xref: /linux-6.15/include/linux/netdevice.h (revision 0f0e5f5b)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <[email protected]>
13  *		Corey Minyard <[email protected]>
14  *		Donald J. Becker, <[email protected]>
15  *		Alan Cox, <[email protected]>
16  *		Bjorn Ekwall. <[email protected]>
17  *              Pekka Riikonen <[email protected]>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 #include <net/net_debug.h>
54 
55 struct netpoll_info;
56 struct device;
57 struct ethtool_ops;
58 struct phy_device;
59 struct dsa_port;
60 struct ip_tunnel_parm;
61 struct macsec_context;
62 struct macsec_ops;
63 struct netdev_name_node;
64 struct sd_flow_limit;
65 struct sfp_bus;
66 /* 802.11 specific */
67 struct wireless_dev;
68 /* 802.15.4 specific */
69 struct wpan_dev;
70 struct mpls_dev;
71 /* UDP Tunnel offloads */
72 struct udp_tunnel_info;
73 struct udp_tunnel_nic_info;
74 struct udp_tunnel_nic;
75 struct bpf_prog;
76 struct xdp_buff;
77 struct xdp_md;
78 
79 void synchronize_net(void);
80 void netdev_set_default_ethtool_ops(struct net_device *dev,
81 				    const struct ethtool_ops *ops);
82 void netdev_sw_irq_coalesce_default_on(struct net_device *dev);
83 
84 /* Backlog congestion levels */
85 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
86 #define NET_RX_DROP		1	/* packet dropped */
87 
88 #define MAX_NEST_DEV 8
89 
90 /*
91  * Transmit return codes: transmit return codes originate from three different
92  * namespaces:
93  *
94  * - qdisc return codes
95  * - driver transmit return codes
96  * - errno values
97  *
98  * Drivers are allowed to return any one of those in their hard_start_xmit()
99  * function. Real network devices commonly used with qdiscs should only return
100  * the driver transmit return codes though - when qdiscs are used, the actual
101  * transmission happens asynchronously, so the value is not propagated to
102  * higher layers. Virtual network devices transmit synchronously; in this case
103  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
104  * others are propagated to higher layers.
105  */
106 
107 /* qdisc ->enqueue() return codes. */
108 #define NET_XMIT_SUCCESS	0x00
109 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
110 #define NET_XMIT_CN		0x02	/* congestion notification	*/
111 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
112 
113 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
114  * indicates that the device will soon be dropping packets, or already drops
115  * some packets of the same priority; prompting us to send less aggressively. */
116 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
117 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
118 
119 /* Driver transmit return codes */
120 #define NETDEV_TX_MASK		0xf0
121 
122 enum netdev_tx {
123 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
124 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
125 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
126 };
127 typedef enum netdev_tx netdev_tx_t;
128 
129 /*
130  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
131  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
132  */
133 static inline bool dev_xmit_complete(int rc)
134 {
135 	/*
136 	 * Positive cases with an skb consumed by a driver:
137 	 * - successful transmission (rc == NETDEV_TX_OK)
138 	 * - error while transmitting (rc < 0)
139 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
140 	 */
141 	if (likely(rc < NET_XMIT_MASK))
142 		return true;
143 
144 	return false;
145 }
146 
147 /*
148  *	Compute the worst-case header length according to the protocols
149  *	used.
150  */
151 
152 #if defined(CONFIG_HYPERV_NET)
153 # define LL_MAX_HEADER 128
154 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
155 # if defined(CONFIG_MAC80211_MESH)
156 #  define LL_MAX_HEADER 128
157 # else
158 #  define LL_MAX_HEADER 96
159 # endif
160 #else
161 # define LL_MAX_HEADER 32
162 #endif
163 
164 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
165     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
166 #define MAX_HEADER LL_MAX_HEADER
167 #else
168 #define MAX_HEADER (LL_MAX_HEADER + 48)
169 #endif
170 
171 /*
172  *	Old network device statistics. Fields are native words
173  *	(unsigned long) so they can be read and written atomically.
174  */
175 
176 #define NET_DEV_STAT(FIELD)			\
177 	union {					\
178 		unsigned long FIELD;		\
179 		atomic_long_t __##FIELD;	\
180 	}
181 
182 struct net_device_stats {
183 	NET_DEV_STAT(rx_packets);
184 	NET_DEV_STAT(tx_packets);
185 	NET_DEV_STAT(rx_bytes);
186 	NET_DEV_STAT(tx_bytes);
187 	NET_DEV_STAT(rx_errors);
188 	NET_DEV_STAT(tx_errors);
189 	NET_DEV_STAT(rx_dropped);
190 	NET_DEV_STAT(tx_dropped);
191 	NET_DEV_STAT(multicast);
192 	NET_DEV_STAT(collisions);
193 	NET_DEV_STAT(rx_length_errors);
194 	NET_DEV_STAT(rx_over_errors);
195 	NET_DEV_STAT(rx_crc_errors);
196 	NET_DEV_STAT(rx_frame_errors);
197 	NET_DEV_STAT(rx_fifo_errors);
198 	NET_DEV_STAT(rx_missed_errors);
199 	NET_DEV_STAT(tx_aborted_errors);
200 	NET_DEV_STAT(tx_carrier_errors);
201 	NET_DEV_STAT(tx_fifo_errors);
202 	NET_DEV_STAT(tx_heartbeat_errors);
203 	NET_DEV_STAT(tx_window_errors);
204 	NET_DEV_STAT(rx_compressed);
205 	NET_DEV_STAT(tx_compressed);
206 };
207 #undef NET_DEV_STAT
208 
209 /* per-cpu stats, allocated on demand.
210  * Try to fit them in a single cache line, for dev_get_stats() sake.
211  */
212 struct net_device_core_stats {
213 	unsigned long	rx_dropped;
214 	unsigned long	tx_dropped;
215 	unsigned long	rx_nohandler;
216 	unsigned long	rx_otherhost_dropped;
217 } __aligned(4 * sizeof(unsigned long));
218 
219 #include <linux/cache.h>
220 #include <linux/skbuff.h>
221 
222 #ifdef CONFIG_RPS
223 #include <linux/static_key.h>
224 extern struct static_key_false rps_needed;
225 extern struct static_key_false rfs_needed;
226 #endif
227 
228 struct neighbour;
229 struct neigh_parms;
230 struct sk_buff;
231 
232 struct netdev_hw_addr {
233 	struct list_head	list;
234 	struct rb_node		node;
235 	unsigned char		addr[MAX_ADDR_LEN];
236 	unsigned char		type;
237 #define NETDEV_HW_ADDR_T_LAN		1
238 #define NETDEV_HW_ADDR_T_SAN		2
239 #define NETDEV_HW_ADDR_T_UNICAST	3
240 #define NETDEV_HW_ADDR_T_MULTICAST	4
241 	bool			global_use;
242 	int			sync_cnt;
243 	int			refcount;
244 	int			synced;
245 	struct rcu_head		rcu_head;
246 };
247 
248 struct netdev_hw_addr_list {
249 	struct list_head	list;
250 	int			count;
251 
252 	/* Auxiliary tree for faster lookup on addition and deletion */
253 	struct rb_root		tree;
254 };
255 
256 #define netdev_hw_addr_list_count(l) ((l)->count)
257 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
258 #define netdev_hw_addr_list_for_each(ha, l) \
259 	list_for_each_entry(ha, &(l)->list, list)
260 
261 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
262 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
263 #define netdev_for_each_uc_addr(ha, dev) \
264 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
265 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
266 	netdev_for_each_uc_addr((_ha), (_dev)) \
267 		if ((_ha)->sync_cnt)
268 
269 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
270 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
271 #define netdev_for_each_mc_addr(ha, dev) \
272 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
273 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
274 	netdev_for_each_mc_addr((_ha), (_dev)) \
275 		if ((_ha)->sync_cnt)
276 
277 struct hh_cache {
278 	unsigned int	hh_len;
279 	seqlock_t	hh_lock;
280 
281 	/* cached hardware header; allow for machine alignment needs.        */
282 #define HH_DATA_MOD	16
283 #define HH_DATA_OFF(__len) \
284 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
285 #define HH_DATA_ALIGN(__len) \
286 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
287 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
288 };
289 
290 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
291  * Alternative is:
292  *   dev->hard_header_len ? (dev->hard_header_len +
293  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
294  *
295  * We could use other alignment values, but we must maintain the
296  * relationship HH alignment <= LL alignment.
297  */
298 #define LL_RESERVED_SPACE(dev) \
299 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
300 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
301 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
302 
303 struct header_ops {
304 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
305 			   unsigned short type, const void *daddr,
306 			   const void *saddr, unsigned int len);
307 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
308 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
309 	void	(*cache_update)(struct hh_cache *hh,
310 				const struct net_device *dev,
311 				const unsigned char *haddr);
312 	bool	(*validate)(const char *ll_header, unsigned int len);
313 	__be16	(*parse_protocol)(const struct sk_buff *skb);
314 };
315 
316 /* These flag bits are private to the generic network queueing
317  * layer; they may not be explicitly referenced by any other
318  * code.
319  */
320 
321 enum netdev_state_t {
322 	__LINK_STATE_START,
323 	__LINK_STATE_PRESENT,
324 	__LINK_STATE_NOCARRIER,
325 	__LINK_STATE_LINKWATCH_PENDING,
326 	__LINK_STATE_DORMANT,
327 	__LINK_STATE_TESTING,
328 };
329 
330 struct gro_list {
331 	struct list_head	list;
332 	int			count;
333 };
334 
335 /*
336  * size of gro hash buckets, must less than bit number of
337  * napi_struct::gro_bitmask
338  */
339 #define GRO_HASH_BUCKETS	8
340 
341 /*
342  * Structure for NAPI scheduling similar to tasklet but with weighting
343  */
344 struct napi_struct {
345 	/* The poll_list must only be managed by the entity which
346 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
347 	 * whoever atomically sets that bit can add this napi_struct
348 	 * to the per-CPU poll_list, and whoever clears that bit
349 	 * can remove from the list right before clearing the bit.
350 	 */
351 	struct list_head	poll_list;
352 
353 	unsigned long		state;
354 	int			weight;
355 	int			defer_hard_irqs_count;
356 	unsigned long		gro_bitmask;
357 	int			(*poll)(struct napi_struct *, int);
358 #ifdef CONFIG_NETPOLL
359 	int			poll_owner;
360 #endif
361 	struct net_device	*dev;
362 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
363 	struct sk_buff		*skb;
364 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
365 	int			rx_count; /* length of rx_list */
366 	struct hrtimer		timer;
367 	struct list_head	dev_list;
368 	struct hlist_node	napi_hash_node;
369 	unsigned int		napi_id;
370 	struct task_struct	*thread;
371 };
372 
373 enum {
374 	NAPI_STATE_SCHED,		/* Poll is scheduled */
375 	NAPI_STATE_MISSED,		/* reschedule a napi */
376 	NAPI_STATE_DISABLE,		/* Disable pending */
377 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
378 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
379 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
380 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
381 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
382 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
383 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
384 };
385 
386 enum {
387 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
388 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
389 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
390 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
391 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
392 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
393 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
394 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
395 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
396 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
397 };
398 
399 enum gro_result {
400 	GRO_MERGED,
401 	GRO_MERGED_FREE,
402 	GRO_HELD,
403 	GRO_NORMAL,
404 	GRO_CONSUMED,
405 };
406 typedef enum gro_result gro_result_t;
407 
408 /*
409  * enum rx_handler_result - Possible return values for rx_handlers.
410  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
411  * further.
412  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
413  * case skb->dev was changed by rx_handler.
414  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
415  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
416  *
417  * rx_handlers are functions called from inside __netif_receive_skb(), to do
418  * special processing of the skb, prior to delivery to protocol handlers.
419  *
420  * Currently, a net_device can only have a single rx_handler registered. Trying
421  * to register a second rx_handler will return -EBUSY.
422  *
423  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
424  * To unregister a rx_handler on a net_device, use
425  * netdev_rx_handler_unregister().
426  *
427  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
428  * do with the skb.
429  *
430  * If the rx_handler consumed the skb in some way, it should return
431  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
432  * the skb to be delivered in some other way.
433  *
434  * If the rx_handler changed skb->dev, to divert the skb to another
435  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
436  * new device will be called if it exists.
437  *
438  * If the rx_handler decides the skb should be ignored, it should return
439  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
440  * are registered on exact device (ptype->dev == skb->dev).
441  *
442  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
443  * delivered, it should return RX_HANDLER_PASS.
444  *
445  * A device without a registered rx_handler will behave as if rx_handler
446  * returned RX_HANDLER_PASS.
447  */
448 
449 enum rx_handler_result {
450 	RX_HANDLER_CONSUMED,
451 	RX_HANDLER_ANOTHER,
452 	RX_HANDLER_EXACT,
453 	RX_HANDLER_PASS,
454 };
455 typedef enum rx_handler_result rx_handler_result_t;
456 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
457 
458 void __napi_schedule(struct napi_struct *n);
459 void __napi_schedule_irqoff(struct napi_struct *n);
460 
461 static inline bool napi_disable_pending(struct napi_struct *n)
462 {
463 	return test_bit(NAPI_STATE_DISABLE, &n->state);
464 }
465 
466 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
467 {
468 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
469 }
470 
471 bool napi_schedule_prep(struct napi_struct *n);
472 
473 /**
474  *	napi_schedule - schedule NAPI poll
475  *	@n: NAPI context
476  *
477  * Schedule NAPI poll routine to be called if it is not already
478  * running.
479  */
480 static inline void napi_schedule(struct napi_struct *n)
481 {
482 	if (napi_schedule_prep(n))
483 		__napi_schedule(n);
484 }
485 
486 /**
487  *	napi_schedule_irqoff - schedule NAPI poll
488  *	@n: NAPI context
489  *
490  * Variant of napi_schedule(), assuming hard irqs are masked.
491  */
492 static inline void napi_schedule_irqoff(struct napi_struct *n)
493 {
494 	if (napi_schedule_prep(n))
495 		__napi_schedule_irqoff(n);
496 }
497 
498 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
499 static inline bool napi_reschedule(struct napi_struct *napi)
500 {
501 	if (napi_schedule_prep(napi)) {
502 		__napi_schedule(napi);
503 		return true;
504 	}
505 	return false;
506 }
507 
508 bool napi_complete_done(struct napi_struct *n, int work_done);
509 /**
510  *	napi_complete - NAPI processing complete
511  *	@n: NAPI context
512  *
513  * Mark NAPI processing as complete.
514  * Consider using napi_complete_done() instead.
515  * Return false if device should avoid rearming interrupts.
516  */
517 static inline bool napi_complete(struct napi_struct *n)
518 {
519 	return napi_complete_done(n, 0);
520 }
521 
522 int dev_set_threaded(struct net_device *dev, bool threaded);
523 
524 /**
525  *	napi_disable - prevent NAPI from scheduling
526  *	@n: NAPI context
527  *
528  * Stop NAPI from being scheduled on this context.
529  * Waits till any outstanding processing completes.
530  */
531 void napi_disable(struct napi_struct *n);
532 
533 void napi_enable(struct napi_struct *n);
534 
535 /**
536  *	napi_synchronize - wait until NAPI is not running
537  *	@n: NAPI context
538  *
539  * Wait until NAPI is done being scheduled on this context.
540  * Waits till any outstanding processing completes but
541  * does not disable future activations.
542  */
543 static inline void napi_synchronize(const struct napi_struct *n)
544 {
545 	if (IS_ENABLED(CONFIG_SMP))
546 		while (test_bit(NAPI_STATE_SCHED, &n->state))
547 			msleep(1);
548 	else
549 		barrier();
550 }
551 
552 /**
553  *	napi_if_scheduled_mark_missed - if napi is running, set the
554  *	NAPIF_STATE_MISSED
555  *	@n: NAPI context
556  *
557  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
558  * NAPI is scheduled.
559  **/
560 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
561 {
562 	unsigned long val, new;
563 
564 	val = READ_ONCE(n->state);
565 	do {
566 		if (val & NAPIF_STATE_DISABLE)
567 			return true;
568 
569 		if (!(val & NAPIF_STATE_SCHED))
570 			return false;
571 
572 		new = val | NAPIF_STATE_MISSED;
573 	} while (!try_cmpxchg(&n->state, &val, new));
574 
575 	return true;
576 }
577 
578 enum netdev_queue_state_t {
579 	__QUEUE_STATE_DRV_XOFF,
580 	__QUEUE_STATE_STACK_XOFF,
581 	__QUEUE_STATE_FROZEN,
582 };
583 
584 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
585 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
586 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
587 
588 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
589 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
590 					QUEUE_STATE_FROZEN)
591 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
592 					QUEUE_STATE_FROZEN)
593 
594 /*
595  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
596  * netif_tx_* functions below are used to manipulate this flag.  The
597  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
598  * queue independently.  The netif_xmit_*stopped functions below are called
599  * to check if the queue has been stopped by the driver or stack (either
600  * of the XOFF bits are set in the state).  Drivers should not need to call
601  * netif_xmit*stopped functions, they should only be using netif_tx_*.
602  */
603 
604 struct netdev_queue {
605 /*
606  * read-mostly part
607  */
608 	struct net_device	*dev;
609 	netdevice_tracker	dev_tracker;
610 
611 	struct Qdisc __rcu	*qdisc;
612 	struct Qdisc		*qdisc_sleeping;
613 #ifdef CONFIG_SYSFS
614 	struct kobject		kobj;
615 #endif
616 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
617 	int			numa_node;
618 #endif
619 	unsigned long		tx_maxrate;
620 	/*
621 	 * Number of TX timeouts for this queue
622 	 * (/sys/class/net/DEV/Q/trans_timeout)
623 	 */
624 	atomic_long_t		trans_timeout;
625 
626 	/* Subordinate device that the queue has been assigned to */
627 	struct net_device	*sb_dev;
628 #ifdef CONFIG_XDP_SOCKETS
629 	struct xsk_buff_pool    *pool;
630 #endif
631 /*
632  * write-mostly part
633  */
634 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
635 	int			xmit_lock_owner;
636 	/*
637 	 * Time (in jiffies) of last Tx
638 	 */
639 	unsigned long		trans_start;
640 
641 	unsigned long		state;
642 
643 #ifdef CONFIG_BQL
644 	struct dql		dql;
645 #endif
646 } ____cacheline_aligned_in_smp;
647 
648 extern int sysctl_fb_tunnels_only_for_init_net;
649 extern int sysctl_devconf_inherit_init_net;
650 
651 /*
652  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
653  *                                     == 1 : For initns only
654  *                                     == 2 : For none.
655  */
656 static inline bool net_has_fallback_tunnels(const struct net *net)
657 {
658 #if IS_ENABLED(CONFIG_SYSCTL)
659 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
660 
661 	return !fb_tunnels_only_for_init_net ||
662 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
663 #else
664 	return true;
665 #endif
666 }
667 
668 static inline int net_inherit_devconf(void)
669 {
670 #if IS_ENABLED(CONFIG_SYSCTL)
671 	return READ_ONCE(sysctl_devconf_inherit_init_net);
672 #else
673 	return 0;
674 #endif
675 }
676 
677 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
678 {
679 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
680 	return q->numa_node;
681 #else
682 	return NUMA_NO_NODE;
683 #endif
684 }
685 
686 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
687 {
688 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
689 	q->numa_node = node;
690 #endif
691 }
692 
693 #ifdef CONFIG_RPS
694 /*
695  * This structure holds an RPS map which can be of variable length.  The
696  * map is an array of CPUs.
697  */
698 struct rps_map {
699 	unsigned int len;
700 	struct rcu_head rcu;
701 	u16 cpus[];
702 };
703 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
704 
705 /*
706  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
707  * tail pointer for that CPU's input queue at the time of last enqueue, and
708  * a hardware filter index.
709  */
710 struct rps_dev_flow {
711 	u16 cpu;
712 	u16 filter;
713 	unsigned int last_qtail;
714 };
715 #define RPS_NO_FILTER 0xffff
716 
717 /*
718  * The rps_dev_flow_table structure contains a table of flow mappings.
719  */
720 struct rps_dev_flow_table {
721 	unsigned int mask;
722 	struct rcu_head rcu;
723 	struct rps_dev_flow flows[];
724 };
725 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
726     ((_num) * sizeof(struct rps_dev_flow)))
727 
728 /*
729  * The rps_sock_flow_table contains mappings of flows to the last CPU
730  * on which they were processed by the application (set in recvmsg).
