xref: /linux-6.15/include/linux/netdevice.h (revision 0f06a678)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <[email protected]>
12  *		Corey Minyard <[email protected]>
13  *		Donald J. Becker, <[email protected]>
14  *		Alan Cox, <[email protected]>
15  *		Bjorn Ekwall. <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49 
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54 #include <uapi/linux/pkt_cls.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 /* 802.11 specific */
60 struct wireless_dev;
61 /* 802.15.4 specific */
62 struct wpan_dev;
63 struct mpls_dev;
64 /* UDP Tunnel offloads */
65 struct udp_tunnel_info;
66 struct bpf_prog;
67 
68 void netdev_set_default_ethtool_ops(struct net_device *dev,
69 				    const struct ethtool_ops *ops);
70 
71 /* Backlog congestion levels */
72 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
73 #define NET_RX_DROP		1	/* packet dropped */
74 
75 /*
76  * Transmit return codes: transmit return codes originate from three different
77  * namespaces:
78  *
79  * - qdisc return codes
80  * - driver transmit return codes
81  * - errno values
82  *
83  * Drivers are allowed to return any one of those in their hard_start_xmit()
84  * function. Real network devices commonly used with qdiscs should only return
85  * the driver transmit return codes though - when qdiscs are used, the actual
86  * transmission happens asynchronously, so the value is not propagated to
87  * higher layers. Virtual network devices transmit synchronously; in this case
88  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
89  * others are propagated to higher layers.
90  */
91 
92 /* qdisc ->enqueue() return codes. */
93 #define NET_XMIT_SUCCESS	0x00
94 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
95 #define NET_XMIT_CN		0x02	/* congestion notification	*/
96 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
97 
98 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
99  * indicates that the device will soon be dropping packets, or already drops
100  * some packets of the same priority; prompting us to send less aggressively. */
101 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
102 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
103 
104 /* Driver transmit return codes */
105 #define NETDEV_TX_MASK		0xf0
106 
107 enum netdev_tx {
108 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
109 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
110 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
111 };
112 typedef enum netdev_tx netdev_tx_t;
113 
114 /*
115  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
116  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
117  */
118 static inline bool dev_xmit_complete(int rc)
119 {
120 	/*
121 	 * Positive cases with an skb consumed by a driver:
122 	 * - successful transmission (rc == NETDEV_TX_OK)
123 	 * - error while transmitting (rc < 0)
124 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
125 	 */
126 	if (likely(rc < NET_XMIT_MASK))
127 		return true;
128 
129 	return false;
130 }
131 
132 /*
133  *	Compute the worst-case header length according to the protocols
134  *	used.
135  */
136 
137 #if defined(CONFIG_HYPERV_NET)
138 # define LL_MAX_HEADER 128
139 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
140 # if defined(CONFIG_MAC80211_MESH)
141 #  define LL_MAX_HEADER 128
142 # else
143 #  define LL_MAX_HEADER 96
144 # endif
145 #else
146 # define LL_MAX_HEADER 32
147 #endif
148 
149 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
150     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
151 #define MAX_HEADER LL_MAX_HEADER
152 #else
153 #define MAX_HEADER (LL_MAX_HEADER + 48)
154 #endif
155 
156 /*
157  *	Old network device statistics. Fields are native words
158  *	(unsigned long) so they can be read and written atomically.
159  */
160 
161 struct net_device_stats {
162 	unsigned long	rx_packets;
163 	unsigned long	tx_packets;
164 	unsigned long	rx_bytes;
165 	unsigned long	tx_bytes;
166 	unsigned long	rx_errors;
167 	unsigned long	tx_errors;
168 	unsigned long	rx_dropped;
169 	unsigned long	tx_dropped;
170 	unsigned long	multicast;
171 	unsigned long	collisions;
172 	unsigned long	rx_length_errors;
173 	unsigned long	rx_over_errors;
174 	unsigned long	rx_crc_errors;
175 	unsigned long	rx_frame_errors;
176 	unsigned long	rx_fifo_errors;
177 	unsigned long	rx_missed_errors;
178 	unsigned long	tx_aborted_errors;
179 	unsigned long	tx_carrier_errors;
180 	unsigned long	tx_fifo_errors;
181 	unsigned long	tx_heartbeat_errors;
182 	unsigned long	tx_window_errors;
183 	unsigned long	rx_compressed;
184 	unsigned long	tx_compressed;
185 };
186 
187 
188 #include <linux/cache.h>
189 #include <linux/skbuff.h>
190 
191 #ifdef CONFIG_RPS
192 #include <linux/static_key.h>
193 extern struct static_key rps_needed;
194 #endif
195 
196 struct neighbour;
197 struct neigh_parms;
198 struct sk_buff;
199 
200 struct netdev_hw_addr {
201 	struct list_head	list;
202 	unsigned char		addr[MAX_ADDR_LEN];
203 	unsigned char		type;
204 #define NETDEV_HW_ADDR_T_LAN		1
205 #define NETDEV_HW_ADDR_T_SAN		2
206 #define NETDEV_HW_ADDR_T_SLAVE		3
207 #define NETDEV_HW_ADDR_T_UNICAST	4
208 #define NETDEV_HW_ADDR_T_MULTICAST	5
209 	bool			global_use;
210 	int			sync_cnt;
211 	int			refcount;
212 	int			synced;
213 	struct rcu_head		rcu_head;
214 };
215 
216 struct netdev_hw_addr_list {
217 	struct list_head	list;
218 	int			count;
219 };
220 
221 #define netdev_hw_addr_list_count(l) ((l)->count)
222 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
223 #define netdev_hw_addr_list_for_each(ha, l) \
224 	list_for_each_entry(ha, &(l)->list, list)
225 
226 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
227 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
228 #define netdev_for_each_uc_addr(ha, dev) \
229 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
230 
231 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
232 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
233 #define netdev_for_each_mc_addr(ha, dev) \
234 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
235 
236 struct hh_cache {
237 	u16		hh_len;
238 	u16		__pad;
239 	seqlock_t	hh_lock;
240 
241 	/* cached hardware header; allow for machine alignment needs.        */
242 #define HH_DATA_MOD	16
243 #define HH_DATA_OFF(__len) \
244 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
245 #define HH_DATA_ALIGN(__len) \
246 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
247 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
248 };
249 
250 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
251  * Alternative is:
252  *   dev->hard_header_len ? (dev->hard_header_len +
253  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
254  *
255  * We could use other alignment values, but we must maintain the
256  * relationship HH alignment <= LL alignment.
257  */
258 #define LL_RESERVED_SPACE(dev) \
259 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
260 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
261 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 
263 struct header_ops {
264 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
265 			   unsigned short type, const void *daddr,
266 			   const void *saddr, unsigned int len);
267 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
268 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
269 	void	(*cache_update)(struct hh_cache *hh,
270 				const struct net_device *dev,
271 				const unsigned char *haddr);
272 	bool	(*validate)(const char *ll_header, unsigned int len);
273 };
274 
275 /* These flag bits are private to the generic network queueing
276  * layer; they may not be explicitly referenced by any other
277  * code.
278  */
279 
280 enum netdev_state_t {
281 	__LINK_STATE_START,
282 	__LINK_STATE_PRESENT,
283 	__LINK_STATE_NOCARRIER,
284 	__LINK_STATE_LINKWATCH_PENDING,
285 	__LINK_STATE_DORMANT,
286 };
287 
288 
289 /*
290  * This structure holds boot-time configured netdevice settings. They
291  * are then used in the device probing.
292  */
293 struct netdev_boot_setup {
294 	char name[IFNAMSIZ];
295 	struct ifmap map;
296 };
297 #define NETDEV_BOOT_SETUP_MAX 8
298 
299 int __init netdev_boot_setup(char *str);
300 
301 /*
302  * Structure for NAPI scheduling similar to tasklet but with weighting
303  */
304 struct napi_struct {
305 	/* The poll_list must only be managed by the entity which
306 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
307 	 * whoever atomically sets that bit can add this napi_struct
308 	 * to the per-CPU poll_list, and whoever clears that bit
309 	 * can remove from the list right before clearing the bit.
310 	 */
311 	struct list_head	poll_list;
312 
313 	unsigned long		state;
314 	int			weight;
315 	unsigned int		gro_count;
316 	int			(*poll)(struct napi_struct *, int);
317 #ifdef CONFIG_NETPOLL
318 	spinlock_t		poll_lock;
319 	int			poll_owner;
320 #endif
321 	struct net_device	*dev;
322 	struct sk_buff		*gro_list;
323 	struct sk_buff		*skb;
324 	struct hrtimer		timer;
325 	struct list_head	dev_list;
326 	struct hlist_node	napi_hash_node;
327 	unsigned int		napi_id;
328 };
329 
330 enum {
331 	NAPI_STATE_SCHED,	/* Poll is scheduled */
332 	NAPI_STATE_DISABLE,	/* Disable pending */
333 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
334 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
335 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
336 };
337 
338 enum gro_result {
339 	GRO_MERGED,
340 	GRO_MERGED_FREE,
341 	GRO_HELD,
342 	GRO_NORMAL,
343 	GRO_DROP,
344 };
345 typedef enum gro_result gro_result_t;
346 
347 /*
348  * enum rx_handler_result - Possible return values for rx_handlers.
349  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
350  * further.
351  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
352  * case skb->dev was changed by rx_handler.
353  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
354  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
355  *
356  * rx_handlers are functions called from inside __netif_receive_skb(), to do
357  * special processing of the skb, prior to delivery to protocol handlers.
358  *
359  * Currently, a net_device can only have a single rx_handler registered. Trying
360  * to register a second rx_handler will return -EBUSY.
361  *
362  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
363  * To unregister a rx_handler on a net_device, use
364  * netdev_rx_handler_unregister().
365  *
366  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
367  * do with the skb.
368  *
369  * If the rx_handler consumed the skb in some way, it should return
370  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
371  * the skb to be delivered in some other way.
372  *
373  * If the rx_handler changed skb->dev, to divert the skb to another
374  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
375  * new device will be called if it exists.
376  *
377  * If the rx_handler decides the skb should be ignored, it should return
378  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
379  * are registered on exact device (ptype->dev == skb->dev).
380  *
381  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
382  * delivered, it should return RX_HANDLER_PASS.
383  *
384  * A device without a registered rx_handler will behave as if rx_handler
385  * returned RX_HANDLER_PASS.
386  */
387 
388 enum rx_handler_result {
389 	RX_HANDLER_CONSUMED,
390 	RX_HANDLER_ANOTHER,
391 	RX_HANDLER_EXACT,
392 	RX_HANDLER_PASS,
393 };
394 typedef enum rx_handler_result rx_handler_result_t;
395 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
396 
397 void __napi_schedule(struct napi_struct *n);
398 void __napi_schedule_irqoff(struct napi_struct *n);
399 
400 static inline bool napi_disable_pending(struct napi_struct *n)
401 {
402 	return test_bit(NAPI_STATE_DISABLE, &n->state);
403 }
404 
405 /**
406  *	napi_schedule_prep - check if NAPI can be scheduled
407  *	@n: NAPI context
408  *
409  * Test if NAPI routine is already running, and if not mark
410  * it as running.  This is used as a condition variable to
411  * insure only one NAPI poll instance runs.  We also make
412  * sure there is no pending NAPI disable.
413  */
414 static inline bool napi_schedule_prep(struct napi_struct *n)
415 {
416 	return !napi_disable_pending(n) &&
417 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
418 }
419 
420 /**
421  *	napi_schedule - schedule NAPI poll
422  *	@n: NAPI context
423  *
424  * Schedule NAPI poll routine to be called if it is not already
425  * running.
426  */
427 static inline void napi_schedule(struct napi_struct *n)
428 {
429 	if (napi_schedule_prep(n))
430 		__napi_schedule(n);
431 }
432 
433 /**
434  *	napi_schedule_irqoff - schedule NAPI poll
435  *	@n: NAPI context
436  *
437  * Variant of napi_schedule(), assuming hard irqs are masked.
438  */
439 static inline void napi_schedule_irqoff(struct napi_struct *n)
440 {
441 	if (napi_schedule_prep(n))
442 		__napi_schedule_irqoff(n);
443 }
444 
445 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
446 static inline bool napi_reschedule(struct napi_struct *napi)
447 {
448 	if (napi_schedule_prep(napi)) {
449 		__napi_schedule(napi);
450 		return true;
451 	}
452 	return false;
453 }
454 
455 void __napi_complete(struct napi_struct *n);
456 void napi_complete_done(struct napi_struct *n, int work_done);
457 /**
458  *	napi_complete - NAPI processing complete
459  *	@n: NAPI context
460  *
461  * Mark NAPI processing as complete.
462  * Consider using napi_complete_done() instead.
463  */
464 static inline void napi_complete(struct napi_struct *n)
465 {
466 	return napi_complete_done(n, 0);
467 }
468 
469 /**
470  *	napi_hash_add - add a NAPI to global hashtable
471  *	@napi: NAPI context
472  *
473  * Generate a new napi_id and store a @napi under it in napi_hash.
474  * Used for busy polling (CONFIG_NET_RX_BUSY_POLL).
475  * Note: This is normally automatically done from netif_napi_add(),
476  * so might disappear in a future Linux version.
477  */
478 void napi_hash_add(struct napi_struct *napi);
479 
480 /**
481  *	napi_hash_del - remove a NAPI from global table
482  *	@napi: NAPI context
483  *
484  * Warning: caller must observe RCU grace period
485  * before freeing memory containing @napi, if
486  * this function returns true.
487  * Note: core networking stack automatically calls it
488  * from netif_napi_del().
489  * Drivers might want to call this helper to combine all
490  * the needed RCU grace periods into a single one.
491  */
492 bool napi_hash_del(struct napi_struct *napi);
493 
494 /**
495  *	napi_disable - prevent NAPI from scheduling
496  *	@n: NAPI context
497  *
498  * Stop NAPI from being scheduled on this context.
499  * Waits till any outstanding processing completes.
500  */
501 void napi_disable(struct napi_struct *n);
502 
503 /**
504  *	napi_enable - enable NAPI scheduling
505  *	@n: NAPI context
506  *
507  * Resume NAPI from being scheduled on this context.
508  * Must be paired with napi_disable.
509  */
510 static inline void napi_enable(struct napi_struct *n)
511 {
512 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
513 	smp_mb__before_atomic();
514 	clear_bit(NAPI_STATE_SCHED, &n->state);
515 	clear_bit(NAPI_STATE_NPSVC, &n->state);
516 }
517 
518 /**
519  *	napi_synchronize - wait until NAPI is not running
520  *	@n: NAPI context
521  *
522  * Wait until NAPI is done being scheduled on this context.
523  * Waits till any outstanding processing completes but
524  * does not disable future activations.
525  */
526 static inline void napi_synchronize(const struct napi_struct *n)
527 {
528 	if (IS_ENABLED(CONFIG_SMP))
529 		while (test_bit(NAPI_STATE_SCHED, &n->state))
530 			msleep(1);
531 	else
532 		barrier();
533 }
534 
535 enum netdev_queue_state_t {
536 	__QUEUE_STATE_DRV_XOFF,
537 	__QUEUE_STATE_STACK_XOFF,
538 	__QUEUE_STATE_FROZEN,
539 };
540 
541 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
542 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
543 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
544 
545 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
546 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
547 					QUEUE_STATE_FROZEN)
548 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
549 					QUEUE_STATE_FROZEN)
550 
551 /*
552  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
553  * netif_tx_* functions below are used to manipulate this flag.  The
554  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
555  * queue independently.  The netif_xmit_*stopped functions below are called
556  * to check if the queue has been stopped by the driver or stack (either
557  * of the XOFF bits are set in the state).  Drivers should not need to call
558  * netif_xmit*stopped functions, they should only be using netif_tx_*.
559  */
560 
561 struct netdev_queue {
562 /*
563  * read-mostly part
564  */
565 	struct net_device	*dev;
566 	struct Qdisc __rcu	*qdisc;
567 	struct Qdisc		*qdisc_sleeping;
568 #ifdef CONFIG_SYSFS
569 	struct kobject		kobj;
570 #endif
571 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
572 	int			numa_node;
573 #endif
574 	unsigned long		tx_maxrate;
575 	/*
576 	 * Number of TX timeouts for this queue
577 	 * (/sys/class/net/DEV/Q/trans_timeout)
578 	 */
579 	unsigned long		trans_timeout;
580 /*
581  * write-mostly part
582  */
583 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
584 	int			xmit_lock_owner;
585 	/*
586 	 * Time (in jiffies) of last Tx
587 	 */
588 	unsigned long		trans_start;
589 
590 	unsigned long		state;
591 
592 #ifdef CONFIG_BQL
593 	struct dql		dql;
594 #endif
595 } ____cacheline_aligned_in_smp;
596 
597 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
598 {
599 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
600 	return q->numa_node;
601 #else
602 	return NUMA_NO_NODE;
603 #endif
604 }
605 
606 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
607 {
608 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
609 	q->numa_node = node;
610 #endif
611 }
612 
613 #ifdef CONFIG_RPS
614 /*
615  * This structure holds an RPS map which can be of variable length.  The
616  * map is an array of CPUs.
