1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <[email protected]> 12 * Corey Minyard <[email protected]> 13 * Donald J. Becker, <[email protected]> 14 * Alan Cox, <[email protected]> 15 * Bjorn Ekwall. <[email protected]> 16 * Pekka Riikonen <[email protected]> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/timer.h> 29 #include <linux/bug.h> 30 #include <linux/delay.h> 31 #include <linux/atomic.h> 32 #include <linux/prefetch.h> 33 #include <asm/cache.h> 34 #include <asm/byteorder.h> 35 36 #include <linux/percpu.h> 37 #include <linux/rculist.h> 38 #include <linux/dmaengine.h> 39 #include <linux/workqueue.h> 40 #include <linux/dynamic_queue_limits.h> 41 42 #include <linux/ethtool.h> 43 #include <net/net_namespace.h> 44 #include <net/dsa.h> 45 #ifdef CONFIG_DCB 46 #include <net/dcbnl.h> 47 #endif 48 #include <net/netprio_cgroup.h> 49 50 #include <linux/netdev_features.h> 51 #include <linux/neighbour.h> 52 #include <uapi/linux/netdevice.h> 53 #include <uapi/linux/if_bonding.h> 54 #include <uapi/linux/pkt_cls.h> 55 56 struct netpoll_info; 57 struct device; 58 struct phy_device; 59 /* 802.11 specific */ 60 struct wireless_dev; 61 /* 802.15.4 specific */ 62 struct wpan_dev; 63 struct mpls_dev; 64 /* UDP Tunnel offloads */ 65 struct udp_tunnel_info; 66 67 void netdev_set_default_ethtool_ops(struct net_device *dev, 68 const struct ethtool_ops *ops); 69 70 /* Backlog congestion levels */ 71 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 72 #define NET_RX_DROP 1 /* packet dropped */ 73 74 /* 75 * Transmit return codes: transmit return codes originate from three different 76 * namespaces: 77 * 78 * - qdisc return codes 79 * - driver transmit return codes 80 * - errno values 81 * 82 * Drivers are allowed to return any one of those in their hard_start_xmit() 83 * function. Real network devices commonly used with qdiscs should only return 84 * the driver transmit return codes though - when qdiscs are used, the actual 85 * transmission happens asynchronously, so the value is not propagated to 86 * higher layers. Virtual network devices transmit synchronously; in this case 87 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 88 * others are propagated to higher layers. 89 */ 90 91 /* qdisc ->enqueue() return codes. */ 92 #define NET_XMIT_SUCCESS 0x00 93 #define NET_XMIT_DROP 0x01 /* skb dropped */ 94 #define NET_XMIT_CN 0x02 /* congestion notification */ 95 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 96 97 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 98 * indicates that the device will soon be dropping packets, or already drops 99 * some packets of the same priority; prompting us to send less aggressively. */ 100 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 101 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 102 103 /* Driver transmit return codes */ 104 #define NETDEV_TX_MASK 0xf0 105 106 enum netdev_tx { 107 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 108 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 109 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 110 }; 111 typedef enum netdev_tx netdev_tx_t; 112 113 /* 114 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 115 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 116 */ 117 static inline bool dev_xmit_complete(int rc) 118 { 119 /* 120 * Positive cases with an skb consumed by a driver: 121 * - successful transmission (rc == NETDEV_TX_OK) 122 * - error while transmitting (rc < 0) 123 * - error while queueing to a different device (rc & NET_XMIT_MASK) 124 */ 125 if (likely(rc < NET_XMIT_MASK)) 126 return true; 127 128 return false; 129 } 130 131 /* 132 * Compute the worst-case header length according to the protocols 133 * used. 134 */ 135 136 #if defined(CONFIG_HYPERV_NET) 137 # define LL_MAX_HEADER 128 138 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 139 # if defined(CONFIG_MAC80211_MESH) 140 # define LL_MAX_HEADER 128 141 # else 142 # define LL_MAX_HEADER 96 143 # endif 144 #else 145 # define LL_MAX_HEADER 32 146 #endif 147 148 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 149 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 150 #define MAX_HEADER LL_MAX_HEADER 151 #else 152 #define MAX_HEADER (LL_MAX_HEADER + 48) 153 #endif 154 155 /* 156 * Old network device statistics. Fields are native words 157 * (unsigned long) so they can be read and written atomically. 158 */ 159 160 struct net_device_stats { 161 unsigned long rx_packets; 162 unsigned long tx_packets; 163 unsigned long rx_bytes; 164 unsigned long tx_bytes; 165 unsigned long rx_errors; 166 unsigned long tx_errors; 167 unsigned long rx_dropped; 168 unsigned long tx_dropped; 169 unsigned long multicast; 170 unsigned long collisions; 171 unsigned long rx_length_errors; 172 unsigned long rx_over_errors; 173 unsigned long rx_crc_errors; 174 unsigned long rx_frame_errors; 175 unsigned long rx_fifo_errors; 176 unsigned long rx_missed_errors; 177 unsigned long tx_aborted_errors; 178 unsigned long tx_carrier_errors; 179 unsigned long tx_fifo_errors; 180 unsigned long tx_heartbeat_errors; 181 unsigned long tx_window_errors; 182 unsigned long rx_compressed; 183 unsigned long tx_compressed; 184 }; 185 186 187 #include <linux/cache.h> 188 #include <linux/skbuff.h> 189 190 #ifdef CONFIG_RPS 191 #include <linux/static_key.h> 192 extern struct static_key rps_needed; 193 #endif 194 195 struct neighbour; 196 struct neigh_parms; 197 struct sk_buff; 198 199 struct netdev_hw_addr { 200 struct list_head list; 201 unsigned char addr[MAX_ADDR_LEN]; 202 unsigned char type; 203 #define NETDEV_HW_ADDR_T_LAN 1 204 #define NETDEV_HW_ADDR_T_SAN 2 205 #define NETDEV_HW_ADDR_T_SLAVE 3 206 #define NETDEV_HW_ADDR_T_UNICAST 4 207 #define NETDEV_HW_ADDR_T_MULTICAST 5 208 bool global_use; 209 int sync_cnt; 210 int refcount; 211 int synced; 212 struct rcu_head rcu_head; 213 }; 214 215 struct netdev_hw_addr_list { 216 struct list_head list; 217 int count; 218 }; 219 220 #define netdev_hw_addr_list_count(l) ((l)->count) 221 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 222 #define netdev_hw_addr_list_for_each(ha, l) \ 223 list_for_each_entry(ha, &(l)->list, list) 224 225 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 226 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 227 #define netdev_for_each_uc_addr(ha, dev) \ 228 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 229 230 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 231 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 232 #define netdev_for_each_mc_addr(ha, dev) \ 233 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 234 235 struct hh_cache { 236 u16 hh_len; 237 u16 __pad; 238 seqlock_t hh_lock; 239 240 /* cached hardware header; allow for machine alignment needs. */ 241 #define HH_DATA_MOD 16 242 #define HH_DATA_OFF(__len) \ 243 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 244 #define HH_DATA_ALIGN(__len) \ 245 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 246 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 247 }; 248 249 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 250 * Alternative is: 251 * dev->hard_header_len ? (dev->hard_header_len + 252 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 253 * 254 * We could use other alignment values, but we must maintain the 255 * relationship HH alignment <= LL alignment. 256 */ 257 #define LL_RESERVED_SPACE(dev) \ 258 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 259 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 260 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 261 262 struct header_ops { 263 int (*create) (struct sk_buff *skb, struct net_device *dev, 264 unsigned short type, const void *daddr, 265 const void *saddr, unsigned int len); 266 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 267 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 268 void (*cache_update)(struct hh_cache *hh, 269 const struct net_device *dev, 270 const unsigned char *haddr); 271 bool (*validate)(const char *ll_header, unsigned int len); 272 }; 273 274 /* These flag bits are private to the generic network queueing 275 * layer; they may not be explicitly referenced by any other 276 * code. 277 */ 278 279 enum netdev_state_t { 280 __LINK_STATE_START, 281 __LINK_STATE_PRESENT, 282 __LINK_STATE_NOCARRIER, 283 __LINK_STATE_LINKWATCH_PENDING, 284 __LINK_STATE_DORMANT, 285 }; 286 287 288 /* 289 * This structure holds boot-time configured netdevice settings. They 290 * are then used in the device probing. 291 */ 292 struct netdev_boot_setup { 293 char name[IFNAMSIZ]; 294 struct ifmap map; 295 }; 296 #define NETDEV_BOOT_SETUP_MAX 8 297 298 int __init netdev_boot_setup(char *str); 299 300 /* 301 * Structure for NAPI scheduling similar to tasklet but with weighting 302 */ 303 struct napi_struct { 304 /* The poll_list must only be managed by the entity which 305 * changes the state of the NAPI_STATE_SCHED bit. This means 306 * whoever atomically sets that bit can add this napi_struct 307 * to the per-CPU poll_list, and whoever clears that bit 308 * can remove from the list right before clearing the bit. 309 */ 310 struct list_head poll_list; 311 312 unsigned long state; 313 int weight; 314 unsigned int gro_count; 315 int (*poll)(struct napi_struct *, int); 316 #ifdef CONFIG_NETPOLL 317 spinlock_t poll_lock; 318 int poll_owner; 319 #endif 320 struct net_device *dev; 321 struct sk_buff *gro_list; 322 struct sk_buff *skb; 323 struct hrtimer timer; 324 struct list_head dev_list; 325 struct hlist_node napi_hash_node; 326 unsigned int napi_id; 327 }; 328 329 enum { 330 NAPI_STATE_SCHED, /* Poll is scheduled */ 331 NAPI_STATE_DISABLE, /* Disable pending */ 332 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 333 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 334 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 335 }; 336 337 enum gro_result { 338 GRO_MERGED, 339 GRO_MERGED_FREE, 340 GRO_HELD, 341 GRO_NORMAL, 342 GRO_DROP, 343 }; 344 typedef enum gro_result gro_result_t; 345 346 /* 347 * enum rx_handler_result - Possible return values for rx_handlers. 348 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 349 * further. 350 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 351 * case skb->dev was changed by rx_handler. 352 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 353 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 354 * 355 * rx_handlers are functions called from inside __netif_receive_skb(), to do 356 * special processing of the skb, prior to delivery to protocol handlers. 357 * 358 * Currently, a net_device can only have a single rx_handler registered. Trying 359 * to register a second rx_handler will return -EBUSY. 360 * 361 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 362 * To unregister a rx_handler on a net_device, use 363 * netdev_rx_handler_unregister(). 364 * 365 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 366 * do with the skb. 367 * 368 * If the rx_handler consumed the skb in some way, it should return 369 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 370 * the skb to be delivered in some other way. 371 * 372 * If the rx_handler changed skb->dev, to divert the skb to another 373 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 374 * new device will be called if it exists. 375 * 376 * If the rx_handler decides the skb should be ignored, it should return 377 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 378 * are registered on exact device (ptype->dev == skb->dev). 379 * 380 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 381 * delivered, it should return RX_HANDLER_PASS. 382 * 383 * A device without a registered rx_handler will behave as if rx_handler 384 * returned RX_HANDLER_PASS. 385 */ 386 387 enum rx_handler_result { 388 RX_HANDLER_CONSUMED, 389 RX_HANDLER_ANOTHER, 390 RX_HANDLER_EXACT, 391 RX_HANDLER_PASS, 392 }; 393 typedef enum rx_handler_result rx_handler_result_t; 394 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 395 396 void __napi_schedule(struct napi_struct *n); 397 void __napi_schedule_irqoff(struct napi_struct *n); 398 399 static inline bool napi_disable_pending(struct napi_struct *n) 400 { 401 return test_bit(NAPI_STATE_DISABLE, &n->state); 402 } 403 404 /** 405 * napi_schedule_prep - check if NAPI can be scheduled 406 * @n: NAPI context 407 * 408 * Test if NAPI routine is already running, and if not mark 409 * it as running. This is used as a condition variable to 410 * insure only one NAPI poll instance runs. We also make 411 * sure there is no pending NAPI disable. 412 */ 413 static inline bool napi_schedule_prep(struct napi_struct *n) 414 { 415 return !napi_disable_pending(n) && 416 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 417 } 418 419 /** 420 * napi_schedule - schedule NAPI poll 421 * @n: NAPI context 422 * 423 * Schedule NAPI poll routine to be called if it is not already 424 * running. 425 */ 426 static inline void napi_schedule(struct napi_struct *n) 427 { 428 if (napi_schedule_prep(n)) 429 __napi_schedule(n); 430 } 431 432 /** 433 * napi_schedule_irqoff - schedule NAPI poll 434 * @n: NAPI context 435 * 436 * Variant of napi_schedule(), assuming hard irqs are masked. 437 */ 438 static inline void napi_schedule_irqoff(struct napi_struct *n) 439 { 440 if (napi_schedule_prep(n)) 441 __napi_schedule_irqoff(n); 442 } 443 444 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 445 static inline bool napi_reschedule(struct napi_struct *napi) 446 { 447 if (napi_schedule_prep(napi)) { 448 __napi_schedule(napi); 449 return true; 450 } 451 return false; 452 } 453 454 void __napi_complete(struct napi_struct *n); 455 void napi_complete_done(struct napi_struct *n, int work_done); 456 /** 457 * napi_complete - NAPI processing complete 458 * @n: NAPI context 459 * 460 * Mark NAPI processing as complete. 461 * Consider using napi_complete_done() instead. 462 */ 463 static inline void napi_complete(struct napi_struct *n) 464 { 465 return napi_complete_done(n, 0); 466 } 467 468 /** 469 * napi_hash_add - add a NAPI to global hashtable 470 * @napi: NAPI context 471 * 472 * Generate a new napi_id and store a @napi under it in napi_hash. 473 * Used for busy polling (CONFIG_NET_RX_BUSY_POLL). 474 * Note: This is normally automatically done from netif_napi_add(), 475 * so might disappear in a future Linux version. 476 */ 477 void napi_hash_add(struct napi_struct *napi); 478 479 /** 480 * napi_hash_del - remove a NAPI from global table 481 * @napi: NAPI context 482 * 483 * Warning: caller must observe RCU grace period 484 * before freeing memory containing @napi, if 485 * this function returns true. 486 * Note: core networking stack automatically calls it 487 * from netif_napi_del(). 488 * Drivers might want to call this helper to combine all 489 * the needed RCU grace periods into a single one. 490 */ 491 bool napi_hash_del(struct napi_struct *napi); 492 493 /** 494 * napi_disable - prevent NAPI from scheduling 495 * @n: NAPI context 496 * 497 * Stop NAPI from being scheduled on this context. 498 * Waits till any outstanding processing completes. 499 */ 500 void napi_disable(struct napi_struct *n); 501 502 /** 503 * napi_enable - enable NAPI scheduling 504 * @n: NAPI context 505 * 506 * Resume NAPI from being scheduled on this context. 507 * Must be paired with napi_disable. 508 */ 509 static inline void napi_enable(struct napi_struct *n) 510 { 511 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 512 smp_mb__before_atomic(); 513 clear_bit(NAPI_STATE_SCHED, &n->state); 514 clear_bit(NAPI_STATE_NPSVC, &n->state); 515 } 516 517 /** 518 * napi_synchronize - wait until NAPI is not running 519 * @n: NAPI context 520 * 521 * Wait until NAPI is done being scheduled on this context. 522 * Waits till any outstanding processing completes but 523 * does not disable future activations. 524 */ 525 static inline void napi_synchronize(const struct napi_struct *n) 526 { 527 if (IS_ENABLED(CONFIG_SMP)) 528 while (test_bit(NAPI_STATE_SCHED, &n->state)) 529 msleep(1); 530 else 531 barrier(); 532 } 533 534 enum netdev_queue_state_t { 535 __QUEUE_STATE_DRV_XOFF, 536 __QUEUE_STATE_STACK_XOFF, 537 __QUEUE_STATE_FROZEN, 538 }; 539 540 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 541 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 542 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 543 544 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 545 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 546 QUEUE_STATE_FROZEN) 547 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 548 QUEUE_STATE_FROZEN) 549 550 /* 551 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 552 * netif_tx_* functions below are used to manipulate this flag. The 553 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 554 * queue independently. The netif_xmit_*stopped functions below are called 555 * to check if the queue has been stopped by the driver or stack (either 556 * of the XOFF bits are set in the state). Drivers should not need to call 557 * netif_xmit*stopped functions, they should only be using netif_tx_*. 