731  * Each entry is a 32bit value. Upper part is the high-order bits
732  * of flow hash, lower part is CPU number.
733  * rps_cpu_mask is used to partition the space, depending on number of
734  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
735  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
736  * meaning we use 32-6=26 bits for the hash.
737  */
738 struct rps_sock_flow_table {
739 	u32	mask;
740 
741 	u32	ents[] ____cacheline_aligned_in_smp;
742 };
743 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
744 
745 #define RPS_NO_CPU 0xffff
746 
747 extern u32 rps_cpu_mask;
748 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
749 
750 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
751 					u32 hash)
752 {
753 	if (table && hash) {
754 		unsigned int index = hash & table->mask;
755 		u32 val = hash & ~rps_cpu_mask;
756 
757 		/* We only give a hint, preemption can change CPU under us */
758 		val |= raw_smp_processor_id();
759 
760 		if (table->ents[index] != val)
761 			table->ents[index] = val;
762 	}
763 }
764 
765 #ifdef CONFIG_RFS_ACCEL
766 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
767 			 u16 filter_id);
768 #endif
769 #endif /* CONFIG_RPS */
770 
771 /* This structure contains an instance of an RX queue. */
772 struct netdev_rx_queue {
773 	struct xdp_rxq_info		xdp_rxq;
774 #ifdef CONFIG_RPS
775 	struct rps_map __rcu		*rps_map;
776 	struct rps_dev_flow_table __rcu	*rps_flow_table;
777 #endif
778 	struct kobject			kobj;
779 	struct net_device		*dev;
780 	netdevice_tracker		dev_tracker;
781 
782 #ifdef CONFIG_XDP_SOCKETS
783 	struct xsk_buff_pool            *pool;
784 #endif
785 } ____cacheline_aligned_in_smp;
786 
787 /*
788  * RX queue sysfs structures and functions.
789  */
790 struct rx_queue_attribute {
791 	struct attribute attr;
792 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
793 	ssize_t (*store)(struct netdev_rx_queue *queue,
794 			 const char *buf, size_t len);
795 };
796 
797 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
798 enum xps_map_type {
799 	XPS_CPUS = 0,
800 	XPS_RXQS,
801 	XPS_MAPS_MAX,
802 };
803 
804 #ifdef CONFIG_XPS
805 /*
806  * This structure holds an XPS map which can be of variable length.  The
807  * map is an array of queues.
808  */
809 struct xps_map {
810 	unsigned int len;
811 	unsigned int alloc_len;
812 	struct rcu_head rcu;
813 	u16 queues[];
814 };
815 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
816 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
817        - sizeof(struct xps_map)) / sizeof(u16))
818 
819 /*
820  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
821  *
822  * We keep track of the number of cpus/rxqs used when the struct is allocated,
823  * in nr_ids. This will help not accessing out-of-bound memory.
824  *
825  * We keep track of the number of traffic classes used when the struct is
826  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
827  * not crossing its upper bound, as the original dev->num_tc can be updated in
828  * the meantime.
829  */
830 struct xps_dev_maps {
831 	struct rcu_head rcu;
832 	unsigned int nr_ids;
833 	s16 num_tc;
834 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
835 };
836 
837 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
838 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
839 
840 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
841 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
842 
843 #endif /* CONFIG_XPS */
844 
845 #define TC_MAX_QUEUE	16
846 #define TC_BITMASK	15
847 /* HW offloaded queuing disciplines txq count and offset maps */
848 struct netdev_tc_txq {
849 	u16 count;
850 	u16 offset;
851 };
852 
853 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
854 /*
855  * This structure is to hold information about the device
856  * configured to run FCoE protocol stack.
857  */
858 struct netdev_fcoe_hbainfo {
859 	char	manufacturer[64];
860 	char	serial_number[64];
861 	char	hardware_version[64];
862 	char	driver_version[64];
863 	char	optionrom_version[64];
864 	char	firmware_version[64];
865 	char	model[256];
866 	char	model_description[256];
867 };
868 #endif
869 
870 #define MAX_PHYS_ITEM_ID_LEN 32
871 
872 /* This structure holds a unique identifier to identify some
873  * physical item (port for example) used by a netdevice.
874  */
875 struct netdev_phys_item_id {
876 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
877 	unsigned char id_len;
878 };
879 
880 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
881 					    struct netdev_phys_item_id *b)
882 {
883 	return a->id_len == b->id_len &&
884 	       memcmp(a->id, b->id, a->id_len) == 0;
885 }
886 
887 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
888 				       struct sk_buff *skb,
889 				       struct net_device *sb_dev);
890 
891 enum net_device_path_type {
892 	DEV_PATH_ETHERNET = 0,
893 	DEV_PATH_VLAN,
894 	DEV_PATH_BRIDGE,
895 	DEV_PATH_PPPOE,
896 	DEV_PATH_DSA,
897 	DEV_PATH_MTK_WDMA,
898 };
899 
900 struct net_device_path {
901 	enum net_device_path_type	type;
902 	const struct net_device		*dev;
903 	union {
904 		struct {
905 			u16		id;
906 			__be16		proto;
907 			u8		h_dest[ETH_ALEN];
908 		} encap;
909 		struct {
910 			enum {
911 				DEV_PATH_BR_VLAN_KEEP,
912 				DEV_PATH_BR_VLAN_TAG,
913 				DEV_PATH_BR_VLAN_UNTAG,
914 				DEV_PATH_BR_VLAN_UNTAG_HW,
915 			}		vlan_mode;
916 			u16		vlan_id;
917 			__be16		vlan_proto;
918 		} bridge;
919 		struct {
920 			int port;
921 			u16 proto;
922 		} dsa;
923 		struct {
924 			u8 wdma_idx;
925 			u8 queue;
926 			u16 wcid;
927 			u8 bss;
928 		} mtk_wdma;
929 	};
930 };
931 
932 #define NET_DEVICE_PATH_STACK_MAX	5
933 #define NET_DEVICE_PATH_VLAN_MAX	2
934 
935 struct net_device_path_stack {
936 	int			num_paths;
937 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
938 };
939 
940 struct net_device_path_ctx {
941 	const struct net_device *dev;
942 	u8			daddr[ETH_ALEN];
943 
944 	int			num_vlans;
945 	struct {
946 		u16		id;
947 		__be16		proto;
948 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
949 };
950 
951 enum tc_setup_type {
952 	TC_QUERY_CAPS,
953 	TC_SETUP_QDISC_MQPRIO,
954 	TC_SETUP_CLSU32,
955 	TC_SETUP_CLSFLOWER,
956 	TC_SETUP_CLSMATCHALL,
957 	TC_SETUP_CLSBPF,
958 	TC_SETUP_BLOCK,
959 	TC_SETUP_QDISC_CBS,
960 	TC_SETUP_QDISC_RED,
961 	TC_SETUP_QDISC_PRIO,
962 	TC_SETUP_QDISC_MQ,
963 	TC_SETUP_QDISC_ETF,
964 	TC_SETUP_ROOT_QDISC,
965 	TC_SETUP_QDISC_GRED,
966 	TC_SETUP_QDISC_TAPRIO,
967 	TC_SETUP_FT,
968 	TC_SETUP_QDISC_ETS,
969 	TC_SETUP_QDISC_TBF,
970 	TC_SETUP_QDISC_FIFO,
971 	TC_SETUP_QDISC_HTB,
972 	TC_SETUP_ACT,
973 };
974 
975 /* These structures hold the attributes of bpf state that are being passed
976  * to the netdevice through the bpf op.
977  */
978 enum bpf_netdev_command {
979 	/* Set or clear a bpf program used in the earliest stages of packet
980 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
981 	 * is responsible for calling bpf_prog_put on any old progs that are
982 	 * stored. In case of error, the callee need not release the new prog
983 	 * reference, but on success it takes ownership and must bpf_prog_put
984 	 * when it is no longer used.
985 	 */
986 	XDP_SETUP_PROG,
987 	XDP_SETUP_PROG_HW,
988 	/* BPF program for offload callbacks, invoked at program load time. */
989 	BPF_OFFLOAD_MAP_ALLOC,
990 	BPF_OFFLOAD_MAP_FREE,
991 	XDP_SETUP_XSK_POOL,
992 };
993 
994 struct bpf_prog_offload_ops;
995 struct netlink_ext_ack;
996 struct xdp_umem;
997 struct xdp_dev_bulk_queue;
998 struct bpf_xdp_link;
999 
1000 enum bpf_xdp_mode {
1001 	XDP_MODE_SKB = 0,
1002 	XDP_MODE_DRV = 1,
1003 	XDP_MODE_HW = 2,
1004 	__MAX_XDP_MODE
1005 };
1006 
1007 struct bpf_xdp_entity {
1008 	struct bpf_prog *prog;
1009 	struct bpf_xdp_link *link;
1010 };
1011 
1012 struct netdev_bpf {
1013 	enum bpf_netdev_command command;
1014 	union {
1015 		/* XDP_SETUP_PROG */
1016 		struct {
1017 			u32 flags;
1018 			struct bpf_prog *prog;
1019 			struct netlink_ext_ack *extack;
1020 		};
1021 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
1022 		struct {
1023 			struct bpf_offloaded_map *offmap;
1024 		};
1025 		/* XDP_SETUP_XSK_POOL */
1026 		struct {
1027 			struct xsk_buff_pool *pool;
1028 			u16 queue_id;
1029 		} xsk;
1030 	};
1031 };
1032 
1033 /* Flags for ndo_xsk_wakeup. */
1034 #define XDP_WAKEUP_RX (1 << 0)
1035 #define XDP_WAKEUP_TX (1 << 1)
1036 
1037 #ifdef CONFIG_XFRM_OFFLOAD
1038 struct xfrmdev_ops {
1039 	int	(*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack);
1040 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
1041 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
1042 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1043 				       struct xfrm_state *x);
1044 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1045 	void	(*xdo_dev_state_update_curlft) (struct xfrm_state *x);
1046 	int	(*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack);
1047 	void	(*xdo_dev_policy_delete) (struct xfrm_policy *x);
1048 	void	(*xdo_dev_policy_free) (struct xfrm_policy *x);
1049 };
1050 #endif
1051 
1052 struct dev_ifalias {
1053 	struct rcu_head rcuhead;
1054 	char ifalias[];
1055 };
1056 
1057 struct devlink;
1058 struct tlsdev_ops;
1059 
1060 struct netdev_net_notifier {
1061 	struct list_head list;
1062 	struct notifier_block *nb;
1063 };
1064 
1065 /*
1066  * This structure defines the management hooks for network devices.
1067  * The following hooks can be defined; unless noted otherwise, they are
1068  * optional and can be filled with a null pointer.
1069  *
1070  * int (*ndo_init)(struct net_device *dev);
1071  *     This function is called once when a network device is registered.
1072  *     The network device can use this for any late stage initialization
1073  *     or semantic validation. It can fail with an error code which will
1074  *     be propagated back to register_netdev.
1075  *
1076  * void (*ndo_uninit)(struct net_device *dev);
1077  *     This function is called when device is unregistered or when registration
1078  *     fails. It is not called if init fails.
1079  *
1080  * int (*ndo_open)(struct net_device *dev);
1081  *     This function is called when a network device transitions to the up
1082  *     state.
1083  *
1084  * int (*ndo_stop)(struct net_device *dev);
1085  *     This function is called when a network device transitions to the down
1086  *     state.
1087  *
1088  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1089  *                               struct net_device *dev);
1090  *	Called when a packet needs to be transmitted.
1091  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1092  *	the queue before that can happen; it's for obsolete devices and weird
1093  *	corner cases, but the stack really does a non-trivial amount
1094  *	of useless work if you return NETDEV_TX_BUSY.
1095  *	Required; cannot be NULL.
1096  *
1097  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1098  *					   struct net_device *dev
1099  *					   netdev_features_t features);
1100  *	Called by core transmit path to determine if device is capable of
1101  *	performing offload operations on a given packet. This is to give
1102  *	the device an opportunity to implement any restrictions that cannot
1103  *	be otherwise expressed by feature flags. The check is called with
1104  *	the set of features that the stack has calculated and it returns
1105  *	those the driver believes to be appropriate.
1106  *
1107  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1108  *                         struct net_device *sb_dev);
1109  *	Called to decide which queue to use when device supports multiple
1110  *	transmit queues.
1111  *
1112  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1113  *	This function is called to allow device receiver to make
1114  *	changes to configuration when multicast or promiscuous is enabled.
1115  *
1116  * void (*ndo_set_rx_mode)(struct net_device *dev);
1117  *	This function is called device changes address list filtering.
1118  *	If driver handles unicast address filtering, it should set
1119  *	IFF_UNICAST_FLT in its priv_flags.
1120  *
1121  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1122  *	This function  is called when the Media Access Control address
1123  *	needs to be changed. If this interface is not defined, the
1124  *	MAC address can not be changed.
1125  *
1126  * int (*ndo_validate_addr)(struct net_device *dev);
1127  *	Test if Media Access Control address is valid for the device.
1128  *
1129  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1130  *	Old-style ioctl entry point. This is used internally by the
1131  *	appletalk and ieee802154 subsystems but is no longer called by
1132  *	the device ioctl handler.
1133  *
1134  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1135  *	Used by the bonding driver for its device specific ioctls:
1136  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1137  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1138  *
1139  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1140  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1141  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1142  *
1143  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1144  *	Used to set network devices bus interface parameters. This interface
1145  *	is retained for legacy reasons; new devices should use the bus
1146  *	interface (PCI) for low level management.
1147  *
1148  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1149  *	Called when a user wants to change the Maximum Transfer Unit
1150  *	of a device.
1151  *
1152  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1153  *	Callback used when the transmitter has not made any progress
1154  *	for dev->watchdog ticks.
1155  *
1156  * void (*ndo_get_stats64)(struct net_device *dev,
1157  *                         struct rtnl_link_stats64 *storage);
1158  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1159  *	Called when a user wants to get the network device usage
1160  *	statistics. Drivers must do one of the following:
1161  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1162  *	   rtnl_link_stats64 structure passed by the caller.
1163  *	2. Define @ndo_get_stats to update a net_device_stats structure
1164  *	   (which should normally be dev->stats) and return a pointer to
1165  *	   it. The structure may be changed asynchronously only if each
1166  *	   field is written atomically.
1167  *	3. Update dev->stats asynchronously and atomically, and define
1168  *	   neither operation.
1169  *
1170  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1171  *	Return true if this device supports offload stats of this attr_id.
1172  *
1173  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1174  *	void *attr_data)
1175  *	Get statistics for offload operations by attr_id. Write it into the
1176  *	attr_data pointer.
1177  *
1178  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1179  *	If device supports VLAN filtering this function is called when a
1180  *	VLAN id is registered.
1181  *
1182  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1183  *	If device supports VLAN filtering this function is called when a
1184  *	VLAN id is unregistered.
1185  *
1186  * void (*ndo_poll_controller)(struct net_device *dev);
1187  *
1188  *	SR-IOV management functions.
1189  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1190  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1191  *			  u8 qos, __be16 proto);
1192  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1193  *			  int max_tx_rate);
1194  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1195  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1196  * int (*ndo_get_vf_config)(struct net_device *dev,
1197  *			    int vf, struct ifla_vf_info *ivf);
1198  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1199  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1200  *			  struct nlattr *port[]);
1201  *
1202  *      Enable or disable the VF ability to query its RSS Redirection Table and
1203  *      Hash Key. This is needed since on some devices VF share this information
1204  *      with PF and querying it may introduce a theoretical security risk.
1205  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1206  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1207  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1208  *		       void *type_data);
1209  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1210  *	This is always called from the stack with the rtnl lock held and netif
1211  *	tx queues stopped. This allows the netdevice to perform queue
1212  *	management safely.
1213  *
1214  *	Fiber Channel over Ethernet (FCoE) offload functions.
1215  * int (*ndo_fcoe_enable)(struct net_device *dev);
1216  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1217  *	so the underlying device can perform whatever needed configuration or
1218  *	initialization to support acceleration of FCoE traffic.
1219  *
1220  * int (*ndo_fcoe_disable)(struct net_device *dev);
1221  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1222  *	so the underlying device can perform whatever needed clean-ups to
1223  *	stop supporting acceleration of FCoE traffic.
1224  *
1225  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1226  *			     struct scatterlist *sgl, unsigned int sgc);
1227  *	Called when the FCoE Initiator wants to initialize an I/O that
1228  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1229  *	perform necessary setup and returns 1 to indicate the device is set up
1230  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1231  *
1232  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1233  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1234  *	indicated by the FC exchange id 'xid', so the underlying device can
1235  *	clean up and reuse resources for later DDP requests.
1236  *
1237  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1238  *			      struct scatterlist *sgl, unsigned int sgc);
1239  *	Called when the FCoE Target wants to initialize an I/O that
1240  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1241  *	perform necessary setup and returns 1 to indicate the device is set up
1242  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1243  *
1244  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1245  *			       struct netdev_fcoe_hbainfo *hbainfo);
1246  *	Called when the FCoE Protocol stack wants information on the underlying
1247  *	device. This information is utilized by the FCoE protocol stack to
1248  *	register attributes with Fiber Channel management service as per the
1249  *	FC-GS Fabric Device Management Information(FDMI) specification.
1250  *
1251  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1252  *	Called when the underlying device wants to override default World Wide
1253  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1254  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1255  *	protocol stack to use.
1256  *
1257  *	RFS acceleration.
1258  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1259  *			    u16 rxq_index, u32 flow_id);
1260  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1261  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1262  *	Return the filter ID on success, or a negative error code.
1263  *
1264  *	Slave management functions (for bridge, bonding, etc).
1265  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1266  *	Called to make another netdev an underling.
1267  *
1268  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1269  *	Called to release previously enslaved netdev.
1270  *
1271  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1272  *					    struct sk_buff *skb,
1273  *					    bool all_slaves);
1274  *	Get the xmit slave of master device. If all_slaves is true, function
1275  *	assume all the slaves can transmit.
1276  *
1277  *      Feature/offload setting functions.
1278  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1279  *		netdev_features_t features);
1280  *	Adjusts the requested feature flags according to device-specific
1281  *	constraints, and returns the resulting flags. Must not modify
1282  *	the device state.
1283  *
1284  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1285  *	Called to update device configuration to new features. Passed
1286  *	feature set might be less than what was returned by ndo_fix_features()).
1287  *	Must return >0 or -errno if it changed dev->features itself.
1288  *
1289  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1290  *		      struct net_device *dev,
1291  *		      const unsigned char *addr, u16 vid, u16 flags,
1292  *		      struct netlink_ext_ack *extack);
1293  *	Adds an FDB entry to dev for addr.
1294  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1295  *		      struct net_device *dev,
1296  *		      const unsigned char *addr, u16 vid)
1297  *	Deletes the FDB entry from dev coresponding to addr.
1298  * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[],
1299  *			   struct net_device *dev,
1300  *			   u16 vid,
1301  *			   struct netlink_ext_ack *extack);
1302  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1303  *		       struct net_device *dev, struct net_device *filter_dev,
1304  *		       int *idx)
1305  *	Used to add FDB entries to dump requests. Implementers should add
1306  *	entries to skb and update idx with the number of entries.
1307  *
1308  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1309  *			     u16 flags, struct netlink_ext_ack *extack)
1310  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1311  *			     struct net_device *dev, u32 filter_mask,
1312  *			     int nlflags)
1313  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1314  *			     u16 flags);
1315  *
1316  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1317  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1318  *	which do not represent real hardware may define this to allow their
1319  *	userspace components to manage their virtual carrier state. Devices
1320  *	that determine carrier state from physical hardware properties (eg
1321  *	network cables) or protocol-dependent mechanisms (eg
1322  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1323  *
1324  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1325  *			       struct netdev_phys_item_id *ppid);
1326  *	Called to get ID of physical port of this device. If driver does
1327  *	not implement this, it is assumed that the hw is not able to have
1328  *	multiple net devices on single physical port.
1329  *
1330  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1331  *				 struct netdev_phys_item_id *ppid)
1332  *	Called to get the parent ID of the physical port of this device.
1333  *
1334  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1335  *				 struct net_device *dev)
1336  *	Called by upper layer devices to accelerate switching or other
1337  *	station functionality into hardware. 'pdev is the lowerdev
1338  *	to use for the offload and 'dev' is the net device that will
1339  *	back the offload. Returns a pointer to the private structure
1340  *	the upper layer will maintain.