617  */
618 struct rps_map {
619 	unsigned int len;
620 	struct rcu_head rcu;
621 	u16 cpus[0];
622 };
623 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
624 
625 /*
626  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
627  * tail pointer for that CPU's input queue at the time of last enqueue, and
628  * a hardware filter index.
629  */
630 struct rps_dev_flow {
631 	u16 cpu;
632 	u16 filter;
633 	unsigned int last_qtail;
634 };
635 #define RPS_NO_FILTER 0xffff
636 
637 /*
638  * The rps_dev_flow_table structure contains a table of flow mappings.
639  */
640 struct rps_dev_flow_table {
641 	unsigned int mask;
642 	struct rcu_head rcu;
643 	struct rps_dev_flow flows[0];
644 };
645 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
646     ((_num) * sizeof(struct rps_dev_flow)))
647 
648 /*
649  * The rps_sock_flow_table contains mappings of flows to the last CPU
650  * on which they were processed by the application (set in recvmsg).
651  * Each entry is a 32bit value. Upper part is the high-order bits
652  * of flow hash, lower part is CPU number.
653  * rps_cpu_mask is used to partition the space, depending on number of
654  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
655  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
656  * meaning we use 32-6=26 bits for the hash.
657  */
658 struct rps_sock_flow_table {
659 	u32	mask;
660 
661 	u32	ents[0] ____cacheline_aligned_in_smp;
662 };
663 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
664 
665 #define RPS_NO_CPU 0xffff
666 
667 extern u32 rps_cpu_mask;
668 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
669 
670 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
671 					u32 hash)
672 {
673 	if (table && hash) {
674 		unsigned int index = hash & table->mask;
675 		u32 val = hash & ~rps_cpu_mask;
676 
677 		/* We only give a hint, preemption can change CPU under us */
678 		val |= raw_smp_processor_id();
679 
680 		if (table->ents[index] != val)
681 			table->ents[index] = val;
682 	}
683 }
684 
685 #ifdef CONFIG_RFS_ACCEL
686 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
687 			 u16 filter_id);
688 #endif
689 #endif /* CONFIG_RPS */
690 
691 /* This structure contains an instance of an RX queue. */
692 struct netdev_rx_queue {
693 #ifdef CONFIG_RPS
694 	struct rps_map __rcu		*rps_map;
695 	struct rps_dev_flow_table __rcu	*rps_flow_table;
696 #endif
697 	struct kobject			kobj;
698 	struct net_device		*dev;
699 } ____cacheline_aligned_in_smp;
700 
701 /*
702  * RX queue sysfs structures and functions.
703  */
704 struct rx_queue_attribute {
705 	struct attribute attr;
706 	ssize_t (*show)(struct netdev_rx_queue *queue,
707 	    struct rx_queue_attribute *attr, char *buf);
708 	ssize_t (*store)(struct netdev_rx_queue *queue,
709 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
710 };
711 
712 #ifdef CONFIG_XPS
713 /*
714  * This structure holds an XPS map which can be of variable length.  The
715  * map is an array of queues.
716  */
717 struct xps_map {
718 	unsigned int len;
719 	unsigned int alloc_len;
720 	struct rcu_head rcu;
721 	u16 queues[0];
722 };
723 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
724 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
725        - sizeof(struct xps_map)) / sizeof(u16))
726 
727 /*
728  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
729  */
730 struct xps_dev_maps {
731 	struct rcu_head rcu;
732 	struct xps_map __rcu *cpu_map[0];
733 };
734 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
735     (nr_cpu_ids * sizeof(struct xps_map *)))
736 #endif /* CONFIG_XPS */
737 
738 #define TC_MAX_QUEUE	16
739 #define TC_BITMASK	15
740 /* HW offloaded queuing disciplines txq count and offset maps */
741 struct netdev_tc_txq {
742 	u16 count;
743 	u16 offset;
744 };
745 
746 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
747 /*
748  * This structure is to hold information about the device
749  * configured to run FCoE protocol stack.
750  */
751 struct netdev_fcoe_hbainfo {
752 	char	manufacturer[64];
753 	char	serial_number[64];
754 	char	hardware_version[64];
755 	char	driver_version[64];
756 	char	optionrom_version[64];
757 	char	firmware_version[64];
758 	char	model[256];
759 	char	model_description[256];
760 };
761 #endif
762 
763 #define MAX_PHYS_ITEM_ID_LEN 32
764 
765 /* This structure holds a unique identifier to identify some
766  * physical item (port for example) used by a netdevice.
767  */
768 struct netdev_phys_item_id {
769 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
770 	unsigned char id_len;
771 };
772 
773 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
774 					    struct netdev_phys_item_id *b)
775 {
776 	return a->id_len == b->id_len &&
777 	       memcmp(a->id, b->id, a->id_len) == 0;
778 }
779 
780 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
781 				       struct sk_buff *skb);
782 
783 /* These structures hold the attributes of qdisc and classifiers
784  * that are being passed to the netdevice through the setup_tc op.
785  */
786 enum {
787 	TC_SETUP_MQPRIO,
788 	TC_SETUP_CLSU32,
789 	TC_SETUP_CLSFLOWER,
790 };
791 
792 struct tc_cls_u32_offload;
793 
794 struct tc_to_netdev {
795 	unsigned int type;
796 	union {
797 		u8 tc;
798 		struct tc_cls_u32_offload *cls_u32;
799 		struct tc_cls_flower_offload *cls_flower;
800 	};
801 };
802 
803 /* These structures hold the attributes of xdp state that are being passed
804  * to the netdevice through the xdp op.
805  */
806 enum xdp_netdev_command {
807 	/* Set or clear a bpf program used in the earliest stages of packet
808 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
809 	 * is responsible for calling bpf_prog_put on any old progs that are
810 	 * stored. In case of error, the callee need not release the new prog
811 	 * reference, but on success it takes ownership and must bpf_prog_put
812 	 * when it is no longer used.
813 	 */
814 	XDP_SETUP_PROG,
815 	/* Check if a bpf program is set on the device.  The callee should
816 	 * return true if a program is currently attached and running.
817 	 */
818 	XDP_QUERY_PROG,
819 };
820 
821 struct netdev_xdp {
822 	enum xdp_netdev_command command;
823 	union {
824 		/* XDP_SETUP_PROG */
825 		struct bpf_prog *prog;
826 		/* XDP_QUERY_PROG */
827 		bool prog_attached;
828 	};
829 };
830 
831 /*
832  * This structure defines the management hooks for network devices.
833  * The following hooks can be defined; unless noted otherwise, they are
834  * optional and can be filled with a null pointer.
835  *
836  * int (*ndo_init)(struct net_device *dev);
837  *     This function is called once when a network device is registered.
838  *     The network device can use this for any late stage initialization
839  *     or semantic validation. It can fail with an error code which will
840  *     be propagated back to register_netdev.
841  *
842  * void (*ndo_uninit)(struct net_device *dev);
843  *     This function is called when device is unregistered or when registration
844  *     fails. It is not called if init fails.
845  *
846  * int (*ndo_open)(struct net_device *dev);
847  *     This function is called when a network device transitions to the up
848  *     state.
849  *
850  * int (*ndo_stop)(struct net_device *dev);
851  *     This function is called when a network device transitions to the down
852  *     state.
853  *
854  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
855  *                               struct net_device *dev);
856  *	Called when a packet needs to be transmitted.
857  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
858  *	the queue before that can happen; it's for obsolete devices and weird
859  *	corner cases, but the stack really does a non-trivial amount
860  *	of useless work if you return NETDEV_TX_BUSY.
861  *	Required; cannot be NULL.
862  *
863  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
864  *		netdev_features_t features);
865  *	Adjusts the requested feature flags according to device-specific
866  *	constraints, and returns the resulting flags. Must not modify
867  *	the device state.
868  *
869  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
870  *                         void *accel_priv, select_queue_fallback_t fallback);
871  *	Called to decide which queue to use when device supports multiple
872  *	transmit queues.
873  *
874  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
875  *	This function is called to allow device receiver to make
876  *	changes to configuration when multicast or promiscuous is enabled.
877  *
878  * void (*ndo_set_rx_mode)(struct net_device *dev);
879  *	This function is called device changes address list filtering.
880  *	If driver handles unicast address filtering, it should set
881  *	IFF_UNICAST_FLT in its priv_flags.
882  *
883  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
884  *	This function  is called when the Media Access Control address
885  *	needs to be changed. If this interface is not defined, the
886  *	MAC address can not be changed.
887  *
888  * int (*ndo_validate_addr)(struct net_device *dev);
889  *	Test if Media Access Control address is valid for the device.
890  *
891  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
892  *	Called when a user requests an ioctl which can't be handled by
893  *	the generic interface code. If not defined ioctls return
894  *	not supported error code.
895  *
896  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
897  *	Used to set network devices bus interface parameters. This interface
898  *	is retained for legacy reasons; new devices should use the bus
899  *	interface (PCI) for low level management.
900  *
901  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
902  *	Called when a user wants to change the Maximum Transfer Unit
903  *	of a device. If not defined, any request to change MTU will
904  *	will return an error.
905  *
906  * void (*ndo_tx_timeout)(struct net_device *dev);
907  *	Callback used when the transmitter has not made any progress
908  *	for dev->watchdog ticks.
909  *
910  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
911  *                      struct rtnl_link_stats64 *storage);
912  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
913  *	Called when a user wants to get the network device usage
914  *	statistics. Drivers must do one of the following:
915  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
916  *	   rtnl_link_stats64 structure passed by the caller.
917  *	2. Define @ndo_get_stats to update a net_device_stats structure
918  *	   (which should normally be dev->stats) and return a pointer to
919  *	   it. The structure may be changed asynchronously only if each
920  *	   field is written atomically.
921  *	3. Update dev->stats asynchronously and atomically, and define
922  *	   neither operation.
923  *
924  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
925  *	If device supports VLAN filtering this function is called when a
926  *	VLAN id is registered.
927  *
928  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
929  *	If device supports VLAN filtering this function is called when a
930  *	VLAN id is unregistered.
931  *
932  * void (*ndo_poll_controller)(struct net_device *dev);
933  *
934  *	SR-IOV management functions.
935  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
936  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
937  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
938  *			  int max_tx_rate);
939  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
940  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
941  * int (*ndo_get_vf_config)(struct net_device *dev,
942  *			    int vf, struct ifla_vf_info *ivf);
943  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
944  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
945  *			  struct nlattr *port[]);
946  *
947  *      Enable or disable the VF ability to query its RSS Redirection Table and
948  *      Hash Key. This is needed since on some devices VF share this information
949  *      with PF and querying it may introduce a theoretical security risk.
950  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
951  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
952  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
953  * 	Called to setup 'tc' number of traffic classes in the net device. This
954  * 	is always called from the stack with the rtnl lock held and netif tx
955  * 	queues stopped. This allows the netdevice to perform queue management
956  * 	safely.
957  *
958  *	Fiber Channel over Ethernet (FCoE) offload functions.
959  * int (*ndo_fcoe_enable)(struct net_device *dev);
960  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
961  *	so the underlying device can perform whatever needed configuration or
962  *	initialization to support acceleration of FCoE traffic.
963  *
964  * int (*ndo_fcoe_disable)(struct net_device *dev);
965  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
966  *	so the underlying device can perform whatever needed clean-ups to
967  *	stop supporting acceleration of FCoE traffic.
968  *
969  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
970  *			     struct scatterlist *sgl, unsigned int sgc);
971  *	Called when the FCoE Initiator wants to initialize an I/O that
972  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
973  *	perform necessary setup and returns 1 to indicate the device is set up
974  *	successfully to perform DDP on this I/O, otherwise this returns 0.
975  *
976  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
977  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
978  *	indicated by the FC exchange id 'xid', so the underlying device can
979  *	clean up and reuse resources for later DDP requests.
980  *
981  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
982  *			      struct scatterlist *sgl, unsigned int sgc);
983  *	Called when the FCoE Target wants to initialize an I/O that
984  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
985  *	perform necessary setup and returns 1 to indicate the device is set up
986  *	successfully to perform DDP on this I/O, otherwise this returns 0.
987  *
988  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
989  *			       struct netdev_fcoe_hbainfo *hbainfo);
990  *	Called when the FCoE Protocol stack wants information on the underlying
991  *	device. This information is utilized by the FCoE protocol stack to
992  *	register attributes with Fiber Channel management service as per the
993  *	FC-GS Fabric Device Management Information(FDMI) specification.
994  *
995  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
996  *	Called when the underlying device wants to override default World Wide
997  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
998  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
999  *	protocol stack to use.
1000  *
1001  *	RFS acceleration.
1002  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1003  *			    u16 rxq_index, u32 flow_id);
1004  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1005  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1006  *	Return the filter ID on success, or a negative error code.
1007  *
1008  *	Slave management functions (for bridge, bonding, etc).
1009  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1010  *	Called to make another netdev an underling.
1011  *
1012  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1013  *	Called to release previously enslaved netdev.
1014  *
1015  *      Feature/offload setting functions.
1016  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1017  *	Called to update device configuration to new features. Passed
1018  *	feature set might be less than what was returned by ndo_fix_features()).
1019  *	Must return >0 or -errno if it changed dev->features itself.
1020  *
1021  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1022  *		      struct net_device *dev,
1023  *		      const unsigned char *addr, u16 vid, u16 flags)
1024  *	Adds an FDB entry to dev for addr.
1025  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1026  *		      struct net_device *dev,
1027  *		      const unsigned char *addr, u16 vid)
1028  *	Deletes the FDB entry from dev coresponding to addr.
1029  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1030  *		       struct net_device *dev, struct net_device *filter_dev,
1031  *		       int idx)
1032  *	Used to add FDB entries to dump requests. Implementers should add
1033  *	entries to skb and update idx with the number of entries.
1034  *
1035  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1036  *			     u16 flags)
1037  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1038  *			     struct net_device *dev, u32 filter_mask,
1039  *			     int nlflags)
1040  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1041  *			     u16 flags);
1042  *
1043  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1044  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1045  *	which do not represent real hardware may define this to allow their
1046  *	userspace components to manage their virtual carrier state. Devices
1047  *	that determine carrier state from physical hardware properties (eg
1048  *	network cables) or protocol-dependent mechanisms (eg
1049  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1050  *
1051  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1052  *			       struct netdev_phys_item_id *ppid);
1053  *	Called to get ID of physical port of this device. If driver does
1054  *	not implement this, it is assumed that the hw is not able to have
1055  *	multiple net devices on single physical port.
1056  *
1057  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1058  *			      struct udp_tunnel_info *ti);
1059  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1060  *	address family that a UDP tunnel is listnening to. It is called only
1061  *	when a new port starts listening. The operation is protected by the
1062  *	RTNL.
1063  *
1064  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1065  *			      struct udp_tunnel_info *ti);
1066  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1067  *	address family that the UDP tunnel is not listening to anymore. The
1068  *	operation is protected by the RTNL.
1069  *
1070  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1071  *				 struct net_device *dev)
1072  *	Called by upper layer devices to accelerate switching or other
1073  *	station functionality into hardware. 'pdev is the lowerdev
1074  *	to use for the offload and 'dev' is the net device that will
1075  *	back the offload. Returns a pointer to the private structure
1076  *	the upper layer will maintain.
1077  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1078  *	Called by upper layer device to delete the station created
1079  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1080  *	the station and priv is the structure returned by the add
1081  *	operation.
1082  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1083  *				      struct net_device *dev,
1084  *				      void *priv);
1085  *	Callback to use for xmit over the accelerated station. This
1086  *	is used in place of ndo_start_xmit on accelerated net
1087  *	devices.
1088  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1089  *					   struct net_device *dev
1090  *					   netdev_features_t features);
1091  *	Called by core transmit path to determine if device is capable of
1092  *	performing offload operations on a given packet. This is to give
1093  *	the device an opportunity to implement any restrictions that cannot
1094  *	be otherwise expressed by feature flags. The check is called with
1095  *	the set of features that the stack has calculated and it returns
1096  *	those the driver believes to be appropriate.
1097  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1098  *			     int queue_index, u32 maxrate);
1099  *	Called when a user wants to set a max-rate limitation of specific
1100  *	TX queue.
1101  * int (*ndo_get_iflink)(const struct net_device *dev);
1102  *	Called to get the iflink value of this device.
1103  * void (*ndo_change_proto_down)(struct net_device *dev,
1104  *				 bool proto_down);
1105  *	This function is used to pass protocol port error state information
1106  *	to the switch driver. The switch driver can react to the proto_down
1107  *      by doing a phys down on the associated switch port.
1108  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1109  *	This function is used to get egress tunnel information for given skb.
1110  *	This is useful for retrieving outer tunnel header parameters while
1111  *	sampling packet.
1112  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1113  *	This function is used to specify the headroom that the skb must
1114  *	consider when allocation skb during packet reception. Setting
1115  *	appropriate rx headroom value allows avoiding skb head copy on
1116  *	forward. Setting a negative value resets the rx headroom to the
1117  *	default value.
1118  * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp);
1119  *	This function is used to set or query state related to XDP on the
1120  *	netdevice. See definition of enum xdp_netdev_command for details.