558 */ 559 560 struct netdev_queue { 561 /* 562 * read-mostly part 563 */ 564 struct net_device *dev; 565 struct Qdisc __rcu *qdisc; 566 struct Qdisc *qdisc_sleeping; 567 #ifdef CONFIG_SYSFS 568 struct kobject kobj; 569 #endif 570 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 571 int numa_node; 572 #endif 573 unsigned long tx_maxrate; 574 /* 575 * Number of TX timeouts for this queue 576 * (/sys/class/net/DEV/Q/trans_timeout) 577 */ 578 unsigned long trans_timeout; 579 /* 580 * write-mostly part 581 */ 582 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 583 int xmit_lock_owner; 584 /* 585 * Time (in jiffies) of last Tx 586 */ 587 unsigned long trans_start; 588 589 unsigned long state; 590 591 #ifdef CONFIG_BQL 592 struct dql dql; 593 #endif 594 } ____cacheline_aligned_in_smp; 595 596 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 597 { 598 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 599 return q->numa_node; 600 #else 601 return NUMA_NO_NODE; 602 #endif 603 } 604 605 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 606 { 607 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 608 q->numa_node = node; 609 #endif 610 } 611 612 #ifdef CONFIG_RPS 613 /* 614 * This structure holds an RPS map which can be of variable length. The 615 * map is an array of CPUs. 616 */ 617 struct rps_map { 618 unsigned int len; 619 struct rcu_head rcu; 620 u16 cpus[0]; 621 }; 622 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 623 624 /* 625 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 626 * tail pointer for that CPU's input queue at the time of last enqueue, and 627 * a hardware filter index. 628 */ 629 struct rps_dev_flow { 630 u16 cpu; 631 u16 filter; 632 unsigned int last_qtail; 633 }; 634 #define RPS_NO_FILTER 0xffff 635 636 /* 637 * The rps_dev_flow_table structure contains a table of flow mappings. 638 */ 639 struct rps_dev_flow_table { 640 unsigned int mask; 641 struct rcu_head rcu; 642 struct rps_dev_flow flows[0]; 643 }; 644 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 645 ((_num) * sizeof(struct rps_dev_flow))) 646 647 /* 648 * The rps_sock_flow_table contains mappings of flows to the last CPU 649 * on which they were processed by the application (set in recvmsg). 650 * Each entry is a 32bit value. Upper part is the high-order bits 651 * of flow hash, lower part is CPU number. 652 * rps_cpu_mask is used to partition the space, depending on number of 653 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 654 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 655 * meaning we use 32-6=26 bits for the hash. 656 */ 657 struct rps_sock_flow_table { 658 u32 mask; 659 660 u32 ents[0] ____cacheline_aligned_in_smp; 661 }; 662 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 663 664 #define RPS_NO_CPU 0xffff 665 666 extern u32 rps_cpu_mask; 667 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 668 669 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 670 u32 hash) 671 { 672 if (table && hash) { 673 unsigned int index = hash & table->mask; 674 u32 val = hash & ~rps_cpu_mask; 675 676 /* We only give a hint, preemption can change CPU under us */ 677 val |= raw_smp_processor_id(); 678 679 if (table->ents[index] != val) 680 table->ents[index] = val; 681 } 682 } 683 684 #ifdef CONFIG_RFS_ACCEL 685 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 686 u16 filter_id); 687 #endif 688 #endif /* CONFIG_RPS */ 689 690 /* This structure contains an instance of an RX queue. */ 691 struct netdev_rx_queue { 692 #ifdef CONFIG_RPS 693 struct rps_map __rcu *rps_map; 694 struct rps_dev_flow_table __rcu *rps_flow_table; 695 #endif 696 struct kobject kobj; 697 struct net_device *dev; 698 } ____cacheline_aligned_in_smp; 699 700 /* 701 * RX queue sysfs structures and functions. 702 */ 703 struct rx_queue_attribute { 704 struct attribute attr; 705 ssize_t (*show)(struct netdev_rx_queue *queue, 706 struct rx_queue_attribute *attr, char *buf); 707 ssize_t (*store)(struct netdev_rx_queue *queue, 708 struct rx_queue_attribute *attr, const char *buf, size_t len); 709 }; 710 711 #ifdef CONFIG_XPS 712 /* 713 * This structure holds an XPS map which can be of variable length. The 714 * map is an array of queues. 715 */ 716 struct xps_map { 717 unsigned int len; 718 unsigned int alloc_len; 719 struct rcu_head rcu; 720 u16 queues[0]; 721 }; 722 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 723 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 724 - sizeof(struct xps_map)) / sizeof(u16)) 725 726 /* 727 * This structure holds all XPS maps for device. Maps are indexed by CPU. 728 */ 729 struct xps_dev_maps { 730 struct rcu_head rcu; 731 struct xps_map __rcu *cpu_map[0]; 732 }; 733 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 734 (nr_cpu_ids * sizeof(struct xps_map *))) 735 #endif /* CONFIG_XPS */ 736 737 #define TC_MAX_QUEUE 16 738 #define TC_BITMASK 15 739 /* HW offloaded queuing disciplines txq count and offset maps */ 740 struct netdev_tc_txq { 741 u16 count; 742 u16 offset; 743 }; 744 745 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 746 /* 747 * This structure is to hold information about the device 748 * configured to run FCoE protocol stack. 749 */ 750 struct netdev_fcoe_hbainfo { 751 char manufacturer[64]; 752 char serial_number[64]; 753 char hardware_version[64]; 754 char driver_version[64]; 755 char optionrom_version[64]; 756 char firmware_version[64]; 757 char model[256]; 758 char model_description[256]; 759 }; 760 #endif 761 762 #define MAX_PHYS_ITEM_ID_LEN 32 763 764 /* This structure holds a unique identifier to identify some 765 * physical item (port for example) used by a netdevice. 766 */ 767 struct netdev_phys_item_id { 768 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 769 unsigned char id_len; 770 }; 771 772 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 773 struct netdev_phys_item_id *b) 774 { 775 return a->id_len == b->id_len && 776 memcmp(a->id, b->id, a->id_len) == 0; 777 } 778 779 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 780 struct sk_buff *skb); 781 782 /* These structures hold the attributes of qdisc and classifiers 783 * that are being passed to the netdevice through the setup_tc op. 784 */ 785 enum { 786 TC_SETUP_MQPRIO, 787 TC_SETUP_CLSU32, 788 TC_SETUP_CLSFLOWER, 789 }; 790 791 struct tc_cls_u32_offload; 792 793 struct tc_to_netdev { 794 unsigned int type; 795 union { 796 u8 tc; 797 struct tc_cls_u32_offload *cls_u32; 798 struct tc_cls_flower_offload *cls_flower; 799 }; 800 }; 801 802 803 /* 804 * This structure defines the management hooks for network devices. 805 * The following hooks can be defined; unless noted otherwise, they are 806 * optional and can be filled with a null pointer. 807 * 808 * int (*ndo_init)(struct net_device *dev); 809 * This function is called once when a network device is registered. 810 * The network device can use this for any late stage initialization 811 * or semantic validation. It can fail with an error code which will 812 * be propagated back to register_netdev. 813 * 814 * void (*ndo_uninit)(struct net_device *dev); 815 * This function is called when device is unregistered or when registration 816 * fails. It is not called if init fails. 817 * 818 * int (*ndo_open)(struct net_device *dev); 819 * This function is called when a network device transitions to the up 820 * state. 821 * 822 * int (*ndo_stop)(struct net_device *dev); 823 * This function is called when a network device transitions to the down 824 * state. 825 * 826 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 827 * struct net_device *dev); 828 * Called when a packet needs to be transmitted. 829 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 830 * the queue before that can happen; it's for obsolete devices and weird 831 * corner cases, but the stack really does a non-trivial amount 832 * of useless work if you return NETDEV_TX_BUSY. 833 * Required; cannot be NULL. 834 * 835 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 836 * netdev_features_t features); 837 * Adjusts the requested feature flags according to device-specific 838 * constraints, and returns the resulting flags. Must not modify 839 * the device state. 840 * 841 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 842 * void *accel_priv, select_queue_fallback_t fallback); 843 * Called to decide which queue to use when device supports multiple 844 * transmit queues. 845 * 846 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 847 * This function is called to allow device receiver to make 848 * changes to configuration when multicast or promiscuous is enabled. 849 * 850 * void (*ndo_set_rx_mode)(struct net_device *dev); 851 * This function is called device changes address list filtering. 852 * If driver handles unicast address filtering, it should set 853 * IFF_UNICAST_FLT in its priv_flags. 854 * 855 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 856 * This function is called when the Media Access Control address 857 * needs to be changed. If this interface is not defined, the 858 * MAC address can not be changed. 859 * 860 * int (*ndo_validate_addr)(struct net_device *dev); 861 * Test if Media Access Control address is valid for the device. 862 * 863 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 864 * Called when a user requests an ioctl which can't be handled by 865 * the generic interface code. If not defined ioctls return 866 * not supported error code. 867 * 868 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 869 * Used to set network devices bus interface parameters. This interface 870 * is retained for legacy reasons; new devices should use the bus 871 * interface (PCI) for low level management. 872 * 873 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 874 * Called when a user wants to change the Maximum Transfer Unit 875 * of a device. If not defined, any request to change MTU will 876 * will return an error. 877 * 878 * void (*ndo_tx_timeout)(struct net_device *dev); 879 * Callback used when the transmitter has not made any progress 880 * for dev->watchdog ticks. 881 * 882 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 883 * struct rtnl_link_stats64 *storage); 884 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 885 * Called when a user wants to get the network device usage 886 * statistics. Drivers must do one of the following: 887 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 888 * rtnl_link_stats64 structure passed by the caller. 889 * 2. Define @ndo_get_stats to update a net_device_stats structure 890 * (which should normally be dev->stats) and return a pointer to 891 * it. The structure may be changed asynchronously only if each 892 * field is written atomically. 893 * 3. Update dev->stats asynchronously and atomically, and define 894 * neither operation. 895 * 896 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 897 * If device supports VLAN filtering this function is called when a 898 * VLAN id is registered. 899 * 900 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 901 * If device supports VLAN filtering this function is called when a 902 * VLAN id is unregistered. 903 * 904 * void (*ndo_poll_controller)(struct net_device *dev); 905 * 906 * SR-IOV management functions. 907 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 908 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 909 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 910 * int max_tx_rate); 911 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 912 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 913 * int (*ndo_get_vf_config)(struct net_device *dev, 914 * int vf, struct ifla_vf_info *ivf); 915 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 916 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 917 * struct nlattr *port[]); 918 * 919 * Enable or disable the VF ability to query its RSS Redirection Table and 920 * Hash Key. This is needed since on some devices VF share this information 921 * with PF and querying it may introduce a theoretical security risk. 922 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 923 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 924 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 925 * Called to setup 'tc' number of traffic classes in the net device. This 926 * is always called from the stack with the rtnl lock held and netif tx 927 * queues stopped. This allows the netdevice to perform queue management 928 * safely. 929 * 930 * Fiber Channel over Ethernet (FCoE) offload functions. 931 * int (*ndo_fcoe_enable)(struct net_device *dev); 932 * Called when the FCoE protocol stack wants to start using LLD for FCoE 933 * so the underlying device can perform whatever needed configuration or 934 * initialization to support acceleration of FCoE traffic. 935 * 936 * int (*ndo_fcoe_disable)(struct net_device *dev); 937 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 938 * so the underlying device can perform whatever needed clean-ups to 939 * stop supporting acceleration of FCoE traffic. 940 * 941 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 942 * struct scatterlist *sgl, unsigned int sgc); 943 * Called when the FCoE Initiator wants to initialize an I/O that 944 * is a possible candidate for Direct Data Placement (DDP). The LLD can 945 * perform necessary setup and returns 1 to indicate the device is set up 946 * successfully to perform DDP on this I/O, otherwise this returns 0. 947 * 948 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 949 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 950 * indicated by the FC exchange id 'xid', so the underlying device can 951 * clean up and reuse resources for later DDP requests. 952 * 953 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 954 * struct scatterlist *sgl, unsigned int sgc); 955 * Called when the FCoE Target wants to initialize an I/O that 956 * is a possible candidate for Direct Data Placement (DDP). The LLD can 957 * perform necessary setup and returns 1 to indicate the device is set up 958 * successfully to perform DDP on this I/O, otherwise this returns 0. 959 * 960 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 961 * struct netdev_fcoe_hbainfo *hbainfo); 962 * Called when the FCoE Protocol stack wants information on the underlying 963 * device. This information is utilized by the FCoE protocol stack to 964 * register attributes with Fiber Channel management service as per the 965 * FC-GS Fabric Device Management Information(FDMI) specification. 966 * 967 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 968 * Called when the underlying device wants to override default World Wide 969 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 970 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 971 * protocol stack to use. 972 * 973 * RFS acceleration. 974 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 975 * u16 rxq_index, u32 flow_id); 976 * Set hardware filter for RFS. rxq_index is the target queue index; 977 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 978 * Return the filter ID on success, or a negative error code. 979 * 980 * Slave management functions (for bridge, bonding, etc). 981 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 982 * Called to make another netdev an underling. 983 * 984 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 985 * Called to release previously enslaved netdev. 986 * 987 * Feature/offload setting functions. 988 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 989 * Called to update device configuration to new features. Passed 990 * feature set might be less than what was returned by ndo_fix_features()). 991 * Must return >0 or -errno if it changed dev->features itself. 992 * 993 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 994 * struct net_device *dev, 995 * const unsigned char *addr, u16 vid, u16 flags) 996 * Adds an FDB entry to dev for addr. 997 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 998 * struct net_device *dev, 999 * const unsigned char *addr, u16 vid) 1000 * Deletes the FDB entry from dev coresponding to addr. 1001 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1002 * struct net_device *dev, struct net_device *filter_dev, 1003 * int idx) 1004 * Used to add FDB entries to dump requests. Implementers should add 1005 * entries to skb and update idx with the number of entries. 1006 * 1007 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1008 * u16 flags) 1009 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1010 * struct net_device *dev, u32 filter_mask, 1011 * int nlflags) 1012 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1013 * u16 flags); 1014 * 1015 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1016 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1017 * which do not represent real hardware may define this to allow their 1018 * userspace components to manage their virtual carrier state. Devices 1019 * that determine carrier state from physical hardware properties (eg 1020 * network cables) or protocol-dependent mechanisms (eg 1021 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1022 * 1023 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1024 * struct netdev_phys_item_id *ppid); 1025 * Called to get ID of physical port of this device. If driver does 1026 * not implement this, it is assumed that the hw is not able to have 1027 * multiple net devices on single physical port. 1028 * 1029 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1030 * struct udp_tunnel_info *ti); 1031 * Called by UDP tunnel to notify a driver about the UDP port and socket 1032 * address family that a UDP tunnel is listnening to. It is called only 1033 * when a new port starts listening. The operation is protected by the 1034 * RTNL. 1035 * 1036 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1037 * struct udp_tunnel_info *ti); 1038 * Called by UDP tunnel to notify the driver about a UDP port and socket 1039 * address family that the UDP tunnel is not listening to anymore. The 1040 * operation is protected by the RTNL. 1041 * 1042 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1043 * struct net_device *dev) 1044 * Called by upper layer devices to accelerate switching or other 1045 * station functionality into hardware. 'pdev is the lowerdev 1046 * to use for the offload and 'dev' is the net device that will 1047 * back the offload. Returns a pointer to the private structure 1048 * the upper layer will maintain. 