1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <[email protected]> 13 * Corey Minyard <[email protected]> 14 * Donald J. Becker, <[email protected]> 15 * Alan Cox, <[email protected]> 16 * Bjorn Ekwall. <[email protected]> 17 * Pekka Riikonen <[email protected]> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21 #ifndef _LINUX_NETDEVICE_H 22 #define _LINUX_NETDEVICE_H 23 24 #include <linux/timer.h> 25 #include <linux/bug.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/prefetch.h> 29 #include <asm/cache.h> 30 #include <asm/byteorder.h> 31 #include <asm/local.h> 32 33 #include <linux/percpu.h> 34 #include <linux/rculist.h> 35 #include <linux/workqueue.h> 36 #include <linux/dynamic_queue_limits.h> 37 38 #include <net/net_namespace.h> 39 #ifdef CONFIG_DCB 40 #include <net/dcbnl.h> 41 #endif 42 #include <net/netprio_cgroup.h> 43 44 #include <linux/netdev_features.h> 45 #include <linux/neighbour.h> 46 #include <uapi/linux/netdevice.h> 47 #include <uapi/linux/if_bonding.h> 48 #include <uapi/linux/pkt_cls.h> 49 #include <uapi/linux/netdev.h> 50 #include <uapi/linux/net_tstamp.h> 51 #include <linux/hashtable.h> 52 #include <linux/rbtree.h> 53 #include <net/net_trackers.h> 54 #include <net/net_debug.h> 55 #include <net/dropreason-core.h> 56 57 struct netpoll_info; 58 struct device; 59 struct ethtool_ops; 60 struct kernel_hwtstamp_config; 61 struct phy_device; 62 struct dsa_port; 63 struct ip_tunnel_parm; 64 struct macsec_context; 65 struct macsec_ops; 66 struct netdev_name_node; 67 struct sd_flow_limit; 68 struct sfp_bus; 69 /* 802.11 specific */ 70 struct wireless_dev; 71 /* 802.15.4 specific */ 72 struct wpan_dev; 73 struct mpls_dev; 74 /* UDP Tunnel offloads */ 75 struct udp_tunnel_info; 76 struct udp_tunnel_nic_info; 77 struct udp_tunnel_nic; 78 struct bpf_prog; 79 struct xdp_buff; 80 struct xdp_frame; 81 struct xdp_metadata_ops; 82 struct xdp_md; 83 /* DPLL specific */ 84 struct dpll_pin; 85 86 typedef u32 xdp_features_t; 87 88 void synchronize_net(void); 89 void netdev_set_default_ethtool_ops(struct net_device *dev, 90 const struct ethtool_ops *ops); 91 void netdev_sw_irq_coalesce_default_on(struct net_device *dev); 92 93 /* Backlog congestion levels */ 94 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 95 #define NET_RX_DROP 1 /* packet dropped */ 96 97 #define MAX_NEST_DEV 8 98 99 /* 100 * Transmit return codes: transmit return codes originate from three different 101 * namespaces: 102 * 103 * - qdisc return codes 104 * - driver transmit return codes 105 * - errno values 106 * 107 * Drivers are allowed to return any one of those in their hard_start_xmit() 108 * function. Real network devices commonly used with qdiscs should only return 109 * the driver transmit return codes though - when qdiscs are used, the actual 110 * transmission happens asynchronously, so the value is not propagated to 111 * higher layers. Virtual network devices transmit synchronously; in this case 112 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 113 * others are propagated to higher layers. 114 */ 115 116 /* qdisc ->enqueue() return codes. */ 117 #define NET_XMIT_SUCCESS 0x00 118 #define NET_XMIT_DROP 0x01 /* skb dropped */ 119 #define NET_XMIT_CN 0x02 /* congestion notification */ 120 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 121 122 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 123 * indicates that the device will soon be dropping packets, or already drops 124 * some packets of the same priority; prompting us to send less aggressively. */ 125 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 126 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 127 128 /* Driver transmit return codes */ 129 #define NETDEV_TX_MASK 0xf0 130 131 enum netdev_tx { 132 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 133 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 134 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 135 }; 136 typedef enum netdev_tx netdev_tx_t; 137 138 /* 139 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 140 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 141 */ 142 static inline bool dev_xmit_complete(int rc) 143 { 144 /* 145 * Positive cases with an skb consumed by a driver: 146 * - successful transmission (rc == NETDEV_TX_OK) 147 * - error while transmitting (rc < 0) 148 * - error while queueing to a different device (rc & NET_XMIT_MASK) 149 */ 150 if (likely(rc < NET_XMIT_MASK)) 151 return true; 152 153 return false; 154 } 155 156 /* 157 * Compute the worst-case header length according to the protocols 158 * used. 159 */ 160 161 #if defined(CONFIG_HYPERV_NET) 162 # define LL_MAX_HEADER 128 163 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 164 # if defined(CONFIG_MAC80211_MESH) 165 # define LL_MAX_HEADER 128 166 # else 167 # define LL_MAX_HEADER 96 168 # endif 169 #else 170 # define LL_MAX_HEADER 32 171 #endif 172 173 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 174 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 175 #define MAX_HEADER LL_MAX_HEADER 176 #else 177 #define MAX_HEADER (LL_MAX_HEADER + 48) 178 #endif 179 180 /* 181 * Old network device statistics. Fields are native words 182 * (unsigned long) so they can be read and written atomically. 183 */ 184 185 #define NET_DEV_STAT(FIELD) \ 186 union { \ 187 unsigned long FIELD; \ 188 atomic_long_t __##FIELD; \ 189 } 190 191 struct net_device_stats { 192 NET_DEV_STAT(rx_packets); 193 NET_DEV_STAT(tx_packets); 194 NET_DEV_STAT(rx_bytes); 195 NET_DEV_STAT(tx_bytes); 196 NET_DEV_STAT(rx_errors); 197 NET_DEV_STAT(tx_errors); 198 NET_DEV_STAT(rx_dropped); 199 NET_DEV_STAT(tx_dropped); 200 NET_DEV_STAT(multicast); 201 NET_DEV_STAT(collisions); 202 NET_DEV_STAT(rx_length_errors); 203 NET_DEV_STAT(rx_over_errors); 204 NET_DEV_STAT(rx_crc_errors); 205 NET_DEV_STAT(rx_frame_errors); 206 NET_DEV_STAT(rx_fifo_errors); 207 NET_DEV_STAT(rx_missed_errors); 208 NET_DEV_STAT(tx_aborted_errors); 209 NET_DEV_STAT(tx_carrier_errors); 210 NET_DEV_STAT(tx_fifo_errors); 211 NET_DEV_STAT(tx_heartbeat_errors); 212 NET_DEV_STAT(tx_window_errors); 213 NET_DEV_STAT(rx_compressed); 214 NET_DEV_STAT(tx_compressed); 215 }; 216 #undef NET_DEV_STAT 217 218 /* per-cpu stats, allocated on demand. 219 * Try to fit them in a single cache line, for dev_get_stats() sake. 220 */ 221 struct net_device_core_stats { 222 unsigned long rx_dropped; 223 unsigned long tx_dropped; 224 unsigned long rx_nohandler; 225 unsigned long rx_otherhost_dropped; 226 } __aligned(4 * sizeof(unsigned long)); 227 228 #include <linux/cache.h> 229 #include <linux/skbuff.h> 230 231 #ifdef CONFIG_RPS 232 #include <linux/static_key.h> 233 extern struct static_key_false rps_needed; 234 extern struct static_key_false rfs_needed; 235 #endif 236 237 struct neighbour; 238 struct neigh_parms; 239 struct sk_buff; 240 241 struct netdev_hw_addr { 242 struct list_head list; 243 struct rb_node node; 244 unsigned char addr[MAX_ADDR_LEN]; 245 unsigned char type; 246 #define NETDEV_HW_ADDR_T_LAN 1 247 #define NETDEV_HW_ADDR_T_SAN 2 248 #define NETDEV_HW_ADDR_T_UNICAST 3 249 #define NETDEV_HW_ADDR_T_MULTICAST 4 250 bool global_use; 251 int sync_cnt; 252 int refcount; 253 int synced; 254 struct rcu_head rcu_head; 255 }; 256 257 struct netdev_hw_addr_list { 258 struct list_head list; 259 int count; 260 261 /* Auxiliary tree for faster lookup on addition and deletion */ 262 struct rb_root tree; 263 }; 264 265 #define netdev_hw_addr_list_count(l) ((l)->count) 266 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 267 #define netdev_hw_addr_list_for_each(ha, l) \ 268 list_for_each_entry(ha, &(l)->list, list) 269 270 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 271 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 272 #define netdev_for_each_uc_addr(ha, dev) \ 273 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 274 #define netdev_for_each_synced_uc_addr(_ha, _dev) \ 275 netdev_for_each_uc_addr((_ha), (_dev)) \ 276 if ((_ha)->sync_cnt) 277 278 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 279 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 280 #define netdev_for_each_mc_addr(ha, dev) \ 281 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 282 #define netdev_for_each_synced_mc_addr(_ha, _dev) \ 283 netdev_for_each_mc_addr((_ha), (_dev)) \ 284 if ((_ha)->sync_cnt) 285 286 struct hh_cache { 287 unsigned int hh_len; 288 seqlock_t hh_lock; 289 290 /* cached hardware header; allow for machine alignment needs. */ 291 #define HH_DATA_MOD 16 292 #define HH_DATA_OFF(__len) \ 293 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 294 #define HH_DATA_ALIGN(__len) \ 295 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 296 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 297 }; 298 299 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 300 * Alternative is: 301 * dev->hard_header_len ? (dev->hard_header_len + 302 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 303 * 304 * We could use other alignment values, but we must maintain the 305 * relationship HH alignment <= LL alignment. 306 */ 307 #define LL_RESERVED_SPACE(dev) \ 308 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \ 309 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 310 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 311 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \ 312 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 313 314 struct header_ops { 315 int (*create) (struct sk_buff *skb, struct net_device *dev, 316 unsigned short type, const void *daddr, 317 const void *saddr, unsigned int len); 318 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 319 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 320 void (*cache_update)(struct hh_cache *hh, 321 const struct net_device *dev, 322 const unsigned char *haddr); 323 bool (*validate)(const char *ll_header, unsigned int len); 324 __be16 (*parse_protocol)(const struct sk_buff *skb); 325 }; 326 327 /* These flag bits are private to the generic network queueing 328 * layer; they may not be explicitly referenced by any other 329 * code. 330 */ 331 332 enum netdev_state_t { 333 __LINK_STATE_START, 334 __LINK_STATE_PRESENT, 335 __LINK_STATE_NOCARRIER, 336 __LINK_STATE_LINKWATCH_PENDING, 337 __LINK_STATE_DORMANT, 338 __LINK_STATE_TESTING, 339 }; 340 341 struct gro_list { 342 struct list_head list; 343 int count; 344 }; 345 346 /* 347 * size of gro hash buckets, must less than bit number of 348 * napi_struct::gro_bitmask 349 */ 350 #define GRO_HASH_BUCKETS 8 351 352 /* 353 * Structure for NAPI scheduling similar to tasklet but with weighting 354 */ 355 struct napi_struct { 356 /* The poll_list must only be managed by the entity which 357 * changes the state of the NAPI_STATE_SCHED bit. This means 358 * whoever atomically sets that bit can add this napi_struct 359 * to the per-CPU poll_list, and whoever clears that bit 360 * can remove from the list right before clearing the bit. 361 */ 362 struct list_head poll_list; 363 364 unsigned long state; 365 int weight; 366 int defer_hard_irqs_count; 367 unsigned long gro_bitmask; 368 int (*poll)(struct napi_struct *, int); 369 #ifdef CONFIG_NETPOLL 370 /* CPU actively polling if netpoll is configured */ 371 int poll_owner; 372 #endif 373 /* CPU on which NAPI has been scheduled for processing */ 374 int list_owner; 375 struct net_device *dev; 376 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 377 struct sk_buff *skb; 378 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 379 int rx_count; /* length of rx_list */ 380 unsigned int napi_id; 381 struct hrtimer timer; 382 struct task_struct *thread; 383 /* control-path-only fields follow */ 384 struct list_head dev_list; 385 struct hlist_node napi_hash_node; 386 }; 387 388 enum { 389 NAPI_STATE_SCHED, /* Poll is scheduled */ 390 NAPI_STATE_MISSED, /* reschedule a napi */ 391 NAPI_STATE_DISABLE, /* Disable pending */ 392 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 393 NAPI_STATE_LISTED, /* NAPI added to system lists */ 394 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */ 395 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */ 396 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/ 397 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/ 398 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */ 399 }; 400 401 enum { 402 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 403 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 404 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 405 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 406 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), 407 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 408 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 409 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL), 410 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED), 411 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED), 412 }; 413 414 enum gro_result { 415 GRO_MERGED, 416 GRO_MERGED_FREE, 417 GRO_HELD, 418 GRO_NORMAL, 419 GRO_CONSUMED, 420 }; 421 typedef enum gro_result gro_result_t; 422 423 /* 424 * enum rx_handler_result - Possible return values for rx_handlers. 425 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 426 * further. 427 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 428 * case skb->dev was changed by rx_handler. 429 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 430 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 431 * 432 * rx_handlers are functions called from inside __netif_receive_skb(), to do 433 * special processing of the skb, prior to delivery to protocol handlers. 434 * 435 * Currently, a net_device can only have a single rx_handler registered. Trying 436 * to register a second rx_handler will return -EBUSY. 437 * 438 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 439 * To unregister a rx_handler on a net_device, use 440 * netdev_rx_handler_unregister(). 441 * 442 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 443 * do with the skb. 444 * 445 * If the rx_handler consumed the skb in some way, it should return 446 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 447 * the skb to be delivered in some other way. 448 * 449 * If the rx_handler changed skb->dev, to divert the skb to another 450 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 451 * new device will be called if it exists. 452 * 453 * If the rx_handler decides the skb should be ignored, it should return 454 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 455 * are registered on exact device (ptype->dev == skb->dev). 456 * 457 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 458 * delivered, it should return RX_HANDLER_PASS. 459 * 460 * A device without a registered rx_handler will behave as if rx_handler 461 * returned RX_HANDLER_PASS. 462 */ 463 464 enum rx_handler_result { 465 RX_HANDLER_CONSUMED, 466 RX_HANDLER_ANOTHER, 467 RX_HANDLER_EXACT, 468 RX_HANDLER_PASS, 469 }; 470 typedef enum rx_handler_result rx_handler_result_t; 471 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 472 473 void __napi_schedule(struct napi_struct *n); 474 void __napi_schedule_irqoff(struct napi_struct *n); 475 476 static inline bool napi_disable_pending(struct napi_struct *n) 477 { 478 return test_bit(NAPI_STATE_DISABLE, &n->state); 479 } 480 481 static inline bool napi_prefer_busy_poll(struct napi_struct *n) 482 { 483 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 484 } 485 486 /** 487 * napi_is_scheduled - test if NAPI is scheduled 488 * @n: NAPI context 489 * 490 * This check is "best-effort". With no locking implemented, 491 * a NAPI can be scheduled or terminate right after this check 492 * and produce not precise results. 493 * 494 * NAPI_STATE_SCHED is an internal state, napi_is_scheduled 495 * should not be used normally and napi_schedule should be 496 * used instead. 497 * 498 * Use only if the driver really needs to check if a NAPI 499 * is scheduled for example in the context of delayed timer 500 * that can be skipped if a NAPI is already scheduled. 501 * 502 * Return True if NAPI is scheduled, False otherwise. 503 */ 504 static inline bool napi_is_scheduled(struct napi_struct *n) 505 { 506 return test_bit(NAPI_STATE_SCHED, &n->state); 507 } 508 509 bool napi_schedule_prep(struct napi_struct *n); 510 511 /** 512 * napi_schedule - schedule NAPI poll 513 * @n: NAPI context 514 * 515 * Schedule NAPI poll routine to be called if it is not already 516 * running. 517 * Return true if we schedule a NAPI or false if not. 518 * Refer to napi_schedule_prep() for additional reason on why 519 * a NAPI might not be scheduled. 520 */ 521 static inline bool napi_schedule(struct napi_struct *n) 522 { 523 if (napi_schedule_prep(n)) { 524 __napi_schedule(n); 525 return true; 526 } 527 528 return false; 529 } 530 531 /** 532 * napi_schedule_irqoff - schedule NAPI poll 533 * @n: NAPI context 534 * 535 * Variant of napi_schedule(), assuming hard irqs are masked. 536 */ 537 static inline void napi_schedule_irqoff(struct napi_struct *n) 538 { 539 if (napi_schedule_prep(n)) 540 __napi_schedule_irqoff(n); 541 } 542 543 /** 544 * napi_complete_done - NAPI processing complete 545 * @n: NAPI context 546 * @work_done: number of packets processed 547 * 548 * Mark NAPI processing as complete. Should only be called if poll budget 549 * has not been completely consumed. 550 * Prefer over napi_complete(). 551 * Return false if device should avoid rearming interrupts. 552 */ 553 bool napi_complete_done(struct napi_struct *n, int work_done); 554 555 static inline bool napi_complete(struct napi_struct *n) 556 { 557 return napi_complete_done(n, 0); 558 } 559 560 int dev_set_threaded(struct net_device *dev, bool threaded); 561 562 /** 563 * napi_disable - prevent NAPI from scheduling 564 * @n: NAPI context 565 * 566 * Stop NAPI from being scheduled on this context. 567 * Waits till any outstanding processing completes. 568 */ 569 void napi_disable(struct napi_struct *n); 570 571 void napi_enable(struct napi_struct *n); 572 573 /** 574 * napi_synchronize - wait until NAPI is not running 575 * @n: NAPI context 576 * 577 * Wait until NAPI is done being scheduled on this context. 578 * Waits till any outstanding processing completes but 579 * does not disable future activations. 580 */ 581 static inline void napi_synchronize(const struct napi_struct *n) 582 { 583 if (IS_ENABLED(CONFIG_SMP)) 584 while (test_bit(NAPI_STATE_SCHED, &n->state)) 585 msleep(1); 586 else 587 barrier(); 588 } 589 590 /** 591 * napi_if_scheduled_mark_missed - if napi is running, set the 592 * NAPIF_STATE_MISSED 593 * @n: NAPI context 594 * 595 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 596 * NAPI is scheduled. 597 **/ 598 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 599 { 600 unsigned long val, new; 601 602 val = READ_ONCE(n->state); 603 do { 604 if (val & NAPIF_STATE_DISABLE) 605 return true; 606 607 if (!(val & NAPIF_STATE_SCHED)) 608 return false; 609 610 new = val | NAPIF_STATE_MISSED; 611 } while (!try_cmpxchg(&n->state, &val, new)); 612 613 return true; 614 } 615 616 enum netdev_queue_state_t { 617 __QUEUE_STATE_DRV_XOFF, 618 __QUEUE_STATE_STACK_XOFF, 619 __QUEUE_STATE_FROZEN, 620 }; 621 622 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 623 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 624 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 625 626 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 627 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 628 QUEUE_STATE_FROZEN) 629 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 630 QUEUE_STATE_FROZEN) 631 632 /* 633 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 634 * netif_tx_* functions below are used to manipulate this flag. The 635 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 636 * queue independently. The netif_xmit_*stopped functions below are called 637 * to check if the queue has been stopped by the driver or stack (either 638 * of the XOFF bits are set in the state). Drivers should not need to call 639 * netif_xmit*stopped functions, they should only be using netif_tx_*. 640 */ 641 642 struct netdev_queue { 643 /* 644 * read-mostly part 645 */ 646 struct net_device *dev; 647 netdevice_tracker dev_tracker; 648 649 struct Qdisc __rcu *qdisc; 650 struct Qdisc __rcu *qdisc_sleeping; 651 #ifdef CONFIG_SYSFS 652 struct kobject kobj; 653 #endif 654 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 655 int numa_node; 656 #endif 657 unsigned long tx_maxrate; 658 /* 659 * Number of TX timeouts for this queue 660 * (/sys/class/net/DEV/Q/trans_timeout) 661 */ 662 atomic_long_t trans_timeout; 663 664 /* Subordinate device that the queue has been assigned to */ 665 struct net_device *sb_dev; 666 #ifdef CONFIG_XDP_SOCKETS 667 struct xsk_buff_pool *pool; 668 #endif 669 /* 670 * write-mostly part 671 */ 672 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 673 int xmit_lock_owner; 674 /* 675 * Time (in jiffies) of last Tx 676 */ 677 unsigned long trans_start; 678 679 unsigned long state; 680 681 #ifdef CONFIG_BQL 682 struct dql dql; 683 #endif 684 } ____cacheline_aligned_in_smp; 685 686 extern int sysctl_fb_tunnels_only_for_init_net; 687 extern int sysctl_devconf_inherit_init_net; 688 689 /* 690 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns 691 * == 1 : For initns only 692 * == 2 : For none. 693 */ 694 static inline bool net_has_fallback_tunnels(const struct net *net) 695 { 696 #if IS_ENABLED(CONFIG_SYSCTL) 697 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net); 698 699 return !fb_tunnels_only_for_init_net || 700 (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1); 701 #else 702 return true; 703 #endif 704 } 705 706 static inline int net_inherit_devconf(void) 707 { 708 #if IS_ENABLED(CONFIG_SYSCTL) 709 return READ_ONCE(sysctl_devconf_inherit_init_net); 710 #else 711 return 0; 712 #endif 713 } 714 715 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 716 { 717 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 718 return q->numa_node; 719 #else 720 return NUMA_NO_NODE; 721 #endif 722 } 723 724 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 725 { 726 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 727 q->numa_node = node; 728 #endif 729 } 730 731 #ifdef CONFIG_RPS 732 /* 733 * This structure holds an RPS map which can be of variable length. The 734 * map is an array of CPUs. 735 */ 736 struct rps_map { 737 unsigned int len; 738 struct rcu_head rcu; 739 u16 cpus[]; 740 }; 741 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 742 743 /* 744 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 745 * tail pointer for that CPU's input queue at the time of last enqueue, and 746 * a hardware filter index. 