1121  *
1122  */
1123 struct net_device_ops {
1124 	int			(*ndo_init)(struct net_device *dev);
1125 	void			(*ndo_uninit)(struct net_device *dev);
1126 	int			(*ndo_open)(struct net_device *dev);
1127 	int			(*ndo_stop)(struct net_device *dev);
1128 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1129 						  struct net_device *dev);
1130 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1131 						      struct net_device *dev,
1132 						      netdev_features_t features);
1133 	u16			(*ndo_select_queue)(struct net_device *dev,
1134 						    struct sk_buff *skb,
1135 						    void *accel_priv,
1136 						    select_queue_fallback_t fallback);
1137 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1138 						       int flags);
1139 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1140 	int			(*ndo_set_mac_address)(struct net_device *dev,
1141 						       void *addr);
1142 	int			(*ndo_validate_addr)(struct net_device *dev);
1143 	int			(*ndo_do_ioctl)(struct net_device *dev,
1144 					        struct ifreq *ifr, int cmd);
1145 	int			(*ndo_set_config)(struct net_device *dev,
1146 					          struct ifmap *map);
1147 	int			(*ndo_change_mtu)(struct net_device *dev,
1148 						  int new_mtu);
1149 	int			(*ndo_neigh_setup)(struct net_device *dev,
1150 						   struct neigh_parms *);
1151 	void			(*ndo_tx_timeout) (struct net_device *dev);
1152 
1153 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1154 						     struct rtnl_link_stats64 *storage);
1155 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1156 
1157 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1158 						       __be16 proto, u16 vid);
1159 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1160 						        __be16 proto, u16 vid);
1161 #ifdef CONFIG_NET_POLL_CONTROLLER
1162 	void                    (*ndo_poll_controller)(struct net_device *dev);
1163 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1164 						     struct netpoll_info *info);
1165 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1166 #endif
1167 #ifdef CONFIG_NET_RX_BUSY_POLL
1168 	int			(*ndo_busy_poll)(struct napi_struct *dev);
1169 #endif
1170 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1171 						  int queue, u8 *mac);
1172 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1173 						   int queue, u16 vlan, u8 qos);
1174 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1175 						   int vf, int min_tx_rate,
1176 						   int max_tx_rate);
1177 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1178 						       int vf, bool setting);
1179 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1180 						    int vf, bool setting);
1181 	int			(*ndo_get_vf_config)(struct net_device *dev,
1182 						     int vf,
1183 						     struct ifla_vf_info *ivf);
1184 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1185 							 int vf, int link_state);
1186 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1187 						    int vf,
1188 						    struct ifla_vf_stats
1189 						    *vf_stats);
1190 	int			(*ndo_set_vf_port)(struct net_device *dev,
1191 						   int vf,
1192 						   struct nlattr *port[]);
1193 	int			(*ndo_get_vf_port)(struct net_device *dev,
1194 						   int vf, struct sk_buff *skb);
1195 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1196 						   int vf, u64 guid,
1197 						   int guid_type);
1198 	int			(*ndo_set_vf_rss_query_en)(
1199 						   struct net_device *dev,
1200 						   int vf, bool setting);
1201 	int			(*ndo_setup_tc)(struct net_device *dev,
1202 						u32 handle,
1203 						__be16 protocol,
1204 						struct tc_to_netdev *tc);
1205 #if IS_ENABLED(CONFIG_FCOE)
1206 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1207 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1208 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1209 						      u16 xid,
1210 						      struct scatterlist *sgl,
1211 						      unsigned int sgc);
1212 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1213 						     u16 xid);
1214 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1215 						       u16 xid,
1216 						       struct scatterlist *sgl,
1217 						       unsigned int sgc);
1218 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1219 							struct netdev_fcoe_hbainfo *hbainfo);
1220 #endif
1221 
1222 #if IS_ENABLED(CONFIG_LIBFCOE)
1223 #define NETDEV_FCOE_WWNN 0
1224 #define NETDEV_FCOE_WWPN 1
1225 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1226 						    u64 *wwn, int type);
1227 #endif
1228 
1229 #ifdef CONFIG_RFS_ACCEL
1230 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1231 						     const struct sk_buff *skb,
1232 						     u16 rxq_index,
1233 						     u32 flow_id);
1234 #endif
1235 	int			(*ndo_add_slave)(struct net_device *dev,
1236 						 struct net_device *slave_dev);
1237 	int			(*ndo_del_slave)(struct net_device *dev,
1238 						 struct net_device *slave_dev);
1239 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1240 						    netdev_features_t features);
1241 	int			(*ndo_set_features)(struct net_device *dev,
1242 						    netdev_features_t features);
1243 	int			(*ndo_neigh_construct)(struct net_device *dev,
1244 						       struct neighbour *n);
1245 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1246 						     struct neighbour *n);
1247 
1248 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1249 					       struct nlattr *tb[],
1250 					       struct net_device *dev,
1251 					       const unsigned char *addr,
1252 					       u16 vid,
1253 					       u16 flags);
1254 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1255 					       struct nlattr *tb[],
1256 					       struct net_device *dev,
1257 					       const unsigned char *addr,
1258 					       u16 vid);
1259 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1260 						struct netlink_callback *cb,
1261 						struct net_device *dev,
1262 						struct net_device *filter_dev,
1263 						int idx);
1264 
1265 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1266 						      struct nlmsghdr *nlh,
1267 						      u16 flags);
1268 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1269 						      u32 pid, u32 seq,
1270 						      struct net_device *dev,
1271 						      u32 filter_mask,
1272 						      int nlflags);
1273 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1274 						      struct nlmsghdr *nlh,
1275 						      u16 flags);
1276 	int			(*ndo_change_carrier)(struct net_device *dev,
1277 						      bool new_carrier);
1278 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1279 							struct netdev_phys_item_id *ppid);
1280 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1281 							  char *name, size_t len);
1282 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1283 						      struct udp_tunnel_info *ti);
1284 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1285 						      struct udp_tunnel_info *ti);
1286 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1287 							struct net_device *dev);
1288 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1289 							void *priv);
1290 
1291 	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1292 							struct net_device *dev,
1293 							void *priv);
1294 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1295 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1296 						      int queue_index,
1297 						      u32 maxrate);
1298 	int			(*ndo_get_iflink)(const struct net_device *dev);
1299 	int			(*ndo_change_proto_down)(struct net_device *dev,
1300 							 bool proto_down);
1301 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1302 						       struct sk_buff *skb);
1303 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1304 						       int needed_headroom);
1305 	int			(*ndo_xdp)(struct net_device *dev,
1306 					   struct netdev_xdp *xdp);
1307 };
1308 
1309 /**
1310  * enum net_device_priv_flags - &struct net_device priv_flags
1311  *
1312  * These are the &struct net_device, they are only set internally
1313  * by drivers and used in the kernel. These flags are invisible to
1314  * userspace; this means that the order of these flags can change
1315  * during any kernel release.
1316  *
1317  * You should have a pretty good reason to be extending these flags.
1318  *
1319  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1320  * @IFF_EBRIDGE: Ethernet bridging device
1321  * @IFF_BONDING: bonding master or slave
1322  * @IFF_ISATAP: ISATAP interface (RFC4214)
1323  * @IFF_WAN_HDLC: WAN HDLC device
1324  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1325  *	release skb->dst
1326  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1327  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1328  * @IFF_MACVLAN_PORT: device used as macvlan port
1329  * @IFF_BRIDGE_PORT: device used as bridge port
1330  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1331  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1332  * @IFF_UNICAST_FLT: Supports unicast filtering
1333  * @IFF_TEAM_PORT: device used as team port
1334  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1335  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1336  *	change when it's running
1337  * @IFF_MACVLAN: Macvlan device
1338  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1339  *	underlying stacked devices
1340  * @IFF_IPVLAN_MASTER: IPvlan master device
1341  * @IFF_IPVLAN_SLAVE: IPvlan slave device
1342  * @IFF_L3MDEV_MASTER: device is an L3 master device
1343  * @IFF_NO_QUEUE: device can run without qdisc attached
1344  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1345  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1346  * @IFF_TEAM: device is a team device
1347  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1348  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1349  *	entity (i.e. the master device for bridged veth)
1350  * @IFF_MACSEC: device is a MACsec device
1351  */
1352 enum netdev_priv_flags {
1353 	IFF_802_1Q_VLAN			= 1<<0,
1354 	IFF_EBRIDGE			= 1<<1,
1355 	IFF_BONDING			= 1<<2,
1356 	IFF_ISATAP			= 1<<3,
1357 	IFF_WAN_HDLC			= 1<<4,
1358 	IFF_XMIT_DST_RELEASE		= 1<<5,
1359 	IFF_DONT_BRIDGE			= 1<<6,
1360 	IFF_DISABLE_NETPOLL		= 1<<7,
1361 	IFF_MACVLAN_PORT		= 1<<8,
1362 	IFF_BRIDGE_PORT			= 1<<9,
1363 	IFF_OVS_DATAPATH		= 1<<10,
1364 	IFF_TX_SKB_SHARING		= 1<<11,
1365 	IFF_UNICAST_FLT			= 1<<12,
1366 	IFF_TEAM_PORT			= 1<<13,
1367 	IFF_SUPP_NOFCS			= 1<<14,
1368 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1369 	IFF_MACVLAN			= 1<<16,
1370 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1371 	IFF_IPVLAN_MASTER		= 1<<18,
1372 	IFF_IPVLAN_SLAVE		= 1<<19,
1373 	IFF_L3MDEV_MASTER		= 1<<20,
1374 	IFF_NO_QUEUE			= 1<<21,
1375 	IFF_OPENVSWITCH			= 1<<22,
1376 	IFF_L3MDEV_SLAVE		= 1<<23,
1377 	IFF_TEAM			= 1<<24,
1378 	IFF_RXFH_CONFIGURED		= 1<<25,
1379 	IFF_PHONY_HEADROOM		= 1<<26,
1380 	IFF_MACSEC			= 1<<27,
1381 };
1382 
1383 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1384 #define IFF_EBRIDGE			IFF_EBRIDGE
1385 #define IFF_BONDING			IFF_BONDING
1386 #define IFF_ISATAP			IFF_ISATAP
1387 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1388 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1389 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1390 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1391 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1392 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1393 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1394 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1395 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1396 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1397 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1398 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1399 #define IFF_MACVLAN			IFF_MACVLAN
1400 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1401 #define IFF_IPVLAN_MASTER		IFF_IPVLAN_MASTER
1402 #define IFF_IPVLAN_SLAVE		IFF_IPVLAN_SLAVE
1403 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1404 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1405 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1406 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1407 #define IFF_TEAM			IFF_TEAM
1408 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1409 #define IFF_MACSEC			IFF_MACSEC
1410 
1411 /**
1412  *	struct net_device - The DEVICE structure.
1413  *		Actually, this whole structure is a big mistake.  It mixes I/O
1414  *		data with strictly "high-level" data, and it has to know about
1415  *		almost every data structure used in the INET module.
1416  *
1417  *	@name:	This is the first field of the "visible" part of this structure
1418  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1419  *	 	of the interface.
1420  *
1421  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1422  *	@ifalias:	SNMP alias
1423  *	@mem_end:	Shared memory end
1424  *	@mem_start:	Shared memory start
1425  *	@base_addr:	Device I/O address
1426  *	@irq:		Device IRQ number
1427  *
1428  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1429  *
1430  *	@state:		Generic network queuing layer state, see netdev_state_t
1431  *	@dev_list:	The global list of network devices
1432  *	@napi_list:	List entry used for polling NAPI devices
1433  *	@unreg_list:	List entry  when we are unregistering the
1434  *			device; see the function unregister_netdev
1435  *	@close_list:	List entry used when we are closing the device
1436  *	@ptype_all:     Device-specific packet handlers for all protocols
1437  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1438  *
1439  *	@adj_list:	Directly linked devices, like slaves for bonding
1440  *	@all_adj_list:	All linked devices, *including* neighbours
1441  *	@features:	Currently active device features
1442  *	@hw_features:	User-changeable features
1443  *
1444  *	@wanted_features:	User-requested features
1445  *	@vlan_features:		Mask of features inheritable by VLAN devices
1446  *
1447  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1448  *				This field indicates what encapsulation
1449  *				offloads the hardware is capable of doing,
1450  *				and drivers will need to set them appropriately.
1451  *
1452  *	@mpls_features:	Mask of features inheritable by MPLS
1453  *
1454  *	@ifindex:	interface index
1455  *	@group:		The group the device belongs to
1456  *
1457  *	@stats:		Statistics struct, which was left as a legacy, use
1458  *			rtnl_link_stats64 instead
1459  *
1460  *	@rx_dropped:	Dropped packets by core network,
1461  *			do not use this in drivers
1462  *	@tx_dropped:	Dropped packets by core network,
1463  *			do not use this in drivers
1464  *	@rx_nohandler:	nohandler dropped packets by core network on
1465  *			inactive devices, do not use this in drivers
1466  *
1467  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1468  *				instead of ioctl,
1469  *				see <net/iw_handler.h> for details.
1470  *	@wireless_data:	Instance data managed by the core of wireless extensions
1471  *
1472  *	@netdev_ops:	Includes several pointers to callbacks,
1473  *			if one wants to override the ndo_*() functions
1474  *	@ethtool_ops:	Management operations
1475  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1476  *			discovery handling. Necessary for e.g. 6LoWPAN.
1477  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1478  *			of Layer 2 headers.
1479  *
1480  *	@flags:		Interface flags (a la BSD)
1481  *	@priv_flags:	Like 'flags' but invisible to userspace,
1482  *			see if.h for the definitions
1483  *	@gflags:	Global flags ( kept as legacy )
1484  *	@padded:	How much padding added by alloc_netdev()
1485  *	@operstate:	RFC2863 operstate
1486  *	@link_mode:	Mapping policy to operstate
1487  *	@if_port:	Selectable AUI, TP, ...
1488  *	@dma:		DMA channel
1489  *	@mtu:		Interface MTU value
1490  *	@type:		Interface hardware type
1491  *	@hard_header_len: Maximum hardware header length.
1492  *
1493  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1494  *			  cases can this be guaranteed
1495  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1496  *			  cases can this be guaranteed. Some cases also use
1497  *			  LL_MAX_HEADER instead to allocate the skb
1498  *
1499  *	interface address info:
1500  *
1501  * 	@perm_addr:		Permanent hw address
1502  * 	@addr_assign_type:	Hw address assignment type
1503  * 	@addr_len:		Hardware address length
1504  *	@neigh_priv_len:	Used in neigh_alloc()
1505  * 	@dev_id:		Used to differentiate devices that share
1506  * 				the same link layer address
1507  * 	@dev_port:		Used to differentiate devices that share
1508  * 				the same function
1509  *	@addr_list_lock:	XXX: need comments on this one
1510  *	@uc_promisc:		Counter that indicates promiscuous mode
1511  *				has been enabled due to the need to listen to
1512  *				additional unicast addresses in a device that
1513  *				does not implement ndo_set_rx_mode()
1514  *	@uc:			unicast mac addresses
1515  *	@mc:			multicast mac addresses
1516  *	@dev_addrs:		list of device hw addresses
1517  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1518  *	@promiscuity:		Number of times the NIC is told to work in
1519  *				promiscuous mode; if it becomes 0 the NIC will
1520  *				exit promiscuous mode
1521  *	@allmulti:		Counter, enables or disables allmulticast mode
1522  *
1523  *	@vlan_info:	VLAN info
1524  *	@dsa_ptr:	dsa specific data
1525  *	@tipc_ptr:	TIPC specific data
1526  *	@atalk_ptr:	AppleTalk link
1527  *	@ip_ptr:	IPv4 specific data
1528  *	@dn_ptr:	DECnet specific data
1529  *	@ip6_ptr:	IPv6 specific data
1530  *	@ax25_ptr:	AX.25 specific data
1531  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1532  *
1533  *	@last_rx:	Time of last Rx
1534  *	@dev_addr:	Hw address (before bcast,
1535  *			because most packets are unicast)
1536  *
1537  *	@_rx:			Array of RX queues
1538  *	@num_rx_queues:		Number of RX queues
1539  *				allocated at register_netdev() time
1540  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1541  *
1542  *	@rx_handler:		handler for received packets
1543  *	@rx_handler_data: 	XXX: need comments on this one
1544  *	@ingress_queue:		XXX: need comments on this one
1545  *	@broadcast:		hw bcast address
1546  *
1547  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1548  *			indexed by RX queue number. Assigned by driver.
