupts.
551  */
552 bool napi_complete_done(struct napi_struct *n, int work_done);
553 
554 static inline bool napi_complete(struct napi_struct *n)
555 {
556 	return napi_complete_done(n, 0);
557 }
558 
559 int dev_set_threaded(struct net_device *dev, bool threaded);
560 
561 /**
562  *	napi_disable - prevent NAPI from scheduling
563  *	@n: NAPI context
564  *
565  * Stop NAPI from being scheduled on this context.
566  * Waits till any outstanding processing completes.
567  */
568 void napi_disable(struct napi_struct *n);
569 
570 void napi_enable(struct napi_struct *n);
571 
572 /**
573  *	napi_synchronize - wait until NAPI is not running
574  *	@n: NAPI context
575  *
576  * Wait until NAPI is done being scheduled on this context.
577  * Waits till any outstanding processing completes but
578  * does not disable future activations.
579  */
580 static inline void napi_synchronize(const struct napi_struct *n)
581 {
582 	if (IS_ENABLED(CONFIG_SMP))
583 		while (test_bit(NAPI_STATE_SCHED, &n->state))
584 			msleep(1);
585 	else
586 		barrier();
587 }
588 
589 /**
590  *	napi_if_scheduled_mark_missed - if napi is running, set the
591  *	NAPIF_STATE_MISSED
592  *	@n: NAPI context
593  *
594  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
595  * NAPI is scheduled.
596  **/
597 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
598 {
599 	unsigned long val, new;
600 
601 	val = READ_ONCE(n->state);
602 	do {
603 		if (val & NAPIF_STATE_DISABLE)
604 			return true;
605 
606 		if (!(val & NAPIF_STATE_SCHED))
607 			return false;
608 
609 		new = val | NAPIF_STATE_MISSED;
610 	} while (!try_cmpxchg(&n->state, &val, new));
611 
612 	return true;
613 }
614 
615 enum netdev_queue_state_t {
616 	__QUEUE_STATE_DRV_XOFF,
617 	__QUEUE_STATE_STACK_XOFF,
618 	__QUEUE_STATE_FROZEN,
619 };
620 
621 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
622 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
623 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
624 
625 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
626 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
627 					QUEUE_STATE_FROZEN)
628 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
629 					QUEUE_STATE_FROZEN)
630 
631 /*
632  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
633  * netif_tx_* functions below are used to manipulate this flag.  The
634  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
635  * queue independently.  The netif_xmit_*stopped functions below are called
636  * to check if the queue has been stopped by the driver or stack (either
637  * of the XOFF bits are set in the state).  Drivers should not need to call
638  * netif_xmit*stopped functions, they should only be using netif_tx_*.
639  */
640 
641 struct netdev_queue {
642 /*
643  * read-mostly part
644  */
645 	struct net_device	*dev;
646 	netdevice_tracker	dev_tracker;
647 
648 	struct Qdisc __rcu	*qdisc;
649 	struct Qdisc __rcu	*qdisc_sleeping;
650 #ifdef CONFIG_SYSFS
651 	struct kobject		kobj;
652 #endif
653 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
654 	int			numa_node;
655 #endif
656 	unsigned long		tx_maxrate;
657 	/*
658 	 * Number of TX timeouts for this queue
659 	 * (/sys/class/net/DEV/Q/trans_timeout)
660 	 */
661 	atomic_long_t		trans_timeout;
662 
663 	/* Subordinate device that the queue has been assigned to */
664 	struct net_device	*sb_dev;
665 #ifdef CONFIG_XDP_SOCKETS
666 	struct xsk_buff_pool    *pool;
667 #endif
668 /*
669  * write-mostly part
670  */
671 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
672 	int			xmit_lock_owner;
673 	/*
674 	 * Time (in jiffies) of last Tx
675 	 */
676 	unsigned long		trans_start;
677 
678 	unsigned long		state;
679 
680 #ifdef CONFIG_BQL
681 	struct dql		dql;
682 #endif
683 } ____cacheline_aligned_in_smp;
684 
685 extern int sysctl_fb_tunnels_only_for_init_net;
686 extern int sysctl_devconf_inherit_init_net;
687 
688 /*
689  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
690  *                                     == 1 : For initns only
691  *                                     == 2 : For none.
692  */
693 static inline bool net_has_fallback_tunnels(const struct net *net)
694 {
695 #if IS_ENABLED(CONFIG_SYSCTL)
696 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
697 
698 	return !fb_tunnels_only_for_init_net ||
699 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
700 #else
701 	return true;
702 #endif
703 }
704 
705 static inline int net_inherit_devconf(void)
706 {
707 #if IS_ENABLED(CONFIG_SYSCTL)
708 	return READ_ONCE(sysctl_devconf_inherit_init_net);
709 #else
710 	return 0;
711 #endif
712 }
713 
714 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
715 {
716 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
717 	return q->numa_node;
718 #else
719 	return NUMA_NO_NODE;
720 #endif
721 }
722 
723 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
724 {
725 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
726 	q->numa_node = node;
727 #endif
728 }
729 
730 #ifdef CONFIG_RPS
731 /*
732  * This structure holds an RPS map which can be of variable length.  The
733  * map is an array of CPUs.
734  */
735 struct rps_map {
736 	unsigned int len;
737 	struct rcu_head rcu;
738 	u16 cpus[];
739 };
740 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
741 
742 /*
743  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
744  * tail pointer for that CPU's input queue at the time of last enqueue, and
745  * a hardware filter index.
746  */
747 struct rps_dev_flow {
748 	u16 cpu;
749 	u16 filter;
750 	unsigned int last_qtail;
751 };
752 #define RPS_NO_FILTER 0xffff
753 
754 /*
755  * The rps_dev_flow_table structure contains a table of flow mappings.
756  */
757 struct rps_dev_flow_table {
758 	unsigned int mask;
759 	struct rcu_head rcu;
760 	struct rps_dev_flow flows[];
761 };
762 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
763     ((_num) * sizeof(struct rps_dev_flow)))
764 
765 /*
766  * The rps_sock_flow_table contains mappings of flows to the last CPU
767  * on which they were processed by the application (set in recvmsg).
768  * Each entry is a 32bit value. Upper part is the high-order bits
769  * of flow hash, lower part is CPU number.
770  * rps_cpu_mask is used to partition the space, depending on number of
771  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
772  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
773  * meaning we use 32-6=26 bits for the hash.
774  */
775 struct rps_sock_flow_table {
776 	u32	mask;
777 
778 	u32	ents[] ____cacheline_aligned_in_smp;
779 };
780 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
781 
782 #define RPS_NO_CPU 0xffff
783 
784 extern u32 rps_cpu_mask;
785 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
786 
787 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
788 					u32 hash)
789 {
790 	if (table && hash) {
791 		unsigned int index = hash & table->mask;
792 		u32 val = hash & ~rps_cpu_mask;
793 
794 		/* We only give a hint, preemption can change CPU under us */
795 		val |= raw_smp_processor_id();
796 
797 		/* The following WRITE_ONCE() is paired with the READ_ONCE()
798 		 * here, and another one in get_rps_cpu().
799 		 */
800 		if (READ_ONCE(table->ents[index]) != val)
801 			WRITE_ONCE(table->ents[index], val);
802 	}
803 }
804 
805 #ifdef CONFIG_RFS_ACCEL
806 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
807 			 u16 filter_id);
808 #endif
809 #endif /* CONFIG_RPS */
810 
811 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
812 enum xps_map_type {
813 	XPS_CPUS = 0,
814 	XPS_RXQS,
815 	XPS_MAPS_MAX,
816 };
817 
818 #ifdef CONFIG_XPS
819 /*
820  * This structure holds an XPS map which can be of variable length.  The
821  * map is an array of queues.
822  */
823 struct xps_map {
824 	unsigned int len;
825 	unsigned int alloc_len;
826 	struct rcu_head rcu;
827 	u16 queues[];
828 };
829 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
830 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
831        - sizeof(struct xps_map)) / sizeof(u16))
832 
833 /*
834  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
835  *
836  * We keep track of the number of cpus/rxqs used when the struct is allocated,
837  * in nr_ids. This will help not accessing out-of-bound memory.
838  *
839  * We keep track of the number of traffic classes used when the struct is
840  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
841  * not crossing its upper bound, as the original dev->num_tc can be updated in
842  * the meantime.
843  */
844 struct xps_dev_maps {
845 	struct rcu_head rcu;
846 	unsigned int nr_ids;
847 	s16 num_tc;
848 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
849 };
850 
851 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
852 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
853 
854 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
855 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
856 
857 #endif /* CONFIG_XPS */
858 
859 #define TC_MAX_QUEUE	16
860 #define TC_BITMASK	15
861 /* HW offloaded queuing disciplines txq count and offset maps */
862 struct netdev_tc_txq {
863 	u16 count;
864 	u16 offset;
865 };
866 
867 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
868 /*
869  * This structure is to hold information about the device
870  * configured to run FCoE protocol stack.
871  */
872 struct netdev_fcoe_hbainfo {
873 	char	manufacturer[64];
874 	char	serial_number[64];
875 	char	hardware_version[64];
876 	char	driver_version[64];
877 	char	optionrom_version[64];
878 	char	firmware_version[64];
879 	char	model[256];
880 	char	model_description[256];
881 };
882 #endif
883 
884 #define MAX_PHYS_ITEM_ID_LEN 32
885 
886 /* This structure holds a unique identifier to identify some
887  * physical item (port for example) used by a netdevice.
888  */
889 struct netdev_phys_item_id {
890 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
891 	unsigned char id_len;
892 };
893 
894 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
895 					    struct netdev_phys_item_id *b)
896 {
897 	return a->id_len == b->id_len &&
898 	       memcmp(a->id, b->id, a->id_len) == 0;
899 }
900 
901 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
902 				       struct sk_buff *skb,
903 				       struct net_device *sb_dev);
904 
905 enum net_device_path_type {
906 	DEV_PATH_ETHERNET = 0,
907 	DEV_PATH_VLAN,
908 	DEV_PATH_BRIDGE,
909 	DEV_PATH_PPPOE,
910 	DEV_PATH_DSA,
911 	DEV_PATH_MTK_WDMA,
912 };
913 
914 struct net_device_path {
915 	enum net_device_path_type	type;
916 	const struct net_device		*dev;
917 	union {
918 		struct {
919 			u16		id;
920 			__be16		proto;
921 			u8		h_dest[ETH_ALEN];
922 		} encap;
923 		struct {
924 			enum {
925 				DEV_PATH_BR_VLAN_KEEP,
926 				DEV_PATH_BR_VLAN_TAG,
927 				DEV_PATH_BR_VLAN_UNTAG,
928 				DEV_PATH_BR_VLAN_UNTAG_HW,
929 			}		vlan_mode;
930 			u16		vlan_id;
931 			__be16		vlan_proto;
932 		} bridge;
933 		struct {
934 			int port;
935 			u16 proto;
936 		} dsa;
937 		struct {
938 			u8 wdma_idx;
939 			u8 queue;
940 			u16 wcid;
941 			u8 bss;
942 			u8 amsdu;
943 		} mtk_wdma;
944 	};
945 };
946 
947 #define NET_DEVICE_PATH_STACK_MAX	5
948 #define NET_DEVICE_PATH_VLAN_MAX	2
949 
950 struct net_device_path_stack {
951 	int			num_paths;
952 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
953 };
954 
955 struct net_device_path_ctx {
956 	const struct net_device *dev;
957 	u8			daddr[ETH_ALEN];
958 
959 	int			num_vlans;
960 	struct {
961 		u16		id;
962 		__be16		proto;
963 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
964 };
965 
966 enum tc_setup_type {
967 	TC_QUERY_CAPS,
968 	TC_SETUP_QDISC_MQPRIO,
969 	TC_SETUP_CLSU32,
970 	TC_SETUP_CLSFLOWER,
971 	TC_SETUP_CLSMATCHALL,
972 	TC_SETUP_CLSBPF,
973 	TC_SETUP_BLOCK,
974 	TC_SETUP_QDISC_CBS,
975 	TC_SETUP_QDISC_RED,
976 	TC_SETUP_QDISC_PRIO,
977 	TC_SETUP_QDISC_MQ,
978 	TC_SETUP_QDISC_ETF,
979 	TC_SETUP_ROOT_QDISC,
980 	TC_SETUP_QDISC_GRED,
981 	TC_SETUP_QDISC_TAPRIO,
982 	TC_SETUP_FT,
983 	TC_SETUP_QDISC_ETS,
984 	TC_SETUP_QDISC_TBF,
985 	TC_SETUP_QDISC_FIFO,
986 	TC_SETUP_QDISC_HTB,
987 	TC_SETUP_ACT,
988 };
989 
990 /* These structures hold the attributes of bpf state that are being passed
991  * to the netdevice through the bpf op.
992  */
993 enum bpf_netdev_command {
994 	/* Set or clear a bpf program used in the earliest stages of packet
995 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
996 	 * is responsible for calling bpf_prog_put on any old progs that are
997 	 * stored. In case of error, the callee need not release the new prog
998 	 * reference, but on success it takes ownership and must bpf_prog_put
999 	 * when it is no longer used.
1000 	 */
1001 	XDP_SETUP_PROG,
1002 	XDP_SETUP_PROG_HW,
1003 	/* BPF program for offload callbacks, invoked at program load time. */
1004 	BPF_OFFLOAD_MAP_ALLOC,
1005 	BPF_OFFLOAD_MAP_FREE,
1006 	XDP_SETUP_XSK_POOL,
1007 };
1008 
1009 struct bpf_prog_offload_ops;
1010 struct netlink_ext_ack;
1011 struct xdp_umem;
1012 struct xdp_dev_bulk_queue;
1013 struct bpf_xdp_link;
1014 
1015 enum bpf_xdp_mode {
1016 	XDP_MODE_SKB = 0,
1017 	XDP_MODE_DRV = 1,
1018 	XDP_MODE_HW = 2,
1019 	__MAX_XDP_MODE
1020 };
1021 
1022 struct bpf_xdp_entity {
1023 	struct bpf_prog *prog;
1024 	struct bpf_xdp_link *link;
1025 };
1026 
1027 struct netdev_bpf {
1028 	enum bpf_netdev_command command;
1029 	union {
1030 		/* XDP_SETUP_PROG */
1031 		struct {
1032 			u32 flags;
1033 			struct bpf_prog *prog;
1034 			struct netlink_ext_ack *extack;
1035 		};
1036 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
1037 		struct {
1038 			struct bpf_offloaded_map *offmap;
1039 		};
1040 		/* XDP_SETUP_XSK_POOL */
1041 		struct {
1042 			struct xsk_buff_pool *pool;
1043 			u16 queue_id;
1044 		} xsk;
1045 	};
1046 };
1047 
1048 /* Flags for ndo_xsk_wakeup. */
1049 #define XDP_WAKEUP_RX (1 << 0)
1050 #define XDP_WAKEUP_TX (1 << 1)
1051 
1052 #ifdef CONFIG_XFRM_OFFLOAD
1053 struct xfrmdev_ops {
1054 	int	(*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack);
1055 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
1056 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
1057 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1058 				       struct xfrm_state *x);
1059 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1060 	void	(*xdo_dev_state_update_curlft) (struct xfrm_state *x);
1061 	int	(*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack);
1062 	void	(*xdo_dev_policy_delete) (struct xfrm_policy *x);
1063 	void	(*xdo_dev_policy_free) (struct xfrm_policy *x);
1064 };
1065 #endif
1066 
1067 struct dev_ifalias {
1068 	struct rcu_head rcuhead;
1069 	char ifalias[];
1070 };
1071 
1072 struct devlink;
1073 struct tlsdev_ops;
1074 
1075 struct netdev_net_notifier {
1076 	struct list_head list;
1077 	struct notifier_block *nb;
1078 };
1079 
1080 /*
1081  * This structure defines the management hooks for network devices.
1082  * The following hooks can be defined; unless noted otherwise, they are
1083  * optional and can be filled with a null pointer.
1084  *
1085  * int (*ndo_init)(struct net_device *dev);
1086  *     This function is called once when a network device is registered.
1087  *     The network device can use this for any late stage initialization
1088  *     or semantic validation. It can fail with an error code which will
1089  *     be propagated back to register_netdev.
1090  *
1091  * void (*ndo_uninit)(struct net_device *dev);
1092  *     This function is called when device is unregistered or when registration
1093  *     fails. It is not called if init fails.
1094  *
1095  * int (*ndo_open)(struct net_device *dev);
1096  *     This function is called when a network device transitions to the up
1097  *     state.
1098  *
1099  * int (*ndo_stop)(struct net_device *dev);
1100  *     This function is called when a network device transitions to the down
1101  *     state.
1102  *
1103  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1104  *                               struct net_device *dev);
1105  *	Called when a packet needs to be transmitted.
1106  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1107  *	the queue before that can happen; it's for obsolete devices and weird
1108  *	corner cases, but the stack really does a non-trivial amount
1109  *	of useless work if you return NETDEV_TX_BUSY.
1110  *	Required; cannot be NULL.
1111  *
1112  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1113  *					   struct net_device *dev
1114  *					   netdev_features_t features);
1115  *	Called by core transmit path to determine if device is capable of
1116  *	performing offload operations on a given packet. This is to give
1117  *	the device an opportunity to implement any restrictions that cannot
1118  *	be otherwise expressed by feature flags. The check is called with
1119  *	the set of features that the stack has calculated and it returns
1120  *	those the driver believes to be appropriate.
1121  *
1122  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1123  *                         struct net_device *sb_dev);
1124  *	Called to decide which queue to use when device supports multiple
1125  *	transmit queues.
1126  *
1127  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1128  *	This function is called to allow device receiver to make
1129  *	changes to configuration when multicast or promiscuous is enabled.
1130  *
1131  * void (*ndo_set_rx_mode)(struct net_device *dev);
1132  *	This function is called device changes address list filtering.
1133  *	If driver handles unicast address filtering, it should set
1134  *	IFF_UNICAST_FLT in its priv_flags.
1135  *
1136  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1137  *	This function  is called when the Media Access Control address
1138  *	needs to be changed. If this interface is not defined, the
1139  *	MAC address can not be changed.
1140  *
1141  * int (*ndo_validate_addr)(struct net_device *dev);
1142  *	Test if Media Access Control address is valid for the device.
1143  *
1144  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1145  *	Old-style ioctl entry point. This is used internally by the
1146  *	appletalk and ieee802154 subsystems but is no longer called by
1147  *	the device ioctl handler.
1148  *
1149  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1150  *	Used by the bonding driver for its device specific ioctls:
1151  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1152  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1153  *
1154  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1155  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1156  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1157  *
1158  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1159  *	Used to set network devices bus interface parameters. This interface
1160  *	is retained for legacy reasons; new devices should use the bus
1161  *	interface (PCI) for low level management.
1162  *
1163  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1164  *	Called when a user wants to change the Maximum Transfer Unit
1165  *	of a device.
1166  *
1167  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1168  *	Callback used when the transmitter has not made any progress
1169  *	for dev->watchdog ticks.