1341  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1342  *	Called by upper layer device to delete the station created
1343  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1344  *	the station and priv is the structure returned by the add
1345  *	operation.
1346  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1347  *			     int queue_index, u32 maxrate);
1348  *	Called when a user wants to set a max-rate limitation of specific
1349  *	TX queue.
1350  * int (*ndo_get_iflink)(const struct net_device *dev);
1351  *	Called to get the iflink value of this device.
1352  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1353  *	This function is used to get egress tunnel information for given skb.
1354  *	This is useful for retrieving outer tunnel header parameters while
1355  *	sampling packet.
1356  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1357  *	This function is used to specify the headroom that the skb must
1358  *	consider when allocation skb during packet reception. Setting
1359  *	appropriate rx headroom value allows avoiding skb head copy on
1360  *	forward. Setting a negative value resets the rx headroom to the
1361  *	default value.
1362  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1363  *	This function is used to set or query state related to XDP on the
1364  *	netdevice and manage BPF offload. See definition of
1365  *	enum bpf_netdev_command for details.
1366  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1367  *			u32 flags);
1368  *	This function is used to submit @n XDP packets for transmit on a
1369  *	netdevice. Returns number of frames successfully transmitted, frames
1370  *	that got dropped are freed/returned via xdp_return_frame().
1371  *	Returns negative number, means general error invoking ndo, meaning
1372  *	no frames were xmit'ed and core-caller will free all frames.
1373  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1374  *					        struct xdp_buff *xdp);
1375  *      Get the xmit slave of master device based on the xdp_buff.
1376  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1377  *      This function is used to wake up the softirq, ksoftirqd or kthread
1378  *	responsible for sending and/or receiving packets on a specific
1379  *	queue id bound to an AF_XDP socket. The flags field specifies if
1380  *	only RX, only Tx, or both should be woken up using the flags
1381  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1382  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1383  *			 int cmd);
1384  *	Add, change, delete or get information on an IPv4 tunnel.
1385  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1386  *	If a device is paired with a peer device, return the peer instance.
1387  *	The caller must be under RCU read context.
1388  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1389  *     Get the forwarding path to reach the real device from the HW destination address
1390  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1391  *			     const struct skb_shared_hwtstamps *hwtstamps,
1392  *			     bool cycles);
1393  *	Get hardware timestamp based on normal/adjustable time or free running
1394  *	cycle counter. This function is required if physical clock supports a
1395  *	free running cycle counter.
1396  */
1397 struct net_device_ops {
1398 	int			(*ndo_init)(struct net_device *dev);
1399 	void			(*ndo_uninit)(struct net_device *dev);
1400 	int			(*ndo_open)(struct net_device *dev);
1401 	int			(*ndo_stop)(struct net_device *dev);
1402 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1403 						  struct net_device *dev);
1404 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1405 						      struct net_device *dev,
1406 						      netdev_features_t features);
1407 	u16			(*ndo_select_queue)(struct net_device *dev,
1408 						    struct sk_buff *skb,
1409 						    struct net_device *sb_dev);
1410 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1411 						       int flags);
1412 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1413 	int			(*ndo_set_mac_address)(struct net_device *dev,
1414 						       void *addr);
1415 	int			(*ndo_validate_addr)(struct net_device *dev);
1416 	int			(*ndo_do_ioctl)(struct net_device *dev,
1417 					        struct ifreq *ifr, int cmd);
1418 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1419 						 struct ifreq *ifr, int cmd);
1420 	int			(*ndo_siocbond)(struct net_device *dev,
1421 						struct ifreq *ifr, int cmd);
1422 	int			(*ndo_siocwandev)(struct net_device *dev,
1423 						  struct if_settings *ifs);
1424 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1425 						      struct ifreq *ifr,
1426 						      void __user *data, int cmd);
1427 	int			(*ndo_set_config)(struct net_device *dev,
1428 					          struct ifmap *map);
1429 	int			(*ndo_change_mtu)(struct net_device *dev,
1430 						  int new_mtu);
1431 	int			(*ndo_neigh_setup)(struct net_device *dev,
1432 						   struct neigh_parms *);
1433 	void			(*ndo_tx_timeout) (struct net_device *dev,
1434 						   unsigned int txqueue);
1435 
1436 	void			(*ndo_get_stats64)(struct net_device *dev,
1437 						   struct rtnl_link_stats64 *storage);
1438 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1439 	int			(*ndo_get_offload_stats)(int attr_id,
1440 							 const struct net_device *dev,
1441 							 void *attr_data);
1442 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1443 
1444 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1445 						       __be16 proto, u16 vid);
1446 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1447 						        __be16 proto, u16 vid);
1448 #ifdef CONFIG_NET_POLL_CONTROLLER
1449 	void                    (*ndo_poll_controller)(struct net_device *dev);
1450 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1451 						     struct netpoll_info *info);
1452 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1453 #endif
1454 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1455 						  int queue, u8 *mac);
1456 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1457 						   int queue, u16 vlan,
1458 						   u8 qos, __be16 proto);
1459 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1460 						   int vf, int min_tx_rate,
1461 						   int max_tx_rate);
1462 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1463 						       int vf, bool setting);
1464 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1465 						    int vf, bool setting);
1466 	int			(*ndo_get_vf_config)(struct net_device *dev,
1467 						     int vf,
1468 						     struct ifla_vf_info *ivf);
1469 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1470 							 int vf, int link_state);
1471 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1472 						    int vf,
1473 						    struct ifla_vf_stats
1474 						    *vf_stats);
1475 	int			(*ndo_set_vf_port)(struct net_device *dev,
1476 						   int vf,
1477 						   struct nlattr *port[]);
1478 	int			(*ndo_get_vf_port)(struct net_device *dev,
1479 						   int vf, struct sk_buff *skb);
1480 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1481 						   int vf,
1482 						   struct ifla_vf_guid *node_guid,
1483 						   struct ifla_vf_guid *port_guid);
1484 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1485 						   int vf, u64 guid,
1486 						   int guid_type);
1487 	int			(*ndo_set_vf_rss_query_en)(
1488 						   struct net_device *dev,
1489 						   int vf, bool setting);
1490 	int			(*ndo_setup_tc)(struct net_device *dev,
1491 						enum tc_setup_type type,
1492 						void *type_data);
1493 #if IS_ENABLED(CONFIG_FCOE)
1494 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1495 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1496 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1497 						      u16 xid,
1498 						      struct scatterlist *sgl,
1499 						      unsigned int sgc);
1500 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1501 						     u16 xid);
1502 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1503 						       u16 xid,
1504 						       struct scatterlist *sgl,
1505 						       unsigned int sgc);
1506 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1507 							struct netdev_fcoe_hbainfo *hbainfo);
1508 #endif
1509 
1510 #if IS_ENABLED(CONFIG_LIBFCOE)
1511 #define NETDEV_FCOE_WWNN 0
1512 #define NETDEV_FCOE_WWPN 1
1513 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1514 						    u64 *wwn, int type);
1515 #endif
1516 
1517 #ifdef CONFIG_RFS_ACCEL
1518 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1519 						     const struct sk_buff *skb,
1520 						     u16 rxq_index,
1521 						     u32 flow_id);
1522 #endif
1523 	int			(*ndo_add_slave)(struct net_device *dev,
1524 						 struct net_device *slave_dev,
1525 						 struct netlink_ext_ack *extack);
1526 	int			(*ndo_del_slave)(struct net_device *dev,
1527 						 struct net_device *slave_dev);
1528 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1529 						      struct sk_buff *skb,
1530 						      bool all_slaves);
1531 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1532 							struct sock *sk);
1533 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1534 						    netdev_features_t features);
1535 	int			(*ndo_set_features)(struct net_device *dev,
1536 						    netdev_features_t features);
1537 	int			(*ndo_neigh_construct)(struct net_device *dev,
1538 						       struct neighbour *n);
1539 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1540 						     struct neighbour *n);
1541 
1542 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1543 					       struct nlattr *tb[],
1544 					       struct net_device *dev,
1545 					       const unsigned char *addr,
1546 					       u16 vid,
1547 					       u16 flags,
1548 					       struct netlink_ext_ack *extack);
1549 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1550 					       struct nlattr *tb[],
1551 					       struct net_device *dev,
1552 					       const unsigned char *addr,
1553 					       u16 vid, struct netlink_ext_ack *extack);
1554 	int			(*ndo_fdb_del_bulk)(struct ndmsg *ndm,
1555 						    struct nlattr *tb[],
1556 						    struct net_device *dev,
1557 						    u16 vid,
1558 						    struct netlink_ext_ack *extack);
1559 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1560 						struct netlink_callback *cb,
1561 						struct net_device *dev,
1562 						struct net_device *filter_dev,
1563 						int *idx);
1564 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1565 					       struct nlattr *tb[],
1566 					       struct net_device *dev,
1567 					       const unsigned char *addr,
1568 					       u16 vid, u32 portid, u32 seq,
1569 					       struct netlink_ext_ack *extack);
1570 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1571 						      struct nlmsghdr *nlh,
1572 						      u16 flags,
1573 						      struct netlink_ext_ack *extack);
1574 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1575 						      u32 pid, u32 seq,
1576 						      struct net_device *dev,
1577 						      u32 filter_mask,
1578 						      int nlflags);
1579 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1580 						      struct nlmsghdr *nlh,
1581 						      u16 flags);
1582 	int			(*ndo_change_carrier)(struct net_device *dev,
1583 						      bool new_carrier);
1584 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1585 							struct netdev_phys_item_id *ppid);
1586 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1587 							  struct netdev_phys_item_id *ppid);
1588 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1589 							  char *name, size_t len);
1590 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1591 							struct net_device *dev);
1592 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1593 							void *priv);
1594 
1595 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1596 						      int queue_index,
1597 						      u32 maxrate);
1598 	int			(*ndo_get_iflink)(const struct net_device *dev);
1599 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1600 						       struct sk_buff *skb);
1601 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1602 						       int needed_headroom);
1603 	int			(*ndo_bpf)(struct net_device *dev,
1604 					   struct netdev_bpf *bpf);
1605 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1606 						struct xdp_frame **xdp,
1607 						u32 flags);
1608 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1609 							  struct xdp_buff *xdp);
1610 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1611 						  u32 queue_id, u32 flags);
1612 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1613 						  struct ip_tunnel_parm *p, int cmd);
1614 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1615 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1616                                                          struct net_device_path *path);
1617 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1618 						  const struct skb_shared_hwtstamps *hwtstamps,
1619 						  bool cycles);
1620 };
1621 
1622 struct xdp_metadata_ops {
1623 	int	(*xmo_rx_timestamp)(const struct xdp_md *ctx, u64 *timestamp);
1624 	int	(*xmo_rx_hash)(const struct xdp_md *ctx, u32 *hash);
1625 };
1626 
1627 /**
1628  * enum netdev_priv_flags - &struct net_device priv_flags
1629  *
1630  * These are the &struct net_device, they are only set internally
1631  * by drivers and used in the kernel. These flags are invisible to
1632  * userspace; this means that the order of these flags can change
1633  * during any kernel release.
1634  *
1635  * You should have a pretty good reason to be extending these flags.
1636  *
1637  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1638  * @IFF_EBRIDGE: Ethernet bridging device
1639  * @IFF_BONDING: bonding master or slave
1640  * @IFF_ISATAP: ISATAP interface (RFC4214)
1641  * @IFF_WAN_HDLC: WAN HDLC device
1642  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1643  *	release skb->dst
1644  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1645  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1646  * @IFF_MACVLAN_PORT: device used as macvlan port
1647  * @IFF_BRIDGE_PORT: device used as bridge port
1648  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1649  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1650  * @IFF_UNICAST_FLT: Supports unicast filtering
1651  * @IFF_TEAM_PORT: device used as team port
1652  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1653  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1654  *	change when it's running
1655  * @IFF_MACVLAN: Macvlan device
1656  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1657  *	underlying stacked devices
1658  * @IFF_L3MDEV_MASTER: device is an L3 master device
1659  * @IFF_NO_QUEUE: device can run without qdisc attached
1660  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1661  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1662  * @IFF_TEAM: device is a team device
1663  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1664  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1665  *	entity (i.e. the master device for bridged veth)
1666  * @IFF_MACSEC: device is a MACsec device
1667  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1668  * @IFF_FAILOVER: device is a failover master device
1669  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1670  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1671  * @IFF_NO_ADDRCONF: prevent ipv6 addrconf
1672  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1673  *	skb_headlen(skb) == 0 (data starts from frag0)
1674  * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1675  */
1676 enum netdev_priv_flags {
1677 	IFF_802_1Q_VLAN			= 1<<0,
1678 	IFF_EBRIDGE			= 1<<1,
1679 	IFF_BONDING			= 1<<2,
1680 	IFF_ISATAP			= 1<<3,
1681 	IFF_WAN_HDLC			= 1<<4,
1682 	IFF_XMIT_DST_RELEASE		= 1<<5,
1683 	IFF_DONT_BRIDGE			= 1<<6,
1684 	IFF_DISABLE_NETPOLL		= 1<<7,
1685 	IFF_MACVLAN_PORT		= 1<<8,
1686 	IFF_BRIDGE_PORT			= 1<<9,
1687 	IFF_OVS_DATAPATH		= 1<<10,
1688 	IFF_TX_SKB_SHARING		= 1<<11,
1689 	IFF_UNICAST_FLT			= 1<<12,
1690 	IFF_TEAM_PORT			= 1<<13,
1691 	IFF_SUPP_NOFCS			= 1<<14,
1692 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1693 	IFF_MACVLAN			= 1<<16,
1694 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1695 	IFF_L3MDEV_MASTER		= 1<<18,
1696 	IFF_NO_QUEUE			= 1<<19,
1697 	IFF_OPENVSWITCH			= 1<<20,
1698 	IFF_L3MDEV_SLAVE		= 1<<21,
1699 	IFF_TEAM			= 1<<22,
1700 	IFF_RXFH_CONFIGURED		= 1<<23,
1701 	IFF_PHONY_HEADROOM		= 1<<24,
1702 	IFF_MACSEC			= 1<<25,
1703 	IFF_NO_RX_HANDLER		= 1<<26,
1704 	IFF_FAILOVER			= 1<<27,
1705 	IFF_FAILOVER_SLAVE		= 1<<28,
1706 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1707 	IFF_NO_ADDRCONF			= BIT_ULL(30),
1708 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1709 	IFF_CHANGE_PROTO_DOWN		= BIT_ULL(32),
1710 };
1711 
1712 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1713 #define IFF_EBRIDGE			IFF_EBRIDGE
1714 #define IFF_BONDING			IFF_BONDING
1715 #define IFF_ISATAP			IFF_ISATAP
1716 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1717 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1718 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1719 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1720 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1721 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1722 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1723 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1724 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1725 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1726 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1727 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1728 #define IFF_MACVLAN			IFF_MACVLAN
1729 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1730 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1731 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1732 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1733 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1734 #define IFF_TEAM			IFF_TEAM
1735 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1736 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1737 #define IFF_MACSEC			IFF_MACSEC
1738 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1739 #define IFF_FAILOVER			IFF_FAILOVER
1740 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1741 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1742 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1743 
1744 /* Specifies the type of the struct net_device::ml_priv pointer */
1745 enum netdev_ml_priv_type {
1746 	ML_PRIV_NONE,
1747 	ML_PRIV_CAN,
1748 };
1749 
1750 /**
1751  *	struct net_device - The DEVICE structure.
1752  *
1753  *	Actually, this whole structure is a big mistake.  It mixes I/O
1754  *	data with strictly "high-level" data, and it has to know about
1755  *	almost every data structure used in the INET module.
1756  *
1757  *	@name:	This is the first field of the "visible" part of this structure
1758  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1759  *		of the interface.
1760  *
1761  *	@name_node:	Name hashlist node
1762  *	@ifalias:	SNMP alias
1763  *	@mem_end:	Shared memory end
1764  *	@mem_start:	Shared memory start
1765  *	@base_addr:	Device I/O address
1766  *	@irq:		Device IRQ number
1767  *
1768  *	@state:		Generic network queuing layer state, see netdev_state_t
1769  *	@dev_list:	The global list of network devices
1770  *	@napi_list:	List entry used for polling NAPI devices
1771  *	@unreg_list:	List entry  when we are unregistering the
1772  *			device; see the function unregister_netdev
1773  *	@close_list:	List entry used when we are closing the device
1774  *	@ptype_all:     Device-specific packet handlers for all protocols
1775  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1776  *
1777  *	@adj_list:	Directly linked devices, like slaves for bonding
1778  *	@features:	Currently active device features
1779  *	@hw_features:	User-changeable features
1780  *
1781  *	@wanted_features:	User-requested features
1782  *	@vlan_features:		Mask of features inheritable by VLAN devices
1783  *
1784  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1785  *				This field indicates what encapsulation
1786  *				offloads the hardware is capable of doing,
1787  *				and drivers will need to set them appropriately.
1788  *
1789  *	@mpls_features:	Mask of features inheritable by MPLS
1790  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1791  *
1792  *	@ifindex:	interface index
1793  *	@group:		The group the device belongs to
1794  *
1795  *	@stats:		Statistics struct, which was left as a legacy, use
1796  *			rtnl_link_stats64 instead
1797  *
1798  *	@core_stats:	core networking counters,
1799  *			do not use this in drivers
1800  *	@carrier_up_count:	Number of times the carrier has been up
1801  *	@carrier_down_count:	Number of times the carrier has been down
1802  *
1803  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1804  *				instead of ioctl,
1805  *				see <net/iw_handler.h> for details.
1806  *	@wireless_data:	Instance data managed by the core of wireless extensions
1807  *
1808  *	@netdev_ops:	Includes several pointers to callbacks,
1809  *			if one wants to override the ndo_*() functions
1810  *	@xdp_metadata_ops:	Includes pointers to XDP metadata callbacks.
1811  *	@ethtool_ops:	Management operations
1812  *	@l3mdev_ops:	Layer 3 master device operations
1813  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1814  *			discovery handling. Necessary for e.g. 6LoWPAN.
1815  *	@xfrmdev_ops:	Transformation offload operations
1816  *	@tlsdev_ops:	Transport Layer Security offload operations
1817  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1818  *			of Layer 2 headers.
1819  *
1820  *	@flags:		Interface flags (a la BSD)
1821  *	@priv_flags:	Like 'flags' but invisible to userspace,
1822  *			see if.h for the definitions
1823  *	@gflags:	Global flags ( kept as legacy )
1824  *	@padded:	How much padding added by alloc_netdev()
1825  *	@operstate:	RFC2863 operstate
1826  *	@link_mode:	Mapping policy to operstate
1827  *	@if_port:	Selectable AUI, TP, ...
1828  *	@dma:		DMA channel
1829  *	@mtu:		Interface MTU value
1830  *	@min_mtu:	Interface Minimum MTU value
1831  *	@max_mtu:	Interface Maximum MTU value
1832  *	@type:		Interface hardware type
1833  *	@hard_header_len: Maximum hardware header length.
1834  *	@min_header_len:  Minimum hardware header length
1835  *
1836  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1837  *			  cases can this be guaranteed
1838  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1839  *			  cases can this be guaranteed. Some cases also use
1840  *			  LL_MAX_HEADER instead to allocate the skb
1841  *
1842  *	interface address info:
1843  *
1844  * 	@perm_addr:		Permanent hw address
1845  * 	@addr_assign_type:	Hw address assignment type
1846  * 	@addr_len:		Hardware address length
1847  *	@upper_level:		Maximum depth level of upper devices.
1848  *	@lower_level:		Maximum depth level of lower devices.