1549  *			This must only be set if the ndo_rx_flow_steer
1550  *			operation is defined
1551  *	@index_hlist:		Device index hash chain
1552  *
1553  *	@_tx:			Array of TX queues
1554  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1555  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1556  *	@qdisc:			Root qdisc from userspace point of view
1557  *	@tx_queue_len:		Max frames per queue allowed
1558  *	@tx_global_lock: 	XXX: need comments on this one
1559  *
1560  *	@xps_maps:	XXX: need comments on this one
1561  *
1562  *	@offload_fwd_mark:	Offload device fwding mark
1563  *
1564  *	@watchdog_timeo:	Represents the timeout that is used by
1565  *				the watchdog (see dev_watchdog())
1566  *	@watchdog_timer:	List of timers
1567  *
1568  *	@pcpu_refcnt:		Number of references to this device
1569  *	@todo_list:		Delayed register/unregister
1570  *	@link_watch_list:	XXX: need comments on this one
1571  *
1572  *	@reg_state:		Register/unregister state machine
1573  *	@dismantle:		Device is going to be freed
1574  *	@rtnl_link_state:	This enum represents the phases of creating
1575  *				a new link
1576  *
1577  *	@destructor:		Called from unregister,
1578  *				can be used to call free_netdev
1579  *	@npinfo:		XXX: need comments on this one
1580  * 	@nd_net:		Network namespace this network device is inside
1581  *
1582  * 	@ml_priv:	Mid-layer private
1583  * 	@lstats:	Loopback statistics
1584  * 	@tstats:	Tunnel statistics
1585  * 	@dstats:	Dummy statistics
1586  * 	@vstats:	Virtual ethernet statistics
1587  *
1588  *	@garp_port:	GARP
1589  *	@mrp_port:	MRP
1590  *
1591  *	@dev:		Class/net/name entry
1592  *	@sysfs_groups:	Space for optional device, statistics and wireless
1593  *			sysfs groups
1594  *
1595  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1596  *	@rtnl_link_ops:	Rtnl_link_ops
1597  *
1598  *	@gso_max_size:	Maximum size of generic segmentation offload
1599  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1600  *			NIC for GSO
1601  *
1602  *	@dcbnl_ops:	Data Center Bridging netlink ops
1603  *	@num_tc:	Number of traffic classes in the net device
1604  *	@tc_to_txq:	XXX: need comments on this one
1605  *	@prio_tc_map	XXX: need comments on this one
1606  *
1607  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1608  *
1609  *	@priomap:	XXX: need comments on this one
1610  *	@phydev:	Physical device may attach itself
1611  *			for hardware timestamping
1612  *
1613  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1614  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1615  *
1616  *	@proto_down:	protocol port state information can be sent to the
1617  *			switch driver and used to set the phys state of the
1618  *			switch port.
1619  *
1620  *	FIXME: cleanup struct net_device such that network protocol info
1621  *	moves out.
1622  */
1623 
1624 struct net_device {
1625 	char			name[IFNAMSIZ];
1626 	struct hlist_node	name_hlist;
1627 	char 			*ifalias;
1628 	/*
1629 	 *	I/O specific fields
1630 	 *	FIXME: Merge these and struct ifmap into one
1631 	 */
1632 	unsigned long		mem_end;
1633 	unsigned long		mem_start;
1634 	unsigned long		base_addr;
1635 	int			irq;
1636 
1637 	atomic_t		carrier_changes;
1638 
1639 	/*
1640 	 *	Some hardware also needs these fields (state,dev_list,
1641 	 *	napi_list,unreg_list,close_list) but they are not
1642 	 *	part of the usual set specified in Space.c.
1643 	 */
1644 
1645 	unsigned long		state;
1646 
1647 	struct list_head	dev_list;
1648 	struct list_head	napi_list;
1649 	struct list_head	unreg_list;
1650 	struct list_head	close_list;
1651 	struct list_head	ptype_all;
1652 	struct list_head	ptype_specific;
1653 
1654 	struct {
1655 		struct list_head upper;
1656 		struct list_head lower;
1657 	} adj_list;
1658 
1659 	struct {
1660 		struct list_head upper;
1661 		struct list_head lower;
1662 	} all_adj_list;
1663 
1664 	netdev_features_t	features;
1665 	netdev_features_t	hw_features;
1666 	netdev_features_t	wanted_features;
1667 	netdev_features_t	vlan_features;
1668 	netdev_features_t	hw_enc_features;
1669 	netdev_features_t	mpls_features;
1670 	netdev_features_t	gso_partial_features;
1671 
1672 	int			ifindex;
1673 	int			group;
1674 
1675 	struct net_device_stats	stats;
1676 
1677 	atomic_long_t		rx_dropped;
1678 	atomic_long_t		tx_dropped;
1679 	atomic_long_t		rx_nohandler;
1680 
1681 #ifdef CONFIG_WIRELESS_EXT
1682 	const struct iw_handler_def *wireless_handlers;
1683 	struct iw_public_data	*wireless_data;
1684 #endif
1685 	const struct net_device_ops *netdev_ops;
1686 	const struct ethtool_ops *ethtool_ops;
1687 #ifdef CONFIG_NET_SWITCHDEV
1688 	const struct switchdev_ops *switchdev_ops;
1689 #endif
1690 #ifdef CONFIG_NET_L3_MASTER_DEV
1691 	const struct l3mdev_ops	*l3mdev_ops;
1692 #endif
1693 #if IS_ENABLED(CONFIG_IPV6)
1694 	const struct ndisc_ops *ndisc_ops;
1695 #endif
1696 
1697 	const struct header_ops *header_ops;
1698 
1699 	unsigned int		flags;
1700 	unsigned int		priv_flags;
1701 
1702 	unsigned short		gflags;
1703 	unsigned short		padded;
1704 
1705 	unsigned char		operstate;
1706 	unsigned char		link_mode;
1707 
1708 	unsigned char		if_port;
1709 	unsigned char		dma;
1710 
1711 	unsigned int		mtu;
1712 	unsigned short		type;
1713 	unsigned short		hard_header_len;
1714 
1715 	unsigned short		needed_headroom;
1716 	unsigned short		needed_tailroom;
1717 
1718 	/* Interface address info. */
1719 	unsigned char		perm_addr[MAX_ADDR_LEN];
1720 	unsigned char		addr_assign_type;
1721 	unsigned char		addr_len;
1722 	unsigned short		neigh_priv_len;
1723 	unsigned short          dev_id;
1724 	unsigned short          dev_port;
1725 	spinlock_t		addr_list_lock;
1726 	unsigned char		name_assign_type;
1727 	bool			uc_promisc;
1728 	struct netdev_hw_addr_list	uc;
1729 	struct netdev_hw_addr_list	mc;
1730 	struct netdev_hw_addr_list	dev_addrs;
1731 
1732 #ifdef CONFIG_SYSFS
1733 	struct kset		*queues_kset;
1734 #endif
1735 	unsigned int		promiscuity;
1736 	unsigned int		allmulti;
1737 
1738 
1739 	/* Protocol-specific pointers */
1740 
1741 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1742 	struct vlan_info __rcu	*vlan_info;
1743 #endif
1744 #if IS_ENABLED(CONFIG_NET_DSA)
1745 	struct dsa_switch_tree	*dsa_ptr;
1746 #endif
1747 #if IS_ENABLED(CONFIG_TIPC)
1748 	struct tipc_bearer __rcu *tipc_ptr;
1749 #endif
1750 	void 			*atalk_ptr;
1751 	struct in_device __rcu	*ip_ptr;
1752 	struct dn_dev __rcu     *dn_ptr;
1753 	struct inet6_dev __rcu	*ip6_ptr;
1754 	void			*ax25_ptr;
1755 	struct wireless_dev	*ieee80211_ptr;
1756 	struct wpan_dev		*ieee802154_ptr;
1757 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1758 	struct mpls_dev __rcu	*mpls_ptr;
1759 #endif
1760 
1761 /*
1762  * Cache lines mostly used on receive path (including eth_type_trans())
1763  */
1764 	unsigned long		last_rx;
1765 
1766 	/* Interface address info used in eth_type_trans() */
1767 	unsigned char		*dev_addr;
1768 
1769 #ifdef CONFIG_SYSFS
1770 	struct netdev_rx_queue	*_rx;
1771 
1772 	unsigned int		num_rx_queues;
1773 	unsigned int		real_num_rx_queues;
1774 #endif
1775 
1776 	unsigned long		gro_flush_timeout;
1777 	rx_handler_func_t __rcu	*rx_handler;
1778 	void __rcu		*rx_handler_data;
1779 
1780 #ifdef CONFIG_NET_CLS_ACT
1781 	struct tcf_proto __rcu  *ingress_cl_list;
1782 #endif
1783 	struct netdev_queue __rcu *ingress_queue;
1784 #ifdef CONFIG_NETFILTER_INGRESS
1785 	struct list_head	nf_hooks_ingress;
1786 #endif
1787 
1788 	unsigned char		broadcast[MAX_ADDR_LEN];
1789 #ifdef CONFIG_RFS_ACCEL
1790 	struct cpu_rmap		*rx_cpu_rmap;
1791 #endif
1792 	struct hlist_node	index_hlist;
1793 
1794 /*
1795  * Cache lines mostly used on transmit path
1796  */
1797 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1798 	unsigned int		num_tx_queues;
1799 	unsigned int		real_num_tx_queues;
1800 	struct Qdisc		*qdisc;
1801 	unsigned long		tx_queue_len;
1802 	spinlock_t		tx_global_lock;
1803 	int			watchdog_timeo;
1804 
1805 #ifdef CONFIG_XPS
1806 	struct xps_dev_maps __rcu *xps_maps;
1807 #endif
1808 #ifdef CONFIG_NET_CLS_ACT
1809 	struct tcf_proto __rcu  *egress_cl_list;
1810 #endif
1811 #ifdef CONFIG_NET_SWITCHDEV
1812 	u32			offload_fwd_mark;
1813 #endif
1814 
1815 	/* These may be needed for future network-power-down code. */
1816 	struct timer_list	watchdog_timer;
1817 
1818 	int __percpu		*pcpu_refcnt;
1819 	struct list_head	todo_list;
1820 
1821 	struct list_head	link_watch_list;
1822 
1823 	enum { NETREG_UNINITIALIZED=0,
1824 	       NETREG_REGISTERED,	/* completed register_netdevice */
1825 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1826 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1827 	       NETREG_RELEASED,		/* called free_netdev */
1828 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1829 	} reg_state:8;
1830 
1831 	bool dismantle;
1832 
1833 	enum {
1834 		RTNL_LINK_INITIALIZED,
1835 		RTNL_LINK_INITIALIZING,
1836 	} rtnl_link_state:16;
1837 
1838 	void (*destructor)(struct net_device *dev);
1839 
1840 #ifdef CONFIG_NETPOLL
1841 	struct netpoll_info __rcu	*npinfo;
1842 #endif
1843 
1844 	possible_net_t			nd_net;
1845 
1846 	/* mid-layer private */
1847 	union {
1848 		void					*ml_priv;
1849 		struct pcpu_lstats __percpu		*lstats;
1850 		struct pcpu_sw_netstats __percpu	*tstats;
1851 		struct pcpu_dstats __percpu		*dstats;
1852 		struct pcpu_vstats __percpu		*vstats;
1853 	};
1854 
1855 	struct garp_port __rcu	*garp_port;
1856 	struct mrp_port __rcu	*mrp_port;
1857 
1858 	struct device		dev;
1859 	const struct attribute_group *sysfs_groups[4];
1860 	const struct attribute_group *sysfs_rx_queue_group;
1861 
1862 	const struct rtnl_link_ops *rtnl_link_ops;
1863 
1864 	/* for setting kernel sock attribute on TCP connection setup */
1865 #define GSO_MAX_SIZE		65536
1866 	unsigned int		gso_max_size;
1867 #define GSO_MAX_SEGS		65535
1868 	u16			gso_max_segs;
1869 
1870 #ifdef CONFIG_DCB
1871 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1872 #endif
1873 	u8			num_tc;
1874 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
1875 	u8			prio_tc_map[TC_BITMASK + 1];
1876 
1877 #if IS_ENABLED(CONFIG_FCOE)
1878 	unsigned int		fcoe_ddp_xid;
1879 #endif
1880 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1881 	struct netprio_map __rcu *priomap;
1882 #endif
1883 	struct phy_device	*phydev;
1884 	struct lock_class_key	*qdisc_tx_busylock;
1885 	struct lock_class_key	*qdisc_running_key;
1886 	bool			proto_down;
1887 };
1888 #define to_net_dev(d) container_of(d, struct net_device, dev)
1889 
1890 #define	NETDEV_ALIGN		32
1891 
1892 static inline
1893 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1894 {
1895 	return dev->prio_tc_map[prio & TC_BITMASK];
1896 }
1897 
1898 static inline
1899 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1900 {
1901 	if (tc >= dev->num_tc)
1902 		return -EINVAL;
1903 
1904 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1905 	return 0;
1906 }
1907 
1908 static inline
1909 void netdev_reset_tc(struct net_device *dev)
1910 {
1911 	dev->num_tc = 0;
1912 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1913 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1914 }
1915 
1916 static inline
1917 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1918 {
1919 	if (tc >= dev->num_tc)
1920 		return -EINVAL;
1921 
1922 	dev->tc_to_txq[tc].count = count;
1923 	dev->tc_to_txq[tc].offset = offset;
1924 	return 0;
1925 }
1926 
1927 static inline
1928 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1929 {
1930 	if (num_tc > TC_MAX_QUEUE)
1931 		return -EINVAL;
1932 
1933 	dev->num_tc = num_tc;
1934 	return 0;
1935 }
1936 
1937 static inline
1938 int netdev_get_num_tc(struct net_device *dev)
1939 {
1940 	return dev->num_tc;
1941 }
1942 
1943 static inline
1944 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1945 					 unsigned int index)
1946 {
1947 	return &dev->_tx[index];
1948 }
1949 
1950 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1951 						    const struct sk_buff *skb)
1952 {
1953 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1954 }
1955 
1956 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1957 					    void (*f)(struct net_device *,
1958 						      struct netdev_queue *,
1959 						      void *),
1960 					    void *arg)
1961 {
1962 	unsigned int i;
1963 
1964 	for (i = 0; i < dev->num_tx_queues; i++)
1965 		f(dev, &dev->_tx[i], arg);
1966 }
1967 
1968 #define netdev_lockdep_set_classes(dev)				\
1969 {								\
1970 	static struct lock_class_key qdisc_tx_busylock_key;	\
1971 	static struct lock_class_key qdisc_running_key;		\
1972 	static struct lock_class_key qdisc_xmit_lock_key;	\
1973 	static struct lock_class_key dev_addr_list_lock_key;	\
1974 	unsigned int i;						\
1975 								\
1976 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
1977 	(dev)->qdisc_running_key = &qdisc_running_key;		\
1978 	lockdep_set_class(&(dev)->addr_list_lock,		\
1979 			  &dev_addr_list_lock_key); 		\
1980 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
1981 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
1982 				  &qdisc_xmit_lock_key);	\
1983 }
1984 
1985 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1986 				    struct sk_buff *skb,
1987 				    void *accel_priv);
1988 
1989 /* returns the headroom that the master device needs to take in account
1990  * when forwarding to this dev
1991  */
1992 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
1993 {
1994 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
1995 }
1996 
1997 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
1998 {
1999 	if (dev->netdev_ops->ndo_set_rx_headroom)
2000 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2001 }
2002 
2003 /* set the device rx headroom to the dev's default */
2004 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2005 {
2006 	netdev_set_rx_headroom(dev, -1);
2007 }
2008 
2009 /*
2010  * Net namespace inlines
2011  */
2012 static inline
2013 struct net *dev_net(const struct net_device *dev)
2014 {
2015 	return read_pnet(&dev->nd_net);
2016 }
2017 
2018 static inline
2019 void dev_net_set(struct net_device *dev, struct net *net)
2020 {
2021 	write_pnet(&dev->nd_net, net);
2022 }
2023 
2024 static inline bool netdev_uses_dsa(struct net_device *dev)
2025 {
2026 #if IS_ENABLED(CONFIG_NET_DSA)
2027 	if (dev->dsa_ptr != NULL)
2028 		return dsa_uses_tagged_protocol(dev->dsa_ptr);
2029 #endif
2030 	return false;
2031 }
2032 
2033 /**
2034  *	netdev_priv - access network device private data
2035  *	@dev: network device
2036  *
2037  * Get network device private data
2038  */
2039 static inline void *netdev_priv(const struct net_device *dev)
2040 {
2041 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2042 }
2043 
2044 /* Set the sysfs physical device reference for the network logical device
2045  * if set prior to registration will cause a symlink during initialization.
2046  */
2047 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2048 
2049 /* Set the sysfs device type for the network logical device to allow
2050  * fine-grained identification of different network device types. For
2051  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2052  */
2053 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2054 
2055 /* Default NAPI poll() weight
2056  * Device drivers are strongly advised to not use bigger value
2057  */
2058 #define NAPI_POLL_WEIGHT 64
2059 
2060 /**
2061  *	netif_napi_add - initialize a NAPI context
2062  *	@dev:  network device
2063  *	@napi: NAPI context
2064  *	@poll: polling function
2065  *	@weight: default weight
2066  *
2067  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2068  * *any* of the other NAPI-related functions.
2069  */
2070 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2071 		    int (*poll)(struct napi_struct *, int), int weight);
2072 
2073 /**
2074  *	netif_tx_napi_add - initialize a NAPI context
2075  *	@dev:  network device
2076  *	@napi: NAPI context
2077  *	@poll: polling function
2078  *	@weight: default weight
2079  *
2080  * This variant of netif_napi_add() should be used from drivers using NAPI
2081  * to exclusively poll a TX queue.