747 */ 748 struct rps_dev_flow { 749 u16 cpu; 750 u16 filter; 751 unsigned int last_qtail; 752 }; 753 #define RPS_NO_FILTER 0xffff 754 755 /* 756 * The rps_dev_flow_table structure contains a table of flow mappings. 757 */ 758 struct rps_dev_flow_table { 759 unsigned int mask; 760 struct rcu_head rcu; 761 struct rps_dev_flow flows[]; 762 }; 763 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 764 ((_num) * sizeof(struct rps_dev_flow))) 765 766 /* 767 * The rps_sock_flow_table contains mappings of flows to the last CPU 768 * on which they were processed by the application (set in recvmsg). 769 * Each entry is a 32bit value. Upper part is the high-order bits 770 * of flow hash, lower part is CPU number. 771 * rps_cpu_mask is used to partition the space, depending on number of 772 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 773 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 774 * meaning we use 32-6=26 bits for the hash. 775 */ 776 struct rps_sock_flow_table { 777 u32 mask; 778 779 u32 ents[] ____cacheline_aligned_in_smp; 780 }; 781 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 782 783 #define RPS_NO_CPU 0xffff 784 785 extern u32 rps_cpu_mask; 786 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 787 788 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 789 u32 hash) 790 { 791 if (table && hash) { 792 unsigned int index = hash & table->mask; 793 u32 val = hash & ~rps_cpu_mask; 794 795 /* We only give a hint, preemption can change CPU under us */ 796 val |= raw_smp_processor_id(); 797 798 /* The following WRITE_ONCE() is paired with the READ_ONCE() 799 * here, and another one in get_rps_cpu(). 800 */ 801 if (READ_ONCE(table->ents[index]) != val) 802 WRITE_ONCE(table->ents[index], val); 803 } 804 } 805 806 #ifdef CONFIG_RFS_ACCEL 807 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 808 u16 filter_id); 809 #endif 810 #endif /* CONFIG_RPS */ 811 812 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */ 813 enum xps_map_type { 814 XPS_CPUS = 0, 815 XPS_RXQS, 816 XPS_MAPS_MAX, 817 }; 818 819 #ifdef CONFIG_XPS 820 /* 821 * This structure holds an XPS map which can be of variable length. The 822 * map is an array of queues. 823 */ 824 struct xps_map { 825 unsigned int len; 826 unsigned int alloc_len; 827 struct rcu_head rcu; 828 u16 queues[]; 829 }; 830 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 831 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 832 - sizeof(struct xps_map)) / sizeof(u16)) 833 834 /* 835 * This structure holds all XPS maps for device. Maps are indexed by CPU. 836 * 837 * We keep track of the number of cpus/rxqs used when the struct is allocated, 838 * in nr_ids. This will help not accessing out-of-bound memory. 839 * 840 * We keep track of the number of traffic classes used when the struct is 841 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're 842 * not crossing its upper bound, as the original dev->num_tc can be updated in 843 * the meantime. 844 */ 845 struct xps_dev_maps { 846 struct rcu_head rcu; 847 unsigned int nr_ids; 848 s16 num_tc; 849 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 850 }; 851 852 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 853 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 854 855 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 856 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 857 858 #endif /* CONFIG_XPS */ 859 860 #define TC_MAX_QUEUE 16 861 #define TC_BITMASK 15 862 /* HW offloaded queuing disciplines txq count and offset maps */ 863 struct netdev_tc_txq { 864 u16 count; 865 u16 offset; 866 }; 867 868 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 869 /* 870 * This structure is to hold information about the device 871 * configured to run FCoE protocol stack. 872 */ 873 struct netdev_fcoe_hbainfo { 874 char manufacturer[64]; 875 char serial_number[64]; 876 char hardware_version[64]; 877 char driver_version[64]; 878 char optionrom_version[64]; 879 char firmware_version[64]; 880 char model[256]; 881 char model_description[256]; 882 }; 883 #endif 884 885 #define MAX_PHYS_ITEM_ID_LEN 32 886 887 /* This structure holds a unique identifier to identify some 888 * physical item (port for example) used by a netdevice. 889 */ 890 struct netdev_phys_item_id { 891 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 892 unsigned char id_len; 893 }; 894 895 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 896 struct netdev_phys_item_id *b) 897 { 898 return a->id_len == b->id_len && 899 memcmp(a->id, b->id, a->id_len) == 0; 900 } 901 902 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 903 struct sk_buff *skb, 904 struct net_device *sb_dev); 905 906 enum net_device_path_type { 907 DEV_PATH_ETHERNET = 0, 908 DEV_PATH_VLAN, 909 DEV_PATH_BRIDGE, 910 DEV_PATH_PPPOE, 911 DEV_PATH_DSA, 912 DEV_PATH_MTK_WDMA, 913 }; 914 915 struct net_device_path { 916 enum net_device_path_type type; 917 const struct net_device *dev; 918 union { 919 struct { 920 u16 id; 921 __be16 proto; 922 u8 h_dest[ETH_ALEN]; 923 } encap; 924 struct { 925 enum { 926 DEV_PATH_BR_VLAN_KEEP, 927 DEV_PATH_BR_VLAN_TAG, 928 DEV_PATH_BR_VLAN_UNTAG, 929 DEV_PATH_BR_VLAN_UNTAG_HW, 930 } vlan_mode; 931 u16 vlan_id; 932 __be16 vlan_proto; 933 } bridge; 934 struct { 935 int port; 936 u16 proto; 937 } dsa; 938 struct { 939 u8 wdma_idx; 940 u8 queue; 941 u16 wcid; 942 u8 bss; 943 u8 amsdu; 944 } mtk_wdma; 945 }; 946 }; 947 948 #define NET_DEVICE_PATH_STACK_MAX 5 949 #define NET_DEVICE_PATH_VLAN_MAX 2 950 951 struct net_device_path_stack { 952 int num_paths; 953 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX]; 954 }; 955 956 struct net_device_path_ctx { 957 const struct net_device *dev; 958 u8 daddr[ETH_ALEN]; 959 960 int num_vlans; 961 struct { 962 u16 id; 963 __be16 proto; 964 } vlan[NET_DEVICE_PATH_VLAN_MAX]; 965 }; 966 967 enum tc_setup_type { 968 TC_QUERY_CAPS, 969 TC_SETUP_QDISC_MQPRIO, 970 TC_SETUP_CLSU32, 971 TC_SETUP_CLSFLOWER, 972 TC_SETUP_CLSMATCHALL, 973 TC_SETUP_CLSBPF, 974 TC_SETUP_BLOCK, 975 TC_SETUP_QDISC_CBS, 976 TC_SETUP_QDISC_RED, 977 TC_SETUP_QDISC_PRIO, 978 TC_SETUP_QDISC_MQ, 979 TC_SETUP_QDISC_ETF, 980 TC_SETUP_ROOT_QDISC, 981 TC_SETUP_QDISC_GRED, 982 TC_SETUP_QDISC_TAPRIO, 983 TC_SETUP_FT, 984 TC_SETUP_QDISC_ETS, 985 TC_SETUP_QDISC_TBF, 986 TC_SETUP_QDISC_FIFO, 987 TC_SETUP_QDISC_HTB, 988 TC_SETUP_ACT, 989 }; 990 991 /* These structures hold the attributes of bpf state that are being passed 992 * to the netdevice through the bpf op. 993 */ 994 enum bpf_netdev_command { 995 /* Set or clear a bpf program used in the earliest stages of packet 996 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 997 * is responsible for calling bpf_prog_put on any old progs that are 998 * stored. In case of error, the callee need not release the new prog 999 * reference, but on success it takes ownership and must bpf_prog_put 1000 * when it is no longer used. 1001 */ 1002 XDP_SETUP_PROG, 1003 XDP_SETUP_PROG_HW, 1004 /* BPF program for offload callbacks, invoked at program load time. */ 1005 BPF_OFFLOAD_MAP_ALLOC, 1006 BPF_OFFLOAD_MAP_FREE, 1007 XDP_SETUP_XSK_POOL, 1008 }; 1009 1010 struct bpf_prog_offload_ops; 1011 struct netlink_ext_ack; 1012 struct xdp_umem; 1013 struct xdp_dev_bulk_queue; 1014 struct bpf_xdp_link; 1015 1016 enum bpf_xdp_mode { 1017 XDP_MODE_SKB = 0, 1018 XDP_MODE_DRV = 1, 1019 XDP_MODE_HW = 2, 1020 __MAX_XDP_MODE 1021 }; 1022 1023 struct bpf_xdp_entity { 1024 struct bpf_prog *prog; 1025 struct bpf_xdp_link *link; 1026 }; 1027 1028 struct netdev_bpf { 1029 enum bpf_netdev_command command; 1030 union { 1031 /* XDP_SETUP_PROG */ 1032 struct { 1033 u32 flags; 1034 struct bpf_prog *prog; 1035 struct netlink_ext_ack *extack; 1036 }; 1037 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 1038 struct { 1039 struct bpf_offloaded_map *offmap; 1040 }; 1041 /* XDP_SETUP_XSK_POOL */ 1042 struct { 1043 struct xsk_buff_pool *pool; 1044 u16 queue_id; 1045 } xsk; 1046 }; 1047 }; 1048 1049 /* Flags for ndo_xsk_wakeup. */ 1050 #define XDP_WAKEUP_RX (1 << 0) 1051 #define XDP_WAKEUP_TX (1 << 1) 1052 1053 #ifdef CONFIG_XFRM_OFFLOAD 1054 struct xfrmdev_ops { 1055 int (*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack); 1056 void (*xdo_dev_state_delete) (struct xfrm_state *x); 1057 void (*xdo_dev_state_free) (struct xfrm_state *x); 1058 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 1059 struct xfrm_state *x); 1060 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 1061 void (*xdo_dev_state_update_curlft) (struct xfrm_state *x); 1062 int (*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack); 1063 void (*xdo_dev_policy_delete) (struct xfrm_policy *x); 1064 void (*xdo_dev_policy_free) (struct xfrm_policy *x); 1065 }; 1066 #endif 1067 1068 struct dev_ifalias { 1069 struct rcu_head rcuhead; 1070 char ifalias[]; 1071 }; 1072 1073 struct devlink; 1074 struct tlsdev_ops; 1075 1076 struct netdev_net_notifier { 1077 struct list_head list; 1078 struct notifier_block *nb; 1079 }; 1080 1081 /* 1082 * This structure defines the management hooks for network devices. 1083 * The following hooks can be defined; unless noted otherwise, they are 1084 * optional and can be filled with a null pointer. 1085 * 1086 * int (*ndo_init)(struct net_device *dev); 1087 * This function is called once when a network device is registered. 1088 * The network device can use this for any late stage initialization 1089 * or semantic validation. It can fail with an error code which will 1090 * be propagated back to register_netdev. 1091 * 1092 * void (*ndo_uninit)(struct net_device *dev); 1093 * This function is called when device is unregistered or when registration 1094 * fails. It is not called if init fails. 1095 * 1096 * int (*ndo_open)(struct net_device *dev); 1097 * This function is called when a network device transitions to the up 1098 * state. 1099 * 1100 * int (*ndo_stop)(struct net_device *dev); 1101 * This function is called when a network device transitions to the down 1102 * state. 1103 * 1104 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1105 * struct net_device *dev); 1106 * Called when a packet needs to be transmitted. 1107 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 1108 * the queue before that can happen; it's for obsolete devices and weird 1109 * corner cases, but the stack really does a non-trivial amount 1110 * of useless work if you return NETDEV_TX_BUSY. 1111 * Required; cannot be NULL. 1112 * 1113 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1114 * struct net_device *dev 1115 * netdev_features_t features); 1116 * Called by core transmit path to determine if device is capable of 1117 * performing offload operations on a given packet. This is to give 1118 * the device an opportunity to implement any restrictions that cannot 1119 * be otherwise expressed by feature flags. The check is called with 1120 * the set of features that the stack has calculated and it returns 1121 * those the driver believes to be appropriate. 1122 * 1123 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 1124 * struct net_device *sb_dev); 1125 * Called to decide which queue to use when device supports multiple 1126 * transmit queues. 1127 * 1128 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1129 * This function is called to allow device receiver to make 1130 * changes to configuration when multicast or promiscuous is enabled. 1131 * 1132 * void (*ndo_set_rx_mode)(struct net_device *dev); 1133 * This function is called device changes address list filtering. 1134 * If driver handles unicast address filtering, it should set 1135 * IFF_UNICAST_FLT in its priv_flags. 1136 * 1137 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1138 * This function is called when the Media Access Control address 1139 * needs to be changed. If this interface is not defined, the 1140 * MAC address can not be changed. 1141 * 1142 * int (*ndo_validate_addr)(struct net_device *dev); 1143 * Test if Media Access Control address is valid for the device. 1144 * 1145 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1146 * Old-style ioctl entry point. This is used internally by the 1147 * appletalk and ieee802154 subsystems but is no longer called by 1148 * the device ioctl handler. 1149 * 1150 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd); 1151 * Used by the bonding driver for its device specific ioctls: 1152 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE, 1153 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY 1154 * 1155 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1156 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG, 1157 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP. 1158 * 1159 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1160 * Used to set network devices bus interface parameters. This interface 1161 * is retained for legacy reasons; new devices should use the bus 1162 * interface (PCI) for low level management. 1163 * 1164 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1165 * Called when a user wants to change the Maximum Transfer Unit 1166 * of a device. 1167 * 1168 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1169 * Callback used when the transmitter has not made any progress 1170 * for dev->watchdog ticks. 1171 * 1172 * void (*ndo_get_stats64)(struct net_device *dev, 1173 * struct rtnl_link_stats64 *storage); 1174 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1175 * Called when a user wants to get the network device usage 1176 * statistics. Drivers must do one of the following: 1177 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1178 * rtnl_link_stats64 structure passed by the caller. 1179 * 2. Define @ndo_get_stats to update a net_device_stats structure 1180 * (which should normally be dev->stats) and return a pointer to 1181 * it. The structure may be changed asynchronously only if each 1182 * field is written atomically. 1183 * 3. Update dev->stats asynchronously and atomically, and define 1184 * neither operation. 1185 * 1186 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1187 * Return true if this device supports offload stats of this attr_id. 1188 * 1189 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1190 * void *attr_data) 1191 * Get statistics for offload operations by attr_id. Write it into the 1192 * attr_data pointer. 1193 * 1194 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1195 * If device supports VLAN filtering this function is called when a 1196 * VLAN id is registered. 1197 * 1198 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1199 * If device supports VLAN filtering this function is called when a 1200 * VLAN id is unregistered. 1201 * 1202 * void (*ndo_poll_controller)(struct net_device *dev); 1203 * 1204 * SR-IOV management functions. 1205 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1206 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1207 * u8 qos, __be16 proto); 1208 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1209 * int max_tx_rate); 1210 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1211 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1212 * int (*ndo_get_vf_config)(struct net_device *dev, 1213 * int vf, struct ifla_vf_info *ivf); 1214 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1215 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1216 * struct nlattr *port[]); 1217 * 1218 * Enable or disable the VF ability to query its RSS Redirection Table and 1219 * Hash Key. This is needed since on some devices VF share this information 1220 * with PF and querying it may introduce a theoretical security risk. 1221 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1222 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1223 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1224 * void *type_data); 1225 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1226 * This is always called from the stack with the rtnl lock held and netif 1227 * tx queues stopped. This allows the netdevice to perform queue 1228 * management safely. 1229 * 1230 * Fiber Channel over Ethernet (FCoE) offload functions. 1231 * int (*ndo_fcoe_enable)(struct net_device *dev); 1232 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1233 * so the underlying device can perform whatever needed configuration or 1234 * initialization to support acceleration of FCoE traffic. 1235 * 1236 * int (*ndo_fcoe_disable)(struct net_device *dev); 1237 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1238 * so the underlying device can perform whatever needed clean-ups to 1239 * stop supporting acceleration of FCoE traffic. 1240 * 1241 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1242 * struct scatterlist *sgl, unsigned int sgc); 1243 * Called when the FCoE Initiator wants to initialize an I/O that 1244 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1245 * perform necessary setup and returns 1 to indicate the device is set up 1246 * successfully to perform DDP on this I/O, otherwise this returns 0. 1247 * 1248 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1249 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1250 * indicated by the FC exchange id 'xid', so the underlying device can 1251 * clean up and reuse resources for later DDP requests. 1252 * 1253 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1254 * struct scatterlist *sgl, unsigned int sgc); 1255 * Called when the FCoE Target wants to initialize an I/O that 1256 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1257 * perform necessary setup and returns 1 to indicate the device is set up 1258 * successfully to perform DDP on this I/O, otherwise this returns 0. 1259 * 1260 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1261 * struct netdev_fcoe_hbainfo *hbainfo); 1262 * Called when the FCoE Protocol stack wants information on the underlying 1263 * device. This information is utilized by the FCoE protocol stack to 1264 * register attributes with Fiber Channel management service as per the 1265 * FC-GS Fabric Device Management Information(FDMI) specification. 1266 * 1267 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1268 * Called when the underlying device wants to override default World Wide 1269 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1270 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1271 * protocol stack to use. 1272 * 1273 * RFS acceleration. 1274 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1275 * u16 rxq_index, u32 flow_id); 1276 * Set hardware filter for RFS. rxq_index is the target queue index; 1277 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1278 * Return the filter ID on success, or a negative error code. 1279 * 1280 * Slave management functions (for bridge, bonding, etc). 1281 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1282 * Called to make another netdev an underling. 1283 * 1284 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1285 * Called to release previously enslaved netdev. 1286 * 1287 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1288 * struct sk_buff *skb, 1289 * bool all_slaves); 1290 * Get the xmit slave of master device. If all_slaves is true, function 1291 * assume all the slaves can transmit. 1292 * 1293 * Feature/offload setting functions. 1294 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1295 * netdev_features_t features); 1296 * Adjusts the requested feature flags according to device-specific 1297 * constraints, and returns the resulting flags. Must not modify 1298 * the device state. 1299 * 1300 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1301 * Called to update device configuration to new features. Passed 1302 * feature set might be less than what was returned by ndo_fix_features()). 1303 * Must return >0 or -errno if it changed dev->features itself. 1304 * 1305 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1306 * struct net_device *dev, 1307 * const unsigned char *addr, u16 vid, u16 flags, 1308 * struct netlink_ext_ack *extack); 1309 * Adds an FDB entry to dev for addr. 1310 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1311 * struct net_device *dev, 1312 * const unsigned char *addr, u16 vid) 1313 * Deletes the FDB entry from dev coresponding to addr. 1314 * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev, 1315 * struct netlink_ext_ack *extack); 1316 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1317 * struct net_device *dev, struct net_device *filter_dev, 1318 * int *idx) 1319 * Used to add FDB entries to dump requests. Implementers should add 1320 * entries to skb and update idx with the number of entries. 