xref: /linux-6.15/include/linux/netdevice.h (revision 086c653f)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <[email protected]>
12  *		Corey Minyard <[email protected]>
13  *		Donald J. Becker, <[email protected]>
14  *		Alan Cox, <[email protected]>
15  *		Bjorn Ekwall. <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49 
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54 
55 struct netpoll_info;
56 struct device;
57 struct phy_device;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* 802.15.4 specific */
61 struct wpan_dev;
62 struct mpls_dev;
63 
64 void netdev_set_default_ethtool_ops(struct net_device *dev,
65 				    const struct ethtool_ops *ops);
66 
67 /* Backlog congestion levels */
68 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
69 #define NET_RX_DROP		1	/* packet dropped */
70 
71 /*
72  * Transmit return codes: transmit return codes originate from three different
73  * namespaces:
74  *
75  * - qdisc return codes
76  * - driver transmit return codes
77  * - errno values
78  *
79  * Drivers are allowed to return any one of those in their hard_start_xmit()
80  * function. Real network devices commonly used with qdiscs should only return
81  * the driver transmit return codes though - when qdiscs are used, the actual
82  * transmission happens asynchronously, so the value is not propagated to
83  * higher layers. Virtual network devices transmit synchronously, in this case
84  * the driver transmit return codes are consumed by dev_queue_xmit(), all
85  * others are propagated to higher layers.
86  */
87 
88 /* qdisc ->enqueue() return codes. */
89 #define NET_XMIT_SUCCESS	0x00
90 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
91 #define NET_XMIT_CN		0x02	/* congestion notification	*/
92 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
93 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
94 
95 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
96  * indicates that the device will soon be dropping packets, or already drops
97  * some packets of the same priority; prompting us to send less aggressively. */
98 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
99 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
100 
101 /* Driver transmit return codes */
102 #define NETDEV_TX_MASK		0xf0
103 
104 enum netdev_tx {
105 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
106 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
107 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
108 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
109 };
110 typedef enum netdev_tx netdev_tx_t;
111 
112 /*
113  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
114  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
115  */
116 static inline bool dev_xmit_complete(int rc)
117 {
118 	/*
119 	 * Positive cases with an skb consumed by a driver:
120 	 * - successful transmission (rc == NETDEV_TX_OK)
121 	 * - error while transmitting (rc < 0)
122 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
123 	 */
124 	if (likely(rc < NET_XMIT_MASK))
125 		return true;
126 
127 	return false;
128 }
129 
130 /*
131  *	Compute the worst case header length according to the protocols
132  *	used.
133  */
134 
135 #if defined(CONFIG_HYPERV_NET)
136 # define LL_MAX_HEADER 128
137 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
138 # if defined(CONFIG_MAC80211_MESH)
139 #  define LL_MAX_HEADER 128
140 # else
141 #  define LL_MAX_HEADER 96
142 # endif
143 #else
144 # define LL_MAX_HEADER 32
145 #endif
146 
147 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
148     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
149 #define MAX_HEADER LL_MAX_HEADER
150 #else
151 #define MAX_HEADER (LL_MAX_HEADER + 48)
152 #endif
153 
154 /*
155  *	Old network device statistics. Fields are native words
156  *	(unsigned long) so they can be read and written atomically.
157  */
158 
159 struct net_device_stats {
160 	unsigned long	rx_packets;
161 	unsigned long	tx_packets;
162 	unsigned long	rx_bytes;
163 	unsigned long	tx_bytes;
164 	unsigned long	rx_errors;
165 	unsigned long	tx_errors;
166 	unsigned long	rx_dropped;
167 	unsigned long	tx_dropped;
168 	unsigned long	multicast;
169 	unsigned long	collisions;
170 	unsigned long	rx_length_errors;
171 	unsigned long	rx_over_errors;
172 	unsigned long	rx_crc_errors;
173 	unsigned long	rx_frame_errors;
174 	unsigned long	rx_fifo_errors;
175 	unsigned long	rx_missed_errors;
176 	unsigned long	tx_aborted_errors;
177 	unsigned long	tx_carrier_errors;
178 	unsigned long	tx_fifo_errors;
179 	unsigned long	tx_heartbeat_errors;
180 	unsigned long	tx_window_errors;
181 	unsigned long	rx_compressed;
182 	unsigned long	tx_compressed;
183 };
184 
185 
186 #include <linux/cache.h>
187 #include <linux/skbuff.h>
188 
189 #ifdef CONFIG_RPS
190 #include <linux/static_key.h>
191 extern struct static_key rps_needed;
192 #endif
193 
194 struct neighbour;
195 struct neigh_parms;
196 struct sk_buff;
197 
198 struct netdev_hw_addr {
199 	struct list_head	list;
200 	unsigned char		addr[MAX_ADDR_LEN];
201 	unsigned char		type;
202 #define NETDEV_HW_ADDR_T_LAN		1
203 #define NETDEV_HW_ADDR_T_SAN		2
204 #define NETDEV_HW_ADDR_T_SLAVE		3
205 #define NETDEV_HW_ADDR_T_UNICAST	4
206 #define NETDEV_HW_ADDR_T_MULTICAST	5
207 	bool			global_use;
208 	int			sync_cnt;
209 	int			refcount;
210 	int			synced;
211 	struct rcu_head		rcu_head;
212 };
213 
214 struct netdev_hw_addr_list {
215 	struct list_head	list;
216 	int			count;
217 };
218 
219 #define netdev_hw_addr_list_count(l) ((l)->count)
220 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
221 #define netdev_hw_addr_list_for_each(ha, l) \
222 	list_for_each_entry(ha, &(l)->list, list)
223 
224 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
225 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
226 #define netdev_for_each_uc_addr(ha, dev) \
227 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
228 
229 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
230 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
231 #define netdev_for_each_mc_addr(ha, dev) \
232 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
233 
234 struct hh_cache {
235 	u16		hh_len;
236 	u16		__pad;
237 	seqlock_t	hh_lock;
238 
239 	/* cached hardware header; allow for machine alignment needs.        */
240 #define HH_DATA_MOD	16
241 #define HH_DATA_OFF(__len) \
242 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
243 #define HH_DATA_ALIGN(__len) \
244 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
245 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
246 };
247 
248 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
249  * Alternative is:
250  *   dev->hard_header_len ? (dev->hard_header_len +
251  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
252  *
253  * We could use other alignment values, but we must maintain the
254  * relationship HH alignment <= LL alignment.
255  */
256 #define LL_RESERVED_SPACE(dev) \
257 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
258 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
259 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
260 
261 struct header_ops {
262 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
263 			   unsigned short type, const void *daddr,
264 			   const void *saddr, unsigned int len);
265 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
266 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
267 	void	(*cache_update)(struct hh_cache *hh,
268 				const struct net_device *dev,
269 				const unsigned char *haddr);
270 };
271 
272 /* These flag bits are private to the generic network queueing
273  * layer, they may not be explicitly referenced by any other
274  * code.
275  */
276 
277 enum netdev_state_t {
278 	__LINK_STATE_START,
279 	__LINK_STATE_PRESENT,
280 	__LINK_STATE_NOCARRIER,
281 	__LINK_STATE_LINKWATCH_PENDING,
282 	__LINK_STATE_DORMANT,
283 };
284 
285 
286 /*
287  * This structure holds at boot time configured netdevice settings. They
288  * are then used in the device probing.
289  */
290 struct netdev_boot_setup {
291 	char name[IFNAMSIZ];
292 	struct ifmap map;
293 };
294 #define NETDEV_BOOT_SETUP_MAX 8
295 
296 int __init netdev_boot_setup(char *str);
297 
298 /*
299  * Structure for NAPI scheduling similar to tasklet but with weighting
300  */
301 struct napi_struct {
302 	/* The poll_list must only be managed by the entity which
303 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
304 	 * whoever atomically sets that bit can add this napi_struct
305 	 * to the per-cpu poll_list, and whoever clears that bit
306 	 * can remove from the list right before clearing the bit.
307 	 */
308 	struct list_head	poll_list;
309 
310 	unsigned long		state;
311 	int			weight;
312 	unsigned int		gro_count;
313 	int			(*poll)(struct napi_struct *, int);
314 #ifdef CONFIG_NETPOLL
315 	spinlock_t		poll_lock;
316 	int			poll_owner;
317 #endif
318 	struct net_device	*dev;
319 	struct sk_buff		*gro_list;
320 	struct sk_buff		*skb;
321 	struct hrtimer		timer;
322 	struct list_head	dev_list;
323 	struct hlist_node	napi_hash_node;
324 	unsigned int		napi_id;
325 };
326 
327 enum {
328 	NAPI_STATE_SCHED,	/* Poll is scheduled */
329 	NAPI_STATE_DISABLE,	/* Disable pending */
330 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
331 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
332 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
333 };
334 
335 enum gro_result {
336 	GRO_MERGED,
337 	GRO_MERGED_FREE,
338 	GRO_HELD,
339 	GRO_NORMAL,
340 	GRO_DROP,
341 };
342 typedef enum gro_result gro_result_t;
343 
344 /*
345  * enum rx_handler_result - Possible return values for rx_handlers.
346  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
347  * further.
348  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
349  * case skb->dev was changed by rx_handler.
350  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
351  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
352  *
353  * rx_handlers are functions called from inside __netif_receive_skb(), to do
354  * special processing of the skb, prior to delivery to protocol handlers.
355  *
356  * Currently, a net_device can only have a single rx_handler registered. Trying
357  * to register a second rx_handler will return -EBUSY.
358  *
359  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
360  * To unregister a rx_handler on a net_device, use
361  * netdev_rx_handler_unregister().
362  *
363  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
364  * do with the skb.
365  *
366  * If the rx_handler consumed to skb in some way, it should return
367  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
368  * the skb to be delivered in some other ways.
369  *
370  * If the rx_handler changed skb->dev, to divert the skb to another
371  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
372  * new device will be called if it exists.
373  *
374  * If the rx_handler consider the skb should be ignored, it should return
375  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
376  * are registered on exact device (ptype->dev == skb->dev).
377  *
378  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
379  * delivered, it should return RX_HANDLER_PASS.
380  *
381  * A device without a registered rx_handler will behave as if rx_handler
382  * returned RX_HANDLER_PASS.
383  */
384 
385 enum rx_handler_result {
386 	RX_HANDLER_CONSUMED,
387 	RX_HANDLER_ANOTHER,
388 	RX_HANDLER_EXACT,
389 	RX_HANDLER_PASS,
390 };
391 typedef enum rx_handler_result rx_handler_result_t;
392 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
393 
394 void __napi_schedule(struct napi_struct *n);
395 void __napi_schedule_irqoff(struct napi_struct *n);
396 
397 static inline bool napi_disable_pending(struct napi_struct *n)
398 {
399 	return test_bit(NAPI_STATE_DISABLE, &n->state);
400 }
401 
402 /**
403  *	napi_schedule_prep - check if napi can be scheduled
404  *	@n: napi context
405  *
406  * Test if NAPI routine is already running, and if not mark
407  * it as running.  This is used as a condition variable
408  * insure only one NAPI poll instance runs.  We also make
409  * sure there is no pending NAPI disable.
410  */
411 static inline bool napi_schedule_prep(struct napi_struct *n)
412 {
413 	return !napi_disable_pending(n) &&
414 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
415 }
416 
417 /**
418  *	napi_schedule - schedule NAPI poll
419  *	@n: napi context
420  *
421  * Schedule NAPI poll routine to be called if it is not already
422  * running.
423  */
424 static inline void napi_schedule(struct napi_struct *n)
425 {
426 	if (napi_schedule_prep(n))
427 		__napi_schedule(n);
428 }
429 
430 /**
431  *	napi_schedule_irqoff - schedule NAPI poll
432  *	@n: napi context
433  *
434  * Variant of napi_schedule(), assuming hard irqs are masked.
435  */
436 static inline void napi_schedule_irqoff(struct napi_struct *n)
437 {
438 	if (napi_schedule_prep(n))
439 		__napi_schedule_irqoff(n);
440 }
441 
442 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
443 static inline bool napi_reschedule(struct napi_struct *napi)
444 {
445 	if (napi_schedule_prep(napi)) {
446 		__napi_schedule(napi);
447 		return true;
448 	}
449 	return false;
450 }
451 
452 void __napi_complete(struct napi_struct *n);
453 void napi_complete_done(struct napi_struct *n, int work_done);
454 /**
455  *	napi_complete - NAPI processing complete
456  *	@n: napi context
457  *
458  * Mark NAPI processing as complete.
459  * Consider using napi_complete_done() instead.
460  */
461 static inline void napi_complete(struct napi_struct *n)
462 {
463 	return napi_complete_done(n, 0);
464 }
465 
466 /**
467  *	napi_hash_add - add a NAPI to global hashtable
468  *	@napi: napi context
469  *
470  * generate a new napi_id and store a @napi under it in napi_hash
471  * Used for busy polling (CONFIG_NET_RX_BUSY_POLL)
472  * Note: This is normally automatically done from netif_napi_add(),
473  * so might disappear in a future linux version.
474  */
475 void napi_hash_add(struct napi_struct *napi);
476 
477 /**
478  *	napi_hash_del - remove a NAPI from global table
479  *	@napi: napi context
480  *
481  * Warning: caller must observe rcu grace period
482  * before freeing memory containing @napi, if
483  * this function returns true.
484  * Note: core networking stack automatically calls it
485  * from netif_napi_del()
486  * Drivers might want to call this helper to combine all
487  * the needed rcu grace periods into a single one.
488  */
489 bool napi_hash_del(struct napi_struct *napi);
490 
491 /**
492  *	napi_disable - prevent NAPI from scheduling
493  *	@n: napi context
494  *
495  * Stop NAPI from being scheduled on this context.
496  * Waits till any outstanding processing completes.
497  */
498 void napi_disable(struct napi_struct *n);
499 
500 /**
501  *	napi_enable - enable NAPI scheduling
502  *	@n: napi context
503  *
504  * Resume NAPI from being scheduled on this context.
505  * Must be paired with napi_disable.
506  */
507 static inline void napi_enable(struct napi_struct *n)
508 {
509 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
510 	smp_mb__before_atomic();
511 	clear_bit(NAPI_STATE_SCHED, &n->state);
512 	clear_bit(NAPI_STATE_NPSVC, &n->state);
513 }
514 
515 /**
516  *	napi_synchronize - wait until NAPI is not running
517  *	@n: napi context
518  *
519  * Wait until NAPI is done being scheduled on this context.
520  * Waits till any outstanding processing completes but
521  * does not disable future activations.
522  */
523 static inline void napi_synchronize(const struct napi_struct *n)
524 {
525 	if (IS_ENABLED(CONFIG_SMP))
526 		while (test_bit(NAPI_STATE_SCHED, &n->state))
527 			msleep(1);
528 	else
529 		barrier();
530 }
531 
532 enum netdev_queue_state_t {
533 	__QUEUE_STATE_DRV_XOFF,
534 	__QUEUE_STATE_STACK_XOFF,
535 	__QUEUE_STATE_FROZEN,
536 };
537 
538 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
539 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
540 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
541 
542 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
543 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
544 					QUEUE_STATE_FROZEN)
545 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
546 					QUEUE_STATE_FROZEN)
547 
548 /*
549  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
550  * netif_tx_* functions below are used to manipulate this flag.  The
551  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
552  * queue independently.  The netif_xmit_*stopped functions below are called
553  * to check if the queue has been stopped by the driver or stack (either
554  * of the XOFF bits are set in the state).  Drivers should not need to call
555  * netif_xmit*stopped functions, they should only be using netif_tx_*.
556  */
557 
558 struct netdev_queue {
559 /*
560  * read mostly part
561  */
562 	struct net_device	*dev;
563 	struct Qdisc __rcu	*qdisc;
564 	struct Qdisc		*qdisc_sleeping;
565 #ifdef CONFIG_SYSFS
566 	struct kobject		kobj;
567 #endif
568 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
569 	int			numa_node;
570 #endif
571 /*
572  * write mostly part
573  */
574 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
575 	int			xmit_lock_owner;
576 	/*
577 	 * please use this field instead of dev->trans_start
578 	 */
579 	unsigned long		trans_start;
580 
581 	/*
582 	 * Number of TX timeouts for this queue
583 	 * (/sys/class/net/DEV/Q/trans_timeout)
584 	 */
585 	unsigned long		trans_timeout;
586 
587 	unsigned long		state;
588 
589 #ifdef CONFIG_BQL
590 	struct dql		dql;
591 #endif
592 	unsigned long		tx_maxrate;
593 } ____cacheline_aligned_in_smp;
594 
595 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
596 {
597 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
598 	return q->numa_node;
599 #else
600 	return NUMA_NO_NODE;
601 #endif
602 }
603 
604 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
605 {
606 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
607 	q->numa_node = node;
608 #endif
609 }
610 
611 #ifdef CONFIG_RPS
612 /*
613  * This structure holds an RPS map which can be of variable length.  The
614  * map is an array of CPUs.
