xref: /linux-6.15/include/linux/netdevice.h (revision 05f3ab77)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <[email protected]>
13  *		Corey Minyard <[email protected]>
14  *		Donald J. Becker, <[email protected]>
15  *		Alan Cox, <[email protected]>
16  *		Bjorn Ekwall. <[email protected]>
17  *              Pekka Riikonen <[email protected]>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <uapi/linux/netdev.h>
51 #include <linux/hashtable.h>
52 #include <linux/rbtree.h>
53 #include <net/net_trackers.h>
54 #include <net/net_debug.h>
55 #include <net/dropreason.h>
56 
57 struct netpoll_info;
58 struct device;
59 struct ethtool_ops;
60 struct phy_device;
61 struct dsa_port;
62 struct ip_tunnel_parm;
63 struct macsec_context;
64 struct macsec_ops;
65 struct netdev_name_node;
66 struct sd_flow_limit;
67 struct sfp_bus;
68 /* 802.11 specific */
69 struct wireless_dev;
70 /* 802.15.4 specific */
71 struct wpan_dev;
72 struct mpls_dev;
73 /* UDP Tunnel offloads */
74 struct udp_tunnel_info;
75 struct udp_tunnel_nic_info;
76 struct udp_tunnel_nic;
77 struct bpf_prog;
78 struct xdp_buff;
79 struct xdp_md;
80 
81 void synchronize_net(void);
82 void netdev_set_default_ethtool_ops(struct net_device *dev,
83 				    const struct ethtool_ops *ops);
84 void netdev_sw_irq_coalesce_default_on(struct net_device *dev);
85 
86 /* Backlog congestion levels */
87 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
88 #define NET_RX_DROP		1	/* packet dropped */
89 
90 #define MAX_NEST_DEV 8
91 
92 /*
93  * Transmit return codes: transmit return codes originate from three different
94  * namespaces:
95  *
96  * - qdisc return codes
97  * - driver transmit return codes
98  * - errno values
99  *
100  * Drivers are allowed to return any one of those in their hard_start_xmit()
101  * function. Real network devices commonly used with qdiscs should only return
102  * the driver transmit return codes though - when qdiscs are used, the actual
103  * transmission happens asynchronously, so the value is not propagated to
104  * higher layers. Virtual network devices transmit synchronously; in this case
105  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
106  * others are propagated to higher layers.
107  */
108 
109 /* qdisc ->enqueue() return codes. */
110 #define NET_XMIT_SUCCESS	0x00
111 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
112 #define NET_XMIT_CN		0x02	/* congestion notification	*/
113 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
114 
115 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
116  * indicates that the device will soon be dropping packets, or already drops
117  * some packets of the same priority; prompting us to send less aggressively. */
118 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
119 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
120 
121 /* Driver transmit return codes */
122 #define NETDEV_TX_MASK		0xf0
123 
124 enum netdev_tx {
125 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
126 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
127 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
128 };
129 typedef enum netdev_tx netdev_tx_t;
130 
131 /*
132  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
133  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
134  */
135 static inline bool dev_xmit_complete(int rc)
136 {
137 	/*
138 	 * Positive cases with an skb consumed by a driver:
139 	 * - successful transmission (rc == NETDEV_TX_OK)
140 	 * - error while transmitting (rc < 0)
141 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
142 	 */
143 	if (likely(rc < NET_XMIT_MASK))
144 		return true;
145 
146 	return false;
147 }
148 
149 /*
150  *	Compute the worst-case header length according to the protocols
151  *	used.
152  */
153 
154 #if defined(CONFIG_HYPERV_NET)
155 # define LL_MAX_HEADER 128
156 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
157 # if defined(CONFIG_MAC80211_MESH)
158 #  define LL_MAX_HEADER 128
159 # else
160 #  define LL_MAX_HEADER 96
161 # endif
162 #else
163 # define LL_MAX_HEADER 32
164 #endif
165 
166 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
167     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
168 #define MAX_HEADER LL_MAX_HEADER
169 #else
170 #define MAX_HEADER (LL_MAX_HEADER + 48)
171 #endif
172 
173 /*
174  *	Old network device statistics. Fields are native words
175  *	(unsigned long) so they can be read and written atomically.
176  */
177 
178 #define NET_DEV_STAT(FIELD)			\
179 	union {					\
180 		unsigned long FIELD;		\
181 		atomic_long_t __##FIELD;	\
182 	}
183 
184 struct net_device_stats {
185 	NET_DEV_STAT(rx_packets);
186 	NET_DEV_STAT(tx_packets);
187 	NET_DEV_STAT(rx_bytes);
188 	NET_DEV_STAT(tx_bytes);
189 	NET_DEV_STAT(rx_errors);
190 	NET_DEV_STAT(tx_errors);
191 	NET_DEV_STAT(rx_dropped);
192 	NET_DEV_STAT(tx_dropped);
193 	NET_DEV_STAT(multicast);
194 	NET_DEV_STAT(collisions);
195 	NET_DEV_STAT(rx_length_errors);
196 	NET_DEV_STAT(rx_over_errors);
197 	NET_DEV_STAT(rx_crc_errors);
198 	NET_DEV_STAT(rx_frame_errors);
199 	NET_DEV_STAT(rx_fifo_errors);
200 	NET_DEV_STAT(rx_missed_errors);
201 	NET_DEV_STAT(tx_aborted_errors);
202 	NET_DEV_STAT(tx_carrier_errors);
203 	NET_DEV_STAT(tx_fifo_errors);
204 	NET_DEV_STAT(tx_heartbeat_errors);
205 	NET_DEV_STAT(tx_window_errors);
206 	NET_DEV_STAT(rx_compressed);
207 	NET_DEV_STAT(tx_compressed);
208 };
209 #undef NET_DEV_STAT
210 
211 /* per-cpu stats, allocated on demand.
212  * Try to fit them in a single cache line, for dev_get_stats() sake.
213  */
214 struct net_device_core_stats {
215 	unsigned long	rx_dropped;
216 	unsigned long	tx_dropped;
217 	unsigned long	rx_nohandler;
218 	unsigned long	rx_otherhost_dropped;
219 } __aligned(4 * sizeof(unsigned long));
220 
221 #include <linux/cache.h>
222 #include <linux/skbuff.h>
223 
224 #ifdef CONFIG_RPS
225 #include <linux/static_key.h>
226 extern struct static_key_false rps_needed;
227 extern struct static_key_false rfs_needed;
228 #endif
229 
230 struct neighbour;
231 struct neigh_parms;
232 struct sk_buff;
233 
234 struct netdev_hw_addr {
235 	struct list_head	list;
236 	struct rb_node		node;
237 	unsigned char		addr[MAX_ADDR_LEN];
238 	unsigned char		type;
239 #define NETDEV_HW_ADDR_T_LAN		1
240 #define NETDEV_HW_ADDR_T_SAN		2
241 #define NETDEV_HW_ADDR_T_UNICAST	3
242 #define NETDEV_HW_ADDR_T_MULTICAST	4
243 	bool			global_use;
244 	int			sync_cnt;
245 	int			refcount;
246 	int			synced;
247 	struct rcu_head		rcu_head;
248 };
249 
250 struct netdev_hw_addr_list {
251 	struct list_head	list;
252 	int			count;
253 
254 	/* Auxiliary tree for faster lookup on addition and deletion */
255 	struct rb_root		tree;
256 };
257 
258 #define netdev_hw_addr_list_count(l) ((l)->count)
259 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
260 #define netdev_hw_addr_list_for_each(ha, l) \
261 	list_for_each_entry(ha, &(l)->list, list)
262 
263 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
264 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
265 #define netdev_for_each_uc_addr(ha, dev) \
266 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
267 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
268 	netdev_for_each_uc_addr((_ha), (_dev)) \
269 		if ((_ha)->sync_cnt)
270 
271 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
272 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
273 #define netdev_for_each_mc_addr(ha, dev) \
274 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
275 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
276 	netdev_for_each_mc_addr((_ha), (_dev)) \
277 		if ((_ha)->sync_cnt)
278 
279 struct hh_cache {
280 	unsigned int	hh_len;
281 	seqlock_t	hh_lock;
282 
283 	/* cached hardware header; allow for machine alignment needs.        */
284 #define HH_DATA_MOD	16
285 #define HH_DATA_OFF(__len) \
286 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
287 #define HH_DATA_ALIGN(__len) \
288 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
289 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
290 };
291 
292 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
293  * Alternative is:
294  *   dev->hard_header_len ? (dev->hard_header_len +
295  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
296  *
297  * We could use other alignment values, but we must maintain the
298  * relationship HH alignment <= LL alignment.
299  */
300 #define LL_RESERVED_SPACE(dev) \
301 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
302 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
303 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
304 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
305 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
306 
307 struct header_ops {
308 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
309 			   unsigned short type, const void *daddr,
310 			   const void *saddr, unsigned int len);
311 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
312 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
313 	void	(*cache_update)(struct hh_cache *hh,
314 				const struct net_device *dev,
315 				const unsigned char *haddr);
316 	bool	(*validate)(const char *ll_header, unsigned int len);
317 	__be16	(*parse_protocol)(const struct sk_buff *skb);
318 };
319 
320 /* These flag bits are private to the generic network queueing
321  * layer; they may not be explicitly referenced by any other
322  * code.
323  */
324 
325 enum netdev_state_t {
326 	__LINK_STATE_START,
327 	__LINK_STATE_PRESENT,
328 	__LINK_STATE_NOCARRIER,
329 	__LINK_STATE_LINKWATCH_PENDING,
330 	__LINK_STATE_DORMANT,
331 	__LINK_STATE_TESTING,
332 };
333 
334 struct gro_list {
335 	struct list_head	list;
336 	int			count;
337 };
338 
339 /*
340  * size of gro hash buckets, must less than bit number of
341  * napi_struct::gro_bitmask
342  */
343 #define GRO_HASH_BUCKETS	8
344 
345 /*
346  * Structure for NAPI scheduling similar to tasklet but with weighting
347  */
348 struct napi_struct {
349 	/* The poll_list must only be managed by the entity which
350 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
351 	 * whoever atomically sets that bit can add this napi_struct
352 	 * to the per-CPU poll_list, and whoever clears that bit
353 	 * can remove from the list right before clearing the bit.
354 	 */
355 	struct list_head	poll_list;
356 
357 	unsigned long		state;
358 	int			weight;
359 	int			defer_hard_irqs_count;
360 	unsigned long		gro_bitmask;
361 	int			(*poll)(struct napi_struct *, int);
362 #ifdef CONFIG_NETPOLL
363 	int			poll_owner;
364 #endif
365 	struct net_device	*dev;
366 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
367 	struct sk_buff		*skb;
368 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
369 	int			rx_count; /* length of rx_list */
370 	unsigned int		napi_id;
371 	struct hrtimer		timer;
372 	struct task_struct	*thread;
373 	/* control-path-only fields follow */
374 	struct list_head	dev_list;
375 	struct hlist_node	napi_hash_node;
376 };
377 
378 enum {
379 	NAPI_STATE_SCHED,		/* Poll is scheduled */
380 	NAPI_STATE_MISSED,		/* reschedule a napi */
381 	NAPI_STATE_DISABLE,		/* Disable pending */
382 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
383 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
384 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
385 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
386 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
387 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
388 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
389 };
390 
391 enum {
392 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
393 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
394 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
395 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
396 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
397 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
398 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
399 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
400 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
401 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
402 };
403 
404 enum gro_result {
405 	GRO_MERGED,
406 	GRO_MERGED_FREE,
407 	GRO_HELD,
408 	GRO_NORMAL,
409 	GRO_CONSUMED,
410 };
411 typedef enum gro_result gro_result_t;
412 
413 /*
414  * enum rx_handler_result - Possible return values for rx_handlers.
415  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
416  * further.
417  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
418  * case skb->dev was changed by rx_handler.
419  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
420  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
421  *
422  * rx_handlers are functions called from inside __netif_receive_skb(), to do
423  * special processing of the skb, prior to delivery to protocol handlers.
424  *
425  * Currently, a net_device can only have a single rx_handler registered. Trying
426  * to register a second rx_handler will return -EBUSY.
427  *
428  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
429  * To unregister a rx_handler on a net_device, use
430  * netdev_rx_handler_unregister().
431  *
432  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
433  * do with the skb.
434  *
435  * If the rx_handler consumed the skb in some way, it should return
436  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
437  * the skb to be delivered in some other way.
438  *
439  * If the rx_handler changed skb->dev, to divert the skb to another
440  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
441  * new device will be called if it exists.
442  *
443  * If the rx_handler decides the skb should be ignored, it should return
444  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
445  * are registered on exact device (ptype->dev == skb->dev).
446  *
447  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
448  * delivered, it should return RX_HANDLER_PASS.
449  *
450  * A device without a registered rx_handler will behave as if rx_handler
451  * returned RX_HANDLER_PASS.