2082  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2083  */
2084 static inline void netif_tx_napi_add(struct net_device *dev,
2085 				     struct napi_struct *napi,
2086 				     int (*poll)(struct napi_struct *, int),
2087 				     int weight)
2088 {
2089 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2090 	netif_napi_add(dev, napi, poll, weight);
2091 }
2092 
2093 /**
2094  *  netif_napi_del - remove a NAPI context
2095  *  @napi: NAPI context
2096  *
2097  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2098  */
2099 void netif_napi_del(struct napi_struct *napi);
2100 
2101 struct napi_gro_cb {
2102 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2103 	void	*frag0;
2104 
2105 	/* Length of frag0. */
2106 	unsigned int frag0_len;
2107 
2108 	/* This indicates where we are processing relative to skb->data. */
2109 	int	data_offset;
2110 
2111 	/* This is non-zero if the packet cannot be merged with the new skb. */
2112 	u16	flush;
2113 
2114 	/* Save the IP ID here and check when we get to the transport layer */
2115 	u16	flush_id;
2116 
2117 	/* Number of segments aggregated. */
2118 	u16	count;
2119 
2120 	/* Start offset for remote checksum offload */
2121 	u16	gro_remcsum_start;
2122 
2123 	/* jiffies when first packet was created/queued */
2124 	unsigned long age;
2125 
2126 	/* Used in ipv6_gro_receive() and foo-over-udp */
2127 	u16	proto;
2128 
2129 	/* This is non-zero if the packet may be of the same flow. */
2130 	u8	same_flow:1;
2131 
2132 	/* Used in tunnel GRO receive */
2133 	u8	encap_mark:1;
2134 
2135 	/* GRO checksum is valid */
2136 	u8	csum_valid:1;
2137 
2138 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2139 	u8	csum_cnt:3;
2140 
2141 	/* Free the skb? */
2142 	u8	free:2;
2143 #define NAPI_GRO_FREE		  1
2144 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2145 
2146 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2147 	u8	is_ipv6:1;
2148 
2149 	/* Used in GRE, set in fou/gue_gro_receive */
2150 	u8	is_fou:1;
2151 
2152 	/* Used to determine if flush_id can be ignored */
2153 	u8	is_atomic:1;
2154 
2155 	/* 5 bit hole */
2156 
2157 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2158 	__wsum	csum;
2159 
2160 	/* used in skb_gro_receive() slow path */
2161 	struct sk_buff *last;
2162 };
2163 
2164 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2165 
2166 struct packet_type {
2167 	__be16			type;	/* This is really htons(ether_type). */
2168 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2169 	int			(*func) (struct sk_buff *,
2170 					 struct net_device *,
2171 					 struct packet_type *,
2172 					 struct net_device *);
2173 	bool			(*id_match)(struct packet_type *ptype,
2174 					    struct sock *sk);
2175 	void			*af_packet_priv;
2176 	struct list_head	list;
2177 };
2178 
2179 struct offload_callbacks {
2180 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2181 						netdev_features_t features);
2182 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2183 						 struct sk_buff *skb);
2184 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2185 };
2186 
2187 struct packet_offload {
2188 	__be16			 type;	/* This is really htons(ether_type). */
2189 	u16			 priority;
2190 	struct offload_callbacks callbacks;
2191 	struct list_head	 list;
2192 };
2193 
2194 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2195 struct pcpu_sw_netstats {
2196 	u64     rx_packets;
2197 	u64     rx_bytes;
2198 	u64     tx_packets;
2199 	u64     tx_bytes;
2200 	struct u64_stats_sync   syncp;
2201 };
2202 
2203 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2204 ({									\
2205 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2206 	if (pcpu_stats)	{						\
2207 		int __cpu;						\
2208 		for_each_possible_cpu(__cpu) {				\
2209 			typeof(type) *stat;				\
2210 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2211 			u64_stats_init(&stat->syncp);			\
2212 		}							\
2213 	}								\
2214 	pcpu_stats;							\
2215 })
2216 
2217 #define netdev_alloc_pcpu_stats(type)					\
2218 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2219 
2220 enum netdev_lag_tx_type {
2221 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2222 	NETDEV_LAG_TX_TYPE_RANDOM,
2223 	NETDEV_LAG_TX_TYPE_BROADCAST,
2224 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2225 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2226 	NETDEV_LAG_TX_TYPE_HASH,
2227 };
2228 
2229 struct netdev_lag_upper_info {
2230 	enum netdev_lag_tx_type tx_type;
2231 };
2232 
2233 struct netdev_lag_lower_state_info {
2234 	u8 link_up : 1,
2235 	   tx_enabled : 1;
2236 };
2237 
2238 #include <linux/notifier.h>
2239 
2240 /* netdevice notifier chain. Please remember to update the rtnetlink
2241  * notification exclusion list in rtnetlink_event() when adding new
2242  * types.
2243  */
2244 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
2245 #define NETDEV_DOWN	0x0002
2246 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
2247 				   detected a hardware crash and restarted
2248 				   - we can use this eg to kick tcp sessions
2249 				   once done */
2250 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
2251 #define NETDEV_REGISTER 0x0005
2252 #define NETDEV_UNREGISTER	0x0006
2253 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2254 #define NETDEV_CHANGEADDR	0x0008
2255 #define NETDEV_GOING_DOWN	0x0009
2256 #define NETDEV_CHANGENAME	0x000A
2257 #define NETDEV_FEAT_CHANGE	0x000B
2258 #define NETDEV_BONDING_FAILOVER 0x000C
2259 #define NETDEV_PRE_UP		0x000D
2260 #define NETDEV_PRE_TYPE_CHANGE	0x000E
2261 #define NETDEV_POST_TYPE_CHANGE	0x000F
2262 #define NETDEV_POST_INIT	0x0010
2263 #define NETDEV_UNREGISTER_FINAL 0x0011
2264 #define NETDEV_RELEASE		0x0012
2265 #define NETDEV_NOTIFY_PEERS	0x0013
2266 #define NETDEV_JOIN		0x0014
2267 #define NETDEV_CHANGEUPPER	0x0015
2268 #define NETDEV_RESEND_IGMP	0x0016
2269 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2270 #define NETDEV_CHANGEINFODATA	0x0018
2271 #define NETDEV_BONDING_INFO	0x0019
2272 #define NETDEV_PRECHANGEUPPER	0x001A
2273 #define NETDEV_CHANGELOWERSTATE	0x001B
2274 #define NETDEV_UDP_TUNNEL_PUSH_INFO	0x001C
2275 #define NETDEV_CHANGE_TX_QUEUE_LEN	0x001E
2276 
2277 int register_netdevice_notifier(struct notifier_block *nb);
2278 int unregister_netdevice_notifier(struct notifier_block *nb);
2279 
2280 struct netdev_notifier_info {
2281 	struct net_device *dev;
2282 };
2283 
2284 struct netdev_notifier_change_info {
2285 	struct netdev_notifier_info info; /* must be first */
2286 	unsigned int flags_changed;
2287 };
2288 
2289 struct netdev_notifier_changeupper_info {
2290 	struct netdev_notifier_info info; /* must be first */
2291 	struct net_device *upper_dev; /* new upper dev */
2292 	bool master; /* is upper dev master */
2293 	bool linking; /* is the notification for link or unlink */
2294 	void *upper_info; /* upper dev info */
2295 };
2296 
2297 struct netdev_notifier_changelowerstate_info {
2298 	struct netdev_notifier_info info; /* must be first */
2299 	void *lower_state_info; /* is lower dev state */
2300 };
2301 
2302 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2303 					     struct net_device *dev)
2304 {
2305 	info->dev = dev;
2306 }
2307 
2308 static inline struct net_device *
2309 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2310 {
2311 	return info->dev;
2312 }
2313 
2314 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2315 
2316 
2317 extern rwlock_t				dev_base_lock;		/* Device list lock */
2318 
2319 #define for_each_netdev(net, d)		\
2320 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2321 #define for_each_netdev_reverse(net, d)	\
2322 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2323 #define for_each_netdev_rcu(net, d)		\
2324 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2325 #define for_each_netdev_safe(net, d, n)	\
2326 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2327 #define for_each_netdev_continue(net, d)		\
2328 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2329 #define for_each_netdev_continue_rcu(net, d)		\
2330 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2331 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2332 		for_each_netdev_rcu(&init_net, slave)	\
2333 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2334 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2335 
2336 static inline struct net_device *next_net_device(struct net_device *dev)
2337 {
2338 	struct list_head *lh;
2339 	struct net *net;
2340 
2341 	net = dev_net(dev);
2342 	lh = dev->dev_list.next;
2343 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2344 }
2345 
2346 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2347 {
2348 	struct list_head *lh;
2349 	struct net *net;
2350 
2351 	net = dev_net(dev);
2352 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2353 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2354 }
2355 
2356 static inline struct net_device *first_net_device(struct net *net)
2357 {
2358 	return list_empty(&net->dev_base_head) ? NULL :
2359 		net_device_entry(net->dev_base_head.next);
2360 }
2361 
2362 static inline struct net_device *first_net_device_rcu(struct net *net)
2363 {
2364 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2365 
2366 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2367 }
2368 
2369 int netdev_boot_setup_check(struct net_device *dev);
2370 unsigned long netdev_boot_base(const char *prefix, int unit);
2371 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2372 				       const char *hwaddr);
2373 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2374 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2375 void dev_add_pack(struct packet_type *pt);
2376 void dev_remove_pack(struct packet_type *pt);
2377 void __dev_remove_pack(struct packet_type *pt);
2378 void dev_add_offload(struct packet_offload *po);
2379 void dev_remove_offload(struct packet_offload *po);
2380 
2381 int dev_get_iflink(const struct net_device *dev);
2382 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2383 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2384 				      unsigned short mask);
2385 struct net_device *dev_get_by_name(struct net *net, const char *name);
2386 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2387 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2388 int dev_alloc_name(struct net_device *dev, const char *name);
2389 int dev_open(struct net_device *dev);
2390 int dev_close(struct net_device *dev);
2391 int dev_close_many(struct list_head *head, bool unlink);
2392 void dev_disable_lro(struct net_device *dev);
2393 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2394 int dev_queue_xmit(struct sk_buff *skb);
2395 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2396 int register_netdevice(struct net_device *dev);
2397 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2398 void unregister_netdevice_many(struct list_head *head);
2399 static inline void unregister_netdevice(struct net_device *dev)
2400 {
2401 	unregister_netdevice_queue(dev, NULL);
2402 }
2403 
2404 int netdev_refcnt_read(const struct net_device *dev);
2405 void free_netdev(struct net_device *dev);
2406 void netdev_freemem(struct net_device *dev);
2407 void synchronize_net(void);
2408 int init_dummy_netdev(struct net_device *dev);
2409 
2410 DECLARE_PER_CPU(int, xmit_recursion);
2411 #define XMIT_RECURSION_LIMIT	10
2412 
2413 static inline int dev_recursion_level(void)
2414 {
2415 	return this_cpu_read(xmit_recursion);
2416 }
2417 
2418 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2419 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2420 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2421 int netdev_get_name(struct net *net, char *name, int ifindex);
2422 int dev_restart(struct net_device *dev);
2423 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2424 
2425 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2426 {
2427 	return NAPI_GRO_CB(skb)->data_offset;
2428 }
2429 
2430 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2431 {
2432 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2433 }
2434 
2435 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2436 {
2437 	NAPI_GRO_CB(skb)->data_offset += len;
2438 }
2439 
2440 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2441 					unsigned int offset)
2442 {
2443 	return NAPI_GRO_CB(skb)->frag0 + offset;
2444 }
2445 
2446 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2447 {
2448 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2449 }
2450 
2451 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2452 					unsigned int offset)
2453 {
2454 	if (!pskb_may_pull(skb, hlen))
2455 		return NULL;
2456 
2457 	NAPI_GRO_CB(skb)->frag0 = NULL;
2458 	NAPI_GRO_CB(skb)->frag0_len = 0;
2459 	return skb->data + offset;
2460 }
2461 
2462 static inline void *skb_gro_network_header(struct sk_buff *skb)
2463 {
2464 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2465 	       skb_network_offset(skb);
2466 }
2467 
2468 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2469 					const void *start, unsigned int len)
2470 {
2471 	if (NAPI_GRO_CB(skb)->csum_valid)
2472 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2473 						  csum_partial(start, len, 0));
2474 }
2475 
2476 /* GRO checksum functions. These are logical equivalents of the normal
2477  * checksum functions (in skbuff.h) except that they operate on the GRO
2478  * offsets and fields in sk_buff.
2479  */
2480 
2481 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2482 
2483 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2484 {
2485 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2486 }
2487 
2488 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2489 						      bool zero_okay,
2490 						      __sum16 check)
2491 {
2492 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2493 		skb_checksum_start_offset(skb) <
2494 		 skb_gro_offset(skb)) &&
2495 		!skb_at_gro_remcsum_start(skb) &&
2496 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2497 		(!zero_okay || check));
2498 }
2499 
2500 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2501 							   __wsum psum)
2502 {
2503 	if (NAPI_GRO_CB(skb)->csum_valid &&
2504 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2505 		return 0;
2506 
2507 	NAPI_GRO_CB(skb)->csum = psum;
2508 
2509 	return __skb_gro_checksum_complete(skb);
2510 }
2511 
2512 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2513 {
2514 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2515 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2516 		NAPI_GRO_CB(skb)->csum_cnt--;
2517 	} else {
2518 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2519 		 * verified a new top level checksum or an encapsulated one
2520 		 * during GRO. This saves work if we fallback to normal path.
2521 		 */
2522 		__skb_incr_checksum_unnecessary(skb);
2523 	}
2524 }
2525 
2526 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2527 				    compute_pseudo)			\
2528 ({									\
2529 	__sum16 __ret = 0;						\
2530 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2531 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2532 				compute_pseudo(skb, proto));		\
2533 	if (__ret)							\
2534 		__skb_mark_checksum_bad(skb);				\
2535 	else								\
2536 		skb_gro_incr_csum_unnecessary(skb);			\
2537 	__ret;								\
2538 })
2539 
2540 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2541 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2542 
2543 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2544 					     compute_pseudo)		\
2545 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2546 
2547 #define skb_gro_checksum_simple_validate(skb)				\
2548 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2549 
2550 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2551 {
2552 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2553 		!NAPI_GRO_CB(skb)->csum_valid);
2554 }
2555 
2556 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2557 					      __sum16 check, __wsum pseudo)
2558 {
2559 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2560 	NAPI_GRO_CB(skb)->csum_valid = 1;
2561 }
2562 
2563 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2564 do {									\
2565 	if (__skb_gro_checksum_convert_check(skb))			\
2566 		__skb_gro_checksum_convert(skb, check,			\
2567 					   compute_pseudo(skb, proto));	\
2568 } while (0)
2569 
2570 struct gro_remcsum {
2571 	int offset;
2572 	__wsum delta;
2573 };
2574 
2575 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2576 {
2577 	grc->offset = 0;
2578 	grc->delta = 0;
2579 }
2580 
2581 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2582 					    unsigned int off, size_t hdrlen,
2583 					    int start, int offset,
2584 					    struct gro_remcsum *grc,
2585 					    bool nopartial)
2586 {
2587 	__wsum delta;
2588 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2589 
2590 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2591 
2592 	if (!nopartial) {
2593 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2594 		return ptr;
2595 	}
2596 
2597 	ptr = skb_gro_header_fast(skb, off);
2598 	if (skb_gro_header_hard(skb, off + plen)) {
2599 		ptr = skb_gro_header_slow(skb, off + plen, off);
2600 		if (!ptr)
2601 			return NULL;
2602 	}
2603 
2604 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2605 			       start, offset);
2606 
2607 	/* Adjust skb->csum since we changed the packet */
2608 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2609 
2610 	grc->offset = off + hdrlen + offset;
2611 	grc->delta = delta;
2612 
2613 	return ptr;
2614 }
2615 
2616 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2617 					   struct gro_remcsum *grc)
2618 {
2619 	void *ptr;
2620 	size_t plen = grc->offset + sizeof(u16);
2621 
2622 	if (!grc->delta)
2623 		return;
2624 
2625 	ptr = skb_gro_header_fast(skb, grc->offset);
2626 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2627 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2628 		if (!ptr)
2629 			return;
2630 	}
2631 
2632 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2633 }
2634 
2635 struct skb_csum_offl_spec {
2636 	__u16		ipv4_okay:1,
2637 			ipv6_okay:1,
2638 			encap_okay:1,
2639 			ip_options_okay:1,
2640 			ext_hdrs_okay:1,
2641 			tcp_okay:1,
2642 			udp_okay:1,
2643 			sctp_okay:1,
2644 			vlan_okay:1,
2645 			no_encapped_ipv6:1,
2646 			no_not_encapped:1;
2647 };
2648 
2649 bool __skb_csum_offload_chk(struct sk_buff *skb,
2650 			    const struct skb_csum_offl_spec *spec,
2651 			    bool *csum_encapped,
2652 			    bool csum_help);
2653 
2654 static inline bool skb_csum_offload_chk(struct sk_buff *skb,
2655 					const struct skb_csum_offl_spec *spec,
2656 					bool *csum_encapped,
2657 					bool csum_help)
2658 {
2659 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2660 		return false;
2661 
2662 	return __skb_csum_offload_chk(skb, spec, csum_encapped, csum_help);
2663 }
2664 
2665 static inline bool skb_csum_offload_chk_help(struct sk_buff *skb,
2666 					     const struct skb_csum_offl_spec *spec)
2667 {
2668 	bool csum_encapped;
2669 
2670 	return skb_csum_offload_chk(skb, spec, &csum_encapped, true);
2671 }
2672 
2673 static inline bool skb_csum_off_chk_help_cmn(struct sk_buff *skb)
2674 {
2675 	static const struct skb_csum_offl_spec csum_offl_spec = {
2676 		.ipv4_okay = 1,
2677 		.ip_options_okay = 1,
2678 		.ipv6_okay = 1,
2679 		.vlan_okay = 1,
2680 		.tcp_okay = 1,
2681 		.udp_okay = 1,
2682 	};
2683 
2684 	return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2685 }
2686 
2687 static inline bool skb_csum_off_chk_help_cmn_v4_only(struct sk_buff *skb)
2688 {
2689 	static const struct skb_csum_offl_spec csum_offl_spec = {
2690 		.ipv4_okay = 1,
2691 		.ip_options_okay = 1,
2692 		.tcp_okay = 1,
2693 		.udp_okay = 1,
2694 		.vlan_okay = 1,
2695 	};
2696 
2697 	return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2698 }
2699 
2700 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2701 				  unsigned short type,
2702 				  const void *daddr, const void *saddr,
2703 				  unsigned int len)
2704 {
2705 	if (!dev->header_ops || !dev->header_ops->create)
2706 		return 0;
2707 
2708 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2709 }
2710 
2711 static inline int dev_parse_header(const struct sk_buff *skb,
2712 				   unsigned char *haddr)
2713 {
2714 	const struct net_device *dev = skb->dev;
2715 
2716 	if (!dev->header_ops || !dev->header_ops->parse)
2717 		return 0;
2718 	return dev->header_ops->parse(skb, haddr);
2719 }
2720 
2721 /* ll_header must have at least hard_header_len allocated */
2722 static inline bool dev_validate_header(const struct net_device *dev,
2723 				       char *ll_header, int len)
2724 {
2725 	if (likely(len >= dev->hard_header_len))
2726 		return true;
2727 
2728 	if (capable(CAP_SYS_RAWIO)) {
2729 		memset(ll_header + len, 0, dev->hard_header_len - len);
2730 		return true;
2731 	}
2732 
2733 	if (dev->header_ops && dev->header_ops->validate)
2734 		return dev->header_ops->validate(ll_header, len);
2735 
2736 	return false;
2737 }
2738 
2739 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2740 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2741 static inline int unregister_gifconf(unsigned int family)
2742 {
2743 	return register_gifconf(family, NULL);
2744 }
2745 
2746 #ifdef CONFIG_NET_FLOW_LIMIT
2747 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2748 struct sd_flow_limit {
2749 	u64			count;
2750 	unsigned int		num_buckets;
2751 	unsigned int		history_head;
2752 	u16			history[FLOW_LIMIT_HISTORY];
2753 	u8			buckets[];
2754 };
2755 
2756 extern int netdev_flow_limit_table_len;
2757 #endif /* CONFIG_NET_FLOW_LIMIT */
2758 
2759 /*
2760  * Incoming packets are placed on per-CPU queues
2761  */
2762 struct softnet_data {
2763 	struct list_head	poll_list;
2764 	struct sk_buff_head	process_queue;
2765 
2766 	/* stats */
2767 	unsigned int		processed;
2768 	unsigned int		time_squeeze;
2769 	unsigned int		received_rps;
2770 #ifdef CONFIG_RPS
2771 	struct softnet_data	*rps_ipi_list;
2772 #endif
2773 #ifdef CONFIG_NET_FLOW_LIMIT
2774 	struct sd_flow_limit __rcu *flow_limit;
2775 #endif
2776 	struct Qdisc		*output_queue;
2777 	struct Qdisc		**output_queue_tailp;
2778 	struct sk_buff		*completion_queue;
2779 
2780 #ifdef CONFIG_RPS
2781 	/* input_queue_head should be written by cpu owning this struct,
2782 	 * and only read by other cpus. Worth using a cache line.