1049 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1050 * Called by upper layer device to delete the station created 1051 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1052 * the station and priv is the structure returned by the add 1053 * operation. 1054 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb, 1055 * struct net_device *dev, 1056 * void *priv); 1057 * Callback to use for xmit over the accelerated station. This 1058 * is used in place of ndo_start_xmit on accelerated net 1059 * devices. 1060 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1061 * struct net_device *dev 1062 * netdev_features_t features); 1063 * Called by core transmit path to determine if device is capable of 1064 * performing offload operations on a given packet. This is to give 1065 * the device an opportunity to implement any restrictions that cannot 1066 * be otherwise expressed by feature flags. The check is called with 1067 * the set of features that the stack has calculated and it returns 1068 * those the driver believes to be appropriate. 1069 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1070 * int queue_index, u32 maxrate); 1071 * Called when a user wants to set a max-rate limitation of specific 1072 * TX queue. 1073 * int (*ndo_get_iflink)(const struct net_device *dev); 1074 * Called to get the iflink value of this device. 1075 * void (*ndo_change_proto_down)(struct net_device *dev, 1076 * bool proto_down); 1077 * This function is used to pass protocol port error state information 1078 * to the switch driver. The switch driver can react to the proto_down 1079 * by doing a phys down on the associated switch port. 1080 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1081 * This function is used to get egress tunnel information for given skb. 1082 * This is useful for retrieving outer tunnel header parameters while 1083 * sampling packet. 1084 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1085 * This function is used to specify the headroom that the skb must 1086 * consider when allocation skb during packet reception. Setting 1087 * appropriate rx headroom value allows avoiding skb head copy on 1088 * forward. Setting a negative value resets the rx headroom to the 1089 * default value. 1090 * 1091 */ 1092 struct net_device_ops { 1093 int (*ndo_init)(struct net_device *dev); 1094 void (*ndo_uninit)(struct net_device *dev); 1095 int (*ndo_open)(struct net_device *dev); 1096 int (*ndo_stop)(struct net_device *dev); 1097 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1098 struct net_device *dev); 1099 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1100 struct net_device *dev, 1101 netdev_features_t features); 1102 u16 (*ndo_select_queue)(struct net_device *dev, 1103 struct sk_buff *skb, 1104 void *accel_priv, 1105 select_queue_fallback_t fallback); 1106 void (*ndo_change_rx_flags)(struct net_device *dev, 1107 int flags); 1108 void (*ndo_set_rx_mode)(struct net_device *dev); 1109 int (*ndo_set_mac_address)(struct net_device *dev, 1110 void *addr); 1111 int (*ndo_validate_addr)(struct net_device *dev); 1112 int (*ndo_do_ioctl)(struct net_device *dev, 1113 struct ifreq *ifr, int cmd); 1114 int (*ndo_set_config)(struct net_device *dev, 1115 struct ifmap *map); 1116 int (*ndo_change_mtu)(struct net_device *dev, 1117 int new_mtu); 1118 int (*ndo_neigh_setup)(struct net_device *dev, 1119 struct neigh_parms *); 1120 void (*ndo_tx_timeout) (struct net_device *dev); 1121 1122 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 1123 struct rtnl_link_stats64 *storage); 1124 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1125 1126 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1127 __be16 proto, u16 vid); 1128 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1129 __be16 proto, u16 vid); 1130 #ifdef CONFIG_NET_POLL_CONTROLLER 1131 void (*ndo_poll_controller)(struct net_device *dev); 1132 int (*ndo_netpoll_setup)(struct net_device *dev, 1133 struct netpoll_info *info); 1134 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1135 #endif 1136 #ifdef CONFIG_NET_RX_BUSY_POLL 1137 int (*ndo_busy_poll)(struct napi_struct *dev); 1138 #endif 1139 int (*ndo_set_vf_mac)(struct net_device *dev, 1140 int queue, u8 *mac); 1141 int (*ndo_set_vf_vlan)(struct net_device *dev, 1142 int queue, u16 vlan, u8 qos); 1143 int (*ndo_set_vf_rate)(struct net_device *dev, 1144 int vf, int min_tx_rate, 1145 int max_tx_rate); 1146 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1147 int vf, bool setting); 1148 int (*ndo_set_vf_trust)(struct net_device *dev, 1149 int vf, bool setting); 1150 int (*ndo_get_vf_config)(struct net_device *dev, 1151 int vf, 1152 struct ifla_vf_info *ivf); 1153 int (*ndo_set_vf_link_state)(struct net_device *dev, 1154 int vf, int link_state); 1155 int (*ndo_get_vf_stats)(struct net_device *dev, 1156 int vf, 1157 struct ifla_vf_stats 1158 *vf_stats); 1159 int (*ndo_set_vf_port)(struct net_device *dev, 1160 int vf, 1161 struct nlattr *port[]); 1162 int (*ndo_get_vf_port)(struct net_device *dev, 1163 int vf, struct sk_buff *skb); 1164 int (*ndo_set_vf_guid)(struct net_device *dev, 1165 int vf, u64 guid, 1166 int guid_type); 1167 int (*ndo_set_vf_rss_query_en)( 1168 struct net_device *dev, 1169 int vf, bool setting); 1170 int (*ndo_setup_tc)(struct net_device *dev, 1171 u32 handle, 1172 __be16 protocol, 1173 struct tc_to_netdev *tc); 1174 #if IS_ENABLED(CONFIG_FCOE) 1175 int (*ndo_fcoe_enable)(struct net_device *dev); 1176 int (*ndo_fcoe_disable)(struct net_device *dev); 1177 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1178 u16 xid, 1179 struct scatterlist *sgl, 1180 unsigned int sgc); 1181 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1182 u16 xid); 1183 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1184 u16 xid, 1185 struct scatterlist *sgl, 1186 unsigned int sgc); 1187 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1188 struct netdev_fcoe_hbainfo *hbainfo); 1189 #endif 1190 1191 #if IS_ENABLED(CONFIG_LIBFCOE) 1192 #define NETDEV_FCOE_WWNN 0 1193 #define NETDEV_FCOE_WWPN 1 1194 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1195 u64 *wwn, int type); 1196 #endif 1197 1198 #ifdef CONFIG_RFS_ACCEL 1199 int (*ndo_rx_flow_steer)(struct net_device *dev, 1200 const struct sk_buff *skb, 1201 u16 rxq_index, 1202 u32 flow_id); 1203 #endif 1204 int (*ndo_add_slave)(struct net_device *dev, 1205 struct net_device *slave_dev); 1206 int (*ndo_del_slave)(struct net_device *dev, 1207 struct net_device *slave_dev); 1208 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1209 netdev_features_t features); 1210 int (*ndo_set_features)(struct net_device *dev, 1211 netdev_features_t features); 1212 int (*ndo_neigh_construct)(struct neighbour *n); 1213 void (*ndo_neigh_destroy)(struct neighbour *n); 1214 1215 int (*ndo_fdb_add)(struct ndmsg *ndm, 1216 struct nlattr *tb[], 1217 struct net_device *dev, 1218 const unsigned char *addr, 1219 u16 vid, 1220 u16 flags); 1221 int (*ndo_fdb_del)(struct ndmsg *ndm, 1222 struct nlattr *tb[], 1223 struct net_device *dev, 1224 const unsigned char *addr, 1225 u16 vid); 1226 int (*ndo_fdb_dump)(struct sk_buff *skb, 1227 struct netlink_callback *cb, 1228 struct net_device *dev, 1229 struct net_device *filter_dev, 1230 int idx); 1231 1232 int (*ndo_bridge_setlink)(struct net_device *dev, 1233 struct nlmsghdr *nlh, 1234 u16 flags); 1235 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1236 u32 pid, u32 seq, 1237 struct net_device *dev, 1238 u32 filter_mask, 1239 int nlflags); 1240 int (*ndo_bridge_dellink)(struct net_device *dev, 1241 struct nlmsghdr *nlh, 1242 u16 flags); 1243 int (*ndo_change_carrier)(struct net_device *dev, 1244 bool new_carrier); 1245 int (*ndo_get_phys_port_id)(struct net_device *dev, 1246 struct netdev_phys_item_id *ppid); 1247 int (*ndo_get_phys_port_name)(struct net_device *dev, 1248 char *name, size_t len); 1249 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1250 struct udp_tunnel_info *ti); 1251 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1252 struct udp_tunnel_info *ti); 1253 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1254 struct net_device *dev); 1255 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1256 void *priv); 1257 1258 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb, 1259 struct net_device *dev, 1260 void *priv); 1261 int (*ndo_get_lock_subclass)(struct net_device *dev); 1262 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1263 int queue_index, 1264 u32 maxrate); 1265 int (*ndo_get_iflink)(const struct net_device *dev); 1266 int (*ndo_change_proto_down)(struct net_device *dev, 1267 bool proto_down); 1268 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1269 struct sk_buff *skb); 1270 void (*ndo_set_rx_headroom)(struct net_device *dev, 1271 int needed_headroom); 1272 }; 1273 1274 /** 1275 * enum net_device_priv_flags - &struct net_device priv_flags 1276 * 1277 * These are the &struct net_device, they are only set internally 1278 * by drivers and used in the kernel. These flags are invisible to 1279 * userspace; this means that the order of these flags can change 1280 * during any kernel release. 1281 * 1282 * You should have a pretty good reason to be extending these flags. 1283 * 1284 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1285 * @IFF_EBRIDGE: Ethernet bridging device 1286 * @IFF_BONDING: bonding master or slave 1287 * @IFF_ISATAP: ISATAP interface (RFC4214) 1288 * @IFF_WAN_HDLC: WAN HDLC device 1289 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1290 * release skb->dst 1291 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1292 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1293 * @IFF_MACVLAN_PORT: device used as macvlan port 1294 * @IFF_BRIDGE_PORT: device used as bridge port 1295 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1296 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1297 * @IFF_UNICAST_FLT: Supports unicast filtering 1298 * @IFF_TEAM_PORT: device used as team port 1299 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1300 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1301 * change when it's running 1302 * @IFF_MACVLAN: Macvlan device 1303 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1304 * underlying stacked devices 1305 * @IFF_IPVLAN_MASTER: IPvlan master device 1306 * @IFF_IPVLAN_SLAVE: IPvlan slave device 1307 * @IFF_L3MDEV_MASTER: device is an L3 master device 1308 * @IFF_NO_QUEUE: device can run without qdisc attached 1309 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1310 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1311 * @IFF_TEAM: device is a team device 1312 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1313 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1314 * entity (i.e. the master device for bridged veth) 1315 * @IFF_MACSEC: device is a MACsec device 1316 */ 1317 enum netdev_priv_flags { 1318 IFF_802_1Q_VLAN = 1<<0, 1319 IFF_EBRIDGE = 1<<1, 1320 IFF_BONDING = 1<<2, 1321 IFF_ISATAP = 1<<3, 1322 IFF_WAN_HDLC = 1<<4, 1323 IFF_XMIT_DST_RELEASE = 1<<5, 1324 IFF_DONT_BRIDGE = 1<<6, 1325 IFF_DISABLE_NETPOLL = 1<<7, 1326 IFF_MACVLAN_PORT = 1<<8, 1327 IFF_BRIDGE_PORT = 1<<9, 1328 IFF_OVS_DATAPATH = 1<<10, 1329 IFF_TX_SKB_SHARING = 1<<11, 1330 IFF_UNICAST_FLT = 1<<12, 1331 IFF_TEAM_PORT = 1<<13, 1332 IFF_SUPP_NOFCS = 1<<14, 1333 IFF_LIVE_ADDR_CHANGE = 1<<15, 1334 IFF_MACVLAN = 1<<16, 1335 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1336 IFF_IPVLAN_MASTER = 1<<18, 1337 IFF_IPVLAN_SLAVE = 1<<19, 1338 IFF_L3MDEV_MASTER = 1<<20, 1339 IFF_NO_QUEUE = 1<<21, 1340 IFF_OPENVSWITCH = 1<<22, 1341 IFF_L3MDEV_SLAVE = 1<<23, 1342 IFF_TEAM = 1<<24, 1343 IFF_RXFH_CONFIGURED = 1<<25, 1344 IFF_PHONY_HEADROOM = 1<<26, 1345 IFF_MACSEC = 1<<27, 1346 }; 1347 1348 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1349 #define IFF_EBRIDGE IFF_EBRIDGE 1350 #define IFF_BONDING IFF_BONDING 1351 #define IFF_ISATAP IFF_ISATAP 1352 #define IFF_WAN_HDLC IFF_WAN_HDLC 1353 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1354 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1355 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1356 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1357 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1358 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1359 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1360 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1361 #define IFF_TEAM_PORT IFF_TEAM_PORT 1362 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1363 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1364 #define IFF_MACVLAN IFF_MACVLAN 1365 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1366 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER 1367 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE 1368 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1369 #define IFF_NO_QUEUE IFF_NO_QUEUE 1370 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1371 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1372 #define IFF_TEAM IFF_TEAM 1373 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1374 #define IFF_MACSEC IFF_MACSEC 1375 1376 /** 1377 * struct net_device - The DEVICE structure. 1378 * Actually, this whole structure is a big mistake. It mixes I/O 1379 * data with strictly "high-level" data, and it has to know about 1380 * almost every data structure used in the INET module. 1381 * 1382 * @name: This is the first field of the "visible" part of this structure 1383 * (i.e. as seen by users in the "Space.c" file). It is the name 1384 * of the interface. 1385 * 1386 * @name_hlist: Device name hash chain, please keep it close to name[] 1387 * @ifalias: SNMP alias 1388 * @mem_end: Shared memory end 1389 * @mem_start: Shared memory start 1390 * @base_addr: Device I/O address 1391 * @irq: Device IRQ number 1392 * 1393 * @carrier_changes: Stats to monitor carrier on<->off transitions 1394 * 1395 * @state: Generic network queuing layer state, see netdev_state_t 1396 * @dev_list: The global list of network devices 1397 * @napi_list: List entry used for polling NAPI devices 1398 * @unreg_list: List entry when we are unregistering the 1399 * device; see the function unregister_netdev 1400 * @close_list: List entry used when we are closing the device 1401 * @ptype_all: Device-specific packet handlers for all protocols 1402 * @ptype_specific: Device-specific, protocol-specific packet handlers 1403 * 1404 * @adj_list: Directly linked devices, like slaves for bonding 1405 * @all_adj_list: All linked devices, *including* neighbours 1406 * @features: Currently active device features 1407 * @hw_features: User-changeable features 1408 * 1409 * @wanted_features: User-requested features 1410 * @vlan_features: Mask of features inheritable by VLAN devices 1411 * 1412 * @hw_enc_features: Mask of features inherited by encapsulating devices 1413 * This field indicates what encapsulation 1414 * offloads the hardware is capable of doing, 1415 * and drivers will need to set them appropriately. 1416 * 1417 * @mpls_features: Mask of features inheritable by MPLS 1418 * 1419 * @ifindex: interface index 1420 * @group: The group the device belongs to 1421 * 1422 * @stats: Statistics struct, which was left as a legacy, use 1423 * rtnl_link_stats64 instead 1424 * 1425 * @rx_dropped: Dropped packets by core network, 1426 * do not use this in drivers 1427 * @tx_dropped: Dropped packets by core network, 1428 * do not use this in drivers 1429 * @rx_nohandler: nohandler dropped packets by core network on 1430 * inactive devices, do not use this in drivers 1431 * 1432 * @wireless_handlers: List of functions to handle Wireless Extensions, 1433 * instead of ioctl, 1434 * see <net/iw_handler.h> for details. 1435 * @wireless_data: Instance data managed by the core of wireless extensions 1436 * 1437 * @netdev_ops: Includes several pointers to callbacks, 1438 * if one wants to override the ndo_*() functions 1439 * @ethtool_ops: Management operations 1440 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1441 * discovery handling. Necessary for e.g. 6LoWPAN. 1442 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1443 * of Layer 2 headers. 1444 * 1445 * @flags: Interface flags (a la BSD) 1446 * @priv_flags: Like 'flags' but invisible to userspace, 1447 * see if.h for the definitions 1448 * @gflags: Global flags ( kept as legacy ) 1449 * @padded: How much padding added by alloc_netdev() 1450 * @operstate: RFC2863 operstate 1451 * @link_mode: Mapping policy to operstate 1452 * @if_port: Selectable AUI, TP, ... 1453 * @dma: DMA channel 1454 * @mtu: Interface MTU value 1455 * @type: Interface hardware type 1456 * @hard_header_len: Maximum hardware header length. 1457 * 1458 * @needed_headroom: Extra headroom the hardware may need, but not in all 1459 * cases can this be guaranteed 1460 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1461 * cases can this be guaranteed. Some cases also use 1462 * LL_MAX_HEADER instead to allocate the skb 1463 * 1464 * interface address info: 1465 * 1466 * @perm_addr: Permanent hw address 1467 * @addr_assign_type: Hw address assignment type 1468 * @addr_len: Hardware address length 1469 * @neigh_priv_len: Used in neigh_alloc() 1470 * @dev_id: Used to differentiate devices that share 1471 * the same link layer address 1472 * @dev_port: Used to differentiate devices that share 1473 * the same function 1474 * @addr_list_lock: XXX: need comments on this one 1475 * @uc_promisc: Counter that indicates promiscuous mode 1476 * has been enabled due to the need to listen to 1477 * additional unicast addresses in a device that 1478 * does not implement ndo_set_rx_mode() 1479 * @uc: unicast mac addresses 1480 * @mc: multicast mac addresses 1481 * @dev_addrs: list of device hw addresses 1482 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1483 * @promiscuity: Number of times the NIC is told to work in 1484 * promiscuous mode; if it becomes 0 the NIC will 1485 * exit promiscuous mode 1486 * @allmulti: Counter, enables or disables allmulticast mode 1487 * 1488 * @vlan_info: VLAN info 1489 * @dsa_ptr: dsa specific data 1490 * @tipc_ptr: TIPC specific data 1491 * @atalk_ptr: AppleTalk link 1492 * @ip_ptr: IPv4 specific data 1493 * @dn_ptr: DECnet specific data 1494 * @ip6_ptr: IPv6 specific data 1495 * @ax25_ptr: AX.25 specific data 1496 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1497 * 1498 * @last_rx: Time of last Rx 1499 * @dev_addr: Hw address (before bcast, 1500 * because most packets are unicast) 1501 * 1502 * @_rx: Array of RX queues 1503 * @num_rx_queues: Number of RX queues 1504 * allocated at register_netdev() time 1505 * @real_num_rx_queues: Number of RX queues currently active in device 1506 * 1507 * @rx_handler: handler for received packets 1508 * @rx_handler_data: XXX: need comments on this one 1509 * @ingress_queue: XXX: need comments on this one 1510 * @broadcast: hw bcast address 1511 * 1512 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1513 * indexed by RX queue number. Assigned by driver. 