452  */
453 
454 enum rx_handler_result {
455 	RX_HANDLER_CONSUMED,
456 	RX_HANDLER_ANOTHER,
457 	RX_HANDLER_EXACT,
458 	RX_HANDLER_PASS,
459 };
460 typedef enum rx_handler_result rx_handler_result_t;
461 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
462 
463 void __napi_schedule(struct napi_struct *n);
464 void __napi_schedule_irqoff(struct napi_struct *n);
465 
466 static inline bool napi_disable_pending(struct napi_struct *n)
467 {
468 	return test_bit(NAPI_STATE_DISABLE, &n->state);
469 }
470 
471 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
472 {
473 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
474 }
475 
476 bool napi_schedule_prep(struct napi_struct *n);
477 
478 /**
479  *	napi_schedule - schedule NAPI poll
480  *	@n: NAPI context
481  *
482  * Schedule NAPI poll routine to be called if it is not already
483  * running.
484  */
485 static inline void napi_schedule(struct napi_struct *n)
486 {
487 	if (napi_schedule_prep(n))
488 		__napi_schedule(n);
489 }
490 
491 /**
492  *	napi_schedule_irqoff - schedule NAPI poll
493  *	@n: NAPI context
494  *
495  * Variant of napi_schedule(), assuming hard irqs are masked.
496  */
497 static inline void napi_schedule_irqoff(struct napi_struct *n)
498 {
499 	if (napi_schedule_prep(n))
500 		__napi_schedule_irqoff(n);
501 }
502 
503 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
504 static inline bool napi_reschedule(struct napi_struct *napi)
505 {
506 	if (napi_schedule_prep(napi)) {
507 		__napi_schedule(napi);
508 		return true;
509 	}
510 	return false;
511 }
512 
513 /**
514  * napi_complete_done - NAPI processing complete
515  * @n: NAPI context
516  * @work_done: number of packets processed
517  *
518  * Mark NAPI processing as complete. Should only be called if poll budget
519  * has not been completely consumed.
520  * Prefer over napi_complete().
521  * Return false if device should avoid rearming interrupts.
522  */
523 bool napi_complete_done(struct napi_struct *n, int work_done);
524 
525 static inline bool napi_complete(struct napi_struct *n)
526 {
527 	return napi_complete_done(n, 0);
528 }
529 
530 int dev_set_threaded(struct net_device *dev, bool threaded);
531 
532 /**
533  *	napi_disable - prevent NAPI from scheduling
534  *	@n: NAPI context
535  *
536  * Stop NAPI from being scheduled on this context.
537  * Waits till any outstanding processing completes.
538  */
539 void napi_disable(struct napi_struct *n);
540 
541 void napi_enable(struct napi_struct *n);
542 
543 /**
544  *	napi_synchronize - wait until NAPI is not running
545  *	@n: NAPI context
546  *
547  * Wait until NAPI is done being scheduled on this context.
548  * Waits till any outstanding processing completes but
549  * does not disable future activations.
550  */
551 static inline void napi_synchronize(const struct napi_struct *n)
552 {
553 	if (IS_ENABLED(CONFIG_SMP))
554 		while (test_bit(NAPI_STATE_SCHED, &n->state))
555 			msleep(1);
556 	else
557 		barrier();
558 }
559 
560 /**
561  *	napi_if_scheduled_mark_missed - if napi is running, set the
562  *	NAPIF_STATE_MISSED
563  *	@n: NAPI context
564  *
565  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
566  * NAPI is scheduled.
567  **/
568 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
569 {
570 	unsigned long val, new;
571 
572 	val = READ_ONCE(n->state);
573 	do {
574 		if (val & NAPIF_STATE_DISABLE)
575 			return true;
576 
577 		if (!(val & NAPIF_STATE_SCHED))
578 			return false;
579 
580 		new = val | NAPIF_STATE_MISSED;
581 	} while (!try_cmpxchg(&n->state, &val, new));
582 
583 	return true;
584 }
585 
586 enum netdev_queue_state_t {
587 	__QUEUE_STATE_DRV_XOFF,
588 	__QUEUE_STATE_STACK_XOFF,
589 	__QUEUE_STATE_FROZEN,
590 };
591 
592 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
593 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
594 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
595 
596 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
597 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
598 					QUEUE_STATE_FROZEN)
599 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
600 					QUEUE_STATE_FROZEN)
601 
602 /*
603  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
604  * netif_tx_* functions below are used to manipulate this flag.  The
605  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
606  * queue independently.  The netif_xmit_*stopped functions below are called
607  * to check if the queue has been stopped by the driver or stack (either
608  * of the XOFF bits are set in the state).  Drivers should not need to call
609  * netif_xmit*stopped functions, they should only be using netif_tx_*.
610  */
611 
612 struct netdev_queue {
613 /*
614  * read-mostly part
615  */
616 	struct net_device	*dev;
617 	netdevice_tracker	dev_tracker;
618 
619 	struct Qdisc __rcu	*qdisc;
620 	struct Qdisc		*qdisc_sleeping;
621 #ifdef CONFIG_SYSFS
622 	struct kobject		kobj;
623 #endif
624 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
625 	int			numa_node;
626 #endif
627 	unsigned long		tx_maxrate;
628 	/*
629 	 * Number of TX timeouts for this queue
630 	 * (/sys/class/net/DEV/Q/trans_timeout)
631 	 */
632 	atomic_long_t		trans_timeout;
633 
634 	/* Subordinate device that the queue has been assigned to */
635 	struct net_device	*sb_dev;
636 #ifdef CONFIG_XDP_SOCKETS
637 	struct xsk_buff_pool    *pool;
638 #endif
639 /*
640  * write-mostly part
641  */
642 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
643 	int			xmit_lock_owner;
644 	/*
645 	 * Time (in jiffies) of last Tx
646 	 */
647 	unsigned long		trans_start;
648 
649 	unsigned long		state;
650 
651 #ifdef CONFIG_BQL
652 	struct dql		dql;
653 #endif
654 } ____cacheline_aligned_in_smp;
655 
656 extern int sysctl_fb_tunnels_only_for_init_net;
657 extern int sysctl_devconf_inherit_init_net;
658 
659 /*
660  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
661  *                                     == 1 : For initns only
662  *                                     == 2 : For none.
663  */
664 static inline bool net_has_fallback_tunnels(const struct net *net)
665 {
666 #if IS_ENABLED(CONFIG_SYSCTL)
667 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
668 
669 	return !fb_tunnels_only_for_init_net ||
670 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
671 #else
672 	return true;
673 #endif
674 }
675 
676 static inline int net_inherit_devconf(void)
677 {
678 #if IS_ENABLED(CONFIG_SYSCTL)
679 	return READ_ONCE(sysctl_devconf_inherit_init_net);
680 #else
681 	return 0;
682 #endif
683 }
684 
685 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
686 {
687 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
688 	return q->numa_node;
689 #else
690 	return NUMA_NO_NODE;
691 #endif
692 }
693 
694 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
695 {
696 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
697 	q->numa_node = node;
698 #endif
699 }
700 
701 #ifdef CONFIG_RPS
702 /*
703  * This structure holds an RPS map which can be of variable length.  The
704  * map is an array of CPUs.
705  */
706 struct rps_map {
707 	unsigned int len;
708 	struct rcu_head rcu;
709 	u16 cpus[];
710 };
711 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
712 
713 /*
714  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
715  * tail pointer for that CPU's input queue at the time of last enqueue, and
716  * a hardware filter index.
717  */
718 struct rps_dev_flow {
719 	u16 cpu;
720 	u16 filter;
721 	unsigned int last_qtail;
722 };
723 #define RPS_NO_FILTER 0xffff
724 
725 /*
726  * The rps_dev_flow_table structure contains a table of flow mappings.
727  */
728 struct rps_dev_flow_table {
729 	unsigned int mask;
730 	struct rcu_head rcu;
731 	struct rps_dev_flow flows[];
732 };
733 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
734     ((_num) * sizeof(struct rps_dev_flow)))
735 
736 /*
737  * The rps_sock_flow_table contains mappings of flows to the last CPU
738  * on which they were processed by the application (set in recvmsg).
739  * Each entry is a 32bit value. Upper part is the high-order bits
740  * of flow hash, lower part is CPU number.
741  * rps_cpu_mask is used to partition the space, depending on number of
742  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
743  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
744  * meaning we use 32-6=26 bits for the hash.
745  */
746 struct rps_sock_flow_table {
747 	u32	mask;
748 
749 	u32	ents[] ____cacheline_aligned_in_smp;
750 };
751 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
752 
753 #define RPS_NO_CPU 0xffff
754 
755 extern u32 rps_cpu_mask;
756 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
757 
758 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
759 					u32 hash)
760 {
761 	if (table && hash) {
762 		unsigned int index = hash & table->mask;
763 		u32 val = hash & ~rps_cpu_mask;
764 
765 		/* We only give a hint, preemption can change CPU under us */
766 		val |= raw_smp_processor_id();
767 
768 		if (table->ents[index] != val)
769 			table->ents[index] = val;
770 	}
771 }
772 
773 #ifdef CONFIG_RFS_ACCEL
774 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
775 			 u16 filter_id);
776 #endif
777 #endif /* CONFIG_RPS */
778 
779 /* This structure contains an instance of an RX queue. */
780 struct netdev_rx_queue {
781 	struct xdp_rxq_info		xdp_rxq;
782 #ifdef CONFIG_RPS
783 	struct rps_map __rcu		*rps_map;
784 	struct rps_dev_flow_table __rcu	*rps_flow_table;
785 #endif
786 	struct kobject			kobj;
787 	struct net_device		*dev;
788 	netdevice_tracker		dev_tracker;
789 
790 #ifdef CONFIG_XDP_SOCKETS
791 	struct xsk_buff_pool            *pool;
792 #endif
793 } ____cacheline_aligned_in_smp;
794 
795 /*
796  * RX queue sysfs structures and functions.
797  */
798 struct rx_queue_attribute {
799 	struct attribute attr;
800 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
801 	ssize_t (*store)(struct netdev_rx_queue *queue,
802 			 const char *buf, size_t len);
803 };
804 
805 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
806 enum xps_map_type {
807 	XPS_CPUS = 0,
808 	XPS_RXQS,
809 	XPS_MAPS_MAX,
810 };
811 
812 #ifdef CONFIG_XPS
813 /*
814  * This structure holds an XPS map which can be of variable length.  The
815  * map is an array of queues.
816  */
817 struct xps_map {
818 	unsigned int len;
819 	unsigned int alloc_len;
820 	struct rcu_head rcu;
821 	u16 queues[];
822 };
823 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
824 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
825        - sizeof(struct xps_map)) / sizeof(u16))
826 
827 /*
828  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
829  *
830  * We keep track of the number of cpus/rxqs used when the struct is allocated,
831  * in nr_ids. This will help not accessing out-of-bound memory.
832  *
833  * We keep track of the number of traffic classes used when the struct is
834  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
835  * not crossing its upper bound, as the original dev->num_tc can be updated in
836  * the meantime.
837  */
838 struct xps_dev_maps {
839 	struct rcu_head rcu;
840 	unsigned int nr_ids;
841 	s16 num_tc;
842 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
843 };
844 
845 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
846 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
847 
848 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
849 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
850 
851 #endif /* CONFIG_XPS */
852 
853 #define TC_MAX_QUEUE	16
854 #define TC_BITMASK	15
855 /* HW offloaded queuing disciplines txq count and offset maps */
856 struct netdev_tc_txq {
857 	u16 count;
858 	u16 offset;
859 };
860 
861 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
862 /*
863  * This structure is to hold information about the device
864  * configured to run FCoE protocol stack.
865  */
866 struct netdev_fcoe_hbainfo {
867 	char	manufacturer[64];
868 	char	serial_number[64];
869 	char	hardware_version[64];
870 	char	driver_version[64];
871 	char	optionrom_version[64];
872 	char	firmware_version[64];
873 	char	model[256];
874 	char	model_description[256];
875 };
876 #endif
877 
878 #define MAX_PHYS_ITEM_ID_LEN 32
879 
880 /* This structure holds a unique identifier to identify some
881  * physical item (port for example) used by a netdevice.