2783 	 */
2784 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
2785 
2786 	/* Elements below can be accessed between CPUs for RPS/RFS */
2787 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2788 	struct softnet_data	*rps_ipi_next;
2789 	unsigned int		cpu;
2790 	unsigned int		input_queue_tail;
2791 #endif
2792 	unsigned int		dropped;
2793 	struct sk_buff_head	input_pkt_queue;
2794 	struct napi_struct	backlog;
2795 
2796 };
2797 
2798 static inline void input_queue_head_incr(struct softnet_data *sd)
2799 {
2800 #ifdef CONFIG_RPS
2801 	sd->input_queue_head++;
2802 #endif
2803 }
2804 
2805 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2806 					      unsigned int *qtail)
2807 {
2808 #ifdef CONFIG_RPS
2809 	*qtail = ++sd->input_queue_tail;
2810 #endif
2811 }
2812 
2813 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2814 
2815 void __netif_schedule(struct Qdisc *q);
2816 void netif_schedule_queue(struct netdev_queue *txq);
2817 
2818 static inline void netif_tx_schedule_all(struct net_device *dev)
2819 {
2820 	unsigned int i;
2821 
2822 	for (i = 0; i < dev->num_tx_queues; i++)
2823 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2824 }
2825 
2826 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2827 {
2828 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2829 }
2830 
2831 /**
2832  *	netif_start_queue - allow transmit
2833  *	@dev: network device
2834  *
2835  *	Allow upper layers to call the device hard_start_xmit routine.
2836  */
2837 static inline void netif_start_queue(struct net_device *dev)
2838 {
2839 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2840 }
2841 
2842 static inline void netif_tx_start_all_queues(struct net_device *dev)
2843 {
2844 	unsigned int i;
2845 
2846 	for (i = 0; i < dev->num_tx_queues; i++) {
2847 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2848 		netif_tx_start_queue(txq);
2849 	}
2850 }
2851 
2852 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2853 
2854 /**
2855  *	netif_wake_queue - restart transmit
2856  *	@dev: network device
2857  *
2858  *	Allow upper layers to call the device hard_start_xmit routine.
2859  *	Used for flow control when transmit resources are available.
2860  */
2861 static inline void netif_wake_queue(struct net_device *dev)
2862 {
2863 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2864 }
2865 
2866 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2867 {
2868 	unsigned int i;
2869 
2870 	for (i = 0; i < dev->num_tx_queues; i++) {
2871 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2872 		netif_tx_wake_queue(txq);
2873 	}
2874 }
2875 
2876 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2877 {
2878 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2879 }
2880 
2881 /**
2882  *	netif_stop_queue - stop transmitted packets
2883  *	@dev: network device
2884  *
2885  *	Stop upper layers calling the device hard_start_xmit routine.
2886  *	Used for flow control when transmit resources are unavailable.
2887  */
2888 static inline void netif_stop_queue(struct net_device *dev)
2889 {
2890 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2891 }
2892 
2893 void netif_tx_stop_all_queues(struct net_device *dev);
2894 
2895 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2896 {
2897 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2898 }
2899 
2900 /**
2901  *	netif_queue_stopped - test if transmit queue is flowblocked
2902  *	@dev: network device
2903  *
2904  *	Test if transmit queue on device is currently unable to send.
2905  */
2906 static inline bool netif_queue_stopped(const struct net_device *dev)
2907 {
2908 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2909 }
2910 
2911 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2912 {
2913 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2914 }
2915 
2916 static inline bool
2917 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2918 {
2919 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2920 }
2921 
2922 static inline bool
2923 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2924 {
2925 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2926 }
2927 
2928 /**
2929  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2930  *	@dev_queue: pointer to transmit queue
2931  *
2932  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2933  * to give appropriate hint to the CPU.
2934  */
2935 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2936 {
2937 #ifdef CONFIG_BQL
2938 	prefetchw(&dev_queue->dql.num_queued);
2939 #endif
2940 }
2941 
2942 /**
2943  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2944  *	@dev_queue: pointer to transmit queue
2945  *
2946  * BQL enabled drivers might use this helper in their TX completion path,
2947  * to give appropriate hint to the CPU.
2948  */
2949 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2950 {
2951 #ifdef CONFIG_BQL
2952 	prefetchw(&dev_queue->dql.limit);
2953 #endif
2954 }
2955 
2956 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2957 					unsigned int bytes)
2958 {
2959 #ifdef CONFIG_BQL
2960 	dql_queued(&dev_queue->dql, bytes);
2961 
2962 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2963 		return;
2964 
2965 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2966 
2967 	/*
2968 	 * The XOFF flag must be set before checking the dql_avail below,
2969 	 * because in netdev_tx_completed_queue we update the dql_completed
2970 	 * before checking the XOFF flag.
2971 	 */
2972 	smp_mb();
2973 
2974 	/* check again in case another CPU has just made room avail */
2975 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2976 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2977 #endif
2978 }
2979 
2980 /**
2981  * 	netdev_sent_queue - report the number of bytes queued to hardware
2982  * 	@dev: network device
2983  * 	@bytes: number of bytes queued to the hardware device queue
2984  *
2985  * 	Report the number of bytes queued for sending/completion to the network
2986  * 	device hardware queue. @bytes should be a good approximation and should
2987  * 	exactly match netdev_completed_queue() @bytes
2988  */
2989 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2990 {
2991 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2992 }
2993 
2994 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2995 					     unsigned int pkts, unsigned int bytes)
2996 {
2997 #ifdef CONFIG_BQL
2998 	if (unlikely(!bytes))
2999 		return;
3000 
3001 	dql_completed(&dev_queue->dql, bytes);
3002 
3003 	/*
3004 	 * Without the memory barrier there is a small possiblity that
3005 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3006 	 * be stopped forever
3007 	 */
3008 	smp_mb();
3009 
3010 	if (dql_avail(&dev_queue->dql) < 0)
3011 		return;
3012 
3013 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3014 		netif_schedule_queue(dev_queue);
3015 #endif
3016 }
3017 
3018 /**
3019  * 	netdev_completed_queue - report bytes and packets completed by device
3020  * 	@dev: network device
3021  * 	@pkts: actual number of packets sent over the medium
3022  * 	@bytes: actual number of bytes sent over the medium
3023  *
3024  * 	Report the number of bytes and packets transmitted by the network device
3025  * 	hardware queue over the physical medium, @bytes must exactly match the
3026  * 	@bytes amount passed to netdev_sent_queue()
3027  */
3028 static inline void netdev_completed_queue(struct net_device *dev,
3029 					  unsigned int pkts, unsigned int bytes)
3030 {
3031 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3032 }
3033 
3034 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3035 {
3036 #ifdef CONFIG_BQL
3037 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3038 	dql_reset(&q->dql);
3039 #endif
3040 }
3041 
3042 /**
3043  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3044  * 	@dev_queue: network device
3045  *
3046  * 	Reset the bytes and packet count of a network device and clear the
3047  * 	software flow control OFF bit for this network device
3048  */
3049 static inline void netdev_reset_queue(struct net_device *dev_queue)
3050 {
3051 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3052 }
3053 
3054 /**
3055  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3056  * 	@dev: network device
3057  * 	@queue_index: given tx queue index
3058  *
3059  * 	Returns 0 if given tx queue index >= number of device tx queues,
3060  * 	otherwise returns the originally passed tx queue index.
3061  */
3062 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3063 {
3064 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3065 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3066 				     dev->name, queue_index,
3067 				     dev->real_num_tx_queues);
3068 		return 0;
3069 	}
3070 
3071 	return queue_index;
3072 }
3073 
3074 /**
3075  *	netif_running - test if up
3076  *	@dev: network device
3077  *
3078  *	Test if the device has been brought up.
3079  */
3080 static inline bool netif_running(const struct net_device *dev)
3081 {
3082 	return test_bit(__LINK_STATE_START, &dev->state);
3083 }
3084 
3085 /*
3086  * Routines to manage the subqueues on a device.  We only need start,
3087  * stop, and a check if it's stopped.  All other device management is
3088  * done at the overall netdevice level.
3089  * Also test the device if we're multiqueue.
3090  */
3091 
3092 /**
3093  *	netif_start_subqueue - allow sending packets on subqueue
3094  *	@dev: network device
3095  *	@queue_index: sub queue index
3096  *
3097  * Start individual transmit queue of a device with multiple transmit queues.
3098  */
3099 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3100 {
3101 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3102 
3103 	netif_tx_start_queue(txq);
3104 }
3105 
3106 /**
3107  *	netif_stop_subqueue - stop sending packets on subqueue
3108  *	@dev: network device
3109  *	@queue_index: sub queue index
3110  *
3111  * Stop individual transmit queue of a device with multiple transmit queues.
3112  */
3113 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3114 {
3115 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3116 	netif_tx_stop_queue(txq);
3117 }
3118 
3119 /**
3120  *	netif_subqueue_stopped - test status of subqueue
3121  *	@dev: network device
3122  *	@queue_index: sub queue index
3123  *
3124  * Check individual transmit queue of a device with multiple transmit queues.
3125  */
3126 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3127 					    u16 queue_index)
3128 {
3129 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3130 
3131 	return netif_tx_queue_stopped(txq);
3132 }
3133 
3134 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3135 					  struct sk_buff *skb)
3136 {
3137 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3138 }
3139 
3140 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
3141 
3142 #ifdef CONFIG_XPS
3143 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3144 			u16 index);
3145 #else
3146 static inline int netif_set_xps_queue(struct net_device *dev,
3147 				      const struct cpumask *mask,
3148 				      u16 index)
3149 {
3150 	return 0;
3151 }
3152 #endif
3153 
3154 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3155 		  unsigned int num_tx_queues);
3156 
3157 /*
3158  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3159  * as a distribution range limit for the returned value.
3160  */
3161 static inline u16 skb_tx_hash(const struct net_device *dev,
3162 			      struct sk_buff *skb)
3163 {
3164 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3165 }
3166 
3167 /**
3168  *	netif_is_multiqueue - test if device has multiple transmit queues
3169  *	@dev: network device
3170  *
3171  * Check if device has multiple transmit queues
3172  */
3173 static inline bool netif_is_multiqueue(const struct net_device *dev)
3174 {
3175 	return dev->num_tx_queues > 1;
3176 }
3177 
3178 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3179 
3180 #ifdef CONFIG_SYSFS
3181 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3182 #else
3183 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3184 						unsigned int rxq)
3185 {
3186 	return 0;
3187 }
3188 #endif
3189 
3190 #ifdef CONFIG_SYSFS
3191 static inline unsigned int get_netdev_rx_queue_index(
3192 		struct netdev_rx_queue *queue)
3193 {
3194 	struct net_device *dev = queue->dev;
3195 	int index = queue - dev->_rx;
3196 
3197 	BUG_ON(index >= dev->num_rx_queues);
3198 	return index;
3199 }
3200 #endif
3201 
3202 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3203 int netif_get_num_default_rss_queues(void);
3204 
3205 enum skb_free_reason {
3206 	SKB_REASON_CONSUMED,
3207 	SKB_REASON_DROPPED,
3208 };
3209 
3210 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3211 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3212 
3213 /*
3214  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3215  * interrupt context or with hardware interrupts being disabled.
3216  * (in_irq() || irqs_disabled())
3217  *
3218  * We provide four helpers that can be used in following contexts :
3219  *
3220  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3221  *  replacing kfree_skb(skb)
3222  *
3223  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3224  *  Typically used in place of consume_skb(skb) in TX completion path
3225  *
3226  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3227  *  replacing kfree_skb(skb)
3228  *
3229  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3230  *  and consumed a packet. Used in place of consume_skb(skb)
3231  */
3232 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3233 {
3234 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3235 }
3236 
3237 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3238 {
3239 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3240 }
3241 
3242 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3243 {
3244 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3245 }
3246 
3247 static inline void dev_consume_skb_any(struct sk_buff *skb)
3248 {
3249 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3250 }
3251 
3252 int netif_rx(struct sk_buff *skb);
3253 int netif_rx_ni(struct sk_buff *skb);
3254 int netif_receive_skb(struct sk_buff *skb);
3255 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3256 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3257 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3258 gro_result_t napi_gro_frags(struct napi_struct *napi);
3259 struct packet_offload *gro_find_receive_by_type(__be16 type);
3260 struct packet_offload *gro_find_complete_by_type(__be16 type);
3261 
3262 static inline void napi_free_frags(struct napi_struct *napi)
3263 {
3264 	kfree_skb(napi->skb);
3265 	napi->skb = NULL;
3266 }
3267 
3268 int netdev_rx_handler_register(struct net_device *dev,
3269 			       rx_handler_func_t *rx_handler,
3270 			       void *rx_handler_data);
3271 void netdev_rx_handler_unregister(struct net_device *dev);
3272 
3273 bool dev_valid_name(const char *name);
3274 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3275 int dev_ethtool(struct net *net, struct ifreq *);
3276 unsigned int dev_get_flags(const struct net_device *);
3277 int __dev_change_flags(struct net_device *, unsigned int flags);
3278 int dev_change_flags(struct net_device *, unsigned int);
3279 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3280 			unsigned int gchanges);
3281 int dev_change_name(struct net_device *, const char *);
3282 int dev_set_alias(struct net_device *, const char *, size_t);
3283 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3284 int dev_set_mtu(struct net_device *, int);
3285 void dev_set_group(struct net_device *, int);
3286 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3287 int dev_change_carrier(struct net_device *, bool new_carrier);
3288 int dev_get_phys_port_id(struct net_device *dev,
3289 			 struct netdev_phys_item_id *ppid);
3290 int dev_get_phys_port_name(struct net_device *dev,
3291 			   char *name, size_t len);
3292 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3293 int dev_change_xdp_fd(struct net_device *dev, int fd);
3294 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3295 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3296 				    struct netdev_queue *txq, int *ret);
3297 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3298 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3299 bool is_skb_forwardable(const struct net_device *dev,
3300 			const struct sk_buff *skb);
3301 
3302 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3303 
3304 extern int		netdev_budget;
3305 
3306 /* Called by rtnetlink.c:rtnl_unlock() */
3307 void netdev_run_todo(void);
3308 
3309 /**
3310  *	dev_put - release reference to device
3311  *	@dev: network device
3312  *
3313  * Release reference to device to allow it to be freed.