1170  *
1171  * void (*ndo_get_stats64)(struct net_device *dev,
1172  *                         struct rtnl_link_stats64 *storage);
1173  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1174  *	Called when a user wants to get the network device usage
1175  *	statistics. Drivers must do one of the following:
1176  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1177  *	   rtnl_link_stats64 structure passed by the caller.
1178  *	2. Define @ndo_get_stats to update a net_device_stats structure
1179  *	   (which should normally be dev->stats) and return a pointer to
1180  *	   it. The structure may be changed asynchronously only if each
1181  *	   field is written atomically.
1182  *	3. Update dev->stats asynchronously and atomically, and define
1183  *	   neither operation.
1184  *
1185  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1186  *	Return true if this device supports offload stats of this attr_id.
1187  *
1188  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1189  *	void *attr_data)
1190  *	Get statistics for offload operations by attr_id. Write it into the
1191  *	attr_data pointer.
1192  *
1193  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1194  *	If device supports VLAN filtering this function is called when a
1195  *	VLAN id is registered.
1196  *
1197  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1198  *	If device supports VLAN filtering this function is called when a
1199  *	VLAN id is unregistered.
1200  *
1201  * void (*ndo_poll_controller)(struct net_device *dev);
1202  *
1203  *	SR-IOV management functions.
1204  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1205  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1206  *			  u8 qos, __be16 proto);
1207  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1208  *			  int max_tx_rate);
1209  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1210  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1211  * int (*ndo_get_vf_config)(struct net_device *dev,
1212  *			    int vf, struct ifla_vf_info *ivf);
1213  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1214  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1215  *			  struct nlattr *port[]);
1216  *
1217  *      Enable or disable the VF ability to query its RSS Redirection Table and
1218  *      Hash Key. This is needed since on some devices VF share this information
1219  *      with PF and querying it may introduce a theoretical security risk.
1220  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1221  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1222  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1223  *		       void *type_data);
1224  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1225  *	This is always called from the stack with the rtnl lock held and netif
1226  *	tx queues stopped. This allows the netdevice to perform queue
1227  *	management safely.
1228  *
1229  *	Fiber Channel over Ethernet (FCoE) offload functions.
1230  * int (*ndo_fcoe_enable)(struct net_device *dev);
1231  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1232  *	so the underlying device can perform whatever needed configuration or
1233  *	initialization to support acceleration of FCoE traffic.
1234  *
1235  * int (*ndo_fcoe_disable)(struct net_device *dev);
1236  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1237  *	so the underlying device can perform whatever needed clean-ups to
1238  *	stop supporting acceleration of FCoE traffic.
1239  *
1240  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1241  *			     struct scatterlist *sgl, unsigned int sgc);
1242  *	Called when the FCoE Initiator wants to initialize an I/O that
1243  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1244  *	perform necessary setup and returns 1 to indicate the device is set up
1245  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1246  *
1247  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1248  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1249  *	indicated by the FC exchange id 'xid', so the underlying device can
1250  *	clean up and reuse resources for later DDP requests.
1251  *
1252  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1253  *			      struct scatterlist *sgl, unsigned int sgc);
1254  *	Called when the FCoE Target wants to initialize an I/O that
1255  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1256  *	perform necessary setup and returns 1 to indicate the device is set up
1257  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1258  *
1259  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1260  *			       struct netdev_fcoe_hbainfo *hbainfo);
1261  *	Called when the FCoE Protocol stack wants information on the underlying
1262  *	device. This information is utilized by the FCoE protocol stack to
1263  *	register attributes with Fiber Channel management service as per the
1264  *	FC-GS Fabric Device Management Information(FDMI) specification.
1265  *
1266  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1267  *	Called when the underlying device wants to override default World Wide
1268  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1269  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1270  *	protocol stack to use.
1271  *
1272  *	RFS acceleration.
1273  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1274  *			    u16 rxq_index, u32 flow_id);
1275  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1276  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1277  *	Return the filter ID on success, or a negative error code.
1278  *
1279  *	Slave management functions (for bridge, bonding, etc).
1280  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1281  *	Called to make another netdev an underling.
1282  *
1283  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1284  *	Called to release previously enslaved netdev.
1285  *
1286  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1287  *					    struct sk_buff *skb,
1288  *					    bool all_slaves);
1289  *	Get the xmit slave of master device. If all_slaves is true, function
1290  *	assume all the slaves can transmit.
1291  *
1292  *      Feature/offload setting functions.
1293  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1294  *		netdev_features_t features);
1295  *	Adjusts the requested feature flags according to device-specific
1296  *	constraints, and returns the resulting flags. Must not modify
1297  *	the device state.
1298  *
1299  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1300  *	Called to update device configuration to new features. Passed
1301  *	feature set might be less than what was returned by ndo_fix_features()).
1302  *	Must return >0 or -errno if it changed dev->features itself.
1303  *
1304  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1305  *		      struct net_device *dev,
1306  *		      const unsigned char *addr, u16 vid, u16 flags,
1307  *		      struct netlink_ext_ack *extack);
1308  *	Adds an FDB entry to dev for addr.
1309  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1310  *		      struct net_device *dev,
1311  *		      const unsigned char *addr, u16 vid)
1312  *	Deletes the FDB entry from dev coresponding to addr.
1313  * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev,
1314  *			   struct netlink_ext_ack *extack);
1315  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1316  *		       struct net_device *dev, struct net_device *filter_dev,
1317  *		       int *idx)
1318  *	Used to add FDB entries to dump requests. Implementers should add
1319  *	entries to skb and update idx with the number of entries.
1320  *
1321  * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[],
1322  *		      u16 nlmsg_flags, struct netlink_ext_ack *extack);
1323  *	Adds an MDB entry to dev.
1324  * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[],
1325  *		      struct netlink_ext_ack *extack);
1326  *	Deletes the MDB entry from dev.
1327  * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb,
1328  *		       struct netlink_callback *cb);
1329  *	Dumps MDB entries from dev. The first argument (marker) in the netlink
1330  *	callback is used by core rtnetlink code.
1331  *
1332  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1333  *			     u16 flags, struct netlink_ext_ack *extack)
1334  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1335  *			     struct net_device *dev, u32 filter_mask,
1336  *			     int nlflags)
1337  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1338  *			     u16 flags);
1339  *
1340  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1341  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1342  *	which do not represent real hardware may define this to allow their
1343  *	userspace components to manage their virtual carrier state. Devices
1344  *	that determine carrier state from physical hardware properties (eg
1345  *	network cables) or protocol-dependent mechanisms (eg
1346  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1347  *
1348  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1349  *			       struct netdev_phys_item_id *ppid);
1350  *	Called to get ID of physical port of this device. If driver does
1351  *	not implement this, it is assumed that the hw is not able to have
1352  *	multiple net devices on single physical port.
1353  *
1354  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1355  *				 struct netdev_phys_item_id *ppid)
1356  *	Called to get the parent ID of the physical port of this device.
1357  *
1358  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1359  *				 struct net_device *dev)
1360  *	Called by upper layer devices to accelerate switching or other
1361  *	station functionality into hardware. 'pdev is the lowerdev
1362  *	to use for the offload and 'dev' is the net device that will
1363  *	back the offload. Returns a pointer to the private structure
1364  *	the upper layer will maintain.
1365  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1366  *	Called by upper layer device to delete the station created
1367  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1368  *	the station and priv is the structure returned by the add
1369  *	operation.
1370  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1371  *			     int queue_index, u32 maxrate);
1372  *	Called when a user wants to set a max-rate limitation of specific
1373  *	TX queue.
1374  * int (*ndo_get_iflink)(const struct net_device *dev);
1375  *	Called to get the iflink value of this device.
1376  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1377  *	This function is used to get egress tunnel information for given skb.
1378  *	This is useful for retrieving outer tunnel header parameters while
1379  *	sampling packet.
1380  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1381  *	This function is used to specify the headroom that the skb must
1382  *	consider when allocation skb during packet reception. Setting
1383  *	appropriate rx headroom value allows avoiding skb head copy on
1384  *	forward. Setting a negative value resets the rx headroom to the
1385  *	default value.
1386  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1387  *	This function is used to set or query state related to XDP on the
1388  *	netdevice and manage BPF offload. See definition of
1389  *	enum bpf_netdev_command for details.
1390  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1391  *			u32 flags);
1392  *	This function is used to submit @n XDP packets for transmit on a
1393  *	netdevice. Returns number of frames successfully transmitted, frames
1394  *	that got dropped are freed/returned via xdp_return_frame().
1395  *	Returns negative number, means general error invoking ndo, meaning
1396  *	no frames were xmit'ed and core-caller will free all frames.
1397  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1398  *					        struct xdp_buff *xdp);
1399  *      Get the xmit slave of master device based on the xdp_buff.
1400  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1401  *      This function is used to wake up the softirq, ksoftirqd or kthread
1402  *	responsible for sending and/or receiving packets on a specific
1403  *	queue id bound to an AF_XDP socket. The flags field specifies if
1404  *	only RX, only Tx, or both should be woken up using the flags
1405  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1406  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1407  *			 int cmd);
1408  *	Add, change, delete or get information on an IPv4 tunnel.
1409  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1410  *	If a device is paired with a peer device, return the peer instance.
1411  *	The caller must be under RCU read context.
1412  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1413  *     Get the forwarding path to reach the real device from the HW destination address
1414  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1415  *			     const struct skb_shared_hwtstamps *hwtstamps,
1416  *			     bool cycles);
1417  *	Get hardware timestamp based on normal/adjustable time or free running
1418  *	cycle counter. This function is required if physical clock supports a
1419  *	free running cycle counter.
1420  *
1421  * int (*ndo_hwtstamp_get)(struct net_device *dev,
1422  *			   struct kernel_hwtstamp_config *kernel_config);
1423  *	Get the currently configured hardware timestamping parameters for the
1424  *	NIC device.
1425  *
1426  * int (*ndo_hwtstamp_set)(struct net_device *dev,
1427  *			   struct kernel_hwtstamp_config *kernel_config,
1428  *			   struct netlink_ext_ack *extack);
1429  *	Change the hardware timestamping parameters for NIC device.
1430  */
1431 struct net_device_ops {
1432 	int			(*ndo_init)(struct net_device *dev);
1433 	void			(*ndo_uninit)(struct net_device *dev);
1434 	int			(*ndo_open)(struct net_device *dev);
1435 	int			(*ndo_stop)(struct net_device *dev);
1436 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1437 						  struct net_device *dev);
1438 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1439 						      struct net_device *dev,
1440 						      netdev_features_t features);
1441 	u16			(*ndo_select_queue)(struct net_device *dev,
1442 						    struct sk_buff *skb,
1443 						    struct net_device *sb_dev);
1444 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1445 						       int flags);
1446 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1447 	int			(*ndo_set_mac_address)(struct net_device *dev,
1448 						       void *addr);
1449 	int			(*ndo_validate_addr)(struct net_device *dev);
1450 	int			(*ndo_do_ioctl)(struct net_device *dev,
1451 					        struct ifreq *ifr, int cmd);
1452 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1453 						 struct ifreq *ifr, int cmd);
1454 	int			(*ndo_siocbond)(struct net_device *dev,
1455 						struct ifreq *ifr, int cmd);
1456 	int			(*ndo_siocwandev)(struct net_device *dev,
1457 						  struct if_settings *ifs);
1458 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1459 						      struct ifreq *ifr,
1460 						      void __user *data, int cmd);
1461 	int			(*ndo_set_config)(struct net_device *dev,
1462 					          struct ifmap *map);
1463 	int			(*ndo_change_mtu)(struct net_device *dev,
1464 						  int new_mtu);
1465 	int			(*ndo_neigh_setup)(struct net_device *dev,
1466 						   struct neigh_parms *);
1467 	void			(*ndo_tx_timeout) (struct net_device *dev,
1468 						   unsigned int txqueue);
1469 
1470 	void			(*ndo_get_stats64)(struct net_device *dev,
1471 						   struct rtnl_link_stats64 *storage);
1472 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1473 	int			(*ndo_get_offload_stats)(int attr_id,
1474 							 const struct net_device *dev,
1475 							 void *attr_data);
1476 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1477 
1478 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1479 						       __be16 proto, u16 vid);
1480 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1481 						        __be16 proto, u16 vid);
1482 #ifdef CONFIG_NET_POLL_CONTROLLER
1483 	void                    (*ndo_poll_controller)(struct net_device *dev);
1484 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1485 						     struct netpoll_info *info);
1486 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1487 #endif
1488 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1489 						  int queue, u8 *mac);
1490 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1491 						   int queue, u16 vlan,
1492 						   u8 qos, __be16 proto);
1493 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1494 						   int vf, int min_tx_rate,
1495 						   int max_tx_rate);
1496 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1497 						       int vf, bool setting);
1498 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1499 						    int vf, bool setting);
1500 	int			(*ndo_get_vf_config)(struct net_device *dev,
1501 						     int vf,
1502 						     struct ifla_vf_info *ivf);
1503 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1504 							 int vf, int link_state);
1505 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1506 						    int vf,
1507 						    struct ifla_vf_stats
1508 						    *vf_stats);
1509 	int			(*ndo_set_vf_port)(struct net_device *dev,
1510 						   int vf,
1511 						   struct nlattr *port[]);
1512 	int			(*ndo_get_vf_port)(struct net_device *dev,
1513 						   int vf, struct sk_buff *skb);
1514 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1515 						   int vf,
1516 						   struct ifla_vf_guid *node_guid,
1517 						   struct ifla_vf_guid *port_guid);
1518 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1519 						   int vf, u64 guid,
1520 						   int guid_type);
1521 	int			(*ndo_set_vf_rss_query_en)(
1522 						   struct net_device *dev,
1523 						   int vf, bool setting);
1524 	int			(*ndo_setup_tc)(struct net_device *dev,
1525 						enum tc_setup_type type,
1526 						void *type_data);
1527 #if IS_ENABLED(CONFIG_FCOE)
1528 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1529 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1530 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1531 						      u16 xid,
1532 						      struct scatterlist *sgl,
1533 						      unsigned int sgc);
1534 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1535 						     u16 xid);
1536 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1537 						       u16 xid,
1538 						       struct scatterlist *sgl,
1539 						       unsigned int sgc);
1540 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1541 							struct netdev_fcoe_hbainfo *hbainfo);
1542 #endif
1543 
1544 #if IS_ENABLED(CONFIG_LIBFCOE)
1545 #define NETDEV_FCOE_WWNN 0
1546 #define NETDEV_FCOE_WWPN 1
1547 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1548 						    u64 *wwn, int type);
1549 #endif
1550 
1551 #ifdef CONFIG_RFS_ACCEL
1552 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1553 						     const struct sk_buff *skb,
1554 						     u16 rxq_index,
1555 						     u32 flow_id);
1556 #endif
1557 	int			(*ndo_add_slave)(struct net_device *dev,
1558 						 struct net_device *slave_dev,
1559 						 struct netlink_ext_ack *extack);
1560 	int			(*ndo_del_slave)(struct net_device *dev,
1561 						 struct net_device *slave_dev);
1562 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1563 						      struct sk_buff *skb,
1564 						      bool all_slaves);
1565 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1566 							struct sock *sk);
1567 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1568 						    netdev_features_t features);
1569 	int			(*ndo_set_features)(struct net_device *dev,
1570 						    netdev_features_t features);
1571 	int			(*ndo_neigh_construct)(struct net_device *dev,
1572 						       struct neighbour *n);
1573 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1574 						     struct neighbour *n);
1575 
1576 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1577 					       struct nlattr *tb[],
1578 					       struct net_device *dev,
1579 					       const unsigned char *addr,
1580 					       u16 vid,
1581 					       u16 flags,
1582 					       struct netlink_ext_ack *extack);
1583 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1584 					       struct nlattr *tb[],
1585 					       struct net_device *dev,
1586 					       const unsigned char *addr,
1587 					       u16 vid, struct netlink_ext_ack *extack);
1588 	int			(*ndo_fdb_del_bulk)(struct nlmsghdr *nlh,
1589 						    struct net_device *dev,
1590 						    struct netlink_ext_ack *extack);
1591 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1592 						struct netlink_callback *cb,
1593 						struct net_device *dev,
1594 						struct net_device *filter_dev,
1595 						int *idx);
1596 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1597 					       struct nlattr *tb[],
1598 					       struct net_device *dev,
1599 					       const unsigned char *addr,
1600 					       u16 vid, u32 portid, u32 seq,
1601 					       struct netlink_ext_ack *extack);
1602 	int			(*ndo_mdb_add)(struct net_device *dev,
1603 					       struct nlattr *tb[],
1604 					       u16 nlmsg_flags,
1605 					       struct netlink_ext_ack *extack);
1606 	int			(*ndo_mdb_del)(struct net_device *dev,
1607 					       struct nlattr *tb[],
1608 					       struct netlink_ext_ack *extack);
1609 	int			(*ndo_mdb_dump)(struct net_device *dev,
1610 						struct sk_buff *skb,
1611 						struct netlink_callback *cb);
1612 	int			(*ndo_mdb_get)(struct net_device *dev,
1613 					       struct nlattr *tb[], u32 portid,
1614 					       u32 seq,
1615 					       struct netlink_ext_ack *extack);
1616 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1617 						      struct nlmsghdr *nlh,
1618 						      u16 flags,
1619 						      struct netlink_ext_ack *extack);
1620 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1621 						      u32 pid, u32 seq,
1622 						      struct net_device *dev,
1623 						      u32 filter_mask,
1624 						      int nlflags);
1625 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1626 						      struct nlmsghdr *nlh,
1627 						      u16 flags);
1628 	int			(*ndo_change_carrier)(struct net_device *dev,
1629 						      bool new_carrier);
1630 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1631 							struct netdev_phys_item_id *ppid);
1632 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1633 							  struct netdev_phys_item_id *ppid);
1634 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1635 							  char *name, size_t len);
1636 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1637 							struct net_device *dev);
1638 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1639 							void *priv);
1640 
1641 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1642 						      int queue_index,
1643 						      u32 maxrate);
1644 	int			(*ndo_get_iflink)(const struct net_device *dev);
1645 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1646 						       struct sk_buff *skb);
1647 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1648 						       int needed_headroom);
1649 	int			(*ndo_bpf)(struct net_device *dev,
1650 					   struct netdev_bpf *bpf);
1651 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1652 						struct xdp_frame **xdp,
1653 						u32 flags);
1654 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1655 							  struct xdp_buff *xdp);
1656 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1657 						  u32 queue_id, u32 flags);
1658 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1659 						  struct ip_tunnel_parm *p, int cmd);
1660 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1661 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1662                                                          struct net_device_path *path);
1663 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1664 						  const struct skb_shared_hwtstamps *hwtstamps,
1665 						  bool cycles);
1666 	int			(*ndo_hwtstamp_get)(struct net_device *dev,
1667 						    struct kernel_hwtstamp_config *kernel_config);
1668 	int			(*ndo_hwtstamp_set)(struct net_device *dev,
1669 						    struct kernel_hwtstamp_config *kernel_config,
1670 						    struct netlink_ext_ack *extack);
1671 };
1672 
1673 /**
1674  * enum netdev_priv_flags - &struct net_device priv_flags
1675  *
1676  * These are the &struct net_device, they are only set internally
1677  * by drivers and used in the kernel. These flags are invisible to
1678  * userspace; this means that the order of these flags can change
1679  * during any kernel release.