615  */
616 struct rps_map {
617 	unsigned int len;
618 	struct rcu_head rcu;
619 	u16 cpus[0];
620 };
621 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
622 
623 /*
624  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
625  * tail pointer for that CPU's input queue at the time of last enqueue, and
626  * a hardware filter index.
627  */
628 struct rps_dev_flow {
629 	u16 cpu;
630 	u16 filter;
631 	unsigned int last_qtail;
632 };
633 #define RPS_NO_FILTER 0xffff
634 
635 /*
636  * The rps_dev_flow_table structure contains a table of flow mappings.
637  */
638 struct rps_dev_flow_table {
639 	unsigned int mask;
640 	struct rcu_head rcu;
641 	struct rps_dev_flow flows[0];
642 };
643 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
644     ((_num) * sizeof(struct rps_dev_flow)))
645 
646 /*
647  * The rps_sock_flow_table contains mappings of flows to the last CPU
648  * on which they were processed by the application (set in recvmsg).
649  * Each entry is a 32bit value. Upper part is the high order bits
650  * of flow hash, lower part is cpu number.
651  * rps_cpu_mask is used to partition the space, depending on number of
652  * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
653  * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
654  * meaning we use 32-6=26 bits for the hash.
655  */
656 struct rps_sock_flow_table {
657 	u32	mask;
658 
659 	u32	ents[0] ____cacheline_aligned_in_smp;
660 };
661 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
662 
663 #define RPS_NO_CPU 0xffff
664 
665 extern u32 rps_cpu_mask;
666 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
667 
668 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
669 					u32 hash)
670 {
671 	if (table && hash) {
672 		unsigned int index = hash & table->mask;
673 		u32 val = hash & ~rps_cpu_mask;
674 
675 		/* We only give a hint, preemption can change cpu under us */
676 		val |= raw_smp_processor_id();
677 
678 		if (table->ents[index] != val)
679 			table->ents[index] = val;
680 	}
681 }
682 
683 #ifdef CONFIG_RFS_ACCEL
684 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
685 			 u16 filter_id);
686 #endif
687 #endif /* CONFIG_RPS */
688 
689 /* This structure contains an instance of an RX queue. */
690 struct netdev_rx_queue {
691 #ifdef CONFIG_RPS
692 	struct rps_map __rcu		*rps_map;
693 	struct rps_dev_flow_table __rcu	*rps_flow_table;
694 #endif
695 	struct kobject			kobj;
696 	struct net_device		*dev;
697 } ____cacheline_aligned_in_smp;
698 
699 /*
700  * RX queue sysfs structures and functions.
701  */
702 struct rx_queue_attribute {
703 	struct attribute attr;
704 	ssize_t (*show)(struct netdev_rx_queue *queue,
705 	    struct rx_queue_attribute *attr, char *buf);
706 	ssize_t (*store)(struct netdev_rx_queue *queue,
707 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
708 };
709 
710 #ifdef CONFIG_XPS
711 /*
712  * This structure holds an XPS map which can be of variable length.  The
713  * map is an array of queues.
714  */
715 struct xps_map {
716 	unsigned int len;
717 	unsigned int alloc_len;
718 	struct rcu_head rcu;
719 	u16 queues[0];
720 };
721 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
722 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
723        - sizeof(struct xps_map)) / sizeof(u16))
724 
725 /*
726  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
727  */
728 struct xps_dev_maps {
729 	struct rcu_head rcu;
730 	struct xps_map __rcu *cpu_map[0];
731 };
732 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
733     (nr_cpu_ids * sizeof(struct xps_map *)))
734 #endif /* CONFIG_XPS */
735 
736 #define TC_MAX_QUEUE	16
737 #define TC_BITMASK	15
738 /* HW offloaded queuing disciplines txq count and offset maps */
739 struct netdev_tc_txq {
740 	u16 count;
741 	u16 offset;
742 };
743 
744 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
745 /*
746  * This structure is to hold information about the device
747  * configured to run FCoE protocol stack.
748  */
749 struct netdev_fcoe_hbainfo {
750 	char	manufacturer[64];
751 	char	serial_number[64];
752 	char	hardware_version[64];
753 	char	driver_version[64];
754 	char	optionrom_version[64];
755 	char	firmware_version[64];
756 	char	model[256];
757 	char	model_description[256];
758 };
759 #endif
760 
761 #define MAX_PHYS_ITEM_ID_LEN 32
762 
763 /* This structure holds a unique identifier to identify some
764  * physical item (port for example) used by a netdevice.
765  */
766 struct netdev_phys_item_id {
767 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
768 	unsigned char id_len;
769 };
770 
771 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
772 					    struct netdev_phys_item_id *b)
773 {
774 	return a->id_len == b->id_len &&
775 	       memcmp(a->id, b->id, a->id_len) == 0;
776 }
777 
778 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
779 				       struct sk_buff *skb);
780 
781 /*
782  * This structure defines the management hooks for network devices.
783  * The following hooks can be defined; unless noted otherwise, they are
784  * optional and can be filled with a null pointer.
785  *
786  * int (*ndo_init)(struct net_device *dev);
787  *     This function is called once when network device is registered.
788  *     The network device can use this to any late stage initializaton
789  *     or semantic validattion. It can fail with an error code which will
790  *     be propogated back to register_netdev
791  *
792  * void (*ndo_uninit)(struct net_device *dev);
793  *     This function is called when device is unregistered or when registration
794  *     fails. It is not called if init fails.
795  *
796  * int (*ndo_open)(struct net_device *dev);
797  *     This function is called when network device transistions to the up
798  *     state.
799  *
800  * int (*ndo_stop)(struct net_device *dev);
801  *     This function is called when network device transistions to the down
802  *     state.
803  *
804  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
805  *                               struct net_device *dev);
806  *	Called when a packet needs to be transmitted.
807  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
808  *	the queue before that can happen; it's for obsolete devices and weird
809  *	corner cases, but the stack really does a non-trivial amount
810  *	of useless work if you return NETDEV_TX_BUSY.
811  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
812  *	Required can not be NULL.
813  *
814  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
815  *		netdev_features_t features);
816  *	Adjusts the requested feature flags according to device-specific
817  *	constraints, and returns the resulting flags. Must not modify
818  *	the device state.
819  *
820  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
821  *                         void *accel_priv, select_queue_fallback_t fallback);
822  *	Called to decide which queue to when device supports multiple
823  *	transmit queues.
824  *
825  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
826  *	This function is called to allow device receiver to make
827  *	changes to configuration when multicast or promiscious is enabled.
828  *
829  * void (*ndo_set_rx_mode)(struct net_device *dev);
830  *	This function is called device changes address list filtering.
831  *	If driver handles unicast address filtering, it should set
832  *	IFF_UNICAST_FLT to its priv_flags.
833  *
834  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
835  *	This function  is called when the Media Access Control address
836  *	needs to be changed. If this interface is not defined, the
837  *	mac address can not be changed.
838  *
839  * int (*ndo_validate_addr)(struct net_device *dev);
840  *	Test if Media Access Control address is valid for the device.
841  *
842  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
843  *	Called when a user request an ioctl which can't be handled by
844  *	the generic interface code. If not defined ioctl's return
845  *	not supported error code.
846  *
847  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
848  *	Used to set network devices bus interface parameters. This interface
849  *	is retained for legacy reason, new devices should use the bus
850  *	interface (PCI) for low level management.
851  *
852  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
853  *	Called when a user wants to change the Maximum Transfer Unit
854  *	of a device. If not defined, any request to change MTU will
855  *	will return an error.
856  *
857  * void (*ndo_tx_timeout)(struct net_device *dev);
858  *	Callback uses when the transmitter has not made any progress
859  *	for dev->watchdog ticks.
860  *
861  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
862  *                      struct rtnl_link_stats64 *storage);
863  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
864  *	Called when a user wants to get the network device usage
865  *	statistics. Drivers must do one of the following:
866  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
867  *	   rtnl_link_stats64 structure passed by the caller.
868  *	2. Define @ndo_get_stats to update a net_device_stats structure
869  *	   (which should normally be dev->stats) and return a pointer to
870  *	   it. The structure may be changed asynchronously only if each
871  *	   field is written atomically.
872  *	3. Update dev->stats asynchronously and atomically, and define
873  *	   neither operation.
874  *
875  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
876  *	If device support VLAN filtering this function is called when a
877  *	VLAN id is registered.
878  *
879  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
880  *	If device support VLAN filtering this function is called when a
881  *	VLAN id is unregistered.
882  *
883  * void (*ndo_poll_controller)(struct net_device *dev);
884  *
885  *	SR-IOV management functions.
886  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
887  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
888  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
889  *			  int max_tx_rate);
890  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
891  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
892  * int (*ndo_get_vf_config)(struct net_device *dev,
893  *			    int vf, struct ifla_vf_info *ivf);
894  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
895  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
896  *			  struct nlattr *port[]);
897  *
898  *      Enable or disable the VF ability to query its RSS Redirection Table and
899  *      Hash Key. This is needed since on some devices VF share this information
900  *      with PF and querying it may adduce a theoretical security risk.
901  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
902  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
903  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
904  * 	Called to setup 'tc' number of traffic classes in the net device. This
905  * 	is always called from the stack with the rtnl lock held and netif tx
906  * 	queues stopped. This allows the netdevice to perform queue management
907  * 	safely.
908  *
909  *	Fiber Channel over Ethernet (FCoE) offload functions.
910  * int (*ndo_fcoe_enable)(struct net_device *dev);
911  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
912  *	so the underlying device can perform whatever needed configuration or
913  *	initialization to support acceleration of FCoE traffic.
914  *
915  * int (*ndo_fcoe_disable)(struct net_device *dev);
916  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
917  *	so the underlying device can perform whatever needed clean-ups to
918  *	stop supporting acceleration of FCoE traffic.
919  *
920  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
921  *			     struct scatterlist *sgl, unsigned int sgc);
922  *	Called when the FCoE Initiator wants to initialize an I/O that
923  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
924  *	perform necessary setup and returns 1 to indicate the device is set up
925  *	successfully to perform DDP on this I/O, otherwise this returns 0.
926  *
927  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
928  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
929  *	indicated by the FC exchange id 'xid', so the underlying device can
930  *	clean up and reuse resources for later DDP requests.
931  *
932  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
933  *			      struct scatterlist *sgl, unsigned int sgc);
934  *	Called when the FCoE Target wants to initialize an I/O that
935  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
936  *	perform necessary setup and returns 1 to indicate the device is set up
937  *	successfully to perform DDP on this I/O, otherwise this returns 0.
938  *
939  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
940  *			       struct netdev_fcoe_hbainfo *hbainfo);
941  *	Called when the FCoE Protocol stack wants information on the underlying
942  *	device. This information is utilized by the FCoE protocol stack to
943  *	register attributes with Fiber Channel management service as per the
944  *	FC-GS Fabric Device Management Information(FDMI) specification.
945  *
946  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
947  *	Called when the underlying device wants to override default World Wide
948  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
949  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
950  *	protocol stack to use.
951  *
952  *	RFS acceleration.
953  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
954  *			    u16 rxq_index, u32 flow_id);
955  *	Set hardware filter for RFS.  rxq_index is the target queue index;
956  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
957  *	Return the filter ID on success, or a negative error code.
958  *
959  *	Slave management functions (for bridge, bonding, etc).
960  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
961  *	Called to make another netdev an underling.
962  *
963  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
964  *	Called to release previously enslaved netdev.
965  *
966  *      Feature/offload setting functions.
967  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
968  *	Called to update device configuration to new features. Passed
969  *	feature set might be less than what was returned by ndo_fix_features()).
970  *	Must return >0 or -errno if it changed dev->features itself.
971  *
972  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
973  *		      struct net_device *dev,
974  *		      const unsigned char *addr, u16 vid, u16 flags)
975  *	Adds an FDB entry to dev for addr.
976  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
977  *		      struct net_device *dev,
978  *		      const unsigned char *addr, u16 vid)
979  *	Deletes the FDB entry from dev coresponding to addr.
980  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
981  *		       struct net_device *dev, struct net_device *filter_dev,
982  *		       int idx)
983  *	Used to add FDB entries to dump requests. Implementers should add
984  *	entries to skb and update idx with the number of entries.
985  *
986  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
987  *			     u16 flags)
988  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
989  *			     struct net_device *dev, u32 filter_mask,
990  *			     int nlflags)
991  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
992  *			     u16 flags);
993  *
994  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
995  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
996  *	which do not represent real hardware may define this to allow their
997  *	userspace components to manage their virtual carrier state. Devices
998  *	that determine carrier state from physical hardware properties (eg
999  *	network cables) or protocol-dependent mechanisms (eg
1000  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1001  *
1002  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1003  *			       struct netdev_phys_item_id *ppid);
1004  *	Called to get ID of physical port of this device. If driver does
1005  *	not implement this, it is assumed that the hw is not able to have
1006  *	multiple net devices on single physical port.
1007  *
1008  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
1009  *			      sa_family_t sa_family, __be16 port);
1010  *	Called by vxlan to notiy a driver about the UDP port and socket
1011  *	address family that vxlan is listnening to. It is called only when
1012  *	a new port starts listening. The operation is protected by the
1013  *	vxlan_net->sock_lock.
1014  *
1015  * void (*ndo_add_geneve_port)(struct net_device *dev,
1016  *			      sa_family_t sa_family, __be16 port);
1017  *	Called by geneve to notify a driver about the UDP port and socket
1018  *	address family that geneve is listnening to. It is called only when
1019  *	a new port starts listening. The operation is protected by the
1020  *	geneve_net->sock_lock.
1021  *
1022  * void (*ndo_del_geneve_port)(struct net_device *dev,
1023  *			      sa_family_t sa_family, __be16 port);
1024  *	Called by geneve to notify the driver about a UDP port and socket
1025  *	address family that geneve is not listening to anymore. The operation
1026  *	is protected by the geneve_net->sock_lock.
1027  *
1028  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
1029  *			      sa_family_t sa_family, __be16 port);
1030  *	Called by vxlan to notify the driver about a UDP port and socket
1031  *	address family that vxlan is not listening to anymore. The operation
1032  *	is protected by the vxlan_net->sock_lock.
1033  *
1034  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1035  *				 struct net_device *dev)
1036  *	Called by upper layer devices to accelerate switching or other
1037  *	station functionality into hardware. 'pdev is the lowerdev
1038  *	to use for the offload and 'dev' is the net device that will
1039  *	back the offload. Returns a pointer to the private structure
1040  *	the upper layer will maintain.
1041  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1042  *	Called by upper layer device to delete the station created
1043  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1044  *	the station and priv is the structure returned by the add
1045  *	operation.
1046  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1047  *				      struct net_device *dev,
1048  *				      void *priv);
1049  *	Callback to use for xmit over the accelerated station. This
1050  *	is used in place of ndo_start_xmit on accelerated net
1051  *	devices.
1052  * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1053  *					    struct net_device *dev
1054  *					    netdev_features_t features);
1055  *	Called by core transmit path to determine if device is capable of
1056  *	performing offload operations on a given packet. This is to give
1057  *	the device an opportunity to implement any restrictions that cannot
1058  *	be otherwise expressed by feature flags. The check is called with
1059  *	the set of features that the stack has calculated and it returns
1060  *	those the driver believes to be appropriate.
1061  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1062  *			     int queue_index, u32 maxrate);
1063  *	Called when a user wants to set a max-rate limitation of specific
1064  *	TX queue.
1065  * int (*ndo_get_iflink)(const struct net_device *dev);
1066  *	Called to get the iflink value of this device.
1067  * void (*ndo_change_proto_down)(struct net_device *dev,
1068  *				  bool proto_down);
1069  *	This function is used to pass protocol port error state information
1070  *	to the switch driver. The switch driver can react to the proto_down
1071  *      by doing a phys down on the associated switch port.
1072  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1073  *	This function is used to get egress tunnel information for given skb.
1074  *	This is useful for retrieving outer tunnel header parameters while
1075  *	sampling packet.