3314  */
3315 static inline void dev_put(struct net_device *dev)
3316 {
3317 	this_cpu_dec(*dev->pcpu_refcnt);
3318 }
3319 
3320 /**
3321  *	dev_hold - get reference to device
3322  *	@dev: network device
3323  *
3324  * Hold reference to device to keep it from being freed.
3325  */
3326 static inline void dev_hold(struct net_device *dev)
3327 {
3328 	this_cpu_inc(*dev->pcpu_refcnt);
3329 }
3330 
3331 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3332  * and _off may be called from IRQ context, but it is caller
3333  * who is responsible for serialization of these calls.
3334  *
3335  * The name carrier is inappropriate, these functions should really be
3336  * called netif_lowerlayer_*() because they represent the state of any
3337  * kind of lower layer not just hardware media.
3338  */
3339 
3340 void linkwatch_init_dev(struct net_device *dev);
3341 void linkwatch_fire_event(struct net_device *dev);
3342 void linkwatch_forget_dev(struct net_device *dev);
3343 
3344 /**
3345  *	netif_carrier_ok - test if carrier present
3346  *	@dev: network device
3347  *
3348  * Check if carrier is present on device
3349  */
3350 static inline bool netif_carrier_ok(const struct net_device *dev)
3351 {
3352 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3353 }
3354 
3355 unsigned long dev_trans_start(struct net_device *dev);
3356 
3357 void __netdev_watchdog_up(struct net_device *dev);
3358 
3359 void netif_carrier_on(struct net_device *dev);
3360 
3361 void netif_carrier_off(struct net_device *dev);
3362 
3363 /**
3364  *	netif_dormant_on - mark device as dormant.
3365  *	@dev: network device
3366  *
3367  * Mark device as dormant (as per RFC2863).
3368  *
3369  * The dormant state indicates that the relevant interface is not
3370  * actually in a condition to pass packets (i.e., it is not 'up') but is
3371  * in a "pending" state, waiting for some external event.  For "on-
3372  * demand" interfaces, this new state identifies the situation where the
3373  * interface is waiting for events to place it in the up state.
3374  */
3375 static inline void netif_dormant_on(struct net_device *dev)
3376 {
3377 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3378 		linkwatch_fire_event(dev);
3379 }
3380 
3381 /**
3382  *	netif_dormant_off - set device as not dormant.
3383  *	@dev: network device
3384  *
3385  * Device is not in dormant state.
3386  */
3387 static inline void netif_dormant_off(struct net_device *dev)
3388 {
3389 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3390 		linkwatch_fire_event(dev);
3391 }
3392 
3393 /**
3394  *	netif_dormant - test if carrier present
3395  *	@dev: network device
3396  *
3397  * Check if carrier is present on device
3398  */
3399 static inline bool netif_dormant(const struct net_device *dev)
3400 {
3401 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3402 }
3403 
3404 
3405 /**
3406  *	netif_oper_up - test if device is operational
3407  *	@dev: network device
3408  *
3409  * Check if carrier is operational
3410  */
3411 static inline bool netif_oper_up(const struct net_device *dev)
3412 {
3413 	return (dev->operstate == IF_OPER_UP ||
3414 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3415 }
3416 
3417 /**
3418  *	netif_device_present - is device available or removed
3419  *	@dev: network device
3420  *
3421  * Check if device has not been removed from system.
3422  */
3423 static inline bool netif_device_present(struct net_device *dev)
3424 {
3425 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3426 }
3427 
3428 void netif_device_detach(struct net_device *dev);
3429 
3430 void netif_device_attach(struct net_device *dev);
3431 
3432 /*
3433  * Network interface message level settings
3434  */
3435 
3436 enum {
3437 	NETIF_MSG_DRV		= 0x0001,
3438 	NETIF_MSG_PROBE		= 0x0002,
3439 	NETIF_MSG_LINK		= 0x0004,
3440 	NETIF_MSG_TIMER		= 0x0008,
3441 	NETIF_MSG_IFDOWN	= 0x0010,
3442 	NETIF_MSG_IFUP		= 0x0020,
3443 	NETIF_MSG_RX_ERR	= 0x0040,
3444 	NETIF_MSG_TX_ERR	= 0x0080,
3445 	NETIF_MSG_TX_QUEUED	= 0x0100,
3446 	NETIF_MSG_INTR		= 0x0200,
3447 	NETIF_MSG_TX_DONE	= 0x0400,
3448 	NETIF_MSG_RX_STATUS	= 0x0800,
3449 	NETIF_MSG_PKTDATA	= 0x1000,
3450 	NETIF_MSG_HW		= 0x2000,
3451 	NETIF_MSG_WOL		= 0x4000,
3452 };
3453 
3454 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3455 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3456 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3457 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3458 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3459 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3460 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3461 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3462 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3463 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3464 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3465 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3466 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3467 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3468 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3469 
3470 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3471 {
3472 	/* use default */
3473 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3474 		return default_msg_enable_bits;
3475 	if (debug_value == 0)	/* no output */
3476 		return 0;
3477 	/* set low N bits */
3478 	return (1 << debug_value) - 1;
3479 }
3480 
3481 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3482 {
3483 	spin_lock(&txq->_xmit_lock);
3484 	txq->xmit_lock_owner = cpu;
3485 }
3486 
3487 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3488 {
3489 	spin_lock_bh(&txq->_xmit_lock);
3490 	txq->xmit_lock_owner = smp_processor_id();
3491 }
3492 
3493 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3494 {
3495 	bool ok = spin_trylock(&txq->_xmit_lock);
3496 	if (likely(ok))
3497 		txq->xmit_lock_owner = smp_processor_id();
3498 	return ok;
3499 }
3500 
3501 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3502 {
3503 	txq->xmit_lock_owner = -1;
3504 	spin_unlock(&txq->_xmit_lock);
3505 }
3506 
3507 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3508 {
3509 	txq->xmit_lock_owner = -1;
3510 	spin_unlock_bh(&txq->_xmit_lock);
3511 }
3512 
3513 static inline void txq_trans_update(struct netdev_queue *txq)
3514 {
3515 	if (txq->xmit_lock_owner != -1)
3516 		txq->trans_start = jiffies;
3517 }
3518 
3519 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3520 static inline void netif_trans_update(struct net_device *dev)
3521 {
3522 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3523 
3524 	if (txq->trans_start != jiffies)
3525 		txq->trans_start = jiffies;
3526 }
3527 
3528 /**
3529  *	netif_tx_lock - grab network device transmit lock
3530  *	@dev: network device
3531  *
3532  * Get network device transmit lock
3533  */
3534 static inline void netif_tx_lock(struct net_device *dev)
3535 {
3536 	unsigned int i;
3537 	int cpu;
3538 
3539 	spin_lock(&dev->tx_global_lock);
3540 	cpu = smp_processor_id();
3541 	for (i = 0; i < dev->num_tx_queues; i++) {
3542 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3543 
3544 		/* We are the only thread of execution doing a
3545 		 * freeze, but we have to grab the _xmit_lock in
3546 		 * order to synchronize with threads which are in
3547 		 * the ->hard_start_xmit() handler and already
3548 		 * checked the frozen bit.
3549 		 */
3550 		__netif_tx_lock(txq, cpu);
3551 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3552 		__netif_tx_unlock(txq);
3553 	}
3554 }
3555 
3556 static inline void netif_tx_lock_bh(struct net_device *dev)
3557 {
3558 	local_bh_disable();
3559 	netif_tx_lock(dev);
3560 }
3561 
3562 static inline void netif_tx_unlock(struct net_device *dev)
3563 {
3564 	unsigned int i;
3565 
3566 	for (i = 0; i < dev->num_tx_queues; i++) {
3567 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3568 
3569 		/* No need to grab the _xmit_lock here.  If the
3570 		 * queue is not stopped for another reason, we
3571 		 * force a schedule.
3572 		 */
3573 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3574 		netif_schedule_queue(txq);
3575 	}
3576 	spin_unlock(&dev->tx_global_lock);
3577 }
3578 
3579 static inline void netif_tx_unlock_bh(struct net_device *dev)
3580 {
3581 	netif_tx_unlock(dev);
3582 	local_bh_enable();
3583 }
3584 
3585 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3586 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3587 		__netif_tx_lock(txq, cpu);		\
3588 	}						\
3589 }
3590 
3591 #define HARD_TX_TRYLOCK(dev, txq)			\
3592 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3593 		__netif_tx_trylock(txq) :		\
3594 		true )
3595 
3596 #define HARD_TX_UNLOCK(dev, txq) {			\
3597 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3598 		__netif_tx_unlock(txq);			\
3599 	}						\
3600 }
3601 
3602 static inline void netif_tx_disable(struct net_device *dev)
3603 {
3604 	unsigned int i;
3605 	int cpu;
3606 
3607 	local_bh_disable();
3608 	cpu = smp_processor_id();
3609 	for (i = 0; i < dev->num_tx_queues; i++) {
3610 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3611 
3612 		__netif_tx_lock(txq, cpu);
3613 		netif_tx_stop_queue(txq);
3614 		__netif_tx_unlock(txq);
3615 	}
3616 	local_bh_enable();
3617 }
3618 
3619 static inline void netif_addr_lock(struct net_device *dev)
3620 {
3621 	spin_lock(&dev->addr_list_lock);
3622 }
3623 
3624 static inline void netif_addr_lock_nested(struct net_device *dev)
3625 {
3626 	int subclass = SINGLE_DEPTH_NESTING;
3627 
3628 	if (dev->netdev_ops->ndo_get_lock_subclass)
3629 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3630 
3631 	spin_lock_nested(&dev->addr_list_lock, subclass);
3632 }
3633 
3634 static inline void netif_addr_lock_bh(struct net_device *dev)
3635 {
3636 	spin_lock_bh(&dev->addr_list_lock);
3637 }
3638 
3639 static inline void netif_addr_unlock(struct net_device *dev)
3640 {
3641 	spin_unlock(&dev->addr_list_lock);
3642 }
3643 
3644 static inline void netif_addr_unlock_bh(struct net_device *dev)
3645 {
3646 	spin_unlock_bh(&dev->addr_list_lock);
3647 }
3648 
3649 /*
3650  * dev_addrs walker. Should be used only for read access. Call with
3651  * rcu_read_lock held.
3652  */
3653 #define for_each_dev_addr(dev, ha) \
3654 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3655 
3656 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3657 
3658 void ether_setup(struct net_device *dev);
3659 
3660 /* Support for loadable net-drivers */
3661 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3662 				    unsigned char name_assign_type,
3663 				    void (*setup)(struct net_device *),
3664 				    unsigned int txqs, unsigned int rxqs);
3665 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3666 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3667 
3668 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3669 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3670 			 count)
3671 
3672 int register_netdev(struct net_device *dev);
3673 void unregister_netdev(struct net_device *dev);
3674 
3675 /* General hardware address lists handling functions */
3676 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3677 		   struct netdev_hw_addr_list *from_list, int addr_len);
3678 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3679 		      struct netdev_hw_addr_list *from_list, int addr_len);
3680 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3681 		       struct net_device *dev,
3682 		       int (*sync)(struct net_device *, const unsigned char *),
3683 		       int (*unsync)(struct net_device *,
3684 				     const unsigned char *));
3685 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3686 			  struct net_device *dev,
3687 			  int (*unsync)(struct net_device *,
3688 					const unsigned char *));
3689 void __hw_addr_init(struct netdev_hw_addr_list *list);
3690 
3691 /* Functions used for device addresses handling */
3692 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3693 		 unsigned char addr_type);
3694 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3695 		 unsigned char addr_type);
3696 void dev_addr_flush(struct net_device *dev);
3697 int dev_addr_init(struct net_device *dev);
3698 
3699 /* Functions used for unicast addresses handling */
3700 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3701 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3702 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3703 int dev_uc_sync(struct net_device *to, struct net_device *from);
3704 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3705 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3706 void dev_uc_flush(struct net_device *dev);
3707 void dev_uc_init(struct net_device *dev);
3708 
3709 /**
3710  *  __dev_uc_sync - Synchonize device's unicast list
3711  *  @dev:  device to sync
3712  *  @sync: function to call if address should be added
3713  *  @unsync: function to call if address should be removed
3714  *
3715  *  Add newly added addresses to the interface, and release
3716  *  addresses that have been deleted.
3717  */
3718 static inline int __dev_uc_sync(struct net_device *dev,
3719 				int (*sync)(struct net_device *,
3720 					    const unsigned char *),
3721 				int (*unsync)(struct net_device *,
3722 					      const unsigned char *))
3723 {
3724 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3725 }
3726 
3727 /**
3728  *  __dev_uc_unsync - Remove synchronized addresses from device
3729  *  @dev:  device to sync
3730  *  @unsync: function to call if address should be removed
3731  *
3732  *  Remove all addresses that were added to the device by dev_uc_sync().
3733  */
3734 static inline void __dev_uc_unsync(struct net_device *dev,
3735 				   int (*unsync)(struct net_device *,
3736 						 const unsigned char *))
3737 {
3738 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3739 }
3740 
3741 /* Functions used for multicast addresses handling */
3742 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3743 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3744 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3745 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3746 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3747 int dev_mc_sync(struct net_device *to, struct net_device *from);
3748 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3749 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3750 void dev_mc_flush(struct net_device *dev);
3751 void dev_mc_init(struct net_device *dev);
3752 
3753 /**
3754  *  __dev_mc_sync - Synchonize device's multicast list
3755  *  @dev:  device to sync
3756  *  @sync: function to call if address should be added
3757  *  @unsync: function to call if address should be removed
3758  *
3759  *  Add newly added addresses to the interface, and release
3760  *  addresses that have been deleted.
3761  */
3762 static inline int __dev_mc_sync(struct net_device *dev,
3763 				int (*sync)(struct net_device *,
3764 					    const unsigned char *),
3765 				int (*unsync)(struct net_device *,
3766 					      const unsigned char *))
3767 {
3768 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3769 }
3770 
3771 /**
3772  *  __dev_mc_unsync - Remove synchronized addresses from device
3773  *  @dev:  device to sync
3774  *  @unsync: function to call if address should be removed
3775  *
3776  *  Remove all addresses that were added to the device by dev_mc_sync().