1321 * 1322 * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[], 1323 * u16 nlmsg_flags, struct netlink_ext_ack *extack); 1324 * Adds an MDB entry to dev. 1325 * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[], 1326 * struct netlink_ext_ack *extack); 1327 * Deletes the MDB entry from dev. 1328 * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb, 1329 * struct netlink_callback *cb); 1330 * Dumps MDB entries from dev. The first argument (marker) in the netlink 1331 * callback is used by core rtnetlink code. 1332 * 1333 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1334 * u16 flags, struct netlink_ext_ack *extack) 1335 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1336 * struct net_device *dev, u32 filter_mask, 1337 * int nlflags) 1338 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1339 * u16 flags); 1340 * 1341 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1342 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1343 * which do not represent real hardware may define this to allow their 1344 * userspace components to manage their virtual carrier state. Devices 1345 * that determine carrier state from physical hardware properties (eg 1346 * network cables) or protocol-dependent mechanisms (eg 1347 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1348 * 1349 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1350 * struct netdev_phys_item_id *ppid); 1351 * Called to get ID of physical port of this device. If driver does 1352 * not implement this, it is assumed that the hw is not able to have 1353 * multiple net devices on single physical port. 1354 * 1355 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1356 * struct netdev_phys_item_id *ppid) 1357 * Called to get the parent ID of the physical port of this device. 1358 * 1359 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1360 * struct net_device *dev) 1361 * Called by upper layer devices to accelerate switching or other 1362 * station functionality into hardware. 'pdev is the lowerdev 1363 * to use for the offload and 'dev' is the net device that will 1364 * back the offload. Returns a pointer to the private structure 1365 * the upper layer will maintain. 1366 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1367 * Called by upper layer device to delete the station created 1368 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1369 * the station and priv is the structure returned by the add 1370 * operation. 1371 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1372 * int queue_index, u32 maxrate); 1373 * Called when a user wants to set a max-rate limitation of specific 1374 * TX queue. 1375 * int (*ndo_get_iflink)(const struct net_device *dev); 1376 * Called to get the iflink value of this device. 1377 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1378 * This function is used to get egress tunnel information for given skb. 1379 * This is useful for retrieving outer tunnel header parameters while 1380 * sampling packet. 1381 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1382 * This function is used to specify the headroom that the skb must 1383 * consider when allocation skb during packet reception. Setting 1384 * appropriate rx headroom value allows avoiding skb head copy on 1385 * forward. Setting a negative value resets the rx headroom to the 1386 * default value. 1387 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1388 * This function is used to set or query state related to XDP on the 1389 * netdevice and manage BPF offload. See definition of 1390 * enum bpf_netdev_command for details. 1391 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1392 * u32 flags); 1393 * This function is used to submit @n XDP packets for transmit on a 1394 * netdevice. Returns number of frames successfully transmitted, frames 1395 * that got dropped are freed/returned via xdp_return_frame(). 1396 * Returns negative number, means general error invoking ndo, meaning 1397 * no frames were xmit'ed and core-caller will free all frames. 1398 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1399 * struct xdp_buff *xdp); 1400 * Get the xmit slave of master device based on the xdp_buff. 1401 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1402 * This function is used to wake up the softirq, ksoftirqd or kthread 1403 * responsible for sending and/or receiving packets on a specific 1404 * queue id bound to an AF_XDP socket. The flags field specifies if 1405 * only RX, only Tx, or both should be woken up using the flags 1406 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1407 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p, 1408 * int cmd); 1409 * Add, change, delete or get information on an IPv4 tunnel. 1410 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); 1411 * If a device is paired with a peer device, return the peer instance. 1412 * The caller must be under RCU read context. 1413 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path); 1414 * Get the forwarding path to reach the real device from the HW destination address 1415 * ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1416 * const struct skb_shared_hwtstamps *hwtstamps, 1417 * bool cycles); 1418 * Get hardware timestamp based on normal/adjustable time or free running 1419 * cycle counter. This function is required if physical clock supports a 1420 * free running cycle counter. 1421 * 1422 * int (*ndo_hwtstamp_get)(struct net_device *dev, 1423 * struct kernel_hwtstamp_config *kernel_config); 1424 * Get the currently configured hardware timestamping parameters for the 1425 * NIC device. 1426 * 1427 * int (*ndo_hwtstamp_set)(struct net_device *dev, 1428 * struct kernel_hwtstamp_config *kernel_config, 1429 * struct netlink_ext_ack *extack); 1430 * Change the hardware timestamping parameters for NIC device. 1431 */ 1432 struct net_device_ops { 1433 int (*ndo_init)(struct net_device *dev); 1434 void (*ndo_uninit)(struct net_device *dev); 1435 int (*ndo_open)(struct net_device *dev); 1436 int (*ndo_stop)(struct net_device *dev); 1437 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1438 struct net_device *dev); 1439 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1440 struct net_device *dev, 1441 netdev_features_t features); 1442 u16 (*ndo_select_queue)(struct net_device *dev, 1443 struct sk_buff *skb, 1444 struct net_device *sb_dev); 1445 void (*ndo_change_rx_flags)(struct net_device *dev, 1446 int flags); 1447 void (*ndo_set_rx_mode)(struct net_device *dev); 1448 int (*ndo_set_mac_address)(struct net_device *dev, 1449 void *addr); 1450 int (*ndo_validate_addr)(struct net_device *dev); 1451 int (*ndo_do_ioctl)(struct net_device *dev, 1452 struct ifreq *ifr, int cmd); 1453 int (*ndo_eth_ioctl)(struct net_device *dev, 1454 struct ifreq *ifr, int cmd); 1455 int (*ndo_siocbond)(struct net_device *dev, 1456 struct ifreq *ifr, int cmd); 1457 int (*ndo_siocwandev)(struct net_device *dev, 1458 struct if_settings *ifs); 1459 int (*ndo_siocdevprivate)(struct net_device *dev, 1460 struct ifreq *ifr, 1461 void __user *data, int cmd); 1462 int (*ndo_set_config)(struct net_device *dev, 1463 struct ifmap *map); 1464 int (*ndo_change_mtu)(struct net_device *dev, 1465 int new_mtu); 1466 int (*ndo_neigh_setup)(struct net_device *dev, 1467 struct neigh_parms *); 1468 void (*ndo_tx_timeout) (struct net_device *dev, 1469 unsigned int txqueue); 1470 1471 void (*ndo_get_stats64)(struct net_device *dev, 1472 struct rtnl_link_stats64 *storage); 1473 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1474 int (*ndo_get_offload_stats)(int attr_id, 1475 const struct net_device *dev, 1476 void *attr_data); 1477 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1478 1479 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1480 __be16 proto, u16 vid); 1481 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1482 __be16 proto, u16 vid); 1483 #ifdef CONFIG_NET_POLL_CONTROLLER 1484 void (*ndo_poll_controller)(struct net_device *dev); 1485 int (*ndo_netpoll_setup)(struct net_device *dev, 1486 struct netpoll_info *info); 1487 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1488 #endif 1489 int (*ndo_set_vf_mac)(struct net_device *dev, 1490 int queue, u8 *mac); 1491 int (*ndo_set_vf_vlan)(struct net_device *dev, 1492 int queue, u16 vlan, 1493 u8 qos, __be16 proto); 1494 int (*ndo_set_vf_rate)(struct net_device *dev, 1495 int vf, int min_tx_rate, 1496 int max_tx_rate); 1497 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1498 int vf, bool setting); 1499 int (*ndo_set_vf_trust)(struct net_device *dev, 1500 int vf, bool setting); 1501 int (*ndo_get_vf_config)(struct net_device *dev, 1502 int vf, 1503 struct ifla_vf_info *ivf); 1504 int (*ndo_set_vf_link_state)(struct net_device *dev, 1505 int vf, int link_state); 1506 int (*ndo_get_vf_stats)(struct net_device *dev, 1507 int vf, 1508 struct ifla_vf_stats 1509 *vf_stats); 1510 int (*ndo_set_vf_port)(struct net_device *dev, 1511 int vf, 1512 struct nlattr *port[]); 1513 int (*ndo_get_vf_port)(struct net_device *dev, 1514 int vf, struct sk_buff *skb); 1515 int (*ndo_get_vf_guid)(struct net_device *dev, 1516 int vf, 1517 struct ifla_vf_guid *node_guid, 1518 struct ifla_vf_guid *port_guid); 1519 int (*ndo_set_vf_guid)(struct net_device *dev, 1520 int vf, u64 guid, 1521 int guid_type); 1522 int (*ndo_set_vf_rss_query_en)( 1523 struct net_device *dev, 1524 int vf, bool setting); 1525 int (*ndo_setup_tc)(struct net_device *dev, 1526 enum tc_setup_type type, 1527 void *type_data); 1528 #if IS_ENABLED(CONFIG_FCOE) 1529 int (*ndo_fcoe_enable)(struct net_device *dev); 1530 int (*ndo_fcoe_disable)(struct net_device *dev); 1531 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1532 u16 xid, 1533 struct scatterlist *sgl, 1534 unsigned int sgc); 1535 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1536 u16 xid); 1537 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1538 u16 xid, 1539 struct scatterlist *sgl, 1540 unsigned int sgc); 1541 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1542 struct netdev_fcoe_hbainfo *hbainfo); 1543 #endif 1544 1545 #if IS_ENABLED(CONFIG_LIBFCOE) 1546 #define NETDEV_FCOE_WWNN 0 1547 #define NETDEV_FCOE_WWPN 1 1548 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1549 u64 *wwn, int type); 1550 #endif 1551 1552 #ifdef CONFIG_RFS_ACCEL 1553 int (*ndo_rx_flow_steer)(struct net_device *dev, 1554 const struct sk_buff *skb, 1555 u16 rxq_index, 1556 u32 flow_id); 1557 #endif 1558 int (*ndo_add_slave)(struct net_device *dev, 1559 struct net_device *slave_dev, 1560 struct netlink_ext_ack *extack); 1561 int (*ndo_del_slave)(struct net_device *dev, 1562 struct net_device *slave_dev); 1563 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1564 struct sk_buff *skb, 1565 bool all_slaves); 1566 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev, 1567 struct sock *sk); 1568 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1569 netdev_features_t features); 1570 int (*ndo_set_features)(struct net_device *dev, 1571 netdev_features_t features); 1572 int (*ndo_neigh_construct)(struct net_device *dev, 1573 struct neighbour *n); 1574 void (*ndo_neigh_destroy)(struct net_device *dev, 1575 struct neighbour *n); 1576 1577 int (*ndo_fdb_add)(struct ndmsg *ndm, 1578 struct nlattr *tb[], 1579 struct net_device *dev, 1580 const unsigned char *addr, 1581 u16 vid, 1582 u16 flags, 1583 struct netlink_ext_ack *extack); 1584 int (*ndo_fdb_del)(struct ndmsg *ndm, 1585 struct nlattr *tb[], 1586 struct net_device *dev, 1587 const unsigned char *addr, 1588 u16 vid, struct netlink_ext_ack *extack); 1589 int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, 1590 struct net_device *dev, 1591 struct netlink_ext_ack *extack); 1592 int (*ndo_fdb_dump)(struct sk_buff *skb, 1593 struct netlink_callback *cb, 1594 struct net_device *dev, 1595 struct net_device *filter_dev, 1596 int *idx); 1597 int (*ndo_fdb_get)(struct sk_buff *skb, 1598 struct nlattr *tb[], 1599 struct net_device *dev, 1600 const unsigned char *addr, 1601 u16 vid, u32 portid, u32 seq, 1602 struct netlink_ext_ack *extack); 1603 int (*ndo_mdb_add)(struct net_device *dev, 1604 struct nlattr *tb[], 1605 u16 nlmsg_flags, 1606 struct netlink_ext_ack *extack); 1607 int (*ndo_mdb_del)(struct net_device *dev, 1608 struct nlattr *tb[], 1609 struct netlink_ext_ack *extack); 1610 int (*ndo_mdb_dump)(struct net_device *dev, 1611 struct sk_buff *skb, 1612 struct netlink_callback *cb); 1613 int (*ndo_mdb_get)(struct net_device *dev, 1614 struct nlattr *tb[], u32 portid, 1615 u32 seq, 1616 struct netlink_ext_ack *extack); 1617 int (*ndo_bridge_setlink)(struct net_device *dev, 1618 struct nlmsghdr *nlh, 1619 u16 flags, 1620 struct netlink_ext_ack *extack); 1621 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1622 u32 pid, u32 seq, 1623 struct net_device *dev, 1624 u32 filter_mask, 1625 int nlflags); 1626 int (*ndo_bridge_dellink)(struct net_device *dev, 1627 struct nlmsghdr *nlh, 1628 u16 flags); 1629 int (*ndo_change_carrier)(struct net_device *dev, 1630 bool new_carrier); 1631 int (*ndo_get_phys_port_id)(struct net_device *dev, 1632 struct netdev_phys_item_id *ppid); 1633 int (*ndo_get_port_parent_id)(struct net_device *dev, 1634 struct netdev_phys_item_id *ppid); 1635 int (*ndo_get_phys_port_name)(struct net_device *dev, 1636 char *name, size_t len); 1637 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1638 struct net_device *dev); 1639 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1640 void *priv); 1641 1642 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1643 int queue_index, 1644 u32 maxrate); 1645 int (*ndo_get_iflink)(const struct net_device *dev); 1646 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1647 struct sk_buff *skb); 1648 void (*ndo_set_rx_headroom)(struct net_device *dev, 1649 int needed_headroom); 1650 int (*ndo_bpf)(struct net_device *dev, 1651 struct netdev_bpf *bpf); 1652 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1653 struct xdp_frame **xdp, 1654 u32 flags); 1655 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1656 struct xdp_buff *xdp); 1657 int (*ndo_xsk_wakeup)(struct net_device *dev, 1658 u32 queue_id, u32 flags); 1659 int (*ndo_tunnel_ctl)(struct net_device *dev, 1660 struct ip_tunnel_parm *p, int cmd); 1661 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); 1662 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, 1663 struct net_device_path *path); 1664 ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1665 const struct skb_shared_hwtstamps *hwtstamps, 1666 bool cycles); 1667 int (*ndo_hwtstamp_get)(struct net_device *dev, 1668 struct kernel_hwtstamp_config *kernel_config); 1669 int (*ndo_hwtstamp_set)(struct net_device *dev, 1670 struct kernel_hwtstamp_config *kernel_config, 1671 struct netlink_ext_ack *extack); 1672 }; 1673 1674 /** 1675 * enum netdev_priv_flags - &struct net_device priv_flags 1676 * 1677 * These are the &struct net_device, they are only set internally 1678 * by drivers and used in the kernel. These flags are invisible to 1679 * userspace; this means that the order of these flags can change 1680 * during any kernel release. 1681 * 1682 * You should have a pretty good reason to be extending these flags. 1683 * 1684 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1685 * @IFF_EBRIDGE: Ethernet bridging device 1686 * @IFF_BONDING: bonding master or slave 1687 * @IFF_ISATAP: ISATAP interface (RFC4214) 1688 * @IFF_WAN_HDLC: WAN HDLC device 1689 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1690 * release skb->dst 1691 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1692 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1693 * @IFF_MACVLAN_PORT: device used as macvlan port 1694 * @IFF_BRIDGE_PORT: device used as bridge port 1695 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1696 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1697 * @IFF_UNICAST_FLT: Supports unicast filtering 1698 * @IFF_TEAM_PORT: device used as team port 1699 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1700 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1701 * change when it's running 1702 * @IFF_MACVLAN: Macvlan device 1703 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1704 * underlying stacked devices 1705 * @IFF_L3MDEV_MASTER: device is an L3 master device 1706 * @IFF_NO_QUEUE: device can run without qdisc attached 1707 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1708 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1709 * @IFF_TEAM: device is a team device 1710 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1711 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1712 * entity (i.e. the master device for bridged veth) 1713 * @IFF_MACSEC: device is a MACsec device 1714 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1715 * @IFF_FAILOVER: device is a failover master device 1716 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1717 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1718 * @IFF_NO_ADDRCONF: prevent ipv6 addrconf 1719 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with 1720 * skb_headlen(skb) == 0 (data starts from frag0) 1721 * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN 1722 * @IFF_SEE_ALL_HWTSTAMP_REQUESTS: device wants to see calls to 1723 * ndo_hwtstamp_set() for all timestamp requests regardless of source, 1724 * even if those aren't HWTSTAMP_SOURCE_NETDEV. 1725 */ 1726 enum netdev_priv_flags { 1727 IFF_802_1Q_VLAN = 1<<0, 1728 IFF_EBRIDGE = 1<<1, 1729 IFF_BONDING = 1<<2, 1730 IFF_ISATAP = 1<<3, 1731 IFF_WAN_HDLC = 1<<4, 1732 IFF_XMIT_DST_RELEASE = 1<<5, 1733 IFF_DONT_BRIDGE = 1<<6, 1734 IFF_DISABLE_NETPOLL = 1<<7, 1735 IFF_MACVLAN_PORT = 1<<8, 1736 IFF_BRIDGE_PORT = 1<<9, 1737 IFF_OVS_DATAPATH = 1<<10, 1738 IFF_TX_SKB_SHARING = 1<<11, 1739 IFF_UNICAST_FLT = 1<<12, 1740 IFF_TEAM_PORT = 1<<13, 1741 IFF_SUPP_NOFCS = 1<<14, 1742 IFF_LIVE_ADDR_CHANGE = 1<<15, 1743 IFF_MACVLAN = 1<<16, 1744 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1745 IFF_L3MDEV_MASTER = 1<<18, 1746 IFF_NO_QUEUE = 1<<19, 1747 IFF_OPENVSWITCH = 1<<20, 1748 IFF_L3MDEV_SLAVE = 1<<21, 1749 IFF_TEAM = 1<<22, 1750 IFF_RXFH_CONFIGURED = 1<<23, 1751 IFF_PHONY_HEADROOM = 1<<24, 1752 IFF_MACSEC = 1<<25, 1753 IFF_NO_RX_HANDLER = 1<<26, 1754 IFF_FAILOVER = 1<<27, 1755 IFF_FAILOVER_SLAVE = 1<<28, 1756 IFF_L3MDEV_RX_HANDLER = 1<<29, 1757 IFF_NO_ADDRCONF = BIT_ULL(30), 1758 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31), 1759 IFF_CHANGE_PROTO_DOWN = BIT_ULL(32), 1760 IFF_SEE_ALL_HWTSTAMP_REQUESTS = BIT_ULL(33), 1761 }; 1762 1763 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1764 #define IFF_EBRIDGE IFF_EBRIDGE 1765 #define IFF_BONDING IFF_BONDING 1766 #define IFF_ISATAP IFF_ISATAP 1767 #define IFF_WAN_HDLC IFF_WAN_HDLC 1768 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1769 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1770 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1771 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1772 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1773 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1774 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1775 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1776 #define IFF_TEAM_PORT IFF_TEAM_PORT 1777 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1778 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1779 #define IFF_MACVLAN IFF_MACVLAN 1780 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1781 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1782 #define IFF_NO_QUEUE IFF_NO_QUEUE 1783 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1784 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1785 #define IFF_TEAM IFF_TEAM 1786 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1787 #define IFF_PHONY_HEADROOM IFF_PHONY_HEADROOM 1788 #define IFF_MACSEC IFF_MACSEC 1789 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1790 #define IFF_FAILOVER IFF_FAILOVER 1791 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1792 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1793 #define IFF_TX_SKB_NO_LINEAR IFF_TX_SKB_NO_LINEAR 1794 1795 /* Specifies the type of the struct net_device::ml_priv pointer */ 1796 enum netdev_ml_priv_type { 1797 ML_PRIV_NONE, 1798 ML_PRIV_CAN, 1799 }; 1800 1801 /** 1802 * struct net_device - The DEVICE structure. 1803 * 1804 * Actually, this whole structure is a big mistake. It mixes I/O 1805 * data with strictly "high-level" data, and it has to know about 1806 * almost every data structure used in the INET module. 1807 * 1808 * @name: This is the first field of the "visible" part of this structure 1809 * (i.e. as seen by users in the "Space.c" file). It is the name 1810 * of the interface. 1811 * 1812 * @name_node: Name hashlist node 1813 * @ifalias: SNMP alias 1814 * @mem_end: Shared memory end 1815 * @mem_start: Shared memory start 1816 * @base_addr: Device I/O address 1817 * @irq: Device IRQ number 1818 * 1819 * @state: Generic network queuing layer state, see netdev_state_t 1820 * @dev_list: The global list of network devices 1821 * @napi_list: List entry used for polling NAPI devices 1822 * @unreg_list: List entry when we are unregistering the 1823 * device; see the function unregister_netdev 1824 * @close_list: List entry used when we are closing the device 1825 * @ptype_all: Device-specific packet handlers for all protocols 1826 * @ptype_specific: Device-specific, protocol-specific packet handlers 1827 * 1828 * @adj_list: Directly linked devices, like slaves for bonding 1829 * @features: Currently active device features 1830 * @hw_features: User-changeable features 1831 * 1832 * @wanted_features: User-requested features 1833 * @vlan_features: Mask of features inheritable by VLAN devices 1834 * 1835 * @hw_enc_features: Mask of features inherited by encapsulating devices 1836 * This field indicates what encapsulation 1837 * offloads the hardware is capable of doing, 1838 * and drivers will need to set them appropriately. 1839 * 1840 * @mpls_features: Mask of features inheritable by MPLS 1841 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1842 * 1843 * @ifindex: interface index 1844 * @group: The group the device belongs to 1845 * 1846 * @stats: Statistics struct, which was left as a legacy, use 1847 * rtnl_link_stats64 instead 1848 * 1849 * @core_stats: core networking counters, 1850 * do not use this in drivers 1851 * @carrier_up_count: Number of times the carrier has been up 1852 * @carrier_down_count: Number of times the carrier has been down 1853 * 1854 * @wireless_handlers: List of functions to handle Wireless Extensions, 1855 * instead of ioctl, 1856 * see <net/iw_handler.h> for details. 1857 * @wireless_data: Instance data managed by the core of wireless extensions 1858 * 1859 * @netdev_ops: Includes several pointers to callbacks, 1860 * if one wants to override the ndo_*() functions 1861 * @xdp_metadata_ops: Includes pointers to XDP metadata callbacks. 