1076  *
1077  */
1078 struct net_device_ops {
1079 	int			(*ndo_init)(struct net_device *dev);
1080 	void			(*ndo_uninit)(struct net_device *dev);
1081 	int			(*ndo_open)(struct net_device *dev);
1082 	int			(*ndo_stop)(struct net_device *dev);
1083 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1084 						  struct net_device *dev);
1085 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1086 						      struct net_device *dev,
1087 						      netdev_features_t features);
1088 	u16			(*ndo_select_queue)(struct net_device *dev,
1089 						    struct sk_buff *skb,
1090 						    void *accel_priv,
1091 						    select_queue_fallback_t fallback);
1092 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1093 						       int flags);
1094 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1095 	int			(*ndo_set_mac_address)(struct net_device *dev,
1096 						       void *addr);
1097 	int			(*ndo_validate_addr)(struct net_device *dev);
1098 	int			(*ndo_do_ioctl)(struct net_device *dev,
1099 					        struct ifreq *ifr, int cmd);
1100 	int			(*ndo_set_config)(struct net_device *dev,
1101 					          struct ifmap *map);
1102 	int			(*ndo_change_mtu)(struct net_device *dev,
1103 						  int new_mtu);
1104 	int			(*ndo_neigh_setup)(struct net_device *dev,
1105 						   struct neigh_parms *);
1106 	void			(*ndo_tx_timeout) (struct net_device *dev);
1107 
1108 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1109 						     struct rtnl_link_stats64 *storage);
1110 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1111 
1112 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1113 						       __be16 proto, u16 vid);
1114 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1115 						        __be16 proto, u16 vid);
1116 #ifdef CONFIG_NET_POLL_CONTROLLER
1117 	void                    (*ndo_poll_controller)(struct net_device *dev);
1118 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1119 						     struct netpoll_info *info);
1120 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1121 #endif
1122 #ifdef CONFIG_NET_RX_BUSY_POLL
1123 	int			(*ndo_busy_poll)(struct napi_struct *dev);
1124 #endif
1125 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1126 						  int queue, u8 *mac);
1127 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1128 						   int queue, u16 vlan, u8 qos);
1129 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1130 						   int vf, int min_tx_rate,
1131 						   int max_tx_rate);
1132 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1133 						       int vf, bool setting);
1134 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1135 						    int vf, bool setting);
1136 	int			(*ndo_get_vf_config)(struct net_device *dev,
1137 						     int vf,
1138 						     struct ifla_vf_info *ivf);
1139 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1140 							 int vf, int link_state);
1141 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1142 						    int vf,
1143 						    struct ifla_vf_stats
1144 						    *vf_stats);
1145 	int			(*ndo_set_vf_port)(struct net_device *dev,
1146 						   int vf,
1147 						   struct nlattr *port[]);
1148 	int			(*ndo_get_vf_port)(struct net_device *dev,
1149 						   int vf, struct sk_buff *skb);
1150 	int			(*ndo_set_vf_rss_query_en)(
1151 						   struct net_device *dev,
1152 						   int vf, bool setting);
1153 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
1154 #if IS_ENABLED(CONFIG_FCOE)
1155 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1156 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1157 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1158 						      u16 xid,
1159 						      struct scatterlist *sgl,
1160 						      unsigned int sgc);
1161 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1162 						     u16 xid);
1163 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1164 						       u16 xid,
1165 						       struct scatterlist *sgl,
1166 						       unsigned int sgc);
1167 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1168 							struct netdev_fcoe_hbainfo *hbainfo);
1169 #endif
1170 
1171 #if IS_ENABLED(CONFIG_LIBFCOE)
1172 #define NETDEV_FCOE_WWNN 0
1173 #define NETDEV_FCOE_WWPN 1
1174 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1175 						    u64 *wwn, int type);
1176 #endif
1177 
1178 #ifdef CONFIG_RFS_ACCEL
1179 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1180 						     const struct sk_buff *skb,
1181 						     u16 rxq_index,
1182 						     u32 flow_id);
1183 #endif
1184 	int			(*ndo_add_slave)(struct net_device *dev,
1185 						 struct net_device *slave_dev);
1186 	int			(*ndo_del_slave)(struct net_device *dev,
1187 						 struct net_device *slave_dev);
1188 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1189 						    netdev_features_t features);
1190 	int			(*ndo_set_features)(struct net_device *dev,
1191 						    netdev_features_t features);
1192 	int			(*ndo_neigh_construct)(struct neighbour *n);
1193 	void			(*ndo_neigh_destroy)(struct neighbour *n);
1194 
1195 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1196 					       struct nlattr *tb[],
1197 					       struct net_device *dev,
1198 					       const unsigned char *addr,
1199 					       u16 vid,
1200 					       u16 flags);
1201 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1202 					       struct nlattr *tb[],
1203 					       struct net_device *dev,
1204 					       const unsigned char *addr,
1205 					       u16 vid);
1206 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1207 						struct netlink_callback *cb,
1208 						struct net_device *dev,
1209 						struct net_device *filter_dev,
1210 						int idx);
1211 
1212 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1213 						      struct nlmsghdr *nlh,
1214 						      u16 flags);
1215 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1216 						      u32 pid, u32 seq,
1217 						      struct net_device *dev,
1218 						      u32 filter_mask,
1219 						      int nlflags);
1220 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1221 						      struct nlmsghdr *nlh,
1222 						      u16 flags);
1223 	int			(*ndo_change_carrier)(struct net_device *dev,
1224 						      bool new_carrier);
1225 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1226 							struct netdev_phys_item_id *ppid);
1227 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1228 							  char *name, size_t len);
1229 	void			(*ndo_add_vxlan_port)(struct  net_device *dev,
1230 						      sa_family_t sa_family,
1231 						      __be16 port);
1232 	void			(*ndo_del_vxlan_port)(struct  net_device *dev,
1233 						      sa_family_t sa_family,
1234 						      __be16 port);
1235 	void			(*ndo_add_geneve_port)(struct  net_device *dev,
1236 						       sa_family_t sa_family,
1237 						       __be16 port);
1238 	void			(*ndo_del_geneve_port)(struct  net_device *dev,
1239 						       sa_family_t sa_family,
1240 						       __be16 port);
1241 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1242 							struct net_device *dev);
1243 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1244 							void *priv);
1245 
1246 	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1247 							struct net_device *dev,
1248 							void *priv);
1249 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1250 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1251 						      int queue_index,
1252 						      u32 maxrate);
1253 	int			(*ndo_get_iflink)(const struct net_device *dev);
1254 	int			(*ndo_change_proto_down)(struct net_device *dev,
1255 							 bool proto_down);
1256 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1257 						       struct sk_buff *skb);
1258 };
1259 
1260 /**
1261  * enum net_device_priv_flags - &struct net_device priv_flags
1262  *
1263  * These are the &struct net_device, they are only set internally
1264  * by drivers and used in the kernel. These flags are invisible to
1265  * userspace, this means that the order of these flags can change
1266  * during any kernel release.
1267  *
1268  * You should have a pretty good reason to be extending these flags.
1269  *
1270  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1271  * @IFF_EBRIDGE: Ethernet bridging device
1272  * @IFF_BONDING: bonding master or slave
1273  * @IFF_ISATAP: ISATAP interface (RFC4214)
1274  * @IFF_WAN_HDLC: WAN HDLC device
1275  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1276  *	release skb->dst
1277  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1278  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1279  * @IFF_MACVLAN_PORT: device used as macvlan port
1280  * @IFF_BRIDGE_PORT: device used as bridge port
1281  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1282  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1283  * @IFF_UNICAST_FLT: Supports unicast filtering
1284  * @IFF_TEAM_PORT: device used as team port
1285  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1286  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1287  *	change when it's running
1288  * @IFF_MACVLAN: Macvlan device
1289  * @IFF_L3MDEV_MASTER: device is an L3 master device
1290  * @IFF_NO_QUEUE: device can run without qdisc attached
1291  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1292  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1293  * @IFF_TEAM: device is a team device
1294  */
1295 enum netdev_priv_flags {
1296 	IFF_802_1Q_VLAN			= 1<<0,
1297 	IFF_EBRIDGE			= 1<<1,
1298 	IFF_BONDING			= 1<<2,
1299 	IFF_ISATAP			= 1<<3,
1300 	IFF_WAN_HDLC			= 1<<4,
1301 	IFF_XMIT_DST_RELEASE		= 1<<5,
1302 	IFF_DONT_BRIDGE			= 1<<6,
1303 	IFF_DISABLE_NETPOLL		= 1<<7,
1304 	IFF_MACVLAN_PORT		= 1<<8,
1305 	IFF_BRIDGE_PORT			= 1<<9,
1306 	IFF_OVS_DATAPATH		= 1<<10,
1307 	IFF_TX_SKB_SHARING		= 1<<11,
1308 	IFF_UNICAST_FLT			= 1<<12,
1309 	IFF_TEAM_PORT			= 1<<13,
1310 	IFF_SUPP_NOFCS			= 1<<14,
1311 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1312 	IFF_MACVLAN			= 1<<16,
1313 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1314 	IFF_IPVLAN_MASTER		= 1<<18,
1315 	IFF_IPVLAN_SLAVE		= 1<<19,
1316 	IFF_L3MDEV_MASTER		= 1<<20,
1317 	IFF_NO_QUEUE			= 1<<21,
1318 	IFF_OPENVSWITCH			= 1<<22,
1319 	IFF_L3MDEV_SLAVE		= 1<<23,
1320 	IFF_TEAM			= 1<<24,
1321 };
1322 
1323 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1324 #define IFF_EBRIDGE			IFF_EBRIDGE
1325 #define IFF_BONDING			IFF_BONDING
1326 #define IFF_ISATAP			IFF_ISATAP
1327 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1328 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1329 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1330 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1331 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1332 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1333 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1334 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1335 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1336 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1337 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1338 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1339 #define IFF_MACVLAN			IFF_MACVLAN
1340 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1341 #define IFF_IPVLAN_MASTER		IFF_IPVLAN_MASTER
1342 #define IFF_IPVLAN_SLAVE		IFF_IPVLAN_SLAVE
1343 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1344 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1345 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1346 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1347 #define IFF_TEAM			IFF_TEAM
1348 
1349 /**
1350  *	struct net_device - The DEVICE structure.
1351  *		Actually, this whole structure is a big mistake.  It mixes I/O
1352  *		data with strictly "high-level" data, and it has to know about
1353  *		almost every data structure used in the INET module.
1354  *
1355  *	@name:	This is the first field of the "visible" part of this structure
1356  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1357  *	 	of the interface.
1358  *
1359  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1360  *	@ifalias:	SNMP alias
1361  *	@mem_end:	Shared memory end
1362  *	@mem_start:	Shared memory start
1363  *	@base_addr:	Device I/O address
1364  *	@irq:		Device IRQ number
1365  *
1366  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1367  *
1368  *	@state:		Generic network queuing layer state, see netdev_state_t
1369  *	@dev_list:	The global list of network devices
1370  *	@napi_list:	List entry, that is used for polling napi devices
1371  *	@unreg_list:	List entry, that is used, when we are unregistering the
1372  *			device, see the function unregister_netdev
1373  *	@close_list:	List entry, that is used, when we are closing the device
1374  *
1375  *	@adj_list:	Directly linked devices, like slaves for bonding
1376  *	@all_adj_list:	All linked devices, *including* neighbours
1377  *	@features:	Currently active device features
1378  *	@hw_features:	User-changeable features
1379  *
1380  *	@wanted_features:	User-requested features
1381  *	@vlan_features:		Mask of features inheritable by VLAN devices
1382  *
1383  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1384  *				This field indicates what encapsulation
1385  *				offloads the hardware is capable of doing,
1386  *				and drivers will need to set them appropriately.
1387  *
1388  *	@mpls_features:	Mask of features inheritable by MPLS
1389  *
1390  *	@ifindex:	interface index
1391  *	@group:		The group, that the device belongs to
1392  *
1393  *	@stats:		Statistics struct, which was left as a legacy, use
1394  *			rtnl_link_stats64 instead
1395  *
1396  *	@rx_dropped:	Dropped packets by core network,
1397  *			do not use this in drivers
1398  *	@tx_dropped:	Dropped packets by core network,
1399  *			do not use this in drivers
1400  *	@rx_nohandler:	nohandler dropped packets by core network on
1401  *			inactive devices, do not use this in drivers
1402  *
1403  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1404  *				instead of ioctl,
1405  *				see <net/iw_handler.h> for details.
1406  *	@wireless_data:	Instance data managed by the core of wireless extensions
1407  *
1408  *	@netdev_ops:	Includes several pointers to callbacks,
1409  *			if one wants to override the ndo_*() functions
1410  *	@ethtool_ops:	Management operations
1411  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1412  *			of Layer 2 headers.
1413  *
1414  *	@flags:		Interface flags (a la BSD)
1415  *	@priv_flags:	Like 'flags' but invisible to userspace,
1416  *			see if.h for the definitions
1417  *	@gflags:	Global flags ( kept as legacy )
1418  *	@padded:	How much padding added by alloc_netdev()
1419  *	@operstate:	RFC2863 operstate
1420  *	@link_mode:	Mapping policy to operstate
1421  *	@if_port:	Selectable AUI, TP, ...
1422  *	@dma:		DMA channel
1423  *	@mtu:		Interface MTU value
1424  *	@type:		Interface hardware type
1425  *	@hard_header_len: Hardware header length, which means that this is the
1426  *			  minimum size of a packet.
1427  *
1428  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1429  *			  cases can this be guaranteed
1430  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1431  *			  cases can this be guaranteed. Some cases also use
1432  *			  LL_MAX_HEADER instead to allocate the skb
1433  *
1434  *	interface address info:
1435  *
1436  * 	@perm_addr:		Permanent hw address
1437  * 	@addr_assign_type:	Hw address assignment type
1438  * 	@addr_len:		Hardware address length
1439  * 	@neigh_priv_len;	Used in neigh_alloc(),
1440  * 				initialized only in atm/clip.c
1441  * 	@dev_id:		Used to differentiate devices that share
1442  * 				the same link layer address
1443  * 	@dev_port:		Used to differentiate devices that share
1444  * 				the same function
1445  *	@addr_list_lock:	XXX: need comments on this one
1446  *	@uc_promisc:		Counter, that indicates, that promiscuous mode
1447  *				has been enabled due to the need to listen to
1448  *				additional unicast addresses in a device that
1449  *				does not implement ndo_set_rx_mode()
1450  *	@uc:			unicast mac addresses
1451  *	@mc:			multicast mac addresses
1452  *	@dev_addrs:		list of device hw addresses
1453  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1454  *	@promiscuity:		Number of times, the NIC is told to work in
1455  *				Promiscuous mode, if it becomes 0 the NIC will
1456  *				exit from working in Promiscuous mode
1457  *	@allmulti:		Counter, enables or disables allmulticast mode
1458  *
1459  *	@vlan_info:	VLAN info
1460  *	@dsa_ptr:	dsa specific data
1461  *	@tipc_ptr:	TIPC specific data
1462  *	@atalk_ptr:	AppleTalk link
1463  *	@ip_ptr:	IPv4 specific data
1464  *	@dn_ptr:	DECnet specific data
1465  *	@ip6_ptr:	IPv6 specific data
1466  *	@ax25_ptr:	AX.25 specific data
1467  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1468  *
1469  *	@last_rx:	Time of last Rx
1470  *	@dev_addr:	Hw address (before bcast,
1471  *			because most packets are unicast)
1472  *
1473  *	@_rx:			Array of RX queues
1474  *	@num_rx_queues:		Number of RX queues
1475  *				allocated at register_netdev() time
1476  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1477  *
1478  *	@rx_handler:		handler for received packets
1479  *	@rx_handler_data: 	XXX: need comments on this one
1480  *	@ingress_queue:		XXX: need comments on this one
1481  *	@broadcast:		hw bcast address
1482  *
1483  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1484  *			indexed by RX queue number. Assigned by driver.