1849  *	@neigh_priv_len:	Used in neigh_alloc()
1850  * 	@dev_id:		Used to differentiate devices that share
1851  * 				the same link layer address
1852  * 	@dev_port:		Used to differentiate devices that share
1853  * 				the same function
1854  *	@addr_list_lock:	XXX: need comments on this one
1855  *	@name_assign_type:	network interface name assignment type
1856  *	@uc_promisc:		Counter that indicates promiscuous mode
1857  *				has been enabled due to the need to listen to
1858  *				additional unicast addresses in a device that
1859  *				does not implement ndo_set_rx_mode()
1860  *	@uc:			unicast mac addresses
1861  *	@mc:			multicast mac addresses
1862  *	@dev_addrs:		list of device hw addresses
1863  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1864  *	@promiscuity:		Number of times the NIC is told to work in
1865  *				promiscuous mode; if it becomes 0 the NIC will
1866  *				exit promiscuous mode
1867  *	@allmulti:		Counter, enables or disables allmulticast mode
1868  *
1869  *	@vlan_info:	VLAN info
1870  *	@dsa_ptr:	dsa specific data
1871  *	@tipc_ptr:	TIPC specific data
1872  *	@atalk_ptr:	AppleTalk link
1873  *	@ip_ptr:	IPv4 specific data
1874  *	@ip6_ptr:	IPv6 specific data
1875  *	@ax25_ptr:	AX.25 specific data
1876  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1877  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1878  *			 device struct
1879  *	@mpls_ptr:	mpls_dev struct pointer
1880  *	@mctp_ptr:	MCTP specific data
1881  *
1882  *	@dev_addr:	Hw address (before bcast,
1883  *			because most packets are unicast)
1884  *
1885  *	@_rx:			Array of RX queues
1886  *	@num_rx_queues:		Number of RX queues
1887  *				allocated at register_netdev() time
1888  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1889  *	@xdp_prog:		XDP sockets filter program pointer
1890  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1891  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1892  *				allow to avoid NIC hard IRQ, on busy queues.
1893  *
1894  *	@rx_handler:		handler for received packets
1895  *	@rx_handler_data: 	XXX: need comments on this one
1896  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1897  *				ingress processing
1898  *	@ingress_queue:		XXX: need comments on this one
1899  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1900  *	@broadcast:		hw bcast address
1901  *
1902  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1903  *			indexed by RX queue number. Assigned by driver.
1904  *			This must only be set if the ndo_rx_flow_steer
1905  *			operation is defined
1906  *	@index_hlist:		Device index hash chain
1907  *
1908  *	@_tx:			Array of TX queues
1909  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1910  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1911  *	@qdisc:			Root qdisc from userspace point of view
1912  *	@tx_queue_len:		Max frames per queue allowed
1913  *	@tx_global_lock: 	XXX: need comments on this one
1914  *	@xdp_bulkq:		XDP device bulk queue
1915  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1916  *
1917  *	@xps_maps:	XXX: need comments on this one
1918  *	@miniq_egress:		clsact qdisc specific data for
1919  *				egress processing
1920  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1921  *	@qdisc_hash:		qdisc hash table
1922  *	@watchdog_timeo:	Represents the timeout that is used by
1923  *				the watchdog (see dev_watchdog())
1924  *	@watchdog_timer:	List of timers
1925  *
1926  *	@proto_down_reason:	reason a netdev interface is held down
1927  *	@pcpu_refcnt:		Number of references to this device
1928  *	@dev_refcnt:		Number of references to this device
1929  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1930  *	@todo_list:		Delayed register/unregister
1931  *	@link_watch_list:	XXX: need comments on this one
1932  *
1933  *	@reg_state:		Register/unregister state machine
1934  *	@dismantle:		Device is going to be freed
1935  *	@rtnl_link_state:	This enum represents the phases of creating
1936  *				a new link
1937  *
1938  *	@needs_free_netdev:	Should unregister perform free_netdev?
1939  *	@priv_destructor:	Called from unregister
1940  *	@npinfo:		XXX: need comments on this one
1941  * 	@nd_net:		Network namespace this network device is inside
1942  *
1943  * 	@ml_priv:	Mid-layer private
1944  *	@ml_priv_type:  Mid-layer private type
1945  * 	@lstats:	Loopback statistics
1946  * 	@tstats:	Tunnel statistics
1947  * 	@dstats:	Dummy statistics
1948  * 	@vstats:	Virtual ethernet statistics
1949  *
1950  *	@garp_port:	GARP
1951  *	@mrp_port:	MRP
1952  *
1953  *	@dm_private:	Drop monitor private
1954  *
1955  *	@dev:		Class/net/name entry
1956  *	@sysfs_groups:	Space for optional device, statistics and wireless
1957  *			sysfs groups
1958  *
1959  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1960  *	@rtnl_link_ops:	Rtnl_link_ops
1961  *
1962  *	@gso_max_size:	Maximum size of generic segmentation offload
1963  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
1964  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1965  *			NIC for GSO
1966  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
1967  *
1968  *	@dcbnl_ops:	Data Center Bridging netlink ops
1969  *	@num_tc:	Number of traffic classes in the net device
1970  *	@tc_to_txq:	XXX: need comments on this one
1971  *	@prio_tc_map:	XXX: need comments on this one
1972  *
1973  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1974  *
1975  *	@priomap:	XXX: need comments on this one
1976  *	@phydev:	Physical device may attach itself
1977  *			for hardware timestamping
1978  *	@sfp_bus:	attached &struct sfp_bus structure.
1979  *
1980  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1981  *
1982  *	@proto_down:	protocol port state information can be sent to the
1983  *			switch driver and used to set the phys state of the
1984  *			switch port.
1985  *
1986  *	@wol_enabled:	Wake-on-LAN is enabled
1987  *
1988  *	@threaded:	napi threaded mode is enabled
1989  *
1990  *	@net_notifier_list:	List of per-net netdev notifier block
1991  *				that follow this device when it is moved
1992  *				to another network namespace.
1993  *
1994  *	@macsec_ops:    MACsec offloading ops
1995  *
1996  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1997  *				offload capabilities of the device
1998  *	@udp_tunnel_nic:	UDP tunnel offload state
1999  *	@xdp_state:		stores info on attached XDP BPF programs
2000  *
2001  *	@nested_level:	Used as a parameter of spin_lock_nested() of
2002  *			dev->addr_list_lock.
2003  *	@unlink_list:	As netif_addr_lock() can be called recursively,
2004  *			keep a list of interfaces to be deleted.
2005  *	@gro_max_size:	Maximum size of aggregated packet in generic
2006  *			receive offload (GRO)
2007  *
2008  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
2009  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
2010  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
2011  *	@dev_registered_tracker:	tracker for reference held while
2012  *					registered
2013  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
2014  *
2015  *	@devlink_port:	Pointer to related devlink port structure.
2016  *			Assigned by a driver before netdev registration using
2017  *			SET_NETDEV_DEVLINK_PORT macro. This pointer is static
2018  *			during the time netdevice is registered.
2019  *
2020  *	FIXME: cleanup struct net_device such that network protocol info
2021  *	moves out.
2022  */
2023 
2024 struct net_device {
2025 	char			name[IFNAMSIZ];
2026 	struct netdev_name_node	*name_node;
2027 	struct dev_ifalias	__rcu *ifalias;
2028 	/*
2029 	 *	I/O specific fields
2030 	 *	FIXME: Merge these and struct ifmap into one
2031 	 */
2032 	unsigned long		mem_end;
2033 	unsigned long		mem_start;
2034 	unsigned long		base_addr;
2035 
2036 	/*
2037 	 *	Some hardware also needs these fields (state,dev_list,
2038 	 *	napi_list,unreg_list,close_list) but they are not
2039 	 *	part of the usual set specified in Space.c.
2040 	 */
2041 
2042 	unsigned long		state;
2043 
2044 	struct list_head	dev_list;
2045 	struct list_head	napi_list;
2046 	struct list_head	unreg_list;
2047 	struct list_head	close_list;
2048 	struct list_head	ptype_all;
2049 	struct list_head	ptype_specific;
2050 
2051 	struct {
2052 		struct list_head upper;
2053 		struct list_head lower;
2054 	} adj_list;
2055 
2056 	/* Read-mostly cache-line for fast-path access */
2057 	unsigned int		flags;
2058 	unsigned long long	priv_flags;
2059 	const struct net_device_ops *netdev_ops;
2060 	const struct xdp_metadata_ops *xdp_metadata_ops;
2061 	int			ifindex;
2062 	unsigned short		gflags;
2063 	unsigned short		hard_header_len;
2064 
2065 	/* Note : dev->mtu is often read without holding a lock.
2066 	 * Writers usually hold RTNL.
2067 	 * It is recommended to use READ_ONCE() to annotate the reads,
2068 	 * and to use WRITE_ONCE() to annotate the writes.
2069 	 */
2070 	unsigned int		mtu;
2071 	unsigned short		needed_headroom;
2072 	unsigned short		needed_tailroom;
2073 
2074 	netdev_features_t	features;
2075 	netdev_features_t	hw_features;
2076 	netdev_features_t	wanted_features;
2077 	netdev_features_t	vlan_features;
2078 	netdev_features_t	hw_enc_features;
2079 	netdev_features_t	mpls_features;
2080 	netdev_features_t	gso_partial_features;
2081 
2082 	unsigned int		min_mtu;
2083 	unsigned int		max_mtu;
2084 	unsigned short		type;
2085 	unsigned char		min_header_len;
2086 	unsigned char		name_assign_type;
2087 
2088 	int			group;
2089 
2090 	struct net_device_stats	stats; /* not used by modern drivers */
2091 
2092 	struct net_device_core_stats __percpu *core_stats;
2093 
2094 	/* Stats to monitor link on/off, flapping */
2095 	atomic_t		carrier_up_count;
2096 	atomic_t		carrier_down_count;
2097 
2098 #ifdef CONFIG_WIRELESS_EXT
2099 	const struct iw_handler_def *wireless_handlers;
2100 	struct iw_public_data	*wireless_data;
2101 #endif
2102 	const struct ethtool_ops *ethtool_ops;
2103 #ifdef CONFIG_NET_L3_MASTER_DEV
2104 	const struct l3mdev_ops	*l3mdev_ops;
2105 #endif
2106 #if IS_ENABLED(CONFIG_IPV6)
2107 	const struct ndisc_ops *ndisc_ops;
2108 #endif
2109 
2110 #ifdef CONFIG_XFRM_OFFLOAD
2111 	const struct xfrmdev_ops *xfrmdev_ops;
2112 #endif
2113 
2114 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2115 	const struct tlsdev_ops *tlsdev_ops;
2116 #endif
2117 
2118 	const struct header_ops *header_ops;
2119 
2120 	unsigned char		operstate;
2121 	unsigned char		link_mode;
2122 
2123 	unsigned char		if_port;
2124 	unsigned char		dma;
2125 
2126 	/* Interface address info. */
2127 	unsigned char		perm_addr[MAX_ADDR_LEN];
2128 	unsigned char		addr_assign_type;
2129 	unsigned char		addr_len;
2130 	unsigned char		upper_level;
2131 	unsigned char		lower_level;
2132 
2133 	unsigned short		neigh_priv_len;
2134 	unsigned short          dev_id;
2135 	unsigned short          dev_port;
2136 	unsigned short		padded;
2137 
2138 	spinlock_t		addr_list_lock;
2139 	int			irq;
2140 
2141 	struct netdev_hw_addr_list	uc;
2142 	struct netdev_hw_addr_list	mc;
2143 	struct netdev_hw_addr_list	dev_addrs;
2144 
2145 #ifdef CONFIG_SYSFS
2146 	struct kset		*queues_kset;
2147 #endif
2148 #ifdef CONFIG_LOCKDEP
2149 	struct list_head	unlink_list;
2150 #endif
2151 	unsigned int		promiscuity;
2152 	unsigned int		allmulti;
2153 	bool			uc_promisc;
2154 #ifdef CONFIG_LOCKDEP
2155 	unsigned char		nested_level;
2156 #endif
2157 
2158 
2159 	/* Protocol-specific pointers */
2160 
2161 	struct in_device __rcu	*ip_ptr;
2162 	struct inet6_dev __rcu	*ip6_ptr;
2163 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2164 	struct vlan_info __rcu	*vlan_info;
2165 #endif
2166 #if IS_ENABLED(CONFIG_NET_DSA)
2167 	struct dsa_port		*dsa_ptr;
2168 #endif
2169 #if IS_ENABLED(CONFIG_TIPC)
2170 	struct tipc_bearer __rcu *tipc_ptr;
2171 #endif
2172 #if IS_ENABLED(CONFIG_ATALK)
2173 	void 			*atalk_ptr;
2174 #endif
2175 #if IS_ENABLED(CONFIG_AX25)
2176 	void			*ax25_ptr;
2177 #endif
2178 #if IS_ENABLED(CONFIG_CFG80211)
2179 	struct wireless_dev	*ieee80211_ptr;
2180 #endif
2181 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2182 	struct wpan_dev		*ieee802154_ptr;
2183 #endif
2184 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2185 	struct mpls_dev __rcu	*mpls_ptr;
2186 #endif
2187 #if IS_ENABLED(CONFIG_MCTP)
2188 	struct mctp_dev __rcu	*mctp_ptr;
2189 #endif
2190 
2191 /*
2192  * Cache lines mostly used on receive path (including eth_type_trans())
2193  */
2194 	/* Interface address info used in eth_type_trans() */
2195 	const unsigned char	*dev_addr;
2196 
2197 	struct netdev_rx_queue	*_rx;
2198 	unsigned int		num_rx_queues;
2199 	unsigned int		real_num_rx_queues;
2200 
2201 	struct bpf_prog __rcu	*xdp_prog;
2202 	unsigned long		gro_flush_timeout;
2203 	int			napi_defer_hard_irqs;
2204 #define GRO_LEGACY_MAX_SIZE	65536u
2205 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2206  * and shinfo->gso_segs is a 16bit field.
2207  */
2208 #define GRO_MAX_SIZE		(8 * 65535u)
2209 	unsigned int		gro_max_size;
2210 	rx_handler_func_t __rcu	*rx_handler;
2211 	void __rcu		*rx_handler_data;
2212 
2213 #ifdef CONFIG_NET_CLS_ACT
2214 	struct mini_Qdisc __rcu	*miniq_ingress;
2215 #endif
2216 	struct netdev_queue __rcu *ingress_queue;
2217 #ifdef CONFIG_NETFILTER_INGRESS
2218 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2219 #endif
2220 
2221 	unsigned char		broadcast[MAX_ADDR_LEN];
2222 #ifdef CONFIG_RFS_ACCEL
2223 	struct cpu_rmap		*rx_cpu_rmap;
2224 #endif
2225 	struct hlist_node	index_hlist;
2226 
2227 /*
2228  * Cache lines mostly used on transmit path
2229  */
2230 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2231 	unsigned int		num_tx_queues;
2232 	unsigned int		real_num_tx_queues;
2233 	struct Qdisc __rcu	*qdisc;
2234 	unsigned int		tx_queue_len;
2235 	spinlock_t		tx_global_lock;
2236 
2237 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2238 
2239 #ifdef CONFIG_XPS
2240 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2241 #endif
2242 #ifdef CONFIG_NET_CLS_ACT
2243 	struct mini_Qdisc __rcu	*miniq_egress;
2244 #endif
2245 #ifdef CONFIG_NETFILTER_EGRESS
2246 	struct nf_hook_entries __rcu *nf_hooks_egress;
2247 #endif
2248 
2249 #ifdef CONFIG_NET_SCHED
2250 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2251 #endif
2252 	/* These may be needed for future network-power-down code. */
2253 	struct timer_list	watchdog_timer;
2254 	int			watchdog_timeo;
2255 
2256 	u32                     proto_down_reason;
2257 
2258 	struct list_head	todo_list;
2259 
2260 #ifdef CONFIG_PCPU_DEV_REFCNT
2261 	int __percpu		*pcpu_refcnt;
2262 #else
2263 	refcount_t		dev_refcnt;
2264 #endif
2265 	struct ref_tracker_dir	refcnt_tracker;
2266 
2267 	struct list_head	link_watch_list;
2268 
2269 	enum { NETREG_UNINITIALIZED=0,
2270 	       NETREG_REGISTERED,	/* completed register_netdevice */
2271 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2272 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2273 	       NETREG_RELEASED,		/* called free_netdev */
2274 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2275 	} reg_state:8;
2276 
2277 	bool dismantle;
2278 
2279 	enum {
2280 		RTNL_LINK_INITIALIZED,
2281 		RTNL_LINK_INITIALIZING,
2282 	} rtnl_link_state:16;
2283 
2284 	bool needs_free_netdev;
2285 	void (*priv_destructor)(struct net_device *dev);
2286 
2287 #ifdef CONFIG_NETPOLL
2288 	struct netpoll_info __rcu	*npinfo;
2289 #endif
2290 
2291 	possible_net_t			nd_net;
2292 
2293 	/* mid-layer private */
2294 	void				*ml_priv;
2295 	enum netdev_ml_priv_type	ml_priv_type;
2296 
2297 	union {
2298 		struct pcpu_lstats __percpu		*lstats;
2299 		struct pcpu_sw_netstats __percpu	*tstats;
2300 		struct pcpu_dstats __percpu		*dstats;
2301 	};
2302 
2303 #if IS_ENABLED(CONFIG_GARP)
2304 	struct garp_port __rcu	*garp_port;
2305 #endif
2306 #if IS_ENABLED(CONFIG_MRP)
2307 	struct mrp_port __rcu	*mrp_port;
2308 #endif
2309 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2310 	struct dm_hw_stat_delta __rcu *dm_private;
2311 #endif
2312 	struct device		dev;
2313 	const struct attribute_group *sysfs_groups[4];
2314 	const struct attribute_group *sysfs_rx_queue_group;
2315 
2316 	const struct rtnl_link_ops *rtnl_link_ops;
2317 
2318 	/* for setting kernel sock attribute on TCP connection setup */
2319 #define GSO_MAX_SEGS		65535u
2320 #define GSO_LEGACY_MAX_SIZE	65536u
2321 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2322  * and shinfo->gso_segs is a 16bit field.
2323  */
2324 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2325 
2326 	unsigned int		gso_max_size;
2327 #define TSO_LEGACY_MAX_SIZE	65536
2328 #define TSO_MAX_SIZE		UINT_MAX
2329 	unsigned int		tso_max_size;
2330 	u16			gso_max_segs;
2331 #define TSO_MAX_SEGS		U16_MAX
2332 	u16			tso_max_segs;
2333 
2334 #ifdef CONFIG_DCB
2335 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2336 #endif
2337 	s16			num_tc;
2338 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2339 	u8			prio_tc_map[TC_BITMASK + 1];
2340 
2341 #if IS_ENABLED(CONFIG_FCOE)
2342 	unsigned int		fcoe_ddp_xid;
2343 #endif
2344 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2345 	struct netprio_map __rcu *priomap;
2346 #endif
2347 	struct phy_device	*phydev;
2348 	struct sfp_bus		*sfp_bus;
2349 	struct lock_class_key	*qdisc_tx_busylock;
2350 	bool			proto_down;
2351 	unsigned		wol_enabled:1;
2352 	unsigned		threaded:1;
2353 
2354 	struct list_head	net_notifier_list;
2355 
2356 #if IS_ENABLED(CONFIG_MACSEC)
2357 	/* MACsec management functions */
2358 	const struct macsec_ops *macsec_ops;
2359 #endif
2360 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2361 	struct udp_tunnel_nic	*udp_tunnel_nic;
2362 
2363 	/* protected by rtnl_lock */
2364 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2365 
2366 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2367 	netdevice_tracker	linkwatch_dev_tracker;
2368 	netdevice_tracker	watchdog_dev_tracker;
2369 	netdevice_tracker	dev_registered_tracker;
2370 	struct rtnl_hw_stats64	*offload_xstats_l3;
2371 
2372 	struct devlink_port	*devlink_port;
2373 };
2374 #define to_net_dev(d) container_of(d, struct net_device, dev)
2375 
2376 /*
2377  * Driver should use this to assign devlink port instance to a netdevice
2378  * before it registers the netdevice. Therefore devlink_port is static
2379  * during the netdev lifetime after it is registered.