1680  *
1681  * You should have a pretty good reason to be extending these flags.
1682  *
1683  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1684  * @IFF_EBRIDGE: Ethernet bridging device
1685  * @IFF_BONDING: bonding master or slave
1686  * @IFF_ISATAP: ISATAP interface (RFC4214)
1687  * @IFF_WAN_HDLC: WAN HDLC device
1688  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1689  *	release skb->dst
1690  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1691  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1692  * @IFF_MACVLAN_PORT: device used as macvlan port
1693  * @IFF_BRIDGE_PORT: device used as bridge port
1694  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1695  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1696  * @IFF_UNICAST_FLT: Supports unicast filtering
1697  * @IFF_TEAM_PORT: device used as team port
1698  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1699  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1700  *	change when it's running
1701  * @IFF_MACVLAN: Macvlan device
1702  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1703  *	underlying stacked devices
1704  * @IFF_L3MDEV_MASTER: device is an L3 master device
1705  * @IFF_NO_QUEUE: device can run without qdisc attached
1706  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1707  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1708  * @IFF_TEAM: device is a team device
1709  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1710  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1711  *	entity (i.e. the master device for bridged veth)
1712  * @IFF_MACSEC: device is a MACsec device
1713  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1714  * @IFF_FAILOVER: device is a failover master device
1715  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1716  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1717  * @IFF_NO_ADDRCONF: prevent ipv6 addrconf
1718  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1719  *	skb_headlen(skb) == 0 (data starts from frag0)
1720  * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1721  * @IFF_SEE_ALL_HWTSTAMP_REQUESTS: device wants to see calls to
1722  *	ndo_hwtstamp_set() for all timestamp requests regardless of source,
1723  *	even if those aren't HWTSTAMP_SOURCE_NETDEV.
1724  */
1725 enum netdev_priv_flags {
1726 	IFF_802_1Q_VLAN			= 1<<0,
1727 	IFF_EBRIDGE			= 1<<1,
1728 	IFF_BONDING			= 1<<2,
1729 	IFF_ISATAP			= 1<<3,
1730 	IFF_WAN_HDLC			= 1<<4,
1731 	IFF_XMIT_DST_RELEASE		= 1<<5,
1732 	IFF_DONT_BRIDGE			= 1<<6,
1733 	IFF_DISABLE_NETPOLL		= 1<<7,
1734 	IFF_MACVLAN_PORT		= 1<<8,
1735 	IFF_BRIDGE_PORT			= 1<<9,
1736 	IFF_OVS_DATAPATH		= 1<<10,
1737 	IFF_TX_SKB_SHARING		= 1<<11,
1738 	IFF_UNICAST_FLT			= 1<<12,
1739 	IFF_TEAM_PORT			= 1<<13,
1740 	IFF_SUPP_NOFCS			= 1<<14,
1741 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1742 	IFF_MACVLAN			= 1<<16,
1743 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1744 	IFF_L3MDEV_MASTER		= 1<<18,
1745 	IFF_NO_QUEUE			= 1<<19,
1746 	IFF_OPENVSWITCH			= 1<<20,
1747 	IFF_L3MDEV_SLAVE		= 1<<21,
1748 	IFF_TEAM			= 1<<22,
1749 	IFF_RXFH_CONFIGURED		= 1<<23,
1750 	IFF_PHONY_HEADROOM		= 1<<24,
1751 	IFF_MACSEC			= 1<<25,
1752 	IFF_NO_RX_HANDLER		= 1<<26,
1753 	IFF_FAILOVER			= 1<<27,
1754 	IFF_FAILOVER_SLAVE		= 1<<28,
1755 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1756 	IFF_NO_ADDRCONF			= BIT_ULL(30),
1757 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1758 	IFF_CHANGE_PROTO_DOWN		= BIT_ULL(32),
1759 	IFF_SEE_ALL_HWTSTAMP_REQUESTS	= BIT_ULL(33),
1760 };
1761 
1762 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1763 #define IFF_EBRIDGE			IFF_EBRIDGE
1764 #define IFF_BONDING			IFF_BONDING
1765 #define IFF_ISATAP			IFF_ISATAP
1766 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1767 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1768 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1769 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1770 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1771 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1772 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1773 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1774 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1775 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1776 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1777 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1778 #define IFF_MACVLAN			IFF_MACVLAN
1779 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1780 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1781 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1782 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1783 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1784 #define IFF_TEAM			IFF_TEAM
1785 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1786 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1787 #define IFF_MACSEC			IFF_MACSEC
1788 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1789 #define IFF_FAILOVER			IFF_FAILOVER
1790 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1791 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1792 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1793 
1794 /* Specifies the type of the struct net_device::ml_priv pointer */
1795 enum netdev_ml_priv_type {
1796 	ML_PRIV_NONE,
1797 	ML_PRIV_CAN,
1798 };
1799 
1800 enum netdev_stat_type {
1801 	NETDEV_PCPU_STAT_NONE,
1802 	NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */
1803 	NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */
1804 	NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */
1805 };
1806 
1807 /**
1808  *	struct net_device - The DEVICE structure.
1809  *
1810  *	Actually, this whole structure is a big mistake.  It mixes I/O
1811  *	data with strictly "high-level" data, and it has to know about
1812  *	almost every data structure used in the INET module.
1813  *
1814  *	@name:	This is the first field of the "visible" part of this structure
1815  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1816  *		of the interface.
1817  *
1818  *	@name_node:	Name hashlist node
1819  *	@ifalias:	SNMP alias
1820  *	@mem_end:	Shared memory end
1821  *	@mem_start:	Shared memory start
1822  *	@base_addr:	Device I/O address
1823  *	@irq:		Device IRQ number
1824  *
1825  *	@state:		Generic network queuing layer state, see netdev_state_t
1826  *	@dev_list:	The global list of network devices
1827  *	@napi_list:	List entry used for polling NAPI devices
1828  *	@unreg_list:	List entry  when we are unregistering the
1829  *			device; see the function unregister_netdev
1830  *	@close_list:	List entry used when we are closing the device
1831  *	@ptype_all:     Device-specific packet handlers for all protocols
1832  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1833  *
1834  *	@adj_list:	Directly linked devices, like slaves for bonding
1835  *	@features:	Currently active device features
1836  *	@hw_features:	User-changeable features
1837  *
1838  *	@wanted_features:	User-requested features
1839  *	@vlan_features:		Mask of features inheritable by VLAN devices
1840  *
1841  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1842  *				This field indicates what encapsulation
1843  *				offloads the hardware is capable of doing,
1844  *				and drivers will need to set them appropriately.
1845  *
1846  *	@mpls_features:	Mask of features inheritable by MPLS
1847  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1848  *
1849  *	@ifindex:	interface index
1850  *	@group:		The group the device belongs to
1851  *
1852  *	@stats:		Statistics struct, which was left as a legacy, use
1853  *			rtnl_link_stats64 instead
1854  *
1855  *	@core_stats:	core networking counters,
1856  *			do not use this in drivers
1857  *	@carrier_up_count:	Number of times the carrier has been up
1858  *	@carrier_down_count:	Number of times the carrier has been down
1859  *
1860  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1861  *				instead of ioctl,
1862  *				see <net/iw_handler.h> for details.
1863  *	@wireless_data:	Instance data managed by the core of wireless extensions
1864  *
1865  *	@netdev_ops:	Includes several pointers to callbacks,
1866  *			if one wants to override the ndo_*() functions
1867  *	@xdp_metadata_ops:	Includes pointers to XDP metadata callbacks.
1868  *	@xsk_tx_metadata_ops:	Includes pointers to AF_XDP TX metadata callbacks.
1869  *	@ethtool_ops:	Management operations
1870  *	@l3mdev_ops:	Layer 3 master device operations
1871  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1872  *			discovery handling. Necessary for e.g. 6LoWPAN.
1873  *	@xfrmdev_ops:	Transformation offload operations
1874  *	@tlsdev_ops:	Transport Layer Security offload operations
1875  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1876  *			of Layer 2 headers.
1877  *
1878  *	@flags:		Interface flags (a la BSD)
1879  *	@xdp_features:	XDP capability supported by the device
1880  *	@priv_flags:	Like 'flags' but invisible to userspace,
1881  *			see if.h for the definitions
1882  *	@gflags:	Global flags ( kept as legacy )
1883  *	@padded:	How much padding added by alloc_netdev()
1884  *	@operstate:	RFC2863 operstate
1885  *	@link_mode:	Mapping policy to operstate
1886  *	@if_port:	Selectable AUI, TP, ...
1887  *	@dma:		DMA channel
1888  *	@mtu:		Interface MTU value
1889  *	@min_mtu:	Interface Minimum MTU value
1890  *	@max_mtu:	Interface Maximum MTU value
1891  *	@type:		Interface hardware type
1892  *	@hard_header_len: Maximum hardware header length.
1893  *	@min_header_len:  Minimum hardware header length
1894  *
1895  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1896  *			  cases can this be guaranteed
1897  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1898  *			  cases can this be guaranteed. Some cases also use
1899  *			  LL_MAX_HEADER instead to allocate the skb
1900  *
1901  *	interface address info:
1902  *
1903  * 	@perm_addr:		Permanent hw address
1904  * 	@addr_assign_type:	Hw address assignment type
1905  * 	@addr_len:		Hardware address length
1906  *	@upper_level:		Maximum depth level of upper devices.
1907  *	@lower_level:		Maximum depth level of lower devices.
1908  *	@neigh_priv_len:	Used in neigh_alloc()
1909  * 	@dev_id:		Used to differentiate devices that share
1910  * 				the same link layer address
1911  * 	@dev_port:		Used to differentiate devices that share
1912  * 				the same function
1913  *	@addr_list_lock:	XXX: need comments on this one
1914  *	@name_assign_type:	network interface name assignment type
1915  *	@uc_promisc:		Counter that indicates promiscuous mode
1916  *				has been enabled due to the need to listen to
1917  *				additional unicast addresses in a device that
1918  *				does not implement ndo_set_rx_mode()
1919  *	@uc:			unicast mac addresses
1920  *	@mc:			multicast mac addresses
1921  *	@dev_addrs:		list of device hw addresses
1922  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1923  *	@promiscuity:		Number of times the NIC is told to work in
1924  *				promiscuous mode; if it becomes 0 the NIC will
1925  *				exit promiscuous mode
1926  *	@allmulti:		Counter, enables or disables allmulticast mode
1927  *
1928  *	@vlan_info:	VLAN info
1929  *	@dsa_ptr:	dsa specific data
1930  *	@tipc_ptr:	TIPC specific data
1931  *	@atalk_ptr:	AppleTalk link
1932  *	@ip_ptr:	IPv4 specific data
1933  *	@ip6_ptr:	IPv6 specific data
1934  *	@ax25_ptr:	AX.25 specific data
1935  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1936  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1937  *			 device struct
1938  *	@mpls_ptr:	mpls_dev struct pointer
1939  *	@mctp_ptr:	MCTP specific data
1940  *
1941  *	@dev_addr:	Hw address (before bcast,
1942  *			because most packets are unicast)
1943  *
1944  *	@_rx:			Array of RX queues
1945  *	@num_rx_queues:		Number of RX queues
1946  *				allocated at register_netdev() time
1947  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1948  *	@xdp_prog:		XDP sockets filter program pointer
1949  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1950  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1951  *				allow to avoid NIC hard IRQ, on busy queues.
1952  *
1953  *	@rx_handler:		handler for received packets
1954  *	@rx_handler_data: 	XXX: need comments on this one
1955  *	@tcx_ingress:		BPF & clsact qdisc specific data for ingress processing
1956  *	@ingress_queue:		XXX: need comments on this one
1957  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1958  *	@broadcast:		hw bcast address
1959  *
1960  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1961  *			indexed by RX queue number. Assigned by driver.
1962  *			This must only be set if the ndo_rx_flow_steer
1963  *			operation is defined
1964  *	@index_hlist:		Device index hash chain
1965  *
1966  *	@_tx:			Array of TX queues
1967  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1968  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1969  *	@qdisc:			Root qdisc from userspace point of view
1970  *	@tx_queue_len:		Max frames per queue allowed
1971  *	@tx_global_lock: 	XXX: need comments on this one
1972  *	@xdp_bulkq:		XDP device bulk queue
1973  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1974  *
1975  *	@xps_maps:	XXX: need comments on this one
1976  *	@tcx_egress:		BPF & clsact qdisc specific data for egress processing
1977  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1978  *	@qdisc_hash:		qdisc hash table
1979  *	@watchdog_timeo:	Represents the timeout that is used by
1980  *				the watchdog (see dev_watchdog())
1981  *	@watchdog_timer:	List of timers
1982  *
1983  *	@proto_down_reason:	reason a netdev interface is held down
1984  *	@pcpu_refcnt:		Number of references to this device
1985  *	@dev_refcnt:		Number of references to this device
1986  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1987  *	@todo_list:		Delayed register/unregister
1988  *	@link_watch_list:	XXX: need comments on this one
1989  *
1990  *	@reg_state:		Register/unregister state machine
1991  *	@dismantle:		Device is going to be freed
1992  *	@rtnl_link_state:	This enum represents the phases of creating
1993  *				a new link
1994  *
1995  *	@needs_free_netdev:	Should unregister perform free_netdev?
1996  *	@priv_destructor:	Called from unregister
1997  *	@npinfo:		XXX: need comments on this one
1998  * 	@nd_net:		Network namespace this network device is inside
1999  *
2000  * 	@ml_priv:	Mid-layer private
2001  *	@ml_priv_type:  Mid-layer private type
2002  *
2003  *	@pcpu_stat_type:	Type of device statistics which the core should
2004  *				allocate/free: none, lstats, tstats, dstats. none
2005  *				means the driver is handling statistics allocation/
2006  *				freeing internally.
2007  *	@lstats:		Loopback statistics: packets, bytes
2008  *	@tstats:		Tunnel statistics: RX/TX packets, RX/TX bytes
2009  *	@dstats:		Dummy statistics: RX/TX/drop packets, RX/TX bytes
2010  *
2011  *	@garp_port:	GARP
2012  *	@mrp_port:	MRP
2013  *
2014  *	@dm_private:	Drop monitor private
2015  *
2016  *	@dev:		Class/net/name entry
2017  *	@sysfs_groups:	Space for optional device, statistics and wireless
2018  *			sysfs groups
2019  *
2020  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
2021  *	@rtnl_link_ops:	Rtnl_link_ops
2022  *
2023  *	@gso_max_size:	Maximum size of generic segmentation offload
2024  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
2025  *	@gso_max_segs:	Maximum number of segments that can be passed to the
2026  *			NIC for GSO
2027  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
2028  * 	@gso_ipv4_max_size:	Maximum size of generic segmentation offload,
2029  * 				for IPv4.
2030  *
2031  *	@dcbnl_ops:	Data Center Bridging netlink ops
2032  *	@num_tc:	Number of traffic classes in the net device
2033  *	@tc_to_txq:	XXX: need comments on this one
2034  *	@prio_tc_map:	XXX: need comments on this one
2035  *
2036  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
2037  *
2038  *	@priomap:	XXX: need comments on this one
2039  *	@phydev:	Physical device may attach itself
2040  *			for hardware timestamping
2041  *	@sfp_bus:	attached &struct sfp_bus structure.
2042  *
2043  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
2044  *
2045  *	@proto_down:	protocol port state information can be sent to the
2046  *			switch driver and used to set the phys state of the
2047  *			switch port.
2048  *
2049  *	@wol_enabled:	Wake-on-LAN is enabled
2050  *
2051  *	@threaded:	napi threaded mode is enabled
2052  *
2053  *	@net_notifier_list:	List of per-net netdev notifier block
2054  *				that follow this device when it is moved
2055  *				to another network namespace.
2056  *
2057  *	@macsec_ops:    MACsec offloading ops
2058  *
2059  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
2060  *				offload capabilities of the device
2061  *	@udp_tunnel_nic:	UDP tunnel offload state
2062  *	@xdp_state:		stores info on attached XDP BPF programs
2063  *
2064  *	@nested_level:	Used as a parameter of spin_lock_nested() of
2065  *			dev->addr_list_lock.
2066  *	@unlink_list:	As netif_addr_lock() can be called recursively,
2067  *			keep a list of interfaces to be deleted.
2068  *	@gro_max_size:	Maximum size of aggregated packet in generic
2069  *			receive offload (GRO)
2070  * 	@gro_ipv4_max_size:	Maximum size of aggregated packet in generic
2071  * 				receive offload (GRO), for IPv4.
2072  *	@xdp_zc_max_segs:	Maximum number of segments supported by AF_XDP
2073  *				zero copy driver
2074  *
2075  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
2076  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
2077  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
2078  *	@dev_registered_tracker:	tracker for reference held while
2079  *					registered
2080  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
2081  *
2082  *	@devlink_port:	Pointer to related devlink port structure.
2083  *			Assigned by a driver before netdev registration using
2084  *			SET_NETDEV_DEVLINK_PORT macro. This pointer is static
2085  *			during the time netdevice is registered.
2086  *
2087  *	@dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem,
2088  *		   where the clock is recovered.
2089  *
2090  *	FIXME: cleanup struct net_device such that network protocol info
2091  *	moves out.
2092  */
2093 
2094 struct net_device {
2095 	char			name[IFNAMSIZ];
2096 	struct netdev_name_node	*name_node;
2097 	struct dev_ifalias	__rcu *ifalias;
2098 	/*
2099 	 *	I/O specific fields
2100 	 *	FIXME: Merge these and struct ifmap into one
2101 	 */
2102 	unsigned long		mem_end;
2103 	unsigned long		mem_start;
2104 	unsigned long		base_addr;
2105 
2106 	/*
2107 	 *	Some hardware also needs these fields (state,dev_list,
2108 	 *	napi_list,unreg_list,close_list) but they are not
2109 	 *	part of the usual set specified in Space.c.
2110 	 */
2111 
2112 	unsigned long		state;
2113 
2114 	struct list_head	dev_list;
2115 	struct list_head	napi_list;
2116 	struct list_head	unreg_list;
2117 	struct list_head	close_list;
2118 	struct list_head	ptype_all;
2119 	struct list_head	ptype_specific;
2120 
2121 	struct {
2122 		struct list_head upper;
2123 		struct list_head lower;
2124 	} adj_list;
2125 
2126 	/* Read-mostly cache-line for fast-path access */
2127 	unsigned int		flags;
2128 	xdp_features_t		xdp_features;
2129 	unsigned long long	priv_flags;
2130 	const struct net_device_ops *netdev_ops;
2131 	const struct xdp_metadata_ops *xdp_metadata_ops;
2132 	const struct xsk_tx_metadata_ops *xsk_tx_metadata_ops;
2133 	int			ifindex;
2134 	unsigned short		gflags;
2135 	unsigned short		hard_header_len;
2136 
2137 	/* Note : dev->mtu is often read without holding a lock.
2138 	 * Writers usually hold RTNL.
2139 	 * It is recommended to use READ_ONCE() to annotate the reads,
2140 	 * and to use WRITE_ONCE() to annotate the writes.