1862 * @ethtool_ops: Management operations 1863 * @l3mdev_ops: Layer 3 master device operations 1864 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1865 * discovery handling. Necessary for e.g. 6LoWPAN. 1866 * @xfrmdev_ops: Transformation offload operations 1867 * @tlsdev_ops: Transport Layer Security offload operations 1868 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1869 * of Layer 2 headers. 1870 * 1871 * @flags: Interface flags (a la BSD) 1872 * @xdp_features: XDP capability supported by the device 1873 * @priv_flags: Like 'flags' but invisible to userspace, 1874 * see if.h for the definitions 1875 * @gflags: Global flags ( kept as legacy ) 1876 * @padded: How much padding added by alloc_netdev() 1877 * @operstate: RFC2863 operstate 1878 * @link_mode: Mapping policy to operstate 1879 * @if_port: Selectable AUI, TP, ... 1880 * @dma: DMA channel 1881 * @mtu: Interface MTU value 1882 * @min_mtu: Interface Minimum MTU value 1883 * @max_mtu: Interface Maximum MTU value 1884 * @type: Interface hardware type 1885 * @hard_header_len: Maximum hardware header length. 1886 * @min_header_len: Minimum hardware header length 1887 * 1888 * @needed_headroom: Extra headroom the hardware may need, but not in all 1889 * cases can this be guaranteed 1890 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1891 * cases can this be guaranteed. Some cases also use 1892 * LL_MAX_HEADER instead to allocate the skb 1893 * 1894 * interface address info: 1895 * 1896 * @perm_addr: Permanent hw address 1897 * @addr_assign_type: Hw address assignment type 1898 * @addr_len: Hardware address length 1899 * @upper_level: Maximum depth level of upper devices. 1900 * @lower_level: Maximum depth level of lower devices. 1901 * @neigh_priv_len: Used in neigh_alloc() 1902 * @dev_id: Used to differentiate devices that share 1903 * the same link layer address 1904 * @dev_port: Used to differentiate devices that share 1905 * the same function 1906 * @addr_list_lock: XXX: need comments on this one 1907 * @name_assign_type: network interface name assignment type 1908 * @uc_promisc: Counter that indicates promiscuous mode 1909 * has been enabled due to the need to listen to 1910 * additional unicast addresses in a device that 1911 * does not implement ndo_set_rx_mode() 1912 * @uc: unicast mac addresses 1913 * @mc: multicast mac addresses 1914 * @dev_addrs: list of device hw addresses 1915 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1916 * @promiscuity: Number of times the NIC is told to work in 1917 * promiscuous mode; if it becomes 0 the NIC will 1918 * exit promiscuous mode 1919 * @allmulti: Counter, enables or disables allmulticast mode 1920 * 1921 * @vlan_info: VLAN info 1922 * @dsa_ptr: dsa specific data 1923 * @tipc_ptr: TIPC specific data 1924 * @atalk_ptr: AppleTalk link 1925 * @ip_ptr: IPv4 specific data 1926 * @ip6_ptr: IPv6 specific data 1927 * @ax25_ptr: AX.25 specific data 1928 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1929 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1930 * device struct 1931 * @mpls_ptr: mpls_dev struct pointer 1932 * @mctp_ptr: MCTP specific data 1933 * 1934 * @dev_addr: Hw address (before bcast, 1935 * because most packets are unicast) 1936 * 1937 * @_rx: Array of RX queues 1938 * @num_rx_queues: Number of RX queues 1939 * allocated at register_netdev() time 1940 * @real_num_rx_queues: Number of RX queues currently active in device 1941 * @xdp_prog: XDP sockets filter program pointer 1942 * @gro_flush_timeout: timeout for GRO layer in NAPI 1943 * @napi_defer_hard_irqs: If not zero, provides a counter that would 1944 * allow to avoid NIC hard IRQ, on busy queues. 1945 * 1946 * @rx_handler: handler for received packets 1947 * @rx_handler_data: XXX: need comments on this one 1948 * @tcx_ingress: BPF & clsact qdisc specific data for ingress processing 1949 * @ingress_queue: XXX: need comments on this one 1950 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1951 * @broadcast: hw bcast address 1952 * 1953 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1954 * indexed by RX queue number. Assigned by driver. 1955 * This must only be set if the ndo_rx_flow_steer 1956 * operation is defined 1957 * @index_hlist: Device index hash chain 1958 * 1959 * @_tx: Array of TX queues 1960 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1961 * @real_num_tx_queues: Number of TX queues currently active in device 1962 * @qdisc: Root qdisc from userspace point of view 1963 * @tx_queue_len: Max frames per queue allowed 1964 * @tx_global_lock: XXX: need comments on this one 1965 * @xdp_bulkq: XDP device bulk queue 1966 * @xps_maps: all CPUs/RXQs maps for XPS device 1967 * 1968 * @xps_maps: XXX: need comments on this one 1969 * @tcx_egress: BPF & clsact qdisc specific data for egress processing 1970 * @nf_hooks_egress: netfilter hooks executed for egress packets 1971 * @qdisc_hash: qdisc hash table 1972 * @watchdog_timeo: Represents the timeout that is used by 1973 * the watchdog (see dev_watchdog()) 1974 * @watchdog_timer: List of timers 1975 * 1976 * @proto_down_reason: reason a netdev interface is held down 1977 * @pcpu_refcnt: Number of references to this device 1978 * @dev_refcnt: Number of references to this device 1979 * @refcnt_tracker: Tracker directory for tracked references to this device 1980 * @todo_list: Delayed register/unregister 1981 * @link_watch_list: XXX: need comments on this one 1982 * 1983 * @reg_state: Register/unregister state machine 1984 * @dismantle: Device is going to be freed 1985 * @rtnl_link_state: This enum represents the phases of creating 1986 * a new link 1987 * 1988 * @needs_free_netdev: Should unregister perform free_netdev? 1989 * @priv_destructor: Called from unregister 1990 * @npinfo: XXX: need comments on this one 1991 * @nd_net: Network namespace this network device is inside 1992 * 1993 * @ml_priv: Mid-layer private 1994 * @ml_priv_type: Mid-layer private type 1995 * @lstats: Loopback statistics 1996 * @tstats: Tunnel statistics 1997 * @dstats: Dummy statistics 1998 * @vstats: Virtual ethernet statistics 1999 * 2000 * @garp_port: GARP 2001 * @mrp_port: MRP 2002 * 2003 * @dm_private: Drop monitor private 2004 * 2005 * @dev: Class/net/name entry 2006 * @sysfs_groups: Space for optional device, statistics and wireless 2007 * sysfs groups 2008 * 2009 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 2010 * @rtnl_link_ops: Rtnl_link_ops 2011 * 2012 * @gso_max_size: Maximum size of generic segmentation offload 2013 * @tso_max_size: Device (as in HW) limit on the max TSO request size 2014 * @gso_max_segs: Maximum number of segments that can be passed to the 2015 * NIC for GSO 2016 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count 2017 * @gso_ipv4_max_size: Maximum size of generic segmentation offload, 2018 * for IPv4. 2019 * 2020 * @dcbnl_ops: Data Center Bridging netlink ops 2021 * @num_tc: Number of traffic classes in the net device 2022 * @tc_to_txq: XXX: need comments on this one 2023 * @prio_tc_map: XXX: need comments on this one 2024 * 2025 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 2026 * 2027 * @priomap: XXX: need comments on this one 2028 * @phydev: Physical device may attach itself 2029 * for hardware timestamping 2030 * @sfp_bus: attached &struct sfp_bus structure. 2031 * 2032 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 2033 * 2034 * @proto_down: protocol port state information can be sent to the 2035 * switch driver and used to set the phys state of the 2036 * switch port. 2037 * 2038 * @wol_enabled: Wake-on-LAN is enabled 2039 * 2040 * @threaded: napi threaded mode is enabled 2041 * 2042 * @net_notifier_list: List of per-net netdev notifier block 2043 * that follow this device when it is moved 2044 * to another network namespace. 2045 * 2046 * @macsec_ops: MACsec offloading ops 2047 * 2048 * @udp_tunnel_nic_info: static structure describing the UDP tunnel 2049 * offload capabilities of the device 2050 * @udp_tunnel_nic: UDP tunnel offload state 2051 * @xdp_state: stores info on attached XDP BPF programs 2052 * 2053 * @nested_level: Used as a parameter of spin_lock_nested() of 2054 * dev->addr_list_lock. 2055 * @unlink_list: As netif_addr_lock() can be called recursively, 2056 * keep a list of interfaces to be deleted. 2057 * @gro_max_size: Maximum size of aggregated packet in generic 2058 * receive offload (GRO) 2059 * @gro_ipv4_max_size: Maximum size of aggregated packet in generic 2060 * receive offload (GRO), for IPv4. 2061 * @xdp_zc_max_segs: Maximum number of segments supported by AF_XDP 2062 * zero copy driver 2063 * 2064 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes. 2065 * @linkwatch_dev_tracker: refcount tracker used by linkwatch. 2066 * @watchdog_dev_tracker: refcount tracker used by watchdog. 2067 * @dev_registered_tracker: tracker for reference held while 2068 * registered 2069 * @offload_xstats_l3: L3 HW stats for this netdevice. 2070 * 2071 * @devlink_port: Pointer to related devlink port structure. 2072 * Assigned by a driver before netdev registration using 2073 * SET_NETDEV_DEVLINK_PORT macro. This pointer is static 2074 * during the time netdevice is registered. 2075 * 2076 * @dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem, 2077 * where the clock is recovered. 2078 * @ts_layer: Tracks which network device 2079 * performs packet time stamping. 2080 * 2081 * FIXME: cleanup struct net_device such that network protocol info 2082 * moves out. 2083 */ 2084 2085 struct net_device { 2086 char name[IFNAMSIZ]; 2087 struct netdev_name_node *name_node; 2088 struct dev_ifalias __rcu *ifalias; 2089 /* 2090 * I/O specific fields 2091 * FIXME: Merge these and struct ifmap into one 2092 */ 2093 unsigned long mem_end; 2094 unsigned long mem_start; 2095 unsigned long base_addr; 2096 2097 /* 2098 * Some hardware also needs these fields (state,dev_list, 2099 * napi_list,unreg_list,close_list) but they are not 2100 * part of the usual set specified in Space.c. 2101 */ 2102 2103 unsigned long state; 2104 2105 struct list_head dev_list; 2106 struct list_head napi_list; 2107 struct list_head unreg_list; 2108 struct list_head close_list; 2109 struct list_head ptype_all; 2110 struct list_head ptype_specific; 2111 2112 struct { 2113 struct list_head upper; 2114 struct list_head lower; 2115 } adj_list; 2116 2117 /* Read-mostly cache-line for fast-path access */ 2118 unsigned int flags; 2119 xdp_features_t xdp_features; 2120 unsigned long long priv_flags; 2121 const struct net_device_ops *netdev_ops; 2122 const struct xdp_metadata_ops *xdp_metadata_ops; 2123 int ifindex; 2124 unsigned short gflags; 2125 unsigned short hard_header_len; 2126 2127 /* Note : dev->mtu is often read without holding a lock. 2128 * Writers usually hold RTNL. 2129 * It is recommended to use READ_ONCE() to annotate the reads, 2130 * and to use WRITE_ONCE() to annotate the writes. 2131 */ 2132 unsigned int mtu; 2133 unsigned short needed_headroom; 2134 unsigned short needed_tailroom; 2135 2136 netdev_features_t features; 2137 netdev_features_t hw_features; 2138 netdev_features_t wanted_features; 2139 netdev_features_t vlan_features; 2140 netdev_features_t hw_enc_features; 2141 netdev_features_t mpls_features; 2142 netdev_features_t gso_partial_features; 2143 2144 unsigned int min_mtu; 2145 unsigned int max_mtu; 2146 unsigned short type; 2147 unsigned char min_header_len; 2148 unsigned char name_assign_type; 2149 2150 int group; 2151 2152 struct net_device_stats stats; /* not used by modern drivers */ 2153 2154 struct net_device_core_stats __percpu *core_stats; 2155 2156 /* Stats to monitor link on/off, flapping */ 2157 atomic_t carrier_up_count; 2158 atomic_t carrier_down_count; 2159 2160 #ifdef CONFIG_WIRELESS_EXT 2161 const struct iw_handler_def *wireless_handlers; 2162 struct iw_public_data *wireless_data; 2163 #endif 2164 const struct ethtool_ops *ethtool_ops; 2165 #ifdef CONFIG_NET_L3_MASTER_DEV 2166 const struct l3mdev_ops *l3mdev_ops; 2167 #endif 2168 #if IS_ENABLED(CONFIG_IPV6) 2169 const struct ndisc_ops *ndisc_ops; 2170 #endif 2171 2172 #ifdef CONFIG_XFRM_OFFLOAD 2173 const struct xfrmdev_ops *xfrmdev_ops; 2174 #endif 2175 2176 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2177 const struct tlsdev_ops *tlsdev_ops; 2178 #endif 2179 2180 const struct header_ops *header_ops; 2181 2182 unsigned char operstate; 2183 unsigned char link_mode; 2184 2185 unsigned char if_port; 2186 unsigned char dma; 2187 2188 /* Interface address info. */ 2189 unsigned char perm_addr[MAX_ADDR_LEN]; 2190 unsigned char addr_assign_type; 2191 unsigned char addr_len; 2192 unsigned char upper_level; 2193 unsigned char lower_level; 2194 2195 unsigned short neigh_priv_len; 2196 unsigned short dev_id; 2197 unsigned short dev_port; 2198 unsigned short padded; 2199 2200 spinlock_t addr_list_lock; 2201 int irq; 2202 2203 struct netdev_hw_addr_list uc; 2204 struct netdev_hw_addr_list mc; 2205 struct netdev_hw_addr_list dev_addrs; 2206 2207 #ifdef CONFIG_SYSFS 2208 struct kset *queues_kset; 2209 #endif 2210 #ifdef CONFIG_LOCKDEP 2211 struct list_head unlink_list; 2212 #endif 2213 unsigned int promiscuity; 2214 unsigned int allmulti; 2215 bool uc_promisc; 2216 #ifdef CONFIG_LOCKDEP 2217 unsigned char nested_level; 2218 #endif 2219 2220 2221 /* Protocol-specific pointers */ 2222 2223 struct in_device __rcu *ip_ptr; 2224 struct inet6_dev __rcu *ip6_ptr; 2225 #if IS_ENABLED(CONFIG_VLAN_8021Q) 2226 struct vlan_info __rcu *vlan_info; 2227 #endif 2228 #if IS_ENABLED(CONFIG_NET_DSA) 2229 struct dsa_port *dsa_ptr; 2230 #endif 2231 #if IS_ENABLED(CONFIG_TIPC) 2232 struct tipc_bearer __rcu *tipc_ptr; 2233 #endif 2234 #if IS_ENABLED(CONFIG_ATALK) 2235 void *atalk_ptr; 2236 #endif 2237 #if IS_ENABLED(CONFIG_AX25) 2238 void *ax25_ptr; 2239 #endif 2240 #if IS_ENABLED(CONFIG_CFG80211) 2241 struct wireless_dev *ieee80211_ptr; 2242 #endif 2243 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN) 2244 struct wpan_dev *ieee802154_ptr; 2245 #endif 2246 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 2247 struct mpls_dev __rcu *mpls_ptr; 2248 #endif 2249 #if IS_ENABLED(CONFIG_MCTP) 2250 struct mctp_dev __rcu *mctp_ptr; 2251 #endif 2252 2253 /* 2254 * Cache lines mostly used on receive path (including eth_type_trans()) 2255 */ 2256 /* Interface address info used in eth_type_trans() */ 2257 const unsigned char *dev_addr; 2258 2259 struct netdev_rx_queue *_rx; 2260 unsigned int num_rx_queues; 2261 unsigned int real_num_rx_queues; 2262 2263 struct bpf_prog __rcu *xdp_prog; 2264 unsigned long gro_flush_timeout; 2265 int napi_defer_hard_irqs; 2266 #define GRO_LEGACY_MAX_SIZE 65536u 2267 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2268 * and shinfo->gso_segs is a 16bit field. 2269 */ 2270 #define GRO_MAX_SIZE (8 * 65535u) 2271 unsigned int gro_max_size; 2272 unsigned int gro_ipv4_max_size; 2273 unsigned int xdp_zc_max_segs; 2274 rx_handler_func_t __rcu *rx_handler; 2275 void __rcu *rx_handler_data; 2276 #ifdef CONFIG_NET_XGRESS 2277 struct bpf_mprog_entry __rcu *tcx_ingress; 2278 #endif 2279 struct netdev_queue __rcu *ingress_queue; 2280 #ifdef CONFIG_NETFILTER_INGRESS 2281 struct nf_hook_entries __rcu *nf_hooks_ingress; 2282 #endif 2283 2284 unsigned char broadcast[MAX_ADDR_LEN]; 2285 #ifdef CONFIG_RFS_ACCEL 2286 struct cpu_rmap *rx_cpu_rmap; 2287 #endif 2288 struct hlist_node index_hlist; 2289 2290 /* 2291 * Cache lines mostly used on transmit path 2292 */ 2293 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 2294 unsigned int num_tx_queues; 2295 unsigned int real_num_tx_queues; 2296 struct Qdisc __rcu *qdisc; 2297 unsigned int tx_queue_len; 2298 spinlock_t tx_global_lock; 2299 2300 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2301 2302 #ifdef CONFIG_XPS 2303 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX]; 2304 #endif 2305 #ifdef CONFIG_NET_XGRESS 2306 struct bpf_mprog_entry __rcu *tcx_egress; 2307 #endif 2308 #ifdef CONFIG_NETFILTER_EGRESS 2309 struct nf_hook_entries __rcu *nf_hooks_egress; 2310 #endif 2311 2312 #ifdef CONFIG_NET_SCHED 2313 DECLARE_HASHTABLE (qdisc_hash, 4); 2314 #endif 2315 /* These may be needed for future network-power-down code. */ 2316 struct timer_list watchdog_timer; 2317 int watchdog_timeo; 2318 2319 u32 proto_down_reason; 2320 2321 struct list_head todo_list; 2322 2323 #ifdef CONFIG_PCPU_DEV_REFCNT 2324 int __percpu *pcpu_refcnt; 2325 #else 2326 refcount_t dev_refcnt; 2327 #endif 2328 struct ref_tracker_dir refcnt_tracker; 2329 2330 struct list_head link_watch_list; 2331 2332 enum { NETREG_UNINITIALIZED=0, 2333 NETREG_REGISTERED, /* completed register_netdevice */ 2334 NETREG_UNREGISTERING, /* called unregister_netdevice */ 2335 NETREG_UNREGISTERED, /* completed unregister todo */ 2336 NETREG_RELEASED, /* called free_netdev */ 2337 NETREG_DUMMY, /* dummy device for NAPI poll */ 2338 } reg_state:8; 2339 2340 bool dismantle; 2341 2342 enum { 2343 RTNL_LINK_INITIALIZED, 2344 RTNL_LINK_INITIALIZING, 2345 } rtnl_link_state:16; 2346 2347 bool needs_free_netdev; 2348 void (*priv_destructor)(struct net_device *dev); 2349 2350 #ifdef CONFIG_NETPOLL 2351 struct netpoll_info __rcu *npinfo; 2352 #endif 2353 2354 possible_net_t nd_net; 2355 2356 /* mid-layer private */ 2357 void *ml_priv; 2358 enum netdev_ml_priv_type ml_priv_type; 2359 2360 union { 2361 struct pcpu_lstats __percpu *lstats; 2362 struct pcpu_sw_netstats __percpu *tstats; 2363 struct pcpu_dstats __percpu *dstats; 2364 }; 2365 2366 #if IS_ENABLED(CONFIG_GARP) 2367 struct garp_port __rcu *garp_port; 2368 #endif 2369 #if IS_ENABLED(CONFIG_MRP) 2370 struct mrp_port __rcu *mrp_port; 2371 #endif 2372 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR) 2373 struct dm_hw_stat_delta __rcu *dm_private; 2374 #endif 2375 struct device dev; 2376 const struct attribute_group *sysfs_groups[4]; 2377 const struct attribute_group *sysfs_rx_queue_group; 2378 2379 const struct rtnl_link_ops *rtnl_link_ops; 2380 2381 /* for setting kernel sock attribute on TCP connection setup */ 2382 #define GSO_MAX_SEGS 65535u 2383 #define GSO_LEGACY_MAX_SIZE 65536u 2384 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2385 * and shinfo->gso_segs is a 16bit field. 2386 */ 2387 #define GSO_MAX_SIZE (8 * GSO_MAX_SEGS) 2388 2389 unsigned int gso_max_size; 2390 #define TSO_LEGACY_MAX_SIZE 65536 2391 #define TSO_MAX_SIZE UINT_MAX 2392 unsigned int tso_max_size; 2393 u16 gso_max_segs; 2394 #define TSO_MAX_SEGS U16_MAX 2395 u16 tso_max_segs; 2396 unsigned int gso_ipv4_max_size; 2397 2398 #ifdef CONFIG_DCB 2399 const struct dcbnl_rtnl_ops *dcbnl_ops; 2400 #endif 2401 s16 num_tc; 2402 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2403 u8 prio_tc_map[TC_BITMASK + 1]; 2404 2405 #if IS_ENABLED(CONFIG_FCOE) 2406 unsigned int fcoe_ddp_xid; 2407 #endif 2408 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2409 struct netprio_map __rcu *priomap; 2410 #endif 2411 struct phy_device *phydev; 2412 struct sfp_bus *sfp_bus; 2413 struct lock_class_key *qdisc_tx_busylock; 2414 bool proto_down; 2415 unsigned wol_enabled:1; 2416 unsigned threaded:1; 2417 2418 struct list_head net_notifier_list; 2419 2420 #if IS_ENABLED(CONFIG_MACSEC) 2421 /* MACsec management functions */ 2422 const struct macsec_ops *macsec_ops; 2423 #endif 2424 const struct udp_tunnel_nic_info *udp_tunnel_nic_info; 2425 struct udp_tunnel_nic *udp_tunnel_nic; 2426 2427 /* protected by rtnl_lock */ 2428 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; 2429 2430 u8 dev_addr_shadow[MAX_ADDR_LEN]; 2431 netdevice_tracker linkwatch_dev_tracker; 2432 netdevice_tracker watchdog_dev_tracker; 2433 netdevice_tracker dev_registered_tracker; 2434 struct rtnl_hw_stats64 *offload_xstats_l3; 2435 2436 struct devlink_port *devlink_port; 2437 2438 #if IS_ENABLED(CONFIG_DPLL) 2439 struct dpll_pin *dpll_pin; 2440 #endif 2441 2442 enum timestamping_layer ts_layer; 2443 }; 2444 #define to_net_dev(d) container_of(d, struct net_device, dev) 2445 2446 /* 2447 * Driver should use this to assign devlink port instance to a netdevice 2448 * before it registers the netdevice. Therefore devlink_port is static 2449 * during the netdev lifetime after it is registered. 