2380  */
2381 #define SET_NETDEV_DEVLINK_PORT(dev, port)			\
2382 ({								\
2383 	WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED);	\
2384 	((dev)->devlink_port = (port));				\
2385 })
2386 
2387 static inline bool netif_elide_gro(const struct net_device *dev)
2388 {
2389 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2390 		return true;
2391 	return false;
2392 }
2393 
2394 #define	NETDEV_ALIGN		32
2395 
2396 static inline
2397 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2398 {
2399 	return dev->prio_tc_map[prio & TC_BITMASK];
2400 }
2401 
2402 static inline
2403 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2404 {
2405 	if (tc >= dev->num_tc)
2406 		return -EINVAL;
2407 
2408 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2409 	return 0;
2410 }
2411 
2412 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2413 void netdev_reset_tc(struct net_device *dev);
2414 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2415 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2416 
2417 static inline
2418 int netdev_get_num_tc(struct net_device *dev)
2419 {
2420 	return dev->num_tc;
2421 }
2422 
2423 static inline void net_prefetch(void *p)
2424 {
2425 	prefetch(p);
2426 #if L1_CACHE_BYTES < 128
2427 	prefetch((u8 *)p + L1_CACHE_BYTES);
2428 #endif
2429 }
2430 
2431 static inline void net_prefetchw(void *p)
2432 {
2433 	prefetchw(p);
2434 #if L1_CACHE_BYTES < 128
2435 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2436 #endif
2437 }
2438 
2439 void netdev_unbind_sb_channel(struct net_device *dev,
2440 			      struct net_device *sb_dev);
2441 int netdev_bind_sb_channel_queue(struct net_device *dev,
2442 				 struct net_device *sb_dev,
2443 				 u8 tc, u16 count, u16 offset);
2444 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2445 static inline int netdev_get_sb_channel(struct net_device *dev)
2446 {
2447 	return max_t(int, -dev->num_tc, 0);
2448 }
2449 
2450 static inline
2451 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2452 					 unsigned int index)
2453 {
2454 	return &dev->_tx[index];
2455 }
2456 
2457 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2458 						    const struct sk_buff *skb)
2459 {
2460 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2461 }
2462 
2463 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2464 					    void (*f)(struct net_device *,
2465 						      struct netdev_queue *,
2466 						      void *),
2467 					    void *arg)
2468 {
2469 	unsigned int i;
2470 
2471 	for (i = 0; i < dev->num_tx_queues; i++)
2472 		f(dev, &dev->_tx[i], arg);
2473 }
2474 
2475 #define netdev_lockdep_set_classes(dev)				\
2476 {								\
2477 	static struct lock_class_key qdisc_tx_busylock_key;	\
2478 	static struct lock_class_key qdisc_xmit_lock_key;	\
2479 	static struct lock_class_key dev_addr_list_lock_key;	\
2480 	unsigned int i;						\
2481 								\
2482 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2483 	lockdep_set_class(&(dev)->addr_list_lock,		\
2484 			  &dev_addr_list_lock_key);		\
2485 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2486 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2487 				  &qdisc_xmit_lock_key);	\
2488 }
2489 
2490 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2491 		     struct net_device *sb_dev);
2492 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2493 					 struct sk_buff *skb,
2494 					 struct net_device *sb_dev);
2495 
2496 /* returns the headroom that the master device needs to take in account
2497  * when forwarding to this dev
2498  */
2499 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2500 {
2501 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2502 }
2503 
2504 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2505 {
2506 	if (dev->netdev_ops->ndo_set_rx_headroom)
2507 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2508 }
2509 
2510 /* set the device rx headroom to the dev's default */
2511 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2512 {
2513 	netdev_set_rx_headroom(dev, -1);
2514 }
2515 
2516 static inline void *netdev_get_ml_priv(struct net_device *dev,
2517 				       enum netdev_ml_priv_type type)
2518 {
2519 	if (dev->ml_priv_type != type)
2520 		return NULL;
2521 
2522 	return dev->ml_priv;
2523 }
2524 
2525 static inline void netdev_set_ml_priv(struct net_device *dev,
2526 				      void *ml_priv,
2527 				      enum netdev_ml_priv_type type)
2528 {
2529 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2530 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2531 	     dev->ml_priv_type, type);
2532 	WARN(!dev->ml_priv_type && dev->ml_priv,
2533 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2534 
2535 	dev->ml_priv = ml_priv;
2536 	dev->ml_priv_type = type;
2537 }
2538 
2539 /*
2540  * Net namespace inlines
2541  */
2542 static inline
2543 struct net *dev_net(const struct net_device *dev)
2544 {
2545 	return read_pnet(&dev->nd_net);
2546 }
2547 
2548 static inline
2549 void dev_net_set(struct net_device *dev, struct net *net)
2550 {
2551 	write_pnet(&dev->nd_net, net);
2552 }
2553 
2554 /**
2555  *	netdev_priv - access network device private data
2556  *	@dev: network device
2557  *
2558  * Get network device private data
2559  */
2560 static inline void *netdev_priv(const struct net_device *dev)
2561 {
2562 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2563 }
2564 
2565 /* Set the sysfs physical device reference for the network logical device
2566  * if set prior to registration will cause a symlink during initialization.
2567  */
2568 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2569 
2570 /* Set the sysfs device type for the network logical device to allow
2571  * fine-grained identification of different network device types. For
2572  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2573  */
2574 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2575 
2576 /* Default NAPI poll() weight
2577  * Device drivers are strongly advised to not use bigger value
2578  */
2579 #define NAPI_POLL_WEIGHT 64
2580 
2581 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2582 			   int (*poll)(struct napi_struct *, int), int weight);
2583 
2584 /**
2585  * netif_napi_add() - initialize a NAPI context
2586  * @dev:  network device
2587  * @napi: NAPI context
2588  * @poll: polling function
2589  *
2590  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2591  * *any* of the other NAPI-related functions.
2592  */
2593 static inline void
2594 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2595 	       int (*poll)(struct napi_struct *, int))
2596 {
2597 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2598 }
2599 
2600 static inline void
2601 netif_napi_add_tx_weight(struct net_device *dev,
2602 			 struct napi_struct *napi,
2603 			 int (*poll)(struct napi_struct *, int),
2604 			 int weight)
2605 {
2606 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2607 	netif_napi_add_weight(dev, napi, poll, weight);
2608 }
2609 
2610 /**
2611  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2612  * @dev:  network device
2613  * @napi: NAPI context
2614  * @poll: polling function
2615  *
2616  * This variant of netif_napi_add() should be used from drivers using NAPI
2617  * to exclusively poll a TX queue.
2618  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2619  */
2620 static inline void netif_napi_add_tx(struct net_device *dev,
2621 				     struct napi_struct *napi,
2622 				     int (*poll)(struct napi_struct *, int))
2623 {
2624 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2625 }
2626 
2627 /**
2628  *  __netif_napi_del - remove a NAPI context
2629  *  @napi: NAPI context
2630  *
2631  * Warning: caller must observe RCU grace period before freeing memory
2632  * containing @napi. Drivers might want to call this helper to combine
2633  * all the needed RCU grace periods into a single one.
2634  */
2635 void __netif_napi_del(struct napi_struct *napi);
2636 
2637 /**
2638  *  netif_napi_del - remove a NAPI context
2639  *  @napi: NAPI context
2640  *
2641  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2642  */
2643 static inline void netif_napi_del(struct napi_struct *napi)
2644 {
2645 	__netif_napi_del(napi);
2646 	synchronize_net();
2647 }
2648 
2649 struct packet_type {
2650 	__be16			type;	/* This is really htons(ether_type). */
2651 	bool			ignore_outgoing;
2652 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2653 	netdevice_tracker	dev_tracker;
2654 	int			(*func) (struct sk_buff *,
2655 					 struct net_device *,
2656 					 struct packet_type *,
2657 					 struct net_device *);
2658 	void			(*list_func) (struct list_head *,
2659 					      struct packet_type *,
2660 					      struct net_device *);
2661 	bool			(*id_match)(struct packet_type *ptype,
2662 					    struct sock *sk);
2663 	struct net		*af_packet_net;
2664 	void			*af_packet_priv;
2665 	struct list_head	list;
2666 };
2667 
2668 struct offload_callbacks {
2669 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2670 						netdev_features_t features);
2671 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2672 						struct sk_buff *skb);
2673 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2674 };
2675 
2676 struct packet_offload {
2677 	__be16			 type;	/* This is really htons(ether_type). */
2678 	u16			 priority;
2679 	struct offload_callbacks callbacks;
2680 	struct list_head	 list;
2681 };
2682 
2683 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2684 struct pcpu_sw_netstats {
2685 	u64_stats_t		rx_packets;
2686 	u64_stats_t		rx_bytes;
2687 	u64_stats_t		tx_packets;
2688 	u64_stats_t		tx_bytes;
2689 	struct u64_stats_sync   syncp;
2690 } __aligned(4 * sizeof(u64));
2691 
2692 struct pcpu_lstats {
2693 	u64_stats_t packets;
2694 	u64_stats_t bytes;
2695 	struct u64_stats_sync syncp;
2696 } __aligned(2 * sizeof(u64));
2697 
2698 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2699 
2700 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2701 {
2702 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2703 
2704 	u64_stats_update_begin(&tstats->syncp);
2705 	u64_stats_add(&tstats->rx_bytes, len);
2706 	u64_stats_inc(&tstats->rx_packets);
2707 	u64_stats_update_end(&tstats->syncp);
2708 }
2709 
2710 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2711 					  unsigned int packets,
2712 					  unsigned int len)
2713 {
2714 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2715 
2716 	u64_stats_update_begin(&tstats->syncp);
2717 	u64_stats_add(&tstats->tx_bytes, len);
2718 	u64_stats_add(&tstats->tx_packets, packets);
2719 	u64_stats_update_end(&tstats->syncp);
2720 }
2721 
2722 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2723 {
2724 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2725 
2726 	u64_stats_update_begin(&lstats->syncp);
2727 	u64_stats_add(&lstats->bytes, len);
2728 	u64_stats_inc(&lstats->packets);
2729 	u64_stats_update_end(&lstats->syncp);
2730 }
2731 
2732 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2733 ({									\
2734 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2735 	if (pcpu_stats)	{						\
2736 		int __cpu;						\
2737 		for_each_possible_cpu(__cpu) {				\
2738 			typeof(type) *stat;				\
2739 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2740 			u64_stats_init(&stat->syncp);			\
2741 		}							\
2742 	}								\
2743 	pcpu_stats;							\
2744 })
2745 
2746 #define netdev_alloc_pcpu_stats(type)					\
2747 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2748 
2749 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2750 ({									\
2751 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2752 	if (pcpu_stats) {						\
2753 		int __cpu;						\
2754 		for_each_possible_cpu(__cpu) {				\
2755 			typeof(type) *stat;				\
2756 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2757 			u64_stats_init(&stat->syncp);			\
2758 		}							\
2759 	}								\
2760 	pcpu_stats;							\
2761 })
2762 
2763 enum netdev_lag_tx_type {
2764 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2765 	NETDEV_LAG_TX_TYPE_RANDOM,
2766 	NETDEV_LAG_TX_TYPE_BROADCAST,
2767 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2768 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2769 	NETDEV_LAG_TX_TYPE_HASH,
2770 };
2771 
2772 enum netdev_lag_hash {
2773 	NETDEV_LAG_HASH_NONE,
2774 	NETDEV_LAG_HASH_L2,
2775 	NETDEV_LAG_HASH_L34,
2776 	NETDEV_LAG_HASH_L23,
2777 	NETDEV_LAG_HASH_E23,
2778 	NETDEV_LAG_HASH_E34,
2779 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2780 	NETDEV_LAG_HASH_UNKNOWN,
2781 };
2782 
2783 struct netdev_lag_upper_info {
2784 	enum netdev_lag_tx_type tx_type;
2785 	enum netdev_lag_hash hash_type;
2786 };
2787 
2788 struct netdev_lag_lower_state_info {
2789 	u8 link_up : 1,
2790 	   tx_enabled : 1;
2791 };
2792 
2793 #include <linux/notifier.h>
2794 
2795 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2796  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2797  * adding new types.
2798  */
2799 enum netdev_cmd {
2800 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2801 	NETDEV_DOWN,
2802 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2803 				   detected a hardware crash and restarted
2804 				   - we can use this eg to kick tcp sessions
2805 				   once done */
2806 	NETDEV_CHANGE,		/* Notify device state change */
2807 	NETDEV_REGISTER,
2808 	NETDEV_UNREGISTER,
2809 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2810 	NETDEV_CHANGEADDR,	/* notify after the address change */
2811 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2812 	NETDEV_GOING_DOWN,
2813 	NETDEV_CHANGENAME,
2814 	NETDEV_FEAT_CHANGE,
2815 	NETDEV_BONDING_FAILOVER,
2816 	NETDEV_PRE_UP,
2817 	NETDEV_PRE_TYPE_CHANGE,
2818 	NETDEV_POST_TYPE_CHANGE,
2819 	NETDEV_POST_INIT,
2820 	NETDEV_PRE_UNINIT,
2821 	NETDEV_RELEASE,
2822 	NETDEV_NOTIFY_PEERS,
2823 	NETDEV_JOIN,
2824 	NETDEV_CHANGEUPPER,
2825 	NETDEV_RESEND_IGMP,
2826 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2827 	NETDEV_CHANGEINFODATA,
2828 	NETDEV_BONDING_INFO,
2829 	NETDEV_PRECHANGEUPPER,
2830 	NETDEV_CHANGELOWERSTATE,
2831 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2832 	NETDEV_UDP_TUNNEL_DROP_INFO,
2833 	NETDEV_CHANGE_TX_QUEUE_LEN,
2834 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2835 	NETDEV_CVLAN_FILTER_DROP_INFO,
2836 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2837 	NETDEV_SVLAN_FILTER_DROP_INFO,
2838 	NETDEV_OFFLOAD_XSTATS_ENABLE,
2839 	NETDEV_OFFLOAD_XSTATS_DISABLE,
2840 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2841 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2842 };
2843 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2844 
2845 int register_netdevice_notifier(struct notifier_block *nb);
2846 int unregister_netdevice_notifier(struct notifier_block *nb);
2847 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2848 int unregister_netdevice_notifier_net(struct net *net,
2849 				      struct notifier_block *nb);
2850 void move_netdevice_notifier_net(struct net *src_net, struct net *dst_net,
2851 				 struct notifier_block *nb);
2852 int register_netdevice_notifier_dev_net(struct net_device *dev,
2853 					struct notifier_block *nb,
2854 					struct netdev_net_notifier *nn);
2855 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2856 					  struct notifier_block *nb,
2857 					  struct netdev_net_notifier *nn);
2858 
2859 struct netdev_notifier_info {
2860 	struct net_device	*dev;
2861 	struct netlink_ext_ack	*extack;
2862 };
2863 
2864 struct netdev_notifier_info_ext {
2865 	struct netdev_notifier_info info; /* must be first */
2866 	union {
2867 		u32 mtu;
2868 	} ext;
2869 };
2870 
2871 struct netdev_notifier_change_info {
2872 	struct netdev_notifier_info info; /* must be first */
2873 	unsigned int flags_changed;
2874 };
2875 
2876 struct netdev_notifier_changeupper_info {
2877 	struct netdev_notifier_info info; /* must be first */
2878 	struct net_device *upper_dev; /* new upper dev */
2879 	bool master; /* is upper dev master */
2880 	bool linking; /* is the notification for link or unlink */
2881 	void *upper_info; /* upper dev info */
2882 };
2883 
2884 struct netdev_notifier_changelowerstate_info {
2885 	struct netdev_notifier_info info; /* must be first */
2886 	void *lower_state_info; /* is lower dev state */
2887 };
2888 
2889 struct netdev_notifier_pre_changeaddr_info {
2890 	struct netdev_notifier_info info; /* must be first */
2891 	const unsigned char *dev_addr;
2892 };
2893 
2894 enum netdev_offload_xstats_type {
2895 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
2896 };
2897 
2898 struct netdev_notifier_offload_xstats_info {
2899 	struct netdev_notifier_info info; /* must be first */
2900 	enum netdev_offload_xstats_type type;
2901 
2902 	union {
2903 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
2904 		struct netdev_notifier_offload_xstats_rd *report_delta;
2905 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
2906 		struct netdev_notifier_offload_xstats_ru *report_used;
2907 	};
2908 };
2909 
2910 int netdev_offload_xstats_enable(struct net_device *dev,
2911 				 enum netdev_offload_xstats_type type,
2912 				 struct netlink_ext_ack *extack);
2913 int netdev_offload_xstats_disable(struct net_device *dev,
2914 				  enum netdev_offload_xstats_type type);
2915 bool netdev_offload_xstats_enabled(const struct net_device *dev,
2916 				   enum netdev_offload_xstats_type type);
2917 int netdev_offload_xstats_get(struct net_device *dev,
2918 			      enum netdev_offload_xstats_type type,
2919 			      struct rtnl_hw_stats64 *stats, bool *used,
2920 			      struct netlink_ext_ack *extack);
2921 void
2922 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
2923 				   const struct rtnl_hw_stats64 *stats);
2924 void
2925 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
2926 void netdev_offload_xstats_push_delta(struct net_device *dev,
2927 				      enum netdev_offload_xstats_type type,
2928 				      const struct rtnl_hw_stats64 *stats);
2929 
2930 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2931 					     struct net_device *dev)
2932 {
2933 	info->dev = dev;
2934 	info->extack = NULL;
2935 }
2936 
2937 static inline struct net_device *
2938 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2939 {
2940 	return info->dev;
2941 }
2942 
2943 static inline struct netlink_ext_ack *
2944 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2945 {
2946 	return info->extack;
2947 }
2948 
2949 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2950 
2951 
2952 extern rwlock_t				dev_base_lock;		/* Device list lock */
2953 
2954 #define for_each_netdev(net, d)		\
2955 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2956 #define for_each_netdev_reverse(net, d)	\
2957 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2958 #define for_each_netdev_rcu(net, d)		\
2959 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2960 #define for_each_netdev_safe(net, d, n)	\
2961 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2962 #define for_each_netdev_continue(net, d)		\
2963 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2964 #define for_each_netdev_continue_reverse(net, d)		\
2965 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2966 						     dev_list)
2967 #define for_each_netdev_continue_rcu(net, d)		\
2968 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2969 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2970 		for_each_netdev_rcu(&init_net, slave)	\
2971 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2972 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2973 
2974 static inline struct net_device *next_net_device(struct net_device *dev)
2975 {
2976 	struct list_head *lh;
2977 	struct net *net;
2978 
2979 	net = dev_net(dev);
2980 	lh = dev->dev_list.next;
2981 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2982 }
2983 
2984 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2985 {
2986 	struct list_head *lh;
2987 	struct net *net;
2988 
2989 	net = dev_net(dev);
2990 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2991 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2992 }
2993 
2994 static inline struct net_device *first_net_device(struct net *net)
2995 {
2996 	return list_empty(&net->dev_base_head) ? NULL :
2997 		net_device_entry(net->dev_base_head.next);
2998 }
2999 
3000 static inline struct net_device *first_net_device_rcu(struct net *net)
3001 {
3002 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
3003 
3004 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3005 }
3006 
3007 int netdev_boot_setup_check(struct net_device *dev);
3008 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3009 				       const char *hwaddr);
3010 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
3011 void dev_add_pack(struct packet_type *pt);
3012 void dev_remove_pack(struct packet_type *pt);
3013 void __dev_remove_pack(struct packet_type *pt);
3014 void dev_add_offload(struct packet_offload *po);
3015 void dev_remove_offload(struct packet_offload *po);
3016 
3017 int dev_get_iflink(const struct net_device *dev);
3018 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3019 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3020 			  struct net_device_path_stack *stack);
3021 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3022 				      unsigned short mask);
3023 struct net_device *dev_get_by_name(struct net *net, const char *name);
3024 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3025 struct net_device *__dev_get_by_name(struct net *net, const char *name);
3026 bool netdev_name_in_use(struct net *net, const char *name);
3027 int dev_alloc_name(struct net_device *dev, const char *name);
3028 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3029 void dev_close(struct net_device *dev);
3030 void dev_close_many(struct list_head *head, bool unlink);
3031 void dev_disable_lro(struct net_device *dev);
3032 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3033 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3034 		     struct net_device *sb_dev);
3035 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3036 		       struct net_device *sb_dev);
3037 
3038 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3039 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3040 
3041 static inline int dev_queue_xmit(struct sk_buff *skb)
3042 {
3043 	return __dev_queue_xmit(skb, NULL);
3044 }
3045 
3046 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3047 				       struct net_device *sb_dev)
3048 {
3049 	return __dev_queue_xmit(skb, sb_dev);
3050 }
3051 
3052 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3053 {
3054 	int ret;
3055 
3056 	ret = __dev_direct_xmit(skb, queue_id);
3057 	if (!dev_xmit_complete(ret))
3058 		kfree_skb(skb);
3059 	return ret;
3060 }
3061 
3062 int register_netdevice(struct net_device *dev);
3063 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3064 void unregister_netdevice_many(struct list_head *head);
3065 static inline void unregister_netdevice(struct net_device *dev)
3066 {
3067 	unregister_netdevice_queue(dev, NULL);
3068 }
3069 
3070 int netdev_refcnt_read(const struct net_device *dev);
3071 void free_netdev(struct net_device *dev);
3072 void netdev_freemem(struct net_device *dev);
3073 int init_dummy_netdev(struct net_device *dev);
3074 
3075 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3076 					 struct sk_buff *skb,
3077 					 bool all_slaves);
3078 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3079 					    struct sock *sk);
3080 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3081 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3082 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3083 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3084 int dev_restart(struct net_device *dev);
3085 
3086 
3087 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3088 				  unsigned short type,
3089 				  const void *daddr, const void *saddr,
3090 				  unsigned int len)
3091 {
3092 	if (!dev->header_ops || !dev->header_ops->create)
3093 		return 0;
3094 
3095 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3096 }
3097 
3098 static inline int dev_parse_header(const struct sk_buff *skb,
3099 				   unsigned char *haddr)
3100 {
3101 	const struct net_device *dev = skb->dev;
3102 
3103 	if (!dev->header_ops || !dev->header_ops->parse)
3104 		return 0;
3105 	return dev->header_ops->parse(skb, haddr);
3106 }
3107 
3108 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3109 {
3110 	const struct net_device *dev = skb->dev;
3111 
3112 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3113 		return 0;
3114 	return dev->header_ops->parse_protocol(skb);
3115 }
3116 
3117 /* ll_header must have at least hard_header_len allocated */
3118 static inline bool dev_validate_header(const struct net_device *dev,
3119 				       char *ll_header, int len)
3120 {
3121 	if (likely(len >= dev->hard_header_len))
3122 		return true;
3123 	if (len < dev->min_header_len)
3124 		return false;
3125 
3126 	if (capable(CAP_SYS_RAWIO)) {
3127 		memset(ll_header + len, 0, dev->hard_header_len - len);
3128 		return true;
3129 	}
3130 
3131 	if (dev->header_ops && dev->header_ops->validate)
3132 		return dev->header_ops->validate(ll_header, len);
3133 
3134 	return false;
3135 }
3136 
3137 static inline bool dev_has_header(const struct net_device *dev)
3138 {
3139 	return dev->header_ops && dev->header_ops->create;
3140 }
3141 
3142 /*
3143  * Incoming packets are placed on per-CPU queues
3144  */
3145 struct softnet_data {
3146 	struct list_head	poll_list;
3147 	struct sk_buff_head	process_queue;
3148 
3149 	/* stats */
3150 	unsigned int		processed;
3151 	unsigned int		time_squeeze;
3152 #ifdef CONFIG_RPS
3153 	struct softnet_data	*rps_ipi_list;
3154 #endif
3155 #ifdef CONFIG_NET_FLOW_LIMIT
3156 	struct sd_flow_limit __rcu *flow_limit;
3157 #endif
3158 	struct Qdisc		*output_queue;
3159 	struct Qdisc		**output_queue_tailp;
3160 	struct sk_buff		*completion_queue;
3161 #ifdef CONFIG_XFRM_OFFLOAD
3162 	struct sk_buff_head	xfrm_backlog;
3163 #endif
3164 	/* written and read only by owning cpu: */
3165 	struct {
3166 		u16 recursion;
3167 		u8  more;
3168 #ifdef CONFIG_NET_EGRESS
3169 		u8  skip_txqueue;
3170 #endif
3171 	} xmit;
3172 #ifdef CONFIG_RPS
3173 	/* input_queue_head should be written by cpu owning this struct,
3174 	 * and only read by other cpus. Worth using a cache line.