2141 	 */
2142 	unsigned int		mtu;
2143 	unsigned short		needed_headroom;
2144 	unsigned short		needed_tailroom;
2145 
2146 	netdev_features_t	features;
2147 	netdev_features_t	hw_features;
2148 	netdev_features_t	wanted_features;
2149 	netdev_features_t	vlan_features;
2150 	netdev_features_t	hw_enc_features;
2151 	netdev_features_t	mpls_features;
2152 	netdev_features_t	gso_partial_features;
2153 
2154 	unsigned int		min_mtu;
2155 	unsigned int		max_mtu;
2156 	unsigned short		type;
2157 	unsigned char		min_header_len;
2158 	unsigned char		name_assign_type;
2159 
2160 	int			group;
2161 
2162 	struct net_device_stats	stats; /* not used by modern drivers */
2163 
2164 	struct net_device_core_stats __percpu *core_stats;
2165 
2166 	/* Stats to monitor link on/off, flapping */
2167 	atomic_t		carrier_up_count;
2168 	atomic_t		carrier_down_count;
2169 
2170 #ifdef CONFIG_WIRELESS_EXT
2171 	const struct iw_handler_def *wireless_handlers;
2172 	struct iw_public_data	*wireless_data;
2173 #endif
2174 	const struct ethtool_ops *ethtool_ops;
2175 #ifdef CONFIG_NET_L3_MASTER_DEV
2176 	const struct l3mdev_ops	*l3mdev_ops;
2177 #endif
2178 #if IS_ENABLED(CONFIG_IPV6)
2179 	const struct ndisc_ops *ndisc_ops;
2180 #endif
2181 
2182 #ifdef CONFIG_XFRM_OFFLOAD
2183 	const struct xfrmdev_ops *xfrmdev_ops;
2184 #endif
2185 
2186 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2187 	const struct tlsdev_ops *tlsdev_ops;
2188 #endif
2189 
2190 	const struct header_ops *header_ops;
2191 
2192 	unsigned char		operstate;
2193 	unsigned char		link_mode;
2194 
2195 	unsigned char		if_port;
2196 	unsigned char		dma;
2197 
2198 	/* Interface address info. */
2199 	unsigned char		perm_addr[MAX_ADDR_LEN];
2200 	unsigned char		addr_assign_type;
2201 	unsigned char		addr_len;
2202 	unsigned char		upper_level;
2203 	unsigned char		lower_level;
2204 
2205 	unsigned short		neigh_priv_len;
2206 	unsigned short          dev_id;
2207 	unsigned short          dev_port;
2208 	unsigned short		padded;
2209 
2210 	spinlock_t		addr_list_lock;
2211 	int			irq;
2212 
2213 	struct netdev_hw_addr_list	uc;
2214 	struct netdev_hw_addr_list	mc;
2215 	struct netdev_hw_addr_list	dev_addrs;
2216 
2217 #ifdef CONFIG_SYSFS
2218 	struct kset		*queues_kset;
2219 #endif
2220 #ifdef CONFIG_LOCKDEP
2221 	struct list_head	unlink_list;
2222 #endif
2223 	unsigned int		promiscuity;
2224 	unsigned int		allmulti;
2225 	bool			uc_promisc;
2226 #ifdef CONFIG_LOCKDEP
2227 	unsigned char		nested_level;
2228 #endif
2229 
2230 
2231 	/* Protocol-specific pointers */
2232 
2233 	struct in_device __rcu	*ip_ptr;
2234 	struct inet6_dev __rcu	*ip6_ptr;
2235 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2236 	struct vlan_info __rcu	*vlan_info;
2237 #endif
2238 #if IS_ENABLED(CONFIG_NET_DSA)
2239 	struct dsa_port		*dsa_ptr;
2240 #endif
2241 #if IS_ENABLED(CONFIG_TIPC)
2242 	struct tipc_bearer __rcu *tipc_ptr;
2243 #endif
2244 #if IS_ENABLED(CONFIG_ATALK)
2245 	void 			*atalk_ptr;
2246 #endif
2247 #if IS_ENABLED(CONFIG_AX25)
2248 	void			*ax25_ptr;
2249 #endif
2250 #if IS_ENABLED(CONFIG_CFG80211)
2251 	struct wireless_dev	*ieee80211_ptr;
2252 #endif
2253 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2254 	struct wpan_dev		*ieee802154_ptr;
2255 #endif
2256 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2257 	struct mpls_dev __rcu	*mpls_ptr;
2258 #endif
2259 #if IS_ENABLED(CONFIG_MCTP)
2260 	struct mctp_dev __rcu	*mctp_ptr;
2261 #endif
2262 
2263 /*
2264  * Cache lines mostly used on receive path (including eth_type_trans())
2265  */
2266 	/* Interface address info used in eth_type_trans() */
2267 	const unsigned char	*dev_addr;
2268 
2269 	struct netdev_rx_queue	*_rx;
2270 	unsigned int		num_rx_queues;
2271 	unsigned int		real_num_rx_queues;
2272 
2273 	struct bpf_prog __rcu	*xdp_prog;
2274 	unsigned long		gro_flush_timeout;
2275 	int			napi_defer_hard_irqs;
2276 #define GRO_LEGACY_MAX_SIZE	65536u
2277 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2278  * and shinfo->gso_segs is a 16bit field.
2279  */
2280 #define GRO_MAX_SIZE		(8 * 65535u)
2281 	unsigned int		gro_max_size;
2282 	unsigned int		gro_ipv4_max_size;
2283 	unsigned int		xdp_zc_max_segs;
2284 	rx_handler_func_t __rcu	*rx_handler;
2285 	void __rcu		*rx_handler_data;
2286 #ifdef CONFIG_NET_XGRESS
2287 	struct bpf_mprog_entry __rcu *tcx_ingress;
2288 #endif
2289 	struct netdev_queue __rcu *ingress_queue;
2290 #ifdef CONFIG_NETFILTER_INGRESS
2291 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2292 #endif
2293 
2294 	unsigned char		broadcast[MAX_ADDR_LEN];
2295 #ifdef CONFIG_RFS_ACCEL
2296 	struct cpu_rmap		*rx_cpu_rmap;
2297 #endif
2298 	struct hlist_node	index_hlist;
2299 
2300 /*
2301  * Cache lines mostly used on transmit path
2302  */
2303 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2304 	unsigned int		num_tx_queues;
2305 	unsigned int		real_num_tx_queues;
2306 	struct Qdisc __rcu	*qdisc;
2307 	unsigned int		tx_queue_len;
2308 	spinlock_t		tx_global_lock;
2309 
2310 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2311 
2312 #ifdef CONFIG_XPS
2313 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2314 #endif
2315 #ifdef CONFIG_NET_XGRESS
2316 	struct bpf_mprog_entry __rcu *tcx_egress;
2317 #endif
2318 #ifdef CONFIG_NETFILTER_EGRESS
2319 	struct nf_hook_entries __rcu *nf_hooks_egress;
2320 #endif
2321 
2322 #ifdef CONFIG_NET_SCHED
2323 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2324 #endif
2325 	/* These may be needed for future network-power-down code. */
2326 	struct timer_list	watchdog_timer;
2327 	int			watchdog_timeo;
2328 
2329 	u32                     proto_down_reason;
2330 
2331 	struct list_head	todo_list;
2332 
2333 #ifdef CONFIG_PCPU_DEV_REFCNT
2334 	int __percpu		*pcpu_refcnt;
2335 #else
2336 	refcount_t		dev_refcnt;
2337 #endif
2338 	struct ref_tracker_dir	refcnt_tracker;
2339 
2340 	struct list_head	link_watch_list;
2341 
2342 	enum { NETREG_UNINITIALIZED=0,
2343 	       NETREG_REGISTERED,	/* completed register_netdevice */
2344 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2345 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2346 	       NETREG_RELEASED,		/* called free_netdev */
2347 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2348 	} reg_state:8;
2349 
2350 	bool dismantle;
2351 
2352 	enum {
2353 		RTNL_LINK_INITIALIZED,
2354 		RTNL_LINK_INITIALIZING,
2355 	} rtnl_link_state:16;
2356 
2357 	bool needs_free_netdev;
2358 	void (*priv_destructor)(struct net_device *dev);
2359 
2360 #ifdef CONFIG_NETPOLL
2361 	struct netpoll_info __rcu	*npinfo;
2362 #endif
2363 
2364 	possible_net_t			nd_net;
2365 
2366 	/* mid-layer private */
2367 	void				*ml_priv;
2368 	enum netdev_ml_priv_type	ml_priv_type;
2369 
2370 	enum netdev_stat_type		pcpu_stat_type:8;
2371 	union {
2372 		struct pcpu_lstats __percpu		*lstats;
2373 		struct pcpu_sw_netstats __percpu	*tstats;
2374 		struct pcpu_dstats __percpu		*dstats;
2375 	};
2376 
2377 #if IS_ENABLED(CONFIG_GARP)
2378 	struct garp_port __rcu	*garp_port;
2379 #endif
2380 #if IS_ENABLED(CONFIG_MRP)
2381 	struct mrp_port __rcu	*mrp_port;
2382 #endif
2383 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2384 	struct dm_hw_stat_delta __rcu *dm_private;
2385 #endif
2386 	struct device		dev;
2387 	const struct attribute_group *sysfs_groups[4];
2388 	const struct attribute_group *sysfs_rx_queue_group;
2389 
2390 	const struct rtnl_link_ops *rtnl_link_ops;
2391 
2392 	/* for setting kernel sock attribute on TCP connection setup */
2393 #define GSO_MAX_SEGS		65535u
2394 #define GSO_LEGACY_MAX_SIZE	65536u
2395 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2396  * and shinfo->gso_segs is a 16bit field.
2397  */
2398 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2399 
2400 	unsigned int		gso_max_size;
2401 #define TSO_LEGACY_MAX_SIZE	65536
2402 #define TSO_MAX_SIZE		UINT_MAX
2403 	unsigned int		tso_max_size;
2404 	u16			gso_max_segs;
2405 #define TSO_MAX_SEGS		U16_MAX
2406 	u16			tso_max_segs;
2407 	unsigned int		gso_ipv4_max_size;
2408 
2409 #ifdef CONFIG_DCB
2410 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2411 #endif
2412 	s16			num_tc;
2413 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2414 	u8			prio_tc_map[TC_BITMASK + 1];
2415 
2416 #if IS_ENABLED(CONFIG_FCOE)
2417 	unsigned int		fcoe_ddp_xid;
2418 #endif
2419 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2420 	struct netprio_map __rcu *priomap;
2421 #endif
2422 	struct phy_device	*phydev;
2423 	struct sfp_bus		*sfp_bus;
2424 	struct lock_class_key	*qdisc_tx_busylock;
2425 	bool			proto_down;
2426 	unsigned		wol_enabled:1;
2427 	unsigned		threaded:1;
2428 
2429 	struct list_head	net_notifier_list;
2430 
2431 #if IS_ENABLED(CONFIG_MACSEC)
2432 	/* MACsec management functions */
2433 	const struct macsec_ops *macsec_ops;
2434 #endif
2435 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2436 	struct udp_tunnel_nic	*udp_tunnel_nic;
2437 
2438 	/* protected by rtnl_lock */
2439 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2440 
2441 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2442 	netdevice_tracker	linkwatch_dev_tracker;
2443 	netdevice_tracker	watchdog_dev_tracker;
2444 	netdevice_tracker	dev_registered_tracker;
2445 	struct rtnl_hw_stats64	*offload_xstats_l3;
2446 
2447 	struct devlink_port	*devlink_port;
2448 
2449 #if IS_ENABLED(CONFIG_DPLL)
2450 	struct dpll_pin		*dpll_pin;
2451 #endif
2452 #if IS_ENABLED(CONFIG_PAGE_POOL)
2453 	/** @page_pools: page pools created for this netdevice */
2454 	struct hlist_head	page_pools;
2455 #endif
2456 };
2457 #define to_net_dev(d) container_of(d, struct net_device, dev)
2458 
2459 /*
2460  * Driver should use this to assign devlink port instance to a netdevice
2461  * before it registers the netdevice. Therefore devlink_port is static
2462  * during the netdev lifetime after it is registered.
2463  */
2464 #define SET_NETDEV_DEVLINK_PORT(dev, port)			\
2465 ({								\
2466 	WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED);	\
2467 	((dev)->devlink_port = (port));				\
2468 })
2469 
2470 static inline bool netif_elide_gro(const struct net_device *dev)
2471 {
2472 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2473 		return true;
2474 	return false;
2475 }
2476 
2477 #define	NETDEV_ALIGN		32
2478 
2479 static inline
2480 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2481 {
2482 	return dev->prio_tc_map[prio & TC_BITMASK];
2483 }
2484 
2485 static inline
2486 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2487 {
2488 	if (tc >= dev->num_tc)
2489 		return -EINVAL;
2490 
2491 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2492 	return 0;
2493 }
2494 
2495 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2496 void netdev_reset_tc(struct net_device *dev);
2497 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2498 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2499 
2500 static inline
2501 int netdev_get_num_tc(struct net_device *dev)
2502 {
2503 	return dev->num_tc;
2504 }
2505 
2506 static inline void net_prefetch(void *p)
2507 {
2508 	prefetch(p);
2509 #if L1_CACHE_BYTES < 128
2510 	prefetch((u8 *)p + L1_CACHE_BYTES);
2511 #endif
2512 }
2513 
2514 static inline void net_prefetchw(void *p)
2515 {
2516 	prefetchw(p);
2517 #if L1_CACHE_BYTES < 128
2518 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2519 #endif
2520 }
2521 
2522 void netdev_unbind_sb_channel(struct net_device *dev,
2523 			      struct net_device *sb_dev);
2524 int netdev_bind_sb_channel_queue(struct net_device *dev,
2525 				 struct net_device *sb_dev,
2526 				 u8 tc, u16 count, u16 offset);
2527 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2528 static inline int netdev_get_sb_channel(struct net_device *dev)
2529 {
2530 	return max_t(int, -dev->num_tc, 0);
2531 }
2532 
2533 static inline
2534 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2535 					 unsigned int index)
2536 {
2537 	DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues);
2538 	return &dev->_tx[index];
2539 }
2540 
2541 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2542 						    const struct sk_buff *skb)
2543 {
2544 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2545 }
2546 
2547 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2548 					    void (*f)(struct net_device *,
2549 						      struct netdev_queue *,
2550 						      void *),
2551 					    void *arg)
2552 {
2553 	unsigned int i;
2554 
2555 	for (i = 0; i < dev->num_tx_queues; i++)
2556 		f(dev, &dev->_tx[i], arg);
2557 }
2558 
2559 #define netdev_lockdep_set_classes(dev)				\
2560 {								\
2561 	static struct lock_class_key qdisc_tx_busylock_key;	\
2562 	static struct lock_class_key qdisc_xmit_lock_key;	\
2563 	static struct lock_class_key dev_addr_list_lock_key;	\
2564 	unsigned int i;						\
2565 								\
2566 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2567 	lockdep_set_class(&(dev)->addr_list_lock,		\
2568 			  &dev_addr_list_lock_key);		\
2569 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2570 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2571 				  &qdisc_xmit_lock_key);	\
2572 }
2573 
2574 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2575 		     struct net_device *sb_dev);
2576 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2577 					 struct sk_buff *skb,
2578 					 struct net_device *sb_dev);
2579 
2580 /* returns the headroom that the master device needs to take in account
2581  * when forwarding to this dev
2582  */
2583 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2584 {
2585 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2586 }
2587 
2588 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2589 {
2590 	if (dev->netdev_ops->ndo_set_rx_headroom)
2591 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2592 }
2593 
2594 /* set the device rx headroom to the dev's default */
2595 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2596 {
2597 	netdev_set_rx_headroom(dev, -1);
2598 }
2599 
2600 static inline void *netdev_get_ml_priv(struct net_device *dev,
2601 				       enum netdev_ml_priv_type type)
2602 {
2603 	if (dev->ml_priv_type != type)
2604 		return NULL;
2605 
2606 	return dev->ml_priv;
2607 }
2608 
2609 static inline void netdev_set_ml_priv(struct net_device *dev,
2610 				      void *ml_priv,
2611 				      enum netdev_ml_priv_type type)
2612 {
2613 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2614 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2615 	     dev->ml_priv_type, type);
2616 	WARN(!dev->ml_priv_type && dev->ml_priv,
2617 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2618 
2619 	dev->ml_priv = ml_priv;
2620 	dev->ml_priv_type = type;
2621 }
2622 
2623 /*
2624  * Net namespace inlines
2625  */
2626 static inline
2627 struct net *dev_net(const struct net_device *dev)
2628 {
2629 	return read_pnet(&dev->nd_net);
2630 }
2631 
2632 static inline
2633 void dev_net_set(struct net_device *dev, struct net *net)
2634 {
2635 	write_pnet(&dev->nd_net, net);
2636 }
2637 
2638 /**
2639  *	netdev_priv - access network device private data
2640  *	@dev: network device
2641  *
2642  * Get network device private data
2643  */
2644 static inline void *netdev_priv(const struct net_device *dev)
2645 {
2646 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2647 }
2648 
2649 /* Set the sysfs physical device reference for the network logical device
2650  * if set prior to registration will cause a symlink during initialization.
2651  */
2652 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2653 
2654 /* Set the sysfs device type for the network logical device to allow
2655  * fine-grained identification of different network device types. For
2656  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2657  */
2658 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2659 
2660 /* Default NAPI poll() weight
2661  * Device drivers are strongly advised to not use bigger value
2662  */
2663 #define NAPI_POLL_WEIGHT 64
2664 
2665 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2666 			   int (*poll)(struct napi_struct *, int), int weight);
2667 
2668 /**
2669  * netif_napi_add() - initialize a NAPI context
2670  * @dev:  network device
2671  * @napi: NAPI context
2672  * @poll: polling function
2673  *
2674  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2675  * *any* of the other NAPI-related functions.
2676  */
2677 static inline void
2678 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2679 	       int (*poll)(struct napi_struct *, int))
2680 {
2681 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2682 }
2683 
2684 static inline void
2685 netif_napi_add_tx_weight(struct net_device *dev,
2686 			 struct napi_struct *napi,
2687 			 int (*poll)(struct napi_struct *, int),
2688 			 int weight)
2689 {
2690 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2691 	netif_napi_add_weight(dev, napi, poll, weight);
2692 }
2693 
2694 /**
2695  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2696  * @dev:  network device
2697  * @napi: NAPI context
2698  * @poll: polling function
2699  *
2700  * This variant of netif_napi_add() should be used from drivers using NAPI
2701  * to exclusively poll a TX queue.
2702  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2703  */
2704 static inline void netif_napi_add_tx(struct net_device *dev,
2705 				     struct napi_struct *napi,
2706 				     int (*poll)(struct napi_struct *, int))
2707 {
2708 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2709 }
2710 
2711 /**
2712  *  __netif_napi_del - remove a NAPI context
2713  *  @napi: NAPI context
2714  *
2715  * Warning: caller must observe RCU grace period before freeing memory
2716  * containing @napi. Drivers might want to call this helper to combine
2717  * all the needed RCU grace periods into a single one.