1485  *			This must only be set if the ndo_rx_flow_steer
1486  *			operation is defined
1487  *	@index_hlist:		Device index hash chain
1488  *
1489  *	@_tx:			Array of TX queues
1490  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1491  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1492  *	@qdisc:			Root qdisc from userspace point of view
1493  *	@tx_queue_len:		Max frames per queue allowed
1494  *	@tx_global_lock: 	XXX: need comments on this one
1495  *
1496  *	@xps_maps:	XXX: need comments on this one
1497  *
1498  *	@offload_fwd_mark:	Offload device fwding mark
1499  *
1500  *	@trans_start:		Time (in jiffies) of last Tx
1501  *	@watchdog_timeo:	Represents the timeout that is used by
1502  *				the watchdog ( see dev_watchdog() )
1503  *	@watchdog_timer:	List of timers
1504  *
1505  *	@pcpu_refcnt:		Number of references to this device
1506  *	@todo_list:		Delayed register/unregister
1507  *	@link_watch_list:	XXX: need comments on this one
1508  *
1509  *	@reg_state:		Register/unregister state machine
1510  *	@dismantle:		Device is going to be freed
1511  *	@rtnl_link_state:	This enum represents the phases of creating
1512  *				a new link
1513  *
1514  *	@destructor:		Called from unregister,
1515  *				can be used to call free_netdev
1516  *	@npinfo:		XXX: need comments on this one
1517  * 	@nd_net:		Network namespace this network device is inside
1518  *
1519  * 	@ml_priv:	Mid-layer private
1520  * 	@lstats:	Loopback statistics
1521  * 	@tstats:	Tunnel statistics
1522  * 	@dstats:	Dummy statistics
1523  * 	@vstats:	Virtual ethernet statistics
1524  *
1525  *	@garp_port:	GARP
1526  *	@mrp_port:	MRP
1527  *
1528  *	@dev:		Class/net/name entry
1529  *	@sysfs_groups:	Space for optional device, statistics and wireless
1530  *			sysfs groups
1531  *
1532  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1533  *	@rtnl_link_ops:	Rtnl_link_ops
1534  *
1535  *	@gso_max_size:	Maximum size of generic segmentation offload
1536  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1537  *			NIC for GSO
1538  *	@gso_min_segs:	Minimum number of segments that can be passed to the
1539  *			NIC for GSO
1540  *
1541  *	@dcbnl_ops:	Data Center Bridging netlink ops
1542  *	@num_tc:	Number of traffic classes in the net device
1543  *	@tc_to_txq:	XXX: need comments on this one
1544  *	@prio_tc_map	XXX: need comments on this one
1545  *
1546  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1547  *
1548  *	@priomap:	XXX: need comments on this one
1549  *	@phydev:	Physical device may attach itself
1550  *			for hardware timestamping
1551  *
1552  *	@qdisc_tx_busylock:	XXX: need comments on this one
1553  *
1554  *	@proto_down:	protocol port state information can be sent to the
1555  *			switch driver and used to set the phys state of the
1556  *			switch port.
1557  *
1558  *	FIXME: cleanup struct net_device such that network protocol info
1559  *	moves out.
1560  */
1561 
1562 struct net_device {
1563 	char			name[IFNAMSIZ];
1564 	struct hlist_node	name_hlist;
1565 	char 			*ifalias;
1566 	/*
1567 	 *	I/O specific fields
1568 	 *	FIXME: Merge these and struct ifmap into one
1569 	 */
1570 	unsigned long		mem_end;
1571 	unsigned long		mem_start;
1572 	unsigned long		base_addr;
1573 	int			irq;
1574 
1575 	atomic_t		carrier_changes;
1576 
1577 	/*
1578 	 *	Some hardware also needs these fields (state,dev_list,
1579 	 *	napi_list,unreg_list,close_list) but they are not
1580 	 *	part of the usual set specified in Space.c.
1581 	 */
1582 
1583 	unsigned long		state;
1584 
1585 	struct list_head	dev_list;
1586 	struct list_head	napi_list;
1587 	struct list_head	unreg_list;
1588 	struct list_head	close_list;
1589 	struct list_head	ptype_all;
1590 	struct list_head	ptype_specific;
1591 
1592 	struct {
1593 		struct list_head upper;
1594 		struct list_head lower;
1595 	} adj_list;
1596 
1597 	struct {
1598 		struct list_head upper;
1599 		struct list_head lower;
1600 	} all_adj_list;
1601 
1602 	netdev_features_t	features;
1603 	netdev_features_t	hw_features;
1604 	netdev_features_t	wanted_features;
1605 	netdev_features_t	vlan_features;
1606 	netdev_features_t	hw_enc_features;
1607 	netdev_features_t	mpls_features;
1608 
1609 	int			ifindex;
1610 	int			group;
1611 
1612 	struct net_device_stats	stats;
1613 
1614 	atomic_long_t		rx_dropped;
1615 	atomic_long_t		tx_dropped;
1616 	atomic_long_t		rx_nohandler;
1617 
1618 #ifdef CONFIG_WIRELESS_EXT
1619 	const struct iw_handler_def *	wireless_handlers;
1620 	struct iw_public_data *	wireless_data;
1621 #endif
1622 	const struct net_device_ops *netdev_ops;
1623 	const struct ethtool_ops *ethtool_ops;
1624 #ifdef CONFIG_NET_SWITCHDEV
1625 	const struct switchdev_ops *switchdev_ops;
1626 #endif
1627 #ifdef CONFIG_NET_L3_MASTER_DEV
1628 	const struct l3mdev_ops	*l3mdev_ops;
1629 #endif
1630 
1631 	const struct header_ops *header_ops;
1632 
1633 	unsigned int		flags;
1634 	unsigned int		priv_flags;
1635 
1636 	unsigned short		gflags;
1637 	unsigned short		padded;
1638 
1639 	unsigned char		operstate;
1640 	unsigned char		link_mode;
1641 
1642 	unsigned char		if_port;
1643 	unsigned char		dma;
1644 
1645 	unsigned int		mtu;
1646 	unsigned short		type;
1647 	unsigned short		hard_header_len;
1648 
1649 	unsigned short		needed_headroom;
1650 	unsigned short		needed_tailroom;
1651 
1652 	/* Interface address info. */
1653 	unsigned char		perm_addr[MAX_ADDR_LEN];
1654 	unsigned char		addr_assign_type;
1655 	unsigned char		addr_len;
1656 	unsigned short		neigh_priv_len;
1657 	unsigned short          dev_id;
1658 	unsigned short          dev_port;
1659 	spinlock_t		addr_list_lock;
1660 	unsigned char		name_assign_type;
1661 	bool			uc_promisc;
1662 	struct netdev_hw_addr_list	uc;
1663 	struct netdev_hw_addr_list	mc;
1664 	struct netdev_hw_addr_list	dev_addrs;
1665 
1666 #ifdef CONFIG_SYSFS
1667 	struct kset		*queues_kset;
1668 #endif
1669 	unsigned int		promiscuity;
1670 	unsigned int		allmulti;
1671 
1672 
1673 	/* Protocol specific pointers */
1674 
1675 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1676 	struct vlan_info __rcu	*vlan_info;
1677 #endif
1678 #if IS_ENABLED(CONFIG_NET_DSA)
1679 	struct dsa_switch_tree	*dsa_ptr;
1680 #endif
1681 #if IS_ENABLED(CONFIG_TIPC)
1682 	struct tipc_bearer __rcu *tipc_ptr;
1683 #endif
1684 	void 			*atalk_ptr;
1685 	struct in_device __rcu	*ip_ptr;
1686 	struct dn_dev __rcu     *dn_ptr;
1687 	struct inet6_dev __rcu	*ip6_ptr;
1688 	void			*ax25_ptr;
1689 	struct wireless_dev	*ieee80211_ptr;
1690 	struct wpan_dev		*ieee802154_ptr;
1691 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1692 	struct mpls_dev __rcu	*mpls_ptr;
1693 #endif
1694 
1695 /*
1696  * Cache lines mostly used on receive path (including eth_type_trans())
1697  */
1698 	unsigned long		last_rx;
1699 
1700 	/* Interface address info used in eth_type_trans() */
1701 	unsigned char		*dev_addr;
1702 
1703 
1704 #ifdef CONFIG_SYSFS
1705 	struct netdev_rx_queue	*_rx;
1706 
1707 	unsigned int		num_rx_queues;
1708 	unsigned int		real_num_rx_queues;
1709 
1710 #endif
1711 
1712 	unsigned long		gro_flush_timeout;
1713 	rx_handler_func_t __rcu	*rx_handler;
1714 	void __rcu		*rx_handler_data;
1715 
1716 #ifdef CONFIG_NET_CLS_ACT
1717 	struct tcf_proto __rcu  *ingress_cl_list;
1718 #endif
1719 	struct netdev_queue __rcu *ingress_queue;
1720 #ifdef CONFIG_NETFILTER_INGRESS
1721 	struct list_head	nf_hooks_ingress;
1722 #endif
1723 
1724 	unsigned char		broadcast[MAX_ADDR_LEN];
1725 #ifdef CONFIG_RFS_ACCEL
1726 	struct cpu_rmap		*rx_cpu_rmap;
1727 #endif
1728 	struct hlist_node	index_hlist;
1729 
1730 /*
1731  * Cache lines mostly used on transmit path
1732  */
1733 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1734 	unsigned int		num_tx_queues;
1735 	unsigned int		real_num_tx_queues;
1736 	struct Qdisc		*qdisc;
1737 	unsigned long		tx_queue_len;
1738 	spinlock_t		tx_global_lock;
1739 	int			watchdog_timeo;
1740 
1741 #ifdef CONFIG_XPS
1742 	struct xps_dev_maps __rcu *xps_maps;
1743 #endif
1744 #ifdef CONFIG_NET_CLS_ACT
1745 	struct tcf_proto __rcu  *egress_cl_list;
1746 #endif
1747 #ifdef CONFIG_NET_SWITCHDEV
1748 	u32			offload_fwd_mark;
1749 #endif
1750 
1751 	/* These may be needed for future network-power-down code. */
1752 
1753 	/*
1754 	 * trans_start here is expensive for high speed devices on SMP,
1755 	 * please use netdev_queue->trans_start instead.
1756 	 */
1757 	unsigned long		trans_start;
1758 
1759 	struct timer_list	watchdog_timer;
1760 
1761 	int __percpu		*pcpu_refcnt;
1762 	struct list_head	todo_list;
1763 
1764 	struct list_head	link_watch_list;
1765 
1766 	enum { NETREG_UNINITIALIZED=0,
1767 	       NETREG_REGISTERED,	/* completed register_netdevice */
1768 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1769 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1770 	       NETREG_RELEASED,		/* called free_netdev */
1771 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1772 	} reg_state:8;
1773 
1774 	bool dismantle;
1775 
1776 	enum {
1777 		RTNL_LINK_INITIALIZED,
1778 		RTNL_LINK_INITIALIZING,
1779 	} rtnl_link_state:16;
1780 
1781 	void (*destructor)(struct net_device *dev);
1782 
1783 #ifdef CONFIG_NETPOLL
1784 	struct netpoll_info __rcu	*npinfo;
1785 #endif
1786 
1787 	possible_net_t			nd_net;
1788 
1789 	/* mid-layer private */
1790 	union {
1791 		void					*ml_priv;
1792 		struct pcpu_lstats __percpu		*lstats;
1793 		struct pcpu_sw_netstats __percpu	*tstats;
1794 		struct pcpu_dstats __percpu		*dstats;
1795 		struct pcpu_vstats __percpu		*vstats;
1796 	};
1797 
1798 	struct garp_port __rcu	*garp_port;
1799 	struct mrp_port __rcu	*mrp_port;
1800 
1801 	struct device	dev;
1802 	const struct attribute_group *sysfs_groups[4];
1803 	const struct attribute_group *sysfs_rx_queue_group;
1804 
1805 	const struct rtnl_link_ops *rtnl_link_ops;
1806 
1807 	/* for setting kernel sock attribute on TCP connection setup */
1808 #define GSO_MAX_SIZE		65536
1809 	unsigned int		gso_max_size;
1810 #define GSO_MAX_SEGS		65535
1811 	u16			gso_max_segs;
1812 	u16			gso_min_segs;
1813 #ifdef CONFIG_DCB
1814 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1815 #endif
1816 	u8 num_tc;
1817 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1818 	u8 prio_tc_map[TC_BITMASK + 1];
1819 
1820 #if IS_ENABLED(CONFIG_FCOE)
1821 	unsigned int		fcoe_ddp_xid;
1822 #endif
1823 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1824 	struct netprio_map __rcu *priomap;
1825 #endif
1826 	struct phy_device *phydev;
1827 	struct lock_class_key *qdisc_tx_busylock;
1828 	bool proto_down;
1829 };
1830 #define to_net_dev(d) container_of(d, struct net_device, dev)
1831 
1832 #define	NETDEV_ALIGN		32
1833 
1834 static inline
1835 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1836 {
1837 	return dev->prio_tc_map[prio & TC_BITMASK];
1838 }
1839 
1840 static inline
1841 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1842 {
1843 	if (tc >= dev->num_tc)
1844 		return -EINVAL;
1845 
1846 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1847 	return 0;
1848 }
1849 
1850 static inline
1851 void netdev_reset_tc(struct net_device *dev)
1852 {
1853 	dev->num_tc = 0;
1854 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1855 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1856 }
1857 
1858 static inline
1859 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1860 {
1861 	if (tc >= dev->num_tc)
1862 		return -EINVAL;
1863 
1864 	dev->tc_to_txq[tc].count = count;
1865 	dev->tc_to_txq[tc].offset = offset;
1866 	return 0;
1867 }
1868 
1869 static inline
1870 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1871 {
1872 	if (num_tc > TC_MAX_QUEUE)
1873 		return -EINVAL;
1874 
1875 	dev->num_tc = num_tc;
1876 	return 0;
1877 }
1878 
1879 static inline
1880 int netdev_get_num_tc(struct net_device *dev)
1881 {
1882 	return dev->num_tc;
1883 }
1884 
1885 static inline
1886 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1887 					 unsigned int index)
1888 {
1889 	return &dev->_tx[index];
1890 }
1891 
1892 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1893 						    const struct sk_buff *skb)
1894 {
1895 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1896 }
1897 
1898 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1899 					    void (*f)(struct net_device *,
1900 						      struct netdev_queue *,
1901 						      void *),
1902 					    void *arg)
1903 {
1904 	unsigned int i;
1905 
1906 	for (i = 0; i < dev->num_tx_queues; i++)
1907 		f(dev, &dev->_tx[i], arg);
1908 }
1909 
1910 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1911 				    struct sk_buff *skb,
1912 				    void *accel_priv);
1913 
1914 /*
1915  * Net namespace inlines
1916  */
1917 static inline
1918 struct net *dev_net(const struct net_device *dev)
1919 {
1920 	return read_pnet(&dev->nd_net);
1921 }
1922 
1923 static inline
1924 void dev_net_set(struct net_device *dev, struct net *net)
1925 {
1926 	write_pnet(&dev->nd_net, net);
1927 }
1928 
1929 static inline bool netdev_uses_dsa(struct net_device *dev)
1930 {
1931 #if IS_ENABLED(CONFIG_NET_DSA)
1932 	if (dev->dsa_ptr != NULL)
1933 		return dsa_uses_tagged_protocol(dev->dsa_ptr);
1934 #endif
1935 	return false;
1936 }
1937 
1938 /**
1939  *	netdev_priv - access network device private data
1940  *	@dev: network device
1941  *
1942  * Get network device private data
1943  */
1944 static inline void *netdev_priv(const struct net_device *dev)
1945 {
1946 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1947 }
1948 
1949 /* Set the sysfs physical device reference for the network logical device
1950  * if set prior to registration will cause a symlink during initialization.
1951  */
1952 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1953 
1954 /* Set the sysfs device type for the network logical device to allow
1955  * fine-grained identification of different network device types. For
1956  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1957  */
1958 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1959 
1960 /* Default NAPI poll() weight
1961  * Device drivers are strongly advised to not use bigger value
1962  */
1963 #define NAPI_POLL_WEIGHT 64
1964 
1965 /**
1966  *	netif_napi_add - initialize a napi context
1967  *	@dev:  network device
1968  *	@napi: napi context
1969  *	@poll: polling function
1970  *	@weight: default weight
1971  *
1972  * netif_napi_add() must be used to initialize a napi context prior to calling
1973  * *any* of the other napi related functions.
1974  */
1975 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1976 		    int (*poll)(struct napi_struct *, int), int weight);
1977 
1978 /**
1979  *	netif_tx_napi_add - initialize a napi context
1980  *	@dev:  network device
1981  *	@napi: napi context
1982  *	@poll: polling function
1983  *	@weight: default weight
1984  *
1985  * This variant of netif_napi_add() should be used from drivers using NAPI
1986  * to exclusively poll a TX queue.
1987  * This will avoid we add it into napi_hash[], thus polluting this hash table.