3175 	 */
3176 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3177 
3178 	/* Elements below can be accessed between CPUs for RPS/RFS */
3179 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3180 	struct softnet_data	*rps_ipi_next;
3181 	unsigned int		cpu;
3182 	unsigned int		input_queue_tail;
3183 #endif
3184 	unsigned int		received_rps;
3185 	unsigned int		dropped;
3186 	struct sk_buff_head	input_pkt_queue;
3187 	struct napi_struct	backlog;
3188 
3189 	/* Another possibly contended cache line */
3190 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3191 	int			defer_count;
3192 	int			defer_ipi_scheduled;
3193 	struct sk_buff		*defer_list;
3194 	call_single_data_t	defer_csd;
3195 };
3196 
3197 static inline void input_queue_head_incr(struct softnet_data *sd)
3198 {
3199 #ifdef CONFIG_RPS
3200 	sd->input_queue_head++;
3201 #endif
3202 }
3203 
3204 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3205 					      unsigned int *qtail)
3206 {
3207 #ifdef CONFIG_RPS
3208 	*qtail = ++sd->input_queue_tail;
3209 #endif
3210 }
3211 
3212 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3213 
3214 static inline int dev_recursion_level(void)
3215 {
3216 	return this_cpu_read(softnet_data.xmit.recursion);
3217 }
3218 
3219 #define XMIT_RECURSION_LIMIT	8
3220 static inline bool dev_xmit_recursion(void)
3221 {
3222 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3223 			XMIT_RECURSION_LIMIT);
3224 }
3225 
3226 static inline void dev_xmit_recursion_inc(void)
3227 {
3228 	__this_cpu_inc(softnet_data.xmit.recursion);
3229 }
3230 
3231 static inline void dev_xmit_recursion_dec(void)
3232 {
3233 	__this_cpu_dec(softnet_data.xmit.recursion);
3234 }
3235 
3236 void __netif_schedule(struct Qdisc *q);
3237 void netif_schedule_queue(struct netdev_queue *txq);
3238 
3239 static inline void netif_tx_schedule_all(struct net_device *dev)
3240 {
3241 	unsigned int i;
3242 
3243 	for (i = 0; i < dev->num_tx_queues; i++)
3244 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3245 }
3246 
3247 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3248 {
3249 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3250 }
3251 
3252 /**
3253  *	netif_start_queue - allow transmit
3254  *	@dev: network device
3255  *
3256  *	Allow upper layers to call the device hard_start_xmit routine.
3257  */
3258 static inline void netif_start_queue(struct net_device *dev)
3259 {
3260 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3261 }
3262 
3263 static inline void netif_tx_start_all_queues(struct net_device *dev)
3264 {
3265 	unsigned int i;
3266 
3267 	for (i = 0; i < dev->num_tx_queues; i++) {
3268 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3269 		netif_tx_start_queue(txq);
3270 	}
3271 }
3272 
3273 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3274 
3275 /**
3276  *	netif_wake_queue - restart transmit
3277  *	@dev: network device
3278  *
3279  *	Allow upper layers to call the device hard_start_xmit routine.
3280  *	Used for flow control when transmit resources are available.
3281  */
3282 static inline void netif_wake_queue(struct net_device *dev)
3283 {
3284 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3285 }
3286 
3287 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3288 {
3289 	unsigned int i;
3290 
3291 	for (i = 0; i < dev->num_tx_queues; i++) {
3292 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3293 		netif_tx_wake_queue(txq);
3294 	}
3295 }
3296 
3297 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3298 {
3299 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3300 }
3301 
3302 /**
3303  *	netif_stop_queue - stop transmitted packets
3304  *	@dev: network device
3305  *
3306  *	Stop upper layers calling the device hard_start_xmit routine.
3307  *	Used for flow control when transmit resources are unavailable.
3308  */
3309 static inline void netif_stop_queue(struct net_device *dev)
3310 {
3311 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3312 }
3313 
3314 void netif_tx_stop_all_queues(struct net_device *dev);
3315 
3316 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3317 {
3318 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3319 }
3320 
3321 /**
3322  *	netif_queue_stopped - test if transmit queue is flowblocked
3323  *	@dev: network device
3324  *
3325  *	Test if transmit queue on device is currently unable to send.
3326  */
3327 static inline bool netif_queue_stopped(const struct net_device *dev)
3328 {
3329 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3330 }
3331 
3332 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3333 {
3334 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3335 }
3336 
3337 static inline bool
3338 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3339 {
3340 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3341 }
3342 
3343 static inline bool
3344 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3345 {
3346 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3347 }
3348 
3349 /**
3350  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3351  *	@dev_queue: pointer to transmit queue
3352  *	@min_limit: dql minimum limit
3353  *
3354  * Forces xmit_more() to return true until the minimum threshold
3355  * defined by @min_limit is reached (or until the tx queue is
3356  * empty). Warning: to be use with care, misuse will impact the
3357  * latency.
3358  */
3359 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3360 						  unsigned int min_limit)
3361 {
3362 #ifdef CONFIG_BQL
3363 	dev_queue->dql.min_limit = min_limit;
3364 #endif
3365 }
3366 
3367 /**
3368  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3369  *	@dev_queue: pointer to transmit queue
3370  *
3371  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3372  * to give appropriate hint to the CPU.
3373  */
3374 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3375 {
3376 #ifdef CONFIG_BQL
3377 	prefetchw(&dev_queue->dql.num_queued);
3378 #endif
3379 }
3380 
3381 /**
3382  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3383  *	@dev_queue: pointer to transmit queue
3384  *
3385  * BQL enabled drivers might use this helper in their TX completion path,
3386  * to give appropriate hint to the CPU.
3387  */
3388 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3389 {
3390 #ifdef CONFIG_BQL
3391 	prefetchw(&dev_queue->dql.limit);
3392 #endif
3393 }
3394 
3395 /**
3396  *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3397  *	@dev_queue: network device queue
3398  *	@bytes: number of bytes queued to the device queue
3399  *
3400  *	Report the number of bytes queued for sending/completion to the network
3401  *	device hardware queue. @bytes should be a good approximation and should
3402  *	exactly match netdev_completed_queue() @bytes.
3403  *	This is typically called once per packet, from ndo_start_xmit().
3404  */
3405 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3406 					unsigned int bytes)
3407 {
3408 #ifdef CONFIG_BQL
3409 	dql_queued(&dev_queue->dql, bytes);
3410 
3411 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3412 		return;
3413 
3414 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3415 
3416 	/*
3417 	 * The XOFF flag must be set before checking the dql_avail below,
3418 	 * because in netdev_tx_completed_queue we update the dql_completed
3419 	 * before checking the XOFF flag.
3420 	 */
3421 	smp_mb();
3422 
3423 	/* check again in case another CPU has just made room avail */
3424 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3425 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3426 #endif
3427 }
3428 
3429 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3430  * that they should not test BQL status themselves.
3431  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3432  * skb of a batch.
3433  * Returns true if the doorbell must be used to kick the NIC.
3434  */
3435 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3436 					  unsigned int bytes,
3437 					  bool xmit_more)
3438 {
3439 	if (xmit_more) {
3440 #ifdef CONFIG_BQL
3441 		dql_queued(&dev_queue->dql, bytes);
3442 #endif
3443 		return netif_tx_queue_stopped(dev_queue);
3444 	}
3445 	netdev_tx_sent_queue(dev_queue, bytes);
3446 	return true;
3447 }
3448 
3449 /**
3450  *	netdev_sent_queue - report the number of bytes queued to hardware
3451  *	@dev: network device
3452  *	@bytes: number of bytes queued to the hardware device queue
3453  *
3454  *	Report the number of bytes queued for sending/completion to the network
3455  *	device hardware queue#0. @bytes should be a good approximation and should
3456  *	exactly match netdev_completed_queue() @bytes.
3457  *	This is typically called once per packet, from ndo_start_xmit().
3458  */
3459 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3460 {
3461 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3462 }
3463 
3464 static inline bool __netdev_sent_queue(struct net_device *dev,
3465 				       unsigned int bytes,
3466 				       bool xmit_more)
3467 {
3468 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3469 				      xmit_more);
3470 }
3471 
3472 /**
3473  *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3474  *	@dev_queue: network device queue
3475  *	@pkts: number of packets (currently ignored)
3476  *	@bytes: number of bytes dequeued from the device queue
3477  *
3478  *	Must be called at most once per TX completion round (and not per
3479  *	individual packet), so that BQL can adjust its limits appropriately.
3480  */
3481 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3482 					     unsigned int pkts, unsigned int bytes)
3483 {
3484 #ifdef CONFIG_BQL
3485 	if (unlikely(!bytes))
3486 		return;
3487 
3488 	dql_completed(&dev_queue->dql, bytes);
3489 
3490 	/*
3491 	 * Without the memory barrier there is a small possiblity that
3492 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3493 	 * be stopped forever
3494 	 */
3495 	smp_mb();
3496 
3497 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3498 		return;
3499 
3500 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3501 		netif_schedule_queue(dev_queue);
3502 #endif
3503 }
3504 
3505 /**
3506  * 	netdev_completed_queue - report bytes and packets completed by device
3507  * 	@dev: network device
3508  * 	@pkts: actual number of packets sent over the medium
3509  * 	@bytes: actual number of bytes sent over the medium
3510  *
3511  * 	Report the number of bytes and packets transmitted by the network device
3512  * 	hardware queue over the physical medium, @bytes must exactly match the
3513  * 	@bytes amount passed to netdev_sent_queue()
3514  */
3515 static inline void netdev_completed_queue(struct net_device *dev,
3516 					  unsigned int pkts, unsigned int bytes)
3517 {
3518 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3519 }
3520 
3521 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3522 {
3523 #ifdef CONFIG_BQL
3524 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3525 	dql_reset(&q->dql);
3526 #endif
3527 }
3528 
3529 /**
3530  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3531  * 	@dev_queue: network device
3532  *
3533  * 	Reset the bytes and packet count of a network device and clear the
3534  * 	software flow control OFF bit for this network device
3535  */
3536 static inline void netdev_reset_queue(struct net_device *dev_queue)
3537 {
3538 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3539 }
3540 
3541 /**
3542  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3543  * 	@dev: network device
3544  * 	@queue_index: given tx queue index
3545  *
3546  * 	Returns 0 if given tx queue index >= number of device tx queues,
3547  * 	otherwise returns the originally passed tx queue index.
3548  */
3549 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3550 {
3551 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3552 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3553 				     dev->name, queue_index,
3554 				     dev->real_num_tx_queues);
3555 		return 0;
3556 	}
3557 
3558 	return queue_index;
3559 }
3560 
3561 /**
3562  *	netif_running - test if up
3563  *	@dev: network device
3564  *
3565  *	Test if the device has been brought up.
3566  */
3567 static inline bool netif_running(const struct net_device *dev)
3568 {
3569 	return test_bit(__LINK_STATE_START, &dev->state);
3570 }
3571 
3572 /*
3573  * Routines to manage the subqueues on a device.  We only need start,
3574  * stop, and a check if it's stopped.  All other device management is
3575  * done at the overall netdevice level.
3576  * Also test the device if we're multiqueue.
3577  */
3578 
3579 /**
3580  *	netif_start_subqueue - allow sending packets on subqueue
3581  *	@dev: network device
3582  *	@queue_index: sub queue index
3583  *
3584  * Start individual transmit queue of a device with multiple transmit queues.
3585  */
3586 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3587 {
3588 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3589 
3590 	netif_tx_start_queue(txq);
3591 }
3592 
3593 /**
3594  *	netif_stop_subqueue - stop sending packets on subqueue
3595  *	@dev: network device
3596  *	@queue_index: sub queue index
3597  *
3598  * Stop individual transmit queue of a device with multiple transmit queues.
3599  */
3600 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3601 {
3602 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3603 	netif_tx_stop_queue(txq);
3604 }
3605 
3606 /**
3607  *	__netif_subqueue_stopped - test status of subqueue
3608  *	@dev: network device
3609  *	@queue_index: sub queue index
3610  *
3611  * Check individual transmit queue of a device with multiple transmit queues.
3612  */
3613 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3614 					    u16 queue_index)
3615 {
3616 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3617 
3618 	return netif_tx_queue_stopped(txq);
3619 }
3620 
3621 /**
3622  *	netif_subqueue_stopped - test status of subqueue
3623  *	@dev: network device
3624  *	@skb: sub queue buffer pointer
3625  *
3626  * Check individual transmit queue of a device with multiple transmit queues.
3627  */
3628 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3629 					  struct sk_buff *skb)
3630 {
3631 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3632 }
3633 
3634 /**
3635  *	netif_wake_subqueue - allow sending packets on subqueue
3636  *	@dev: network device
3637  *	@queue_index: sub queue index
3638  *
3639  * Resume individual transmit queue of a device with multiple transmit queues.
3640  */
3641 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3642 {
3643 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3644 
3645 	netif_tx_wake_queue(txq);
3646 }
3647 
3648 #ifdef CONFIG_XPS
3649 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3650 			u16 index);
3651 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3652 			  u16 index, enum xps_map_type type);
3653 
3654 /**
3655  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3656  *	@j: CPU/Rx queue index
3657  *	@mask: bitmask of all cpus/rx queues
3658  *	@nr_bits: number of bits in the bitmask
3659  *
3660  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3661  */
3662 static inline bool netif_attr_test_mask(unsigned long j,
3663 					const unsigned long *mask,
3664 					unsigned int nr_bits)
3665 {
3666 	cpu_max_bits_warn(j, nr_bits);
3667 	return test_bit(j, mask);
3668 }
3669 
3670 /**
3671  *	netif_attr_test_online - Test for online CPU/Rx queue
3672  *	@j: CPU/Rx queue index
3673  *	@online_mask: bitmask for CPUs/Rx queues that are online
3674  *	@nr_bits: number of bits in the bitmask
3675  *
3676  * Returns true if a CPU/Rx queue is online.
3677  */
3678 static inline bool netif_attr_test_online(unsigned long j,
3679 					  const unsigned long *online_mask,
3680 					  unsigned int nr_bits)
3681 {
3682 	cpu_max_bits_warn(j, nr_bits);
3683 
3684 	if (online_mask)
3685 		return test_bit(j, online_mask);
3686 
3687 	return (j < nr_bits);
3688 }
3689 
3690 /**
3691  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3692  *	@n: CPU/Rx queue index
3693  *	@srcp: the cpumask/Rx queue mask pointer
3694  *	@nr_bits: number of bits in the bitmask
3695  *
3696  * Returns >= nr_bits if no further CPUs/Rx queues set.
3697  */
3698 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3699 					       unsigned int nr_bits)
3700 {
3701 	/* -1 is a legal arg here. */
3702 	if (n != -1)
3703 		cpu_max_bits_warn(n, nr_bits);
3704 
3705 	if (srcp)
3706 		return find_next_bit(srcp, nr_bits, n + 1);
3707 
3708 	return n + 1;
3709 }
3710 
3711 /**
3712  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3713  *	@n: CPU/Rx queue index
3714  *	@src1p: the first CPUs/Rx queues mask pointer
3715  *	@src2p: the second CPUs/Rx queues mask pointer
3716  *	@nr_bits: number of bits in the bitmask
3717  *
3718  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3719  */
3720 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3721 					  const unsigned long *src2p,
3722 					  unsigned int nr_bits)
3723 {
3724 	/* -1 is a legal arg here. */
3725 	if (n != -1)
3726 		cpu_max_bits_warn(n, nr_bits);
3727 
3728 	if (src1p && src2p)
3729 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3730 	else if (src1p)
3731 		return find_next_bit(src1p, nr_bits, n + 1);
3732 	else if (src2p)
3733 		return find_next_bit(src2p, nr_bits, n + 1);
3734 
3735 	return n + 1;
3736 }
3737 #else
3738 static inline int netif_set_xps_queue(struct net_device *dev,
3739 				      const struct cpumask *mask,
3740 				      u16 index)
3741 {
3742 	return 0;
3743 }
3744 
3745 static inline int __netif_set_xps_queue(struct net_device *dev,
3746 					const unsigned long *mask,
3747 					u16 index, enum xps_map_type type)
3748 {
3749 	return 0;
3750 }
3751 #endif
3752 
3753 /**
3754  *	netif_is_multiqueue - test if device has multiple transmit queues
3755  *	@dev: network device
3756  *
3757  * Check if device has multiple transmit queues
3758  */
3759 static inline bool netif_is_multiqueue(const struct net_device *dev)
3760 {
3761 	return dev->num_tx_queues > 1;
3762 }
3763 
3764 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3765 
3766 #ifdef CONFIG_SYSFS
3767 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3768 #else
3769 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3770 						unsigned int rxqs)
3771 {
3772 	dev->real_num_rx_queues = rxqs;
3773 	return 0;
3774 }
3775 #endif
3776 int netif_set_real_num_queues(struct net_device *dev,
3777 			      unsigned int txq, unsigned int rxq);
3778 
3779 static inline struct netdev_rx_queue *
3780 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3781 {
3782 	return dev->_rx + rxq;
3783 }
3784 
3785 #ifdef CONFIG_SYSFS
3786 static inline unsigned int get_netdev_rx_queue_index(
3787 		struct netdev_rx_queue *queue)
3788 {
3789 	struct net_device *dev = queue->dev;
3790 	int index = queue - dev->_rx;
3791 
3792 	BUG_ON(index >= dev->num_rx_queues);
3793 	return index;
3794 }
3795 #endif
3796 
3797 int netif_get_num_default_rss_queues(void);
3798 
3799 enum skb_free_reason {
3800 	SKB_REASON_CONSUMED,
3801 	SKB_REASON_DROPPED,
3802 };
3803 
3804 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3805 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3806 
3807 /*
3808  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3809  * interrupt context or with hardware interrupts being disabled.