882  */
883 struct netdev_phys_item_id {
884 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
885 	unsigned char id_len;
886 };
887 
888 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
889 					    struct netdev_phys_item_id *b)
890 {
891 	return a->id_len == b->id_len &&
892 	       memcmp(a->id, b->id, a->id_len) == 0;
893 }
894 
895 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
896 				       struct sk_buff *skb,
897 				       struct net_device *sb_dev);
898 
899 enum net_device_path_type {
900 	DEV_PATH_ETHERNET = 0,
901 	DEV_PATH_VLAN,
902 	DEV_PATH_BRIDGE,
903 	DEV_PATH_PPPOE,
904 	DEV_PATH_DSA,
905 	DEV_PATH_MTK_WDMA,
906 };
907 
908 struct net_device_path {
909 	enum net_device_path_type	type;
910 	const struct net_device		*dev;
911 	union {
912 		struct {
913 			u16		id;
914 			__be16		proto;
915 			u8		h_dest[ETH_ALEN];
916 		} encap;
917 		struct {
918 			enum {
919 				DEV_PATH_BR_VLAN_KEEP,
920 				DEV_PATH_BR_VLAN_TAG,
921 				DEV_PATH_BR_VLAN_UNTAG,
922 				DEV_PATH_BR_VLAN_UNTAG_HW,
923 			}		vlan_mode;
924 			u16		vlan_id;
925 			__be16		vlan_proto;
926 		} bridge;
927 		struct {
928 			int port;
929 			u16 proto;
930 		} dsa;
931 		struct {
932 			u8 wdma_idx;
933 			u8 queue;
934 			u16 wcid;
935 			u8 bss;
936 		} mtk_wdma;
937 	};
938 };
939 
940 #define NET_DEVICE_PATH_STACK_MAX	5
941 #define NET_DEVICE_PATH_VLAN_MAX	2
942 
943 struct net_device_path_stack {
944 	int			num_paths;
945 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
946 };
947 
948 struct net_device_path_ctx {
949 	const struct net_device *dev;
950 	u8			daddr[ETH_ALEN];
951 
952 	int			num_vlans;
953 	struct {
954 		u16		id;
955 		__be16		proto;
956 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
957 };
958 
959 enum tc_setup_type {
960 	TC_QUERY_CAPS,
961 	TC_SETUP_QDISC_MQPRIO,
962 	TC_SETUP_CLSU32,
963 	TC_SETUP_CLSFLOWER,
964 	TC_SETUP_CLSMATCHALL,
965 	TC_SETUP_CLSBPF,
966 	TC_SETUP_BLOCK,
967 	TC_SETUP_QDISC_CBS,
968 	TC_SETUP_QDISC_RED,
969 	TC_SETUP_QDISC_PRIO,
970 	TC_SETUP_QDISC_MQ,
971 	TC_SETUP_QDISC_ETF,
972 	TC_SETUP_ROOT_QDISC,
973 	TC_SETUP_QDISC_GRED,
974 	TC_SETUP_QDISC_TAPRIO,
975 	TC_SETUP_FT,
976 	TC_SETUP_QDISC_ETS,
977 	TC_SETUP_QDISC_TBF,
978 	TC_SETUP_QDISC_FIFO,
979 	TC_SETUP_QDISC_HTB,
980 	TC_SETUP_ACT,
981 };
982 
983 /* These structures hold the attributes of bpf state that are being passed
984  * to the netdevice through the bpf op.
985  */
986 enum bpf_netdev_command {
987 	/* Set or clear a bpf program used in the earliest stages of packet
988 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
989 	 * is responsible for calling bpf_prog_put on any old progs that are
990 	 * stored. In case of error, the callee need not release the new prog
991 	 * reference, but on success it takes ownership and must bpf_prog_put
992 	 * when it is no longer used.
993 	 */
994 	XDP_SETUP_PROG,
995 	XDP_SETUP_PROG_HW,
996 	/* BPF program for offload callbacks, invoked at program load time. */
997 	BPF_OFFLOAD_MAP_ALLOC,
998 	BPF_OFFLOAD_MAP_FREE,
999 	XDP_SETUP_XSK_POOL,
1000 };
1001 
1002 struct bpf_prog_offload_ops;
1003 struct netlink_ext_ack;
1004 struct xdp_umem;
1005 struct xdp_dev_bulk_queue;
1006 struct bpf_xdp_link;
1007 
1008 enum bpf_xdp_mode {
1009 	XDP_MODE_SKB = 0,
1010 	XDP_MODE_DRV = 1,
1011 	XDP_MODE_HW = 2,
1012 	__MAX_XDP_MODE
1013 };
1014 
1015 struct bpf_xdp_entity {
1016 	struct bpf_prog *prog;
1017 	struct bpf_xdp_link *link;
1018 };
1019 
1020 struct netdev_bpf {
1021 	enum bpf_netdev_command command;
1022 	union {
1023 		/* XDP_SETUP_PROG */
1024 		struct {
1025 			u32 flags;
1026 			struct bpf_prog *prog;
1027 			struct netlink_ext_ack *extack;
1028 		};
1029 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
1030 		struct {
1031 			struct bpf_offloaded_map *offmap;
1032 		};
1033 		/* XDP_SETUP_XSK_POOL */
1034 		struct {
1035 			struct xsk_buff_pool *pool;
1036 			u16 queue_id;
1037 		} xsk;
1038 	};
1039 };
1040 
1041 /* Flags for ndo_xsk_wakeup. */
1042 #define XDP_WAKEUP_RX (1 << 0)
1043 #define XDP_WAKEUP_TX (1 << 1)
1044 
1045 #ifdef CONFIG_XFRM_OFFLOAD
1046 struct xfrmdev_ops {
1047 	int	(*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack);
1048 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
1049 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
1050 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1051 				       struct xfrm_state *x);
1052 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1053 	void	(*xdo_dev_state_update_curlft) (struct xfrm_state *x);
1054 	int	(*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack);
1055 	void	(*xdo_dev_policy_delete) (struct xfrm_policy *x);
1056 	void	(*xdo_dev_policy_free) (struct xfrm_policy *x);
1057 };
1058 #endif
1059 
1060 struct dev_ifalias {
1061 	struct rcu_head rcuhead;
1062 	char ifalias[];
1063 };
1064 
1065 struct devlink;
1066 struct tlsdev_ops;
1067 
1068 struct netdev_net_notifier {
1069 	struct list_head list;
1070 	struct notifier_block *nb;
1071 };
1072 
1073 /*
1074  * This structure defines the management hooks for network devices.
1075  * The following hooks can be defined; unless noted otherwise, they are
1076  * optional and can be filled with a null pointer.
1077  *
1078  * int (*ndo_init)(struct net_device *dev);
1079  *     This function is called once when a network device is registered.
1080  *     The network device can use this for any late stage initialization
1081  *     or semantic validation. It can fail with an error code which will
1082  *     be propagated back to register_netdev.
1083  *
1084  * void (*ndo_uninit)(struct net_device *dev);
1085  *     This function is called when device is unregistered or when registration
1086  *     fails. It is not called if init fails.
1087  *
1088  * int (*ndo_open)(struct net_device *dev);
1089  *     This function is called when a network device transitions to the up
1090  *     state.
1091  *
1092  * int (*ndo_stop)(struct net_device *dev);
1093  *     This function is called when a network device transitions to the down
1094  *     state.
1095  *
1096  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1097  *                               struct net_device *dev);
1098  *	Called when a packet needs to be transmitted.
1099  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1100  *	the queue before that can happen; it's for obsolete devices and weird
1101  *	corner cases, but the stack really does a non-trivial amount
1102  *	of useless work if you return NETDEV_TX_BUSY.
1103  *	Required; cannot be NULL.
1104  *
1105  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1106  *					   struct net_device *dev
1107  *					   netdev_features_t features);
1108  *	Called by core transmit path to determine if device is capable of
1109  *	performing offload operations on a given packet. This is to give
1110  *	the device an opportunity to implement any restrictions that cannot
1111  *	be otherwise expressed by feature flags. The check is called with
1112  *	the set of features that the stack has calculated and it returns
1113  *	those the driver believes to be appropriate.
1114  *
1115  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1116  *                         struct net_device *sb_dev);
1117  *	Called to decide which queue to use when device supports multiple
1118  *	transmit queues.
1119  *
1120  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1121  *	This function is called to allow device receiver to make
1122  *	changes to configuration when multicast or promiscuous is enabled.
1123  *
1124  * void (*ndo_set_rx_mode)(struct net_device *dev);
1125  *	This function is called device changes address list filtering.
1126  *	If driver handles unicast address filtering, it should set
1127  *	IFF_UNICAST_FLT in its priv_flags.
1128  *
1129  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1130  *	This function  is called when the Media Access Control address
1131  *	needs to be changed. If this interface is not defined, the
1132  *	MAC address can not be changed.
1133  *
1134  * int (*ndo_validate_addr)(struct net_device *dev);
1135  *	Test if Media Access Control address is valid for the device.
1136  *
1137  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1138  *	Old-style ioctl entry point. This is used internally by the
1139  *	appletalk and ieee802154 subsystems but is no longer called by
1140  *	the device ioctl handler.
1141  *
1142  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1143  *	Used by the bonding driver for its device specific ioctls:
1144  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1145  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1146  *
1147  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1148  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1149  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1150  *
1151  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1152  *	Used to set network devices bus interface parameters. This interface
1153  *	is retained for legacy reasons; new devices should use the bus
1154  *	interface (PCI) for low level management.
1155  *
1156  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1157  *	Called when a user wants to change the Maximum Transfer Unit
1158  *	of a device.
1159  *
1160  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1161  *	Callback used when the transmitter has not made any progress
1162  *	for dev->watchdog ticks.
1163  *
1164  * void (*ndo_get_stats64)(struct net_device *dev,
1165  *                         struct rtnl_link_stats64 *storage);
1166  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1167  *	Called when a user wants to get the network device usage
1168  *	statistics. Drivers must do one of the following:
1169  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1170  *	   rtnl_link_stats64 structure passed by the caller.
1171  *	2. Define @ndo_get_stats to update a net_device_stats structure
1172  *	   (which should normally be dev->stats) and return a pointer to
1173  *	   it. The structure may be changed asynchronously only if each
1174  *	   field is written atomically.
1175  *	3. Update dev->stats asynchronously and atomically, and define
1176  *	   neither operation.
1177  *
1178  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1179  *	Return true if this device supports offload stats of this attr_id.
1180  *
1181  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1182  *	void *attr_data)
1183  *	Get statistics for offload operations by attr_id. Write it into the
1184  *	attr_data pointer.
1185  *
1186  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1187  *	If device supports VLAN filtering this function is called when a
1188  *	VLAN id is registered.
1189  *
1190  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1191  *	If device supports VLAN filtering this function is called when a
1192  *	VLAN id is unregistered.
1193  *
1194  * void (*ndo_poll_controller)(struct net_device *dev);
1195  *
1196  *	SR-IOV management functions.
1197  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1198  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1199  *			  u8 qos, __be16 proto);
1200  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1201  *			  int max_tx_rate);
1202  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1203  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1204  * int (*ndo_get_vf_config)(struct net_device *dev,
1205  *			    int vf, struct ifla_vf_info *ivf);
1206  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1207  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1208  *			  struct nlattr *port[]);
1209  *
1210  *      Enable or disable the VF ability to query its RSS Redirection Table and
1211  *      Hash Key. This is needed since on some devices VF share this information
1212  *      with PF and querying it may introduce a theoretical security risk.
1213  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1214  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1215  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1216  *		       void *type_data);
1217  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1218  *	This is always called from the stack with the rtnl lock held and netif
1219  *	tx queues stopped. This allows the netdevice to perform queue
1220  *	management safely.
1221  *
1222  *	Fiber Channel over Ethernet (FCoE) offload functions.
1223  * int (*ndo_fcoe_enable)(struct net_device *dev);
1224  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1225  *	so the underlying device can perform whatever needed configuration or
1226  *	initialization to support acceleration of FCoE traffic.
1227  *
1228  * int (*ndo_fcoe_disable)(struct net_device *dev);
1229  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1230  *	so the underlying device can perform whatever needed clean-ups to
1231  *	stop supporting acceleration of FCoE traffic.
1232  *
1233  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1234  *			     struct scatterlist *sgl, unsigned int sgc);
1235  *	Called when the FCoE Initiator wants to initialize an I/O that
1236  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1237  *	perform necessary setup and returns 1 to indicate the device is set up
1238  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1239  *
1240  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1241  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1242  *	indicated by the FC exchange id 'xid', so the underlying device can
1243  *	clean up and reuse resources for later DDP requests.
1244  *
1245  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1246  *			      struct scatterlist *sgl, unsigned int sgc);
1247  *	Called when the FCoE Target wants to initialize an I/O that
1248  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1249  *	perform necessary setup and returns 1 to indicate the device is set up
1250  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1251  *
1252  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1253  *			       struct netdev_fcoe_hbainfo *hbainfo);
1254  *	Called when the FCoE Protocol stack wants information on the underlying
1255  *	device. This information is utilized by the FCoE protocol stack to
1256  *	register attributes with Fiber Channel management service as per the
1257  *	FC-GS Fabric Device Management Information(FDMI) specification.
1258  *
1259  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1260  *	Called when the underlying device wants to override default World Wide
1261  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1262  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1263  *	protocol stack to use.
1264  *
1265  *	RFS acceleration.
1266  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1267  *			    u16 rxq_index, u32 flow_id);
1268  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1269  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1270  *	Return the filter ID on success, or a negative error code.
1271  *
1272  *	Slave management functions (for bridge, bonding, etc).
1273  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1274  *	Called to make another netdev an underling.
1275  *
1276  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1277  *	Called to release previously enslaved netdev.
1278  *
1279  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1280  *					    struct sk_buff *skb,
1281  *					    bool all_slaves);
1282  *	Get the xmit slave of master device. If all_slaves is true, function
1283  *	assume all the slaves can transmit.
1284  *
1285  *      Feature/offload setting functions.
1286  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1287  *		netdev_features_t features);
1288  *	Adjusts the requested feature flags according to device-specific
1289  *	constraints, and returns the resulting flags. Must not modify
1290  *	the device state.
1291  *
1292  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1293  *	Called to update device configuration to new features. Passed
1294  *	feature set might be less than what was returned by ndo_fix_features()).
1295  *	Must return >0 or -errno if it changed dev->features itself.
1296  *
1297  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1298  *		      struct net_device *dev,
1299  *		      const unsigned char *addr, u16 vid, u16 flags,
1300  *		      struct netlink_ext_ack *extack);
1301  *	Adds an FDB entry to dev for addr.
1302  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1303  *		      struct net_device *dev,
1304  *		      const unsigned char *addr, u16 vid)
1305  *	Deletes the FDB entry from dev coresponding to addr.