1988  */
1989 static inline void netif_tx_napi_add(struct net_device *dev,
1990 				     struct napi_struct *napi,
1991 				     int (*poll)(struct napi_struct *, int),
1992 				     int weight)
1993 {
1994 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
1995 	netif_napi_add(dev, napi, poll, weight);
1996 }
1997 
1998 /**
1999  *  netif_napi_del - remove a napi context
2000  *  @napi: napi context
2001  *
2002  *  netif_napi_del() removes a napi context from the network device napi list
2003  */
2004 void netif_napi_del(struct napi_struct *napi);
2005 
2006 struct napi_gro_cb {
2007 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2008 	void *frag0;
2009 
2010 	/* Length of frag0. */
2011 	unsigned int frag0_len;
2012 
2013 	/* This indicates where we are processing relative to skb->data. */
2014 	int data_offset;
2015 
2016 	/* This is non-zero if the packet cannot be merged with the new skb. */
2017 	u16	flush;
2018 
2019 	/* Save the IP ID here and check when we get to the transport layer */
2020 	u16	flush_id;
2021 
2022 	/* Number of segments aggregated. */
2023 	u16	count;
2024 
2025 	/* Start offset for remote checksum offload */
2026 	u16	gro_remcsum_start;
2027 
2028 	/* jiffies when first packet was created/queued */
2029 	unsigned long age;
2030 
2031 	/* Used in ipv6_gro_receive() and foo-over-udp */
2032 	u16	proto;
2033 
2034 	/* This is non-zero if the packet may be of the same flow. */
2035 	u8	same_flow:1;
2036 
2037 	/* Used in udp_gro_receive */
2038 	u8	udp_mark:1;
2039 
2040 	/* GRO checksum is valid */
2041 	u8	csum_valid:1;
2042 
2043 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2044 	u8	csum_cnt:3;
2045 
2046 	/* Free the skb? */
2047 	u8	free:2;
2048 #define NAPI_GRO_FREE		  1
2049 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2050 
2051 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2052 	u8	is_ipv6:1;
2053 
2054 	/* 7 bit hole */
2055 
2056 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2057 	__wsum	csum;
2058 
2059 	/* used in skb_gro_receive() slow path */
2060 	struct sk_buff *last;
2061 };
2062 
2063 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2064 
2065 struct packet_type {
2066 	__be16			type;	/* This is really htons(ether_type). */
2067 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2068 	int			(*func) (struct sk_buff *,
2069 					 struct net_device *,
2070 					 struct packet_type *,
2071 					 struct net_device *);
2072 	bool			(*id_match)(struct packet_type *ptype,
2073 					    struct sock *sk);
2074 	void			*af_packet_priv;
2075 	struct list_head	list;
2076 };
2077 
2078 struct offload_callbacks {
2079 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2080 						netdev_features_t features);
2081 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2082 						 struct sk_buff *skb);
2083 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2084 };
2085 
2086 struct packet_offload {
2087 	__be16			 type;	/* This is really htons(ether_type). */
2088 	u16			 priority;
2089 	struct offload_callbacks callbacks;
2090 	struct list_head	 list;
2091 };
2092 
2093 struct udp_offload;
2094 
2095 struct udp_offload_callbacks {
2096 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2097 						 struct sk_buff *skb,
2098 						 struct udp_offload *uoff);
2099 	int			(*gro_complete)(struct sk_buff *skb,
2100 						int nhoff,
2101 						struct udp_offload *uoff);
2102 };
2103 
2104 struct udp_offload {
2105 	__be16			 port;
2106 	u8			 ipproto;
2107 	struct udp_offload_callbacks callbacks;
2108 };
2109 
2110 /* often modified stats are per cpu, other are shared (netdev->stats) */
2111 struct pcpu_sw_netstats {
2112 	u64     rx_packets;
2113 	u64     rx_bytes;
2114 	u64     tx_packets;
2115 	u64     tx_bytes;
2116 	struct u64_stats_sync   syncp;
2117 };
2118 
2119 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2120 ({									\
2121 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2122 	if (pcpu_stats)	{						\
2123 		int __cpu;						\
2124 		for_each_possible_cpu(__cpu) {				\
2125 			typeof(type) *stat;				\
2126 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2127 			u64_stats_init(&stat->syncp);			\
2128 		}							\
2129 	}								\
2130 	pcpu_stats;							\
2131 })
2132 
2133 #define netdev_alloc_pcpu_stats(type)					\
2134 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2135 
2136 enum netdev_lag_tx_type {
2137 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2138 	NETDEV_LAG_TX_TYPE_RANDOM,
2139 	NETDEV_LAG_TX_TYPE_BROADCAST,
2140 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2141 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2142 	NETDEV_LAG_TX_TYPE_HASH,
2143 };
2144 
2145 struct netdev_lag_upper_info {
2146 	enum netdev_lag_tx_type tx_type;
2147 };
2148 
2149 struct netdev_lag_lower_state_info {
2150 	u8 link_up : 1,
2151 	   tx_enabled : 1;
2152 };
2153 
2154 #include <linux/notifier.h>
2155 
2156 /* netdevice notifier chain. Please remember to update the rtnetlink
2157  * notification exclusion list in rtnetlink_event() when adding new
2158  * types.
2159  */
2160 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
2161 #define NETDEV_DOWN	0x0002
2162 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
2163 				   detected a hardware crash and restarted
2164 				   - we can use this eg to kick tcp sessions
2165 				   once done */
2166 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
2167 #define NETDEV_REGISTER 0x0005
2168 #define NETDEV_UNREGISTER	0x0006
2169 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2170 #define NETDEV_CHANGEADDR	0x0008
2171 #define NETDEV_GOING_DOWN	0x0009
2172 #define NETDEV_CHANGENAME	0x000A
2173 #define NETDEV_FEAT_CHANGE	0x000B
2174 #define NETDEV_BONDING_FAILOVER 0x000C
2175 #define NETDEV_PRE_UP		0x000D
2176 #define NETDEV_PRE_TYPE_CHANGE	0x000E
2177 #define NETDEV_POST_TYPE_CHANGE	0x000F
2178 #define NETDEV_POST_INIT	0x0010
2179 #define NETDEV_UNREGISTER_FINAL 0x0011
2180 #define NETDEV_RELEASE		0x0012
2181 #define NETDEV_NOTIFY_PEERS	0x0013
2182 #define NETDEV_JOIN		0x0014
2183 #define NETDEV_CHANGEUPPER	0x0015
2184 #define NETDEV_RESEND_IGMP	0x0016
2185 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2186 #define NETDEV_CHANGEINFODATA	0x0018
2187 #define NETDEV_BONDING_INFO	0x0019
2188 #define NETDEV_PRECHANGEUPPER	0x001A
2189 #define NETDEV_CHANGELOWERSTATE	0x001B
2190 
2191 int register_netdevice_notifier(struct notifier_block *nb);
2192 int unregister_netdevice_notifier(struct notifier_block *nb);
2193 
2194 struct netdev_notifier_info {
2195 	struct net_device *dev;
2196 };
2197 
2198 struct netdev_notifier_change_info {
2199 	struct netdev_notifier_info info; /* must be first */
2200 	unsigned int flags_changed;
2201 };
2202 
2203 struct netdev_notifier_changeupper_info {
2204 	struct netdev_notifier_info info; /* must be first */
2205 	struct net_device *upper_dev; /* new upper dev */
2206 	bool master; /* is upper dev master */
2207 	bool linking; /* is the nofication for link or unlink */
2208 	void *upper_info; /* upper dev info */
2209 };
2210 
2211 struct netdev_notifier_changelowerstate_info {
2212 	struct netdev_notifier_info info; /* must be first */
2213 	void *lower_state_info; /* is lower dev state */
2214 };
2215 
2216 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2217 					     struct net_device *dev)
2218 {
2219 	info->dev = dev;
2220 }
2221 
2222 static inline struct net_device *
2223 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2224 {
2225 	return info->dev;
2226 }
2227 
2228 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2229 
2230 
2231 extern rwlock_t				dev_base_lock;		/* Device list lock */
2232 
2233 #define for_each_netdev(net, d)		\
2234 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2235 #define for_each_netdev_reverse(net, d)	\
2236 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2237 #define for_each_netdev_rcu(net, d)		\
2238 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2239 #define for_each_netdev_safe(net, d, n)	\
2240 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2241 #define for_each_netdev_continue(net, d)		\
2242 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2243 #define for_each_netdev_continue_rcu(net, d)		\
2244 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2245 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2246 		for_each_netdev_rcu(&init_net, slave)	\
2247 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2248 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2249 
2250 static inline struct net_device *next_net_device(struct net_device *dev)
2251 {
2252 	struct list_head *lh;
2253 	struct net *net;
2254 
2255 	net = dev_net(dev);
2256 	lh = dev->dev_list.next;
2257 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2258 }
2259 
2260 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2261 {
2262 	struct list_head *lh;
2263 	struct net *net;
2264 
2265 	net = dev_net(dev);
2266 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2267 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2268 }
2269 
2270 static inline struct net_device *first_net_device(struct net *net)
2271 {
2272 	return list_empty(&net->dev_base_head) ? NULL :
2273 		net_device_entry(net->dev_base_head.next);
2274 }
2275 
2276 static inline struct net_device *first_net_device_rcu(struct net *net)
2277 {
2278 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2279 
2280 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2281 }
2282 
2283 int netdev_boot_setup_check(struct net_device *dev);
2284 unsigned long netdev_boot_base(const char *prefix, int unit);
2285 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2286 				       const char *hwaddr);
2287 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2288 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2289 void dev_add_pack(struct packet_type *pt);
2290 void dev_remove_pack(struct packet_type *pt);
2291 void __dev_remove_pack(struct packet_type *pt);
2292 void dev_add_offload(struct packet_offload *po);
2293 void dev_remove_offload(struct packet_offload *po);
2294 
2295 int dev_get_iflink(const struct net_device *dev);
2296 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2297 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2298 				      unsigned short mask);
2299 struct net_device *dev_get_by_name(struct net *net, const char *name);
2300 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2301 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2302 int dev_alloc_name(struct net_device *dev, const char *name);
2303 int dev_open(struct net_device *dev);
2304 int dev_close(struct net_device *dev);
2305 int dev_close_many(struct list_head *head, bool unlink);
2306 void dev_disable_lro(struct net_device *dev);
2307 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2308 int dev_queue_xmit(struct sk_buff *skb);
2309 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2310 int register_netdevice(struct net_device *dev);
2311 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2312 void unregister_netdevice_many(struct list_head *head);
2313 static inline void unregister_netdevice(struct net_device *dev)
2314 {
2315 	unregister_netdevice_queue(dev, NULL);
2316 }
2317 
2318 int netdev_refcnt_read(const struct net_device *dev);
2319 void free_netdev(struct net_device *dev);
2320 void netdev_freemem(struct net_device *dev);
2321 void synchronize_net(void);
2322 int init_dummy_netdev(struct net_device *dev);
2323 
2324 DECLARE_PER_CPU(int, xmit_recursion);
2325 static inline int dev_recursion_level(void)
2326 {
2327 	return this_cpu_read(xmit_recursion);
2328 }
2329 
2330 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2331 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2332 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2333 int netdev_get_name(struct net *net, char *name, int ifindex);
2334 int dev_restart(struct net_device *dev);
2335 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2336 
2337 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2338 {
2339 	return NAPI_GRO_CB(skb)->data_offset;
2340 }
2341 
2342 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2343 {
2344 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2345 }
2346 
2347 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2348 {
2349 	NAPI_GRO_CB(skb)->data_offset += len;
2350 }
2351 
2352 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2353 					unsigned int offset)
2354 {
2355 	return NAPI_GRO_CB(skb)->frag0 + offset;
2356 }
2357 
2358 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2359 {
2360 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2361 }
2362 
2363 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2364 					unsigned int offset)
2365 {
2366 	if (!pskb_may_pull(skb, hlen))
2367 		return NULL;
2368 
2369 	NAPI_GRO_CB(skb)->frag0 = NULL;
2370 	NAPI_GRO_CB(skb)->frag0_len = 0;
2371 	return skb->data + offset;
2372 }
2373 
2374 static inline void *skb_gro_network_header(struct sk_buff *skb)
2375 {
2376 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2377 	       skb_network_offset(skb);
2378 }
2379 
2380 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2381 					const void *start, unsigned int len)
2382 {
2383 	if (NAPI_GRO_CB(skb)->csum_valid)
2384 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2385 						  csum_partial(start, len, 0));
2386 }
2387 
2388 /* GRO checksum functions. These are logical equivalents of the normal
2389  * checksum functions (in skbuff.h) except that they operate on the GRO
2390  * offsets and fields in sk_buff.
2391  */
2392 
2393 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2394 
2395 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2396 {
2397 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2398 }
2399 
2400 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2401 						      bool zero_okay,
2402 						      __sum16 check)
2403 {
2404 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2405 		skb_checksum_start_offset(skb) <
2406 		 skb_gro_offset(skb)) &&
2407 		!skb_at_gro_remcsum_start(skb) &&
2408 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2409 		(!zero_okay || check));
2410 }
2411 
2412 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2413 							   __wsum psum)
2414 {
2415 	if (NAPI_GRO_CB(skb)->csum_valid &&
2416 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2417 		return 0;
2418 
2419 	NAPI_GRO_CB(skb)->csum = psum;
2420 
2421 	return __skb_gro_checksum_complete(skb);
2422 }
2423 
2424 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2425 {
2426 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2427 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2428 		NAPI_GRO_CB(skb)->csum_cnt--;
2429 	} else {
2430 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2431 		 * verified a new top level checksum or an encapsulated one
2432 		 * during GRO. This saves work if we fallback to normal path.