2450 */ 2451 #define SET_NETDEV_DEVLINK_PORT(dev, port) \ 2452 ({ \ 2453 WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED); \ 2454 ((dev)->devlink_port = (port)); \ 2455 }) 2456 2457 static inline bool netif_elide_gro(const struct net_device *dev) 2458 { 2459 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2460 return true; 2461 return false; 2462 } 2463 2464 #define NETDEV_ALIGN 32 2465 2466 static inline 2467 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2468 { 2469 return dev->prio_tc_map[prio & TC_BITMASK]; 2470 } 2471 2472 static inline 2473 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2474 { 2475 if (tc >= dev->num_tc) 2476 return -EINVAL; 2477 2478 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2479 return 0; 2480 } 2481 2482 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2483 void netdev_reset_tc(struct net_device *dev); 2484 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2485 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2486 2487 static inline 2488 int netdev_get_num_tc(struct net_device *dev) 2489 { 2490 return dev->num_tc; 2491 } 2492 2493 static inline void net_prefetch(void *p) 2494 { 2495 prefetch(p); 2496 #if L1_CACHE_BYTES < 128 2497 prefetch((u8 *)p + L1_CACHE_BYTES); 2498 #endif 2499 } 2500 2501 static inline void net_prefetchw(void *p) 2502 { 2503 prefetchw(p); 2504 #if L1_CACHE_BYTES < 128 2505 prefetchw((u8 *)p + L1_CACHE_BYTES); 2506 #endif 2507 } 2508 2509 void netdev_unbind_sb_channel(struct net_device *dev, 2510 struct net_device *sb_dev); 2511 int netdev_bind_sb_channel_queue(struct net_device *dev, 2512 struct net_device *sb_dev, 2513 u8 tc, u16 count, u16 offset); 2514 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2515 static inline int netdev_get_sb_channel(struct net_device *dev) 2516 { 2517 return max_t(int, -dev->num_tc, 0); 2518 } 2519 2520 static inline 2521 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2522 unsigned int index) 2523 { 2524 DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues); 2525 return &dev->_tx[index]; 2526 } 2527 2528 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2529 const struct sk_buff *skb) 2530 { 2531 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2532 } 2533 2534 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2535 void (*f)(struct net_device *, 2536 struct netdev_queue *, 2537 void *), 2538 void *arg) 2539 { 2540 unsigned int i; 2541 2542 for (i = 0; i < dev->num_tx_queues; i++) 2543 f(dev, &dev->_tx[i], arg); 2544 } 2545 2546 #define netdev_lockdep_set_classes(dev) \ 2547 { \ 2548 static struct lock_class_key qdisc_tx_busylock_key; \ 2549 static struct lock_class_key qdisc_xmit_lock_key; \ 2550 static struct lock_class_key dev_addr_list_lock_key; \ 2551 unsigned int i; \ 2552 \ 2553 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2554 lockdep_set_class(&(dev)->addr_list_lock, \ 2555 &dev_addr_list_lock_key); \ 2556 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2557 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2558 &qdisc_xmit_lock_key); \ 2559 } 2560 2561 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2562 struct net_device *sb_dev); 2563 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2564 struct sk_buff *skb, 2565 struct net_device *sb_dev); 2566 2567 /* returns the headroom that the master device needs to take in account 2568 * when forwarding to this dev 2569 */ 2570 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2571 { 2572 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2573 } 2574 2575 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2576 { 2577 if (dev->netdev_ops->ndo_set_rx_headroom) 2578 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2579 } 2580 2581 /* set the device rx headroom to the dev's default */ 2582 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2583 { 2584 netdev_set_rx_headroom(dev, -1); 2585 } 2586 2587 static inline void *netdev_get_ml_priv(struct net_device *dev, 2588 enum netdev_ml_priv_type type) 2589 { 2590 if (dev->ml_priv_type != type) 2591 return NULL; 2592 2593 return dev->ml_priv; 2594 } 2595 2596 static inline void netdev_set_ml_priv(struct net_device *dev, 2597 void *ml_priv, 2598 enum netdev_ml_priv_type type) 2599 { 2600 WARN(dev->ml_priv_type && dev->ml_priv_type != type, 2601 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", 2602 dev->ml_priv_type, type); 2603 WARN(!dev->ml_priv_type && dev->ml_priv, 2604 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); 2605 2606 dev->ml_priv = ml_priv; 2607 dev->ml_priv_type = type; 2608 } 2609 2610 /* 2611 * Net namespace inlines 2612 */ 2613 static inline 2614 struct net *dev_net(const struct net_device *dev) 2615 { 2616 return read_pnet(&dev->nd_net); 2617 } 2618 2619 static inline 2620 void dev_net_set(struct net_device *dev, struct net *net) 2621 { 2622 write_pnet(&dev->nd_net, net); 2623 } 2624 2625 /** 2626 * netdev_priv - access network device private data 2627 * @dev: network device 2628 * 2629 * Get network device private data 2630 */ 2631 static inline void *netdev_priv(const struct net_device *dev) 2632 { 2633 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2634 } 2635 2636 /* Set the sysfs physical device reference for the network logical device 2637 * if set prior to registration will cause a symlink during initialization. 2638 */ 2639 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2640 2641 /* Set the sysfs device type for the network logical device to allow 2642 * fine-grained identification of different network device types. For 2643 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2644 */ 2645 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2646 2647 /* Default NAPI poll() weight 2648 * Device drivers are strongly advised to not use bigger value 2649 */ 2650 #define NAPI_POLL_WEIGHT 64 2651 2652 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 2653 int (*poll)(struct napi_struct *, int), int weight); 2654 2655 /** 2656 * netif_napi_add() - initialize a NAPI context 2657 * @dev: network device 2658 * @napi: NAPI context 2659 * @poll: polling function 2660 * 2661 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2662 * *any* of the other NAPI-related functions. 2663 */ 2664 static inline void 2665 netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2666 int (*poll)(struct napi_struct *, int)) 2667 { 2668 netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2669 } 2670 2671 static inline void 2672 netif_napi_add_tx_weight(struct net_device *dev, 2673 struct napi_struct *napi, 2674 int (*poll)(struct napi_struct *, int), 2675 int weight) 2676 { 2677 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2678 netif_napi_add_weight(dev, napi, poll, weight); 2679 } 2680 2681 /** 2682 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only 2683 * @dev: network device 2684 * @napi: NAPI context 2685 * @poll: polling function 2686 * 2687 * This variant of netif_napi_add() should be used from drivers using NAPI 2688 * to exclusively poll a TX queue. 2689 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2690 */ 2691 static inline void netif_napi_add_tx(struct net_device *dev, 2692 struct napi_struct *napi, 2693 int (*poll)(struct napi_struct *, int)) 2694 { 2695 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2696 } 2697 2698 /** 2699 * __netif_napi_del - remove a NAPI context 2700 * @napi: NAPI context 2701 * 2702 * Warning: caller must observe RCU grace period before freeing memory 2703 * containing @napi. Drivers might want to call this helper to combine 2704 * all the needed RCU grace periods into a single one. 2705 */ 2706 void __netif_napi_del(struct napi_struct *napi); 2707 2708 /** 2709 * netif_napi_del - remove a NAPI context 2710 * @napi: NAPI context 2711 * 2712 * netif_napi_del() removes a NAPI context from the network device NAPI list 2713 */ 2714 static inline void netif_napi_del(struct napi_struct *napi) 2715 { 2716 __netif_napi_del(napi); 2717 synchronize_net(); 2718 } 2719 2720 struct packet_type { 2721 __be16 type; /* This is really htons(ether_type). */ 2722 bool ignore_outgoing; 2723 struct net_device *dev; /* NULL is wildcarded here */ 2724 netdevice_tracker dev_tracker; 2725 int (*func) (struct sk_buff *, 2726 struct net_device *, 2727 struct packet_type *, 2728 struct net_device *); 2729 void (*list_func) (struct list_head *, 2730 struct packet_type *, 2731 struct net_device *); 2732 bool (*id_match)(struct packet_type *ptype, 2733 struct sock *sk); 2734 struct net *af_packet_net; 2735 void *af_packet_priv; 2736 struct list_head list; 2737 }; 2738 2739 struct offload_callbacks { 2740 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2741 netdev_features_t features); 2742 struct sk_buff *(*gro_receive)(struct list_head *head, 2743 struct sk_buff *skb); 2744 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2745 }; 2746 2747 struct packet_offload { 2748 __be16 type; /* This is really htons(ether_type). */ 2749 u16 priority; 2750 struct offload_callbacks callbacks; 2751 struct list_head list; 2752 }; 2753 2754 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2755 struct pcpu_sw_netstats { 2756 u64_stats_t rx_packets; 2757 u64_stats_t rx_bytes; 2758 u64_stats_t tx_packets; 2759 u64_stats_t tx_bytes; 2760 struct u64_stats_sync syncp; 2761 } __aligned(4 * sizeof(u64)); 2762 2763 struct pcpu_lstats { 2764 u64_stats_t packets; 2765 u64_stats_t bytes; 2766 struct u64_stats_sync syncp; 2767 } __aligned(2 * sizeof(u64)); 2768 2769 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2770 2771 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) 2772 { 2773 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2774 2775 u64_stats_update_begin(&tstats->syncp); 2776 u64_stats_add(&tstats->rx_bytes, len); 2777 u64_stats_inc(&tstats->rx_packets); 2778 u64_stats_update_end(&tstats->syncp); 2779 } 2780 2781 static inline void dev_sw_netstats_tx_add(struct net_device *dev, 2782 unsigned int packets, 2783 unsigned int len) 2784 { 2785 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2786 2787 u64_stats_update_begin(&tstats->syncp); 2788 u64_stats_add(&tstats->tx_bytes, len); 2789 u64_stats_add(&tstats->tx_packets, packets); 2790 u64_stats_update_end(&tstats->syncp); 2791 } 2792 2793 static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2794 { 2795 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2796 2797 u64_stats_update_begin(&lstats->syncp); 2798 u64_stats_add(&lstats->bytes, len); 2799 u64_stats_inc(&lstats->packets); 2800 u64_stats_update_end(&lstats->syncp); 2801 } 2802 2803 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2804 ({ \ 2805 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2806 if (pcpu_stats) { \ 2807 int __cpu; \ 2808 for_each_possible_cpu(__cpu) { \ 2809 typeof(type) *stat; \ 2810 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2811 u64_stats_init(&stat->syncp); \ 2812 } \ 2813 } \ 2814 pcpu_stats; \ 2815 }) 2816 2817 #define netdev_alloc_pcpu_stats(type) \ 2818 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2819 2820 #define devm_netdev_alloc_pcpu_stats(dev, type) \ 2821 ({ \ 2822 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\ 2823 if (pcpu_stats) { \ 2824 int __cpu; \ 2825 for_each_possible_cpu(__cpu) { \ 2826 typeof(type) *stat; \ 2827 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2828 u64_stats_init(&stat->syncp); \ 2829 } \ 2830 } \ 2831 pcpu_stats; \ 2832 }) 2833 2834 enum netdev_lag_tx_type { 2835 NETDEV_LAG_TX_TYPE_UNKNOWN, 2836 NETDEV_LAG_TX_TYPE_RANDOM, 2837 NETDEV_LAG_TX_TYPE_BROADCAST, 2838 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2839 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2840 NETDEV_LAG_TX_TYPE_HASH, 2841 }; 2842 2843 enum netdev_lag_hash { 2844 NETDEV_LAG_HASH_NONE, 2845 NETDEV_LAG_HASH_L2, 2846 NETDEV_LAG_HASH_L34, 2847 NETDEV_LAG_HASH_L23, 2848 NETDEV_LAG_HASH_E23, 2849 NETDEV_LAG_HASH_E34, 2850 NETDEV_LAG_HASH_VLAN_SRCMAC, 2851 NETDEV_LAG_HASH_UNKNOWN, 2852 }; 2853 2854 struct netdev_lag_upper_info { 2855 enum netdev_lag_tx_type tx_type; 2856 enum netdev_lag_hash hash_type; 2857 }; 2858 2859 struct netdev_lag_lower_state_info { 2860 u8 link_up : 1, 2861 tx_enabled : 1; 2862 }; 2863 2864 #include <linux/notifier.h> 2865 2866 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2867 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2868 * adding new types. 2869 */ 2870 enum netdev_cmd { 2871 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2872 NETDEV_DOWN, 2873 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2874 detected a hardware crash and restarted 2875 - we can use this eg to kick tcp sessions 2876 once done */ 2877 NETDEV_CHANGE, /* Notify device state change */ 2878 NETDEV_REGISTER, 2879 NETDEV_UNREGISTER, 2880 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2881 NETDEV_CHANGEADDR, /* notify after the address change */ 2882 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2883 NETDEV_GOING_DOWN, 2884 NETDEV_CHANGENAME, 2885 NETDEV_FEAT_CHANGE, 2886 NETDEV_BONDING_FAILOVER, 2887 NETDEV_PRE_UP, 2888 NETDEV_PRE_TYPE_CHANGE, 2889 NETDEV_POST_TYPE_CHANGE, 2890 NETDEV_POST_INIT, 2891 NETDEV_PRE_UNINIT, 2892 NETDEV_RELEASE, 2893 NETDEV_NOTIFY_PEERS, 2894 NETDEV_JOIN, 2895 NETDEV_CHANGEUPPER, 2896 NETDEV_RESEND_IGMP, 2897 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2898 NETDEV_CHANGEINFODATA, 2899 NETDEV_BONDING_INFO, 2900 NETDEV_PRECHANGEUPPER, 2901 NETDEV_CHANGELOWERSTATE, 2902 NETDEV_UDP_TUNNEL_PUSH_INFO, 2903 NETDEV_UDP_TUNNEL_DROP_INFO, 2904 NETDEV_CHANGE_TX_QUEUE_LEN, 2905 NETDEV_CVLAN_FILTER_PUSH_INFO, 2906 NETDEV_CVLAN_FILTER_DROP_INFO, 2907 NETDEV_SVLAN_FILTER_PUSH_INFO, 2908 NETDEV_SVLAN_FILTER_DROP_INFO, 2909 NETDEV_OFFLOAD_XSTATS_ENABLE, 2910 NETDEV_OFFLOAD_XSTATS_DISABLE, 2911 NETDEV_OFFLOAD_XSTATS_REPORT_USED, 2912 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 2913 NETDEV_XDP_FEAT_CHANGE, 2914 }; 2915 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2916 2917 int register_netdevice_notifier(struct notifier_block *nb); 2918 int unregister_netdevice_notifier(struct notifier_block *nb); 2919 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2920 int unregister_netdevice_notifier_net(struct net *net, 2921 struct notifier_block *nb); 2922 int register_netdevice_notifier_dev_net(struct net_device *dev, 2923 struct notifier_block *nb, 2924 struct netdev_net_notifier *nn); 2925 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2926 struct notifier_block *nb, 2927 struct netdev_net_notifier *nn); 2928 2929 struct netdev_notifier_info { 2930 struct net_device *dev; 2931 struct netlink_ext_ack *extack; 2932 }; 2933 2934 struct netdev_notifier_info_ext { 2935 struct netdev_notifier_info info; /* must be first */ 2936 union { 2937 u32 mtu; 2938 } ext; 2939 }; 2940 2941 struct netdev_notifier_change_info { 2942 struct netdev_notifier_info info; /* must be first */ 2943 unsigned int flags_changed; 2944 }; 2945 2946 struct netdev_notifier_changeupper_info { 2947 struct netdev_notifier_info info; /* must be first */ 2948 struct net_device *upper_dev; /* new upper dev */ 2949 bool master; /* is upper dev master */ 2950 bool linking; /* is the notification for link or unlink */ 2951 void *upper_info; /* upper dev info */ 2952 }; 2953 2954 struct netdev_notifier_changelowerstate_info { 2955 struct netdev_notifier_info info; /* must be first */ 2956 void *lower_state_info; /* is lower dev state */ 2957 }; 2958 2959 struct netdev_notifier_pre_changeaddr_info { 2960 struct netdev_notifier_info info; /* must be first */ 2961 const unsigned char *dev_addr; 2962 }; 2963 2964 enum netdev_offload_xstats_type { 2965 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1, 2966 }; 2967 2968 struct netdev_notifier_offload_xstats_info { 2969 struct netdev_notifier_info info; /* must be first */ 2970 enum netdev_offload_xstats_type type; 2971 2972 union { 2973 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */ 2974 struct netdev_notifier_offload_xstats_rd *report_delta; 2975 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */ 2976 struct netdev_notifier_offload_xstats_ru *report_used; 2977 }; 2978 }; 2979 2980 int netdev_offload_xstats_enable(struct net_device *dev, 2981 enum netdev_offload_xstats_type type, 2982 struct netlink_ext_ack *extack); 2983 int netdev_offload_xstats_disable(struct net_device *dev, 2984 enum netdev_offload_xstats_type type); 2985 bool netdev_offload_xstats_enabled(const struct net_device *dev, 2986 enum netdev_offload_xstats_type type); 2987 int netdev_offload_xstats_get(struct net_device *dev, 2988 enum netdev_offload_xstats_type type, 2989 struct rtnl_hw_stats64 *stats, bool *used, 2990 struct netlink_ext_ack *extack); 2991 void 2992 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd, 2993 const struct rtnl_hw_stats64 *stats); 2994 void 2995 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru); 2996 void netdev_offload_xstats_push_delta(struct net_device *dev, 2997 enum netdev_offload_xstats_type type, 2998 const struct rtnl_hw_stats64 *stats); 2999 3000 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 3001 struct net_device *dev) 3002 { 3003 info->dev = dev; 3004 info->extack = NULL; 3005 } 3006 3007 static inline struct net_device * 3008 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 3009 { 3010 return info->dev; 3011 } 3012 3013 static inline struct netlink_ext_ack * 3014 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 3015 { 3016 return info->extack; 3017 } 3018 3019 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 3020 int call_netdevice_notifiers_info(unsigned long val, 3021 struct netdev_notifier_info *info); 3022 3023 extern rwlock_t dev_base_lock; /* Device list lock */ 3024 3025 #define for_each_netdev(net, d) \ 3026 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 3027 #define for_each_netdev_reverse(net, d) \ 3028 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 3029 #define for_each_netdev_rcu(net, d) \ 3030 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 3031 #define for_each_netdev_safe(net, d, n) \ 3032 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 3033 #define for_each_netdev_continue(net, d) \ 3034 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 3035 #define for_each_netdev_continue_reverse(net, d) \ 3036 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 3037 dev_list) 3038 #define for_each_netdev_continue_rcu(net, d) \ 3039 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 3040 #define for_each_netdev_in_bond_rcu(bond, slave) \ 3041 for_each_netdev_rcu(&init_net, slave) \ 3042 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 3043 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 3044 3045 #define for_each_netdev_dump(net, d, ifindex) \ 3046 xa_for_each_start(&(net)->dev_by_index, (ifindex), (d), (ifindex)) 3047 3048 static inline struct net_device *next_net_device(struct net_device *dev) 3049 { 3050 struct list_head *lh; 3051 struct net *net; 3052 3053 net = dev_net(dev); 3054 lh = dev->dev_list.next; 3055 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3056 } 3057 3058 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 3059 { 3060 struct list_head *lh; 3061 struct net *net; 3062 3063 net = dev_net(dev); 3064 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 3065 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3066 } 3067 3068 static inline struct net_device *first_net_device(struct net *net) 3069 { 3070 return list_empty(&net->dev_base_head) ? NULL : 3071 net_device_entry(net->dev_base_head.next); 3072 } 3073 3074 static inline struct net_device *first_net_device_rcu(struct net *net) 3075 { 3076 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 3077 3078 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3079 } 3080 3081 int netdev_boot_setup_check(struct net_device *dev); 3082 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 3083 const char *hwaddr); 3084 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 3085 void dev_add_pack(struct packet_type *pt); 3086 void dev_remove_pack(struct packet_type *pt); 3087 void __dev_remove_pack(struct packet_type *pt); 3088 void dev_add_offload(struct packet_offload *po); 3089 void dev_remove_offload(struct packet_offload *po); 3090 3091 int dev_get_iflink(const struct net_device *dev); 3092 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 3093 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 3094 struct net_device_path_stack *stack); 3095 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 3096 unsigned short mask); 3097 struct net_device *dev_get_by_name(struct net *net, const char *name); 3098 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 3099 struct net_device *__dev_get_by_name(struct net *net, const char *name); 3100 bool netdev_name_in_use(struct net *net, const char *name); 3101 int dev_alloc_name(struct net_device *dev, const char *name); 3102 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 3103 void dev_close(struct net_device *dev); 3104 void dev_close_many(struct list_head *head, bool unlink); 3105 void dev_disable_lro(struct net_device *dev); 3106 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 3107 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3108 struct net_device *sb_dev); 3109 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3110 struct net_device *sb_dev); 3111 3112 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev); 3113 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 3114 3115 static inline int dev_queue_xmit(struct sk_buff *skb) 3116 { 3117 return __dev_queue_xmit(skb, NULL); 3118 } 3119 3120 static inline int dev_queue_xmit_accel(struct sk_buff *skb, 3121 struct net_device *sb_dev) 3122 { 3123 return __dev_queue_xmit(skb, sb_dev); 3124 } 3125 3126 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3127 { 3128 int ret; 3129 3130 ret = __dev_direct_xmit(skb, queue_id); 3131 if (!dev_xmit_complete(ret)) 3132 kfree_skb(skb); 3133 return ret; 3134 } 3135 3136 int register_netdevice(struct net_device *dev); 3137 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 3138 void unregister_netdevice_many(struct list_head *head); 3139 static inline void unregister_netdevice(struct net_device *dev) 3140 { 3141 unregister_netdevice_queue(dev, NULL); 3142 } 3143 3144 int netdev_refcnt_read(const struct net_device *dev); 3145 void free_netdev(struct net_device *dev); 3146 void netdev_freemem(struct net_device *dev); 3147 int init_dummy_netdev(struct net_device *dev); 3148 3149 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 3150 struct sk_buff *skb, 3151 bool all_slaves); 3152 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 3153 struct sock *sk); 3154 struct net_device *dev_get_by_index(struct net *net, int ifindex); 3155 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 3156 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 3157 netdevice_tracker *tracker, gfp_t gfp); 3158 struct net_device *netdev_get_by_name(struct net *net, const char *name, 3159 netdevice_tracker *tracker, gfp_t gfp); 3160 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 3161 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 3162 3163 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 3164 unsigned short type, 3165 const void *daddr, const void *saddr, 3166 unsigned int len) 3167 { 3168 if (!dev->header_ops || !dev->header_ops->create) 3169 return 0; 3170 3171 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3172 } 3173 3174 static inline int dev_parse_header(const struct sk_buff *skb, 3175 unsigned char *haddr) 3176 { 3177 const struct net_device *dev = skb->dev; 3178 3179 if (!dev->header_ops || !dev->header_ops->parse) 3180 return 0; 3181 return dev->header_ops->parse(skb, haddr); 3182 } 3183 3184 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3185 { 3186 const struct net_device *dev = skb->dev; 3187 3188 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3189 return 0; 3190 return dev->header_ops->parse_protocol(skb); 3191 } 3192 3193 /* ll_header must have at least hard_header_len allocated */ 3194 static inline bool dev_validate_header(const struct net_device *dev, 