2718  */
2719 void __netif_napi_del(struct napi_struct *napi);
2720 
2721 /**
2722  *  netif_napi_del - remove a NAPI context
2723  *  @napi: NAPI context
2724  *
2725  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2726  */
2727 static inline void netif_napi_del(struct napi_struct *napi)
2728 {
2729 	__netif_napi_del(napi);
2730 	synchronize_net();
2731 }
2732 
2733 struct packet_type {
2734 	__be16			type;	/* This is really htons(ether_type). */
2735 	bool			ignore_outgoing;
2736 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2737 	netdevice_tracker	dev_tracker;
2738 	int			(*func) (struct sk_buff *,
2739 					 struct net_device *,
2740 					 struct packet_type *,
2741 					 struct net_device *);
2742 	void			(*list_func) (struct list_head *,
2743 					      struct packet_type *,
2744 					      struct net_device *);
2745 	bool			(*id_match)(struct packet_type *ptype,
2746 					    struct sock *sk);
2747 	struct net		*af_packet_net;
2748 	void			*af_packet_priv;
2749 	struct list_head	list;
2750 };
2751 
2752 struct offload_callbacks {
2753 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2754 						netdev_features_t features);
2755 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2756 						struct sk_buff *skb);
2757 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2758 };
2759 
2760 struct packet_offload {
2761 	__be16			 type;	/* This is really htons(ether_type). */
2762 	u16			 priority;
2763 	struct offload_callbacks callbacks;
2764 	struct list_head	 list;
2765 };
2766 
2767 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2768 struct pcpu_sw_netstats {
2769 	u64_stats_t		rx_packets;
2770 	u64_stats_t		rx_bytes;
2771 	u64_stats_t		tx_packets;
2772 	u64_stats_t		tx_bytes;
2773 	struct u64_stats_sync   syncp;
2774 } __aligned(4 * sizeof(u64));
2775 
2776 struct pcpu_dstats {
2777 	u64			rx_packets;
2778 	u64			rx_bytes;
2779 	u64			rx_drops;
2780 	u64			tx_packets;
2781 	u64			tx_bytes;
2782 	u64			tx_drops;
2783 	struct u64_stats_sync	syncp;
2784 } __aligned(8 * sizeof(u64));
2785 
2786 struct pcpu_lstats {
2787 	u64_stats_t packets;
2788 	u64_stats_t bytes;
2789 	struct u64_stats_sync syncp;
2790 } __aligned(2 * sizeof(u64));
2791 
2792 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2793 
2794 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2795 {
2796 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2797 
2798 	u64_stats_update_begin(&tstats->syncp);
2799 	u64_stats_add(&tstats->rx_bytes, len);
2800 	u64_stats_inc(&tstats->rx_packets);
2801 	u64_stats_update_end(&tstats->syncp);
2802 }
2803 
2804 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2805 					  unsigned int packets,
2806 					  unsigned int len)
2807 {
2808 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2809 
2810 	u64_stats_update_begin(&tstats->syncp);
2811 	u64_stats_add(&tstats->tx_bytes, len);
2812 	u64_stats_add(&tstats->tx_packets, packets);
2813 	u64_stats_update_end(&tstats->syncp);
2814 }
2815 
2816 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2817 {
2818 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2819 
2820 	u64_stats_update_begin(&lstats->syncp);
2821 	u64_stats_add(&lstats->bytes, len);
2822 	u64_stats_inc(&lstats->packets);
2823 	u64_stats_update_end(&lstats->syncp);
2824 }
2825 
2826 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2827 ({									\
2828 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2829 	if (pcpu_stats)	{						\
2830 		int __cpu;						\
2831 		for_each_possible_cpu(__cpu) {				\
2832 			typeof(type) *stat;				\
2833 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2834 			u64_stats_init(&stat->syncp);			\
2835 		}							\
2836 	}								\
2837 	pcpu_stats;							\
2838 })
2839 
2840 #define netdev_alloc_pcpu_stats(type)					\
2841 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2842 
2843 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2844 ({									\
2845 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2846 	if (pcpu_stats) {						\
2847 		int __cpu;						\
2848 		for_each_possible_cpu(__cpu) {				\
2849 			typeof(type) *stat;				\
2850 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2851 			u64_stats_init(&stat->syncp);			\
2852 		}							\
2853 	}								\
2854 	pcpu_stats;							\
2855 })
2856 
2857 enum netdev_lag_tx_type {
2858 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2859 	NETDEV_LAG_TX_TYPE_RANDOM,
2860 	NETDEV_LAG_TX_TYPE_BROADCAST,
2861 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2862 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2863 	NETDEV_LAG_TX_TYPE_HASH,
2864 };
2865 
2866 enum netdev_lag_hash {
2867 	NETDEV_LAG_HASH_NONE,
2868 	NETDEV_LAG_HASH_L2,
2869 	NETDEV_LAG_HASH_L34,
2870 	NETDEV_LAG_HASH_L23,
2871 	NETDEV_LAG_HASH_E23,
2872 	NETDEV_LAG_HASH_E34,
2873 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2874 	NETDEV_LAG_HASH_UNKNOWN,
2875 };
2876 
2877 struct netdev_lag_upper_info {
2878 	enum netdev_lag_tx_type tx_type;
2879 	enum netdev_lag_hash hash_type;
2880 };
2881 
2882 struct netdev_lag_lower_state_info {
2883 	u8 link_up : 1,
2884 	   tx_enabled : 1;
2885 };
2886 
2887 #include <linux/notifier.h>
2888 
2889 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2890  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2891  * adding new types.
2892  */
2893 enum netdev_cmd {
2894 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2895 	NETDEV_DOWN,
2896 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2897 				   detected a hardware crash and restarted
2898 				   - we can use this eg to kick tcp sessions
2899 				   once done */
2900 	NETDEV_CHANGE,		/* Notify device state change */
2901 	NETDEV_REGISTER,
2902 	NETDEV_UNREGISTER,
2903 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2904 	NETDEV_CHANGEADDR,	/* notify after the address change */
2905 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2906 	NETDEV_GOING_DOWN,
2907 	NETDEV_CHANGENAME,
2908 	NETDEV_FEAT_CHANGE,
2909 	NETDEV_BONDING_FAILOVER,
2910 	NETDEV_PRE_UP,
2911 	NETDEV_PRE_TYPE_CHANGE,
2912 	NETDEV_POST_TYPE_CHANGE,
2913 	NETDEV_POST_INIT,
2914 	NETDEV_PRE_UNINIT,
2915 	NETDEV_RELEASE,
2916 	NETDEV_NOTIFY_PEERS,
2917 	NETDEV_JOIN,
2918 	NETDEV_CHANGEUPPER,
2919 	NETDEV_RESEND_IGMP,
2920 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2921 	NETDEV_CHANGEINFODATA,
2922 	NETDEV_BONDING_INFO,
2923 	NETDEV_PRECHANGEUPPER,
2924 	NETDEV_CHANGELOWERSTATE,
2925 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2926 	NETDEV_UDP_TUNNEL_DROP_INFO,
2927 	NETDEV_CHANGE_TX_QUEUE_LEN,
2928 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2929 	NETDEV_CVLAN_FILTER_DROP_INFO,
2930 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2931 	NETDEV_SVLAN_FILTER_DROP_INFO,
2932 	NETDEV_OFFLOAD_XSTATS_ENABLE,
2933 	NETDEV_OFFLOAD_XSTATS_DISABLE,
2934 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2935 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2936 	NETDEV_XDP_FEAT_CHANGE,
2937 };
2938 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2939 
2940 int register_netdevice_notifier(struct notifier_block *nb);
2941 int unregister_netdevice_notifier(struct notifier_block *nb);
2942 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2943 int unregister_netdevice_notifier_net(struct net *net,
2944 				      struct notifier_block *nb);
2945 int register_netdevice_notifier_dev_net(struct net_device *dev,
2946 					struct notifier_block *nb,
2947 					struct netdev_net_notifier *nn);
2948 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2949 					  struct notifier_block *nb,
2950 					  struct netdev_net_notifier *nn);
2951 
2952 struct netdev_notifier_info {
2953 	struct net_device	*dev;
2954 	struct netlink_ext_ack	*extack;
2955 };
2956 
2957 struct netdev_notifier_info_ext {
2958 	struct netdev_notifier_info info; /* must be first */
2959 	union {
2960 		u32 mtu;
2961 	} ext;
2962 };
2963 
2964 struct netdev_notifier_change_info {
2965 	struct netdev_notifier_info info; /* must be first */
2966 	unsigned int flags_changed;
2967 };
2968 
2969 struct netdev_notifier_changeupper_info {
2970 	struct netdev_notifier_info info; /* must be first */
2971 	struct net_device *upper_dev; /* new upper dev */
2972 	bool master; /* is upper dev master */
2973 	bool linking; /* is the notification for link or unlink */
2974 	void *upper_info; /* upper dev info */
2975 };
2976 
2977 struct netdev_notifier_changelowerstate_info {
2978 	struct netdev_notifier_info info; /* must be first */
2979 	void *lower_state_info; /* is lower dev state */
2980 };
2981 
2982 struct netdev_notifier_pre_changeaddr_info {
2983 	struct netdev_notifier_info info; /* must be first */
2984 	const unsigned char *dev_addr;
2985 };
2986 
2987 enum netdev_offload_xstats_type {
2988 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
2989 };
2990 
2991 struct netdev_notifier_offload_xstats_info {
2992 	struct netdev_notifier_info info; /* must be first */
2993 	enum netdev_offload_xstats_type type;
2994 
2995 	union {
2996 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
2997 		struct netdev_notifier_offload_xstats_rd *report_delta;
2998 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
2999 		struct netdev_notifier_offload_xstats_ru *report_used;
3000 	};
3001 };
3002 
3003 int netdev_offload_xstats_enable(struct net_device *dev,
3004 				 enum netdev_offload_xstats_type type,
3005 				 struct netlink_ext_ack *extack);
3006 int netdev_offload_xstats_disable(struct net_device *dev,
3007 				  enum netdev_offload_xstats_type type);
3008 bool netdev_offload_xstats_enabled(const struct net_device *dev,
3009 				   enum netdev_offload_xstats_type type);
3010 int netdev_offload_xstats_get(struct net_device *dev,
3011 			      enum netdev_offload_xstats_type type,
3012 			      struct rtnl_hw_stats64 *stats, bool *used,
3013 			      struct netlink_ext_ack *extack);
3014 void
3015 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
3016 				   const struct rtnl_hw_stats64 *stats);
3017 void
3018 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
3019 void netdev_offload_xstats_push_delta(struct net_device *dev,
3020 				      enum netdev_offload_xstats_type type,
3021 				      const struct rtnl_hw_stats64 *stats);
3022 
3023 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
3024 					     struct net_device *dev)
3025 {
3026 	info->dev = dev;
3027 	info->extack = NULL;
3028 }
3029 
3030 static inline struct net_device *
3031 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
3032 {
3033 	return info->dev;
3034 }
3035 
3036 static inline struct netlink_ext_ack *
3037 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
3038 {
3039 	return info->extack;
3040 }
3041 
3042 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
3043 int call_netdevice_notifiers_info(unsigned long val,
3044 				  struct netdev_notifier_info *info);
3045 
3046 extern rwlock_t				dev_base_lock;		/* Device list lock */
3047 
3048 #define for_each_netdev(net, d)		\
3049 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
3050 #define for_each_netdev_reverse(net, d)	\
3051 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
3052 #define for_each_netdev_rcu(net, d)		\
3053 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
3054 #define for_each_netdev_safe(net, d, n)	\
3055 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
3056 #define for_each_netdev_continue(net, d)		\
3057 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
3058 #define for_each_netdev_continue_reverse(net, d)		\
3059 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
3060 						     dev_list)
3061 #define for_each_netdev_continue_rcu(net, d)		\
3062 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
3063 #define for_each_netdev_in_bond_rcu(bond, slave)	\
3064 		for_each_netdev_rcu(&init_net, slave)	\
3065 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
3066 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
3067 
3068 #define for_each_netdev_dump(net, d, ifindex)				\
3069 	xa_for_each_start(&(net)->dev_by_index, (ifindex), (d), (ifindex))
3070 
3071 static inline struct net_device *next_net_device(struct net_device *dev)
3072 {
3073 	struct list_head *lh;
3074 	struct net *net;
3075 
3076 	net = dev_net(dev);
3077 	lh = dev->dev_list.next;
3078 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3079 }
3080 
3081 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
3082 {
3083 	struct list_head *lh;
3084 	struct net *net;
3085 
3086 	net = dev_net(dev);
3087 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
3088 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3089 }
3090 
3091 static inline struct net_device *first_net_device(struct net *net)
3092 {
3093 	return list_empty(&net->dev_base_head) ? NULL :
3094 		net_device_entry(net->dev_base_head.next);
3095 }
3096 
3097 static inline struct net_device *first_net_device_rcu(struct net *net)
3098 {
3099 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
3100 
3101 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3102 }
3103 
3104 int netdev_boot_setup_check(struct net_device *dev);
3105 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3106 				       const char *hwaddr);
3107 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
3108 void dev_add_pack(struct packet_type *pt);
3109 void dev_remove_pack(struct packet_type *pt);
3110 void __dev_remove_pack(struct packet_type *pt);
3111 void dev_add_offload(struct packet_offload *po);
3112 void dev_remove_offload(struct packet_offload *po);
3113 
3114 int dev_get_iflink(const struct net_device *dev);
3115 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3116 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3117 			  struct net_device_path_stack *stack);
3118 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3119 				      unsigned short mask);
3120 struct net_device *dev_get_by_name(struct net *net, const char *name);
3121 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3122 struct net_device *__dev_get_by_name(struct net *net, const char *name);
3123 bool netdev_name_in_use(struct net *net, const char *name);
3124 int dev_alloc_name(struct net_device *dev, const char *name);
3125 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3126 void dev_close(struct net_device *dev);
3127 void dev_close_many(struct list_head *head, bool unlink);
3128 void dev_disable_lro(struct net_device *dev);
3129 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3130 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3131 		     struct net_device *sb_dev);
3132 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3133 		       struct net_device *sb_dev);
3134 
3135 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3136 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3137 
3138 static inline int dev_queue_xmit(struct sk_buff *skb)
3139 {
3140 	return __dev_queue_xmit(skb, NULL);
3141 }
3142 
3143 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3144 				       struct net_device *sb_dev)
3145 {
3146 	return __dev_queue_xmit(skb, sb_dev);
3147 }
3148 
3149 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3150 {
3151 	int ret;
3152 
3153 	ret = __dev_direct_xmit(skb, queue_id);
3154 	if (!dev_xmit_complete(ret))
3155 		kfree_skb(skb);
3156 	return ret;
3157 }
3158 
3159 int register_netdevice(struct net_device *dev);
3160 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3161 void unregister_netdevice_many(struct list_head *head);
3162 static inline void unregister_netdevice(struct net_device *dev)
3163 {
3164 	unregister_netdevice_queue(dev, NULL);
3165 }
3166 
3167 int netdev_refcnt_read(const struct net_device *dev);
3168 void free_netdev(struct net_device *dev);
3169 void netdev_freemem(struct net_device *dev);
3170 int init_dummy_netdev(struct net_device *dev);
3171 
3172 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3173 					 struct sk_buff *skb,
3174 					 bool all_slaves);
3175 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3176 					    struct sock *sk);
3177 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3178 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3179 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
3180 				       netdevice_tracker *tracker, gfp_t gfp);
3181 struct net_device *netdev_get_by_name(struct net *net, const char *name,
3182 				      netdevice_tracker *tracker, gfp_t gfp);
3183 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3184 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3185 
3186 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3187 				  unsigned short type,
3188 				  const void *daddr, const void *saddr,
3189 				  unsigned int len)
3190 {
3191 	if (!dev->header_ops || !dev->header_ops->create)
3192 		return 0;
3193 
3194 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3195 }
3196 
3197 static inline int dev_parse_header(const struct sk_buff *skb,
3198 				   unsigned char *haddr)
3199 {
3200 	const struct net_device *dev = skb->dev;
3201 
3202 	if (!dev->header_ops || !dev->header_ops->parse)
3203 		return 0;
3204 	return dev->header_ops->parse(skb, haddr);
3205 }
3206 
3207 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3208 {
3209 	const struct net_device *dev = skb->dev;
3210 
3211 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3212 		return 0;
3213 	return dev->header_ops->parse_protocol(skb);
3214 }
3215 
3216 /* ll_header must have at least hard_header_len allocated */
3217 static inline bool dev_validate_header(const struct net_device *dev,
3218 				       char *ll_header, int len)
3219 {
3220 	if (likely(len >= dev->hard_header_len))
3221 		return true;
3222 	if (len < dev->min_header_len)
3223 		return false;
3224 
3225 	if (capable(CAP_SYS_RAWIO)) {
3226 		memset(ll_header + len, 0, dev->hard_header_len - len);
3227 		return true;
3228 	}
3229 
3230 	if (dev->header_ops && dev->header_ops->validate)
3231 		return dev->header_ops->validate(ll_header, len);
3232 
3233 	return false;
3234 }
3235 
3236 static inline bool dev_has_header(const struct net_device *dev)
3237 {
3238 	return dev->header_ops && dev->header_ops->create;
3239 }
3240 
3241 /*
3242  * Incoming packets are placed on per-CPU queues
3243  */
3244 struct softnet_data {
3245 	struct list_head	poll_list;
3246 	struct sk_buff_head	process_queue;
3247 
3248 	/* stats */
3249 	unsigned int		processed;
3250 	unsigned int		time_squeeze;
3251 #ifdef CONFIG_RPS
3252 	struct softnet_data	*rps_ipi_list;
3253 #endif
3254 
3255 	bool			in_net_rx_action;
3256 	bool			in_napi_threaded_poll;
3257 
3258 #ifdef CONFIG_NET_FLOW_LIMIT
3259 	struct sd_flow_limit __rcu *flow_limit;
3260 #endif
3261 	struct Qdisc		*output_queue;
3262 	struct Qdisc		**output_queue_tailp;
3263 	struct sk_buff		*completion_queue;
3264 #ifdef CONFIG_XFRM_OFFLOAD
3265 	struct sk_buff_head	xfrm_backlog;
3266 #endif
3267 	/* written and read only by owning cpu: */
3268 	struct {
3269 		u16 recursion;
3270 		u8  more;
3271 #ifdef CONFIG_NET_EGRESS
3272 		u8  skip_txqueue;
3273 #endif
3274 	} xmit;
3275 #ifdef CONFIG_RPS
3276 	/* input_queue_head should be written by cpu owning this struct,
3277 	 * and only read by other cpus. Worth using a cache line.