2433 		 */
2434 		__skb_incr_checksum_unnecessary(skb);
2435 	}
2436 }
2437 
2438 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2439 				    compute_pseudo)			\
2440 ({									\
2441 	__sum16 __ret = 0;						\
2442 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2443 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2444 				compute_pseudo(skb, proto));		\
2445 	if (__ret)							\
2446 		__skb_mark_checksum_bad(skb);				\
2447 	else								\
2448 		skb_gro_incr_csum_unnecessary(skb);			\
2449 	__ret;								\
2450 })
2451 
2452 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2453 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2454 
2455 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2456 					     compute_pseudo)		\
2457 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2458 
2459 #define skb_gro_checksum_simple_validate(skb)				\
2460 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2461 
2462 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2463 {
2464 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2465 		!NAPI_GRO_CB(skb)->csum_valid);
2466 }
2467 
2468 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2469 					      __sum16 check, __wsum pseudo)
2470 {
2471 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2472 	NAPI_GRO_CB(skb)->csum_valid = 1;
2473 }
2474 
2475 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2476 do {									\
2477 	if (__skb_gro_checksum_convert_check(skb))			\
2478 		__skb_gro_checksum_convert(skb, check,			\
2479 					   compute_pseudo(skb, proto));	\
2480 } while (0)
2481 
2482 struct gro_remcsum {
2483 	int offset;
2484 	__wsum delta;
2485 };
2486 
2487 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2488 {
2489 	grc->offset = 0;
2490 	grc->delta = 0;
2491 }
2492 
2493 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2494 					    unsigned int off, size_t hdrlen,
2495 					    int start, int offset,
2496 					    struct gro_remcsum *grc,
2497 					    bool nopartial)
2498 {
2499 	__wsum delta;
2500 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2501 
2502 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2503 
2504 	if (!nopartial) {
2505 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2506 		return ptr;
2507 	}
2508 
2509 	ptr = skb_gro_header_fast(skb, off);
2510 	if (skb_gro_header_hard(skb, off + plen)) {
2511 		ptr = skb_gro_header_slow(skb, off + plen, off);
2512 		if (!ptr)
2513 			return NULL;
2514 	}
2515 
2516 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2517 			       start, offset);
2518 
2519 	/* Adjust skb->csum since we changed the packet */
2520 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2521 
2522 	grc->offset = off + hdrlen + offset;
2523 	grc->delta = delta;
2524 
2525 	return ptr;
2526 }
2527 
2528 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2529 					   struct gro_remcsum *grc)
2530 {
2531 	void *ptr;
2532 	size_t plen = grc->offset + sizeof(u16);
2533 
2534 	if (!grc->delta)
2535 		return;
2536 
2537 	ptr = skb_gro_header_fast(skb, grc->offset);
2538 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2539 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2540 		if (!ptr)
2541 			return;
2542 	}
2543 
2544 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2545 }
2546 
2547 struct skb_csum_offl_spec {
2548 	__u16		ipv4_okay:1,
2549 			ipv6_okay:1,
2550 			encap_okay:1,
2551 			ip_options_okay:1,
2552 			ext_hdrs_okay:1,
2553 			tcp_okay:1,
2554 			udp_okay:1,
2555 			sctp_okay:1,
2556 			vlan_okay:1,
2557 			no_encapped_ipv6:1,
2558 			no_not_encapped:1;
2559 };
2560 
2561 bool __skb_csum_offload_chk(struct sk_buff *skb,
2562 			    const struct skb_csum_offl_spec *spec,
2563 			    bool *csum_encapped,
2564 			    bool csum_help);
2565 
2566 static inline bool skb_csum_offload_chk(struct sk_buff *skb,
2567 					const struct skb_csum_offl_spec *spec,
2568 					bool *csum_encapped,
2569 					bool csum_help)
2570 {
2571 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2572 		return false;
2573 
2574 	return __skb_csum_offload_chk(skb, spec, csum_encapped, csum_help);
2575 }
2576 
2577 static inline bool skb_csum_offload_chk_help(struct sk_buff *skb,
2578 					     const struct skb_csum_offl_spec *spec)
2579 {
2580 	bool csum_encapped;
2581 
2582 	return skb_csum_offload_chk(skb, spec, &csum_encapped, true);
2583 }
2584 
2585 static inline bool skb_csum_off_chk_help_cmn(struct sk_buff *skb)
2586 {
2587 	static const struct skb_csum_offl_spec csum_offl_spec = {
2588 		.ipv4_okay = 1,
2589 		.ip_options_okay = 1,
2590 		.ipv6_okay = 1,
2591 		.vlan_okay = 1,
2592 		.tcp_okay = 1,
2593 		.udp_okay = 1,
2594 	};
2595 
2596 	return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2597 }
2598 
2599 static inline bool skb_csum_off_chk_help_cmn_v4_only(struct sk_buff *skb)
2600 {
2601 	static const struct skb_csum_offl_spec csum_offl_spec = {
2602 		.ipv4_okay = 1,
2603 		.ip_options_okay = 1,
2604 		.tcp_okay = 1,
2605 		.udp_okay = 1,
2606 		.vlan_okay = 1,
2607 	};
2608 
2609 	return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2610 }
2611 
2612 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2613 				  unsigned short type,
2614 				  const void *daddr, const void *saddr,
2615 				  unsigned int len)
2616 {
2617 	if (!dev->header_ops || !dev->header_ops->create)
2618 		return 0;
2619 
2620 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2621 }
2622 
2623 static inline int dev_parse_header(const struct sk_buff *skb,
2624 				   unsigned char *haddr)
2625 {
2626 	const struct net_device *dev = skb->dev;
2627 
2628 	if (!dev->header_ops || !dev->header_ops->parse)
2629 		return 0;
2630 	return dev->header_ops->parse(skb, haddr);
2631 }
2632 
2633 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2634 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2635 static inline int unregister_gifconf(unsigned int family)
2636 {
2637 	return register_gifconf(family, NULL);
2638 }
2639 
2640 #ifdef CONFIG_NET_FLOW_LIMIT
2641 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2642 struct sd_flow_limit {
2643 	u64			count;
2644 	unsigned int		num_buckets;
2645 	unsigned int		history_head;
2646 	u16			history[FLOW_LIMIT_HISTORY];
2647 	u8			buckets[];
2648 };
2649 
2650 extern int netdev_flow_limit_table_len;
2651 #endif /* CONFIG_NET_FLOW_LIMIT */
2652 
2653 /*
2654  * Incoming packets are placed on per-cpu queues
2655  */
2656 struct softnet_data {
2657 	struct list_head	poll_list;
2658 	struct sk_buff_head	process_queue;
2659 
2660 	/* stats */
2661 	unsigned int		processed;
2662 	unsigned int		time_squeeze;
2663 	unsigned int		cpu_collision;
2664 	unsigned int		received_rps;
2665 #ifdef CONFIG_RPS
2666 	struct softnet_data	*rps_ipi_list;
2667 #endif
2668 #ifdef CONFIG_NET_FLOW_LIMIT
2669 	struct sd_flow_limit __rcu *flow_limit;
2670 #endif
2671 	struct Qdisc		*output_queue;
2672 	struct Qdisc		**output_queue_tailp;
2673 	struct sk_buff		*completion_queue;
2674 
2675 #ifdef CONFIG_RPS
2676 	/* Elements below can be accessed between CPUs for RPS */
2677 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2678 	struct softnet_data	*rps_ipi_next;
2679 	unsigned int		cpu;
2680 	unsigned int		input_queue_head;
2681 	unsigned int		input_queue_tail;
2682 #endif
2683 	unsigned int		dropped;
2684 	struct sk_buff_head	input_pkt_queue;
2685 	struct napi_struct	backlog;
2686 
2687 };
2688 
2689 static inline void input_queue_head_incr(struct softnet_data *sd)
2690 {
2691 #ifdef CONFIG_RPS
2692 	sd->input_queue_head++;
2693 #endif
2694 }
2695 
2696 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2697 					      unsigned int *qtail)
2698 {
2699 #ifdef CONFIG_RPS
2700 	*qtail = ++sd->input_queue_tail;
2701 #endif
2702 }
2703 
2704 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2705 
2706 void __netif_schedule(struct Qdisc *q);
2707 void netif_schedule_queue(struct netdev_queue *txq);
2708 
2709 static inline void netif_tx_schedule_all(struct net_device *dev)
2710 {
2711 	unsigned int i;
2712 
2713 	for (i = 0; i < dev->num_tx_queues; i++)
2714 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2715 }
2716 
2717 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2718 {
2719 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2720 }
2721 
2722 /**
2723  *	netif_start_queue - allow transmit
2724  *	@dev: network device
2725  *
2726  *	Allow upper layers to call the device hard_start_xmit routine.
2727  */
2728 static inline void netif_start_queue(struct net_device *dev)
2729 {
2730 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2731 }
2732 
2733 static inline void netif_tx_start_all_queues(struct net_device *dev)
2734 {
2735 	unsigned int i;
2736 
2737 	for (i = 0; i < dev->num_tx_queues; i++) {
2738 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2739 		netif_tx_start_queue(txq);
2740 	}
2741 }
2742 
2743 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2744 
2745 /**
2746  *	netif_wake_queue - restart transmit
2747  *	@dev: network device
2748  *
2749  *	Allow upper layers to call the device hard_start_xmit routine.
2750  *	Used for flow control when transmit resources are available.
2751  */
2752 static inline void netif_wake_queue(struct net_device *dev)
2753 {
2754 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2755 }
2756 
2757 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2758 {
2759 	unsigned int i;
2760 
2761 	for (i = 0; i < dev->num_tx_queues; i++) {
2762 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2763 		netif_tx_wake_queue(txq);
2764 	}
2765 }
2766 
2767 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2768 {
2769 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2770 }
2771 
2772 /**
2773  *	netif_stop_queue - stop transmitted packets
2774  *	@dev: network device
2775  *
2776  *	Stop upper layers calling the device hard_start_xmit routine.
2777  *	Used for flow control when transmit resources are unavailable.
2778  */
2779 static inline void netif_stop_queue(struct net_device *dev)
2780 {
2781 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2782 }
2783 
2784 void netif_tx_stop_all_queues(struct net_device *dev);
2785 
2786 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2787 {
2788 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2789 }
2790 
2791 /**
2792  *	netif_queue_stopped - test if transmit queue is flowblocked
2793  *	@dev: network device
2794  *
2795  *	Test if transmit queue on device is currently unable to send.
2796  */
2797 static inline bool netif_queue_stopped(const struct net_device *dev)
2798 {
2799 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2800 }
2801 
2802 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2803 {
2804 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2805 }
2806 
2807 static inline bool
2808 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2809 {
2810 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2811 }
2812 
2813 static inline bool
2814 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2815 {
2816 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2817 }
2818 
2819 /**
2820  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2821  *	@dev_queue: pointer to transmit queue
2822  *
2823  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2824  * to give appropriate hint to the cpu.
2825  */
2826 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2827 {
2828 #ifdef CONFIG_BQL
2829 	prefetchw(&dev_queue->dql.num_queued);
2830 #endif
2831 }
2832 
2833 /**
2834  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2835  *	@dev_queue: pointer to transmit queue
2836  *
2837  * BQL enabled drivers might use this helper in their TX completion path,
2838  * to give appropriate hint to the cpu.
2839  */
2840 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2841 {
2842 #ifdef CONFIG_BQL
2843 	prefetchw(&dev_queue->dql.limit);
2844 #endif
2845 }
2846 
2847 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2848 					unsigned int bytes)
2849 {
2850 #ifdef CONFIG_BQL
2851 	dql_queued(&dev_queue->dql, bytes);
2852 
2853 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2854 		return;
2855 
2856 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2857 
2858 	/*
2859 	 * The XOFF flag must be set before checking the dql_avail below,
2860 	 * because in netdev_tx_completed_queue we update the dql_completed
2861 	 * before checking the XOFF flag.
2862 	 */
2863 	smp_mb();
2864 
2865 	/* check again in case another CPU has just made room avail */
2866 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2867 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2868 #endif
2869 }
2870 
2871 /**
2872  * 	netdev_sent_queue - report the number of bytes queued to hardware
2873  * 	@dev: network device
2874  * 	@bytes: number of bytes queued to the hardware device queue
2875  *
2876  * 	Report the number of bytes queued for sending/completion to the network
2877  * 	device hardware queue. @bytes should be a good approximation and should
2878  * 	exactly match netdev_completed_queue() @bytes
2879  */
2880 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2881 {
2882 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2883 }
2884 
2885 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2886 					     unsigned int pkts, unsigned int bytes)
2887 {
2888 #ifdef CONFIG_BQL
2889 	if (unlikely(!bytes))
2890 		return;
2891 
2892 	dql_completed(&dev_queue->dql, bytes);
2893 
2894 	/*
2895 	 * Without the memory barrier there is a small possiblity that
2896 	 * netdev_tx_sent_queue will miss the update and cause the queue to
2897 	 * be stopped forever
2898 	 */
2899 	smp_mb();
2900 
2901 	if (dql_avail(&dev_queue->dql) < 0)
2902 		return;
2903 
2904 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2905 		netif_schedule_queue(dev_queue);
2906 #endif
2907 }
2908 
2909 /**
2910  * 	netdev_completed_queue - report bytes and packets completed by device
2911  * 	@dev: network device
2912  * 	@pkts: actual number of packets sent over the medium
2913  * 	@bytes: actual number of bytes sent over the medium
2914  *
2915  * 	Report the number of bytes and packets transmitted by the network device
2916  * 	hardware queue over the physical medium, @bytes must exactly match the
2917  * 	@bytes amount passed to netdev_sent_queue()
2918  */
2919 static inline void netdev_completed_queue(struct net_device *dev,
2920 					  unsigned int pkts, unsigned int bytes)
2921 {
2922 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2923 }
2924 
2925 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2926 {
2927 #ifdef CONFIG_BQL
2928 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2929 	dql_reset(&q->dql);
2930 #endif
2931 }
2932 
2933 /**
2934  * 	netdev_reset_queue - reset the packets and bytes count of a network device
2935  * 	@dev_queue: network device
2936  *
2937  * 	Reset the bytes and packet count of a network device and clear the
2938  * 	software flow control OFF bit for this network device
2939  */
2940 static inline void netdev_reset_queue(struct net_device *dev_queue)
2941 {
2942 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2943 }
2944 
2945 /**
2946  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
2947  * 	@dev: network device
2948  * 	@queue_index: given tx queue index
2949  *
2950  * 	Returns 0 if given tx queue index >= number of device tx queues,
2951  * 	otherwise returns the originally passed tx queue index.
2952  */
2953 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2954 {
2955 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2956 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2957 				     dev->name, queue_index,
2958 				     dev->real_num_tx_queues);
2959 		return 0;
2960 	}
2961 
2962 	return queue_index;
2963 }
2964 
2965 /**
2966  *	netif_running - test if up
2967  *	@dev: network device
2968  *
2969  *	Test if the device has been brought up.
2970  */
2971 static inline bool netif_running(const struct net_device *dev)
2972 {
2973 	return test_bit(__LINK_STATE_START, &dev->state);
2974 }
2975 
2976 /*
2977  * Routines to manage the subqueues on a device.  We only need start
2978  * stop, and a check if it's stopped.  All other device management is
2979  * done at the overall netdevice level.
2980  * Also test the device if we're multiqueue.
2981  */
2982 
2983 /**
2984  *	netif_start_subqueue - allow sending packets on subqueue
2985  *	@dev: network device
2986  *	@queue_index: sub queue index
2987  *
2988  * Start individual transmit queue of a device with multiple transmit queues.
2989  */
2990 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2991 {
2992 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2993 
2994 	netif_tx_start_queue(txq);
2995 }
2996 
2997 /**
2998  *	netif_stop_subqueue - stop sending packets on subqueue
2999  *	@dev: network device
3000  *	@queue_index: sub queue index
3001  *
3002  * Stop individual transmit queue of a device with multiple transmit queues.
3003  */
3004 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3005 {
3006 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3007 	netif_tx_stop_queue(txq);
3008 }
3009 
3010 /**
3011  *	netif_subqueue_stopped - test status of subqueue
3012  *	@dev: network device
3013  *	@queue_index: sub queue index
3014  *
3015  * Check individual transmit queue of a device with multiple transmit queues.
3016  */
3017 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3018 					    u16 queue_index)
3019 {
3020 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3021 
3022 	return netif_tx_queue_stopped(txq);
3023 }
3024 
3025 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3026 					  struct sk_buff *skb)
3027 {
3028 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3029 }
3030 
3031 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
3032 
3033 #ifdef CONFIG_XPS
3034 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3035 			u16 index);
3036 #else
3037 static inline int netif_set_xps_queue(struct net_device *dev,
3038 				      const struct cpumask *mask,
3039 				      u16 index)
3040 {
3041 	return 0;
3042 }
3043 #endif
3044 
3045 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3046 		  unsigned int num_tx_queues);
3047 
3048 /*
3049  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3050  * as a distribution range limit for the returned value.
3051  */
3052 static inline u16 skb_tx_hash(const struct net_device *dev,
3053 			      struct sk_buff *skb)
3054 {
3055 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3056 }
3057 
3058 /**
3059  *	netif_is_multiqueue - test if device has multiple transmit queues
3060  *	@dev: network device
3061  *
3062  * Check if device has multiple transmit queues
3063  */
3064 static inline bool netif_is_multiqueue(const struct net_device *dev)
3065 {
3066 	return dev->num_tx_queues > 1;
3067 }
3068 
3069 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3070 
3071 #ifdef CONFIG_SYSFS
3072 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3073 #else
3074 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3075 						unsigned int rxq)
3076 {
3077 	return 0;
3078 }
3079 #endif
3080 
3081 #ifdef CONFIG_SYSFS
3082 static inline unsigned int get_netdev_rx_queue_index(
3083 		struct netdev_rx_queue *queue)
3084 {
3085 	struct net_device *dev = queue->dev;
3086 	int index = queue - dev->_rx;
3087 
3088 	BUG_ON(index >= dev->num_rx_queues);
3089 	return index;
3090 }
3091 #endif
3092 
3093 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3094 int netif_get_num_default_rss_queues(void);
3095 
3096 enum skb_free_reason {
3097 	SKB_REASON_CONSUMED,
3098 	SKB_REASON_DROPPED,
3099 };
3100 
3101 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3102 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3103 
3104 /*
3105  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3106  * interrupt context or with hardware interrupts being disabled.
3107  * (in_irq() || irqs_disabled())
3108  *
3109  * We provide four helpers that can be used in following contexts :
3110  *
3111  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3112  *  replacing kfree_skb(skb)
3113  *
3114  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3115  *  Typically used in place of consume_skb(skb) in TX completion path
3116  *
3117  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3118  *  replacing kfree_skb(skb)
3119  *
3120  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3121  *  and consumed a packet. Used in place of consume_skb(skb)
3122  */
3123 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3124 {
3125 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3126 }
3127 
3128 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3129 {
3130 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3131 }
3132 
3133 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3134 {
3135 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3136 }
3137 
3138 static inline void dev_consume_skb_any(struct sk_buff *skb)
3139 {
3140 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3141 }
3142 
3143 int netif_rx(struct sk_buff *skb);
3144 int netif_rx_ni(struct sk_buff *skb);
3145 int netif_receive_skb(struct sk_buff *skb);
3146 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3147 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3148 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3149 gro_result_t napi_gro_frags(struct napi_struct *napi);
3150 struct packet_offload *gro_find_receive_by_type(__be16 type);
3151 struct packet_offload *gro_find_complete_by_type(__be16 type);
3152 
3153 static inline void napi_free_frags(struct napi_struct *napi)
3154 {
3155 	kfree_skb(napi->skb);
3156 	napi->skb = NULL;
3157 }
3158 
3159 int netdev_rx_handler_register(struct net_device *dev,
3160 			       rx_handler_func_t *rx_handler,
3161 			       void *rx_handler_data);
3162 void netdev_rx_handler_unregister(struct net_device *dev);
3163 
3164 bool dev_valid_name(const char *name);
3165 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3166 int dev_ethtool(struct net *net, struct ifreq *);
3167 unsigned int dev_get_flags(const struct net_device *);
3168 int __dev_change_flags(struct net_device *, unsigned int flags);
3169 int dev_change_flags(struct net_device *, unsigned int);
3170 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3171 			unsigned int gchanges);
3172 int dev_change_name(struct net_device *, const char *);
3173 int dev_set_alias(struct net_device *, const char *, size_t);
3174 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3175 int dev_set_mtu(struct net_device *, int);
3176 void dev_set_group(struct net_device *, int);
3177 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3178 int dev_change_carrier(struct net_device *, bool new_carrier);
3179 int dev_get_phys_port_id(struct net_device *dev,
3180 			 struct netdev_phys_item_id *ppid);
3181 int dev_get_phys_port_name(struct net_device *dev,
3182 			   char *name, size_t len);
3183 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3184 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3185 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3186 				    struct netdev_queue *txq, int *ret);
3187 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3188 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3189 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
3190 
3191 extern int		netdev_budget;
3192 
3193 /* Called by rtnetlink.c:rtnl_unlock() */
3194 void netdev_run_todo(void);
3195 
3196 /**
3197  *	dev_put - release reference to device
3198  *	@dev: network device
3199  *
3200  * Release reference to device to allow it to be freed.