1514 * This must only be set if the ndo_rx_flow_steer 1515 * operation is defined 1516 * @index_hlist: Device index hash chain 1517 * 1518 * @_tx: Array of TX queues 1519 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1520 * @real_num_tx_queues: Number of TX queues currently active in device 1521 * @qdisc: Root qdisc from userspace point of view 1522 * @tx_queue_len: Max frames per queue allowed 1523 * @tx_global_lock: XXX: need comments on this one 1524 * 1525 * @xps_maps: XXX: need comments on this one 1526 * 1527 * @offload_fwd_mark: Offload device fwding mark 1528 * 1529 * @watchdog_timeo: Represents the timeout that is used by 1530 * the watchdog (see dev_watchdog()) 1531 * @watchdog_timer: List of timers 1532 * 1533 * @pcpu_refcnt: Number of references to this device 1534 * @todo_list: Delayed register/unregister 1535 * @link_watch_list: XXX: need comments on this one 1536 * 1537 * @reg_state: Register/unregister state machine 1538 * @dismantle: Device is going to be freed 1539 * @rtnl_link_state: This enum represents the phases of creating 1540 * a new link 1541 * 1542 * @destructor: Called from unregister, 1543 * can be used to call free_netdev 1544 * @npinfo: XXX: need comments on this one 1545 * @nd_net: Network namespace this network device is inside 1546 * 1547 * @ml_priv: Mid-layer private 1548 * @lstats: Loopback statistics 1549 * @tstats: Tunnel statistics 1550 * @dstats: Dummy statistics 1551 * @vstats: Virtual ethernet statistics 1552 * 1553 * @garp_port: GARP 1554 * @mrp_port: MRP 1555 * 1556 * @dev: Class/net/name entry 1557 * @sysfs_groups: Space for optional device, statistics and wireless 1558 * sysfs groups 1559 * 1560 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1561 * @rtnl_link_ops: Rtnl_link_ops 1562 * 1563 * @gso_max_size: Maximum size of generic segmentation offload 1564 * @gso_max_segs: Maximum number of segments that can be passed to the 1565 * NIC for GSO 1566 * 1567 * @dcbnl_ops: Data Center Bridging netlink ops 1568 * @num_tc: Number of traffic classes in the net device 1569 * @tc_to_txq: XXX: need comments on this one 1570 * @prio_tc_map XXX: need comments on this one 1571 * 1572 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1573 * 1574 * @priomap: XXX: need comments on this one 1575 * @phydev: Physical device may attach itself 1576 * for hardware timestamping 1577 * 1578 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1579 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1580 * 1581 * @proto_down: protocol port state information can be sent to the 1582 * switch driver and used to set the phys state of the 1583 * switch port. 1584 * 1585 * FIXME: cleanup struct net_device such that network protocol info 1586 * moves out. 1587 */ 1588 1589 struct net_device { 1590 char name[IFNAMSIZ]; 1591 struct hlist_node name_hlist; 1592 char *ifalias; 1593 /* 1594 * I/O specific fields 1595 * FIXME: Merge these and struct ifmap into one 1596 */ 1597 unsigned long mem_end; 1598 unsigned long mem_start; 1599 unsigned long base_addr; 1600 int irq; 1601 1602 atomic_t carrier_changes; 1603 1604 /* 1605 * Some hardware also needs these fields (state,dev_list, 1606 * napi_list,unreg_list,close_list) but they are not 1607 * part of the usual set specified in Space.c. 1608 */ 1609 1610 unsigned long state; 1611 1612 struct list_head dev_list; 1613 struct list_head napi_list; 1614 struct list_head unreg_list; 1615 struct list_head close_list; 1616 struct list_head ptype_all; 1617 struct list_head ptype_specific; 1618 1619 struct { 1620 struct list_head upper; 1621 struct list_head lower; 1622 } adj_list; 1623 1624 struct { 1625 struct list_head upper; 1626 struct list_head lower; 1627 } all_adj_list; 1628 1629 netdev_features_t features; 1630 netdev_features_t hw_features; 1631 netdev_features_t wanted_features; 1632 netdev_features_t vlan_features; 1633 netdev_features_t hw_enc_features; 1634 netdev_features_t mpls_features; 1635 netdev_features_t gso_partial_features; 1636 1637 int ifindex; 1638 int group; 1639 1640 struct net_device_stats stats; 1641 1642 atomic_long_t rx_dropped; 1643 atomic_long_t tx_dropped; 1644 atomic_long_t rx_nohandler; 1645 1646 #ifdef CONFIG_WIRELESS_EXT 1647 const struct iw_handler_def *wireless_handlers; 1648 struct iw_public_data *wireless_data; 1649 #endif 1650 const struct net_device_ops *netdev_ops; 1651 const struct ethtool_ops *ethtool_ops; 1652 #ifdef CONFIG_NET_SWITCHDEV 1653 const struct switchdev_ops *switchdev_ops; 1654 #endif 1655 #ifdef CONFIG_NET_L3_MASTER_DEV 1656 const struct l3mdev_ops *l3mdev_ops; 1657 #endif 1658 #if IS_ENABLED(CONFIG_IPV6) 1659 const struct ndisc_ops *ndisc_ops; 1660 #endif 1661 1662 const struct header_ops *header_ops; 1663 1664 unsigned int flags; 1665 unsigned int priv_flags; 1666 1667 unsigned short gflags; 1668 unsigned short padded; 1669 1670 unsigned char operstate; 1671 unsigned char link_mode; 1672 1673 unsigned char if_port; 1674 unsigned char dma; 1675 1676 unsigned int mtu; 1677 unsigned short type; 1678 unsigned short hard_header_len; 1679 1680 unsigned short needed_headroom; 1681 unsigned short needed_tailroom; 1682 1683 /* Interface address info. */ 1684 unsigned char perm_addr[MAX_ADDR_LEN]; 1685 unsigned char addr_assign_type; 1686 unsigned char addr_len; 1687 unsigned short neigh_priv_len; 1688 unsigned short dev_id; 1689 unsigned short dev_port; 1690 spinlock_t addr_list_lock; 1691 unsigned char name_assign_type; 1692 bool uc_promisc; 1693 struct netdev_hw_addr_list uc; 1694 struct netdev_hw_addr_list mc; 1695 struct netdev_hw_addr_list dev_addrs; 1696 1697 #ifdef CONFIG_SYSFS 1698 struct kset *queues_kset; 1699 #endif 1700 unsigned int promiscuity; 1701 unsigned int allmulti; 1702 1703 1704 /* Protocol-specific pointers */ 1705 1706 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1707 struct vlan_info __rcu *vlan_info; 1708 #endif 1709 #if IS_ENABLED(CONFIG_NET_DSA) 1710 struct dsa_switch_tree *dsa_ptr; 1711 #endif 1712 #if IS_ENABLED(CONFIG_TIPC) 1713 struct tipc_bearer __rcu *tipc_ptr; 1714 #endif 1715 void *atalk_ptr; 1716 struct in_device __rcu *ip_ptr; 1717 struct dn_dev __rcu *dn_ptr; 1718 struct inet6_dev __rcu *ip6_ptr; 1719 void *ax25_ptr; 1720 struct wireless_dev *ieee80211_ptr; 1721 struct wpan_dev *ieee802154_ptr; 1722 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 1723 struct mpls_dev __rcu *mpls_ptr; 1724 #endif 1725 1726 /* 1727 * Cache lines mostly used on receive path (including eth_type_trans()) 1728 */ 1729 unsigned long last_rx; 1730 1731 /* Interface address info used in eth_type_trans() */ 1732 unsigned char *dev_addr; 1733 1734 #ifdef CONFIG_SYSFS 1735 struct netdev_rx_queue *_rx; 1736 1737 unsigned int num_rx_queues; 1738 unsigned int real_num_rx_queues; 1739 #endif 1740 1741 unsigned long gro_flush_timeout; 1742 rx_handler_func_t __rcu *rx_handler; 1743 void __rcu *rx_handler_data; 1744 1745 #ifdef CONFIG_NET_CLS_ACT 1746 struct tcf_proto __rcu *ingress_cl_list; 1747 #endif 1748 struct netdev_queue __rcu *ingress_queue; 1749 #ifdef CONFIG_NETFILTER_INGRESS 1750 struct list_head nf_hooks_ingress; 1751 #endif 1752 1753 unsigned char broadcast[MAX_ADDR_LEN]; 1754 #ifdef CONFIG_RFS_ACCEL 1755 struct cpu_rmap *rx_cpu_rmap; 1756 #endif 1757 struct hlist_node index_hlist; 1758 1759 /* 1760 * Cache lines mostly used on transmit path 1761 */ 1762 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1763 unsigned int num_tx_queues; 1764 unsigned int real_num_tx_queues; 1765 struct Qdisc *qdisc; 1766 unsigned long tx_queue_len; 1767 spinlock_t tx_global_lock; 1768 int watchdog_timeo; 1769 1770 #ifdef CONFIG_XPS 1771 struct xps_dev_maps __rcu *xps_maps; 1772 #endif 1773 #ifdef CONFIG_NET_CLS_ACT 1774 struct tcf_proto __rcu *egress_cl_list; 1775 #endif 1776 #ifdef CONFIG_NET_SWITCHDEV 1777 u32 offload_fwd_mark; 1778 #endif 1779 1780 /* These may be needed for future network-power-down code. */ 1781 struct timer_list watchdog_timer; 1782 1783 int __percpu *pcpu_refcnt; 1784 struct list_head todo_list; 1785 1786 struct list_head link_watch_list; 1787 1788 enum { NETREG_UNINITIALIZED=0, 1789 NETREG_REGISTERED, /* completed register_netdevice */ 1790 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1791 NETREG_UNREGISTERED, /* completed unregister todo */ 1792 NETREG_RELEASED, /* called free_netdev */ 1793 NETREG_DUMMY, /* dummy device for NAPI poll */ 1794 } reg_state:8; 1795 1796 bool dismantle; 1797 1798 enum { 1799 RTNL_LINK_INITIALIZED, 1800 RTNL_LINK_INITIALIZING, 1801 } rtnl_link_state:16; 1802 1803 void (*destructor)(struct net_device *dev); 1804 1805 #ifdef CONFIG_NETPOLL 1806 struct netpoll_info __rcu *npinfo; 1807 #endif 1808 1809 possible_net_t nd_net; 1810 1811 /* mid-layer private */ 1812 union { 1813 void *ml_priv; 1814 struct pcpu_lstats __percpu *lstats; 1815 struct pcpu_sw_netstats __percpu *tstats; 1816 struct pcpu_dstats __percpu *dstats; 1817 struct pcpu_vstats __percpu *vstats; 1818 }; 1819 1820 struct garp_port __rcu *garp_port; 1821 struct mrp_port __rcu *mrp_port; 1822 1823 struct device dev; 1824 const struct attribute_group *sysfs_groups[4]; 1825 const struct attribute_group *sysfs_rx_queue_group; 1826 1827 const struct rtnl_link_ops *rtnl_link_ops; 1828 1829 /* for setting kernel sock attribute on TCP connection setup */ 1830 #define GSO_MAX_SIZE 65536 1831 unsigned int gso_max_size; 1832 #define GSO_MAX_SEGS 65535 1833 u16 gso_max_segs; 1834 1835 #ifdef CONFIG_DCB 1836 const struct dcbnl_rtnl_ops *dcbnl_ops; 1837 #endif 1838 u8 num_tc; 1839 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1840 u8 prio_tc_map[TC_BITMASK + 1]; 1841 1842 #if IS_ENABLED(CONFIG_FCOE) 1843 unsigned int fcoe_ddp_xid; 1844 #endif 1845 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1846 struct netprio_map __rcu *priomap; 1847 #endif 1848 struct phy_device *phydev; 1849 struct lock_class_key *qdisc_tx_busylock; 1850 struct lock_class_key *qdisc_running_key; 1851 bool proto_down; 1852 }; 1853 #define to_net_dev(d) container_of(d, struct net_device, dev) 1854 1855 #define NETDEV_ALIGN 32 1856 1857 static inline 1858 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1859 { 1860 return dev->prio_tc_map[prio & TC_BITMASK]; 1861 } 1862 1863 static inline 1864 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1865 { 1866 if (tc >= dev->num_tc) 1867 return -EINVAL; 1868 1869 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1870 return 0; 1871 } 1872 1873 static inline 1874 void netdev_reset_tc(struct net_device *dev) 1875 { 1876 dev->num_tc = 0; 1877 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 1878 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 1879 } 1880 1881 static inline 1882 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 1883 { 1884 if (tc >= dev->num_tc) 1885 return -EINVAL; 1886 1887 dev->tc_to_txq[tc].count = count; 1888 dev->tc_to_txq[tc].offset = offset; 1889 return 0; 1890 } 1891 1892 static inline 1893 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 1894 { 1895 if (num_tc > TC_MAX_QUEUE) 1896 return -EINVAL; 1897 1898 dev->num_tc = num_tc; 1899 return 0; 1900 } 1901 1902 static inline 1903 int netdev_get_num_tc(struct net_device *dev) 1904 { 1905 return dev->num_tc; 1906 } 1907 1908 static inline 1909 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1910 unsigned int index) 1911 { 1912 return &dev->_tx[index]; 1913 } 1914 1915 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 1916 const struct sk_buff *skb) 1917 { 1918 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 1919 } 1920 1921 static inline void netdev_for_each_tx_queue(struct net_device *dev, 1922 void (*f)(struct net_device *, 1923 struct netdev_queue *, 1924 void *), 1925 void *arg) 1926 { 1927 unsigned int i; 1928 1929 for (i = 0; i < dev->num_tx_queues; i++) 1930 f(dev, &dev->_tx[i], arg); 1931 } 1932 1933 #define netdev_lockdep_set_classes(dev) \ 1934 { \ 1935 static struct lock_class_key qdisc_tx_busylock_key; \ 1936 static struct lock_class_key qdisc_running_key; \ 1937 static struct lock_class_key qdisc_xmit_lock_key; \ 1938 static struct lock_class_key dev_addr_list_lock_key; \ 1939 unsigned int i; \ 1940 \ 1941 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 1942 (dev)->qdisc_running_key = &qdisc_running_key; \ 1943 lockdep_set_class(&(dev)->addr_list_lock, \ 1944 &dev_addr_list_lock_key); \ 1945 for (i = 0; i < (dev)->num_tx_queues; i++) \ 1946 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 1947 &qdisc_xmit_lock_key); \ 1948 } 1949 1950 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 1951 struct sk_buff *skb, 1952 void *accel_priv); 1953 1954 /* returns the headroom that the master device needs to take in account 1955 * when forwarding to this dev 1956 */ 1957 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 1958 { 1959 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 1960 } 1961 1962 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 1963 { 1964 if (dev->netdev_ops->ndo_set_rx_headroom) 1965 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 1966 } 1967 1968 /* set the device rx headroom to the dev's default */ 1969 static inline void netdev_reset_rx_headroom(struct net_device *dev) 1970 { 1971 netdev_set_rx_headroom(dev, -1); 1972 } 1973 1974 /* 1975 * Net namespace inlines 1976 */ 1977 static inline 1978 struct net *dev_net(const struct net_device *dev) 1979 { 1980 return read_pnet(&dev->nd_net); 1981 } 1982 1983 static inline 1984 void dev_net_set(struct net_device *dev, struct net *net) 1985 { 1986 write_pnet(&dev->nd_net, net); 1987 } 1988 1989 static inline bool netdev_uses_dsa(struct net_device *dev) 1990 { 1991 #if IS_ENABLED(CONFIG_NET_DSA) 1992 if (dev->dsa_ptr != NULL) 1993 return dsa_uses_tagged_protocol(dev->dsa_ptr); 1994 #endif 1995 return false; 1996 } 1997 1998 /** 1999 * netdev_priv - access network device private data 2000 * @dev: network device 2001 * 2002 * Get network device private data 2003 */ 2004 static inline void *netdev_priv(const struct net_device *dev) 2005 { 2006 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2007 } 2008 2009 /* Set the sysfs physical device reference for the network logical device 2010 * if set prior to registration will cause a symlink during initialization. 2011 */ 2012 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2013 2014 /* Set the sysfs device type for the network logical device to allow 2015 * fine-grained identification of different network device types. For 2016 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2017 */ 2018 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2019 2020 /* Default NAPI poll() weight 2021 * Device drivers are strongly advised to not use bigger value 2022 */ 2023 #define NAPI_POLL_WEIGHT 64 2024 2025 /** 2026 * netif_napi_add - initialize a NAPI context 2027 * @dev: network device 2028 * @napi: NAPI context 2029 * @poll: polling function 2030 * @weight: default weight 2031 * 2032 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2033 * *any* of the other NAPI-related functions. 2034 */ 2035 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2036 int (*poll)(struct napi_struct *, int), int weight); 2037 2038 /** 2039 * netif_tx_napi_add - initialize a NAPI context 2040 * @dev: network device 2041 * @napi: NAPI context 2042 * @poll: polling function 2043 * @weight: default weight 2044 * 2045 * This variant of netif_napi_add() should be used from drivers using NAPI 2046 * to exclusively poll a TX queue. 