3278 	 */
3279 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3280 
3281 	/* Elements below can be accessed between CPUs for RPS/RFS */
3282 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3283 	struct softnet_data	*rps_ipi_next;
3284 	unsigned int		cpu;
3285 	unsigned int		input_queue_tail;
3286 #endif
3287 	unsigned int		received_rps;
3288 	unsigned int		dropped;
3289 	struct sk_buff_head	input_pkt_queue;
3290 	struct napi_struct	backlog;
3291 
3292 	/* Another possibly contended cache line */
3293 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3294 	int			defer_count;
3295 	int			defer_ipi_scheduled;
3296 	struct sk_buff		*defer_list;
3297 	call_single_data_t	defer_csd;
3298 };
3299 
3300 static inline void input_queue_head_incr(struct softnet_data *sd)
3301 {
3302 #ifdef CONFIG_RPS
3303 	sd->input_queue_head++;
3304 #endif
3305 }
3306 
3307 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3308 					      unsigned int *qtail)
3309 {
3310 #ifdef CONFIG_RPS
3311 	*qtail = ++sd->input_queue_tail;
3312 #endif
3313 }
3314 
3315 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3316 
3317 static inline int dev_recursion_level(void)
3318 {
3319 	return this_cpu_read(softnet_data.xmit.recursion);
3320 }
3321 
3322 #define XMIT_RECURSION_LIMIT	8
3323 static inline bool dev_xmit_recursion(void)
3324 {
3325 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3326 			XMIT_RECURSION_LIMIT);
3327 }
3328 
3329 static inline void dev_xmit_recursion_inc(void)
3330 {
3331 	__this_cpu_inc(softnet_data.xmit.recursion);
3332 }
3333 
3334 static inline void dev_xmit_recursion_dec(void)
3335 {
3336 	__this_cpu_dec(softnet_data.xmit.recursion);
3337 }
3338 
3339 void __netif_schedule(struct Qdisc *q);
3340 void netif_schedule_queue(struct netdev_queue *txq);
3341 
3342 static inline void netif_tx_schedule_all(struct net_device *dev)
3343 {
3344 	unsigned int i;
3345 
3346 	for (i = 0; i < dev->num_tx_queues; i++)
3347 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3348 }
3349 
3350 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3351 {
3352 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3353 }
3354 
3355 /**
3356  *	netif_start_queue - allow transmit
3357  *	@dev: network device
3358  *
3359  *	Allow upper layers to call the device hard_start_xmit routine.
3360  */
3361 static inline void netif_start_queue(struct net_device *dev)
3362 {
3363 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3364 }
3365 
3366 static inline void netif_tx_start_all_queues(struct net_device *dev)
3367 {
3368 	unsigned int i;
3369 
3370 	for (i = 0; i < dev->num_tx_queues; i++) {
3371 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3372 		netif_tx_start_queue(txq);
3373 	}
3374 }
3375 
3376 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3377 
3378 /**
3379  *	netif_wake_queue - restart transmit
3380  *	@dev: network device
3381  *
3382  *	Allow upper layers to call the device hard_start_xmit routine.
3383  *	Used for flow control when transmit resources are available.
3384  */
3385 static inline void netif_wake_queue(struct net_device *dev)
3386 {
3387 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3388 }
3389 
3390 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3391 {
3392 	unsigned int i;
3393 
3394 	for (i = 0; i < dev->num_tx_queues; i++) {
3395 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3396 		netif_tx_wake_queue(txq);
3397 	}
3398 }
3399 
3400 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3401 {
3402 	/* Must be an atomic op see netif_txq_try_stop() */
3403 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3404 }
3405 
3406 /**
3407  *	netif_stop_queue - stop transmitted packets
3408  *	@dev: network device
3409  *
3410  *	Stop upper layers calling the device hard_start_xmit routine.
3411  *	Used for flow control when transmit resources are unavailable.
3412  */
3413 static inline void netif_stop_queue(struct net_device *dev)
3414 {
3415 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3416 }
3417 
3418 void netif_tx_stop_all_queues(struct net_device *dev);
3419 
3420 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3421 {
3422 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3423 }
3424 
3425 /**
3426  *	netif_queue_stopped - test if transmit queue is flowblocked
3427  *	@dev: network device
3428  *
3429  *	Test if transmit queue on device is currently unable to send.
3430  */
3431 static inline bool netif_queue_stopped(const struct net_device *dev)
3432 {
3433 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3434 }
3435 
3436 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3437 {
3438 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3439 }
3440 
3441 static inline bool
3442 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3443 {
3444 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3445 }
3446 
3447 static inline bool
3448 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3449 {
3450 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3451 }
3452 
3453 /**
3454  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3455  *	@dev_queue: pointer to transmit queue
3456  *	@min_limit: dql minimum limit
3457  *
3458  * Forces xmit_more() to return true until the minimum threshold
3459  * defined by @min_limit is reached (or until the tx queue is
3460  * empty). Warning: to be use with care, misuse will impact the
3461  * latency.
3462  */
3463 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3464 						  unsigned int min_limit)
3465 {
3466 #ifdef CONFIG_BQL
3467 	dev_queue->dql.min_limit = min_limit;
3468 #endif
3469 }
3470 
3471 /**
3472  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3473  *	@dev_queue: pointer to transmit queue
3474  *
3475  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3476  * to give appropriate hint to the CPU.
3477  */
3478 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3479 {
3480 #ifdef CONFIG_BQL
3481 	prefetchw(&dev_queue->dql.num_queued);
3482 #endif
3483 }
3484 
3485 /**
3486  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3487  *	@dev_queue: pointer to transmit queue
3488  *
3489  * BQL enabled drivers might use this helper in their TX completion path,
3490  * to give appropriate hint to the CPU.
3491  */
3492 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3493 {
3494 #ifdef CONFIG_BQL
3495 	prefetchw(&dev_queue->dql.limit);
3496 #endif
3497 }
3498 
3499 /**
3500  *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3501  *	@dev_queue: network device queue
3502  *	@bytes: number of bytes queued to the device queue
3503  *
3504  *	Report the number of bytes queued for sending/completion to the network
3505  *	device hardware queue. @bytes should be a good approximation and should
3506  *	exactly match netdev_completed_queue() @bytes.
3507  *	This is typically called once per packet, from ndo_start_xmit().
3508  */
3509 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3510 					unsigned int bytes)
3511 {
3512 #ifdef CONFIG_BQL
3513 	dql_queued(&dev_queue->dql, bytes);
3514 
3515 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3516 		return;
3517 
3518 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3519 
3520 	/*
3521 	 * The XOFF flag must be set before checking the dql_avail below,
3522 	 * because in netdev_tx_completed_queue we update the dql_completed
3523 	 * before checking the XOFF flag.
3524 	 */
3525 	smp_mb();
3526 
3527 	/* check again in case another CPU has just made room avail */
3528 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3529 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3530 #endif
3531 }
3532 
3533 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3534  * that they should not test BQL status themselves.
3535  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3536  * skb of a batch.
3537  * Returns true if the doorbell must be used to kick the NIC.
3538  */
3539 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3540 					  unsigned int bytes,
3541 					  bool xmit_more)
3542 {
3543 	if (xmit_more) {
3544 #ifdef CONFIG_BQL
3545 		dql_queued(&dev_queue->dql, bytes);
3546 #endif
3547 		return netif_tx_queue_stopped(dev_queue);
3548 	}
3549 	netdev_tx_sent_queue(dev_queue, bytes);
3550 	return true;
3551 }
3552 
3553 /**
3554  *	netdev_sent_queue - report the number of bytes queued to hardware
3555  *	@dev: network device
3556  *	@bytes: number of bytes queued to the hardware device queue
3557  *
3558  *	Report the number of bytes queued for sending/completion to the network
3559  *	device hardware queue#0. @bytes should be a good approximation and should
3560  *	exactly match netdev_completed_queue() @bytes.
3561  *	This is typically called once per packet, from ndo_start_xmit().
3562  */
3563 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3564 {
3565 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3566 }
3567 
3568 static inline bool __netdev_sent_queue(struct net_device *dev,
3569 				       unsigned int bytes,
3570 				       bool xmit_more)
3571 {
3572 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3573 				      xmit_more);
3574 }
3575 
3576 /**
3577  *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3578  *	@dev_queue: network device queue
3579  *	@pkts: number of packets (currently ignored)
3580  *	@bytes: number of bytes dequeued from the device queue
3581  *
3582  *	Must be called at most once per TX completion round (and not per
3583  *	individual packet), so that BQL can adjust its limits appropriately.
3584  */
3585 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3586 					     unsigned int pkts, unsigned int bytes)
3587 {
3588 #ifdef CONFIG_BQL
3589 	if (unlikely(!bytes))
3590 		return;
3591 
3592 	dql_completed(&dev_queue->dql, bytes);
3593 
3594 	/*
3595 	 * Without the memory barrier there is a small possiblity that
3596 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3597 	 * be stopped forever
3598 	 */
3599 	smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */
3600 
3601 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3602 		return;
3603 
3604 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3605 		netif_schedule_queue(dev_queue);
3606 #endif
3607 }
3608 
3609 /**
3610  * 	netdev_completed_queue - report bytes and packets completed by device
3611  * 	@dev: network device
3612  * 	@pkts: actual number of packets sent over the medium
3613  * 	@bytes: actual number of bytes sent over the medium
3614  *
3615  * 	Report the number of bytes and packets transmitted by the network device
3616  * 	hardware queue over the physical medium, @bytes must exactly match the
3617  * 	@bytes amount passed to netdev_sent_queue()
3618  */
3619 static inline void netdev_completed_queue(struct net_device *dev,
3620 					  unsigned int pkts, unsigned int bytes)
3621 {
3622 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3623 }
3624 
3625 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3626 {
3627 #ifdef CONFIG_BQL
3628 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3629 	dql_reset(&q->dql);
3630 #endif
3631 }
3632 
3633 /**
3634  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3635  * 	@dev_queue: network device
3636  *
3637  * 	Reset the bytes and packet count of a network device and clear the
3638  * 	software flow control OFF bit for this network device
3639  */
3640 static inline void netdev_reset_queue(struct net_device *dev_queue)
3641 {
3642 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3643 }
3644 
3645 /**
3646  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3647  * 	@dev: network device
3648  * 	@queue_index: given tx queue index
3649  *
3650  * 	Returns 0 if given tx queue index >= number of device tx queues,
3651  * 	otherwise returns the originally passed tx queue index.
3652  */
3653 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3654 {
3655 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3656 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3657 				     dev->name, queue_index,
3658 				     dev->real_num_tx_queues);
3659 		return 0;
3660 	}
3661 
3662 	return queue_index;
3663 }
3664 
3665 /**
3666  *	netif_running - test if up
3667  *	@dev: network device
3668  *
3669  *	Test if the device has been brought up.
3670  */
3671 static inline bool netif_running(const struct net_device *dev)
3672 {
3673 	return test_bit(__LINK_STATE_START, &dev->state);
3674 }
3675 
3676 /*
3677  * Routines to manage the subqueues on a device.  We only need start,
3678  * stop, and a check if it's stopped.  All other device management is
3679  * done at the overall netdevice level.
3680  * Also test the device if we're multiqueue.
3681  */
3682 
3683 /**
3684  *	netif_start_subqueue - allow sending packets on subqueue
3685  *	@dev: network device
3686  *	@queue_index: sub queue index
3687  *
3688  * Start individual transmit queue of a device with multiple transmit queues.
3689  */
3690 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3691 {
3692 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3693 
3694 	netif_tx_start_queue(txq);
3695 }
3696 
3697 /**
3698  *	netif_stop_subqueue - stop sending packets on subqueue
3699  *	@dev: network device
3700  *	@queue_index: sub queue index
3701  *
3702  * Stop individual transmit queue of a device with multiple transmit queues.
3703  */
3704 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3705 {
3706 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3707 	netif_tx_stop_queue(txq);
3708 }
3709 
3710 /**
3711  *	__netif_subqueue_stopped - test status of subqueue
3712  *	@dev: network device
3713  *	@queue_index: sub queue index
3714  *
3715  * Check individual transmit queue of a device with multiple transmit queues.
3716  */
3717 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3718 					    u16 queue_index)
3719 {
3720 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3721 
3722 	return netif_tx_queue_stopped(txq);
3723 }
3724 
3725 /**
3726  *	netif_subqueue_stopped - test status of subqueue
3727  *	@dev: network device
3728  *	@skb: sub queue buffer pointer
3729  *
3730  * Check individual transmit queue of a device with multiple transmit queues.
3731  */
3732 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3733 					  struct sk_buff *skb)
3734 {
3735 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3736 }
3737 
3738 /**
3739  *	netif_wake_subqueue - allow sending packets on subqueue
3740  *	@dev: network device
3741  *	@queue_index: sub queue index
3742  *
3743  * Resume individual transmit queue of a device with multiple transmit queues.
3744  */
3745 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3746 {
3747 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3748 
3749 	netif_tx_wake_queue(txq);
3750 }
3751 
3752 #ifdef CONFIG_XPS
3753 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3754 			u16 index);
3755 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3756 			  u16 index, enum xps_map_type type);
3757 
3758 /**
3759  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3760  *	@j: CPU/Rx queue index
3761  *	@mask: bitmask of all cpus/rx queues
3762  *	@nr_bits: number of bits in the bitmask
3763  *
3764  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3765  */
3766 static inline bool netif_attr_test_mask(unsigned long j,
3767 					const unsigned long *mask,
3768 					unsigned int nr_bits)
3769 {
3770 	cpu_max_bits_warn(j, nr_bits);
3771 	return test_bit(j, mask);
3772 }
3773 
3774 /**
3775  *	netif_attr_test_online - Test for online CPU/Rx queue
3776  *	@j: CPU/Rx queue index
3777  *	@online_mask: bitmask for CPUs/Rx queues that are online
3778  *	@nr_bits: number of bits in the bitmask
3779  *
3780  * Returns true if a CPU/Rx queue is online.
3781  */
3782 static inline bool netif_attr_test_online(unsigned long j,
3783 					  const unsigned long *online_mask,
3784 					  unsigned int nr_bits)
3785 {
3786 	cpu_max_bits_warn(j, nr_bits);
3787 
3788 	if (online_mask)
3789 		return test_bit(j, online_mask);
3790 
3791 	return (j < nr_bits);
3792 }
3793 
3794 /**
3795  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3796  *	@n: CPU/Rx queue index
3797  *	@srcp: the cpumask/Rx queue mask pointer
3798  *	@nr_bits: number of bits in the bitmask
3799  *
3800  * Returns >= nr_bits if no further CPUs/Rx queues set.
3801  */
3802 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3803 					       unsigned int nr_bits)
3804 {
3805 	/* -1 is a legal arg here. */
3806 	if (n != -1)
3807 		cpu_max_bits_warn(n, nr_bits);
3808 
3809 	if (srcp)
3810 		return find_next_bit(srcp, nr_bits, n + 1);
3811 
3812 	return n + 1;
3813 }
3814 
3815 /**
3816  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3817  *	@n: CPU/Rx queue index
3818  *	@src1p: the first CPUs/Rx queues mask pointer
3819  *	@src2p: the second CPUs/Rx queues mask pointer
3820  *	@nr_bits: number of bits in the bitmask
3821  *
3822  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3823  */
3824 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3825 					  const unsigned long *src2p,
3826 					  unsigned int nr_bits)
3827 {
3828 	/* -1 is a legal arg here. */
3829 	if (n != -1)
3830 		cpu_max_bits_warn(n, nr_bits);
3831 
3832 	if (src1p && src2p)
3833 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3834 	else if (src1p)
3835 		return find_next_bit(src1p, nr_bits, n + 1);
3836 	else if (src2p)
3837 		return find_next_bit(src2p, nr_bits, n + 1);
3838 
3839 	return n + 1;
3840 }
3841 #else
3842 static inline int netif_set_xps_queue(struct net_device *dev,
3843 				      const struct cpumask *mask,
3844 				      u16 index)
3845 {
3846 	return 0;
3847 }
3848 
3849 static inline int __netif_set_xps_queue(struct net_device *dev,
3850 					const unsigned long *mask,
3851 					u16 index, enum xps_map_type type)
3852 {
3853 	return 0;
3854 }
3855 #endif
3856 
3857 /**
3858  *	netif_is_multiqueue - test if device has multiple transmit queues
3859  *	@dev: network device
3860  *
3861  * Check if device has multiple transmit queues
3862  */
3863 static inline bool netif_is_multiqueue(const struct net_device *dev)
3864 {
3865 	return dev->num_tx_queues > 1;
3866 }
3867 
3868 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3869 
3870 #ifdef CONFIG_SYSFS
3871 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3872 #else
3873 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3874 						unsigned int rxqs)
3875 {
3876 	dev->real_num_rx_queues = rxqs;
3877 	return 0;
3878 }
3879 #endif
3880 int netif_set_real_num_queues(struct net_device *dev,
3881 			      unsigned int txq, unsigned int rxq);
3882 
3883 int netif_get_num_default_rss_queues(void);
3884 
3885 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3886 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3887 
3888 /*
3889  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3890  * interrupt context or with hardware interrupts being disabled.