3201  */
3202 static inline void dev_put(struct net_device *dev)
3203 {
3204 	this_cpu_dec(*dev->pcpu_refcnt);
3205 }
3206 
3207 /**
3208  *	dev_hold - get reference to device
3209  *	@dev: network device
3210  *
3211  * Hold reference to device to keep it from being freed.
3212  */
3213 static inline void dev_hold(struct net_device *dev)
3214 {
3215 	this_cpu_inc(*dev->pcpu_refcnt);
3216 }
3217 
3218 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3219  * and _off may be called from IRQ context, but it is caller
3220  * who is responsible for serialization of these calls.
3221  *
3222  * The name carrier is inappropriate, these functions should really be
3223  * called netif_lowerlayer_*() because they represent the state of any
3224  * kind of lower layer not just hardware media.
3225  */
3226 
3227 void linkwatch_init_dev(struct net_device *dev);
3228 void linkwatch_fire_event(struct net_device *dev);
3229 void linkwatch_forget_dev(struct net_device *dev);
3230 
3231 /**
3232  *	netif_carrier_ok - test if carrier present
3233  *	@dev: network device
3234  *
3235  * Check if carrier is present on device
3236  */
3237 static inline bool netif_carrier_ok(const struct net_device *dev)
3238 {
3239 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3240 }
3241 
3242 unsigned long dev_trans_start(struct net_device *dev);
3243 
3244 void __netdev_watchdog_up(struct net_device *dev);
3245 
3246 void netif_carrier_on(struct net_device *dev);
3247 
3248 void netif_carrier_off(struct net_device *dev);
3249 
3250 /**
3251  *	netif_dormant_on - mark device as dormant.
3252  *	@dev: network device
3253  *
3254  * Mark device as dormant (as per RFC2863).
3255  *
3256  * The dormant state indicates that the relevant interface is not
3257  * actually in a condition to pass packets (i.e., it is not 'up') but is
3258  * in a "pending" state, waiting for some external event.  For "on-
3259  * demand" interfaces, this new state identifies the situation where the
3260  * interface is waiting for events to place it in the up state.
3261  *
3262  */
3263 static inline void netif_dormant_on(struct net_device *dev)
3264 {
3265 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3266 		linkwatch_fire_event(dev);
3267 }
3268 
3269 /**
3270  *	netif_dormant_off - set device as not dormant.
3271  *	@dev: network device
3272  *
3273  * Device is not in dormant state.
3274  */
3275 static inline void netif_dormant_off(struct net_device *dev)
3276 {
3277 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3278 		linkwatch_fire_event(dev);
3279 }
3280 
3281 /**
3282  *	netif_dormant - test if carrier present
3283  *	@dev: network device
3284  *
3285  * Check if carrier is present on device
3286  */
3287 static inline bool netif_dormant(const struct net_device *dev)
3288 {
3289 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3290 }
3291 
3292 
3293 /**
3294  *	netif_oper_up - test if device is operational
3295  *	@dev: network device
3296  *
3297  * Check if carrier is operational
3298  */
3299 static inline bool netif_oper_up(const struct net_device *dev)
3300 {
3301 	return (dev->operstate == IF_OPER_UP ||
3302 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3303 }
3304 
3305 /**
3306  *	netif_device_present - is device available or removed
3307  *	@dev: network device
3308  *
3309  * Check if device has not been removed from system.
3310  */
3311 static inline bool netif_device_present(struct net_device *dev)
3312 {
3313 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3314 }
3315 
3316 void netif_device_detach(struct net_device *dev);
3317 
3318 void netif_device_attach(struct net_device *dev);
3319 
3320 /*
3321  * Network interface message level settings
3322  */
3323 
3324 enum {
3325 	NETIF_MSG_DRV		= 0x0001,
3326 	NETIF_MSG_PROBE		= 0x0002,
3327 	NETIF_MSG_LINK		= 0x0004,
3328 	NETIF_MSG_TIMER		= 0x0008,
3329 	NETIF_MSG_IFDOWN	= 0x0010,
3330 	NETIF_MSG_IFUP		= 0x0020,
3331 	NETIF_MSG_RX_ERR	= 0x0040,
3332 	NETIF_MSG_TX_ERR	= 0x0080,
3333 	NETIF_MSG_TX_QUEUED	= 0x0100,
3334 	NETIF_MSG_INTR		= 0x0200,
3335 	NETIF_MSG_TX_DONE	= 0x0400,
3336 	NETIF_MSG_RX_STATUS	= 0x0800,
3337 	NETIF_MSG_PKTDATA	= 0x1000,
3338 	NETIF_MSG_HW		= 0x2000,
3339 	NETIF_MSG_WOL		= 0x4000,
3340 };
3341 
3342 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3343 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3344 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3345 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3346 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3347 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3348 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3349 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3350 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3351 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3352 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3353 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3354 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3355 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3356 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3357 
3358 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3359 {
3360 	/* use default */
3361 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3362 		return default_msg_enable_bits;
3363 	if (debug_value == 0)	/* no output */
3364 		return 0;
3365 	/* set low N bits */
3366 	return (1 << debug_value) - 1;
3367 }
3368 
3369 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3370 {
3371 	spin_lock(&txq->_xmit_lock);
3372 	txq->xmit_lock_owner = cpu;
3373 }
3374 
3375 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3376 {
3377 	spin_lock_bh(&txq->_xmit_lock);
3378 	txq->xmit_lock_owner = smp_processor_id();
3379 }
3380 
3381 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3382 {
3383 	bool ok = spin_trylock(&txq->_xmit_lock);
3384 	if (likely(ok))
3385 		txq->xmit_lock_owner = smp_processor_id();
3386 	return ok;
3387 }
3388 
3389 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3390 {
3391 	txq->xmit_lock_owner = -1;
3392 	spin_unlock(&txq->_xmit_lock);
3393 }
3394 
3395 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3396 {
3397 	txq->xmit_lock_owner = -1;
3398 	spin_unlock_bh(&txq->_xmit_lock);
3399 }
3400 
3401 static inline void txq_trans_update(struct netdev_queue *txq)
3402 {
3403 	if (txq->xmit_lock_owner != -1)
3404 		txq->trans_start = jiffies;
3405 }
3406 
3407 /**
3408  *	netif_tx_lock - grab network device transmit lock
3409  *	@dev: network device
3410  *
3411  * Get network device transmit lock
3412  */
3413 static inline void netif_tx_lock(struct net_device *dev)
3414 {
3415 	unsigned int i;
3416 	int cpu;
3417 
3418 	spin_lock(&dev->tx_global_lock);
3419 	cpu = smp_processor_id();
3420 	for (i = 0; i < dev->num_tx_queues; i++) {
3421 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3422 
3423 		/* We are the only thread of execution doing a
3424 		 * freeze, but we have to grab the _xmit_lock in
3425 		 * order to synchronize with threads which are in
3426 		 * the ->hard_start_xmit() handler and already
3427 		 * checked the frozen bit.
3428 		 */
3429 		__netif_tx_lock(txq, cpu);
3430 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3431 		__netif_tx_unlock(txq);
3432 	}
3433 }
3434 
3435 static inline void netif_tx_lock_bh(struct net_device *dev)
3436 {
3437 	local_bh_disable();
3438 	netif_tx_lock(dev);
3439 }
3440 
3441 static inline void netif_tx_unlock(struct net_device *dev)
3442 {
3443 	unsigned int i;
3444 
3445 	for (i = 0; i < dev->num_tx_queues; i++) {
3446 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3447 
3448 		/* No need to grab the _xmit_lock here.  If the
3449 		 * queue is not stopped for another reason, we
3450 		 * force a schedule.
3451 		 */
3452 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3453 		netif_schedule_queue(txq);
3454 	}
3455 	spin_unlock(&dev->tx_global_lock);
3456 }
3457 
3458 static inline void netif_tx_unlock_bh(struct net_device *dev)
3459 {
3460 	netif_tx_unlock(dev);
3461 	local_bh_enable();
3462 }
3463 
3464 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3465 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3466 		__netif_tx_lock(txq, cpu);		\
3467 	}						\
3468 }
3469 
3470 #define HARD_TX_TRYLOCK(dev, txq)			\
3471 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3472 		__netif_tx_trylock(txq) :		\
3473 		true )
3474 
3475 #define HARD_TX_UNLOCK(dev, txq) {			\
3476 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3477 		__netif_tx_unlock(txq);			\
3478 	}						\
3479 }
3480 
3481 static inline void netif_tx_disable(struct net_device *dev)
3482 {
3483 	unsigned int i;
3484 	int cpu;
3485 
3486 	local_bh_disable();
3487 	cpu = smp_processor_id();
3488 	for (i = 0; i < dev->num_tx_queues; i++) {
3489 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3490 
3491 		__netif_tx_lock(txq, cpu);
3492 		netif_tx_stop_queue(txq);
3493 		__netif_tx_unlock(txq);
3494 	}
3495 	local_bh_enable();
3496 }
3497 
3498 static inline void netif_addr_lock(struct net_device *dev)
3499 {
3500 	spin_lock(&dev->addr_list_lock);
3501 }
3502 
3503 static inline void netif_addr_lock_nested(struct net_device *dev)
3504 {
3505 	int subclass = SINGLE_DEPTH_NESTING;
3506 
3507 	if (dev->netdev_ops->ndo_get_lock_subclass)
3508 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3509 
3510 	spin_lock_nested(&dev->addr_list_lock, subclass);
3511 }
3512 
3513 static inline void netif_addr_lock_bh(struct net_device *dev)
3514 {
3515 	spin_lock_bh(&dev->addr_list_lock);
3516 }
3517 
3518 static inline void netif_addr_unlock(struct net_device *dev)
3519 {
3520 	spin_unlock(&dev->addr_list_lock);
3521 }
3522 
3523 static inline void netif_addr_unlock_bh(struct net_device *dev)
3524 {
3525 	spin_unlock_bh(&dev->addr_list_lock);
3526 }
3527 
3528 /*
3529  * dev_addrs walker. Should be used only for read access. Call with
3530  * rcu_read_lock held.
3531  */
3532 #define for_each_dev_addr(dev, ha) \
3533 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3534 
3535 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3536 
3537 void ether_setup(struct net_device *dev);
3538 
3539 /* Support for loadable net-drivers */
3540 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3541 				    unsigned char name_assign_type,
3542 				    void (*setup)(struct net_device *),
3543 				    unsigned int txqs, unsigned int rxqs);
3544 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3545 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3546 
3547 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3548 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3549 			 count)
3550 
3551 int register_netdev(struct net_device *dev);
3552 void unregister_netdev(struct net_device *dev);
3553 
3554 /* General hardware address lists handling functions */
3555 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3556 		   struct netdev_hw_addr_list *from_list, int addr_len);
3557 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3558 		      struct netdev_hw_addr_list *from_list, int addr_len);
3559 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3560 		       struct net_device *dev,
3561 		       int (*sync)(struct net_device *, const unsigned char *),
3562 		       int (*unsync)(struct net_device *,
3563 				     const unsigned char *));
3564 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3565 			  struct net_device *dev,
3566 			  int (*unsync)(struct net_device *,
3567 					const unsigned char *));
3568 void __hw_addr_init(struct netdev_hw_addr_list *list);
3569 
3570 /* Functions used for device addresses handling */
3571 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3572 		 unsigned char addr_type);
3573 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3574 		 unsigned char addr_type);
3575 void dev_addr_flush(struct net_device *dev);
3576 int dev_addr_init(struct net_device *dev);
3577 
3578 /* Functions used for unicast addresses handling */
3579 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3580 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3581 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3582 int dev_uc_sync(struct net_device *to, struct net_device *from);
3583 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3584 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3585 void dev_uc_flush(struct net_device *dev);
3586 void dev_uc_init(struct net_device *dev);
3587 
3588 /**
3589  *  __dev_uc_sync - Synchonize device's unicast list
3590  *  @dev:  device to sync
3591  *  @sync: function to call if address should be added
3592  *  @unsync: function to call if address should be removed
3593  *
3594  *  Add newly added addresses to the interface, and release
3595  *  addresses that have been deleted.
3596  **/
3597 static inline int __dev_uc_sync(struct net_device *dev,
3598 				int (*sync)(struct net_device *,
3599 					    const unsigned char *),
3600 				int (*unsync)(struct net_device *,
3601 					      const unsigned char *))
3602 {
3603 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3604 }
3605 
3606 /**
3607  *  __dev_uc_unsync - Remove synchronized addresses from device
3608  *  @dev:  device to sync
3609  *  @unsync: function to call if address should be removed
3610  *
3611  *  Remove all addresses that were added to the device by dev_uc_sync().
3612  **/
3613 static inline void __dev_uc_unsync(struct net_device *dev,
3614 				   int (*unsync)(struct net_device *,
3615 						 const unsigned char *))
3616 {
3617 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3618 }
3619 
3620 /* Functions used for multicast addresses handling */
3621 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3622 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3623 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3624 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3625 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3626 int dev_mc_sync(struct net_device *to, struct net_device *from);
3627 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3628 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3629 void dev_mc_flush(struct net_device *dev);
3630 void dev_mc_init(struct net_device *dev);
3631 
3632 /**
3633  *  __dev_mc_sync - Synchonize device's multicast list
3634  *  @dev:  device to sync
3635  *  @sync: function to call if address should be added
3636  *  @unsync: function to call if address should be removed
3637  *
3638  *  Add newly added addresses to the interface, and release
3639  *  addresses that have been deleted.
3640  **/
3641 static inline int __dev_mc_sync(struct net_device *dev,
3642 				int (*sync)(struct net_device *,
3643 					    const unsigned char *),
3644 				int (*unsync)(struct net_device *,
3645 					      const unsigned char *))
3646 {
3647 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3648 }
3649 
3650 /**
3651  *  __dev_mc_unsync - Remove synchronized addresses from device
3652  *  @dev:  device to sync
3653  *  @unsync: function to call if address should be removed
3654  *
3655  *  Remove all addresses that were added to the device by dev_mc_sync().