1306  * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[],
1307  *			   struct net_device *dev,
1308  *			   u16 vid,
1309  *			   struct netlink_ext_ack *extack);
1310  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1311  *		       struct net_device *dev, struct net_device *filter_dev,
1312  *		       int *idx)
1313  *	Used to add FDB entries to dump requests. Implementers should add
1314  *	entries to skb and update idx with the number of entries.
1315  *
1316  * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[],
1317  *		      u16 nlmsg_flags, struct netlink_ext_ack *extack);
1318  *	Adds an MDB entry to dev.
1319  * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[],
1320  *		      struct netlink_ext_ack *extack);
1321  *	Deletes the MDB entry from dev.
1322  * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb,
1323  *		       struct netlink_callback *cb);
1324  *	Dumps MDB entries from dev. The first argument (marker) in the netlink
1325  *	callback is used by core rtnetlink code.
1326  *
1327  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1328  *			     u16 flags, struct netlink_ext_ack *extack)
1329  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1330  *			     struct net_device *dev, u32 filter_mask,
1331  *			     int nlflags)
1332  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1333  *			     u16 flags);
1334  *
1335  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1336  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1337  *	which do not represent real hardware may define this to allow their
1338  *	userspace components to manage their virtual carrier state. Devices
1339  *	that determine carrier state from physical hardware properties (eg
1340  *	network cables) or protocol-dependent mechanisms (eg
1341  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1342  *
1343  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1344  *			       struct netdev_phys_item_id *ppid);
1345  *	Called to get ID of physical port of this device. If driver does
1346  *	not implement this, it is assumed that the hw is not able to have
1347  *	multiple net devices on single physical port.
1348  *
1349  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1350  *				 struct netdev_phys_item_id *ppid)
1351  *	Called to get the parent ID of the physical port of this device.
1352  *
1353  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1354  *				 struct net_device *dev)
1355  *	Called by upper layer devices to accelerate switching or other
1356  *	station functionality into hardware. 'pdev is the lowerdev
1357  *	to use for the offload and 'dev' is the net device that will
1358  *	back the offload. Returns a pointer to the private structure
1359  *	the upper layer will maintain.
1360  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1361  *	Called by upper layer device to delete the station created
1362  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1363  *	the station and priv is the structure returned by the add
1364  *	operation.
1365  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1366  *			     int queue_index, u32 maxrate);
1367  *	Called when a user wants to set a max-rate limitation of specific
1368  *	TX queue.
1369  * int (*ndo_get_iflink)(const struct net_device *dev);
1370  *	Called to get the iflink value of this device.
1371  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1372  *	This function is used to get egress tunnel information for given skb.
1373  *	This is useful for retrieving outer tunnel header parameters while
1374  *	sampling packet.
1375  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1376  *	This function is used to specify the headroom that the skb must
1377  *	consider when allocation skb during packet reception. Setting
1378  *	appropriate rx headroom value allows avoiding skb head copy on
1379  *	forward. Setting a negative value resets the rx headroom to the
1380  *	default value.
1381  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1382  *	This function is used to set or query state related to XDP on the
1383  *	netdevice and manage BPF offload. See definition of
1384  *	enum bpf_netdev_command for details.
1385  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1386  *			u32 flags);
1387  *	This function is used to submit @n XDP packets for transmit on a
1388  *	netdevice. Returns number of frames successfully transmitted, frames
1389  *	that got dropped are freed/returned via xdp_return_frame().
1390  *	Returns negative number, means general error invoking ndo, meaning
1391  *	no frames were xmit'ed and core-caller will free all frames.
1392  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1393  *					        struct xdp_buff *xdp);
1394  *      Get the xmit slave of master device based on the xdp_buff.
1395  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1396  *      This function is used to wake up the softirq, ksoftirqd or kthread
1397  *	responsible for sending and/or receiving packets on a specific
1398  *	queue id bound to an AF_XDP socket. The flags field specifies if
1399  *	only RX, only Tx, or both should be woken up using the flags
1400  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1401  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1402  *			 int cmd);
1403  *	Add, change, delete or get information on an IPv4 tunnel.
1404  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1405  *	If a device is paired with a peer device, return the peer instance.
1406  *	The caller must be under RCU read context.
1407  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1408  *     Get the forwarding path to reach the real device from the HW destination address
1409  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1410  *			     const struct skb_shared_hwtstamps *hwtstamps,
1411  *			     bool cycles);
1412  *	Get hardware timestamp based on normal/adjustable time or free running
1413  *	cycle counter. This function is required if physical clock supports a
1414  *	free running cycle counter.
1415  */
1416 struct net_device_ops {
1417 	int			(*ndo_init)(struct net_device *dev);
1418 	void			(*ndo_uninit)(struct net_device *dev);
1419 	int			(*ndo_open)(struct net_device *dev);
1420 	int			(*ndo_stop)(struct net_device *dev);
1421 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1422 						  struct net_device *dev);
1423 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1424 						      struct net_device *dev,
1425 						      netdev_features_t features);
1426 	u16			(*ndo_select_queue)(struct net_device *dev,
1427 						    struct sk_buff *skb,
1428 						    struct net_device *sb_dev);
1429 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1430 						       int flags);
1431 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1432 	int			(*ndo_set_mac_address)(struct net_device *dev,
1433 						       void *addr);
1434 	int			(*ndo_validate_addr)(struct net_device *dev);
1435 	int			(*ndo_do_ioctl)(struct net_device *dev,
1436 					        struct ifreq *ifr, int cmd);
1437 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1438 						 struct ifreq *ifr, int cmd);
1439 	int			(*ndo_siocbond)(struct net_device *dev,
1440 						struct ifreq *ifr, int cmd);
1441 	int			(*ndo_siocwandev)(struct net_device *dev,
1442 						  struct if_settings *ifs);
1443 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1444 						      struct ifreq *ifr,
1445 						      void __user *data, int cmd);
1446 	int			(*ndo_set_config)(struct net_device *dev,
1447 					          struct ifmap *map);
1448 	int			(*ndo_change_mtu)(struct net_device *dev,
1449 						  int new_mtu);
1450 	int			(*ndo_neigh_setup)(struct net_device *dev,
1451 						   struct neigh_parms *);
1452 	void			(*ndo_tx_timeout) (struct net_device *dev,
1453 						   unsigned int txqueue);
1454 
1455 	void			(*ndo_get_stats64)(struct net_device *dev,
1456 						   struct rtnl_link_stats64 *storage);
1457 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1458 	int			(*ndo_get_offload_stats)(int attr_id,
1459 							 const struct net_device *dev,
1460 							 void *attr_data);
1461 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1462 
1463 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1464 						       __be16 proto, u16 vid);
1465 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1466 						        __be16 proto, u16 vid);
1467 #ifdef CONFIG_NET_POLL_CONTROLLER
1468 	void                    (*ndo_poll_controller)(struct net_device *dev);
1469 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1470 						     struct netpoll_info *info);
1471 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1472 #endif
1473 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1474 						  int queue, u8 *mac);
1475 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1476 						   int queue, u16 vlan,
1477 						   u8 qos, __be16 proto);
1478 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1479 						   int vf, int min_tx_rate,
1480 						   int max_tx_rate);
1481 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1482 						       int vf, bool setting);
1483 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1484 						    int vf, bool setting);
1485 	int			(*ndo_get_vf_config)(struct net_device *dev,
1486 						     int vf,
1487 						     struct ifla_vf_info *ivf);
1488 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1489 							 int vf, int link_state);
1490 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1491 						    int vf,
1492 						    struct ifla_vf_stats
1493 						    *vf_stats);
1494 	int			(*ndo_set_vf_port)(struct net_device *dev,
1495 						   int vf,
1496 						   struct nlattr *port[]);
1497 	int			(*ndo_get_vf_port)(struct net_device *dev,
1498 						   int vf, struct sk_buff *skb);
1499 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1500 						   int vf,
1501 						   struct ifla_vf_guid *node_guid,
1502 						   struct ifla_vf_guid *port_guid);
1503 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1504 						   int vf, u64 guid,
1505 						   int guid_type);
1506 	int			(*ndo_set_vf_rss_query_en)(
1507 						   struct net_device *dev,
1508 						   int vf, bool setting);
1509 	int			(*ndo_setup_tc)(struct net_device *dev,
1510 						enum tc_setup_type type,
1511 						void *type_data);
1512 #if IS_ENABLED(CONFIG_FCOE)
1513 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1514 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1515 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1516 						      u16 xid,
1517 						      struct scatterlist *sgl,
1518 						      unsigned int sgc);
1519 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1520 						     u16 xid);
1521 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1522 						       u16 xid,
1523 						       struct scatterlist *sgl,
1524 						       unsigned int sgc);
1525 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1526 							struct netdev_fcoe_hbainfo *hbainfo);
1527 #endif
1528 
1529 #if IS_ENABLED(CONFIG_LIBFCOE)
1530 #define NETDEV_FCOE_WWNN 0
1531 #define NETDEV_FCOE_WWPN 1
1532 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1533 						    u64 *wwn, int type);
1534 #endif
1535 
1536 #ifdef CONFIG_RFS_ACCEL
1537 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1538 						     const struct sk_buff *skb,
1539 						     u16 rxq_index,
1540 						     u32 flow_id);
1541 #endif
1542 	int			(*ndo_add_slave)(struct net_device *dev,
1543 						 struct net_device *slave_dev,
1544 						 struct netlink_ext_ack *extack);
1545 	int			(*ndo_del_slave)(struct net_device *dev,
1546 						 struct net_device *slave_dev);
1547 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1548 						      struct sk_buff *skb,
1549 						      bool all_slaves);
1550 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1551 							struct sock *sk);
1552 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1553 						    netdev_features_t features);
1554 	int			(*ndo_set_features)(struct net_device *dev,
1555 						    netdev_features_t features);
1556 	int			(*ndo_neigh_construct)(struct net_device *dev,
1557 						       struct neighbour *n);
1558 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1559 						     struct neighbour *n);
1560 
1561 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1562 					       struct nlattr *tb[],
1563 					       struct net_device *dev,
1564 					       const unsigned char *addr,
1565 					       u16 vid,
1566 					       u16 flags,
1567 					       struct netlink_ext_ack *extack);
1568 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1569 					       struct nlattr *tb[],
1570 					       struct net_device *dev,
1571 					       const unsigned char *addr,
1572 					       u16 vid, struct netlink_ext_ack *extack);
1573 	int			(*ndo_fdb_del_bulk)(struct ndmsg *ndm,
1574 						    struct nlattr *tb[],
1575 						    struct net_device *dev,
1576 						    u16 vid,
1577 						    struct netlink_ext_ack *extack);
1578 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1579 						struct netlink_callback *cb,
1580 						struct net_device *dev,
1581 						struct net_device *filter_dev,
1582 						int *idx);
1583 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1584 					       struct nlattr *tb[],
1585 					       struct net_device *dev,
1586 					       const unsigned char *addr,
1587 					       u16 vid, u32 portid, u32 seq,
1588 					       struct netlink_ext_ack *extack);
1589 	int			(*ndo_mdb_add)(struct net_device *dev,
1590 					       struct nlattr *tb[],
1591 					       u16 nlmsg_flags,
1592 					       struct netlink_ext_ack *extack);
1593 	int			(*ndo_mdb_del)(struct net_device *dev,
1594 					       struct nlattr *tb[],
1595 					       struct netlink_ext_ack *extack);
1596 	int			(*ndo_mdb_dump)(struct net_device *dev,
1597 						struct sk_buff *skb,
1598 						struct netlink_callback *cb);
1599 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1600 						      struct nlmsghdr *nlh,
1601 						      u16 flags,
1602 						      struct netlink_ext_ack *extack);
1603 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1604 						      u32 pid, u32 seq,
1605 						      struct net_device *dev,
1606 						      u32 filter_mask,
1607 						      int nlflags);
1608 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1609 						      struct nlmsghdr *nlh,
1610 						      u16 flags);
1611 	int			(*ndo_change_carrier)(struct net_device *dev,
1612 						      bool new_carrier);
1613 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1614 							struct netdev_phys_item_id *ppid);
1615 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1616 							  struct netdev_phys_item_id *ppid);
1617 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1618 							  char *name, size_t len);
1619 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1620 							struct net_device *dev);
1621 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1622 							void *priv);
1623 
1624 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1625 						      int queue_index,
1626 						      u32 maxrate);
1627 	int			(*ndo_get_iflink)(const struct net_device *dev);
1628 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1629 						       struct sk_buff *skb);
1630 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1631 						       int needed_headroom);
1632 	int			(*ndo_bpf)(struct net_device *dev,
1633 					   struct netdev_bpf *bpf);
1634 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1635 						struct xdp_frame **xdp,
1636 						u32 flags);
1637 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1638 							  struct xdp_buff *xdp);
1639 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1640 						  u32 queue_id, u32 flags);
1641 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1642 						  struct ip_tunnel_parm *p, int cmd);
1643 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1644 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1645                                                          struct net_device_path *path);
1646 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1647 						  const struct skb_shared_hwtstamps *hwtstamps,
1648 						  bool cycles);
1649 };
1650 
1651 struct xdp_metadata_ops {
1652 	int	(*xmo_rx_timestamp)(const struct xdp_md *ctx, u64 *timestamp);
1653 	int	(*xmo_rx_hash)(const struct xdp_md *ctx, u32 *hash);
1654 };
1655 
1656 /**
1657  * enum netdev_priv_flags - &struct net_device priv_flags
1658  *
1659  * These are the &struct net_device, they are only set internally
1660  * by drivers and used in the kernel. These flags are invisible to
1661  * userspace; this means that the order of these flags can change
1662  * during any kernel release.