3195 char *ll_header, int len) 3196 { 3197 if (likely(len >= dev->hard_header_len)) 3198 return true; 3199 if (len < dev->min_header_len) 3200 return false; 3201 3202 if (capable(CAP_SYS_RAWIO)) { 3203 memset(ll_header + len, 0, dev->hard_header_len - len); 3204 return true; 3205 } 3206 3207 if (dev->header_ops && dev->header_ops->validate) 3208 return dev->header_ops->validate(ll_header, len); 3209 3210 return false; 3211 } 3212 3213 static inline bool dev_has_header(const struct net_device *dev) 3214 { 3215 return dev->header_ops && dev->header_ops->create; 3216 } 3217 3218 /* 3219 * Incoming packets are placed on per-CPU queues 3220 */ 3221 struct softnet_data { 3222 struct list_head poll_list; 3223 struct sk_buff_head process_queue; 3224 3225 /* stats */ 3226 unsigned int processed; 3227 unsigned int time_squeeze; 3228 #ifdef CONFIG_RPS 3229 struct softnet_data *rps_ipi_list; 3230 #endif 3231 3232 bool in_net_rx_action; 3233 bool in_napi_threaded_poll; 3234 3235 #ifdef CONFIG_NET_FLOW_LIMIT 3236 struct sd_flow_limit __rcu *flow_limit; 3237 #endif 3238 struct Qdisc *output_queue; 3239 struct Qdisc **output_queue_tailp; 3240 struct sk_buff *completion_queue; 3241 #ifdef CONFIG_XFRM_OFFLOAD 3242 struct sk_buff_head xfrm_backlog; 3243 #endif 3244 /* written and read only by owning cpu: */ 3245 struct { 3246 u16 recursion; 3247 u8 more; 3248 #ifdef CONFIG_NET_EGRESS 3249 u8 skip_txqueue; 3250 #endif 3251 } xmit; 3252 #ifdef CONFIG_RPS 3253 /* input_queue_head should be written by cpu owning this struct, 3254 * and only read by other cpus. Worth using a cache line. 3255 */ 3256 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3257 3258 /* Elements below can be accessed between CPUs for RPS/RFS */ 3259 call_single_data_t csd ____cacheline_aligned_in_smp; 3260 struct softnet_data *rps_ipi_next; 3261 unsigned int cpu; 3262 unsigned int input_queue_tail; 3263 #endif 3264 unsigned int received_rps; 3265 unsigned int dropped; 3266 struct sk_buff_head input_pkt_queue; 3267 struct napi_struct backlog; 3268 3269 /* Another possibly contended cache line */ 3270 spinlock_t defer_lock ____cacheline_aligned_in_smp; 3271 int defer_count; 3272 int defer_ipi_scheduled; 3273 struct sk_buff *defer_list; 3274 call_single_data_t defer_csd; 3275 }; 3276 3277 static inline void input_queue_head_incr(struct softnet_data *sd) 3278 { 3279 #ifdef CONFIG_RPS 3280 sd->input_queue_head++; 3281 #endif 3282 } 3283 3284 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3285 unsigned int *qtail) 3286 { 3287 #ifdef CONFIG_RPS 3288 *qtail = ++sd->input_queue_tail; 3289 #endif 3290 } 3291 3292 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3293 3294 static inline int dev_recursion_level(void) 3295 { 3296 return this_cpu_read(softnet_data.xmit.recursion); 3297 } 3298 3299 #define XMIT_RECURSION_LIMIT 8 3300 static inline bool dev_xmit_recursion(void) 3301 { 3302 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3303 XMIT_RECURSION_LIMIT); 3304 } 3305 3306 static inline void dev_xmit_recursion_inc(void) 3307 { 3308 __this_cpu_inc(softnet_data.xmit.recursion); 3309 } 3310 3311 static inline void dev_xmit_recursion_dec(void) 3312 { 3313 __this_cpu_dec(softnet_data.xmit.recursion); 3314 } 3315 3316 void __netif_schedule(struct Qdisc *q); 3317 void netif_schedule_queue(struct netdev_queue *txq); 3318 3319 static inline void netif_tx_schedule_all(struct net_device *dev) 3320 { 3321 unsigned int i; 3322 3323 for (i = 0; i < dev->num_tx_queues; i++) 3324 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3325 } 3326 3327 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3328 { 3329 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3330 } 3331 3332 /** 3333 * netif_start_queue - allow transmit 3334 * @dev: network device 3335 * 3336 * Allow upper layers to call the device hard_start_xmit routine. 3337 */ 3338 static inline void netif_start_queue(struct net_device *dev) 3339 { 3340 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3341 } 3342 3343 static inline void netif_tx_start_all_queues(struct net_device *dev) 3344 { 3345 unsigned int i; 3346 3347 for (i = 0; i < dev->num_tx_queues; i++) { 3348 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3349 netif_tx_start_queue(txq); 3350 } 3351 } 3352 3353 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3354 3355 /** 3356 * netif_wake_queue - restart transmit 3357 * @dev: network device 3358 * 3359 * Allow upper layers to call the device hard_start_xmit routine. 3360 * Used for flow control when transmit resources are available. 3361 */ 3362 static inline void netif_wake_queue(struct net_device *dev) 3363 { 3364 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3365 } 3366 3367 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3368 { 3369 unsigned int i; 3370 3371 for (i = 0; i < dev->num_tx_queues; i++) { 3372 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3373 netif_tx_wake_queue(txq); 3374 } 3375 } 3376 3377 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3378 { 3379 /* Must be an atomic op see netif_txq_try_stop() */ 3380 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3381 } 3382 3383 /** 3384 * netif_stop_queue - stop transmitted packets 3385 * @dev: network device 3386 * 3387 * Stop upper layers calling the device hard_start_xmit routine. 3388 * Used for flow control when transmit resources are unavailable. 3389 */ 3390 static inline void netif_stop_queue(struct net_device *dev) 3391 { 3392 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3393 } 3394 3395 void netif_tx_stop_all_queues(struct net_device *dev); 3396 3397 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3398 { 3399 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3400 } 3401 3402 /** 3403 * netif_queue_stopped - test if transmit queue is flowblocked 3404 * @dev: network device 3405 * 3406 * Test if transmit queue on device is currently unable to send. 3407 */ 3408 static inline bool netif_queue_stopped(const struct net_device *dev) 3409 { 3410 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3411 } 3412 3413 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3414 { 3415 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3416 } 3417 3418 static inline bool 3419 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3420 { 3421 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3422 } 3423 3424 static inline bool 3425 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3426 { 3427 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3428 } 3429 3430 /** 3431 * netdev_queue_set_dql_min_limit - set dql minimum limit 3432 * @dev_queue: pointer to transmit queue 3433 * @min_limit: dql minimum limit 3434 * 3435 * Forces xmit_more() to return true until the minimum threshold 3436 * defined by @min_limit is reached (or until the tx queue is 3437 * empty). Warning: to be use with care, misuse will impact the 3438 * latency. 3439 */ 3440 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue, 3441 unsigned int min_limit) 3442 { 3443 #ifdef CONFIG_BQL 3444 dev_queue->dql.min_limit = min_limit; 3445 #endif 3446 } 3447 3448 /** 3449 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3450 * @dev_queue: pointer to transmit queue 3451 * 3452 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3453 * to give appropriate hint to the CPU. 3454 */ 3455 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3456 { 3457 #ifdef CONFIG_BQL 3458 prefetchw(&dev_queue->dql.num_queued); 3459 #endif 3460 } 3461 3462 /** 3463 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3464 * @dev_queue: pointer to transmit queue 3465 * 3466 * BQL enabled drivers might use this helper in their TX completion path, 3467 * to give appropriate hint to the CPU. 3468 */ 3469 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3470 { 3471 #ifdef CONFIG_BQL 3472 prefetchw(&dev_queue->dql.limit); 3473 #endif 3474 } 3475 3476 /** 3477 * netdev_tx_sent_queue - report the number of bytes queued to a given tx queue 3478 * @dev_queue: network device queue 3479 * @bytes: number of bytes queued to the device queue 3480 * 3481 * Report the number of bytes queued for sending/completion to the network 3482 * device hardware queue. @bytes should be a good approximation and should 3483 * exactly match netdev_completed_queue() @bytes. 3484 * This is typically called once per packet, from ndo_start_xmit(). 3485 */ 3486 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3487 unsigned int bytes) 3488 { 3489 #ifdef CONFIG_BQL 3490 dql_queued(&dev_queue->dql, bytes); 3491 3492 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3493 return; 3494 3495 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3496 3497 /* 3498 * The XOFF flag must be set before checking the dql_avail below, 3499 * because in netdev_tx_completed_queue we update the dql_completed 3500 * before checking the XOFF flag. 3501 */ 3502 smp_mb(); 3503 3504 /* check again in case another CPU has just made room avail */ 3505 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3506 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3507 #endif 3508 } 3509 3510 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3511 * that they should not test BQL status themselves. 3512 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3513 * skb of a batch. 3514 * Returns true if the doorbell must be used to kick the NIC. 3515 */ 3516 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3517 unsigned int bytes, 3518 bool xmit_more) 3519 { 3520 if (xmit_more) { 3521 #ifdef CONFIG_BQL 3522 dql_queued(&dev_queue->dql, bytes); 3523 #endif 3524 return netif_tx_queue_stopped(dev_queue); 3525 } 3526 netdev_tx_sent_queue(dev_queue, bytes); 3527 return true; 3528 } 3529 3530 /** 3531 * netdev_sent_queue - report the number of bytes queued to hardware 3532 * @dev: network device 3533 * @bytes: number of bytes queued to the hardware device queue 3534 * 3535 * Report the number of bytes queued for sending/completion to the network 3536 * device hardware queue#0. @bytes should be a good approximation and should 3537 * exactly match netdev_completed_queue() @bytes. 3538 * This is typically called once per packet, from ndo_start_xmit(). 3539 */ 3540 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3541 { 3542 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3543 } 3544 3545 static inline bool __netdev_sent_queue(struct net_device *dev, 3546 unsigned int bytes, 3547 bool xmit_more) 3548 { 3549 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3550 xmit_more); 3551 } 3552 3553 /** 3554 * netdev_tx_completed_queue - report number of packets/bytes at TX completion. 3555 * @dev_queue: network device queue 3556 * @pkts: number of packets (currently ignored) 3557 * @bytes: number of bytes dequeued from the device queue 3558 * 3559 * Must be called at most once per TX completion round (and not per 3560 * individual packet), so that BQL can adjust its limits appropriately. 3561 */ 3562 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3563 unsigned int pkts, unsigned int bytes) 3564 { 3565 #ifdef CONFIG_BQL 3566 if (unlikely(!bytes)) 3567 return; 3568 3569 dql_completed(&dev_queue->dql, bytes); 3570 3571 /* 3572 * Without the memory barrier there is a small possiblity that 3573 * netdev_tx_sent_queue will miss the update and cause the queue to 3574 * be stopped forever 3575 */ 3576 smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */ 3577 3578 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3579 return; 3580 3581 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3582 netif_schedule_queue(dev_queue); 3583 #endif 3584 } 3585 3586 /** 3587 * netdev_completed_queue - report bytes and packets completed by device 3588 * @dev: network device 3589 * @pkts: actual number of packets sent over the medium 3590 * @bytes: actual number of bytes sent over the medium 3591 * 3592 * Report the number of bytes and packets transmitted by the network device 3593 * hardware queue over the physical medium, @bytes must exactly match the 3594 * @bytes amount passed to netdev_sent_queue() 3595 */ 3596 static inline void netdev_completed_queue(struct net_device *dev, 3597 unsigned int pkts, unsigned int bytes) 3598 { 3599 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3600 } 3601 3602 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3603 { 3604 #ifdef CONFIG_BQL 3605 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3606 dql_reset(&q->dql); 3607 #endif 3608 } 3609 3610 /** 3611 * netdev_reset_queue - reset the packets and bytes count of a network device 3612 * @dev_queue: network device 3613 * 3614 * Reset the bytes and packet count of a network device and clear the 3615 * software flow control OFF bit for this network device 3616 */ 3617 static inline void netdev_reset_queue(struct net_device *dev_queue) 3618 { 3619 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3620 } 3621 3622 /** 3623 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3624 * @dev: network device 3625 * @queue_index: given tx queue index 3626 * 3627 * Returns 0 if given tx queue index >= number of device tx queues, 3628 * otherwise returns the originally passed tx queue index. 3629 */ 3630 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3631 { 3632 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3633 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3634 dev->name, queue_index, 3635 dev->real_num_tx_queues); 3636 return 0; 3637 } 3638 3639 return queue_index; 3640 } 3641 3642 /** 3643 * netif_running - test if up 3644 * @dev: network device 3645 * 3646 * Test if the device has been brought up. 3647 */ 3648 static inline bool netif_running(const struct net_device *dev) 3649 { 3650 return test_bit(__LINK_STATE_START, &dev->state); 3651 } 3652 3653 /* 3654 * Routines to manage the subqueues on a device. We only need start, 3655 * stop, and a check if it's stopped. All other device management is 3656 * done at the overall netdevice level. 3657 * Also test the device if we're multiqueue. 3658 */ 3659 3660 /** 3661 * netif_start_subqueue - allow sending packets on subqueue 3662 * @dev: network device 3663 * @queue_index: sub queue index 3664 * 3665 * Start individual transmit queue of a device with multiple transmit queues. 3666 */ 3667 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3668 { 3669 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3670 3671 netif_tx_start_queue(txq); 3672 } 3673 3674 /** 3675 * netif_stop_subqueue - stop sending packets on subqueue 3676 * @dev: network device 3677 * @queue_index: sub queue index 3678 * 3679 * Stop individual transmit queue of a device with multiple transmit queues. 3680 */ 3681 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3682 { 3683 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3684 netif_tx_stop_queue(txq); 3685 } 3686 3687 /** 3688 * __netif_subqueue_stopped - test status of subqueue 3689 * @dev: network device 3690 * @queue_index: sub queue index 3691 * 3692 * Check individual transmit queue of a device with multiple transmit queues. 3693 */ 3694 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3695 u16 queue_index) 3696 { 3697 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3698 3699 return netif_tx_queue_stopped(txq); 3700 } 3701 3702 /** 3703 * netif_subqueue_stopped - test status of subqueue 3704 * @dev: network device 3705 * @skb: sub queue buffer pointer 3706 * 3707 * Check individual transmit queue of a device with multiple transmit queues. 3708 */ 3709 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3710 struct sk_buff *skb) 3711 { 3712 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3713 } 3714 3715 /** 3716 * netif_wake_subqueue - allow sending packets on subqueue 3717 * @dev: network device 3718 * @queue_index: sub queue index 3719 * 3720 * Resume individual transmit queue of a device with multiple transmit queues. 3721 */ 3722 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3723 { 3724 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3725 3726 netif_tx_wake_queue(txq); 3727 } 3728 3729 #ifdef CONFIG_XPS 3730 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3731 u16 index); 3732 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3733 u16 index, enum xps_map_type type); 3734 3735 /** 3736 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3737 * @j: CPU/Rx queue index 3738 * @mask: bitmask of all cpus/rx queues 3739 * @nr_bits: number of bits in the bitmask 3740 * 3741 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3742 */ 3743 static inline bool netif_attr_test_mask(unsigned long j, 3744 const unsigned long *mask, 3745 unsigned int nr_bits) 3746 { 3747 cpu_max_bits_warn(j, nr_bits); 3748 return test_bit(j, mask); 3749 } 3750 3751 /** 3752 * netif_attr_test_online - Test for online CPU/Rx queue 3753 * @j: CPU/Rx queue index 3754 * @online_mask: bitmask for CPUs/Rx queues that are online 3755 * @nr_bits: number of bits in the bitmask 3756 * 3757 * Returns true if a CPU/Rx queue is online. 3758 */ 3759 static inline bool netif_attr_test_online(unsigned long j, 3760 const unsigned long *online_mask, 3761 unsigned int nr_bits) 3762 { 3763 cpu_max_bits_warn(j, nr_bits); 3764 3765 if (online_mask) 3766 return test_bit(j, online_mask); 3767 3768 return (j < nr_bits); 3769 } 3770 3771 /** 3772 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3773 * @n: CPU/Rx queue index 3774 * @srcp: the cpumask/Rx queue mask pointer 3775 * @nr_bits: number of bits in the bitmask 3776 * 3777 * Returns >= nr_bits if no further CPUs/Rx queues set. 3778 */ 3779 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3780 unsigned int nr_bits) 3781 { 3782 /* -1 is a legal arg here. */ 3783 if (n != -1) 3784 cpu_max_bits_warn(n, nr_bits); 3785 3786 if (srcp) 3787 return find_next_bit(srcp, nr_bits, n + 1); 3788 3789 return n + 1; 3790 } 3791 3792 /** 3793 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 3794 * @n: CPU/Rx queue index 3795 * @src1p: the first CPUs/Rx queues mask pointer 3796 * @src2p: the second CPUs/Rx queues mask pointer 3797 * @nr_bits: number of bits in the bitmask 3798 * 3799 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3800 */ 3801 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3802 const unsigned long *src2p, 3803 unsigned int nr_bits) 3804 { 3805 /* -1 is a legal arg here. */ 3806 if (n != -1) 3807 cpu_max_bits_warn(n, nr_bits); 3808 3809 if (src1p && src2p) 3810 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3811 else if (src1p) 3812 return find_next_bit(src1p, nr_bits, n + 1); 3813 else if (src2p) 3814 return find_next_bit(src2p, nr_bits, n + 1); 3815 3816 return n + 1; 3817 } 3818 #else 3819 static inline int netif_set_xps_queue(struct net_device *dev, 3820 const struct cpumask *mask, 3821 u16 index) 3822 { 3823 return 0; 3824 } 3825 3826 static inline int __netif_set_xps_queue(struct net_device *dev, 3827 const unsigned long *mask, 3828 u16 index, enum xps_map_type type) 3829 { 3830 return 0; 3831 } 3832 #endif 3833 3834 /** 3835 * netif_is_multiqueue - test if device has multiple transmit queues 3836 * @dev: network device 3837 * 3838 * Check if device has multiple transmit queues 3839 */ 3840 static inline bool netif_is_multiqueue(const struct net_device *dev) 3841 { 3842 return dev->num_tx_queues > 1; 3843 } 3844 3845 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3846 3847 #ifdef CONFIG_SYSFS 3848 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3849 #else 3850 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3851 unsigned int rxqs) 3852 { 3853 dev->real_num_rx_queues = rxqs; 3854 return 0; 3855 } 3856 #endif 3857 int netif_set_real_num_queues(struct net_device *dev, 3858 unsigned int txq, unsigned int rxq); 3859 3860 int netif_get_num_default_rss_queues(void); 3861 3862 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3863 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3864 3865 /* 3866 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3867 * interrupt context or with hardware interrupts being disabled. 