2047 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2048 */ 2049 static inline void netif_tx_napi_add(struct net_device *dev, 2050 struct napi_struct *napi, 2051 int (*poll)(struct napi_struct *, int), 2052 int weight) 2053 { 2054 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2055 netif_napi_add(dev, napi, poll, weight); 2056 } 2057 2058 /** 2059 * netif_napi_del - remove a NAPI context 2060 * @napi: NAPI context 2061 * 2062 * netif_napi_del() removes a NAPI context from the network device NAPI list 2063 */ 2064 void netif_napi_del(struct napi_struct *napi); 2065 2066 struct napi_gro_cb { 2067 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2068 void *frag0; 2069 2070 /* Length of frag0. */ 2071 unsigned int frag0_len; 2072 2073 /* This indicates where we are processing relative to skb->data. */ 2074 int data_offset; 2075 2076 /* This is non-zero if the packet cannot be merged with the new skb. */ 2077 u16 flush; 2078 2079 /* Save the IP ID here and check when we get to the transport layer */ 2080 u16 flush_id; 2081 2082 /* Number of segments aggregated. */ 2083 u16 count; 2084 2085 /* Start offset for remote checksum offload */ 2086 u16 gro_remcsum_start; 2087 2088 /* jiffies when first packet was created/queued */ 2089 unsigned long age; 2090 2091 /* Used in ipv6_gro_receive() and foo-over-udp */ 2092 u16 proto; 2093 2094 /* This is non-zero if the packet may be of the same flow. */ 2095 u8 same_flow:1; 2096 2097 /* Used in tunnel GRO receive */ 2098 u8 encap_mark:1; 2099 2100 /* GRO checksum is valid */ 2101 u8 csum_valid:1; 2102 2103 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2104 u8 csum_cnt:3; 2105 2106 /* Free the skb? */ 2107 u8 free:2; 2108 #define NAPI_GRO_FREE 1 2109 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2110 2111 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2112 u8 is_ipv6:1; 2113 2114 /* Used in GRE, set in fou/gue_gro_receive */ 2115 u8 is_fou:1; 2116 2117 /* Used to determine if flush_id can be ignored */ 2118 u8 is_atomic:1; 2119 2120 /* 5 bit hole */ 2121 2122 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2123 __wsum csum; 2124 2125 /* used in skb_gro_receive() slow path */ 2126 struct sk_buff *last; 2127 }; 2128 2129 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2130 2131 struct packet_type { 2132 __be16 type; /* This is really htons(ether_type). */ 2133 struct net_device *dev; /* NULL is wildcarded here */ 2134 int (*func) (struct sk_buff *, 2135 struct net_device *, 2136 struct packet_type *, 2137 struct net_device *); 2138 bool (*id_match)(struct packet_type *ptype, 2139 struct sock *sk); 2140 void *af_packet_priv; 2141 struct list_head list; 2142 }; 2143 2144 struct offload_callbacks { 2145 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2146 netdev_features_t features); 2147 struct sk_buff **(*gro_receive)(struct sk_buff **head, 2148 struct sk_buff *skb); 2149 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2150 }; 2151 2152 struct packet_offload { 2153 __be16 type; /* This is really htons(ether_type). */ 2154 u16 priority; 2155 struct offload_callbacks callbacks; 2156 struct list_head list; 2157 }; 2158 2159 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2160 struct pcpu_sw_netstats { 2161 u64 rx_packets; 2162 u64 rx_bytes; 2163 u64 tx_packets; 2164 u64 tx_bytes; 2165 struct u64_stats_sync syncp; 2166 }; 2167 2168 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2169 ({ \ 2170 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2171 if (pcpu_stats) { \ 2172 int __cpu; \ 2173 for_each_possible_cpu(__cpu) { \ 2174 typeof(type) *stat; \ 2175 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2176 u64_stats_init(&stat->syncp); \ 2177 } \ 2178 } \ 2179 pcpu_stats; \ 2180 }) 2181 2182 #define netdev_alloc_pcpu_stats(type) \ 2183 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2184 2185 enum netdev_lag_tx_type { 2186 NETDEV_LAG_TX_TYPE_UNKNOWN, 2187 NETDEV_LAG_TX_TYPE_RANDOM, 2188 NETDEV_LAG_TX_TYPE_BROADCAST, 2189 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2190 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2191 NETDEV_LAG_TX_TYPE_HASH, 2192 }; 2193 2194 struct netdev_lag_upper_info { 2195 enum netdev_lag_tx_type tx_type; 2196 }; 2197 2198 struct netdev_lag_lower_state_info { 2199 u8 link_up : 1, 2200 tx_enabled : 1; 2201 }; 2202 2203 #include <linux/notifier.h> 2204 2205 /* netdevice notifier chain. Please remember to update the rtnetlink 2206 * notification exclusion list in rtnetlink_event() when adding new 2207 * types. 2208 */ 2209 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 2210 #define NETDEV_DOWN 0x0002 2211 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 2212 detected a hardware crash and restarted 2213 - we can use this eg to kick tcp sessions 2214 once done */ 2215 #define NETDEV_CHANGE 0x0004 /* Notify device state change */ 2216 #define NETDEV_REGISTER 0x0005 2217 #define NETDEV_UNREGISTER 0x0006 2218 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */ 2219 #define NETDEV_CHANGEADDR 0x0008 2220 #define NETDEV_GOING_DOWN 0x0009 2221 #define NETDEV_CHANGENAME 0x000A 2222 #define NETDEV_FEAT_CHANGE 0x000B 2223 #define NETDEV_BONDING_FAILOVER 0x000C 2224 #define NETDEV_PRE_UP 0x000D 2225 #define NETDEV_PRE_TYPE_CHANGE 0x000E 2226 #define NETDEV_POST_TYPE_CHANGE 0x000F 2227 #define NETDEV_POST_INIT 0x0010 2228 #define NETDEV_UNREGISTER_FINAL 0x0011 2229 #define NETDEV_RELEASE 0x0012 2230 #define NETDEV_NOTIFY_PEERS 0x0013 2231 #define NETDEV_JOIN 0x0014 2232 #define NETDEV_CHANGEUPPER 0x0015 2233 #define NETDEV_RESEND_IGMP 0x0016 2234 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */ 2235 #define NETDEV_CHANGEINFODATA 0x0018 2236 #define NETDEV_BONDING_INFO 0x0019 2237 #define NETDEV_PRECHANGEUPPER 0x001A 2238 #define NETDEV_CHANGELOWERSTATE 0x001B 2239 #define NETDEV_UDP_TUNNEL_PUSH_INFO 0x001C 2240 2241 int register_netdevice_notifier(struct notifier_block *nb); 2242 int unregister_netdevice_notifier(struct notifier_block *nb); 2243 2244 struct netdev_notifier_info { 2245 struct net_device *dev; 2246 }; 2247 2248 struct netdev_notifier_change_info { 2249 struct netdev_notifier_info info; /* must be first */ 2250 unsigned int flags_changed; 2251 }; 2252 2253 struct netdev_notifier_changeupper_info { 2254 struct netdev_notifier_info info; /* must be first */ 2255 struct net_device *upper_dev; /* new upper dev */ 2256 bool master; /* is upper dev master */ 2257 bool linking; /* is the notification for link or unlink */ 2258 void *upper_info; /* upper dev info */ 2259 }; 2260 2261 struct netdev_notifier_changelowerstate_info { 2262 struct netdev_notifier_info info; /* must be first */ 2263 void *lower_state_info; /* is lower dev state */ 2264 }; 2265 2266 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2267 struct net_device *dev) 2268 { 2269 info->dev = dev; 2270 } 2271 2272 static inline struct net_device * 2273 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2274 { 2275 return info->dev; 2276 } 2277 2278 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2279 2280 2281 extern rwlock_t dev_base_lock; /* Device list lock */ 2282 2283 #define for_each_netdev(net, d) \ 2284 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2285 #define for_each_netdev_reverse(net, d) \ 2286 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2287 #define for_each_netdev_rcu(net, d) \ 2288 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2289 #define for_each_netdev_safe(net, d, n) \ 2290 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2291 #define for_each_netdev_continue(net, d) \ 2292 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2293 #define for_each_netdev_continue_rcu(net, d) \ 2294 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2295 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2296 for_each_netdev_rcu(&init_net, slave) \ 2297 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2298 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2299 2300 static inline struct net_device *next_net_device(struct net_device *dev) 2301 { 2302 struct list_head *lh; 2303 struct net *net; 2304 2305 net = dev_net(dev); 2306 lh = dev->dev_list.next; 2307 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2308 } 2309 2310 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2311 { 2312 struct list_head *lh; 2313 struct net *net; 2314 2315 net = dev_net(dev); 2316 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2317 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2318 } 2319 2320 static inline struct net_device *first_net_device(struct net *net) 2321 { 2322 return list_empty(&net->dev_base_head) ? NULL : 2323 net_device_entry(net->dev_base_head.next); 2324 } 2325 2326 static inline struct net_device *first_net_device_rcu(struct net *net) 2327 { 2328 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2329 2330 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2331 } 2332 2333 int netdev_boot_setup_check(struct net_device *dev); 2334 unsigned long netdev_boot_base(const char *prefix, int unit); 2335 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2336 const char *hwaddr); 2337 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2338 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2339 void dev_add_pack(struct packet_type *pt); 2340 void dev_remove_pack(struct packet_type *pt); 2341 void __dev_remove_pack(struct packet_type *pt); 2342 void dev_add_offload(struct packet_offload *po); 2343 void dev_remove_offload(struct packet_offload *po); 2344 2345 int dev_get_iflink(const struct net_device *dev); 2346 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2347 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2348 unsigned short mask); 2349 struct net_device *dev_get_by_name(struct net *net, const char *name); 2350 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2351 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2352 int dev_alloc_name(struct net_device *dev, const char *name); 2353 int dev_open(struct net_device *dev); 2354 int dev_close(struct net_device *dev); 2355 int dev_close_many(struct list_head *head, bool unlink); 2356 void dev_disable_lro(struct net_device *dev); 2357 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2358 int dev_queue_xmit(struct sk_buff *skb); 2359 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv); 2360 int register_netdevice(struct net_device *dev); 2361 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2362 void unregister_netdevice_many(struct list_head *head); 2363 static inline void unregister_netdevice(struct net_device *dev) 2364 { 2365 unregister_netdevice_queue(dev, NULL); 2366 } 2367 2368 int netdev_refcnt_read(const struct net_device *dev); 2369 void free_netdev(struct net_device *dev); 2370 void netdev_freemem(struct net_device *dev); 2371 void synchronize_net(void); 2372 int init_dummy_netdev(struct net_device *dev); 2373 2374 DECLARE_PER_CPU(int, xmit_recursion); 2375 #define XMIT_RECURSION_LIMIT 10 2376 2377 static inline int dev_recursion_level(void) 2378 { 2379 return this_cpu_read(xmit_recursion); 2380 } 2381 2382 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2383 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2384 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2385 int netdev_get_name(struct net *net, char *name, int ifindex); 2386 int dev_restart(struct net_device *dev); 2387 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); 2388 2389 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2390 { 2391 return NAPI_GRO_CB(skb)->data_offset; 2392 } 2393 2394 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2395 { 2396 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2397 } 2398 2399 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2400 { 2401 NAPI_GRO_CB(skb)->data_offset += len; 2402 } 2403 2404 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2405 unsigned int offset) 2406 { 2407 return NAPI_GRO_CB(skb)->frag0 + offset; 2408 } 2409 2410 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2411 { 2412 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2413 } 2414 2415 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2416 unsigned int offset) 2417 { 2418 if (!pskb_may_pull(skb, hlen)) 2419 return NULL; 2420 2421 NAPI_GRO_CB(skb)->frag0 = NULL; 2422 NAPI_GRO_CB(skb)->frag0_len = 0; 2423 return skb->data + offset; 2424 } 2425 2426 static inline void *skb_gro_network_header(struct sk_buff *skb) 2427 { 2428 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2429 skb_network_offset(skb); 2430 } 2431 2432 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2433 const void *start, unsigned int len) 2434 { 2435 if (NAPI_GRO_CB(skb)->csum_valid) 2436 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2437 csum_partial(start, len, 0)); 2438 } 2439 2440 /* GRO checksum functions. These are logical equivalents of the normal 2441 * checksum functions (in skbuff.h) except that they operate on the GRO 2442 * offsets and fields in sk_buff. 2443 */ 2444 2445 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2446 2447 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2448 { 2449 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2450 } 2451 2452 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2453 bool zero_okay, 2454 __sum16 check) 2455 { 2456 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2457 skb_checksum_start_offset(skb) < 2458 skb_gro_offset(skb)) && 2459 !skb_at_gro_remcsum_start(skb) && 2460 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2461 (!zero_okay || check)); 2462 } 2463 2464 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2465 __wsum psum) 2466 { 2467 if (NAPI_GRO_CB(skb)->csum_valid && 2468 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2469 return 0; 2470 2471 NAPI_GRO_CB(skb)->csum = psum; 2472 2473 return __skb_gro_checksum_complete(skb); 2474 } 2475 2476 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2477 { 2478 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2479 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2480 NAPI_GRO_CB(skb)->csum_cnt--; 2481 } else { 2482 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2483 * verified a new top level checksum or an encapsulated one 2484 * during GRO. This saves work if we fallback to normal path. 2485 */ 2486 __skb_incr_checksum_unnecessary(skb); 2487 } 2488 } 2489 2490 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2491 compute_pseudo) \ 2492 ({ \ 2493 __sum16 __ret = 0; \ 2494 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2495 __ret = __skb_gro_checksum_validate_complete(skb, \ 2496 compute_pseudo(skb, proto)); \ 2497 if (__ret) \ 2498 __skb_mark_checksum_bad(skb); \ 2499 else \ 2500 skb_gro_incr_csum_unnecessary(skb); \ 2501 __ret; \ 2502 }) 2503 2504 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2505 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2506 2507 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2508 compute_pseudo) \ 2509 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2510 2511 #define skb_gro_checksum_simple_validate(skb) \ 2512 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2513 2514 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2515 { 2516 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2517 !NAPI_GRO_CB(skb)->csum_valid); 2518 } 2519 2520 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2521 __sum16 check, __wsum pseudo) 2522 { 2523 NAPI_GRO_CB(skb)->csum = ~pseudo; 2524 NAPI_GRO_CB(skb)->csum_valid = 1; 2525 } 2526 2527 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2528 do { \ 2529 if (__skb_gro_checksum_convert_check(skb)) \ 2530 __skb_gro_checksum_convert(skb, check, \ 2531 compute_pseudo(skb, proto)); \ 2532 } while (0) 2533 2534 struct gro_remcsum { 2535 int offset; 2536 __wsum delta; 2537 }; 2538 2539 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2540 { 2541 grc->offset = 0; 2542 grc->delta = 0; 2543 } 2544 2545 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2546 unsigned int off, size_t hdrlen, 2547 int start, int offset, 2548 struct gro_remcsum *grc, 2549 bool nopartial) 2550 { 2551 __wsum delta; 2552 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2553 2554 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2555 2556 if (!nopartial) { 2557 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2558 return ptr; 2559 } 2560 2561 ptr = skb_gro_header_fast(skb, off); 2562 if (skb_gro_header_hard(skb, off + plen)) { 2563 ptr = skb_gro_header_slow(skb, off + plen, off); 2564 if (!ptr) 2565 return NULL; 2566 } 2567 2568 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2569 start, offset); 2570 2571 /* Adjust skb->csum since we changed the packet */ 2572 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2573 2574 grc->offset = off + hdrlen + offset; 2575 grc->delta = delta; 2576 2577 return ptr; 2578 } 2579 2580 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2581 struct gro_remcsum *grc) 2582 { 2583 void *ptr; 2584 size_t plen = grc->offset + sizeof(u16); 2585 2586 if (!grc->delta) 2587 return; 2588 2589 ptr = skb_gro_header_fast(skb, grc->offset); 2590 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2591 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2592 if (!ptr) 2593 return; 2594 } 2595 2596 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2597 } 2598 2599 struct skb_csum_offl_spec { 2600 __u16 ipv4_okay:1, 2601 ipv6_okay:1, 2602 encap_okay:1, 2603 ip_options_okay:1, 2604 ext_hdrs_okay:1, 2605 tcp_okay:1, 2606 udp_okay:1, 2607 sctp_okay:1, 2608 vlan_okay:1, 2609 no_encapped_ipv6:1, 2610 no_not_encapped:1; 2611 }; 2612 2613 bool __skb_csum_offload_chk(struct sk_buff *skb, 2614 const struct skb_csum_offl_spec *spec, 2615 bool *csum_encapped, 2616 bool csum_help); 2617 2618 static inline bool skb_csum_offload_chk(struct sk_buff *skb, 2619 const struct skb_csum_offl_spec *spec, 2620 bool *csum_encapped, 2621 bool csum_help) 2622 { 2623 if (skb->ip_summed != CHECKSUM_PARTIAL) 2624 return false; 2625 2626 return __skb_csum_offload_chk(skb, spec, csum_encapped, csum_help); 2627 } 2628 2629 static inline bool skb_csum_offload_chk_help(struct sk_buff *skb, 2630 const struct skb_csum_offl_spec *spec) 2631 { 2632 bool csum_encapped; 2633 2634 return skb_csum_offload_chk(skb, spec, &csum_encapped, true); 2635 } 2636 2637 static inline bool skb_csum_off_chk_help_cmn(struct sk_buff *skb) 2638 { 2639 static const struct skb_csum_offl_spec csum_offl_spec = { 2640 .ipv4_okay = 1, 2641 .ip_options_okay = 1, 2642 .ipv6_okay = 1, 2643 .vlan_okay = 1, 2644 .tcp_okay = 1, 2645 .udp_okay = 1, 2646 }; 2647 2648 return skb_csum_offload_chk_help(skb, &csum_offl_spec); 2649 } 2650 2651 static inline bool skb_csum_off_chk_help_cmn_v4_only(struct sk_buff *skb) 2652 { 2653 static const struct skb_csum_offl_spec csum_offl_spec = { 2654 .ipv4_okay = 1, 2655 .ip_options_okay = 1, 2656 .tcp_okay = 1, 2657 .udp_okay = 1, 2658 .vlan_okay = 1, 2659 }; 2660 2661 return skb_csum_offload_chk_help(skb, &csum_offl_spec); 2662 } 2663 2664 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2665 