1663  *
1664  * You should have a pretty good reason to be extending these flags.
1665  *
1666  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1667  * @IFF_EBRIDGE: Ethernet bridging device
1668  * @IFF_BONDING: bonding master or slave
1669  * @IFF_ISATAP: ISATAP interface (RFC4214)
1670  * @IFF_WAN_HDLC: WAN HDLC device
1671  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1672  *	release skb->dst
1673  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1674  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1675  * @IFF_MACVLAN_PORT: device used as macvlan port
1676  * @IFF_BRIDGE_PORT: device used as bridge port
1677  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1678  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1679  * @IFF_UNICAST_FLT: Supports unicast filtering
1680  * @IFF_TEAM_PORT: device used as team port
1681  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1682  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1683  *	change when it's running
1684  * @IFF_MACVLAN: Macvlan device
1685  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1686  *	underlying stacked devices
1687  * @IFF_L3MDEV_MASTER: device is an L3 master device
1688  * @IFF_NO_QUEUE: device can run without qdisc attached
1689  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1690  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1691  * @IFF_TEAM: device is a team device
1692  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1693  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1694  *	entity (i.e. the master device for bridged veth)
1695  * @IFF_MACSEC: device is a MACsec device
1696  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1697  * @IFF_FAILOVER: device is a failover master device
1698  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1699  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1700  * @IFF_NO_ADDRCONF: prevent ipv6 addrconf
1701  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1702  *	skb_headlen(skb) == 0 (data starts from frag0)
1703  * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1704  */
1705 enum netdev_priv_flags {
1706 	IFF_802_1Q_VLAN			= 1<<0,
1707 	IFF_EBRIDGE			= 1<<1,
1708 	IFF_BONDING			= 1<<2,
1709 	IFF_ISATAP			= 1<<3,
1710 	IFF_WAN_HDLC			= 1<<4,
1711 	IFF_XMIT_DST_RELEASE		= 1<<5,
1712 	IFF_DONT_BRIDGE			= 1<<6,
1713 	IFF_DISABLE_NETPOLL		= 1<<7,
1714 	IFF_MACVLAN_PORT		= 1<<8,
1715 	IFF_BRIDGE_PORT			= 1<<9,
1716 	IFF_OVS_DATAPATH		= 1<<10,
1717 	IFF_TX_SKB_SHARING		= 1<<11,
1718 	IFF_UNICAST_FLT			= 1<<12,
1719 	IFF_TEAM_PORT			= 1<<13,
1720 	IFF_SUPP_NOFCS			= 1<<14,
1721 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1722 	IFF_MACVLAN			= 1<<16,
1723 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1724 	IFF_L3MDEV_MASTER		= 1<<18,
1725 	IFF_NO_QUEUE			= 1<<19,
1726 	IFF_OPENVSWITCH			= 1<<20,
1727 	IFF_L3MDEV_SLAVE		= 1<<21,
1728 	IFF_TEAM			= 1<<22,
1729 	IFF_RXFH_CONFIGURED		= 1<<23,
1730 	IFF_PHONY_HEADROOM		= 1<<24,
1731 	IFF_MACSEC			= 1<<25,
1732 	IFF_NO_RX_HANDLER		= 1<<26,
1733 	IFF_FAILOVER			= 1<<27,
1734 	IFF_FAILOVER_SLAVE		= 1<<28,
1735 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1736 	IFF_NO_ADDRCONF			= BIT_ULL(30),
1737 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1738 	IFF_CHANGE_PROTO_DOWN		= BIT_ULL(32),
1739 };
1740 
1741 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1742 #define IFF_EBRIDGE			IFF_EBRIDGE
1743 #define IFF_BONDING			IFF_BONDING
1744 #define IFF_ISATAP			IFF_ISATAP
1745 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1746 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1747 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1748 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1749 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1750 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1751 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1752 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1753 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1754 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1755 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1756 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1757 #define IFF_MACVLAN			IFF_MACVLAN
1758 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1759 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1760 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1761 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1762 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1763 #define IFF_TEAM			IFF_TEAM
1764 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1765 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1766 #define IFF_MACSEC			IFF_MACSEC
1767 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1768 #define IFF_FAILOVER			IFF_FAILOVER
1769 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1770 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1771 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1772 
1773 /* Specifies the type of the struct net_device::ml_priv pointer */
1774 enum netdev_ml_priv_type {
1775 	ML_PRIV_NONE,
1776 	ML_PRIV_CAN,
1777 };
1778 
1779 /**
1780  *	struct net_device - The DEVICE structure.
1781  *
1782  *	Actually, this whole structure is a big mistake.  It mixes I/O
1783  *	data with strictly "high-level" data, and it has to know about
1784  *	almost every data structure used in the INET module.
1785  *
1786  *	@name:	This is the first field of the "visible" part of this structure
1787  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1788  *		of the interface.
1789  *
1790  *	@name_node:	Name hashlist node
1791  *	@ifalias:	SNMP alias
1792  *	@mem_end:	Shared memory end
1793  *	@mem_start:	Shared memory start
1794  *	@base_addr:	Device I/O address
1795  *	@irq:		Device IRQ number
1796  *
1797  *	@state:		Generic network queuing layer state, see netdev_state_t
1798  *	@dev_list:	The global list of network devices
1799  *	@napi_list:	List entry used for polling NAPI devices
1800  *	@unreg_list:	List entry  when we are unregistering the
1801  *			device; see the function unregister_netdev
1802  *	@close_list:	List entry used when we are closing the device
1803  *	@ptype_all:     Device-specific packet handlers for all protocols
1804  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1805  *
1806  *	@adj_list:	Directly linked devices, like slaves for bonding
1807  *	@features:	Currently active device features
1808  *	@hw_features:	User-changeable features
1809  *
1810  *	@wanted_features:	User-requested features
1811  *	@vlan_features:		Mask of features inheritable by VLAN devices
1812  *
1813  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1814  *				This field indicates what encapsulation
1815  *				offloads the hardware is capable of doing,
1816  *				and drivers will need to set them appropriately.
1817  *
1818  *	@mpls_features:	Mask of features inheritable by MPLS
1819  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1820  *
1821  *	@ifindex:	interface index
1822  *	@group:		The group the device belongs to
1823  *
1824  *	@stats:		Statistics struct, which was left as a legacy, use
1825  *			rtnl_link_stats64 instead
1826  *
1827  *	@core_stats:	core networking counters,
1828  *			do not use this in drivers
1829  *	@carrier_up_count:	Number of times the carrier has been up
1830  *	@carrier_down_count:	Number of times the carrier has been down
1831  *
1832  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1833  *				instead of ioctl,
1834  *				see <net/iw_handler.h> for details.
1835  *	@wireless_data:	Instance data managed by the core of wireless extensions
1836  *
1837  *	@netdev_ops:	Includes several pointers to callbacks,
1838  *			if one wants to override the ndo_*() functions
1839  *	@xdp_metadata_ops:	Includes pointers to XDP metadata callbacks.
1840  *	@ethtool_ops:	Management operations
1841  *	@l3mdev_ops:	Layer 3 master device operations
1842  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1843  *			discovery handling. Necessary for e.g. 6LoWPAN.
1844  *	@xfrmdev_ops:	Transformation offload operations
1845  *	@tlsdev_ops:	Transport Layer Security offload operations
1846  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1847  *			of Layer 2 headers.
1848  *
1849  *	@flags:		Interface flags (a la BSD)
1850  *	@xdp_features:	XDP capability supported by the device
1851  *	@priv_flags:	Like 'flags' but invisible to userspace,
1852  *			see if.h for the definitions
1853  *	@gflags:	Global flags ( kept as legacy )
1854  *	@padded:	How much padding added by alloc_netdev()
1855  *	@operstate:	RFC2863 operstate
1856  *	@link_mode:	Mapping policy to operstate
1857  *	@if_port:	Selectable AUI, TP, ...
1858  *	@dma:		DMA channel
1859  *	@mtu:		Interface MTU value
1860  *	@min_mtu:	Interface Minimum MTU value
1861  *	@max_mtu:	Interface Maximum MTU value
1862  *	@type:		Interface hardware type
1863  *	@hard_header_len: Maximum hardware header length.
1864  *	@min_header_len:  Minimum hardware header length
1865  *
1866  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1867  *			  cases can this be guaranteed
1868  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1869  *			  cases can this be guaranteed. Some cases also use
1870  *			  LL_MAX_HEADER instead to allocate the skb
1871  *
1872  *	interface address info:
1873  *
1874  * 	@perm_addr:		Permanent hw address
1875  * 	@addr_assign_type:	Hw address assignment type
1876  * 	@addr_len:		Hardware address length
1877  *	@upper_level:		Maximum depth level of upper devices.
1878  *	@lower_level:		Maximum depth level of lower devices.
1879  *	@neigh_priv_len:	Used in neigh_alloc()
1880  * 	@dev_id:		Used to differentiate devices that share
1881  * 				the same link layer address
1882  * 	@dev_port:		Used to differentiate devices that share
1883  * 				the same function
1884  *	@addr_list_lock:	XXX: need comments on this one
1885  *	@name_assign_type:	network interface name assignment type
1886  *	@uc_promisc:		Counter that indicates promiscuous mode
1887  *				has been enabled due to the need to listen to
1888  *				additional unicast addresses in a device that
1889  *				does not implement ndo_set_rx_mode()
1890  *	@uc:			unicast mac addresses
1891  *	@mc:			multicast mac addresses
1892  *	@dev_addrs:		list of device hw addresses
1893  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1894  *	@promiscuity:		Number of times the NIC is told to work in
1895  *				promiscuous mode; if it becomes 0 the NIC will
1896  *				exit promiscuous mode
1897  *	@allmulti:		Counter, enables or disables allmulticast mode
1898  *
1899  *	@vlan_info:	VLAN info
1900  *	@dsa_ptr:	dsa specific data
1901  *	@tipc_ptr:	TIPC specific data
1902  *	@atalk_ptr:	AppleTalk link
1903  *	@ip_ptr:	IPv4 specific data
1904  *	@ip6_ptr:	IPv6 specific data
1905  *	@ax25_ptr:	AX.25 specific data
1906  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1907  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1908  *			 device struct
1909  *	@mpls_ptr:	mpls_dev struct pointer
1910  *	@mctp_ptr:	MCTP specific data
1911  *
1912  *	@dev_addr:	Hw address (before bcast,
1913  *			because most packets are unicast)
1914  *
1915  *	@_rx:			Array of RX queues
1916  *	@num_rx_queues:		Number of RX queues
1917  *				allocated at register_netdev() time
1918  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1919  *	@xdp_prog:		XDP sockets filter program pointer
1920  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1921  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1922  *				allow to avoid NIC hard IRQ, on busy queues.
1923  *
1924  *	@rx_handler:		handler for received packets
1925  *	@rx_handler_data: 	XXX: need comments on this one
1926  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1927  *				ingress processing
1928  *	@ingress_queue:		XXX: need comments on this one
1929  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1930  *	@broadcast:		hw bcast address
1931  *
1932  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1933  *			indexed by RX queue number. Assigned by driver.
1934  *			This must only be set if the ndo_rx_flow_steer
1935  *			operation is defined
1936  *	@index_hlist:		Device index hash chain
1937  *
1938  *	@_tx:			Array of TX queues
1939  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1940  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1941  *	@qdisc:			Root qdisc from userspace point of view
1942  *	@tx_queue_len:		Max frames per queue allowed
1943  *	@tx_global_lock: 	XXX: need comments on this one
1944  *	@xdp_bulkq:		XDP device bulk queue
1945  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1946  *
1947  *	@xps_maps:	XXX: need comments on this one
1948  *	@miniq_egress:		clsact qdisc specific data for
1949  *				egress processing
1950  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1951  *	@qdisc_hash:		qdisc hash table
1952  *	@watchdog_timeo:	Represents the timeout that is used by
1953  *				the watchdog (see dev_watchdog())
1954  *	@watchdog_timer:	List of timers
1955  *
1956  *	@proto_down_reason:	reason a netdev interface is held down
1957  *	@pcpu_refcnt:		Number of references to this device
1958  *	@dev_refcnt:		Number of references to this device
1959  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1960  *	@todo_list:		Delayed register/unregister
1961  *	@link_watch_list:	XXX: need comments on this one
1962  *
1963  *	@reg_state:		Register/unregister state machine
1964  *	@dismantle:		Device is going to be freed
1965  *	@rtnl_link_state:	This enum represents the phases of creating
1966  *				a new link
1967  *
1968  *	@needs_free_netdev:	Should unregister perform free_netdev?