3868 * (in_hardirq() || irqs_disabled()) 3869 * 3870 * We provide four helpers that can be used in following contexts : 3871 * 3872 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3873 * replacing kfree_skb(skb) 3874 * 3875 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3876 * Typically used in place of consume_skb(skb) in TX completion path 3877 * 3878 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3879 * replacing kfree_skb(skb) 3880 * 3881 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3882 * and consumed a packet. Used in place of consume_skb(skb) 3883 */ 3884 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3885 { 3886 dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3887 } 3888 3889 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3890 { 3891 dev_kfree_skb_irq_reason(skb, SKB_CONSUMED); 3892 } 3893 3894 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3895 { 3896 dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3897 } 3898 3899 static inline void dev_consume_skb_any(struct sk_buff *skb) 3900 { 3901 dev_kfree_skb_any_reason(skb, SKB_CONSUMED); 3902 } 3903 3904 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 3905 struct bpf_prog *xdp_prog); 3906 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3907 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3908 int netif_rx(struct sk_buff *skb); 3909 int __netif_rx(struct sk_buff *skb); 3910 3911 int netif_receive_skb(struct sk_buff *skb); 3912 int netif_receive_skb_core(struct sk_buff *skb); 3913 void netif_receive_skb_list_internal(struct list_head *head); 3914 void netif_receive_skb_list(struct list_head *head); 3915 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3916 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3917 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3918 void napi_get_frags_check(struct napi_struct *napi); 3919 gro_result_t napi_gro_frags(struct napi_struct *napi); 3920 struct packet_offload *gro_find_receive_by_type(__be16 type); 3921 struct packet_offload *gro_find_complete_by_type(__be16 type); 3922 3923 static inline void napi_free_frags(struct napi_struct *napi) 3924 { 3925 kfree_skb(napi->skb); 3926 napi->skb = NULL; 3927 } 3928 3929 bool netdev_is_rx_handler_busy(struct net_device *dev); 3930 int netdev_rx_handler_register(struct net_device *dev, 3931 rx_handler_func_t *rx_handler, 3932 void *rx_handler_data); 3933 void netdev_rx_handler_unregister(struct net_device *dev); 3934 3935 bool dev_valid_name(const char *name); 3936 static inline bool is_socket_ioctl_cmd(unsigned int cmd) 3937 { 3938 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE; 3939 } 3940 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg); 3941 int put_user_ifreq(struct ifreq *ifr, void __user *arg); 3942 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3943 void __user *data, bool *need_copyout); 3944 int dev_ifconf(struct net *net, struct ifconf __user *ifc); 3945 int generic_hwtstamp_get_lower(struct net_device *dev, 3946 struct kernel_hwtstamp_config *kernel_cfg); 3947 int generic_hwtstamp_set_lower(struct net_device *dev, 3948 struct kernel_hwtstamp_config *kernel_cfg, 3949 struct netlink_ext_ack *extack); 3950 int dev_set_hwtstamp_phylib(struct net_device *dev, 3951 struct kernel_hwtstamp_config *cfg, 3952 struct netlink_ext_ack *extack); 3953 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata); 3954 unsigned int dev_get_flags(const struct net_device *); 3955 int __dev_change_flags(struct net_device *dev, unsigned int flags, 3956 struct netlink_ext_ack *extack); 3957 int dev_change_flags(struct net_device *dev, unsigned int flags, 3958 struct netlink_ext_ack *extack); 3959 int dev_set_alias(struct net_device *, const char *, size_t); 3960 int dev_get_alias(const struct net_device *, char *, size_t); 3961 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 3962 const char *pat, int new_ifindex); 3963 static inline 3964 int dev_change_net_namespace(struct net_device *dev, struct net *net, 3965 const char *pat) 3966 { 3967 return __dev_change_net_namespace(dev, net, pat, 0); 3968 } 3969 int __dev_set_mtu(struct net_device *, int); 3970 int dev_set_mtu(struct net_device *, int); 3971 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3972 struct netlink_ext_ack *extack); 3973 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3974 struct netlink_ext_ack *extack); 3975 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 3976 struct netlink_ext_ack *extack); 3977 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); 3978 int dev_get_port_parent_id(struct net_device *dev, 3979 struct netdev_phys_item_id *ppid, bool recurse); 3980 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3981 void netdev_dpll_pin_set(struct net_device *dev, struct dpll_pin *dpll_pin); 3982 void netdev_dpll_pin_clear(struct net_device *dev); 3983 3984 static inline struct dpll_pin *netdev_dpll_pin(const struct net_device *dev) 3985 { 3986 #if IS_ENABLED(CONFIG_DPLL) 3987 return dev->dpll_pin; 3988 #else 3989 return NULL; 3990 #endif 3991 } 3992 3993 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3994 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3995 struct netdev_queue *txq, int *ret); 3996 3997 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); 3998 u8 dev_xdp_prog_count(struct net_device *dev); 3999 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); 4000 4001 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 4002 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 4003 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb); 4004 bool is_skb_forwardable(const struct net_device *dev, 4005 const struct sk_buff *skb); 4006 4007 static __always_inline bool __is_skb_forwardable(const struct net_device *dev, 4008 const struct sk_buff *skb, 4009 const bool check_mtu) 4010 { 4011 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */ 4012 unsigned int len; 4013 4014 if (!(dev->flags & IFF_UP)) 4015 return false; 4016 4017 if (!check_mtu) 4018 return true; 4019 4020 len = dev->mtu + dev->hard_header_len + vlan_hdr_len; 4021 if (skb->len <= len) 4022 return true; 4023 4024 /* if TSO is enabled, we don't care about the length as the packet 4025 * could be forwarded without being segmented before 4026 */ 4027 if (skb_is_gso(skb)) 4028 return true; 4029 4030 return false; 4031 } 4032 4033 void netdev_core_stats_inc(struct net_device *dev, u32 offset); 4034 4035 #define DEV_CORE_STATS_INC(FIELD) \ 4036 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \ 4037 { \ 4038 netdev_core_stats_inc(dev, \ 4039 offsetof(struct net_device_core_stats, FIELD)); \ 4040 } 4041 DEV_CORE_STATS_INC(rx_dropped) 4042 DEV_CORE_STATS_INC(tx_dropped) 4043 DEV_CORE_STATS_INC(rx_nohandler) 4044 DEV_CORE_STATS_INC(rx_otherhost_dropped) 4045 #undef DEV_CORE_STATS_INC 4046 4047 static __always_inline int ____dev_forward_skb(struct net_device *dev, 4048 struct sk_buff *skb, 4049 const bool check_mtu) 4050 { 4051 if (skb_orphan_frags(skb, GFP_ATOMIC) || 4052 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) { 4053 dev_core_stats_rx_dropped_inc(dev); 4054 kfree_skb(skb); 4055 return NET_RX_DROP; 4056 } 4057 4058 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev))); 4059 skb->priority = 0; 4060 return 0; 4061 } 4062 4063 bool dev_nit_active(struct net_device *dev); 4064 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 4065 4066 static inline void __dev_put(struct net_device *dev) 4067 { 4068 if (dev) { 4069 #ifdef CONFIG_PCPU_DEV_REFCNT 4070 this_cpu_dec(*dev->pcpu_refcnt); 4071 #else 4072 refcount_dec(&dev->dev_refcnt); 4073 #endif 4074 } 4075 } 4076 4077 static inline void __dev_hold(struct net_device *dev) 4078 { 4079 if (dev) { 4080 #ifdef CONFIG_PCPU_DEV_REFCNT 4081 this_cpu_inc(*dev->pcpu_refcnt); 4082 #else 4083 refcount_inc(&dev->dev_refcnt); 4084 #endif 4085 } 4086 } 4087 4088 static inline void __netdev_tracker_alloc(struct net_device *dev, 4089 netdevice_tracker *tracker, 4090 gfp_t gfp) 4091 { 4092 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4093 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp); 4094 #endif 4095 } 4096 4097 /* netdev_tracker_alloc() can upgrade a prior untracked reference 4098 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one. 4099 */ 4100 static inline void netdev_tracker_alloc(struct net_device *dev, 4101 netdevice_tracker *tracker, gfp_t gfp) 4102 { 4103 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4104 refcount_dec(&dev->refcnt_tracker.no_tracker); 4105 __netdev_tracker_alloc(dev, tracker, gfp); 4106 #endif 4107 } 4108 4109 static inline void netdev_tracker_free(struct net_device *dev, 4110 netdevice_tracker *tracker) 4111 { 4112 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4113 ref_tracker_free(&dev->refcnt_tracker, tracker); 4114 #endif 4115 } 4116 4117 static inline void netdev_hold(struct net_device *dev, 4118 netdevice_tracker *tracker, gfp_t gfp) 4119 { 4120 if (dev) { 4121 __dev_hold(dev); 4122 __netdev_tracker_alloc(dev, tracker, gfp); 4123 } 4124 } 4125 4126 static inline void netdev_put(struct net_device *dev, 4127 netdevice_tracker *tracker) 4128 { 4129 if (dev) { 4130 netdev_tracker_free(dev, tracker); 4131 __dev_put(dev); 4132 } 4133 } 4134 4135 /** 4136 * dev_hold - get reference to device 4137 * @dev: network device 4138 * 4139 * Hold reference to device to keep it from being freed. 4140 * Try using netdev_hold() instead. 4141 */ 4142 static inline void dev_hold(struct net_device *dev) 4143 { 4144 netdev_hold(dev, NULL, GFP_ATOMIC); 4145 } 4146 4147 /** 4148 * dev_put - release reference to device 4149 * @dev: network device 4150 * 4151 * Release reference to device to allow it to be freed. 4152 * Try using netdev_put() instead. 4153 */ 4154 static inline void dev_put(struct net_device *dev) 4155 { 4156 netdev_put(dev, NULL); 4157 } 4158 4159 static inline void netdev_ref_replace(struct net_device *odev, 4160 struct net_device *ndev, 4161 netdevice_tracker *tracker, 4162 gfp_t gfp) 4163 { 4164 if (odev) 4165 netdev_tracker_free(odev, tracker); 4166 4167 __dev_hold(ndev); 4168 __dev_put(odev); 4169 4170 if (ndev) 4171 __netdev_tracker_alloc(ndev, tracker, gfp); 4172 } 4173 4174 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 4175 * and _off may be called from IRQ context, but it is caller 4176 * who is responsible for serialization of these calls. 4177 * 4178 * The name carrier is inappropriate, these functions should really be 4179 * called netif_lowerlayer_*() because they represent the state of any 4180 * kind of lower layer not just hardware media. 4181 */ 4182 void linkwatch_fire_event(struct net_device *dev); 4183 4184 /** 4185 * netif_carrier_ok - test if carrier present 4186 * @dev: network device 4187 * 4188 * Check if carrier is present on device 4189 */ 4190 static inline bool netif_carrier_ok(const struct net_device *dev) 4191 { 4192 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 4193 } 4194 4195 unsigned long dev_trans_start(struct net_device *dev); 4196 4197 void __netdev_watchdog_up(struct net_device *dev); 4198 4199 void netif_carrier_on(struct net_device *dev); 4200 void netif_carrier_off(struct net_device *dev); 4201 void netif_carrier_event(struct net_device *dev); 4202 4203 /** 4204 * netif_dormant_on - mark device as dormant. 4205 * @dev: network device 4206 * 4207 * Mark device as dormant (as per RFC2863). 4208 * 4209 * The dormant state indicates that the relevant interface is not 4210 * actually in a condition to pass packets (i.e., it is not 'up') but is 4211 * in a "pending" state, waiting for some external event. For "on- 4212 * demand" interfaces, this new state identifies the situation where the 4213 * interface is waiting for events to place it in the up state. 4214 */ 4215 static inline void netif_dormant_on(struct net_device *dev) 4216 { 4217 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 4218 linkwatch_fire_event(dev); 4219 } 4220 4221 /** 4222 * netif_dormant_off - set device as not dormant. 4223 * @dev: network device 4224 * 4225 * Device is not in dormant state. 4226 */ 4227 static inline void netif_dormant_off(struct net_device *dev) 4228 { 4229 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 4230 linkwatch_fire_event(dev); 4231 } 4232 4233 /** 4234 * netif_dormant - test if device is dormant 4235 * @dev: network device 4236 * 4237 * Check if device is dormant. 4238 */ 4239 static inline bool netif_dormant(const struct net_device *dev) 4240 { 4241 return test_bit(__LINK_STATE_DORMANT, &dev->state); 4242 } 4243 4244 4245 /** 4246 * netif_testing_on - mark device as under test. 4247 * @dev: network device 4248 * 4249 * Mark device as under test (as per RFC2863). 4250 * 4251 * The testing state indicates that some test(s) must be performed on 4252 * the interface. After completion, of the test, the interface state 4253 * will change to up, dormant, or down, as appropriate. 4254 */ 4255 static inline void netif_testing_on(struct net_device *dev) 4256 { 4257 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 4258 linkwatch_fire_event(dev); 4259 } 4260 4261 /** 4262 * netif_testing_off - set device as not under test. 4263 * @dev: network device 4264 * 4265 * Device is not in testing state. 4266 */ 4267 static inline void netif_testing_off(struct net_device *dev) 4268 { 4269 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 4270 linkwatch_fire_event(dev); 4271 } 4272 4273 /** 4274 * netif_testing - test if device is under test 4275 * @dev: network device 4276 * 4277 * Check if device is under test 4278 */ 4279 static inline bool netif_testing(const struct net_device *dev) 4280 { 4281 return test_bit(__LINK_STATE_TESTING, &dev->state); 4282 } 4283 4284 4285 /** 4286 * netif_oper_up - test if device is operational 4287 * @dev: network device 4288 * 4289 * Check if carrier is operational 4290 */ 4291 static inline bool netif_oper_up(const struct net_device *dev) 4292 { 4293 return (dev->operstate == IF_OPER_UP || 4294 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 4295 } 4296 4297 /** 4298 * netif_device_present - is device available or removed 4299 * @dev: network device 4300 * 4301 * Check if device has not been removed from system. 4302 */ 4303 static inline bool netif_device_present(const struct net_device *dev) 4304 { 4305 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4306 } 4307 4308 void netif_device_detach(struct net_device *dev); 4309 4310 void netif_device_attach(struct net_device *dev); 4311 4312 /* 4313 * Network interface message level settings 4314 */ 4315 4316 enum { 4317 NETIF_MSG_DRV_BIT, 4318 NETIF_MSG_PROBE_BIT, 4319 NETIF_MSG_LINK_BIT, 4320 NETIF_MSG_TIMER_BIT, 4321 NETIF_MSG_IFDOWN_BIT, 4322 NETIF_MSG_IFUP_BIT, 4323 NETIF_MSG_RX_ERR_BIT, 4324 NETIF_MSG_TX_ERR_BIT, 4325 NETIF_MSG_TX_QUEUED_BIT, 4326 NETIF_MSG_INTR_BIT, 4327 NETIF_MSG_TX_DONE_BIT, 4328 NETIF_MSG_RX_STATUS_BIT, 4329 NETIF_MSG_PKTDATA_BIT, 4330 NETIF_MSG_HW_BIT, 4331 NETIF_MSG_WOL_BIT, 4332 4333 /* When you add a new bit above, update netif_msg_class_names array 4334 * in net/ethtool/common.c 4335 */ 4336 NETIF_MSG_CLASS_COUNT, 4337 }; 4338 /* Both ethtool_ops interface and internal driver implementation use u32 */ 4339 static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4340 4341 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4342 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4343 4344 #define NETIF_MSG_DRV __NETIF_MSG(DRV) 4345 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4346 #define NETIF_MSG_LINK __NETIF_MSG(LINK) 4347 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4348 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4349 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4350 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4351 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4352 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4353 #define NETIF_MSG_INTR __NETIF_MSG(INTR) 4354 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4355 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4356 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4357 #define NETIF_MSG_HW __NETIF_MSG(HW) 4358 #define NETIF_MSG_WOL __NETIF_MSG(WOL) 4359 4360 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4361 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4362 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4363 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4364 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4365 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4366 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4367 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4368 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4369 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4370 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4371 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4372 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4373 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4374 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4375 4376 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4377 { 4378 /* use default */ 4379 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4380 return default_msg_enable_bits; 4381 if (debug_value == 0) /* no output */ 4382 return 0; 4383 /* set low N bits */ 4384 return (1U << debug_value) - 1; 4385 } 4386 4387 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4388 { 4389 spin_lock(&txq->_xmit_lock); 4390 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4391 WRITE_ONCE(txq->xmit_lock_owner, cpu); 4392 } 4393 4394 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4395 { 4396 __acquire(&txq->_xmit_lock); 4397 return true; 4398 } 4399 4400 static inline void __netif_tx_release(struct netdev_queue *txq) 4401 { 4402 __release(&txq->_xmit_lock); 4403 } 4404 4405 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4406 { 4407 spin_lock_bh(&txq->_xmit_lock); 4408 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4409 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4410 } 4411 4412 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4413 { 4414 bool ok = spin_trylock(&txq->_xmit_lock); 4415 4416 if (likely(ok)) { 4417 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4418 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4419 } 4420 return ok; 4421 } 4422 4423 static inline void __netif_tx_unlock(struct netdev_queue *txq) 4424 { 4425 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4426 WRITE_ONCE(txq->xmit_lock_owner, -1); 4427 spin_unlock(&txq->_xmit_lock); 4428 } 4429 4430 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4431 { 4432 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4433 WRITE_ONCE(txq->xmit_lock_owner, -1); 4434 spin_unlock_bh(&txq->_xmit_lock); 4435 } 4436 4437 /* 4438 * txq->trans_start can be read locklessly from dev_watchdog() 4439 */ 4440 static inline void txq_trans_update(struct netdev_queue *txq) 4441 { 4442 if (txq->xmit_lock_owner != -1) 4443 WRITE_ONCE(txq->trans_start, jiffies); 4444 } 4445 4446 static inline void txq_trans_cond_update(struct netdev_queue *txq) 4447 { 4448 unsigned long now = jiffies; 4449 4450 if (READ_ONCE(txq->trans_start) != now) 4451 WRITE_ONCE(txq->trans_start, now); 4452 } 4453 4454 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4455 static inline void netif_trans_update(struct net_device *dev) 4456 { 4457 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4458 4459 txq_trans_cond_update(txq); 4460 } 4461 4462 /** 4463 * netif_tx_lock - grab network device transmit lock 4464 * @dev: network device 4465 * 4466 * Get network device transmit lock 4467 */ 4468 void netif_tx_lock(struct net_device *dev); 4469 4470 static inline void netif_tx_lock_bh(struct net_device *dev) 4471 { 4472 local_bh_disable(); 4473 netif_tx_lock(dev); 4474 } 4475 4476 void netif_tx_unlock(struct net_device *dev); 4477 4478 static inline void netif_tx_unlock_bh(struct net_device *dev) 4479 { 4480 netif_tx_unlock(dev); 4481 local_bh_enable(); 4482 } 4483 4484 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4485 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4486 __netif_tx_lock(txq, cpu); \ 4487 } else { \ 4488 __netif_tx_acquire(txq); \ 4489 } \ 4490 } 4491 4492 #define HARD_TX_TRYLOCK(dev, txq) \ 4493 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4494 __netif_tx_trylock(txq) : \ 4495 __netif_tx_acquire(txq)) 4496 4497 #define HARD_TX_UNLOCK(dev, txq) { \ 4498 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4499 __netif_tx_unlock(txq); \ 4500 } else { \ 4501 __netif_tx_release(txq); \ 4502 } \ 4503 } 4504 4505 static inline void netif_tx_disable(struct net_device *dev) 4506 { 4507 unsigned int i; 4508 int cpu; 4509 4510 local_bh_disable(); 4511 cpu = smp_processor_id(); 4512 spin_lock(&dev->tx_global_lock); 4513 for (i = 0; i < dev->num_tx_queues; i++) { 4514 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4515 4516 __netif_tx_lock(txq, cpu); 4517 netif_tx_stop_queue(txq); 4518 __netif_tx_unlock(txq); 4519 } 4520 spin_unlock(&dev->tx_global_lock); 4521 local_bh_enable(); 4522 } 4523 4524 static inline void netif_addr_lock(struct net_device *dev) 4525 { 4526 unsigned char nest_level = 0; 4527 4528 #ifdef CONFIG_LOCKDEP 4529 nest_level = dev->nested_level; 4530 #endif 4531 spin_lock_nested(&dev->addr_list_lock, nest_level); 4532 } 4533 4534 static inline void netif_addr_lock_bh(struct net_device *dev) 4535 { 4536 unsigned char nest_level = 0; 4537 4538 #ifdef CONFIG_LOCKDEP 4539 nest_level = dev->nested_level; 4540 #endif 4541 local_bh_disable(); 4542 spin_lock_nested(&dev->addr_list_lock, nest_level); 4543 } 4544 4545 static inline void netif_addr_unlock(struct net_device *dev) 4546 { 4547 spin_unlock(&dev->addr_list_lock); 4548 } 4549 4550 static inline void netif_addr_unlock_bh(struct net_device *dev) 4551 { 4552 spin_unlock_bh(&dev->addr_list_lock); 4553 } 4554 4555 /* 4556 * dev_addrs walker. Should be used only for read access. Call with 4557 * rcu_read_lock held. 4558 */ 4559 #define for_each_dev_addr(dev, ha) \ 4560 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4561 4562 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4563 4564 void ether_setup(struct net_device *dev); 4565 4566 /* Support for loadable net-drivers */ 4567 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4568 unsigned char name_assign_type, 4569 void (*setup)(struct net_device *), 4570 unsigned int txqs, unsigned int rxqs); 4571 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4572 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4573 4574 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4575 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4576 count) 4577 4578 int register_netdev(struct net_device *dev); 4579 void unregister_netdev(struct net_device *dev); 4580 4581 int devm_register_netdev(struct device *dev, struct net_device *ndev); 4582 4583 /* General hardware address lists handling functions */ 4584 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4585 struct netdev_hw_addr_list *from_list, int addr_len); 4586 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4587 struct netdev_hw_addr_list *from_list, int addr_len); 4588 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4589 struct net_device *dev, 4590 int (*sync)(struct net_device *, const unsigned char *), 4591 int (*unsync)(struct net_device *, 4592 const unsigned char *)); 4593 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4594 struct net_device *dev, 4595 int (*sync)(struct net_device *, 4596 const unsigned char *, int), 4597 int (*unsync)(struct net_device *, 4598 const unsigned char *, int)); 4599 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4600 struct net_device *dev, 4601 int (*unsync)(struct net_device *, 4602 const unsigned char *, int)); 4603 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4604 struct net_device *dev, 4605 int (*unsync)(struct net_device *, 4606 const unsigned char *)); 4607 void __hw_addr_init(struct netdev_hw_addr_list *list); 4608 4609 /* Functions used for device addresses handling */ 4610 void dev_addr_mod(struct net_device *dev, unsigned int offset, 4611 const void *addr, size_t len); 4612 4613 static inline void 4614 __dev_addr_set(struct net_device *dev, const void *addr, size_t len) 4615 { 4616 dev_addr_mod(dev, 0, addr, len); 4617 } 4618 4619 static inline void dev_addr_set(struct net_device *dev, const u8 *addr) 4620 { 4621 __dev_addr_set(dev, addr, dev->addr_len); 4622 } 4623 4624 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4625 unsigned char addr_type); 4626 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4627 unsigned char addr_type); 4628 4629 /* Functions used for unicast addresses handling */ 4630 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4631 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4632 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4633 int dev_uc_sync(struct net_device *to, struct net_device *from); 4634 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4635 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4636 void dev_uc_flush(struct net_device *dev); 4637 void dev_uc_init(struct net_device *dev); 4638 4639 /** 4640 * __dev_uc_sync - Synchonize device's unicast list 4641 * @dev: device to sync 4642 * @sync: function to call if address should be added 4643 * @unsync: function to call if address should be removed 4644 * 4645 * Add newly added addresses to the interface, and release 4646 * addresses that have been deleted. 