unsigned short type, 2666 const void *daddr, const void *saddr, 2667 unsigned int len) 2668 { 2669 if (!dev->header_ops || !dev->header_ops->create) 2670 return 0; 2671 2672 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2673 } 2674 2675 static inline int dev_parse_header(const struct sk_buff *skb, 2676 unsigned char *haddr) 2677 { 2678 const struct net_device *dev = skb->dev; 2679 2680 if (!dev->header_ops || !dev->header_ops->parse) 2681 return 0; 2682 return dev->header_ops->parse(skb, haddr); 2683 } 2684 2685 /* ll_header must have at least hard_header_len allocated */ 2686 static inline bool dev_validate_header(const struct net_device *dev, 2687 char *ll_header, int len) 2688 { 2689 if (likely(len >= dev->hard_header_len)) 2690 return true; 2691 2692 if (capable(CAP_SYS_RAWIO)) { 2693 memset(ll_header + len, 0, dev->hard_header_len - len); 2694 return true; 2695 } 2696 2697 if (dev->header_ops && dev->header_ops->validate) 2698 return dev->header_ops->validate(ll_header, len); 2699 2700 return false; 2701 } 2702 2703 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 2704 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2705 static inline int unregister_gifconf(unsigned int family) 2706 { 2707 return register_gifconf(family, NULL); 2708 } 2709 2710 #ifdef CONFIG_NET_FLOW_LIMIT 2711 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2712 struct sd_flow_limit { 2713 u64 count; 2714 unsigned int num_buckets; 2715 unsigned int history_head; 2716 u16 history[FLOW_LIMIT_HISTORY]; 2717 u8 buckets[]; 2718 }; 2719 2720 extern int netdev_flow_limit_table_len; 2721 #endif /* CONFIG_NET_FLOW_LIMIT */ 2722 2723 /* 2724 * Incoming packets are placed on per-CPU queues 2725 */ 2726 struct softnet_data { 2727 struct list_head poll_list; 2728 struct sk_buff_head process_queue; 2729 2730 /* stats */ 2731 unsigned int processed; 2732 unsigned int time_squeeze; 2733 unsigned int received_rps; 2734 #ifdef CONFIG_RPS 2735 struct softnet_data *rps_ipi_list; 2736 #endif 2737 #ifdef CONFIG_NET_FLOW_LIMIT 2738 struct sd_flow_limit __rcu *flow_limit; 2739 #endif 2740 struct Qdisc *output_queue; 2741 struct Qdisc **output_queue_tailp; 2742 struct sk_buff *completion_queue; 2743 2744 #ifdef CONFIG_RPS 2745 /* input_queue_head should be written by cpu owning this struct, 2746 * and only read by other cpus. Worth using a cache line. 2747 */ 2748 unsigned int input_queue_head ____cacheline_aligned_in_smp; 2749 2750 /* Elements below can be accessed between CPUs for RPS/RFS */ 2751 struct call_single_data csd ____cacheline_aligned_in_smp; 2752 struct softnet_data *rps_ipi_next; 2753 unsigned int cpu; 2754 unsigned int input_queue_tail; 2755 #endif 2756 unsigned int dropped; 2757 struct sk_buff_head input_pkt_queue; 2758 struct napi_struct backlog; 2759 2760 }; 2761 2762 static inline void input_queue_head_incr(struct softnet_data *sd) 2763 { 2764 #ifdef CONFIG_RPS 2765 sd->input_queue_head++; 2766 #endif 2767 } 2768 2769 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 2770 unsigned int *qtail) 2771 { 2772 #ifdef CONFIG_RPS 2773 *qtail = ++sd->input_queue_tail; 2774 #endif 2775 } 2776 2777 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 2778 2779 void __netif_schedule(struct Qdisc *q); 2780 void netif_schedule_queue(struct netdev_queue *txq); 2781 2782 static inline void netif_tx_schedule_all(struct net_device *dev) 2783 { 2784 unsigned int i; 2785 2786 for (i = 0; i < dev->num_tx_queues; i++) 2787 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 2788 } 2789 2790 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 2791 { 2792 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2793 } 2794 2795 /** 2796 * netif_start_queue - allow transmit 2797 * @dev: network device 2798 * 2799 * Allow upper layers to call the device hard_start_xmit routine. 2800 */ 2801 static inline void netif_start_queue(struct net_device *dev) 2802 { 2803 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 2804 } 2805 2806 static inline void netif_tx_start_all_queues(struct net_device *dev) 2807 { 2808 unsigned int i; 2809 2810 for (i = 0; i < dev->num_tx_queues; i++) { 2811 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2812 netif_tx_start_queue(txq); 2813 } 2814 } 2815 2816 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 2817 2818 /** 2819 * netif_wake_queue - restart transmit 2820 * @dev: network device 2821 * 2822 * Allow upper layers to call the device hard_start_xmit routine. 2823 * Used for flow control when transmit resources are available. 2824 */ 2825 static inline void netif_wake_queue(struct net_device *dev) 2826 { 2827 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 2828 } 2829 2830 static inline void netif_tx_wake_all_queues(struct net_device *dev) 2831 { 2832 unsigned int i; 2833 2834 for (i = 0; i < dev->num_tx_queues; i++) { 2835 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2836 netif_tx_wake_queue(txq); 2837 } 2838 } 2839 2840 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 2841 { 2842 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2843 } 2844 2845 /** 2846 * netif_stop_queue - stop transmitted packets 2847 * @dev: network device 2848 * 2849 * Stop upper layers calling the device hard_start_xmit routine. 2850 * Used for flow control when transmit resources are unavailable. 2851 */ 2852 static inline void netif_stop_queue(struct net_device *dev) 2853 { 2854 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 2855 } 2856 2857 void netif_tx_stop_all_queues(struct net_device *dev); 2858 2859 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 2860 { 2861 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2862 } 2863 2864 /** 2865 * netif_queue_stopped - test if transmit queue is flowblocked 2866 * @dev: network device 2867 * 2868 * Test if transmit queue on device is currently unable to send. 2869 */ 2870 static inline bool netif_queue_stopped(const struct net_device *dev) 2871 { 2872 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 2873 } 2874 2875 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 2876 { 2877 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 2878 } 2879 2880 static inline bool 2881 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 2882 { 2883 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 2884 } 2885 2886 static inline bool 2887 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 2888 { 2889 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 2890 } 2891 2892 /** 2893 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 2894 * @dev_queue: pointer to transmit queue 2895 * 2896 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 2897 * to give appropriate hint to the CPU. 2898 */ 2899 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 2900 { 2901 #ifdef CONFIG_BQL 2902 prefetchw(&dev_queue->dql.num_queued); 2903 #endif 2904 } 2905 2906 /** 2907 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 2908 * @dev_queue: pointer to transmit queue 2909 * 2910 * BQL enabled drivers might use this helper in their TX completion path, 2911 * to give appropriate hint to the CPU. 2912 */ 2913 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 2914 { 2915 #ifdef CONFIG_BQL 2916 prefetchw(&dev_queue->dql.limit); 2917 #endif 2918 } 2919 2920 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 2921 unsigned int bytes) 2922 { 2923 #ifdef CONFIG_BQL 2924 dql_queued(&dev_queue->dql, bytes); 2925 2926 if (likely(dql_avail(&dev_queue->dql) >= 0)) 2927 return; 2928 2929 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2930 2931 /* 2932 * The XOFF flag must be set before checking the dql_avail below, 2933 * because in netdev_tx_completed_queue we update the dql_completed 2934 * before checking the XOFF flag. 2935 */ 2936 smp_mb(); 2937 2938 /* check again in case another CPU has just made room avail */ 2939 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 2940 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2941 #endif 2942 } 2943 2944 /** 2945 * netdev_sent_queue - report the number of bytes queued to hardware 2946 * @dev: network device 2947 * @bytes: number of bytes queued to the hardware device queue 2948 * 2949 * Report the number of bytes queued for sending/completion to the network 2950 * device hardware queue. @bytes should be a good approximation and should 2951 * exactly match netdev_completed_queue() @bytes 2952 */ 2953 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 2954 { 2955 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 2956 } 2957 2958 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 2959 unsigned int pkts, unsigned int bytes) 2960 { 2961 #ifdef CONFIG_BQL 2962 if (unlikely(!bytes)) 2963 return; 2964 2965 dql_completed(&dev_queue->dql, bytes); 2966 2967 /* 2968 * Without the memory barrier there is a small possiblity that 2969 * netdev_tx_sent_queue will miss the update and cause the queue to 2970 * be stopped forever 2971 */ 2972 smp_mb(); 2973 2974 if (dql_avail(&dev_queue->dql) < 0) 2975 return; 2976 2977 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 2978 netif_schedule_queue(dev_queue); 2979 #endif 2980 } 2981 2982 /** 2983 * netdev_completed_queue - report bytes and packets completed by device 2984 * @dev: network device 2985 * @pkts: actual number of packets sent over the medium 2986 * @bytes: actual number of bytes sent over the medium 2987 * 2988 * Report the number of bytes and packets transmitted by the network device 2989 * hardware queue over the physical medium, @bytes must exactly match the 2990 * @bytes amount passed to netdev_sent_queue() 2991 */ 2992 static inline void netdev_completed_queue(struct net_device *dev, 2993 unsigned int pkts, unsigned int bytes) 2994 { 2995 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 2996 } 2997 2998 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 2999 { 3000 #ifdef CONFIG_BQL 3001 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3002 dql_reset(&q->dql); 3003 #endif 3004 } 3005 3006 /** 3007 * netdev_reset_queue - reset the packets and bytes count of a network device 3008 * @dev_queue: network device 3009 * 3010 * Reset the bytes and packet count of a network device and clear the 3011 * software flow control OFF bit for this network device 3012 */ 3013 static inline void netdev_reset_queue(struct net_device *dev_queue) 3014 { 3015 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3016 } 3017 3018 /** 3019 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3020 * @dev: network device 3021 * @queue_index: given tx queue index 3022 * 3023 * Returns 0 if given tx queue index >= number of device tx queues, 3024 * otherwise returns the originally passed tx queue index. 3025 */ 3026 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3027 { 3028 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3029 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3030 dev->name, queue_index, 3031 dev->real_num_tx_queues); 3032 return 0; 3033 } 3034 3035 return queue_index; 3036 } 3037 3038 /** 3039 * netif_running - test if up 3040 * @dev: network device 3041 * 3042 * Test if the device has been brought up. 3043 */ 3044 static inline bool netif_running(const struct net_device *dev) 3045 { 3046 return test_bit(__LINK_STATE_START, &dev->state); 3047 } 3048 3049 /* 3050 * Routines to manage the subqueues on a device. We only need start, 3051 * stop, and a check if it's stopped. All other device management is 3052 * done at the overall netdevice level. 3053 * Also test the device if we're multiqueue. 3054 */ 3055 3056 /** 3057 * netif_start_subqueue - allow sending packets on subqueue 3058 * @dev: network device 3059 * @queue_index: sub queue index 3060 * 3061 * Start individual transmit queue of a device with multiple transmit queues. 3062 */ 3063 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3064 { 3065 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3066 3067 netif_tx_start_queue(txq); 3068 } 3069 3070 /** 3071 * netif_stop_subqueue - stop sending packets on subqueue 3072 * @dev: network device 3073 * @queue_index: sub queue index 3074 * 3075 * Stop individual transmit queue of a device with multiple transmit queues. 3076 */ 3077 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3078 { 3079 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3080 netif_tx_stop_queue(txq); 3081 } 3082 3083 /** 3084 * netif_subqueue_stopped - test status of subqueue 3085 * @dev: network device 3086 * @queue_index: sub queue index 3087 * 3088 * Check individual transmit queue of a device with multiple transmit queues. 3089 */ 3090 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3091 u16 queue_index) 3092 { 3093 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3094 3095 return netif_tx_queue_stopped(txq); 3096 } 3097 3098 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3099 struct sk_buff *skb) 3100 { 3101 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3102 } 3103 3104 void netif_wake_subqueue(struct net_device *dev, u16 queue_index); 3105 3106 #ifdef CONFIG_XPS 3107 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3108 u16 index); 3109 #else 3110 static inline int netif_set_xps_queue(struct net_device *dev, 3111 const struct cpumask *mask, 3112 u16 index) 3113 { 3114 return 0; 3115 } 3116 #endif 3117 3118 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 3119 unsigned int num_tx_queues); 3120 3121 /* 3122 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 3123 * as a distribution range limit for the returned value. 3124 */ 3125 static inline u16 skb_tx_hash(const struct net_device *dev, 3126 struct sk_buff *skb) 3127 { 3128 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 3129 } 3130 3131 /** 3132 * netif_is_multiqueue - test if device has multiple transmit queues 3133 * @dev: network device 3134 * 3135 * Check if device has multiple transmit queues 3136 */ 3137 static inline bool netif_is_multiqueue(const struct net_device *dev) 3138 { 3139 return dev->num_tx_queues > 1; 3140 } 3141 3142 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3143 3144 #ifdef CONFIG_SYSFS 3145 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3146 #else 3147 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3148 unsigned int rxq) 3149 { 3150 return 0; 3151 } 3152 #endif 3153 3154 #ifdef CONFIG_SYSFS 3155 static inline unsigned int get_netdev_rx_queue_index( 3156 struct netdev_rx_queue *queue) 3157 { 3158 struct net_device *dev = queue->dev; 3159 int index = queue - dev->_rx; 3160 3161 BUG_ON(index >= dev->num_rx_queues); 3162 return index; 3163 } 3164 #endif 3165 3166 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3167 int netif_get_num_default_rss_queues(void); 3168 3169 enum skb_free_reason { 3170 SKB_REASON_CONSUMED, 3171 SKB_REASON_DROPPED, 3172 }; 3173 3174 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3175 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3176 3177 /* 3178 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3179 * interrupt context or with hardware interrupts being disabled. 3180 * (in_irq() || irqs_disabled()) 3181 * 3182 * We provide four helpers that can be used in following contexts : 3183 * 3184 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3185 * replacing kfree_skb(skb) 3186 * 3187 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3188 * Typically used in place of consume_skb(skb) in TX completion path 3189 * 3190 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3191 * replacing kfree_skb(skb) 3192 * 3193 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3194 * and consumed a packet. Used in place of consume_skb(skb) 3195 */ 3196 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3197 { 3198 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3199 } 3200 3201 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3202 { 3203 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3204 } 3205 3206 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3207 { 3208 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3209 } 3210 3211 static inline void dev_consume_skb_any(struct sk_buff *skb) 3212 { 3213 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3214 } 3215 3216 int netif_rx(struct sk_buff *skb); 3217 int netif_rx_ni(struct sk_buff *skb); 3218 int netif_receive_skb(struct sk_buff *skb); 3219 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3220 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3221 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3222 gro_result_t napi_gro_frags(struct napi_struct *napi); 3223 struct packet_offload *gro_find_receive_by_type(__be16 type); 3224 struct packet_offload *gro_find_complete_by_type(__be16 type); 3225 3226 static inline void napi_free_frags(struct napi_struct *napi) 3227 { 3228 kfree_skb(napi->skb); 3229 napi->skb = NULL; 3230 } 3231 3232 int netdev_rx_handler_register(struct net_device *dev, 3233 rx_handler_func_t *rx_handler, 3234 void *rx_handler_data); 3235 void netdev_rx_handler_unregister(struct net_device *dev); 3236 3237 bool dev_valid_name(const char *name); 3238 int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 3239 int dev_ethtool(struct net *net, struct ifreq *); 3240 unsigned int dev_get_flags(const struct net_device *); 3241 int __dev_change_flags(struct net_device *, unsigned int flags); 3242 int dev_change_flags(struct net_device *, unsigned int); 3243 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3244 unsigned int gchanges); 3245 int dev_change_name(struct net_device *, const char *); 3246 int dev_set_alias(struct net_device *, const char *, size_t); 3247 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3248 int dev_set_mtu(struct net_device *, int); 3249 void dev_set_group(struct net_device *, int); 3250 int dev_set_mac_address(struct net_device *, struct sockaddr *); 3251 int dev_change_carrier(struct net_device *, bool new_carrier); 3252 int dev_get_phys_port_id(struct net_device *dev, 3253 struct netdev_phys_item_id *ppid); 3254 int dev_get_phys_port_name(struct net_device *dev, 3255 char *name, size_t len); 3256 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3257 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev); 3258 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3259 struct netdev_queue *txq, int *ret); 3260 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3261 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3262 bool is_skb_forwardable(const struct net_device *dev, 3263 const struct sk_buff *skb); 3264 3265 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3266 3267 extern int netdev_budget; 3268 3269 /* Called by rtnetlink.c:rtnl_unlock() */ 3270 void netdev_run_todo(void); 3271 3272 /** 3273 * dev_put - release reference to device 3274 * @dev: network device 3275 * 3276 * Release reference to device to allow it to be freed. 