3891  * (in_hardirq() || irqs_disabled())
3892  *
3893  * We provide four helpers that can be used in following contexts :
3894  *
3895  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3896  *  replacing kfree_skb(skb)
3897  *
3898  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3899  *  Typically used in place of consume_skb(skb) in TX completion path
3900  *
3901  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3902  *  replacing kfree_skb(skb)
3903  *
3904  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3905  *  and consumed a packet. Used in place of consume_skb(skb)
3906  */
3907 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3908 {
3909 	dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3910 }
3911 
3912 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3913 {
3914 	dev_kfree_skb_irq_reason(skb, SKB_CONSUMED);
3915 }
3916 
3917 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3918 {
3919 	dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3920 }
3921 
3922 static inline void dev_consume_skb_any(struct sk_buff *skb)
3923 {
3924 	dev_kfree_skb_any_reason(skb, SKB_CONSUMED);
3925 }
3926 
3927 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3928 			     struct bpf_prog *xdp_prog);
3929 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3930 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3931 int netif_rx(struct sk_buff *skb);
3932 int __netif_rx(struct sk_buff *skb);
3933 
3934 int netif_receive_skb(struct sk_buff *skb);
3935 int netif_receive_skb_core(struct sk_buff *skb);
3936 void netif_receive_skb_list_internal(struct list_head *head);
3937 void netif_receive_skb_list(struct list_head *head);
3938 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3939 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3940 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3941 void napi_get_frags_check(struct napi_struct *napi);
3942 gro_result_t napi_gro_frags(struct napi_struct *napi);
3943 struct packet_offload *gro_find_receive_by_type(__be16 type);
3944 struct packet_offload *gro_find_complete_by_type(__be16 type);
3945 
3946 static inline void napi_free_frags(struct napi_struct *napi)
3947 {
3948 	kfree_skb(napi->skb);
3949 	napi->skb = NULL;
3950 }
3951 
3952 bool netdev_is_rx_handler_busy(struct net_device *dev);
3953 int netdev_rx_handler_register(struct net_device *dev,
3954 			       rx_handler_func_t *rx_handler,
3955 			       void *rx_handler_data);
3956 void netdev_rx_handler_unregister(struct net_device *dev);
3957 
3958 bool dev_valid_name(const char *name);
3959 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3960 {
3961 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3962 }
3963 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3964 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3965 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3966 		void __user *data, bool *need_copyout);
3967 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3968 int generic_hwtstamp_get_lower(struct net_device *dev,
3969 			       struct kernel_hwtstamp_config *kernel_cfg);
3970 int generic_hwtstamp_set_lower(struct net_device *dev,
3971 			       struct kernel_hwtstamp_config *kernel_cfg,
3972 			       struct netlink_ext_ack *extack);
3973 int dev_set_hwtstamp_phylib(struct net_device *dev,
3974 			    struct kernel_hwtstamp_config *cfg,
3975 			    struct netlink_ext_ack *extack);
3976 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3977 unsigned int dev_get_flags(const struct net_device *);
3978 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3979 		       struct netlink_ext_ack *extack);
3980 int dev_change_flags(struct net_device *dev, unsigned int flags,
3981 		     struct netlink_ext_ack *extack);
3982 int dev_set_alias(struct net_device *, const char *, size_t);
3983 int dev_get_alias(const struct net_device *, char *, size_t);
3984 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3985 			       const char *pat, int new_ifindex);
3986 static inline
3987 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3988 			     const char *pat)
3989 {
3990 	return __dev_change_net_namespace(dev, net, pat, 0);
3991 }
3992 int __dev_set_mtu(struct net_device *, int);
3993 int dev_set_mtu(struct net_device *, int);
3994 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3995 			      struct netlink_ext_ack *extack);
3996 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3997 			struct netlink_ext_ack *extack);
3998 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3999 			     struct netlink_ext_ack *extack);
4000 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
4001 int dev_get_port_parent_id(struct net_device *dev,
4002 			   struct netdev_phys_item_id *ppid, bool recurse);
4003 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
4004 void netdev_dpll_pin_set(struct net_device *dev, struct dpll_pin *dpll_pin);
4005 void netdev_dpll_pin_clear(struct net_device *dev);
4006 
4007 static inline struct dpll_pin *netdev_dpll_pin(const struct net_device *dev)
4008 {
4009 #if IS_ENABLED(CONFIG_DPLL)
4010 	return dev->dpll_pin;
4011 #else
4012 	return NULL;
4013 #endif
4014 }
4015 
4016 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
4017 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
4018 				    struct netdev_queue *txq, int *ret);
4019 
4020 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
4021 u8 dev_xdp_prog_count(struct net_device *dev);
4022 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
4023 
4024 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4025 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4026 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
4027 bool is_skb_forwardable(const struct net_device *dev,
4028 			const struct sk_buff *skb);
4029 
4030 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
4031 						 const struct sk_buff *skb,
4032 						 const bool check_mtu)
4033 {
4034 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
4035 	unsigned int len;
4036 
4037 	if (!(dev->flags & IFF_UP))
4038 		return false;
4039 
4040 	if (!check_mtu)
4041 		return true;
4042 
4043 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
4044 	if (skb->len <= len)
4045 		return true;
4046 
4047 	/* if TSO is enabled, we don't care about the length as the packet
4048 	 * could be forwarded without being segmented before
4049 	 */
4050 	if (skb_is_gso(skb))
4051 		return true;
4052 
4053 	return false;
4054 }
4055 
4056 void netdev_core_stats_inc(struct net_device *dev, u32 offset);
4057 
4058 #define DEV_CORE_STATS_INC(FIELD)						\
4059 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
4060 {										\
4061 	netdev_core_stats_inc(dev,						\
4062 			offsetof(struct net_device_core_stats, FIELD));		\
4063 }
4064 DEV_CORE_STATS_INC(rx_dropped)
4065 DEV_CORE_STATS_INC(tx_dropped)
4066 DEV_CORE_STATS_INC(rx_nohandler)
4067 DEV_CORE_STATS_INC(rx_otherhost_dropped)
4068 #undef DEV_CORE_STATS_INC
4069 
4070 static __always_inline int ____dev_forward_skb(struct net_device *dev,
4071 					       struct sk_buff *skb,
4072 					       const bool check_mtu)
4073 {
4074 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4075 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4076 		dev_core_stats_rx_dropped_inc(dev);
4077 		kfree_skb(skb);
4078 		return NET_RX_DROP;
4079 	}
4080 
4081 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4082 	skb->priority = 0;
4083 	return 0;
4084 }
4085 
4086 bool dev_nit_active(struct net_device *dev);
4087 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4088 
4089 static inline void __dev_put(struct net_device *dev)
4090 {
4091 	if (dev) {
4092 #ifdef CONFIG_PCPU_DEV_REFCNT
4093 		this_cpu_dec(*dev->pcpu_refcnt);
4094 #else
4095 		refcount_dec(&dev->dev_refcnt);
4096 #endif
4097 	}
4098 }
4099 
4100 static inline void __dev_hold(struct net_device *dev)
4101 {
4102 	if (dev) {
4103 #ifdef CONFIG_PCPU_DEV_REFCNT
4104 		this_cpu_inc(*dev->pcpu_refcnt);
4105 #else
4106 		refcount_inc(&dev->dev_refcnt);
4107 #endif
4108 	}
4109 }
4110 
4111 static inline void __netdev_tracker_alloc(struct net_device *dev,
4112 					  netdevice_tracker *tracker,
4113 					  gfp_t gfp)
4114 {
4115 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4116 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4117 #endif
4118 }
4119 
4120 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4121  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4122  */
4123 static inline void netdev_tracker_alloc(struct net_device *dev,
4124 					netdevice_tracker *tracker, gfp_t gfp)
4125 {
4126 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4127 	refcount_dec(&dev->refcnt_tracker.no_tracker);
4128 	__netdev_tracker_alloc(dev, tracker, gfp);
4129 #endif
4130 }
4131 
4132 static inline void netdev_tracker_free(struct net_device *dev,
4133 				       netdevice_tracker *tracker)
4134 {
4135 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4136 	ref_tracker_free(&dev->refcnt_tracker, tracker);
4137 #endif
4138 }
4139 
4140 static inline void netdev_hold(struct net_device *dev,
4141 			       netdevice_tracker *tracker, gfp_t gfp)
4142 {
4143 	if (dev) {
4144 		__dev_hold(dev);
4145 		__netdev_tracker_alloc(dev, tracker, gfp);
4146 	}
4147 }
4148 
4149 static inline void netdev_put(struct net_device *dev,
4150 			      netdevice_tracker *tracker)
4151 {
4152 	if (dev) {
4153 		netdev_tracker_free(dev, tracker);
4154 		__dev_put(dev);
4155 	}
4156 }
4157 
4158 /**
4159  *	dev_hold - get reference to device
4160  *	@dev: network device
4161  *
4162  * Hold reference to device to keep it from being freed.
4163  * Try using netdev_hold() instead.
4164  */
4165 static inline void dev_hold(struct net_device *dev)
4166 {
4167 	netdev_hold(dev, NULL, GFP_ATOMIC);
4168 }
4169 
4170 /**
4171  *	dev_put - release reference to device
4172  *	@dev: network device
4173  *
4174  * Release reference to device to allow it to be freed.
4175  * Try using netdev_put() instead.
4176  */
4177 static inline void dev_put(struct net_device *dev)
4178 {
4179 	netdev_put(dev, NULL);
4180 }
4181 
4182 static inline void netdev_ref_replace(struct net_device *odev,
4183 				      struct net_device *ndev,
4184 				      netdevice_tracker *tracker,
4185 				      gfp_t gfp)
4186 {
4187 	if (odev)
4188 		netdev_tracker_free(odev, tracker);
4189 
4190 	__dev_hold(ndev);
4191 	__dev_put(odev);
4192 
4193 	if (ndev)
4194 		__netdev_tracker_alloc(ndev, tracker, gfp);
4195 }
4196 
4197 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4198  * and _off may be called from IRQ context, but it is caller
4199  * who is responsible for serialization of these calls.
4200  *
4201  * The name carrier is inappropriate, these functions should really be
4202  * called netif_lowerlayer_*() because they represent the state of any
4203  * kind of lower layer not just hardware media.
4204  */
4205 void linkwatch_fire_event(struct net_device *dev);
4206 
4207 /**
4208  *	netif_carrier_ok - test if carrier present
4209  *	@dev: network device
4210  *
4211  * Check if carrier is present on device
4212  */
4213 static inline bool netif_carrier_ok(const struct net_device *dev)
4214 {
4215 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4216 }
4217 
4218 unsigned long dev_trans_start(struct net_device *dev);
4219 
4220 void __netdev_watchdog_up(struct net_device *dev);
4221 
4222 void netif_carrier_on(struct net_device *dev);
4223 void netif_carrier_off(struct net_device *dev);
4224 void netif_carrier_event(struct net_device *dev);
4225 
4226 /**
4227  *	netif_dormant_on - mark device as dormant.
4228  *	@dev: network device
4229  *
4230  * Mark device as dormant (as per RFC2863).
4231  *
4232  * The dormant state indicates that the relevant interface is not
4233  * actually in a condition to pass packets (i.e., it is not 'up') but is
4234  * in a "pending" state, waiting for some external event.  For "on-
4235  * demand" interfaces, this new state identifies the situation where the
4236  * interface is waiting for events to place it in the up state.
4237  */
4238 static inline void netif_dormant_on(struct net_device *dev)
4239 {
4240 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4241 		linkwatch_fire_event(dev);
4242 }
4243 
4244 /**
4245  *	netif_dormant_off - set device as not dormant.
4246  *	@dev: network device
4247  *
4248  * Device is not in dormant state.
4249  */
4250 static inline void netif_dormant_off(struct net_device *dev)
4251 {
4252 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4253 		linkwatch_fire_event(dev);
4254 }
4255 
4256 /**
4257  *	netif_dormant - test if device is dormant
4258  *	@dev: network device
4259  *
4260  * Check if device is dormant.
4261  */
4262 static inline bool netif_dormant(const struct net_device *dev)
4263 {
4264 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4265 }
4266 
4267 
4268 /**
4269  *	netif_testing_on - mark device as under test.
4270  *	@dev: network device
4271  *
4272  * Mark device as under test (as per RFC2863).
4273  *
4274  * The testing state indicates that some test(s) must be performed on
4275  * the interface. After completion, of the test, the interface state
4276  * will change to up, dormant, or down, as appropriate.
4277  */
4278 static inline void netif_testing_on(struct net_device *dev)
4279 {
4280 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4281 		linkwatch_fire_event(dev);
4282 }
4283 
4284 /**
4285  *	netif_testing_off - set device as not under test.
4286  *	@dev: network device
4287  *
4288  * Device is not in testing state.
4289  */
4290 static inline void netif_testing_off(struct net_device *dev)
4291 {
4292 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4293 		linkwatch_fire_event(dev);
4294 }
4295 
4296 /**
4297  *	netif_testing - test if device is under test
4298  *	@dev: network device
4299  *
4300  * Check if device is under test
4301  */
4302 static inline bool netif_testing(const struct net_device *dev)
4303 {
4304 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4305 }
4306 
4307 
4308 /**
4309  *	netif_oper_up - test if device is operational
4310  *	@dev: network device
4311  *
4312  * Check if carrier is operational
4313  */
4314 static inline bool netif_oper_up(const struct net_device *dev)
4315 {
4316 	return (dev->operstate == IF_OPER_UP ||
4317 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4318 }
4319 
4320 /**
4321  *	netif_device_present - is device available or removed
4322  *	@dev: network device
4323  *
4324  * Check if device has not been removed from system.
4325  */
4326 static inline bool netif_device_present(const struct net_device *dev)
4327 {
4328 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4329 }
4330 
4331 void netif_device_detach(struct net_device *dev);
4332 
4333 void netif_device_attach(struct net_device *dev);
4334 
4335 /*
4336  * Network interface message level settings
4337  */
4338 
4339 enum {
4340 	NETIF_MSG_DRV_BIT,
4341 	NETIF_MSG_PROBE_BIT,
4342 	NETIF_MSG_LINK_BIT,
4343 	NETIF_MSG_TIMER_BIT,
4344 	NETIF_MSG_IFDOWN_BIT,
4345 	NETIF_MSG_IFUP_BIT,
4346 	NETIF_MSG_RX_ERR_BIT,
4347 	NETIF_MSG_TX_ERR_BIT,
4348 	NETIF_MSG_TX_QUEUED_BIT,
4349 	NETIF_MSG_INTR_BIT,
4350 	NETIF_MSG_TX_DONE_BIT,
4351 	NETIF_MSG_RX_STATUS_BIT,
4352 	NETIF_MSG_PKTDATA_BIT,
4353 	NETIF_MSG_HW_BIT,
4354 	NETIF_MSG_WOL_BIT,
4355 
4356 	/* When you add a new bit above, update netif_msg_class_names array
4357 	 * in net/ethtool/common.c
4358 	 */
4359 	NETIF_MSG_CLASS_COUNT,
4360 };
4361 /* Both ethtool_ops interface and internal driver implementation use u32 */
4362 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4363 
4364 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4365 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4366 
4367 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4368 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4369 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4370 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4371 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4372 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4373 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4374 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4375 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4376 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4377 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4378 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4379 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4380 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4381 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4382 
4383 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4384 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4385 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4386 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4387 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4388 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4389 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4390 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4391 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4392 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4393 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4394 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4395 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4396 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4397 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4398 
4399 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4400 {
4401 	/* use default */
4402 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4403 		return default_msg_enable_bits;
4404 	if (debug_value == 0)	/* no output */
4405 		return 0;
4406 	/* set low N bits */
4407 	return (1U << debug_value) - 1;
4408 }
4409 
4410 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4411 {
4412 	spin_lock(&txq->_xmit_lock);
4413 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4414 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4415 }
4416 
4417 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4418 {
4419 	__acquire(&txq->_xmit_lock);
4420 	return true;
4421 }
4422 
4423 static inline void __netif_tx_release(struct netdev_queue *txq)
4424 {
4425 	__release(&txq->_xmit_lock);
4426 }
4427 
4428 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4429 {
4430 	spin_lock_bh(&txq->_xmit_lock);
4431 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4432 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4433 }
4434 
4435 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4436 {
4437 	bool ok = spin_trylock(&txq->_xmit_lock);
4438 
4439 	if (likely(ok)) {
4440 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4441 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4442 	}
4443 	return ok;
4444 }
4445 
4446 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4447 {
4448 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4449 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4450 	spin_unlock(&txq->_xmit_lock);
4451 }
4452 
4453 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4454 {
4455 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4456 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4457 	spin_unlock_bh(&txq->_xmit_lock);
4458 }
4459 
4460 /*
4461  * txq->trans_start can be read locklessly from dev_watchdog()
4462  */
4463 static inline void txq_trans_update(struct netdev_queue *txq)
4464 {
4465 	if (txq->xmit_lock_owner != -1)
4466 		WRITE_ONCE(txq->trans_start, jiffies);
4467 }
4468 
4469 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4470 {
4471 	unsigned long now = jiffies;
4472 
4473 	if (READ_ONCE(txq->trans_start) != now)
4474 		WRITE_ONCE(txq->trans_start, now);
4475 }
4476 
4477 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4478 static inline void netif_trans_update(struct net_device *dev)
4479 {
4480 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4481 
4482 	txq_trans_cond_update(txq);
4483 }
4484 
4485 /**
4486  *	netif_tx_lock - grab network device transmit lock
4487  *	@dev: network device
4488  *
4489  * Get network device transmit lock
4490  */
4491 void netif_tx_lock(struct net_device *dev);
4492 
4493 static inline void netif_tx_lock_bh(struct net_device *dev)
4494 {
4495 	local_bh_disable();
4496 	netif_tx_lock(dev);
4497 }
4498 
4499 void netif_tx_unlock(struct net_device *dev);
4500 
4501 static inline void netif_tx_unlock_bh(struct net_device *dev)
4502 {
4503 	netif_tx_unlock(dev);
4504 	local_bh_enable();
4505 }
4506 
4507 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4508 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4509 		__netif_tx_lock(txq, cpu);		\
4510 	} else {					\
4511 		__netif_tx_acquire(txq);		\
4512 	}						\
4513 }
4514 
4515 #define HARD_TX_TRYLOCK(dev, txq)			\
4516 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4517 		__netif_tx_trylock(txq) :		\
4518 		__netif_tx_acquire(txq))
4519 
4520 #define HARD_TX_UNLOCK(dev, txq) {			\
4521 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4522 		__netif_tx_unlock(txq);			\
4523 	} else {					\
4524 		__netif_tx_release(txq);		\
4525 	}						\
4526 }
4527 
4528 static inline void netif_tx_disable(struct net_device *dev)
4529 {
4530 	unsigned int i;
4531 	int cpu;
4532 
4533 	local_bh_disable();
4534 	cpu = smp_processor_id();
4535 	spin_lock(&dev->tx_global_lock);
4536 	for (i = 0; i < dev->num_tx_queues; i++) {
4537 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4538 
4539 		__netif_tx_lock(txq, cpu);
4540 		netif_tx_stop_queue(txq);
4541 		__netif_tx_unlock(txq);
4542 	}
4543 	spin_unlock(&dev->tx_global_lock);
4544 	local_bh_enable();
4545 }
4546 
4547 static inline void netif_addr_lock(struct net_device *dev)
4548 {
4549 	unsigned char nest_level = 0;
4550 
4551 #ifdef CONFIG_LOCKDEP
4552 	nest_level = dev->nested_level;
4553 #endif
4554 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4555 }
4556 
4557 static inline void netif_addr_lock_bh(struct net_device *dev)
4558 {
4559 	unsigned char nest_level = 0;
4560 
4561 #ifdef CONFIG_LOCKDEP
4562 	nest_level = dev->nested_level;
4563 #endif
4564 	local_bh_disable();
4565 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4566 }
4567 
4568 static inline void netif_addr_unlock(struct net_device *dev)
4569 {
4570 	spin_unlock(&dev->addr_list_lock);
4571 }
4572 
4573 static inline void netif_addr_unlock_bh(struct net_device *dev)
4574 {
4575 	spin_unlock_bh(&dev->addr_list_lock);
4576 }
4577 
4578 /*
4579  * dev_addrs walker. Should be used only for read access. Call with
4580  * rcu_read_lock held.
4581  */
4582 #define for_each_dev_addr(dev, ha) \
4583 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4584 
4585 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4586 
4587 void ether_setup(struct net_device *dev);
4588 
4589 /* Support for loadable net-drivers */
4590 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4591 				    unsigned char name_assign_type,
4592 				    void (*setup)(struct net_device *),
4593 				    unsigned int txqs, unsigned int rxqs);
4594 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4595 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4596 
4597 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4598 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4599 			 count)
4600 
4601 int register_netdev(struct net_device *dev);
4602 void unregister_netdev(struct net_device *dev);
4603 
4604 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4605 
4606 /* General hardware address lists handling functions */
4607 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4608 		   struct netdev_hw_addr_list *from_list, int addr_len);
4609 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4610 		      struct netdev_hw_addr_list *from_list, int addr_len);
4611 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4612 		       struct net_device *dev,
4613 		       int (*sync)(struct net_device *, const unsigned char *),
4614 		       int (*unsync)(struct net_device *,
4615 				     const unsigned char *));
4616 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4617 			   struct net_device *dev,
4618 			   int (*sync)(struct net_device *,
4619 				       const unsigned char *, int),
4620 			   int (*unsync)(struct net_device *,
4621 					 const unsigned char *, int));
4622 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4623 			      struct net_device *dev,
4624 			      int (*unsync)(struct net_device *,
4625 					    const unsigned char *, int));
4626 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4627 			  struct net_device *dev,
4628 			  int (*unsync)(struct net_device *,
4629 					const unsigned char *));
4630 void __hw_addr_init(struct netdev_hw_addr_list *list);
4631 
4632 /* Functions used for device addresses handling */
4633 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4634 		  const void *addr, size_t len);
4635 
4636 static inline void
4637 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4638 {
4639 	dev_addr_mod(dev, 0, addr, len);
4640 }
4641 
4642 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4643 {
4644 	__dev_addr_set(dev, addr, dev->addr_len);
4645 }
4646 
4647 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4648 		 unsigned char addr_type);
4649 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4650 		 unsigned char addr_type);
4651 
4652 /* Functions used for unicast addresses handling */
4653 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4654 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4655 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4656 int dev_uc_sync(struct net_device *to, struct net_device *from);
4657 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4658 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4659 void dev_uc_flush(struct net_device *dev);
4660 void dev_uc_init(struct net_device *dev);
4661 
4662 /**
4663  *  __dev_uc_sync - Synchonize device's unicast list
4664  *  @dev:  device to sync
4665  *  @sync: function to call if address should be added
4666  *  @unsync: function to call if address should be removed
4667  *
4668  *  Add newly added addresses to the interface, and release
4669  *  addresses that have been deleted.