4647 */ 4648 static inline int __dev_uc_sync(struct net_device *dev, 4649 int (*sync)(struct net_device *, 4650 const unsigned char *), 4651 int (*unsync)(struct net_device *, 4652 const unsigned char *)) 4653 { 4654 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4655 } 4656 4657 /** 4658 * __dev_uc_unsync - Remove synchronized addresses from device 4659 * @dev: device to sync 4660 * @unsync: function to call if address should be removed 4661 * 4662 * Remove all addresses that were added to the device by dev_uc_sync(). 4663 */ 4664 static inline void __dev_uc_unsync(struct net_device *dev, 4665 int (*unsync)(struct net_device *, 4666 const unsigned char *)) 4667 { 4668 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4669 } 4670 4671 /* Functions used for multicast addresses handling */ 4672 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4673 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4674 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4675 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4676 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4677 int dev_mc_sync(struct net_device *to, struct net_device *from); 4678 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4679 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4680 void dev_mc_flush(struct net_device *dev); 4681 void dev_mc_init(struct net_device *dev); 4682 4683 /** 4684 * __dev_mc_sync - Synchonize device's multicast list 4685 * @dev: device to sync 4686 * @sync: function to call if address should be added 4687 * @unsync: function to call if address should be removed 4688 * 4689 * Add newly added addresses to the interface, and release 4690 * addresses that have been deleted. 4691 */ 4692 static inline int __dev_mc_sync(struct net_device *dev, 4693 int (*sync)(struct net_device *, 4694 const unsigned char *), 4695 int (*unsync)(struct net_device *, 4696 const unsigned char *)) 4697 { 4698 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4699 } 4700 4701 /** 4702 * __dev_mc_unsync - Remove synchronized addresses from device 4703 * @dev: device to sync 4704 * @unsync: function to call if address should be removed 4705 * 4706 * Remove all addresses that were added to the device by dev_mc_sync(). 4707 */ 4708 static inline void __dev_mc_unsync(struct net_device *dev, 4709 int (*unsync)(struct net_device *, 4710 const unsigned char *)) 4711 { 4712 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4713 } 4714 4715 /* Functions used for secondary unicast and multicast support */ 4716 void dev_set_rx_mode(struct net_device *dev); 4717 int dev_set_promiscuity(struct net_device *dev, int inc); 4718 int dev_set_allmulti(struct net_device *dev, int inc); 4719 void netdev_state_change(struct net_device *dev); 4720 void __netdev_notify_peers(struct net_device *dev); 4721 void netdev_notify_peers(struct net_device *dev); 4722 void netdev_features_change(struct net_device *dev); 4723 /* Load a device via the kmod */ 4724 void dev_load(struct net *net, const char *name); 4725 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4726 struct rtnl_link_stats64 *storage); 4727 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4728 const struct net_device_stats *netdev_stats); 4729 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 4730 const struct pcpu_sw_netstats __percpu *netstats); 4731 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s); 4732 4733 extern int netdev_max_backlog; 4734 extern int dev_rx_weight; 4735 extern int dev_tx_weight; 4736 extern int gro_normal_batch; 4737 4738 enum { 4739 NESTED_SYNC_IMM_BIT, 4740 NESTED_SYNC_TODO_BIT, 4741 }; 4742 4743 #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) 4744 #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) 4745 4746 #define NESTED_SYNC_IMM __NESTED_SYNC(IMM) 4747 #define NESTED_SYNC_TODO __NESTED_SYNC(TODO) 4748 4749 struct netdev_nested_priv { 4750 unsigned char flags; 4751 void *data; 4752 }; 4753 4754 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4755 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4756 struct list_head **iter); 4757 4758 /* iterate through upper list, must be called under RCU read lock */ 4759 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4760 for (iter = &(dev)->adj_list.upper, \ 4761 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4762 updev; \ 4763 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4764 4765 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4766 int (*fn)(struct net_device *upper_dev, 4767 struct netdev_nested_priv *priv), 4768 struct netdev_nested_priv *priv); 4769 4770 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4771 struct net_device *upper_dev); 4772 4773 bool netdev_has_any_upper_dev(struct net_device *dev); 4774 4775 void *netdev_lower_get_next_private(struct net_device *dev, 4776 struct list_head **iter); 4777 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4778 struct list_head **iter); 4779 4780 #define netdev_for_each_lower_private(dev, priv, iter) \ 4781 for (iter = (dev)->adj_list.lower.next, \ 4782 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4783 priv; \ 4784 priv = netdev_lower_get_next_private(dev, &(iter))) 4785 4786 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4787 for (iter = &(dev)->adj_list.lower, \ 4788 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4789 priv; \ 4790 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4791 4792 void *netdev_lower_get_next(struct net_device *dev, 4793 struct list_head **iter); 4794 4795 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4796 for (iter = (dev)->adj_list.lower.next, \ 4797 ldev = netdev_lower_get_next(dev, &(iter)); \ 4798 ldev; \ 4799 ldev = netdev_lower_get_next(dev, &(iter))) 4800 4801 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 4802 struct list_head **iter); 4803 int netdev_walk_all_lower_dev(struct net_device *dev, 4804 int (*fn)(struct net_device *lower_dev, 4805 struct netdev_nested_priv *priv), 4806 struct netdev_nested_priv *priv); 4807 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4808 int (*fn)(struct net_device *lower_dev, 4809 struct netdev_nested_priv *priv), 4810 struct netdev_nested_priv *priv); 4811 4812 void *netdev_adjacent_get_private(struct list_head *adj_list); 4813 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4814 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4815 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4816 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4817 struct netlink_ext_ack *extack); 4818 int netdev_master_upper_dev_link(struct net_device *dev, 4819 struct net_device *upper_dev, 4820 void *upper_priv, void *upper_info, 4821 struct netlink_ext_ack *extack); 4822 void netdev_upper_dev_unlink(struct net_device *dev, 4823 struct net_device *upper_dev); 4824 int netdev_adjacent_change_prepare(struct net_device *old_dev, 4825 struct net_device *new_dev, 4826 struct net_device *dev, 4827 struct netlink_ext_ack *extack); 4828 void netdev_adjacent_change_commit(struct net_device *old_dev, 4829 struct net_device *new_dev, 4830 struct net_device *dev); 4831 void netdev_adjacent_change_abort(struct net_device *old_dev, 4832 struct net_device *new_dev, 4833 struct net_device *dev); 4834 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4835 void *netdev_lower_dev_get_private(struct net_device *dev, 4836 struct net_device *lower_dev); 4837 void netdev_lower_state_changed(struct net_device *lower_dev, 4838 void *lower_state_info); 4839 4840 /* RSS keys are 40 or 52 bytes long */ 4841 #define NETDEV_RSS_KEY_LEN 52 4842 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4843 void netdev_rss_key_fill(void *buffer, size_t len); 4844 4845 int skb_checksum_help(struct sk_buff *skb); 4846 int skb_crc32c_csum_help(struct sk_buff *skb); 4847 int skb_csum_hwoffload_help(struct sk_buff *skb, 4848 const netdev_features_t features); 4849 4850 struct netdev_bonding_info { 4851 ifslave slave; 4852 ifbond master; 4853 }; 4854 4855 struct netdev_notifier_bonding_info { 4856 struct netdev_notifier_info info; /* must be first */ 4857 struct netdev_bonding_info bonding_info; 4858 }; 4859 4860 void netdev_bonding_info_change(struct net_device *dev, 4861 struct netdev_bonding_info *bonding_info); 4862 4863 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 4864 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); 4865 #else 4866 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, 4867 const void *data) 4868 { 4869 } 4870 #endif 4871 4872 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4873 4874 static inline bool can_checksum_protocol(netdev_features_t features, 4875 __be16 protocol) 4876 { 4877 if (protocol == htons(ETH_P_FCOE)) 4878 return !!(features & NETIF_F_FCOE_CRC); 4879 4880 /* Assume this is an IP checksum (not SCTP CRC) */ 4881 4882 if (features & NETIF_F_HW_CSUM) { 4883 /* Can checksum everything */ 4884 return true; 4885 } 4886 4887 switch (protocol) { 4888 case htons(ETH_P_IP): 4889 return !!(features & NETIF_F_IP_CSUM); 4890 case htons(ETH_P_IPV6): 4891 return !!(features & NETIF_F_IPV6_CSUM); 4892 default: 4893 return false; 4894 } 4895 } 4896 4897 #ifdef CONFIG_BUG 4898 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4899 #else 4900 static inline void netdev_rx_csum_fault(struct net_device *dev, 4901 struct sk_buff *skb) 4902 { 4903 } 4904 #endif 4905 /* rx skb timestamps */ 4906 void net_enable_timestamp(void); 4907 void net_disable_timestamp(void); 4908 4909 static inline ktime_t netdev_get_tstamp(struct net_device *dev, 4910 const struct skb_shared_hwtstamps *hwtstamps, 4911 bool cycles) 4912 { 4913 const struct net_device_ops *ops = dev->netdev_ops; 4914 4915 if (ops->ndo_get_tstamp) 4916 return ops->ndo_get_tstamp(dev, hwtstamps, cycles); 4917 4918 return hwtstamps->hwtstamp; 4919 } 4920 4921 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4922 struct sk_buff *skb, struct net_device *dev, 4923 bool more) 4924 { 4925 __this_cpu_write(softnet_data.xmit.more, more); 4926 return ops->ndo_start_xmit(skb, dev); 4927 } 4928 4929 static inline bool netdev_xmit_more(void) 4930 { 4931 return __this_cpu_read(softnet_data.xmit.more); 4932 } 4933 4934 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4935 struct netdev_queue *txq, bool more) 4936 { 4937 const struct net_device_ops *ops = dev->netdev_ops; 4938 netdev_tx_t rc; 4939 4940 rc = __netdev_start_xmit(ops, skb, dev, more); 4941 if (rc == NETDEV_TX_OK) 4942 txq_trans_update(txq); 4943 4944 return rc; 4945 } 4946 4947 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4948 const void *ns); 4949 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4950 const void *ns); 4951 4952 extern const struct kobj_ns_type_operations net_ns_type_operations; 4953 4954 const char *netdev_drivername(const struct net_device *dev); 4955 4956 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4957 netdev_features_t f2) 4958 { 4959 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4960 if (f1 & NETIF_F_HW_CSUM) 4961 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4962 else 4963 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4964 } 4965 4966 return f1 & f2; 4967 } 4968 4969 static inline netdev_features_t netdev_get_wanted_features( 4970 struct net_device *dev) 4971 { 4972 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4973 } 4974 netdev_features_t netdev_increment_features(netdev_features_t all, 4975 netdev_features_t one, netdev_features_t mask); 4976 4977 /* Allow TSO being used on stacked device : 4978 * Performing the GSO segmentation before last device 4979 * is a performance improvement. 4980 */ 4981 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4982 netdev_features_t mask) 4983 { 4984 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4985 } 4986 4987 int __netdev_update_features(struct net_device *dev); 4988 void netdev_update_features(struct net_device *dev); 4989 void netdev_change_features(struct net_device *dev); 4990 4991 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4992 struct net_device *dev); 4993 4994 netdev_features_t passthru_features_check(struct sk_buff *skb, 4995 struct net_device *dev, 4996 netdev_features_t features); 4997 netdev_features_t netif_skb_features(struct sk_buff *skb); 4998 void skb_warn_bad_offload(const struct sk_buff *skb); 4999 5000 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 5001 { 5002 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 5003 5004 /* check flags correspondence */ 5005 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 5006 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 5007 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 5008 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 5009 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 5010 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 5011 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 5012 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 5013 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 5014 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 5015 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 5016 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 5017 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 5018 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 5019 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 5020 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 5021 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 5022 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 5023 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 5024 5025 return (features & feature) == feature; 5026 } 5027 5028 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 5029 { 5030 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 5031 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 5032 } 5033 5034 static inline bool netif_needs_gso(struct sk_buff *skb, 5035 netdev_features_t features) 5036 { 5037 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 5038 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 5039 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 5040 } 5041 5042 void netif_set_tso_max_size(struct net_device *dev, unsigned int size); 5043 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs); 5044 void netif_inherit_tso_max(struct net_device *to, 5045 const struct net_device *from); 5046 5047 static inline bool netif_is_macsec(const struct net_device *dev) 5048 { 5049 return dev->priv_flags & IFF_MACSEC; 5050 } 5051 5052 static inline bool netif_is_macvlan(const struct net_device *dev) 5053 { 5054 return dev->priv_flags & IFF_MACVLAN; 5055 } 5056 5057 static inline bool netif_is_macvlan_port(const struct net_device *dev) 5058 { 5059 return dev->priv_flags & IFF_MACVLAN_PORT; 5060 } 5061 5062 static inline bool netif_is_bond_master(const struct net_device *dev) 5063 { 5064 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 5065 } 5066 5067 static inline bool netif_is_bond_slave(const struct net_device *dev) 5068 { 5069 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 5070 } 5071 5072 static inline bool netif_supports_nofcs(struct net_device *dev) 5073 { 5074 return dev->priv_flags & IFF_SUPP_NOFCS; 5075 } 5076 5077 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 5078 { 5079 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 5080 } 5081 5082 static inline bool netif_is_l3_master(const struct net_device *dev) 5083 { 5084 return dev->priv_flags & IFF_L3MDEV_MASTER; 5085 } 5086 5087 static inline bool netif_is_l3_slave(const struct net_device *dev) 5088 { 5089 return dev->priv_flags & IFF_L3MDEV_SLAVE; 5090 } 5091 5092 static inline int dev_sdif(const struct net_device *dev) 5093 { 5094 #ifdef CONFIG_NET_L3_MASTER_DEV 5095 if (netif_is_l3_slave(dev)) 5096 return dev->ifindex; 5097 #endif 5098 return 0; 5099 } 5100 5101 static inline bool netif_is_bridge_master(const struct net_device *dev) 5102 { 5103 return dev->priv_flags & IFF_EBRIDGE; 5104 } 5105 5106 static inline bool netif_is_bridge_port(const struct net_device *dev) 5107 { 5108 return dev->priv_flags & IFF_BRIDGE_PORT; 5109 } 5110 5111 static inline bool netif_is_ovs_master(const struct net_device *dev) 5112 { 5113 return dev->priv_flags & IFF_OPENVSWITCH; 5114 } 5115 5116 static inline bool netif_is_ovs_port(const struct net_device *dev) 5117 { 5118 return dev->priv_flags & IFF_OVS_DATAPATH; 5119 } 5120 5121 static inline bool netif_is_any_bridge_master(const struct net_device *dev) 5122 { 5123 return netif_is_bridge_master(dev) || netif_is_ovs_master(dev); 5124 } 5125 5126 static inline bool netif_is_any_bridge_port(const struct net_device *dev) 5127 { 5128 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); 5129 } 5130 5131 static inline bool netif_is_team_master(const struct net_device *dev) 5132 { 5133 return dev->priv_flags & IFF_TEAM; 5134 } 5135 5136 static inline bool netif_is_team_port(const struct net_device *dev) 5137 { 5138 return dev->priv_flags & IFF_TEAM_PORT; 5139 } 5140 5141 static inline bool netif_is_lag_master(const struct net_device *dev) 5142 { 5143 return netif_is_bond_master(dev) || netif_is_team_master(dev); 5144 } 5145 5146 static inline bool netif_is_lag_port(const struct net_device *dev) 5147 { 5148 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 5149 } 5150 5151 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 5152 { 5153 return dev->priv_flags & IFF_RXFH_CONFIGURED; 5154 } 5155 5156 static inline bool netif_is_failover(const struct net_device *dev) 5157 { 5158 return dev->priv_flags & IFF_FAILOVER; 5159 } 5160 5161 static inline bool netif_is_failover_slave(const struct net_device *dev) 5162 { 5163 return dev->priv_flags & IFF_FAILOVER_SLAVE; 5164 } 5165 5166 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 5167 static inline void netif_keep_dst(struct net_device *dev) 5168 { 5169 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 5170 } 5171 5172 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 5173 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 5174 { 5175 /* TODO: reserve and use an additional IFF bit, if we get more users */ 5176 return netif_is_macsec(dev); 5177 } 5178 5179 extern struct pernet_operations __net_initdata loopback_net_ops; 5180 5181 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 5182 5183 /* netdev_printk helpers, similar to dev_printk */ 5184 5185 static inline const char *netdev_name(const struct net_device *dev) 5186 { 5187 if (!dev->name[0] || strchr(dev->name, '%')) 5188 return "(unnamed net_device)"; 5189 return dev->name; 5190 } 5191 5192 static inline const char *netdev_reg_state(const struct net_device *dev) 5193 { 5194 switch (dev->reg_state) { 5195 case NETREG_UNINITIALIZED: return " (uninitialized)"; 5196 case NETREG_REGISTERED: return ""; 5197 case NETREG_UNREGISTERING: return " (unregistering)"; 5198 case NETREG_UNREGISTERED: return " (unregistered)"; 5199 case NETREG_RELEASED: return " (released)"; 5200 case NETREG_DUMMY: return " (dummy)"; 5201 } 5202 5203 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 5204 return " (unknown)"; 5205 } 5206 5207 #define MODULE_ALIAS_NETDEV(device) \ 5208 MODULE_ALIAS("netdev-" device) 5209 5210 /* 5211 * netdev_WARN() acts like dev_printk(), but with the key difference 5212 * of using a WARN/WARN_ON to get the message out, including the 5213 * file/line information and a backtrace. 5214 */ 5215 #define netdev_WARN(dev, format, args...) \ 5216 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5217 netdev_reg_state(dev), ##args) 5218 5219 #define netdev_WARN_ONCE(dev, format, args...) \ 5220 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5221 netdev_reg_state(dev), ##args) 5222 5223 /* 5224 * The list of packet types we will receive (as opposed to discard) 5225 * and the routines to invoke. 5226 * 5227 * Why 16. Because with 16 the only overlap we get on a hash of the 5228 * low nibble of the protocol value is RARP/SNAP/X.25. 5229 * 5230 * 0800 IP 5231 * 0001 802.3 5232 * 0002 AX.25 5233 * 0004 802.2 5234 * 8035 RARP 5235 * 0005 SNAP 5236 * 0805 X.25 5237 * 0806 ARP 5238 * 8137 IPX 5239 * 0009 Localtalk 5240 * 86DD IPv6 5241 */ 5242 #define PTYPE_HASH_SIZE (16) 5243 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5244 5245 extern struct list_head ptype_all __read_mostly; 5246 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 5247 5248 extern struct net_device *blackhole_netdev; 5249 5250 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */ 5251 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD) 5252 #define DEV_STATS_ADD(DEV, FIELD, VAL) \ 5253 atomic_long_add((VAL), &(DEV)->stats.__##FIELD) 5254 #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD) 5255 5256 #endif /* _LINUX_NETDEVICE_H */ 5257