3656  **/
3657 static inline void __dev_mc_unsync(struct net_device *dev,
3658 				   int (*unsync)(struct net_device *,
3659 						 const unsigned char *))
3660 {
3661 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3662 }
3663 
3664 /* Functions used for secondary unicast and multicast support */
3665 void dev_set_rx_mode(struct net_device *dev);
3666 void __dev_set_rx_mode(struct net_device *dev);
3667 int dev_set_promiscuity(struct net_device *dev, int inc);
3668 int dev_set_allmulti(struct net_device *dev, int inc);
3669 void netdev_state_change(struct net_device *dev);
3670 void netdev_notify_peers(struct net_device *dev);
3671 void netdev_features_change(struct net_device *dev);
3672 /* Load a device via the kmod */
3673 void dev_load(struct net *net, const char *name);
3674 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3675 					struct rtnl_link_stats64 *storage);
3676 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3677 			     const struct net_device_stats *netdev_stats);
3678 
3679 extern int		netdev_max_backlog;
3680 extern int		netdev_tstamp_prequeue;
3681 extern int		weight_p;
3682 extern int		bpf_jit_enable;
3683 
3684 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3685 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3686 						     struct list_head **iter);
3687 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3688 						     struct list_head **iter);
3689 
3690 /* iterate through upper list, must be called under RCU read lock */
3691 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3692 	for (iter = &(dev)->adj_list.upper, \
3693 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3694 	     updev; \
3695 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3696 
3697 /* iterate through upper list, must be called under RCU read lock */
3698 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3699 	for (iter = &(dev)->all_adj_list.upper, \
3700 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3701 	     updev; \
3702 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3703 
3704 void *netdev_lower_get_next_private(struct net_device *dev,
3705 				    struct list_head **iter);
3706 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3707 					struct list_head **iter);
3708 
3709 #define netdev_for_each_lower_private(dev, priv, iter) \
3710 	for (iter = (dev)->adj_list.lower.next, \
3711 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3712 	     priv; \
3713 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3714 
3715 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3716 	for (iter = &(dev)->adj_list.lower, \
3717 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3718 	     priv; \
3719 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3720 
3721 void *netdev_lower_get_next(struct net_device *dev,
3722 				struct list_head **iter);
3723 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3724 	for (iter = &(dev)->adj_list.lower, \
3725 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3726 	     ldev; \
3727 	     ldev = netdev_lower_get_next(dev, &(iter)))
3728 
3729 void *netdev_adjacent_get_private(struct list_head *adj_list);
3730 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3731 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3732 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3733 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3734 int netdev_master_upper_dev_link(struct net_device *dev,
3735 				 struct net_device *upper_dev,
3736 				 void *upper_priv, void *upper_info);
3737 void netdev_upper_dev_unlink(struct net_device *dev,
3738 			     struct net_device *upper_dev);
3739 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3740 void *netdev_lower_dev_get_private(struct net_device *dev,
3741 				   struct net_device *lower_dev);
3742 void netdev_lower_state_changed(struct net_device *lower_dev,
3743 				void *lower_state_info);
3744 
3745 /* RSS keys are 40 or 52 bytes long */
3746 #define NETDEV_RSS_KEY_LEN 52
3747 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3748 void netdev_rss_key_fill(void *buffer, size_t len);
3749 
3750 int dev_get_nest_level(struct net_device *dev,
3751 		       bool (*type_check)(const struct net_device *dev));
3752 int skb_checksum_help(struct sk_buff *skb);
3753 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3754 				  netdev_features_t features, bool tx_path);
3755 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3756 				    netdev_features_t features);
3757 
3758 struct netdev_bonding_info {
3759 	ifslave	slave;
3760 	ifbond	master;
3761 };
3762 
3763 struct netdev_notifier_bonding_info {
3764 	struct netdev_notifier_info info; /* must be first */
3765 	struct netdev_bonding_info  bonding_info;
3766 };
3767 
3768 void netdev_bonding_info_change(struct net_device *dev,
3769 				struct netdev_bonding_info *bonding_info);
3770 
3771 static inline
3772 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3773 {
3774 	return __skb_gso_segment(skb, features, true);
3775 }
3776 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3777 
3778 static inline bool can_checksum_protocol(netdev_features_t features,
3779 					 __be16 protocol)
3780 {
3781 	if (protocol == htons(ETH_P_FCOE))
3782 		return !!(features & NETIF_F_FCOE_CRC);
3783 
3784 	/* Assume this is an IP checksum (not SCTP CRC) */
3785 
3786 	if (features & NETIF_F_HW_CSUM) {
3787 		/* Can checksum everything */
3788 		return true;
3789 	}
3790 
3791 	switch (protocol) {
3792 	case htons(ETH_P_IP):
3793 		return !!(features & NETIF_F_IP_CSUM);
3794 	case htons(ETH_P_IPV6):
3795 		return !!(features & NETIF_F_IPV6_CSUM);
3796 	default:
3797 		return false;
3798 	}
3799 }
3800 
3801 /* Map an ethertype into IP protocol if possible */
3802 static inline int eproto_to_ipproto(int eproto)
3803 {
3804 	switch (eproto) {
3805 	case htons(ETH_P_IP):
3806 		return IPPROTO_IP;
3807 	case htons(ETH_P_IPV6):
3808 		return IPPROTO_IPV6;
3809 	default:
3810 		return -1;
3811 	}
3812 }
3813 
3814 #ifdef CONFIG_BUG
3815 void netdev_rx_csum_fault(struct net_device *dev);
3816 #else
3817 static inline void netdev_rx_csum_fault(struct net_device *dev)
3818 {
3819 }
3820 #endif
3821 /* rx skb timestamps */
3822 void net_enable_timestamp(void);
3823 void net_disable_timestamp(void);
3824 
3825 #ifdef CONFIG_PROC_FS
3826 int __init dev_proc_init(void);
3827 #else
3828 #define dev_proc_init() 0
3829 #endif
3830 
3831 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3832 					      struct sk_buff *skb, struct net_device *dev,
3833 					      bool more)
3834 {
3835 	skb->xmit_more = more ? 1 : 0;
3836 	return ops->ndo_start_xmit(skb, dev);
3837 }
3838 
3839 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3840 					    struct netdev_queue *txq, bool more)
3841 {
3842 	const struct net_device_ops *ops = dev->netdev_ops;
3843 	int rc;
3844 
3845 	rc = __netdev_start_xmit(ops, skb, dev, more);
3846 	if (rc == NETDEV_TX_OK)
3847 		txq_trans_update(txq);
3848 
3849 	return rc;
3850 }
3851 
3852 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3853 				const void *ns);
3854 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3855 				 const void *ns);
3856 
3857 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3858 {
3859 	return netdev_class_create_file_ns(class_attr, NULL);
3860 }
3861 
3862 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3863 {
3864 	netdev_class_remove_file_ns(class_attr, NULL);
3865 }
3866 
3867 extern struct kobj_ns_type_operations net_ns_type_operations;
3868 
3869 const char *netdev_drivername(const struct net_device *dev);
3870 
3871 void linkwatch_run_queue(void);
3872 
3873 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3874 							  netdev_features_t f2)
3875 {
3876 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
3877 		if (f1 & NETIF_F_HW_CSUM)
3878 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3879 		else
3880 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3881 	}
3882 
3883 	return f1 & f2;
3884 }
3885 
3886 static inline netdev_features_t netdev_get_wanted_features(
3887 	struct net_device *dev)
3888 {
3889 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
3890 }
3891 netdev_features_t netdev_increment_features(netdev_features_t all,
3892 	netdev_features_t one, netdev_features_t mask);
3893 
3894 /* Allow TSO being used on stacked device :
3895  * Performing the GSO segmentation before last device
3896  * is a performance improvement.
3897  */
3898 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3899 							netdev_features_t mask)
3900 {
3901 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3902 }
3903 
3904 int __netdev_update_features(struct net_device *dev);
3905 void netdev_update_features(struct net_device *dev);
3906 void netdev_change_features(struct net_device *dev);
3907 
3908 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3909 					struct net_device *dev);
3910 
3911 netdev_features_t passthru_features_check(struct sk_buff *skb,
3912 					  struct net_device *dev,
3913 					  netdev_features_t features);
3914 netdev_features_t netif_skb_features(struct sk_buff *skb);
3915 
3916 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3917 {
3918 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3919 
3920 	/* check flags correspondence */
3921 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3922 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3923 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3924 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3925 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3926 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3927 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3928 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3929 	BUILD_BUG_ON(SKB_GSO_IPIP    != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3930 	BUILD_BUG_ON(SKB_GSO_SIT     != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3931 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3932 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3933 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3934 
3935 	return (features & feature) == feature;
3936 }
3937 
3938 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3939 {
3940 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3941 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3942 }
3943 
3944 static inline bool netif_needs_gso(struct sk_buff *skb,
3945 				   netdev_features_t features)
3946 {
3947 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3948 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3949 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3950 }
3951 
3952 static inline void netif_set_gso_max_size(struct net_device *dev,
3953 					  unsigned int size)
3954 {
3955 	dev->gso_max_size = size;
3956 }
3957 
3958 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3959 					int pulled_hlen, u16 mac_offset,
3960 					int mac_len)
3961 {
3962 	skb->protocol = protocol;
3963 	skb->encapsulation = 1;
3964 	skb_push(skb, pulled_hlen);
3965 	skb_reset_transport_header(skb);
3966 	skb->mac_header = mac_offset;
3967 	skb->network_header = skb->mac_header + mac_len;
3968 	skb->mac_len = mac_len;
3969 }
3970 
3971 static inline bool netif_is_macvlan(const struct net_device *dev)
3972 {
3973 	return dev->priv_flags & IFF_MACVLAN;
3974 }
3975 
3976 static inline bool netif_is_macvlan_port(const struct net_device *dev)
3977 {
3978 	return dev->priv_flags & IFF_MACVLAN_PORT;
3979 }
3980 
3981 static inline bool netif_is_ipvlan(const struct net_device *dev)
3982 {
3983 	return dev->priv_flags & IFF_IPVLAN_SLAVE;
3984 }
3985 
3986 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
3987 {
3988 	return dev->priv_flags & IFF_IPVLAN_MASTER;
3989 }
3990 
3991 static inline bool netif_is_bond_master(const struct net_device *dev)
3992 {
3993 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3994 }
3995 
3996 static inline bool netif_is_bond_slave(const struct net_device *dev)
3997 {
3998 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3999 }
4000 
4001 static inline bool netif_supports_nofcs(struct net_device *dev)
4002 {
4003 	return dev->priv_flags & IFF_SUPP_NOFCS;
4004 }
4005 
4006 static inline bool netif_is_l3_master(const struct net_device *dev)
4007 {
4008 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4009 }
4010 
4011 static inline bool netif_is_l3_slave(const struct net_device *dev)
4012 {
4013 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4014 }
4015 
4016 static inline bool netif_is_bridge_master(const struct net_device *dev)
4017 {
4018 	return dev->priv_flags & IFF_EBRIDGE;
4019 }
4020 
4021 static inline bool netif_is_bridge_port(const struct net_device *dev)
4022 {
4023 	return dev->priv_flags & IFF_BRIDGE_PORT;
4024 }
4025 
4026 static inline bool netif_is_ovs_master(const struct net_device *dev)
4027 {
4028 	return dev->priv_flags & IFF_OPENVSWITCH;
4029 }
4030 
4031 static inline bool netif_is_team_master(const struct net_device *dev)
4032 {
4033 	return dev->priv_flags & IFF_TEAM;
4034 }
4035 
4036 static inline bool netif_is_team_port(const struct net_device *dev)
4037 {
4038 	return dev->priv_flags & IFF_TEAM_PORT;
4039 }
4040 
4041 static inline bool netif_is_lag_master(const struct net_device *dev)
4042 {
4043 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4044 }
4045 
4046 static inline bool netif_is_lag_port(const struct net_device *dev)
4047 {
4048 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4049 }
4050 
4051 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4052 static inline void netif_keep_dst(struct net_device *dev)
4053 {
4054 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4055 }
4056 
4057 extern struct pernet_operations __net_initdata loopback_net_ops;
4058 
4059 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4060 
4061 /* netdev_printk helpers, similar to dev_printk */
4062 
4063 static inline const char *netdev_name(const struct net_device *dev)
4064 {
4065 	if (!dev->name[0] || strchr(dev->name, '%'))
4066 		return "(unnamed net_device)";
4067 	return dev->name;
4068 }
4069 
4070 static inline const char *netdev_reg_state(const struct net_device *dev)
4071 {
4072 	switch (dev->reg_state) {
4073 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4074 	case NETREG_REGISTERED: return "";
4075 	case NETREG_UNREGISTERING: return " (unregistering)";
4076 	case NETREG_UNREGISTERED: return " (unregistered)";
4077 	case NETREG_RELEASED: return " (released)";
4078 	case NETREG_DUMMY: return " (dummy)";
4079 	}
4080 
4081 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4082 	return " (unknown)";
4083 }
4084 
4085 __printf(3, 4)
4086 void netdev_printk(const char *level, const struct net_device *dev,
4087 		   const char *format, ...);
4088 __printf(2, 3)
4089 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4090 __printf(2, 3)
4091 void netdev_alert(const struct net_device *dev, const char *format, ...);
4092 __printf(2, 3)
4093 void netdev_crit(const struct net_device *dev, const char *format, ...);
4094 __printf(2, 3)
4095 void netdev_err(const struct net_device *dev, const char *format, ...);
4096 __printf(2, 3)
4097 void netdev_warn(const struct net_device *dev, const char *format, ...);
4098 __printf(2, 3)
4099 void netdev_notice(const struct net_device *dev, const char *format, ...);
4100 __printf(2, 3)
4101 void netdev_info(const struct net_device *dev, const char *format, ...);
4102 
4103 #define MODULE_ALIAS_NETDEV(device) \
4104 	MODULE_ALIAS("netdev-" device)
4105 
4106 #if defined(CONFIG_DYNAMIC_DEBUG)
4107 #define netdev_dbg(__dev, format, args...)			\
4108 do {								\
4109 	dynamic_netdev_dbg(__dev, format, ##args);		\
4110 } while (0)
4111 #elif defined(DEBUG)
4112 #define netdev_dbg(__dev, format, args...)			\
4113 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4114 #else
4115 #define netdev_dbg(__dev, format, args...)			\
4116 ({								\
4117 	if (0)							\
4118 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4119 })
4120 #endif
4121 
4122 #if defined(VERBOSE_DEBUG)
4123 #define netdev_vdbg	netdev_dbg
4124 #else
4125 
4126 #define netdev_vdbg(dev, format, args...)			\
4127 ({								\
4128 	if (0)							\
4129 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4130 	0;							\
4131 })
4132 #endif
4133 
4134 /*
4135  * netdev_WARN() acts like dev_printk(), but with the key difference
4136  * of using a WARN/WARN_ON to get the message out, including the
4137  * file/line information and a backtrace.
4138  */
4139 #define netdev_WARN(dev, format, args...)			\
4140 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
4141 	     netdev_reg_state(dev), ##args)
4142 
4143 /* netif printk helpers, similar to netdev_printk */
4144 
4145 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4146 do {					  			\
4147 	if (netif_msg_##type(priv))				\
4148 		netdev_printk(level, (dev), fmt, ##args);	\
4149 } while (0)
4150 
4151 #define netif_level(level, priv, type, dev, fmt, args...)	\
4152 do {								\
4153 	if (netif_msg_##type(priv))				\
4154 		netdev_##level(dev, fmt, ##args);		\
4155 } while (0)
4156 
4157 #define netif_emerg(priv, type, dev, fmt, args...)		\
4158 	netif_level(emerg, priv, type, dev, fmt, ##args)
4159 #define netif_alert(priv, type, dev, fmt, args...)		\
4160 	netif_level(alert, priv, type, dev, fmt, ##args)
4161 #define netif_crit(priv, type, dev, fmt, args...)		\
4162 	netif_level(crit, priv, type, dev, fmt, ##args)
4163 #define netif_err(priv, type, dev, fmt, args...)		\
4164 	netif_level(err, priv, type, dev, fmt, ##args)
4165 #define netif_warn(priv, type, dev, fmt, args...)		\
4166 	netif_level(warn, priv, type, dev, fmt, ##args)
4167 #define netif_notice(priv, type, dev, fmt, args...)		\
4168 	netif_level(notice, priv, type, dev, fmt, ##args)
4169 #define netif_info(priv, type, dev, fmt, args...)		\
4170 	netif_level(info, priv, type, dev, fmt, ##args)
4171 
4172 #if defined(CONFIG_DYNAMIC_DEBUG)
4173 #define netif_dbg(priv, type, netdev, format, args...)		\
4174 do {								\
4175 	if (netif_msg_##type(priv))				\
4176 		dynamic_netdev_dbg(netdev, format, ##args);	\
4177 } while (0)
4178 #elif defined(DEBUG)
4179 #define netif_dbg(priv, type, dev, format, args...)		\
4180 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4181 #else
4182 #define netif_dbg(priv, type, dev, format, args...)			\
4183 ({									\
4184 	if (0)								\
4185 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4186 	0;								\
4187 })
4188 #endif
4189 
4190 #if defined(VERBOSE_DEBUG)
4191 #define netif_vdbg	netif_dbg
4192 #else
4193 #define netif_vdbg(priv, type, dev, format, args...)		\
4194 ({								\
4195 	if (0)							\
4196 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4197 	0;							\
4198 })
4199 #endif
4200 
4201 /*
4202  *	The list of packet types we will receive (as opposed to discard)
4203  *	and the routines to invoke.
4204  *
4205  *	Why 16. Because with 16 the only overlap we get on a hash of the
4206  *	low nibble of the protocol value is RARP/SNAP/X.25.
4207  *
4208  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4209  *             sure which should go first, but I bet it won't make much
4210  *             difference if we are running VLANs.  The good news is that
4211  *             this protocol won't be in the list unless compiled in, so
4212  *             the average user (w/out VLANs) will not be adversely affected.
4213  *             --BLG
4214  *
4215  *		0800	IP
4216  *		8100    802.1Q VLAN
4217  *		0001	802.3
4218  *		0002	AX.25
4219  *		0004	802.2
4220  *		8035	RARP
4221  *		0005	SNAP
4222  *		0805	X.25
4223  *		0806	ARP
4224  *		8137	IPX
4225  *		0009	Localtalk
4226  *		86DD	IPv6
4227  */
4228 #define PTYPE_HASH_SIZE	(16)
4229 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4230 
4231 #endif	/* _LINUX_NETDEVICE_H */
4232