3277 */ 3278 static inline void dev_put(struct net_device *dev) 3279 { 3280 this_cpu_dec(*dev->pcpu_refcnt); 3281 } 3282 3283 /** 3284 * dev_hold - get reference to device 3285 * @dev: network device 3286 * 3287 * Hold reference to device to keep it from being freed. 3288 */ 3289 static inline void dev_hold(struct net_device *dev) 3290 { 3291 this_cpu_inc(*dev->pcpu_refcnt); 3292 } 3293 3294 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3295 * and _off may be called from IRQ context, but it is caller 3296 * who is responsible for serialization of these calls. 3297 * 3298 * The name carrier is inappropriate, these functions should really be 3299 * called netif_lowerlayer_*() because they represent the state of any 3300 * kind of lower layer not just hardware media. 3301 */ 3302 3303 void linkwatch_init_dev(struct net_device *dev); 3304 void linkwatch_fire_event(struct net_device *dev); 3305 void linkwatch_forget_dev(struct net_device *dev); 3306 3307 /** 3308 * netif_carrier_ok - test if carrier present 3309 * @dev: network device 3310 * 3311 * Check if carrier is present on device 3312 */ 3313 static inline bool netif_carrier_ok(const struct net_device *dev) 3314 { 3315 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3316 } 3317 3318 unsigned long dev_trans_start(struct net_device *dev); 3319 3320 void __netdev_watchdog_up(struct net_device *dev); 3321 3322 void netif_carrier_on(struct net_device *dev); 3323 3324 void netif_carrier_off(struct net_device *dev); 3325 3326 /** 3327 * netif_dormant_on - mark device as dormant. 3328 * @dev: network device 3329 * 3330 * Mark device as dormant (as per RFC2863). 3331 * 3332 * The dormant state indicates that the relevant interface is not 3333 * actually in a condition to pass packets (i.e., it is not 'up') but is 3334 * in a "pending" state, waiting for some external event. For "on- 3335 * demand" interfaces, this new state identifies the situation where the 3336 * interface is waiting for events to place it in the up state. 3337 */ 3338 static inline void netif_dormant_on(struct net_device *dev) 3339 { 3340 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3341 linkwatch_fire_event(dev); 3342 } 3343 3344 /** 3345 * netif_dormant_off - set device as not dormant. 3346 * @dev: network device 3347 * 3348 * Device is not in dormant state. 3349 */ 3350 static inline void netif_dormant_off(struct net_device *dev) 3351 { 3352 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3353 linkwatch_fire_event(dev); 3354 } 3355 3356 /** 3357 * netif_dormant - test if carrier present 3358 * @dev: network device 3359 * 3360 * Check if carrier is present on device 3361 */ 3362 static inline bool netif_dormant(const struct net_device *dev) 3363 { 3364 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3365 } 3366 3367 3368 /** 3369 * netif_oper_up - test if device is operational 3370 * @dev: network device 3371 * 3372 * Check if carrier is operational 3373 */ 3374 static inline bool netif_oper_up(const struct net_device *dev) 3375 { 3376 return (dev->operstate == IF_OPER_UP || 3377 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3378 } 3379 3380 /** 3381 * netif_device_present - is device available or removed 3382 * @dev: network device 3383 * 3384 * Check if device has not been removed from system. 3385 */ 3386 static inline bool netif_device_present(struct net_device *dev) 3387 { 3388 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3389 } 3390 3391 void netif_device_detach(struct net_device *dev); 3392 3393 void netif_device_attach(struct net_device *dev); 3394 3395 /* 3396 * Network interface message level settings 3397 */ 3398 3399 enum { 3400 NETIF_MSG_DRV = 0x0001, 3401 NETIF_MSG_PROBE = 0x0002, 3402 NETIF_MSG_LINK = 0x0004, 3403 NETIF_MSG_TIMER = 0x0008, 3404 NETIF_MSG_IFDOWN = 0x0010, 3405 NETIF_MSG_IFUP = 0x0020, 3406 NETIF_MSG_RX_ERR = 0x0040, 3407 NETIF_MSG_TX_ERR = 0x0080, 3408 NETIF_MSG_TX_QUEUED = 0x0100, 3409 NETIF_MSG_INTR = 0x0200, 3410 NETIF_MSG_TX_DONE = 0x0400, 3411 NETIF_MSG_RX_STATUS = 0x0800, 3412 NETIF_MSG_PKTDATA = 0x1000, 3413 NETIF_MSG_HW = 0x2000, 3414 NETIF_MSG_WOL = 0x4000, 3415 }; 3416 3417 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3418 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3419 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3420 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3421 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3422 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3423 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3424 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3425 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3426 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3427 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3428 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3429 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3430 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3431 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3432 3433 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3434 { 3435 /* use default */ 3436 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3437 return default_msg_enable_bits; 3438 if (debug_value == 0) /* no output */ 3439 return 0; 3440 /* set low N bits */ 3441 return (1 << debug_value) - 1; 3442 } 3443 3444 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3445 { 3446 spin_lock(&txq->_xmit_lock); 3447 txq->xmit_lock_owner = cpu; 3448 } 3449 3450 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3451 { 3452 spin_lock_bh(&txq->_xmit_lock); 3453 txq->xmit_lock_owner = smp_processor_id(); 3454 } 3455 3456 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3457 { 3458 bool ok = spin_trylock(&txq->_xmit_lock); 3459 if (likely(ok)) 3460 txq->xmit_lock_owner = smp_processor_id(); 3461 return ok; 3462 } 3463 3464 static inline void __netif_tx_unlock(struct netdev_queue *txq) 3465 { 3466 txq->xmit_lock_owner = -1; 3467 spin_unlock(&txq->_xmit_lock); 3468 } 3469 3470 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3471 { 3472 txq->xmit_lock_owner = -1; 3473 spin_unlock_bh(&txq->_xmit_lock); 3474 } 3475 3476 static inline void txq_trans_update(struct netdev_queue *txq) 3477 { 3478 if (txq->xmit_lock_owner != -1) 3479 txq->trans_start = jiffies; 3480 } 3481 3482 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3483 static inline void netif_trans_update(struct net_device *dev) 3484 { 3485 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3486 3487 if (txq->trans_start != jiffies) 3488 txq->trans_start = jiffies; 3489 } 3490 3491 /** 3492 * netif_tx_lock - grab network device transmit lock 3493 * @dev: network device 3494 * 3495 * Get network device transmit lock 3496 */ 3497 static inline void netif_tx_lock(struct net_device *dev) 3498 { 3499 unsigned int i; 3500 int cpu; 3501 3502 spin_lock(&dev->tx_global_lock); 3503 cpu = smp_processor_id(); 3504 for (i = 0; i < dev->num_tx_queues; i++) { 3505 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3506 3507 /* We are the only thread of execution doing a 3508 * freeze, but we have to grab the _xmit_lock in 3509 * order to synchronize with threads which are in 3510 * the ->hard_start_xmit() handler and already 3511 * checked the frozen bit. 3512 */ 3513 __netif_tx_lock(txq, cpu); 3514 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3515 __netif_tx_unlock(txq); 3516 } 3517 } 3518 3519 static inline void netif_tx_lock_bh(struct net_device *dev) 3520 { 3521 local_bh_disable(); 3522 netif_tx_lock(dev); 3523 } 3524 3525 static inline void netif_tx_unlock(struct net_device *dev) 3526 { 3527 unsigned int i; 3528 3529 for (i = 0; i < dev->num_tx_queues; i++) { 3530 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3531 3532 /* No need to grab the _xmit_lock here. If the 3533 * queue is not stopped for another reason, we 3534 * force a schedule. 3535 */ 3536 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3537 netif_schedule_queue(txq); 3538 } 3539 spin_unlock(&dev->tx_global_lock); 3540 } 3541 3542 static inline void netif_tx_unlock_bh(struct net_device *dev) 3543 { 3544 netif_tx_unlock(dev); 3545 local_bh_enable(); 3546 } 3547 3548 #define HARD_TX_LOCK(dev, txq, cpu) { \ 3549 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3550 __netif_tx_lock(txq, cpu); \ 3551 } \ 3552 } 3553 3554 #define HARD_TX_TRYLOCK(dev, txq) \ 3555 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3556 __netif_tx_trylock(txq) : \ 3557 true ) 3558 3559 #define HARD_TX_UNLOCK(dev, txq) { \ 3560 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3561 __netif_tx_unlock(txq); \ 3562 } \ 3563 } 3564 3565 static inline void netif_tx_disable(struct net_device *dev) 3566 { 3567 unsigned int i; 3568 int cpu; 3569 3570 local_bh_disable(); 3571 cpu = smp_processor_id(); 3572 for (i = 0; i < dev->num_tx_queues; i++) { 3573 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3574 3575 __netif_tx_lock(txq, cpu); 3576 netif_tx_stop_queue(txq); 3577 __netif_tx_unlock(txq); 3578 } 3579 local_bh_enable(); 3580 } 3581 3582 static inline void netif_addr_lock(struct net_device *dev) 3583 { 3584 spin_lock(&dev->addr_list_lock); 3585 } 3586 3587 static inline void netif_addr_lock_nested(struct net_device *dev) 3588 { 3589 int subclass = SINGLE_DEPTH_NESTING; 3590 3591 if (dev->netdev_ops->ndo_get_lock_subclass) 3592 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 3593 3594 spin_lock_nested(&dev->addr_list_lock, subclass); 3595 } 3596 3597 static inline void netif_addr_lock_bh(struct net_device *dev) 3598 { 3599 spin_lock_bh(&dev->addr_list_lock); 3600 } 3601 3602 static inline void netif_addr_unlock(struct net_device *dev) 3603 { 3604 spin_unlock(&dev->addr_list_lock); 3605 } 3606 3607 static inline void netif_addr_unlock_bh(struct net_device *dev) 3608 { 3609 spin_unlock_bh(&dev->addr_list_lock); 3610 } 3611 3612 /* 3613 * dev_addrs walker. Should be used only for read access. Call with 3614 * rcu_read_lock held. 3615 */ 3616 #define for_each_dev_addr(dev, ha) \ 3617 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 3618 3619 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 3620 3621 void ether_setup(struct net_device *dev); 3622 3623 /* Support for loadable net-drivers */ 3624 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 3625 unsigned char name_assign_type, 3626 void (*setup)(struct net_device *), 3627 unsigned int txqs, unsigned int rxqs); 3628 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 3629 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 3630 3631 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 3632 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 3633 count) 3634 3635 int register_netdev(struct net_device *dev); 3636 void unregister_netdev(struct net_device *dev); 3637 3638 /* General hardware address lists handling functions */ 3639 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3640 struct netdev_hw_addr_list *from_list, int addr_len); 3641 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3642 struct netdev_hw_addr_list *from_list, int addr_len); 3643 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 3644 struct net_device *dev, 3645 int (*sync)(struct net_device *, const unsigned char *), 3646 int (*unsync)(struct net_device *, 3647 const unsigned char *)); 3648 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 3649 struct net_device *dev, 3650 int (*unsync)(struct net_device *, 3651 const unsigned char *)); 3652 void __hw_addr_init(struct netdev_hw_addr_list *list); 3653 3654 /* Functions used for device addresses handling */ 3655 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 3656 unsigned char addr_type); 3657 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 3658 unsigned char addr_type); 3659 void dev_addr_flush(struct net_device *dev); 3660 int dev_addr_init(struct net_device *dev); 3661 3662 /* Functions used for unicast addresses handling */ 3663 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 3664 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 3665 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 3666 int dev_uc_sync(struct net_device *to, struct net_device *from); 3667 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 3668 void dev_uc_unsync(struct net_device *to, struct net_device *from); 3669 void dev_uc_flush(struct net_device *dev); 3670 void dev_uc_init(struct net_device *dev); 3671 3672 /** 3673 * __dev_uc_sync - Synchonize device's unicast list 3674 * @dev: device to sync 3675 * @sync: function to call if address should be added 3676 * @unsync: function to call if address should be removed 3677 * 3678 * Add newly added addresses to the interface, and release 3679 * addresses that have been deleted. 3680 */ 3681 static inline int __dev_uc_sync(struct net_device *dev, 3682 int (*sync)(struct net_device *, 3683 const unsigned char *), 3684 int (*unsync)(struct net_device *, 3685 const unsigned char *)) 3686 { 3687 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 3688 } 3689 3690 /** 3691 * __dev_uc_unsync - Remove synchronized addresses from device 3692 * @dev: device to sync 3693 * @unsync: function to call if address should be removed 3694 * 3695 * Remove all addresses that were added to the device by dev_uc_sync(). 3696 */ 3697 static inline void __dev_uc_unsync(struct net_device *dev, 3698 int (*unsync)(struct net_device *, 3699 const unsigned char *)) 3700 { 3701 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 3702 } 3703 3704 /* Functions used for multicast addresses handling */ 3705 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 3706 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 3707 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 3708 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 3709 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 3710 int dev_mc_sync(struct net_device *to, struct net_device *from); 3711 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 3712 void dev_mc_unsync(struct net_device *to, struct net_device *from); 3713 void dev_mc_flush(struct net_device *dev); 3714 void dev_mc_init(struct net_device *dev); 3715 3716 /** 3717 * __dev_mc_sync - Synchonize device's multicast list 3718 * @dev: device to sync 3719 * @sync: function to call if address should be added 3720 * @unsync: function to call if address should be removed 3721 * 3722 * Add newly added addresses to the interface, and release 3723 * addresses that have been deleted. 3724 */ 3725 static inline int __dev_mc_sync(struct net_device *dev, 3726 int (*sync)(struct net_device *, 3727 const unsigned char *), 3728 int (*unsync)(struct net_device *, 3729 const unsigned char *)) 3730 { 3731 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 3732 } 3733 3734 /** 3735 * __dev_mc_unsync - Remove synchronized addresses from device 3736 * @dev: device to sync 3737 * @unsync: function to call if address should be removed 3738 * 3739 * Remove all addresses that were added to the device by dev_mc_sync(). 