1969  *	@priv_destructor:	Called from unregister
1970  *	@npinfo:		XXX: need comments on this one
1971  * 	@nd_net:		Network namespace this network device is inside
1972  *
1973  * 	@ml_priv:	Mid-layer private
1974  *	@ml_priv_type:  Mid-layer private type
1975  * 	@lstats:	Loopback statistics
1976  * 	@tstats:	Tunnel statistics
1977  * 	@dstats:	Dummy statistics
1978  * 	@vstats:	Virtual ethernet statistics
1979  *
1980  *	@garp_port:	GARP
1981  *	@mrp_port:	MRP
1982  *
1983  *	@dm_private:	Drop monitor private
1984  *
1985  *	@dev:		Class/net/name entry
1986  *	@sysfs_groups:	Space for optional device, statistics and wireless
1987  *			sysfs groups
1988  *
1989  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1990  *	@rtnl_link_ops:	Rtnl_link_ops
1991  *
1992  *	@gso_max_size:	Maximum size of generic segmentation offload
1993  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
1994  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1995  *			NIC for GSO
1996  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
1997  * 	@gso_ipv4_max_size:	Maximum size of generic segmentation offload,
1998  * 				for IPv4.
1999  *
2000  *	@dcbnl_ops:	Data Center Bridging netlink ops
2001  *	@num_tc:	Number of traffic classes in the net device
2002  *	@tc_to_txq:	XXX: need comments on this one
2003  *	@prio_tc_map:	XXX: need comments on this one
2004  *
2005  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
2006  *
2007  *	@priomap:	XXX: need comments on this one
2008  *	@phydev:	Physical device may attach itself
2009  *			for hardware timestamping
2010  *	@sfp_bus:	attached &struct sfp_bus structure.
2011  *
2012  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
2013  *
2014  *	@proto_down:	protocol port state information can be sent to the
2015  *			switch driver and used to set the phys state of the
2016  *			switch port.
2017  *
2018  *	@wol_enabled:	Wake-on-LAN is enabled
2019  *
2020  *	@threaded:	napi threaded mode is enabled
2021  *
2022  *	@net_notifier_list:	List of per-net netdev notifier block
2023  *				that follow this device when it is moved
2024  *				to another network namespace.
2025  *
2026  *	@macsec_ops:    MACsec offloading ops
2027  *
2028  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
2029  *				offload capabilities of the device
2030  *	@udp_tunnel_nic:	UDP tunnel offload state
2031  *	@xdp_state:		stores info on attached XDP BPF programs
2032  *
2033  *	@nested_level:	Used as a parameter of spin_lock_nested() of
2034  *			dev->addr_list_lock.
2035  *	@unlink_list:	As netif_addr_lock() can be called recursively,
2036  *			keep a list of interfaces to be deleted.
2037  *	@gro_max_size:	Maximum size of aggregated packet in generic
2038  *			receive offload (GRO)
2039  * 	@gro_ipv4_max_size:	Maximum size of aggregated packet in generic
2040  * 				receive offload (GRO), for IPv4.
2041  *
2042  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
2043  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
2044  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
2045  *	@dev_registered_tracker:	tracker for reference held while
2046  *					registered
2047  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
2048  *
2049  *	@devlink_port:	Pointer to related devlink port structure.
2050  *			Assigned by a driver before netdev registration using
2051  *			SET_NETDEV_DEVLINK_PORT macro. This pointer is static
2052  *			during the time netdevice is registered.
2053  *
2054  *	FIXME: cleanup struct net_device such that network protocol info
2055  *	moves out.
2056  */
2057 
2058 struct net_device {
2059 	char			name[IFNAMSIZ];
2060 	struct netdev_name_node	*name_node;
2061 	struct dev_ifalias	__rcu *ifalias;
2062 	/*
2063 	 *	I/O specific fields
2064 	 *	FIXME: Merge these and struct ifmap into one
2065 	 */
2066 	unsigned long		mem_end;
2067 	unsigned long		mem_start;
2068 	unsigned long		base_addr;
2069 
2070 	/*
2071 	 *	Some hardware also needs these fields (state,dev_list,
2072 	 *	napi_list,unreg_list,close_list) but they are not
2073 	 *	part of the usual set specified in Space.c.
2074 	 */
2075 
2076 	unsigned long		state;
2077 
2078 	struct list_head	dev_list;
2079 	struct list_head	napi_list;
2080 	struct list_head	unreg_list;
2081 	struct list_head	close_list;
2082 	struct list_head	ptype_all;
2083 	struct list_head	ptype_specific;
2084 
2085 	struct {
2086 		struct list_head upper;
2087 		struct list_head lower;
2088 	} adj_list;
2089 
2090 	/* Read-mostly cache-line for fast-path access */
2091 	unsigned int		flags;
2092 	xdp_features_t		xdp_features;
2093 	unsigned long long	priv_flags;
2094 	const struct net_device_ops *netdev_ops;
2095 	const struct xdp_metadata_ops *xdp_metadata_ops;
2096 	int			ifindex;
2097 	unsigned short		gflags;
2098 	unsigned short		hard_header_len;
2099 
2100 	/* Note : dev->mtu is often read without holding a lock.
2101 	 * Writers usually hold RTNL.
2102 	 * It is recommended to use READ_ONCE() to annotate the reads,
2103 	 * and to use WRITE_ONCE() to annotate the writes.
2104 	 */
2105 	unsigned int		mtu;
2106 	unsigned short		needed_headroom;
2107 	unsigned short		needed_tailroom;
2108 
2109 	netdev_features_t	features;
2110 	netdev_features_t	hw_features;
2111 	netdev_features_t	wanted_features;
2112 	netdev_features_t	vlan_features;
2113 	netdev_features_t	hw_enc_features;
2114 	netdev_features_t	mpls_features;
2115 	netdev_features_t	gso_partial_features;
2116 
2117 	unsigned int		min_mtu;
2118 	unsigned int		max_mtu;
2119 	unsigned short		type;
2120 	unsigned char		min_header_len;
2121 	unsigned char		name_assign_type;
2122 
2123 	int			group;
2124 
2125 	struct net_device_stats	stats; /* not used by modern drivers */
2126 
2127 	struct net_device_core_stats __percpu *core_stats;
2128 
2129 	/* Stats to monitor link on/off, flapping */
2130 	atomic_t		carrier_up_count;
2131 	atomic_t		carrier_down_count;
2132 
2133 #ifdef CONFIG_WIRELESS_EXT
2134 	const struct iw_handler_def *wireless_handlers;
2135 	struct iw_public_data	*wireless_data;
2136 #endif
2137 	const struct ethtool_ops *ethtool_ops;
2138 #ifdef CONFIG_NET_L3_MASTER_DEV
2139 	const struct l3mdev_ops	*l3mdev_ops;
2140 #endif
2141 #if IS_ENABLED(CONFIG_IPV6)
2142 	const struct ndisc_ops *ndisc_ops;
2143 #endif
2144 
2145 #ifdef CONFIG_XFRM_OFFLOAD
2146 	const struct xfrmdev_ops *xfrmdev_ops;
2147 #endif
2148 
2149 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2150 	const struct tlsdev_ops *tlsdev_ops;
2151 #endif
2152 
2153 	const struct header_ops *header_ops;
2154 
2155 	unsigned char		operstate;
2156 	unsigned char		link_mode;
2157 
2158 	unsigned char		if_port;
2159 	unsigned char		dma;
2160 
2161 	/* Interface address info. */
2162 	unsigned char		perm_addr[MAX_ADDR_LEN];
2163 	unsigned char		addr_assign_type;
2164 	unsigned char		addr_len;
2165 	unsigned char		upper_level;
2166 	unsigned char		lower_level;
2167 
2168 	unsigned short		neigh_priv_len;
2169 	unsigned short          dev_id;
2170 	unsigned short          dev_port;
2171 	unsigned short		padded;
2172 
2173 	spinlock_t		addr_list_lock;
2174 	int			irq;
2175 
2176 	struct netdev_hw_addr_list	uc;
2177 	struct netdev_hw_addr_list	mc;
2178 	struct netdev_hw_addr_list	dev_addrs;
2179 
2180 #ifdef CONFIG_SYSFS
2181 	struct kset		*queues_kset;
2182 #endif
2183 #ifdef CONFIG_LOCKDEP
2184 	struct list_head	unlink_list;
2185 #endif
2186 	unsigned int		promiscuity;
2187 	unsigned int		allmulti;
2188 	bool			uc_promisc;
2189 #ifdef CONFIG_LOCKDEP
2190 	unsigned char		nested_level;
2191 #endif
2192 
2193 
2194 	/* Protocol-specific pointers */
2195 
2196 	struct in_device __rcu	*ip_ptr;
2197 	struct inet6_dev __rcu	*ip6_ptr;
2198 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2199 	struct vlan_info __rcu	*vlan_info;
2200 #endif
2201 #if IS_ENABLED(CONFIG_NET_DSA)
2202 	struct dsa_port		*dsa_ptr;
2203 #endif
2204 #if IS_ENABLED(CONFIG_TIPC)
2205 	struct tipc_bearer __rcu *tipc_ptr;
2206 #endif
2207 #if IS_ENABLED(CONFIG_ATALK)
2208 	void 			*atalk_ptr;
2209 #endif
2210 #if IS_ENABLED(CONFIG_AX25)
2211 	void			*ax25_ptr;
2212 #endif
2213 #if IS_ENABLED(CONFIG_CFG80211)
2214 	struct wireless_dev	*ieee80211_ptr;
2215 #endif
2216 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2217 	struct wpan_dev		*ieee802154_ptr;
2218 #endif
2219 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2220 	struct mpls_dev __rcu	*mpls_ptr;
2221 #endif
2222 #if IS_ENABLED(CONFIG_MCTP)
2223 	struct mctp_dev __rcu	*mctp_ptr;
2224 #endif
2225 
2226 /*
2227  * Cache lines mostly used on receive path (including eth_type_trans())
2228  */
2229 	/* Interface address info used in eth_type_trans() */
2230 	const unsigned char	*dev_addr;
2231 
2232 	struct netdev_rx_queue	*_rx;
2233 	unsigned int		num_rx_queues;
2234 	unsigned int		real_num_rx_queues;
2235 
2236 	struct bpf_prog __rcu	*xdp_prog;
2237 	unsigned long		gro_flush_timeout;
2238 	int			napi_defer_hard_irqs;
2239 #define GRO_LEGACY_MAX_SIZE	65536u
2240 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2241  * and shinfo->gso_segs is a 16bit field.
2242  */
2243 #define GRO_MAX_SIZE		(8 * 65535u)
2244 	unsigned int		gro_max_size;
2245 	unsigned int		gro_ipv4_max_size;
2246 	rx_handler_func_t __rcu	*rx_handler;
2247 	void __rcu		*rx_handler_data;
2248 
2249 #ifdef CONFIG_NET_CLS_ACT
2250 	struct mini_Qdisc __rcu	*miniq_ingress;
2251 #endif
2252 	struct netdev_queue __rcu *ingress_queue;
2253 #ifdef CONFIG_NETFILTER_INGRESS
2254 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2255 #endif
2256 
2257 	unsigned char		broadcast[MAX_ADDR_LEN];
2258 #ifdef CONFIG_RFS_ACCEL
2259 	struct cpu_rmap		*rx_cpu_rmap;
2260 #endif
2261 	struct hlist_node	index_hlist;
2262 
2263 /*
2264  * Cache lines mostly used on transmit path
2265  */
2266 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2267 	unsigned int		num_tx_queues;
2268 	unsigned int		real_num_tx_queues;
2269 	struct Qdisc __rcu	*qdisc;
2270 	unsigned int		tx_queue_len;
2271 	spinlock_t		tx_global_lock;
2272 
2273 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2274 
2275 #ifdef CONFIG_XPS
2276 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2277 #endif
2278 #ifdef CONFIG_NET_CLS_ACT
2279 	struct mini_Qdisc __rcu	*miniq_egress;
2280 #endif
2281 #ifdef CONFIG_NETFILTER_EGRESS
2282 	struct nf_hook_entries __rcu *nf_hooks_egress;
2283 #endif
2284 
2285 #ifdef CONFIG_NET_SCHED
2286 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2287 #endif
2288 	/* These may be needed for future network-power-down code. */
2289 	struct timer_list	watchdog_timer;
2290 	int			watchdog_timeo;
2291 
2292 	u32                     proto_down_reason;
2293 
2294 	struct list_head	todo_list;
2295 
2296 #ifdef CONFIG_PCPU_DEV_REFCNT
2297 	int __percpu		*pcpu_refcnt;
2298 #else
2299 	refcount_t		dev_refcnt;
2300 #endif
2301 	struct ref_tracker_dir	refcnt_tracker;
2302 
2303 	struct list_head	link_watch_list;
2304 
2305 	enum { NETREG_UNINITIALIZED=0,
2306 	       NETREG_REGISTERED,	/* completed register_netdevice */
2307 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2308 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2309 	       NETREG_RELEASED,		/* called free_netdev */
2310 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2311 	} reg_state:8;
2312 
2313 	bool dismantle;
2314 
2315 	enum {
2316 		RTNL_LINK_INITIALIZED,
2317 		RTNL_LINK_INITIALIZING,
2318 	} rtnl_link_state:16;
2319 
2320 	bool needs_free_netdev;
2321 	void (*priv_destructor)(struct net_device *dev);
2322 
2323 #ifdef CONFIG_NETPOLL
2324 	struct netpoll_info __rcu	*npinfo;
2325 #endif
2326 
2327 	possible_net_t			nd_net;
2328 
2329 	/* mid-layer private */
2330 	void				*ml_priv;
2331 	enum netdev_ml_priv_type	ml_priv_type;
2332 
2333 	union {
2334 		struct pcpu_lstats __percpu		*lstats;
2335 		struct pcpu_sw_netstats __percpu	*tstats;
2336 		struct pcpu_dstats __percpu		*dstats;
2337 	};
2338 
2339 #if IS_ENABLED(CONFIG_GARP)
2340 	struct garp_port __rcu	*garp_port;
2341 #endif
2342 #if IS_ENABLED(CONFIG_MRP)
2343 	struct mrp_port __rcu	*mrp_port;
2344 #endif
2345 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2346 	struct dm_hw_stat_delta __rcu *dm_private;
2347 #endif
2348 	struct device		dev;
2349 	const struct attribute_group *sysfs_groups[4];
2350 	const struct attribute_group *sysfs_rx_queue_group;
2351 
2352 	const struct rtnl_link_ops *rtnl_link_ops;
2353 
2354 	/* for setting kernel sock attribute on TCP connection setup */
2355 #define GSO_MAX_SEGS		65535u
2356 #define GSO_LEGACY_MAX_SIZE	65536u
2357 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2358  * and shinfo->gso_segs is a 16bit field.