3810  * (in_hardirq() || irqs_disabled())
3811  *
3812  * We provide four helpers that can be used in following contexts :
3813  *
3814  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3815  *  replacing kfree_skb(skb)
3816  *
3817  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3818  *  Typically used in place of consume_skb(skb) in TX completion path
3819  *
3820  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3821  *  replacing kfree_skb(skb)
3822  *
3823  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3824  *  and consumed a packet. Used in place of consume_skb(skb)
3825  */
3826 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3827 {
3828 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3829 }
3830 
3831 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3832 {
3833 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3834 }
3835 
3836 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3837 {
3838 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3839 }
3840 
3841 static inline void dev_consume_skb_any(struct sk_buff *skb)
3842 {
3843 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3844 }
3845 
3846 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3847 			     struct bpf_prog *xdp_prog);
3848 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3849 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3850 int netif_rx(struct sk_buff *skb);
3851 int __netif_rx(struct sk_buff *skb);
3852 
3853 int netif_receive_skb(struct sk_buff *skb);
3854 int netif_receive_skb_core(struct sk_buff *skb);
3855 void netif_receive_skb_list_internal(struct list_head *head);
3856 void netif_receive_skb_list(struct list_head *head);
3857 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3858 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3859 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3860 void napi_get_frags_check(struct napi_struct *napi);
3861 gro_result_t napi_gro_frags(struct napi_struct *napi);
3862 struct packet_offload *gro_find_receive_by_type(__be16 type);
3863 struct packet_offload *gro_find_complete_by_type(__be16 type);
3864 
3865 static inline void napi_free_frags(struct napi_struct *napi)
3866 {
3867 	kfree_skb(napi->skb);
3868 	napi->skb = NULL;
3869 }
3870 
3871 bool netdev_is_rx_handler_busy(struct net_device *dev);
3872 int netdev_rx_handler_register(struct net_device *dev,
3873 			       rx_handler_func_t *rx_handler,
3874 			       void *rx_handler_data);
3875 void netdev_rx_handler_unregister(struct net_device *dev);
3876 
3877 bool dev_valid_name(const char *name);
3878 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3879 {
3880 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3881 }
3882 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3883 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3884 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3885 		void __user *data, bool *need_copyout);
3886 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3887 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3888 unsigned int dev_get_flags(const struct net_device *);
3889 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3890 		       struct netlink_ext_ack *extack);
3891 int dev_change_flags(struct net_device *dev, unsigned int flags,
3892 		     struct netlink_ext_ack *extack);
3893 int dev_set_alias(struct net_device *, const char *, size_t);
3894 int dev_get_alias(const struct net_device *, char *, size_t);
3895 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3896 			       const char *pat, int new_ifindex);
3897 static inline
3898 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3899 			     const char *pat)
3900 {
3901 	return __dev_change_net_namespace(dev, net, pat, 0);
3902 }
3903 int __dev_set_mtu(struct net_device *, int);
3904 int dev_set_mtu(struct net_device *, int);
3905 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3906 			      struct netlink_ext_ack *extack);
3907 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3908 			struct netlink_ext_ack *extack);
3909 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3910 			     struct netlink_ext_ack *extack);
3911 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3912 int dev_get_port_parent_id(struct net_device *dev,
3913 			   struct netdev_phys_item_id *ppid, bool recurse);
3914 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3915 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3916 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3917 				    struct netdev_queue *txq, int *ret);
3918 
3919 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3920 u8 dev_xdp_prog_count(struct net_device *dev);
3921 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3922 
3923 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3924 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3925 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3926 bool is_skb_forwardable(const struct net_device *dev,
3927 			const struct sk_buff *skb);
3928 
3929 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3930 						 const struct sk_buff *skb,
3931 						 const bool check_mtu)
3932 {
3933 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3934 	unsigned int len;
3935 
3936 	if (!(dev->flags & IFF_UP))
3937 		return false;
3938 
3939 	if (!check_mtu)
3940 		return true;
3941 
3942 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3943 	if (skb->len <= len)
3944 		return true;
3945 
3946 	/* if TSO is enabled, we don't care about the length as the packet
3947 	 * could be forwarded without being segmented before
3948 	 */
3949 	if (skb_is_gso(skb))
3950 		return true;
3951 
3952 	return false;
3953 }
3954 
3955 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev);
3956 
3957 static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev)
3958 {
3959 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
3960 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
3961 
3962 	if (likely(p))
3963 		return p;
3964 
3965 	return netdev_core_stats_alloc(dev);
3966 }
3967 
3968 #define DEV_CORE_STATS_INC(FIELD)						\
3969 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
3970 {										\
3971 	struct net_device_core_stats __percpu *p;				\
3972 										\
3973 	p = dev_core_stats(dev);						\
3974 	if (p)									\
3975 		this_cpu_inc(p->FIELD);						\
3976 }
3977 DEV_CORE_STATS_INC(rx_dropped)
3978 DEV_CORE_STATS_INC(tx_dropped)
3979 DEV_CORE_STATS_INC(rx_nohandler)
3980 DEV_CORE_STATS_INC(rx_otherhost_dropped)
3981 
3982 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3983 					       struct sk_buff *skb,
3984 					       const bool check_mtu)
3985 {
3986 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3987 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
3988 		dev_core_stats_rx_dropped_inc(dev);
3989 		kfree_skb(skb);
3990 		return NET_RX_DROP;
3991 	}
3992 
3993 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
3994 	skb->priority = 0;
3995 	return 0;
3996 }
3997 
3998 bool dev_nit_active(struct net_device *dev);
3999 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4000 
4001 static inline void __dev_put(struct net_device *dev)
4002 {
4003 	if (dev) {
4004 #ifdef CONFIG_PCPU_DEV_REFCNT
4005 		this_cpu_dec(*dev->pcpu_refcnt);
4006 #else
4007 		refcount_dec(&dev->dev_refcnt);
4008 #endif
4009 	}
4010 }
4011 
4012 static inline void __dev_hold(struct net_device *dev)
4013 {
4014 	if (dev) {
4015 #ifdef CONFIG_PCPU_DEV_REFCNT
4016 		this_cpu_inc(*dev->pcpu_refcnt);
4017 #else
4018 		refcount_inc(&dev->dev_refcnt);
4019 #endif
4020 	}
4021 }
4022 
4023 static inline void __netdev_tracker_alloc(struct net_device *dev,
4024 					  netdevice_tracker *tracker,
4025 					  gfp_t gfp)
4026 {
4027 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4028 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4029 #endif
4030 }
4031 
4032 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4033  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4034  */
4035 static inline void netdev_tracker_alloc(struct net_device *dev,
4036 					netdevice_tracker *tracker, gfp_t gfp)
4037 {
4038 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4039 	refcount_dec(&dev->refcnt_tracker.no_tracker);
4040 	__netdev_tracker_alloc(dev, tracker, gfp);
4041 #endif
4042 }
4043 
4044 static inline void netdev_tracker_free(struct net_device *dev,
4045 				       netdevice_tracker *tracker)
4046 {
4047 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4048 	ref_tracker_free(&dev->refcnt_tracker, tracker);
4049 #endif
4050 }
4051 
4052 static inline void netdev_hold(struct net_device *dev,
4053 			       netdevice_tracker *tracker, gfp_t gfp)
4054 {
4055 	if (dev) {
4056 		__dev_hold(dev);
4057 		__netdev_tracker_alloc(dev, tracker, gfp);
4058 	}
4059 }
4060 
4061 static inline void netdev_put(struct net_device *dev,
4062 			      netdevice_tracker *tracker)
4063 {
4064 	if (dev) {
4065 		netdev_tracker_free(dev, tracker);
4066 		__dev_put(dev);
4067 	}
4068 }
4069 
4070 /**
4071  *	dev_hold - get reference to device
4072  *	@dev: network device
4073  *
4074  * Hold reference to device to keep it from being freed.
4075  * Try using netdev_hold() instead.
4076  */
4077 static inline void dev_hold(struct net_device *dev)
4078 {
4079 	netdev_hold(dev, NULL, GFP_ATOMIC);
4080 }
4081 
4082 /**
4083  *	dev_put - release reference to device
4084  *	@dev: network device
4085  *
4086  * Release reference to device to allow it to be freed.
4087  * Try using netdev_put() instead.
4088  */
4089 static inline void dev_put(struct net_device *dev)
4090 {
4091 	netdev_put(dev, NULL);
4092 }
4093 
4094 static inline void netdev_ref_replace(struct net_device *odev,
4095 				      struct net_device *ndev,
4096 				      netdevice_tracker *tracker,
4097 				      gfp_t gfp)
4098 {
4099 	if (odev)
4100 		netdev_tracker_free(odev, tracker);
4101 
4102 	__dev_hold(ndev);
4103 	__dev_put(odev);
4104 
4105 	if (ndev)
4106 		__netdev_tracker_alloc(ndev, tracker, gfp);
4107 }
4108 
4109 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4110  * and _off may be called from IRQ context, but it is caller
4111  * who is responsible for serialization of these calls.
4112  *
4113  * The name carrier is inappropriate, these functions should really be
4114  * called netif_lowerlayer_*() because they represent the state of any
4115  * kind of lower layer not just hardware media.
4116  */
4117 void linkwatch_fire_event(struct net_device *dev);
4118 
4119 /**
4120  *	netif_carrier_ok - test if carrier present
4121  *	@dev: network device
4122  *
4123  * Check if carrier is present on device
4124  */
4125 static inline bool netif_carrier_ok(const struct net_device *dev)
4126 {
4127 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4128 }
4129 
4130 unsigned long dev_trans_start(struct net_device *dev);
4131 
4132 void __netdev_watchdog_up(struct net_device *dev);
4133 
4134 void netif_carrier_on(struct net_device *dev);
4135 void netif_carrier_off(struct net_device *dev);
4136 void netif_carrier_event(struct net_device *dev);
4137 
4138 /**
4139  *	netif_dormant_on - mark device as dormant.
4140  *	@dev: network device
4141  *
4142  * Mark device as dormant (as per RFC2863).
4143  *
4144  * The dormant state indicates that the relevant interface is not
4145  * actually in a condition to pass packets (i.e., it is not 'up') but is
4146  * in a "pending" state, waiting for some external event.  For "on-
4147  * demand" interfaces, this new state identifies the situation where the
4148  * interface is waiting for events to place it in the up state.
4149  */
4150 static inline void netif_dormant_on(struct net_device *dev)
4151 {
4152 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4153 		linkwatch_fire_event(dev);
4154 }
4155 
4156 /**
4157  *	netif_dormant_off - set device as not dormant.
4158  *	@dev: network device
4159  *
4160  * Device is not in dormant state.
4161  */
4162 static inline void netif_dormant_off(struct net_device *dev)
4163 {
4164 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4165 		linkwatch_fire_event(dev);
4166 }
4167 
4168 /**
4169  *	netif_dormant - test if device is dormant
4170  *	@dev: network device
4171  *
4172  * Check if device is dormant.
4173  */
4174 static inline bool netif_dormant(const struct net_device *dev)
4175 {
4176 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4177 }
4178 
4179 
4180 /**
4181  *	netif_testing_on - mark device as under test.
4182  *	@dev: network device
4183  *
4184  * Mark device as under test (as per RFC2863).
4185  *
4186  * The testing state indicates that some test(s) must be performed on
4187  * the interface. After completion, of the test, the interface state
4188  * will change to up, dormant, or down, as appropriate.
4189  */
4190 static inline void netif_testing_on(struct net_device *dev)
4191 {
4192 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4193 		linkwatch_fire_event(dev);
4194 }
4195 
4196 /**
4197  *	netif_testing_off - set device as not under test.
4198  *	@dev: network device
4199  *
4200  * Device is not in testing state.
4201  */
4202 static inline void netif_testing_off(struct net_device *dev)
4203 {
4204 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4205 		linkwatch_fire_event(dev);
4206 }
4207 
4208 /**
4209  *	netif_testing - test if device is under test
4210  *	@dev: network device
4211  *
4212  * Check if device is under test
4213  */
4214 static inline bool netif_testing(const struct net_device *dev)
4215 {
4216 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4217 }
4218 
4219 
4220 /**
4221  *	netif_oper_up - test if device is operational
4222  *	@dev: network device
4223  *
4224  * Check if carrier is operational
4225  */
4226 static inline bool netif_oper_up(const struct net_device *dev)
4227 {
4228 	return (dev->operstate == IF_OPER_UP ||
4229 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4230 }
4231 
4232 /**
4233  *	netif_device_present - is device available or removed
4234  *	@dev: network device
4235  *
4236  * Check if device has not been removed from system.
4237  */
4238 static inline bool netif_device_present(const struct net_device *dev)
4239 {
4240 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4241 }
4242 
4243 void netif_device_detach(struct net_device *dev);
4244 
4245 void netif_device_attach(struct net_device *dev);
4246 
4247 /*
4248  * Network interface message level settings
4249  */
4250 
4251 enum {
4252 	NETIF_MSG_DRV_BIT,
4253 	NETIF_MSG_PROBE_BIT,
4254 	NETIF_MSG_LINK_BIT,
4255 	NETIF_MSG_TIMER_BIT,
4256 	NETIF_MSG_IFDOWN_BIT,
4257 	NETIF_MSG_IFUP_BIT,
4258 	NETIF_MSG_RX_ERR_BIT,
4259 	NETIF_MSG_TX_ERR_BIT,
4260 	NETIF_MSG_TX_QUEUED_BIT,
4261 	NETIF_MSG_INTR_BIT,
4262 	NETIF_MSG_TX_DONE_BIT,
4263 	NETIF_MSG_RX_STATUS_BIT,
4264 	NETIF_MSG_PKTDATA_BIT,
4265 	NETIF_MSG_HW_BIT,
4266 	NETIF_MSG_WOL_BIT,
4267 
4268 	/* When you add a new bit above, update netif_msg_class_names array
4269 	 * in net/ethtool/common.c
4270 	 */
4271 	NETIF_MSG_CLASS_COUNT,
4272 };
4273 /* Both ethtool_ops interface and internal driver implementation use u32 */
4274 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4275 
4276 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4277 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4278 
4279 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4280 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4281 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4282 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4283 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4284 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4285 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4286 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4287 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4288 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4289 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4290 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4291 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4292 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4293 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4294 
4295 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4296 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4297 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4298 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4299 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4300 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4301 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4302 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4303 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4304 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4305 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4306 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4307 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4308 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4309 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4310 
4311 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4312 {
4313 	/* use default */
4314 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4315 		return default_msg_enable_bits;
4316 	if (debug_value == 0)	/* no output */
4317 		return 0;
4318 	/* set low N bits */
4319 	return (1U << debug_value) - 1;
4320 }
4321 
4322 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4323 {
4324 	spin_lock(&txq->_xmit_lock);
4325 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4326 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4327 }
4328 
4329 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4330 {
4331 	__acquire(&txq->_xmit_lock);
4332 	return true;
4333 }
4334 
4335 static inline void __netif_tx_release(struct netdev_queue *txq)
4336 {
4337 	__release(&txq->_xmit_lock);
4338 }
4339 
4340 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4341 {
4342 	spin_lock_bh(&txq->_xmit_lock);
4343 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4344 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4345 }
4346 
4347 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4348 {
4349 	bool ok = spin_trylock(&txq->_xmit_lock);
4350 
4351 	if (likely(ok)) {
4352 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4353 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4354 	}
4355 	return ok;
4356 }
4357 
4358 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4359 {
4360 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4361 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4362 	spin_unlock(&txq->_xmit_lock);
4363 }
4364 
4365 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4366 {
4367 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4368 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4369 	spin_unlock_bh(&txq->_xmit_lock);
4370 }
4371 
4372 /*
4373  * txq->trans_start can be read locklessly from dev_watchdog()
4374  */
4375 static inline void txq_trans_update(struct netdev_queue *txq)
4376 {
4377 	if (txq->xmit_lock_owner != -1)
4378 		WRITE_ONCE(txq->trans_start, jiffies);
4379 }
4380 
4381 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4382 {
4383 	unsigned long now = jiffies;
4384 
4385 	if (READ_ONCE(txq->trans_start) != now)
4386 		WRITE_ONCE(txq->trans_start, now);
4387 }
4388 
4389 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4390 static inline void netif_trans_update(struct net_device *dev)
4391 {
4392 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4393 
4394 	txq_trans_cond_update(txq);
4395 }
4396 
4397 /**
4398  *	netif_tx_lock - grab network device transmit lock
4399  *	@dev: network device
4400  *
4401  * Get network device transmit lock
4402  */
4403 void netif_tx_lock(struct net_device *dev);
4404 
4405 static inline void netif_tx_lock_bh(struct net_device *dev)
4406 {
4407 	local_bh_disable();
4408 	netif_tx_lock(dev);
4409 }
4410 
4411 void netif_tx_unlock(struct net_device *dev);
4412 
4413 static inline void netif_tx_unlock_bh(struct net_device *dev)
4414 {
4415 	netif_tx_unlock(dev);
4416 	local_bh_enable();
4417 }
4418 
4419 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4420 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4421 		__netif_tx_lock(txq, cpu);		\
4422 	} else {					\
4423 		__netif_tx_acquire(txq);		\
4424 	}						\
4425 }
4426 
4427 #define HARD_TX_TRYLOCK(dev, txq)			\
4428 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4429 		__netif_tx_trylock(txq) :		\
4430 		__netif_tx_acquire(txq))
4431 
4432 #define HARD_TX_UNLOCK(dev, txq) {			\
4433 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4434 		__netif_tx_unlock(txq);			\
4435 	} else {					\
4436 		__netif_tx_release(txq);		\
4437 	}						\
4438 }
4439 
4440 static inline void netif_tx_disable(struct net_device *dev)
4441 {
4442 	unsigned int i;
4443 	int cpu;
4444 
4445 	local_bh_disable();
4446 	cpu = smp_processor_id();
4447 	spin_lock(&dev->tx_global_lock);
4448 	for (i = 0; i < dev->num_tx_queues; i++) {
4449 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4450 
4451 		__netif_tx_lock(txq, cpu);
4452 		netif_tx_stop_queue(txq);
4453 		__netif_tx_unlock(txq);
4454 	}
4455 	spin_unlock(&dev->tx_global_lock);
4456 	local_bh_enable();
4457 }
4458 
4459 static inline void netif_addr_lock(struct net_device *dev)
4460 {
4461 	unsigned char nest_level = 0;
4462 
4463 #ifdef CONFIG_LOCKDEP
4464 	nest_level = dev->nested_level;
4465 #endif
4466 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4467 }
4468 
4469 static inline void netif_addr_lock_bh(struct net_device *dev)
4470 {
4471 	unsigned char nest_level = 0;
4472 
4473 #ifdef CONFIG_LOCKDEP
4474 	nest_level = dev->nested_level;
4475 #endif
4476 	local_bh_disable();
4477 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4478 }
4479 
4480 static inline void netif_addr_unlock(struct net_device *dev)
4481 {
4482 	spin_unlock(&dev->addr_list_lock);
4483 }
4484 
4485 static inline void netif_addr_unlock_bh(struct net_device *dev)
4486 {
4487 	spin_unlock_bh(&dev->addr_list_lock);
4488 }
4489 
4490 /*
4491  * dev_addrs walker. Should be used only for read access. Call with
4492  * rcu_read_lock held.