3777  */
3778 static inline void __dev_mc_unsync(struct net_device *dev,
3779 				   int (*unsync)(struct net_device *,
3780 						 const unsigned char *))
3781 {
3782 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3783 }
3784 
3785 /* Functions used for secondary unicast and multicast support */
3786 void dev_set_rx_mode(struct net_device *dev);
3787 void __dev_set_rx_mode(struct net_device *dev);
3788 int dev_set_promiscuity(struct net_device *dev, int inc);
3789 int dev_set_allmulti(struct net_device *dev, int inc);
3790 void netdev_state_change(struct net_device *dev);
3791 void netdev_notify_peers(struct net_device *dev);
3792 void netdev_features_change(struct net_device *dev);
3793 /* Load a device via the kmod */
3794 void dev_load(struct net *net, const char *name);
3795 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3796 					struct rtnl_link_stats64 *storage);
3797 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3798 			     const struct net_device_stats *netdev_stats);
3799 
3800 extern int		netdev_max_backlog;
3801 extern int		netdev_tstamp_prequeue;
3802 extern int		weight_p;
3803 
3804 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3805 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3806 						     struct list_head **iter);
3807 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3808 						     struct list_head **iter);
3809 
3810 /* iterate through upper list, must be called under RCU read lock */
3811 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3812 	for (iter = &(dev)->adj_list.upper, \
3813 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3814 	     updev; \
3815 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3816 
3817 /* iterate through upper list, must be called under RCU read lock */
3818 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3819 	for (iter = &(dev)->all_adj_list.upper, \
3820 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3821 	     updev; \
3822 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3823 
3824 void *netdev_lower_get_next_private(struct net_device *dev,
3825 				    struct list_head **iter);
3826 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3827 					struct list_head **iter);
3828 
3829 #define netdev_for_each_lower_private(dev, priv, iter) \
3830 	for (iter = (dev)->adj_list.lower.next, \
3831 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3832 	     priv; \
3833 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3834 
3835 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3836 	for (iter = &(dev)->adj_list.lower, \
3837 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3838 	     priv; \
3839 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3840 
3841 void *netdev_lower_get_next(struct net_device *dev,
3842 				struct list_head **iter);
3843 
3844 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3845 	for (iter = (dev)->adj_list.lower.next, \
3846 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3847 	     ldev; \
3848 	     ldev = netdev_lower_get_next(dev, &(iter)))
3849 
3850 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3851 					     struct list_head **iter);
3852 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3853 						 struct list_head **iter);
3854 
3855 #define netdev_for_each_all_lower_dev(dev, ldev, iter) \
3856 	for (iter = (dev)->all_adj_list.lower.next, \
3857 	     ldev = netdev_all_lower_get_next(dev, &(iter)); \
3858 	     ldev; \
3859 	     ldev = netdev_all_lower_get_next(dev, &(iter)))
3860 
3861 #define netdev_for_each_all_lower_dev_rcu(dev, ldev, iter) \
3862 	for (iter = (dev)->all_adj_list.lower.next, \
3863 	     ldev = netdev_all_lower_get_next_rcu(dev, &(iter)); \
3864 	     ldev; \
3865 	     ldev = netdev_all_lower_get_next_rcu(dev, &(iter)))
3866 
3867 void *netdev_adjacent_get_private(struct list_head *adj_list);
3868 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3869 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3870 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3871 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3872 int netdev_master_upper_dev_link(struct net_device *dev,
3873 				 struct net_device *upper_dev,
3874 				 void *upper_priv, void *upper_info);
3875 void netdev_upper_dev_unlink(struct net_device *dev,
3876 			     struct net_device *upper_dev);
3877 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3878 void *netdev_lower_dev_get_private(struct net_device *dev,
3879 				   struct net_device *lower_dev);
3880 void netdev_lower_state_changed(struct net_device *lower_dev,
3881 				void *lower_state_info);
3882 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
3883 					   struct neighbour *n);
3884 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
3885 					  struct neighbour *n);
3886 
3887 /* RSS keys are 40 or 52 bytes long */
3888 #define NETDEV_RSS_KEY_LEN 52
3889 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3890 void netdev_rss_key_fill(void *buffer, size_t len);
3891 
3892 int dev_get_nest_level(struct net_device *dev,
3893 		       bool (*type_check)(const struct net_device *dev));
3894 int skb_checksum_help(struct sk_buff *skb);
3895 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3896 				  netdev_features_t features, bool tx_path);
3897 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3898 				    netdev_features_t features);
3899 
3900 struct netdev_bonding_info {
3901 	ifslave	slave;
3902 	ifbond	master;
3903 };
3904 
3905 struct netdev_notifier_bonding_info {
3906 	struct netdev_notifier_info info; /* must be first */
3907 	struct netdev_bonding_info  bonding_info;
3908 };
3909 
3910 void netdev_bonding_info_change(struct net_device *dev,
3911 				struct netdev_bonding_info *bonding_info);
3912 
3913 static inline
3914 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3915 {
3916 	return __skb_gso_segment(skb, features, true);
3917 }
3918 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3919 
3920 static inline bool can_checksum_protocol(netdev_features_t features,
3921 					 __be16 protocol)
3922 {
3923 	if (protocol == htons(ETH_P_FCOE))
3924 		return !!(features & NETIF_F_FCOE_CRC);
3925 
3926 	/* Assume this is an IP checksum (not SCTP CRC) */
3927 
3928 	if (features & NETIF_F_HW_CSUM) {
3929 		/* Can checksum everything */
3930 		return true;
3931 	}
3932 
3933 	switch (protocol) {
3934 	case htons(ETH_P_IP):
3935 		return !!(features & NETIF_F_IP_CSUM);
3936 	case htons(ETH_P_IPV6):
3937 		return !!(features & NETIF_F_IPV6_CSUM);
3938 	default:
3939 		return false;
3940 	}
3941 }
3942 
3943 /* Map an ethertype into IP protocol if possible */
3944 static inline int eproto_to_ipproto(int eproto)
3945 {
3946 	switch (eproto) {
3947 	case htons(ETH_P_IP):
3948 		return IPPROTO_IP;
3949 	case htons(ETH_P_IPV6):
3950 		return IPPROTO_IPV6;
3951 	default:
3952 		return -1;
3953 	}
3954 }
3955 
3956 #ifdef CONFIG_BUG
3957 void netdev_rx_csum_fault(struct net_device *dev);
3958 #else
3959 static inline void netdev_rx_csum_fault(struct net_device *dev)
3960 {
3961 }
3962 #endif
3963 /* rx skb timestamps */
3964 void net_enable_timestamp(void);
3965 void net_disable_timestamp(void);
3966 
3967 #ifdef CONFIG_PROC_FS
3968 int __init dev_proc_init(void);
3969 #else
3970 #define dev_proc_init() 0
3971 #endif
3972 
3973 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3974 					      struct sk_buff *skb, struct net_device *dev,
3975 					      bool more)
3976 {
3977 	skb->xmit_more = more ? 1 : 0;
3978 	return ops->ndo_start_xmit(skb, dev);
3979 }
3980 
3981 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3982 					    struct netdev_queue *txq, bool more)
3983 {
3984 	const struct net_device_ops *ops = dev->netdev_ops;
3985 	int rc;
3986 
3987 	rc = __netdev_start_xmit(ops, skb, dev, more);
3988 	if (rc == NETDEV_TX_OK)
3989 		txq_trans_update(txq);
3990 
3991 	return rc;
3992 }
3993 
3994 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3995 				const void *ns);
3996 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3997 				 const void *ns);
3998 
3999 static inline int netdev_class_create_file(struct class_attribute *class_attr)
4000 {
4001 	return netdev_class_create_file_ns(class_attr, NULL);
4002 }
4003 
4004 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
4005 {
4006 	netdev_class_remove_file_ns(class_attr, NULL);
4007 }
4008 
4009 extern struct kobj_ns_type_operations net_ns_type_operations;
4010 
4011 const char *netdev_drivername(const struct net_device *dev);
4012 
4013 void linkwatch_run_queue(void);
4014 
4015 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4016 							  netdev_features_t f2)
4017 {
4018 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4019 		if (f1 & NETIF_F_HW_CSUM)
4020 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4021 		else
4022 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4023 	}
4024 
4025 	return f1 & f2;
4026 }
4027 
4028 static inline netdev_features_t netdev_get_wanted_features(
4029 	struct net_device *dev)
4030 {
4031 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4032 }
4033 netdev_features_t netdev_increment_features(netdev_features_t all,
4034 	netdev_features_t one, netdev_features_t mask);
4035 
4036 /* Allow TSO being used on stacked device :
4037  * Performing the GSO segmentation before last device
4038  * is a performance improvement.
4039  */
4040 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4041 							netdev_features_t mask)
4042 {
4043 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4044 }
4045 
4046 int __netdev_update_features(struct net_device *dev);
4047 void netdev_update_features(struct net_device *dev);
4048 void netdev_change_features(struct net_device *dev);
4049 
4050 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4051 					struct net_device *dev);
4052 
4053 netdev_features_t passthru_features_check(struct sk_buff *skb,
4054 					  struct net_device *dev,
4055 					  netdev_features_t features);
4056 netdev_features_t netif_skb_features(struct sk_buff *skb);
4057 
4058 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4059 {
4060 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4061 
4062 	/* check flags correspondence */
4063 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4064 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
4065 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4066 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4067 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4068 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4069 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4070 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4071 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4072 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4073 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4074 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4075 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4076 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4077 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4078 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4079 
4080 	return (features & feature) == feature;
4081 }
4082 
4083 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4084 {
4085 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4086 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4087 }
4088 
4089 static inline bool netif_needs_gso(struct sk_buff *skb,
4090 				   netdev_features_t features)
4091 {
4092 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4093 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4094 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4095 }
4096 
4097 static inline void netif_set_gso_max_size(struct net_device *dev,
4098 					  unsigned int size)
4099 {
4100 	dev->gso_max_size = size;
4101 }
4102 
4103 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4104 					int pulled_hlen, u16 mac_offset,
4105 					int mac_len)
4106 {
4107 	skb->protocol = protocol;
4108 	skb->encapsulation = 1;
4109 	skb_push(skb, pulled_hlen);
4110 	skb_reset_transport_header(skb);
4111 	skb->mac_header = mac_offset;
4112 	skb->network_header = skb->mac_header + mac_len;
4113 	skb->mac_len = mac_len;
4114 }
4115 
4116 static inline bool netif_is_macsec(const struct net_device *dev)
4117 {
4118 	return dev->priv_flags & IFF_MACSEC;
4119 }
4120 
4121 static inline bool netif_is_macvlan(const struct net_device *dev)
4122 {
4123 	return dev->priv_flags & IFF_MACVLAN;
4124 }
4125 
4126 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4127 {
4128 	return dev->priv_flags & IFF_MACVLAN_PORT;
4129 }
4130 
4131 static inline bool netif_is_ipvlan(const struct net_device *dev)
4132 {
4133 	return dev->priv_flags & IFF_IPVLAN_SLAVE;
4134 }
4135 
4136 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4137 {
4138 	return dev->priv_flags & IFF_IPVLAN_MASTER;
4139 }
4140 
4141 static inline bool netif_is_bond_master(const struct net_device *dev)
4142 {
4143 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4144 }
4145 
4146 static inline bool netif_is_bond_slave(const struct net_device *dev)
4147 {
4148 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4149 }
4150 
4151 static inline bool netif_supports_nofcs(struct net_device *dev)
4152 {
4153 	return dev->priv_flags & IFF_SUPP_NOFCS;
4154 }
4155 
4156 static inline bool netif_is_l3_master(const struct net_device *dev)
4157 {
4158 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4159 }
4160 
4161 static inline bool netif_is_l3_slave(const struct net_device *dev)
4162 {
4163 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4164 }
4165 
4166 static inline bool netif_is_bridge_master(const struct net_device *dev)
4167 {
4168 	return dev->priv_flags & IFF_EBRIDGE;
4169 }
4170 
4171 static inline bool netif_is_bridge_port(const struct net_device *dev)
4172 {
4173 	return dev->priv_flags & IFF_BRIDGE_PORT;
4174 }
4175 
4176 static inline bool netif_is_ovs_master(const struct net_device *dev)
4177 {
4178 	return dev->priv_flags & IFF_OPENVSWITCH;
4179 }
4180 
4181 static inline bool netif_is_team_master(const struct net_device *dev)
4182 {
4183 	return dev->priv_flags & IFF_TEAM;
4184 }
4185 
4186 static inline bool netif_is_team_port(const struct net_device *dev)
4187 {
4188 	return dev->priv_flags & IFF_TEAM_PORT;
4189 }
4190 
4191 static inline bool netif_is_lag_master(const struct net_device *dev)
4192 {
4193 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4194 }
4195 
4196 static inline bool netif_is_lag_port(const struct net_device *dev)
4197 {
4198 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4199 }
4200 
4201 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4202 {
4203 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4204 }
4205 
4206 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4207 static inline void netif_keep_dst(struct net_device *dev)
4208 {
4209 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4210 }
4211 
4212 extern struct pernet_operations __net_initdata loopback_net_ops;
4213 
4214 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4215 
4216 /* netdev_printk helpers, similar to dev_printk */
4217 
4218 static inline const char *netdev_name(const struct net_device *dev)
4219 {
4220 	if (!dev->name[0] || strchr(dev->name, '%'))
4221 		return "(unnamed net_device)";
4222 	return dev->name;
4223 }
4224 
4225 static inline const char *netdev_reg_state(const struct net_device *dev)
4226 {
4227 	switch (dev->reg_state) {
4228 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4229 	case NETREG_REGISTERED: return "";
4230 	case NETREG_UNREGISTERING: return " (unregistering)";
4231 	case NETREG_UNREGISTERED: return " (unregistered)";
4232 	case NETREG_RELEASED: return " (released)";
4233 	case NETREG_DUMMY: return " (dummy)";
4234 	}
4235 
4236 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4237 	return " (unknown)";
4238 }
4239 
4240 __printf(3, 4)
4241 void netdev_printk(const char *level, const struct net_device *dev,
4242 		   const char *format, ...);
4243 __printf(2, 3)
4244 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4245 __printf(2, 3)
4246 void netdev_alert(const struct net_device *dev, const char *format, ...);
4247 __printf(2, 3)
4248 void netdev_crit(const struct net_device *dev, const char *format, ...);
4249 __printf(2, 3)
4250 void netdev_err(const struct net_device *dev, const char *format, ...);
4251 __printf(2, 3)
4252 void netdev_warn(const struct net_device *dev, const char *format, ...);
4253 __printf(2, 3)
4254 void netdev_notice(const struct net_device *dev, const char *format, ...);
4255 __printf(2, 3)
4256 void netdev_info(const struct net_device *dev, const char *format, ...);
4257 
4258 #define MODULE_ALIAS_NETDEV(device) \
4259 	MODULE_ALIAS("netdev-" device)
4260 
4261 #if defined(CONFIG_DYNAMIC_DEBUG)
4262 #define netdev_dbg(__dev, format, args...)			\
4263 do {								\
4264 	dynamic_netdev_dbg(__dev, format, ##args);		\
4265 } while (0)
4266 #elif defined(DEBUG)
4267 #define netdev_dbg(__dev, format, args...)			\
4268 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4269 #else
4270 #define netdev_dbg(__dev, format, args...)			\
4271 ({								\
4272 	if (0)							\
4273 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4274 })
4275 #endif
4276 
4277 #if defined(VERBOSE_DEBUG)
4278 #define netdev_vdbg	netdev_dbg
4279 #else
4280 
4281 #define netdev_vdbg(dev, format, args...)			\
4282 ({								\
4283 	if (0)							\
4284 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4285 	0;							\
4286 })
4287 #endif
4288 
4289 /*
4290  * netdev_WARN() acts like dev_printk(), but with the key difference
4291  * of using a WARN/WARN_ON to get the message out, including the
4292  * file/line information and a backtrace.
4293  */
4294 #define netdev_WARN(dev, format, args...)			\
4295 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
4296 	     netdev_reg_state(dev), ##args)
4297 
4298 /* netif printk helpers, similar to netdev_printk */
4299 
4300 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4301 do {					  			\
4302 	if (netif_msg_##type(priv))				\
4303 		netdev_printk(level, (dev), fmt, ##args);	\
4304 } while (0)
4305 
4306 #define netif_level(level, priv, type, dev, fmt, args...)	\
4307 do {								\
4308 	if (netif_msg_##type(priv))				\
4309 		netdev_##level(dev, fmt, ##args);		\
4310 } while (0)
4311 
4312 #define netif_emerg(priv, type, dev, fmt, args...)		\
4313 	netif_level(emerg, priv, type, dev, fmt, ##args)
4314 #define netif_alert(priv, type, dev, fmt, args...)		\
4315 	netif_level(alert, priv, type, dev, fmt, ##args)
4316 #define netif_crit(priv, type, dev, fmt, args...)		\
4317 	netif_level(crit, priv, type, dev, fmt, ##args)
4318 #define netif_err(priv, type, dev, fmt, args...)		\
4319 	netif_level(err, priv, type, dev, fmt, ##args)
4320 #define netif_warn(priv, type, dev, fmt, args...)		\
4321 	netif_level(warn, priv, type, dev, fmt, ##args)
4322 #define netif_notice(priv, type, dev, fmt, args...)		\
4323 	netif_level(notice, priv, type, dev, fmt, ##args)
4324 #define netif_info(priv, type, dev, fmt, args...)		\
4325 	netif_level(info, priv, type, dev, fmt, ##args)
4326 
4327 #if defined(CONFIG_DYNAMIC_DEBUG)
4328 #define netif_dbg(priv, type, netdev, format, args...)		\
4329 do {								\
4330 	if (netif_msg_##type(priv))				\
4331 		dynamic_netdev_dbg(netdev, format, ##args);	\
4332 } while (0)
4333 #elif defined(DEBUG)
4334 #define netif_dbg(priv, type, dev, format, args...)		\
4335 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4336 #else
4337 #define netif_dbg(priv, type, dev, format, args...)			\
4338 ({									\
4339 	if (0)								\
4340 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4341 	0;								\
4342 })
4343 #endif
4344 
4345 #if defined(VERBOSE_DEBUG)
4346 #define netif_vdbg	netif_dbg
4347 #else
4348 #define netif_vdbg(priv, type, dev, format, args...)		\
4349 ({								\
4350 	if (0)							\
4351 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4352 	0;							\
4353 })
4354 #endif
4355 
4356 /*
4357  *	The list of packet types we will receive (as opposed to discard)
4358  *	and the routines to invoke.
4359  *
4360  *	Why 16. Because with 16 the only overlap we get on a hash of the
4361  *	low nibble of the protocol value is RARP/SNAP/X.25.
4362  *
4363  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4364  *             sure which should go first, but I bet it won't make much
4365  *             difference if we are running VLANs.  The good news is that
4366  *             this protocol won't be in the list unless compiled in, so
4367  *             the average user (w/out VLANs) will not be adversely affected.
4368  *             --BLG
4369  *
4370  *		0800	IP
4371  *		8100    802.1Q VLAN
4372  *		0001	802.3
4373  *		0002	AX.25
4374  *		0004	802.2
4375  *		8035	RARP
4376  *		0005	SNAP
4377  *		0805	X.25
4378  *		0806	ARP
4379  *		8137	IPX
4380  *		0009	Localtalk
4381  *		86DD	IPv6
4382  */
4383 #define PTYPE_HASH_SIZE	(16)
4384 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4385 
4386 #endif	/* _LINUX_NETDEVICE_H */
4387