2359  */
2360 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2361 
2362 	unsigned int		gso_max_size;
2363 #define TSO_LEGACY_MAX_SIZE	65536
2364 #define TSO_MAX_SIZE		UINT_MAX
2365 	unsigned int		tso_max_size;
2366 	u16			gso_max_segs;
2367 #define TSO_MAX_SEGS		U16_MAX
2368 	u16			tso_max_segs;
2369 	unsigned int		gso_ipv4_max_size;
2370 
2371 #ifdef CONFIG_DCB
2372 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2373 #endif
2374 	s16			num_tc;
2375 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2376 	u8			prio_tc_map[TC_BITMASK + 1];
2377 
2378 #if IS_ENABLED(CONFIG_FCOE)
2379 	unsigned int		fcoe_ddp_xid;
2380 #endif
2381 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2382 	struct netprio_map __rcu *priomap;
2383 #endif
2384 	struct phy_device	*phydev;
2385 	struct sfp_bus		*sfp_bus;
2386 	struct lock_class_key	*qdisc_tx_busylock;
2387 	bool			proto_down;
2388 	unsigned		wol_enabled:1;
2389 	unsigned		threaded:1;
2390 
2391 	struct list_head	net_notifier_list;
2392 
2393 #if IS_ENABLED(CONFIG_MACSEC)
2394 	/* MACsec management functions */
2395 	const struct macsec_ops *macsec_ops;
2396 #endif
2397 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2398 	struct udp_tunnel_nic	*udp_tunnel_nic;
2399 
2400 	/* protected by rtnl_lock */
2401 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2402 
2403 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2404 	netdevice_tracker	linkwatch_dev_tracker;
2405 	netdevice_tracker	watchdog_dev_tracker;
2406 	netdevice_tracker	dev_registered_tracker;
2407 	struct rtnl_hw_stats64	*offload_xstats_l3;
2408 
2409 	struct devlink_port	*devlink_port;
2410 };
2411 #define to_net_dev(d) container_of(d, struct net_device, dev)
2412 
2413 /*
2414  * Driver should use this to assign devlink port instance to a netdevice
2415  * before it registers the netdevice. Therefore devlink_port is static
2416  * during the netdev lifetime after it is registered.
2417  */
2418 #define SET_NETDEV_DEVLINK_PORT(dev, port)			\
2419 ({								\
2420 	WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED);	\
2421 	((dev)->devlink_port = (port));				\
2422 })
2423 
2424 static inline bool netif_elide_gro(const struct net_device *dev)
2425 {
2426 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2427 		return true;
2428 	return false;
2429 }
2430 
2431 #define	NETDEV_ALIGN		32
2432 
2433 static inline
2434 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2435 {
2436 	return dev->prio_tc_map[prio & TC_BITMASK];
2437 }
2438 
2439 static inline
2440 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2441 {
2442 	if (tc >= dev->num_tc)
2443 		return -EINVAL;
2444 
2445 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2446 	return 0;
2447 }
2448 
2449 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2450 void netdev_reset_tc(struct net_device *dev);
2451 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2452 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2453 
2454 static inline
2455 int netdev_get_num_tc(struct net_device *dev)
2456 {
2457 	return dev->num_tc;
2458 }
2459 
2460 static inline void net_prefetch(void *p)
2461 {
2462 	prefetch(p);
2463 #if L1_CACHE_BYTES < 128
2464 	prefetch((u8 *)p + L1_CACHE_BYTES);
2465 #endif
2466 }
2467 
2468 static inline void net_prefetchw(void *p)
2469 {
2470 	prefetchw(p);
2471 #if L1_CACHE_BYTES < 128
2472 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2473 #endif
2474 }
2475 
2476 void netdev_unbind_sb_channel(struct net_device *dev,
2477 			      struct net_device *sb_dev);
2478 int netdev_bind_sb_channel_queue(struct net_device *dev,
2479 				 struct net_device *sb_dev,
2480 				 u8 tc, u16 count, u16 offset);
2481 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2482 static inline int netdev_get_sb_channel(struct net_device *dev)
2483 {
2484 	return max_t(int, -dev->num_tc, 0);
2485 }
2486 
2487 static inline
2488 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2489 					 unsigned int index)
2490 {
2491 	DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues);
2492 	return &dev->_tx[index];
2493 }
2494 
2495 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2496 						    const struct sk_buff *skb)
2497 {
2498 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2499 }
2500 
2501 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2502 					    void (*f)(struct net_device *,
2503 						      struct netdev_queue *,
2504 						      void *),
2505 					    void *arg)
2506 {
2507 	unsigned int i;
2508 
2509 	for (i = 0; i < dev->num_tx_queues; i++)
2510 		f(dev, &dev->_tx[i], arg);
2511 }
2512 
2513 #define netdev_lockdep_set_classes(dev)				\
2514 {								\
2515 	static struct lock_class_key qdisc_tx_busylock_key;	\
2516 	static struct lock_class_key qdisc_xmit_lock_key;	\
2517 	static struct lock_class_key dev_addr_list_lock_key;	\
2518 	unsigned int i;						\
2519 								\
2520 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2521 	lockdep_set_class(&(dev)->addr_list_lock,		\
2522 			  &dev_addr_list_lock_key);		\
2523 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2524 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2525 				  &qdisc_xmit_lock_key);	\
2526 }
2527 
2528 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2529 		     struct net_device *sb_dev);
2530 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2531 					 struct sk_buff *skb,
2532 					 struct net_device *sb_dev);
2533 
2534 /* returns the headroom that the master device needs to take in account
2535  * when forwarding to this dev
2536  */
2537 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2538 {
2539 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2540 }
2541 
2542 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2543 {
2544 	if (dev->netdev_ops->ndo_set_rx_headroom)
2545 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2546 }
2547 
2548 /* set the device rx headroom to the dev's default */
2549 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2550 {
2551 	netdev_set_rx_headroom(dev, -1);
2552 }
2553 
2554 static inline void *netdev_get_ml_priv(struct net_device *dev,
2555 				       enum netdev_ml_priv_type type)
2556 {
2557 	if (dev->ml_priv_type != type)
2558 		return NULL;
2559 
2560 	return dev->ml_priv;
2561 }
2562 
2563 static inline void netdev_set_ml_priv(struct net_device *dev,
2564 				      void *ml_priv,
2565 				      enum netdev_ml_priv_type type)
2566 {
2567 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2568 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2569 	     dev->ml_priv_type, type);
2570 	WARN(!dev->ml_priv_type && dev->ml_priv,
2571 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2572 
2573 	dev->ml_priv = ml_priv;
2574 	dev->ml_priv_type = type;
2575 }
2576 
2577 /*
2578  * Net namespace inlines
2579  */
2580 static inline
2581 struct net *dev_net(const struct net_device *dev)
2582 {
2583 	return read_pnet(&dev->nd_net);
2584 }
2585 
2586 static inline
2587 void dev_net_set(struct net_device *dev, struct net *net)
2588 {
2589 	write_pnet(&dev->nd_net, net);
2590 }
2591 
2592 /**
2593  *	netdev_priv - access network device private data
2594  *	@dev: network device
2595  *
2596  * Get network device private data
2597  */
2598 static inline void *netdev_priv(const struct net_device *dev)
2599 {
2600 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2601 }
2602 
2603 /* Set the sysfs physical device reference for the network logical device
2604  * if set prior to registration will cause a symlink during initialization.
2605  */
2606 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2607 
2608 /* Set the sysfs device type for the network logical device to allow
2609  * fine-grained identification of different network device types. For
2610  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2611  */
2612 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2613 
2614 /* Default NAPI poll() weight
2615  * Device drivers are strongly advised to not use bigger value
2616  */
2617 #define NAPI_POLL_WEIGHT 64
2618 
2619 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2620 			   int (*poll)(struct napi_struct *, int), int weight);
2621 
2622 /**
2623  * netif_napi_add() - initialize a NAPI context
2624  * @dev:  network device
2625  * @napi: NAPI context
2626  * @poll: polling function
2627  *
2628  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2629  * *any* of the other NAPI-related functions.
2630  */
2631 static inline void
2632 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2633 	       int (*poll)(struct napi_struct *, int))
2634 {
2635 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2636 }
2637 
2638 static inline void
2639 netif_napi_add_tx_weight(struct net_device *dev,
2640 			 struct napi_struct *napi,
2641 			 int (*poll)(struct napi_struct *, int),
2642 			 int weight)
2643 {
2644 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2645 	netif_napi_add_weight(dev, napi, poll, weight);
2646 }
2647 
2648 /**
2649  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2650  * @dev:  network device
2651  * @napi: NAPI context
2652  * @poll: polling function
2653  *
2654  * This variant of netif_napi_add() should be used from drivers using NAPI
2655  * to exclusively poll a TX queue.
2656  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2657  */
2658 static inline void netif_napi_add_tx(struct net_device *dev,
2659 				     struct napi_struct *napi,
2660 				     int (*poll)(struct napi_struct *, int))
2661 {
2662 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2663 }
2664 
2665 /**
2666  *  __netif_napi_del - remove a NAPI context
2667  *  @napi: NAPI context
2668  *
2669  * Warning: caller must observe RCU grace period before freeing memory
2670  * containing @napi. Drivers might want to call this helper to combine
2671  * all the needed RCU grace periods into a single one.
2672  */
2673 void __netif_napi_del(struct napi_struct *napi);
2674 
2675 /**
2676  *  netif_napi_del - remove a NAPI context
2677  *  @napi: NAPI context
2678  *
2679  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2680  */
2681 static inline void netif_napi_del(struct napi_struct *napi)
2682 {
2683 	__netif_napi_del(napi);
2684 	synchronize_net();
2685 }
2686 
2687 struct packet_type {
2688 	__be16			type;	/* This is really htons(ether_type). */
2689 	bool			ignore_outgoing;
2690 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2691 	netdevice_tracker	dev_tracker;
2692 	int			(*func) (struct sk_buff *,
2693 					 struct net_device *,
2694 					 struct packet_type *,
2695 					 struct net_device *);
2696 	void			(*list_func) (struct list_head *,
2697 					      struct packet_type *,
2698 					      struct net_device *);
2699 	bool			(*id_match)(struct packet_type *ptype,
2700 					    struct sock *sk);
2701 	struct net		*af_packet_net;
2702 	void			*af_packet_priv;
2703 	struct list_head	list;
2704 };
2705 
2706 struct offload_callbacks {
2707 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2708 						netdev_features_t features);
2709 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2710 						struct sk_buff *skb);
2711 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2712 };
2713 
2714 struct packet_offload {
2715 	__be16			 type;	/* This is really htons(ether_type). */
2716 	u16			 priority;
2717 	struct offload_callbacks callbacks;
2718 	struct list_head	 list;
2719 };
2720 
2721 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2722 struct pcpu_sw_netstats {
2723 	u64_stats_t		rx_packets;
2724 	u64_stats_t		rx_bytes;
2725 	u64_stats_t		tx_packets;
2726 	u64_stats_t		tx_bytes;
2727 	struct u64_stats_sync   syncp;
2728 } __aligned(4 * sizeof(u64));
2729 
2730 struct pcpu_lstats {
2731 	u64_stats_t packets;
2732 	u64_stats_t bytes;
2733 	struct u64_stats_sync syncp;
2734 } __aligned(2 * sizeof(u64));
2735 
2736 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2737 
2738 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2739 {
2740 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2741 
2742 	u64_stats_update_begin(&tstats->syncp);
2743 	u64_stats_add(&tstats->rx_bytes, len);
2744 	u64_stats_inc(&tstats->rx_packets);
2745 	u64_stats_update_end(&tstats->syncp);
2746 }
2747 
2748 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2749 					  unsigned int packets,
2750 					  unsigned int len)
2751 {
2752 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2753 
2754 	u64_stats_update_begin(&tstats->syncp);
2755 	u64_stats_add(&tstats->tx_bytes, len);
2756 	u64_stats_add(&tstats->tx_packets, packets);
2757 	u64_stats_update_end(&tstats->syncp);
2758 }
2759 
2760 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2761 {
2762 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2763 
2764 	u64_stats_update_begin(&lstats->syncp);
2765 	u64_stats_add(&lstats->bytes, len);
2766 	u64_stats_inc(&lstats->packets);
2767 	u64_stats_update_end(&lstats->syncp);
2768 }
2769 
2770 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2771 ({									\
2772 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2773 	if (pcpu_stats)	{						\
2774 		int __cpu;						\
2775 		for_each_possible_cpu(__cpu) {				\
2776 			typeof(type) *stat;				\
2777 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2778 			u64_stats_init(&stat->syncp);			\
2779 		}							\
2780 	}								\
2781 	pcpu_stats;							\
2782 })
2783 
2784 #define netdev_alloc_pcpu_stats(type)					\
2785 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2786 
2787 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2788 ({									\
2789 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2790 	if (pcpu_stats) {						\
2791 		int __cpu;						\
2792 		for_each_possible_cpu(__cpu) {				\
2793 			typeof(type) *stat;				\
2794 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2795 			u64_stats_init(&stat->syncp);			\
2796 		}							\
2797 	}								\
2798 	pcpu_stats;							\
2799 })
2800 
2801 enum netdev_lag_tx_type {
2802 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2803 	NETDEV_LAG_TX_TYPE_RANDOM,
2804 	NETDEV_LAG_TX_TYPE_BROADCAST,
2805 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2806 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2807 	NETDEV_LAG_TX_TYPE_HASH,
2808 };
2809 
2810 enum netdev_lag_hash {
2811 	NETDEV_LAG_HASH_NONE,
2812 	NETDEV_LAG_HASH_L2,
2813 	NETDEV_LAG_HASH_L34,
2814 	NETDEV_LAG_HASH_L23,
2815 	NETDEV_LAG_HASH_E23,
2816 	NETDEV_LAG_HASH_E34,
2817 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2818 	NETDEV_LAG_HASH_UNKNOWN,
2819 };
2820 
2821 struct netdev_lag_upper_info {
2822 	enum netdev_lag_tx_type tx_type;
2823 	enum netdev_lag_hash hash_type;
2824 };
2825 
2826 struct netdev_lag_lower_state_info {
2827 	u8 link_up : 1,
2828 	   tx_enabled : 1;
2829 };
2830 
2831 #include <linux/notifier.h>
2832 
2833 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2834  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2835  * adding new types.