3740 */ 3741 static inline void __dev_mc_unsync(struct net_device *dev, 3742 int (*unsync)(struct net_device *, 3743 const unsigned char *)) 3744 { 3745 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 3746 } 3747 3748 /* Functions used for secondary unicast and multicast support */ 3749 void dev_set_rx_mode(struct net_device *dev); 3750 void __dev_set_rx_mode(struct net_device *dev); 3751 int dev_set_promiscuity(struct net_device *dev, int inc); 3752 int dev_set_allmulti(struct net_device *dev, int inc); 3753 void netdev_state_change(struct net_device *dev); 3754 void netdev_notify_peers(struct net_device *dev); 3755 void netdev_features_change(struct net_device *dev); 3756 /* Load a device via the kmod */ 3757 void dev_load(struct net *net, const char *name); 3758 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 3759 struct rtnl_link_stats64 *storage); 3760 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 3761 const struct net_device_stats *netdev_stats); 3762 3763 extern int netdev_max_backlog; 3764 extern int netdev_tstamp_prequeue; 3765 extern int weight_p; 3766 3767 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 3768 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 3769 struct list_head **iter); 3770 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 3771 struct list_head **iter); 3772 3773 /* iterate through upper list, must be called under RCU read lock */ 3774 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 3775 for (iter = &(dev)->adj_list.upper, \ 3776 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 3777 updev; \ 3778 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 3779 3780 /* iterate through upper list, must be called under RCU read lock */ 3781 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \ 3782 for (iter = &(dev)->all_adj_list.upper, \ 3783 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \ 3784 updev; \ 3785 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter))) 3786 3787 void *netdev_lower_get_next_private(struct net_device *dev, 3788 struct list_head **iter); 3789 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 3790 struct list_head **iter); 3791 3792 #define netdev_for_each_lower_private(dev, priv, iter) \ 3793 for (iter = (dev)->adj_list.lower.next, \ 3794 priv = netdev_lower_get_next_private(dev, &(iter)); \ 3795 priv; \ 3796 priv = netdev_lower_get_next_private(dev, &(iter))) 3797 3798 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 3799 for (iter = &(dev)->adj_list.lower, \ 3800 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 3801 priv; \ 3802 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 3803 3804 void *netdev_lower_get_next(struct net_device *dev, 3805 struct list_head **iter); 3806 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 3807 for (iter = (dev)->adj_list.lower.next, \ 3808 ldev = netdev_lower_get_next(dev, &(iter)); \ 3809 ldev; \ 3810 ldev = netdev_lower_get_next(dev, &(iter))) 3811 3812 void *netdev_adjacent_get_private(struct list_head *adj_list); 3813 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 3814 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 3815 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 3816 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev); 3817 int netdev_master_upper_dev_link(struct net_device *dev, 3818 struct net_device *upper_dev, 3819 void *upper_priv, void *upper_info); 3820 void netdev_upper_dev_unlink(struct net_device *dev, 3821 struct net_device *upper_dev); 3822 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 3823 void *netdev_lower_dev_get_private(struct net_device *dev, 3824 struct net_device *lower_dev); 3825 void netdev_lower_state_changed(struct net_device *lower_dev, 3826 void *lower_state_info); 3827 3828 /* RSS keys are 40 or 52 bytes long */ 3829 #define NETDEV_RSS_KEY_LEN 52 3830 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 3831 void netdev_rss_key_fill(void *buffer, size_t len); 3832 3833 int dev_get_nest_level(struct net_device *dev, 3834 bool (*type_check)(const struct net_device *dev)); 3835 int skb_checksum_help(struct sk_buff *skb); 3836 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3837 netdev_features_t features, bool tx_path); 3838 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3839 netdev_features_t features); 3840 3841 struct netdev_bonding_info { 3842 ifslave slave; 3843 ifbond master; 3844 }; 3845 3846 struct netdev_notifier_bonding_info { 3847 struct netdev_notifier_info info; /* must be first */ 3848 struct netdev_bonding_info bonding_info; 3849 }; 3850 3851 void netdev_bonding_info_change(struct net_device *dev, 3852 struct netdev_bonding_info *bonding_info); 3853 3854 static inline 3855 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 3856 { 3857 return __skb_gso_segment(skb, features, true); 3858 } 3859 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 3860 3861 static inline bool can_checksum_protocol(netdev_features_t features, 3862 __be16 protocol) 3863 { 3864 if (protocol == htons(ETH_P_FCOE)) 3865 return !!(features & NETIF_F_FCOE_CRC); 3866 3867 /* Assume this is an IP checksum (not SCTP CRC) */ 3868 3869 if (features & NETIF_F_HW_CSUM) { 3870 /* Can checksum everything */ 3871 return true; 3872 } 3873 3874 switch (protocol) { 3875 case htons(ETH_P_IP): 3876 return !!(features & NETIF_F_IP_CSUM); 3877 case htons(ETH_P_IPV6): 3878 return !!(features & NETIF_F_IPV6_CSUM); 3879 default: 3880 return false; 3881 } 3882 } 3883 3884 /* Map an ethertype into IP protocol if possible */ 3885 static inline int eproto_to_ipproto(int eproto) 3886 { 3887 switch (eproto) { 3888 case htons(ETH_P_IP): 3889 return IPPROTO_IP; 3890 case htons(ETH_P_IPV6): 3891 return IPPROTO_IPV6; 3892 default: 3893 return -1; 3894 } 3895 } 3896 3897 #ifdef CONFIG_BUG 3898 void netdev_rx_csum_fault(struct net_device *dev); 3899 #else 3900 static inline void netdev_rx_csum_fault(struct net_device *dev) 3901 { 3902 } 3903 #endif 3904 /* rx skb timestamps */ 3905 void net_enable_timestamp(void); 3906 void net_disable_timestamp(void); 3907 3908 #ifdef CONFIG_PROC_FS 3909 int __init dev_proc_init(void); 3910 #else 3911 #define dev_proc_init() 0 3912 #endif 3913 3914 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 3915 struct sk_buff *skb, struct net_device *dev, 3916 bool more) 3917 { 3918 skb->xmit_more = more ? 1 : 0; 3919 return ops->ndo_start_xmit(skb, dev); 3920 } 3921 3922 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 3923 struct netdev_queue *txq, bool more) 3924 { 3925 const struct net_device_ops *ops = dev->netdev_ops; 3926 int rc; 3927 3928 rc = __netdev_start_xmit(ops, skb, dev, more); 3929 if (rc == NETDEV_TX_OK) 3930 txq_trans_update(txq); 3931 3932 return rc; 3933 } 3934 3935 int netdev_class_create_file_ns(struct class_attribute *class_attr, 3936 const void *ns); 3937 void netdev_class_remove_file_ns(struct class_attribute *class_attr, 3938 const void *ns); 3939 3940 static inline int netdev_class_create_file(struct class_attribute *class_attr) 3941 { 3942 return netdev_class_create_file_ns(class_attr, NULL); 3943 } 3944 3945 static inline void netdev_class_remove_file(struct class_attribute *class_attr) 3946 { 3947 netdev_class_remove_file_ns(class_attr, NULL); 3948 } 3949 3950 extern struct kobj_ns_type_operations net_ns_type_operations; 3951 3952 const char *netdev_drivername(const struct net_device *dev); 3953 3954 void linkwatch_run_queue(void); 3955 3956 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 3957 netdev_features_t f2) 3958 { 3959 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 3960 if (f1 & NETIF_F_HW_CSUM) 3961 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 3962 else 3963 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 3964 } 3965 3966 return f1 & f2; 3967 } 3968 3969 static inline netdev_features_t netdev_get_wanted_features( 3970 struct net_device *dev) 3971 { 3972 return (dev->features & ~dev->hw_features) | dev->wanted_features; 3973 } 3974 netdev_features_t netdev_increment_features(netdev_features_t all, 3975 netdev_features_t one, netdev_features_t mask); 3976 3977 /* Allow TSO being used on stacked device : 3978 * Performing the GSO segmentation before last device 3979 * is a performance improvement. 3980 */ 3981 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 3982 netdev_features_t mask) 3983 { 3984 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 3985 } 3986 3987 int __netdev_update_features(struct net_device *dev); 3988 void netdev_update_features(struct net_device *dev); 3989 void netdev_change_features(struct net_device *dev); 3990 3991 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 3992 struct net_device *dev); 3993 3994 netdev_features_t passthru_features_check(struct sk_buff *skb, 3995 struct net_device *dev, 3996 netdev_features_t features); 3997 netdev_features_t netif_skb_features(struct sk_buff *skb); 3998 3999 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4000 { 4001 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4002 4003 /* check flags correspondence */ 4004 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4005 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 4006 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4007 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4008 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4009 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4010 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4011 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4012 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4013 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4014 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4015 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4016 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4017 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4018 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4019 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4020 4021 return (features & feature) == feature; 4022 } 4023 4024 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4025 { 4026 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4027 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4028 } 4029 4030 static inline bool netif_needs_gso(struct sk_buff *skb, 4031 netdev_features_t features) 4032 { 4033 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4034 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4035 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4036 } 4037 4038 static inline void netif_set_gso_max_size(struct net_device *dev, 4039 unsigned int size) 4040 { 4041 dev->gso_max_size = size; 4042 } 4043 4044 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4045 int pulled_hlen, u16 mac_offset, 4046 int mac_len) 4047 { 4048 skb->protocol = protocol; 4049 skb->encapsulation = 1; 4050 skb_push(skb, pulled_hlen); 4051 skb_reset_transport_header(skb); 4052 skb->mac_header = mac_offset; 4053 skb->network_header = skb->mac_header + mac_len; 4054 skb->mac_len = mac_len; 4055 } 4056 4057 static inline bool netif_is_macsec(const struct net_device *dev) 4058 { 4059 return dev->priv_flags & IFF_MACSEC; 4060 } 4061 4062 static inline bool netif_is_macvlan(const struct net_device *dev) 4063 { 4064 return dev->priv_flags & IFF_MACVLAN; 4065 } 4066 4067 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4068 { 4069 return dev->priv_flags & IFF_MACVLAN_PORT; 4070 } 4071 4072 static inline bool netif_is_ipvlan(const struct net_device *dev) 4073 { 4074 return dev->priv_flags & IFF_IPVLAN_SLAVE; 4075 } 4076 4077 static inline bool netif_is_ipvlan_port(const struct net_device *dev) 4078 { 4079 return dev->priv_flags & IFF_IPVLAN_MASTER; 4080 } 4081 4082 static inline bool netif_is_bond_master(const struct net_device *dev) 4083 { 4084 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4085 } 4086 4087 static inline bool netif_is_bond_slave(const struct net_device *dev) 4088 { 4089 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4090 } 4091 4092 static inline bool netif_supports_nofcs(struct net_device *dev) 4093 { 4094 return dev->priv_flags & IFF_SUPP_NOFCS; 4095 } 4096 4097 static inline bool netif_is_l3_master(const struct net_device *dev) 4098 { 4099 return dev->priv_flags & IFF_L3MDEV_MASTER; 4100 } 4101 4102 static inline bool netif_is_l3_slave(const struct net_device *dev) 4103 { 4104 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4105 } 4106 4107 static inline bool netif_is_bridge_master(const struct net_device *dev) 4108 { 4109 return dev->priv_flags & IFF_EBRIDGE; 4110 } 4111 4112 static inline bool netif_is_bridge_port(const struct net_device *dev) 4113 { 4114 return dev->priv_flags & IFF_BRIDGE_PORT; 4115 } 4116 4117 static inline bool netif_is_ovs_master(const struct net_device *dev) 4118 { 4119 return dev->priv_flags & IFF_OPENVSWITCH; 4120 } 4121 4122 static inline bool netif_is_team_master(const struct net_device *dev) 4123 { 4124 return dev->priv_flags & IFF_TEAM; 4125 } 4126 4127 static inline bool netif_is_team_port(const struct net_device *dev) 4128 { 4129 return dev->priv_flags & IFF_TEAM_PORT; 4130 } 4131 4132 static inline bool netif_is_lag_master(const struct net_device *dev) 4133 { 4134 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4135 } 4136 4137 static inline bool netif_is_lag_port(const struct net_device *dev) 4138 { 4139 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4140 } 4141 4142 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4143 { 4144 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4145 } 4146 4147 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4148 static inline void netif_keep_dst(struct net_device *dev) 4149 { 4150 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4151 } 4152 4153 extern struct pernet_operations __net_initdata loopback_net_ops; 4154 4155 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 4156 4157 /* netdev_printk helpers, similar to dev_printk */ 4158 4159 static inline const char *netdev_name(const struct net_device *dev) 4160 { 4161 if (!dev->name[0] || strchr(dev->name, '%')) 4162 return "(unnamed net_device)"; 4163 return dev->name; 4164 } 4165 4166 static inline const char *netdev_reg_state(const struct net_device *dev) 4167 { 4168 switch (dev->reg_state) { 4169 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4170 case NETREG_REGISTERED: return ""; 4171 case NETREG_UNREGISTERING: return " (unregistering)"; 4172 case NETREG_UNREGISTERED: return " (unregistered)"; 4173 case NETREG_RELEASED: return " (released)"; 4174 case NETREG_DUMMY: return " (dummy)"; 4175 } 4176 4177 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4178 return " (unknown)"; 4179 } 4180 4181 __printf(3, 4) 4182 void netdev_printk(const char *level, const struct net_device *dev, 4183 const char *format, ...); 4184 __printf(2, 3) 4185 void netdev_emerg(const struct net_device *dev, const char *format, ...); 4186 __printf(2, 3) 4187 void netdev_alert(const struct net_device *dev, const char *format, ...); 4188 __printf(2, 3) 4189 void netdev_crit(const struct net_device *dev, const char *format, ...); 4190 __printf(2, 3) 4191 void netdev_err(const struct net_device *dev, const char *format, ...); 4192 __printf(2, 3) 4193 void netdev_warn(const struct net_device *dev, const char *format, ...); 4194 __printf(2, 3) 4195 void netdev_notice(const struct net_device *dev, const char *format, ...); 4196 __printf(2, 3) 4197 void netdev_info(const struct net_device *dev, const char *format, ...); 4198 4199 #define MODULE_ALIAS_NETDEV(device) \ 4200 MODULE_ALIAS("netdev-" device) 4201 4202 #if defined(CONFIG_DYNAMIC_DEBUG) 4203 #define netdev_dbg(__dev, format, args...) \ 4204 do { \ 4205 dynamic_netdev_dbg(__dev, format, ##args); \ 4206 } while (0) 4207 #elif defined(DEBUG) 4208 #define netdev_dbg(__dev, format, args...) \ 4209 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4210 #else 4211 #define netdev_dbg(__dev, format, args...) \ 4212 ({ \ 4213 if (0) \ 4214 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4215 }) 4216 #endif 4217 4218 #if defined(VERBOSE_DEBUG) 4219 #define netdev_vdbg netdev_dbg 4220 #else 4221 4222 #define netdev_vdbg(dev, format, args...) \ 4223 ({ \ 4224 if (0) \ 4225 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4226 0; \ 4227 }) 4228 #endif 4229 4230 /* 4231 * netdev_WARN() acts like dev_printk(), but with the key difference 4232 * of using a WARN/WARN_ON to get the message out, including the 4233 * file/line information and a backtrace. 4234 */ 4235 #define netdev_WARN(dev, format, args...) \ 4236 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \ 4237 netdev_reg_state(dev), ##args) 4238 4239 /* netif printk helpers, similar to netdev_printk */ 4240 4241 #define netif_printk(priv, type, level, dev, fmt, args...) \ 4242 do { \ 4243 if (netif_msg_##type(priv)) \ 4244 netdev_printk(level, (dev), fmt, ##args); \ 4245 } while (0) 4246 4247 #define netif_level(level, priv, type, dev, fmt, args...) \ 4248 do { \ 4249 if (netif_msg_##type(priv)) \ 4250 netdev_##level(dev, fmt, ##args); \ 4251 } while (0) 4252 4253 #define netif_emerg(priv, type, dev, fmt, args...) \ 4254 netif_level(emerg, priv, type, dev, fmt, ##args) 4255 #define netif_alert(priv, type, dev, fmt, args...) \ 4256 netif_level(alert, priv, type, dev, fmt, ##args) 4257 #define netif_crit(priv, type, dev, fmt, args...) \ 4258 netif_level(crit, priv, type, dev, fmt, ##args) 4259 #define netif_err(priv, type, dev, fmt, args...) \ 4260 netif_level(err, priv, type, dev, fmt, ##args) 4261 #define netif_warn(priv, type, dev, fmt, args...) \ 4262 netif_level(warn, priv, type, dev, fmt, ##args) 4263 #define netif_notice(priv, type, dev, fmt, args...) \ 4264 netif_level(notice, priv, type, dev, fmt, ##args) 4265 #define netif_info(priv, type, dev, fmt, args...) \ 4266 netif_level(info, priv, type, dev, fmt, ##args) 4267 4268 #if defined(CONFIG_DYNAMIC_DEBUG) 4269 #define netif_dbg(priv, type, netdev, format, args...) \ 4270 do { \ 4271 if (netif_msg_##type(priv)) \ 4272 dynamic_netdev_dbg(netdev, format, ##args); \ 4273 } while (0) 4274 #elif defined(DEBUG) 4275 #define netif_dbg(priv, type, dev, format, args...) \ 4276 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4277 #else 4278 #define netif_dbg(priv, type, dev, format, args...) \ 4279 ({ \ 4280 if (0) \ 4281 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4282 0; \ 4283 }) 4284 #endif 4285 4286 #if defined(VERBOSE_DEBUG) 4287 #define netif_vdbg netif_dbg 4288 #else 4289 #define netif_vdbg(priv, type, dev, format, args...) \ 4290 ({ \ 4291 if (0) \ 4292 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4293 0; \ 4294 }) 4295 #endif 4296 4297 /* 4298 * The list of packet types we will receive (as opposed to discard) 4299 * and the routines to invoke. 4300 * 4301 * Why 16. Because with 16 the only overlap we get on a hash of the 4302 * low nibble of the protocol value is RARP/SNAP/X.25. 4303 * 4304 * NOTE: That is no longer true with the addition of VLAN tags. Not 4305 * sure which should go first, but I bet it won't make much 4306 * difference if we are running VLANs. The good news is that 4307 * this protocol won't be in the list unless compiled in, so 4308 * the average user (w/out VLANs) will not be adversely affected. 4309 * --BLG 4310 * 4311 * 0800 IP 4312 * 8100 802.1Q VLAN 4313 * 0001 802.3 4314 * 0002 AX.25 4315 * 0004 802.2 4316 * 8035 RARP 4317 * 0005 SNAP 4318 * 0805 X.25 4319 * 0806 ARP 4320 * 8137 IPX 4321 * 0009 Localtalk 4322 * 86DD IPv6 4323 */ 4324 #define PTYPE_HASH_SIZE (16) 4325 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4326 4327 #endif /* _LINUX_NETDEVICE_H */ 4328