4493  */
4494 #define for_each_dev_addr(dev, ha) \
4495 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4496 
4497 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4498 
4499 void ether_setup(struct net_device *dev);
4500 
4501 /* Support for loadable net-drivers */
4502 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4503 				    unsigned char name_assign_type,
4504 				    void (*setup)(struct net_device *),
4505 				    unsigned int txqs, unsigned int rxqs);
4506 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4507 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4508 
4509 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4510 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4511 			 count)
4512 
4513 int register_netdev(struct net_device *dev);
4514 void unregister_netdev(struct net_device *dev);
4515 
4516 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4517 
4518 /* General hardware address lists handling functions */
4519 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4520 		   struct netdev_hw_addr_list *from_list, int addr_len);
4521 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4522 		      struct netdev_hw_addr_list *from_list, int addr_len);
4523 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4524 		       struct net_device *dev,
4525 		       int (*sync)(struct net_device *, const unsigned char *),
4526 		       int (*unsync)(struct net_device *,
4527 				     const unsigned char *));
4528 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4529 			   struct net_device *dev,
4530 			   int (*sync)(struct net_device *,
4531 				       const unsigned char *, int),
4532 			   int (*unsync)(struct net_device *,
4533 					 const unsigned char *, int));
4534 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4535 			      struct net_device *dev,
4536 			      int (*unsync)(struct net_device *,
4537 					    const unsigned char *, int));
4538 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4539 			  struct net_device *dev,
4540 			  int (*unsync)(struct net_device *,
4541 					const unsigned char *));
4542 void __hw_addr_init(struct netdev_hw_addr_list *list);
4543 
4544 /* Functions used for device addresses handling */
4545 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4546 		  const void *addr, size_t len);
4547 
4548 static inline void
4549 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4550 {
4551 	dev_addr_mod(dev, 0, addr, len);
4552 }
4553 
4554 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4555 {
4556 	__dev_addr_set(dev, addr, dev->addr_len);
4557 }
4558 
4559 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4560 		 unsigned char addr_type);
4561 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4562 		 unsigned char addr_type);
4563 
4564 /* Functions used for unicast addresses handling */
4565 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4566 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4567 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4568 int dev_uc_sync(struct net_device *to, struct net_device *from);
4569 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4570 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4571 void dev_uc_flush(struct net_device *dev);
4572 void dev_uc_init(struct net_device *dev);
4573 
4574 /**
4575  *  __dev_uc_sync - Synchonize device's unicast list
4576  *  @dev:  device to sync
4577  *  @sync: function to call if address should be added
4578  *  @unsync: function to call if address should be removed
4579  *
4580  *  Add newly added addresses to the interface, and release
4581  *  addresses that have been deleted.
4582  */
4583 static inline int __dev_uc_sync(struct net_device *dev,
4584 				int (*sync)(struct net_device *,
4585 					    const unsigned char *),
4586 				int (*unsync)(struct net_device *,
4587 					      const unsigned char *))
4588 {
4589 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4590 }
4591 
4592 /**
4593  *  __dev_uc_unsync - Remove synchronized addresses from device
4594  *  @dev:  device to sync
4595  *  @unsync: function to call if address should be removed
4596  *
4597  *  Remove all addresses that were added to the device by dev_uc_sync().
4598  */
4599 static inline void __dev_uc_unsync(struct net_device *dev,
4600 				   int (*unsync)(struct net_device *,
4601 						 const unsigned char *))
4602 {
4603 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4604 }
4605 
4606 /* Functions used for multicast addresses handling */
4607 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4608 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4609 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4610 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4611 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4612 int dev_mc_sync(struct net_device *to, struct net_device *from);
4613 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4614 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4615 void dev_mc_flush(struct net_device *dev);
4616 void dev_mc_init(struct net_device *dev);
4617 
4618 /**
4619  *  __dev_mc_sync - Synchonize device's multicast list
4620  *  @dev:  device to sync
4621  *  @sync: function to call if address should be added
4622  *  @unsync: function to call if address should be removed
4623  *
4624  *  Add newly added addresses to the interface, and release
4625  *  addresses that have been deleted.
4626  */
4627 static inline int __dev_mc_sync(struct net_device *dev,
4628 				int (*sync)(struct net_device *,
4629 					    const unsigned char *),
4630 				int (*unsync)(struct net_device *,
4631 					      const unsigned char *))
4632 {
4633 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4634 }
4635 
4636 /**
4637  *  __dev_mc_unsync - Remove synchronized addresses from device
4638  *  @dev:  device to sync
4639  *  @unsync: function to call if address should be removed
4640  *
4641  *  Remove all addresses that were added to the device by dev_mc_sync().
4642  */
4643 static inline void __dev_mc_unsync(struct net_device *dev,
4644 				   int (*unsync)(struct net_device *,
4645 						 const unsigned char *))
4646 {
4647 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4648 }
4649 
4650 /* Functions used for secondary unicast and multicast support */
4651 void dev_set_rx_mode(struct net_device *dev);
4652 int dev_set_promiscuity(struct net_device *dev, int inc);
4653 int dev_set_allmulti(struct net_device *dev, int inc);
4654 void netdev_state_change(struct net_device *dev);
4655 void __netdev_notify_peers(struct net_device *dev);
4656 void netdev_notify_peers(struct net_device *dev);
4657 void netdev_features_change(struct net_device *dev);
4658 /* Load a device via the kmod */
4659 void dev_load(struct net *net, const char *name);
4660 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4661 					struct rtnl_link_stats64 *storage);
4662 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4663 			     const struct net_device_stats *netdev_stats);
4664 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4665 			   const struct pcpu_sw_netstats __percpu *netstats);
4666 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4667 
4668 extern int		netdev_max_backlog;
4669 extern int		dev_rx_weight;
4670 extern int		dev_tx_weight;
4671 extern int		gro_normal_batch;
4672 
4673 enum {
4674 	NESTED_SYNC_IMM_BIT,
4675 	NESTED_SYNC_TODO_BIT,
4676 };
4677 
4678 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4679 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4680 
4681 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4682 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4683 
4684 struct netdev_nested_priv {
4685 	unsigned char flags;
4686 	void *data;
4687 };
4688 
4689 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4690 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4691 						     struct list_head **iter);
4692 
4693 /* iterate through upper list, must be called under RCU read lock */
4694 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4695 	for (iter = &(dev)->adj_list.upper, \
4696 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4697 	     updev; \
4698 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4699 
4700 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4701 				  int (*fn)(struct net_device *upper_dev,
4702 					    struct netdev_nested_priv *priv),
4703 				  struct netdev_nested_priv *priv);
4704 
4705 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4706 				  struct net_device *upper_dev);
4707 
4708 bool netdev_has_any_upper_dev(struct net_device *dev);
4709 
4710 void *netdev_lower_get_next_private(struct net_device *dev,
4711 				    struct list_head **iter);
4712 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4713 					struct list_head **iter);
4714 
4715 #define netdev_for_each_lower_private(dev, priv, iter) \
4716 	for (iter = (dev)->adj_list.lower.next, \
4717 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4718 	     priv; \
4719 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4720 
4721 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4722 	for (iter = &(dev)->adj_list.lower, \
4723 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4724 	     priv; \
4725 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4726 
4727 void *netdev_lower_get_next(struct net_device *dev,
4728 				struct list_head **iter);
4729 
4730 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4731 	for (iter = (dev)->adj_list.lower.next, \
4732 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4733 	     ldev; \
4734 	     ldev = netdev_lower_get_next(dev, &(iter)))
4735 
4736 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4737 					     struct list_head **iter);
4738 int netdev_walk_all_lower_dev(struct net_device *dev,
4739 			      int (*fn)(struct net_device *lower_dev,
4740 					struct netdev_nested_priv *priv),
4741 			      struct netdev_nested_priv *priv);
4742 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4743 				  int (*fn)(struct net_device *lower_dev,
4744 					    struct netdev_nested_priv *priv),
4745 				  struct netdev_nested_priv *priv);
4746 
4747 void *netdev_adjacent_get_private(struct list_head *adj_list);
4748 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4749 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4750 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4751 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4752 			  struct netlink_ext_ack *extack);
4753 int netdev_master_upper_dev_link(struct net_device *dev,
4754 				 struct net_device *upper_dev,
4755 				 void *upper_priv, void *upper_info,
4756 				 struct netlink_ext_ack *extack);
4757 void netdev_upper_dev_unlink(struct net_device *dev,
4758 			     struct net_device *upper_dev);
4759 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4760 				   struct net_device *new_dev,
4761 				   struct net_device *dev,
4762 				   struct netlink_ext_ack *extack);
4763 void netdev_adjacent_change_commit(struct net_device *old_dev,
4764 				   struct net_device *new_dev,
4765 				   struct net_device *dev);
4766 void netdev_adjacent_change_abort(struct net_device *old_dev,
4767 				  struct net_device *new_dev,
4768 				  struct net_device *dev);
4769 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4770 void *netdev_lower_dev_get_private(struct net_device *dev,
4771 				   struct net_device *lower_dev);
4772 void netdev_lower_state_changed(struct net_device *lower_dev,
4773 				void *lower_state_info);
4774 
4775 /* RSS keys are 40 or 52 bytes long */
4776 #define NETDEV_RSS_KEY_LEN 52
4777 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4778 void netdev_rss_key_fill(void *buffer, size_t len);
4779 
4780 int skb_checksum_help(struct sk_buff *skb);
4781 int skb_crc32c_csum_help(struct sk_buff *skb);
4782 int skb_csum_hwoffload_help(struct sk_buff *skb,
4783 			    const netdev_features_t features);
4784 
4785 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4786 				  netdev_features_t features, bool tx_path);
4787 struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb,
4788 				    netdev_features_t features, __be16 type);
4789 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4790 				    netdev_features_t features);
4791 
4792 struct netdev_bonding_info {
4793 	ifslave	slave;
4794 	ifbond	master;
4795 };
4796 
4797 struct netdev_notifier_bonding_info {
4798 	struct netdev_notifier_info info; /* must be first */
4799 	struct netdev_bonding_info  bonding_info;
4800 };
4801 
4802 void netdev_bonding_info_change(struct net_device *dev,
4803 				struct netdev_bonding_info *bonding_info);
4804 
4805 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4806 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4807 #else
4808 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4809 				  const void *data)
4810 {
4811 }
4812 #endif
4813 
4814 static inline
4815 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4816 {
4817 	return __skb_gso_segment(skb, features, true);
4818 }
4819 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4820 
4821 static inline bool can_checksum_protocol(netdev_features_t features,
4822 					 __be16 protocol)
4823 {
4824 	if (protocol == htons(ETH_P_FCOE))
4825 		return !!(features & NETIF_F_FCOE_CRC);
4826 
4827 	/* Assume this is an IP checksum (not SCTP CRC) */
4828 
4829 	if (features & NETIF_F_HW_CSUM) {
4830 		/* Can checksum everything */
4831 		return true;
4832 	}
4833 
4834 	switch (protocol) {
4835 	case htons(ETH_P_IP):
4836 		return !!(features & NETIF_F_IP_CSUM);
4837 	case htons(ETH_P_IPV6):
4838 		return !!(features & NETIF_F_IPV6_CSUM);
4839 	default:
4840 		return false;
4841 	}
4842 }
4843 
4844 #ifdef CONFIG_BUG
4845 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4846 #else
4847 static inline void netdev_rx_csum_fault(struct net_device *dev,
4848 					struct sk_buff *skb)
4849 {
4850 }
4851 #endif
4852 /* rx skb timestamps */
4853 void net_enable_timestamp(void);
4854 void net_disable_timestamp(void);
4855 
4856 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4857 					const struct skb_shared_hwtstamps *hwtstamps,
4858 					bool cycles)
4859 {
4860 	const struct net_device_ops *ops = dev->netdev_ops;
4861 
4862 	if (ops->ndo_get_tstamp)
4863 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4864 
4865 	return hwtstamps->hwtstamp;
4866 }
4867 
4868 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4869 					      struct sk_buff *skb, struct net_device *dev,
4870 					      bool more)
4871 {
4872 	__this_cpu_write(softnet_data.xmit.more, more);
4873 	return ops->ndo_start_xmit(skb, dev);
4874 }
4875 
4876 static inline bool netdev_xmit_more(void)
4877 {
4878 	return __this_cpu_read(softnet_data.xmit.more);
4879 }
4880 
4881 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4882 					    struct netdev_queue *txq, bool more)
4883 {
4884 	const struct net_device_ops *ops = dev->netdev_ops;
4885 	netdev_tx_t rc;
4886 
4887 	rc = __netdev_start_xmit(ops, skb, dev, more);
4888 	if (rc == NETDEV_TX_OK)
4889 		txq_trans_update(txq);
4890 
4891 	return rc;
4892 }
4893 
4894 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4895 				const void *ns);
4896 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4897 				 const void *ns);
4898 
4899 extern const struct kobj_ns_type_operations net_ns_type_operations;
4900 
4901 const char *netdev_drivername(const struct net_device *dev);
4902 
4903 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4904 							  netdev_features_t f2)
4905 {
4906 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4907 		if (f1 & NETIF_F_HW_CSUM)
4908 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4909 		else
4910 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4911 	}
4912 
4913 	return f1 & f2;
4914 }
4915 
4916 static inline netdev_features_t netdev_get_wanted_features(
4917 	struct net_device *dev)
4918 {
4919 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4920 }
4921 netdev_features_t netdev_increment_features(netdev_features_t all,
4922 	netdev_features_t one, netdev_features_t mask);
4923 
4924 /* Allow TSO being used on stacked device :
4925  * Performing the GSO segmentation before last device
4926  * is a performance improvement.
4927  */
4928 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4929 							netdev_features_t mask)
4930 {
4931 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4932 }
4933 
4934 int __netdev_update_features(struct net_device *dev);
4935 void netdev_update_features(struct net_device *dev);
4936 void netdev_change_features(struct net_device *dev);
4937 
4938 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4939 					struct net_device *dev);
4940 
4941 netdev_features_t passthru_features_check(struct sk_buff *skb,
4942 					  struct net_device *dev,
4943 					  netdev_features_t features);
4944 netdev_features_t netif_skb_features(struct sk_buff *skb);
4945 
4946 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4947 {
4948 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4949 
4950 	/* check flags correspondence */
4951 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4952 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4953 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4954 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4955 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4956 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4957 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4958 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4959 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4960 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4961 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4962 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4963 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4964 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4965 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4966 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4967 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4968 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4969 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4970 
4971 	return (features & feature) == feature;
4972 }
4973 
4974 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4975 {
4976 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4977 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4978 }
4979 
4980 static inline bool netif_needs_gso(struct sk_buff *skb,
4981 				   netdev_features_t features)
4982 {
4983 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4984 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4985 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4986 }
4987 
4988 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
4989 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
4990 void netif_inherit_tso_max(struct net_device *to,
4991 			   const struct net_device *from);
4992 
4993 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4994 					int pulled_hlen, u16 mac_offset,
4995 					int mac_len)
4996 {
4997 	skb->protocol = protocol;
4998 	skb->encapsulation = 1;
4999 	skb_push(skb, pulled_hlen);
5000 	skb_reset_transport_header(skb);
5001 	skb->mac_header = mac_offset;
5002 	skb->network_header = skb->mac_header + mac_len;
5003 	skb->mac_len = mac_len;
5004 }
5005 
5006 static inline bool netif_is_macsec(const struct net_device *dev)
5007 {
5008 	return dev->priv_flags & IFF_MACSEC;
5009 }
5010 
5011 static inline bool netif_is_macvlan(const struct net_device *dev)
5012 {
5013 	return dev->priv_flags & IFF_MACVLAN;
5014 }
5015 
5016 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5017 {
5018 	return dev->priv_flags & IFF_MACVLAN_PORT;
5019 }
5020 
5021 static inline bool netif_is_bond_master(const struct net_device *dev)
5022 {
5023 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5024 }
5025 
5026 static inline bool netif_is_bond_slave(const struct net_device *dev)
5027 {
5028 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5029 }
5030 
5031 static inline bool netif_supports_nofcs(struct net_device *dev)
5032 {
5033 	return dev->priv_flags & IFF_SUPP_NOFCS;
5034 }
5035 
5036 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5037 {
5038 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5039 }
5040 
5041 static inline bool netif_is_l3_master(const struct net_device *dev)
5042 {
5043 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5044 }
5045 
5046 static inline bool netif_is_l3_slave(const struct net_device *dev)
5047 {
5048 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5049 }
5050 
5051 static inline bool netif_is_bridge_master(const struct net_device *dev)
5052 {
5053 	return dev->priv_flags & IFF_EBRIDGE;
5054 }
5055 
5056 static inline bool netif_is_bridge_port(const struct net_device *dev)
5057 {
5058 	return dev->priv_flags & IFF_BRIDGE_PORT;
5059 }
5060 
5061 static inline bool netif_is_ovs_master(const struct net_device *dev)
5062 {
5063 	return dev->priv_flags & IFF_OPENVSWITCH;
5064 }
5065 
5066 static inline bool netif_is_ovs_port(const struct net_device *dev)
5067 {
5068 	return dev->priv_flags & IFF_OVS_DATAPATH;
5069 }
5070 
5071 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5072 {
5073 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5074 }
5075 
5076 static inline bool netif_is_team_master(const struct net_device *dev)
5077 {
5078 	return dev->priv_flags & IFF_TEAM;
5079 }
5080 
5081 static inline bool netif_is_team_port(const struct net_device *dev)
5082 {
5083 	return dev->priv_flags & IFF_TEAM_PORT;
5084 }
5085 
5086 static inline bool netif_is_lag_master(const struct net_device *dev)
5087 {
5088 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5089 }
5090 
5091 static inline bool netif_is_lag_port(const struct net_device *dev)
5092 {
5093 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5094 }
5095 
5096 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5097 {
5098 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5099 }
5100 
5101 static inline bool netif_is_failover(const struct net_device *dev)
5102 {
5103 	return dev->priv_flags & IFF_FAILOVER;
5104 }
5105 
5106 static inline bool netif_is_failover_slave(const struct net_device *dev)
5107 {
5108 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5109 }
5110 
5111 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5112 static inline void netif_keep_dst(struct net_device *dev)
5113 {
5114 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5115 }
5116 
5117 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5118 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5119 {
5120 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5121 	return netif_is_macsec(dev);
5122 }
5123 
5124 extern struct pernet_operations __net_initdata loopback_net_ops;
5125 
5126 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5127 
5128 /* netdev_printk helpers, similar to dev_printk */
5129 
5130 static inline const char *netdev_name(const struct net_device *dev)
5131 {
5132 	if (!dev->name[0] || strchr(dev->name, '%'))
5133 		return "(unnamed net_device)";
5134 	return dev->name;
5135 }
5136 
5137 static inline const char *netdev_reg_state(const struct net_device *dev)
5138 {
5139 	switch (dev->reg_state) {
5140 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5141 	case NETREG_REGISTERED: return "";
5142 	case NETREG_UNREGISTERING: return " (unregistering)";
5143 	case NETREG_UNREGISTERED: return " (unregistered)";
5144 	case NETREG_RELEASED: return " (released)";
5145 	case NETREG_DUMMY: return " (dummy)";
5146 	}
5147 
5148 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5149 	return " (unknown)";
5150 }
5151 
5152 #define MODULE_ALIAS_NETDEV(device) \
5153 	MODULE_ALIAS("netdev-" device)
5154 
5155 /*
5156  * netdev_WARN() acts like dev_printk(), but with the key difference
5157  * of using a WARN/WARN_ON to get the message out, including the
5158  * file/line information and a backtrace.
5159  */
5160 #define netdev_WARN(dev, format, args...)			\
5161 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5162 	     netdev_reg_state(dev), ##args)
5163 
5164 #define netdev_WARN_ONCE(dev, format, args...)				\
5165 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5166 		  netdev_reg_state(dev), ##args)
5167 
5168 /*
5169  *	The list of packet types we will receive (as opposed to discard)
5170  *	and the routines to invoke.
5171  *
5172  *	Why 16. Because with 16 the only overlap we get on a hash of the
5173  *	low nibble of the protocol value is RARP/SNAP/X.25.
5174  *
5175  *		0800	IP
5176  *		0001	802.3
5177  *		0002	AX.25
5178  *		0004	802.2
5179  *		8035	RARP
5180  *		0005	SNAP
5181  *		0805	X.25
5182  *		0806	ARP
5183  *		8137	IPX
5184  *		0009	Localtalk
5185  *		86DD	IPv6
5186  */
5187 #define PTYPE_HASH_SIZE	(16)
5188 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5189 
5190 extern struct list_head ptype_all __read_mostly;
5191 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5192 
5193 extern struct net_device *blackhole_netdev;
5194 
5195 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5196 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5197 #define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
5198 		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5199 
5200 #endif	/* _LINUX_NETDEVICE_H */
5201