4670  */
4671 static inline int __dev_uc_sync(struct net_device *dev,
4672 				int (*sync)(struct net_device *,
4673 					    const unsigned char *),
4674 				int (*unsync)(struct net_device *,
4675 					      const unsigned char *))
4676 {
4677 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4678 }
4679 
4680 /**
4681  *  __dev_uc_unsync - Remove synchronized addresses from device
4682  *  @dev:  device to sync
4683  *  @unsync: function to call if address should be removed
4684  *
4685  *  Remove all addresses that were added to the device by dev_uc_sync().
4686  */
4687 static inline void __dev_uc_unsync(struct net_device *dev,
4688 				   int (*unsync)(struct net_device *,
4689 						 const unsigned char *))
4690 {
4691 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4692 }
4693 
4694 /* Functions used for multicast addresses handling */
4695 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4696 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4697 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4698 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4699 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4700 int dev_mc_sync(struct net_device *to, struct net_device *from);
4701 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4702 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4703 void dev_mc_flush(struct net_device *dev);
4704 void dev_mc_init(struct net_device *dev);
4705 
4706 /**
4707  *  __dev_mc_sync - Synchonize device's multicast list
4708  *  @dev:  device to sync
4709  *  @sync: function to call if address should be added
4710  *  @unsync: function to call if address should be removed
4711  *
4712  *  Add newly added addresses to the interface, and release
4713  *  addresses that have been deleted.
4714  */
4715 static inline int __dev_mc_sync(struct net_device *dev,
4716 				int (*sync)(struct net_device *,
4717 					    const unsigned char *),
4718 				int (*unsync)(struct net_device *,
4719 					      const unsigned char *))
4720 {
4721 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4722 }
4723 
4724 /**
4725  *  __dev_mc_unsync - Remove synchronized addresses from device
4726  *  @dev:  device to sync
4727  *  @unsync: function to call if address should be removed
4728  *
4729  *  Remove all addresses that were added to the device by dev_mc_sync().
4730  */
4731 static inline void __dev_mc_unsync(struct net_device *dev,
4732 				   int (*unsync)(struct net_device *,
4733 						 const unsigned char *))
4734 {
4735 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4736 }
4737 
4738 /* Functions used for secondary unicast and multicast support */
4739 void dev_set_rx_mode(struct net_device *dev);
4740 int dev_set_promiscuity(struct net_device *dev, int inc);
4741 int dev_set_allmulti(struct net_device *dev, int inc);
4742 void netdev_state_change(struct net_device *dev);
4743 void __netdev_notify_peers(struct net_device *dev);
4744 void netdev_notify_peers(struct net_device *dev);
4745 void netdev_features_change(struct net_device *dev);
4746 /* Load a device via the kmod */
4747 void dev_load(struct net *net, const char *name);
4748 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4749 					struct rtnl_link_stats64 *storage);
4750 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4751 			     const struct net_device_stats *netdev_stats);
4752 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4753 			   const struct pcpu_sw_netstats __percpu *netstats);
4754 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4755 
4756 extern int		netdev_max_backlog;
4757 extern int		dev_rx_weight;
4758 extern int		dev_tx_weight;
4759 extern int		gro_normal_batch;
4760 
4761 enum {
4762 	NESTED_SYNC_IMM_BIT,
4763 	NESTED_SYNC_TODO_BIT,
4764 };
4765 
4766 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4767 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4768 
4769 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4770 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4771 
4772 struct netdev_nested_priv {
4773 	unsigned char flags;
4774 	void *data;
4775 };
4776 
4777 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4778 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4779 						     struct list_head **iter);
4780 
4781 /* iterate through upper list, must be called under RCU read lock */
4782 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4783 	for (iter = &(dev)->adj_list.upper, \
4784 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4785 	     updev; \
4786 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4787 
4788 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4789 				  int (*fn)(struct net_device *upper_dev,
4790 					    struct netdev_nested_priv *priv),
4791 				  struct netdev_nested_priv *priv);
4792 
4793 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4794 				  struct net_device *upper_dev);
4795 
4796 bool netdev_has_any_upper_dev(struct net_device *dev);
4797 
4798 void *netdev_lower_get_next_private(struct net_device *dev,
4799 				    struct list_head **iter);
4800 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4801 					struct list_head **iter);
4802 
4803 #define netdev_for_each_lower_private(dev, priv, iter) \
4804 	for (iter = (dev)->adj_list.lower.next, \
4805 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4806 	     priv; \
4807 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4808 
4809 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4810 	for (iter = &(dev)->adj_list.lower, \
4811 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4812 	     priv; \
4813 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4814 
4815 void *netdev_lower_get_next(struct net_device *dev,
4816 				struct list_head **iter);
4817 
4818 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4819 	for (iter = (dev)->adj_list.lower.next, \
4820 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4821 	     ldev; \
4822 	     ldev = netdev_lower_get_next(dev, &(iter)))
4823 
4824 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4825 					     struct list_head **iter);
4826 int netdev_walk_all_lower_dev(struct net_device *dev,
4827 			      int (*fn)(struct net_device *lower_dev,
4828 					struct netdev_nested_priv *priv),
4829 			      struct netdev_nested_priv *priv);
4830 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4831 				  int (*fn)(struct net_device *lower_dev,
4832 					    struct netdev_nested_priv *priv),
4833 				  struct netdev_nested_priv *priv);
4834 
4835 void *netdev_adjacent_get_private(struct list_head *adj_list);
4836 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4837 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4838 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4839 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4840 			  struct netlink_ext_ack *extack);
4841 int netdev_master_upper_dev_link(struct net_device *dev,
4842 				 struct net_device *upper_dev,
4843 				 void *upper_priv, void *upper_info,
4844 				 struct netlink_ext_ack *extack);
4845 void netdev_upper_dev_unlink(struct net_device *dev,
4846 			     struct net_device *upper_dev);
4847 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4848 				   struct net_device *new_dev,
4849 				   struct net_device *dev,
4850 				   struct netlink_ext_ack *extack);
4851 void netdev_adjacent_change_commit(struct net_device *old_dev,
4852 				   struct net_device *new_dev,
4853 				   struct net_device *dev);
4854 void netdev_adjacent_change_abort(struct net_device *old_dev,
4855 				  struct net_device *new_dev,
4856 				  struct net_device *dev);
4857 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4858 void *netdev_lower_dev_get_private(struct net_device *dev,
4859 				   struct net_device *lower_dev);
4860 void netdev_lower_state_changed(struct net_device *lower_dev,
4861 				void *lower_state_info);
4862 
4863 /* RSS keys are 40 or 52 bytes long */
4864 #define NETDEV_RSS_KEY_LEN 52
4865 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4866 void netdev_rss_key_fill(void *buffer, size_t len);
4867 
4868 int skb_checksum_help(struct sk_buff *skb);
4869 int skb_crc32c_csum_help(struct sk_buff *skb);
4870 int skb_csum_hwoffload_help(struct sk_buff *skb,
4871 			    const netdev_features_t features);
4872 
4873 struct netdev_bonding_info {
4874 	ifslave	slave;
4875 	ifbond	master;
4876 };
4877 
4878 struct netdev_notifier_bonding_info {
4879 	struct netdev_notifier_info info; /* must be first */
4880 	struct netdev_bonding_info  bonding_info;
4881 };
4882 
4883 void netdev_bonding_info_change(struct net_device *dev,
4884 				struct netdev_bonding_info *bonding_info);
4885 
4886 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4887 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4888 #else
4889 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4890 				  const void *data)
4891 {
4892 }
4893 #endif
4894 
4895 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4896 
4897 static inline bool can_checksum_protocol(netdev_features_t features,
4898 					 __be16 protocol)
4899 {
4900 	if (protocol == htons(ETH_P_FCOE))
4901 		return !!(features & NETIF_F_FCOE_CRC);
4902 
4903 	/* Assume this is an IP checksum (not SCTP CRC) */
4904 
4905 	if (features & NETIF_F_HW_CSUM) {
4906 		/* Can checksum everything */
4907 		return true;
4908 	}
4909 
4910 	switch (protocol) {
4911 	case htons(ETH_P_IP):
4912 		return !!(features & NETIF_F_IP_CSUM);
4913 	case htons(ETH_P_IPV6):
4914 		return !!(features & NETIF_F_IPV6_CSUM);
4915 	default:
4916 		return false;
4917 	}
4918 }
4919 
4920 #ifdef CONFIG_BUG
4921 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4922 #else
4923 static inline void netdev_rx_csum_fault(struct net_device *dev,
4924 					struct sk_buff *skb)
4925 {
4926 }
4927 #endif
4928 /* rx skb timestamps */
4929 void net_enable_timestamp(void);
4930 void net_disable_timestamp(void);
4931 
4932 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4933 					const struct skb_shared_hwtstamps *hwtstamps,
4934 					bool cycles)
4935 {
4936 	const struct net_device_ops *ops = dev->netdev_ops;
4937 
4938 	if (ops->ndo_get_tstamp)
4939 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4940 
4941 	return hwtstamps->hwtstamp;
4942 }
4943 
4944 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4945 					      struct sk_buff *skb, struct net_device *dev,
4946 					      bool more)
4947 {
4948 	__this_cpu_write(softnet_data.xmit.more, more);
4949 	return ops->ndo_start_xmit(skb, dev);
4950 }
4951 
4952 static inline bool netdev_xmit_more(void)
4953 {
4954 	return __this_cpu_read(softnet_data.xmit.more);
4955 }
4956 
4957 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4958 					    struct netdev_queue *txq, bool more)
4959 {
4960 	const struct net_device_ops *ops = dev->netdev_ops;
4961 	netdev_tx_t rc;
4962 
4963 	rc = __netdev_start_xmit(ops, skb, dev, more);
4964 	if (rc == NETDEV_TX_OK)
4965 		txq_trans_update(txq);
4966 
4967 	return rc;
4968 }
4969 
4970 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4971 				const void *ns);
4972 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4973 				 const void *ns);
4974 
4975 extern const struct kobj_ns_type_operations net_ns_type_operations;
4976 
4977 const char *netdev_drivername(const struct net_device *dev);
4978 
4979 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4980 							  netdev_features_t f2)
4981 {
4982 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4983 		if (f1 & NETIF_F_HW_CSUM)
4984 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4985 		else
4986 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4987 	}
4988 
4989 	return f1 & f2;
4990 }
4991 
4992 static inline netdev_features_t netdev_get_wanted_features(
4993 	struct net_device *dev)
4994 {
4995 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4996 }
4997 netdev_features_t netdev_increment_features(netdev_features_t all,
4998 	netdev_features_t one, netdev_features_t mask);
4999 
5000 /* Allow TSO being used on stacked device :
5001  * Performing the GSO segmentation before last device
5002  * is a performance improvement.
5003  */
5004 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
5005 							netdev_features_t mask)
5006 {
5007 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
5008 }
5009 
5010 int __netdev_update_features(struct net_device *dev);
5011 void netdev_update_features(struct net_device *dev);
5012 void netdev_change_features(struct net_device *dev);
5013 
5014 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5015 					struct net_device *dev);
5016 
5017 netdev_features_t passthru_features_check(struct sk_buff *skb,
5018 					  struct net_device *dev,
5019 					  netdev_features_t features);
5020 netdev_features_t netif_skb_features(struct sk_buff *skb);
5021 void skb_warn_bad_offload(const struct sk_buff *skb);
5022 
5023 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
5024 {
5025 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
5026 
5027 	/* check flags correspondence */
5028 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
5029 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
5030 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
5031 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
5032 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
5033 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
5034 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
5035 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
5036 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
5037 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
5038 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
5039 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
5040 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
5041 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
5042 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
5043 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
5044 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
5045 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5046 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5047 
5048 	return (features & feature) == feature;
5049 }
5050 
5051 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5052 {
5053 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5054 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5055 }
5056 
5057 static inline bool netif_needs_gso(struct sk_buff *skb,
5058 				   netdev_features_t features)
5059 {
5060 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5061 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5062 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5063 }
5064 
5065 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
5066 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
5067 void netif_inherit_tso_max(struct net_device *to,
5068 			   const struct net_device *from);
5069 
5070 static inline bool netif_is_macsec(const struct net_device *dev)
5071 {
5072 	return dev->priv_flags & IFF_MACSEC;
5073 }
5074 
5075 static inline bool netif_is_macvlan(const struct net_device *dev)
5076 {
5077 	return dev->priv_flags & IFF_MACVLAN;
5078 }
5079 
5080 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5081 {
5082 	return dev->priv_flags & IFF_MACVLAN_PORT;
5083 }
5084 
5085 static inline bool netif_is_bond_master(const struct net_device *dev)
5086 {
5087 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5088 }
5089 
5090 static inline bool netif_is_bond_slave(const struct net_device *dev)
5091 {
5092 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5093 }
5094 
5095 static inline bool netif_supports_nofcs(struct net_device *dev)
5096 {
5097 	return dev->priv_flags & IFF_SUPP_NOFCS;
5098 }
5099 
5100 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5101 {
5102 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5103 }
5104 
5105 static inline bool netif_is_l3_master(const struct net_device *dev)
5106 {
5107 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5108 }
5109 
5110 static inline bool netif_is_l3_slave(const struct net_device *dev)
5111 {
5112 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5113 }
5114 
5115 static inline int dev_sdif(const struct net_device *dev)
5116 {
5117 #ifdef CONFIG_NET_L3_MASTER_DEV
5118 	if (netif_is_l3_slave(dev))
5119 		return dev->ifindex;
5120 #endif
5121 	return 0;
5122 }
5123 
5124 static inline bool netif_is_bridge_master(const struct net_device *dev)
5125 {
5126 	return dev->priv_flags & IFF_EBRIDGE;
5127 }
5128 
5129 static inline bool netif_is_bridge_port(const struct net_device *dev)
5130 {
5131 	return dev->priv_flags & IFF_BRIDGE_PORT;
5132 }
5133 
5134 static inline bool netif_is_ovs_master(const struct net_device *dev)
5135 {
5136 	return dev->priv_flags & IFF_OPENVSWITCH;
5137 }
5138 
5139 static inline bool netif_is_ovs_port(const struct net_device *dev)
5140 {
5141 	return dev->priv_flags & IFF_OVS_DATAPATH;
5142 }
5143 
5144 static inline bool netif_is_any_bridge_master(const struct net_device *dev)
5145 {
5146 	return netif_is_bridge_master(dev) || netif_is_ovs_master(dev);
5147 }
5148 
5149 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5150 {
5151 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5152 }
5153 
5154 static inline bool netif_is_team_master(const struct net_device *dev)
5155 {
5156 	return dev->priv_flags & IFF_TEAM;
5157 }
5158 
5159 static inline bool netif_is_team_port(const struct net_device *dev)
5160 {
5161 	return dev->priv_flags & IFF_TEAM_PORT;
5162 }
5163 
5164 static inline bool netif_is_lag_master(const struct net_device *dev)
5165 {
5166 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5167 }
5168 
5169 static inline bool netif_is_lag_port(const struct net_device *dev)
5170 {
5171 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5172 }
5173 
5174 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5175 {
5176 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5177 }
5178 
5179 static inline bool netif_is_failover(const struct net_device *dev)
5180 {
5181 	return dev->priv_flags & IFF_FAILOVER;
5182 }
5183 
5184 static inline bool netif_is_failover_slave(const struct net_device *dev)
5185 {
5186 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5187 }
5188 
5189 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5190 static inline void netif_keep_dst(struct net_device *dev)
5191 {
5192 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5193 }
5194 
5195 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5196 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5197 {
5198 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5199 	return netif_is_macsec(dev);
5200 }
5201 
5202 extern struct pernet_operations __net_initdata loopback_net_ops;
5203 
5204 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5205 
5206 /* netdev_printk helpers, similar to dev_printk */
5207 
5208 static inline const char *netdev_name(const struct net_device *dev)
5209 {
5210 	if (!dev->name[0] || strchr(dev->name, '%'))
5211 		return "(unnamed net_device)";
5212 	return dev->name;
5213 }
5214 
5215 static inline const char *netdev_reg_state(const struct net_device *dev)
5216 {
5217 	switch (dev->reg_state) {
5218 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5219 	case NETREG_REGISTERED: return "";
5220 	case NETREG_UNREGISTERING: return " (unregistering)";
5221 	case NETREG_UNREGISTERED: return " (unregistered)";
5222 	case NETREG_RELEASED: return " (released)";
5223 	case NETREG_DUMMY: return " (dummy)";
5224 	}
5225 
5226 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5227 	return " (unknown)";
5228 }
5229 
5230 #define MODULE_ALIAS_NETDEV(device) \
5231 	MODULE_ALIAS("netdev-" device)
5232 
5233 /*
5234  * netdev_WARN() acts like dev_printk(), but with the key difference
5235  * of using a WARN/WARN_ON to get the message out, including the
5236  * file/line information and a backtrace.
5237  */
5238 #define netdev_WARN(dev, format, args...)			\
5239 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5240 	     netdev_reg_state(dev), ##args)
5241 
5242 #define netdev_WARN_ONCE(dev, format, args...)				\
5243 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5244 		  netdev_reg_state(dev), ##args)
5245 
5246 /*
5247  *	The list of packet types we will receive (as opposed to discard)
5248  *	and the routines to invoke.
5249  *
5250  *	Why 16. Because with 16 the only overlap we get on a hash of the
5251  *	low nibble of the protocol value is RARP/SNAP/X.25.
5252  *
5253  *		0800	IP
5254  *		0001	802.3
5255  *		0002	AX.25
5256  *		0004	802.2
5257  *		8035	RARP
5258  *		0005	SNAP
5259  *		0805	X.25
5260  *		0806	ARP
5261  *		8137	IPX
5262  *		0009	Localtalk
5263  *		86DD	IPv6
5264  */
5265 #define PTYPE_HASH_SIZE	(16)
5266 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5267 
5268 extern struct list_head ptype_all __read_mostly;
5269 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5270 
5271 extern struct net_device *blackhole_netdev;
5272 
5273 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5274 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5275 #define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
5276 		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5277 #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD)
5278 
5279 #endif	/* _LINUX_NETDEVICE_H */
5280