2836  */
2837 enum netdev_cmd {
2838 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2839 	NETDEV_DOWN,
2840 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2841 				   detected a hardware crash and restarted
2842 				   - we can use this eg to kick tcp sessions
2843 				   once done */
2844 	NETDEV_CHANGE,		/* Notify device state change */
2845 	NETDEV_REGISTER,
2846 	NETDEV_UNREGISTER,
2847 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2848 	NETDEV_CHANGEADDR,	/* notify after the address change */
2849 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2850 	NETDEV_GOING_DOWN,
2851 	NETDEV_CHANGENAME,
2852 	NETDEV_FEAT_CHANGE,
2853 	NETDEV_BONDING_FAILOVER,
2854 	NETDEV_PRE_UP,
2855 	NETDEV_PRE_TYPE_CHANGE,
2856 	NETDEV_POST_TYPE_CHANGE,
2857 	NETDEV_POST_INIT,
2858 	NETDEV_PRE_UNINIT,
2859 	NETDEV_RELEASE,
2860 	NETDEV_NOTIFY_PEERS,
2861 	NETDEV_JOIN,
2862 	NETDEV_CHANGEUPPER,
2863 	NETDEV_RESEND_IGMP,
2864 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2865 	NETDEV_CHANGEINFODATA,
2866 	NETDEV_BONDING_INFO,
2867 	NETDEV_PRECHANGEUPPER,
2868 	NETDEV_CHANGELOWERSTATE,
2869 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2870 	NETDEV_UDP_TUNNEL_DROP_INFO,
2871 	NETDEV_CHANGE_TX_QUEUE_LEN,
2872 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2873 	NETDEV_CVLAN_FILTER_DROP_INFO,
2874 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2875 	NETDEV_SVLAN_FILTER_DROP_INFO,
2876 	NETDEV_OFFLOAD_XSTATS_ENABLE,
2877 	NETDEV_OFFLOAD_XSTATS_DISABLE,
2878 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2879 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2880 	NETDEV_XDP_FEAT_CHANGE,
2881 	NETDEV_PRE_CHANGE_HWTSTAMP,
2882 };
2883 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2884 
2885 int register_netdevice_notifier(struct notifier_block *nb);
2886 int unregister_netdevice_notifier(struct notifier_block *nb);
2887 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2888 int unregister_netdevice_notifier_net(struct net *net,
2889 				      struct notifier_block *nb);
2890 int register_netdevice_notifier_dev_net(struct net_device *dev,
2891 					struct notifier_block *nb,
2892 					struct netdev_net_notifier *nn);
2893 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2894 					  struct notifier_block *nb,
2895 					  struct netdev_net_notifier *nn);
2896 
2897 struct netdev_notifier_info {
2898 	struct net_device	*dev;
2899 	struct netlink_ext_ack	*extack;
2900 };
2901 
2902 struct netdev_notifier_info_ext {
2903 	struct netdev_notifier_info info; /* must be first */
2904 	union {
2905 		u32 mtu;
2906 	} ext;
2907 };
2908 
2909 struct netdev_notifier_change_info {
2910 	struct netdev_notifier_info info; /* must be first */
2911 	unsigned int flags_changed;
2912 };
2913 
2914 struct netdev_notifier_changeupper_info {
2915 	struct netdev_notifier_info info; /* must be first */
2916 	struct net_device *upper_dev; /* new upper dev */
2917 	bool master; /* is upper dev master */
2918 	bool linking; /* is the notification for link or unlink */
2919 	void *upper_info; /* upper dev info */
2920 };
2921 
2922 struct netdev_notifier_changelowerstate_info {
2923 	struct netdev_notifier_info info; /* must be first */
2924 	void *lower_state_info; /* is lower dev state */
2925 };
2926 
2927 struct netdev_notifier_pre_changeaddr_info {
2928 	struct netdev_notifier_info info; /* must be first */
2929 	const unsigned char *dev_addr;
2930 };
2931 
2932 struct netdev_notifier_hwtstamp_info {
2933 	struct netdev_notifier_info info; /* must be first */
2934 	struct kernel_hwtstamp_config *config;
2935 };
2936 
2937 enum netdev_offload_xstats_type {
2938 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
2939 };
2940 
2941 struct netdev_notifier_offload_xstats_info {
2942 	struct netdev_notifier_info info; /* must be first */
2943 	enum netdev_offload_xstats_type type;
2944 
2945 	union {
2946 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
2947 		struct netdev_notifier_offload_xstats_rd *report_delta;
2948 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
2949 		struct netdev_notifier_offload_xstats_ru *report_used;
2950 	};
2951 };
2952 
2953 int netdev_offload_xstats_enable(struct net_device *dev,
2954 				 enum netdev_offload_xstats_type type,
2955 				 struct netlink_ext_ack *extack);
2956 int netdev_offload_xstats_disable(struct net_device *dev,
2957 				  enum netdev_offload_xstats_type type);
2958 bool netdev_offload_xstats_enabled(const struct net_device *dev,
2959 				   enum netdev_offload_xstats_type type);
2960 int netdev_offload_xstats_get(struct net_device *dev,
2961 			      enum netdev_offload_xstats_type type,
2962 			      struct rtnl_hw_stats64 *stats, bool *used,
2963 			      struct netlink_ext_ack *extack);
2964 void
2965 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
2966 				   const struct rtnl_hw_stats64 *stats);
2967 void
2968 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
2969 void netdev_offload_xstats_push_delta(struct net_device *dev,
2970 				      enum netdev_offload_xstats_type type,
2971 				      const struct rtnl_hw_stats64 *stats);
2972 
2973 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2974 					     struct net_device *dev)
2975 {
2976 	info->dev = dev;
2977 	info->extack = NULL;
2978 }
2979 
2980 static inline struct net_device *
2981 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2982 {
2983 	return info->dev;
2984 }
2985 
2986 static inline struct netlink_ext_ack *
2987 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2988 {
2989 	return info->extack;
2990 }
2991 
2992 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2993 int call_netdevice_notifiers_info(unsigned long val,
2994 				  struct netdev_notifier_info *info);
2995 
2996 extern rwlock_t				dev_base_lock;		/* Device list lock */
2997 
2998 #define for_each_netdev(net, d)		\
2999 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
3000 #define for_each_netdev_reverse(net, d)	\
3001 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
3002 #define for_each_netdev_rcu(net, d)		\
3003 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
3004 #define for_each_netdev_safe(net, d, n)	\
3005 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
3006 #define for_each_netdev_continue(net, d)		\
3007 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
3008 #define for_each_netdev_continue_reverse(net, d)		\
3009 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
3010 						     dev_list)
3011 #define for_each_netdev_continue_rcu(net, d)		\
3012 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
3013 #define for_each_netdev_in_bond_rcu(bond, slave)	\
3014 		for_each_netdev_rcu(&init_net, slave)	\
3015 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
3016 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
3017 
3018 static inline struct net_device *next_net_device(struct net_device *dev)
3019 {
3020 	struct list_head *lh;
3021 	struct net *net;
3022 
3023 	net = dev_net(dev);
3024 	lh = dev->dev_list.next;
3025 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3026 }
3027 
3028 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
3029 {
3030 	struct list_head *lh;
3031 	struct net *net;
3032 
3033 	net = dev_net(dev);
3034 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
3035 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3036 }
3037 
3038 static inline struct net_device *first_net_device(struct net *net)
3039 {
3040 	return list_empty(&net->dev_base_head) ? NULL :
3041 		net_device_entry(net->dev_base_head.next);
3042 }
3043 
3044 static inline struct net_device *first_net_device_rcu(struct net *net)
3045 {
3046 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
3047 
3048 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3049 }
3050 
3051 int netdev_boot_setup_check(struct net_device *dev);
3052 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3053 				       const char *hwaddr);
3054 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
3055 void dev_add_pack(struct packet_type *pt);
3056 void dev_remove_pack(struct packet_type *pt);
3057 void __dev_remove_pack(struct packet_type *pt);
3058 void dev_add_offload(struct packet_offload *po);
3059 void dev_remove_offload(struct packet_offload *po);
3060 
3061 int dev_get_iflink(const struct net_device *dev);
3062 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3063 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3064 			  struct net_device_path_stack *stack);
3065 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3066 				      unsigned short mask);
3067 struct net_device *dev_get_by_name(struct net *net, const char *name);
3068 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3069 struct net_device *__dev_get_by_name(struct net *net, const char *name);
3070 bool netdev_name_in_use(struct net *net, const char *name);
3071 int dev_alloc_name(struct net_device *dev, const char *name);
3072 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3073 void dev_close(struct net_device *dev);
3074 void dev_close_many(struct list_head *head, bool unlink);
3075 void dev_disable_lro(struct net_device *dev);
3076 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3077 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3078 		     struct net_device *sb_dev);
3079 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3080 		       struct net_device *sb_dev);
3081 
3082 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3083 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3084 
3085 static inline int dev_queue_xmit(struct sk_buff *skb)
3086 {
3087 	return __dev_queue_xmit(skb, NULL);
3088 }
3089 
3090 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3091 				       struct net_device *sb_dev)
3092 {
3093 	return __dev_queue_xmit(skb, sb_dev);
3094 }
3095 
3096 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3097 {
3098 	int ret;
3099 
3100 	ret = __dev_direct_xmit(skb, queue_id);
3101 	if (!dev_xmit_complete(ret))
3102 		kfree_skb(skb);
3103 	return ret;
3104 }
3105 
3106 int register_netdevice(struct net_device *dev);
3107 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3108 void unregister_netdevice_many(struct list_head *head);
3109 static inline void unregister_netdevice(struct net_device *dev)
3110 {
3111 	unregister_netdevice_queue(dev, NULL);
3112 }
3113 
3114 int netdev_refcnt_read(const struct net_device *dev);
3115 void free_netdev(struct net_device *dev);
3116 void netdev_freemem(struct net_device *dev);
3117 int init_dummy_netdev(struct net_device *dev);
3118 
3119 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3120 					 struct sk_buff *skb,
3121 					 bool all_slaves);
3122 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3123 					    struct sock *sk);
3124 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3125 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3126 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3127 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3128 int dev_restart(struct net_device *dev);
3129 
3130 
3131 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3132 				  unsigned short type,
3133 				  const void *daddr, const void *saddr,
3134 				  unsigned int len)
3135 {
3136 	if (!dev->header_ops || !dev->header_ops->create)
3137 		return 0;
3138 
3139 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3140 }
3141 
3142 static inline int dev_parse_header(const struct sk_buff *skb,
3143 				   unsigned char *haddr)
3144 {
3145 	const struct net_device *dev = skb->dev;
3146 
3147 	if (!dev->header_ops || !dev->header_ops->parse)
3148 		return 0;
3149 	return dev->header_ops->parse(skb, haddr);
3150 }
3151 
3152 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3153 {
3154 	const struct net_device *dev = skb->dev;
3155 
3156 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3157 		return 0;
3158 	return dev->header_ops->parse_protocol(skb);
3159 }
3160 
3161 /* ll_header must have at least hard_header_len allocated */
3162 static inline bool dev_validate_header(const struct net_device *dev,
3163 				       char *ll_header, int len)
3164 {
3165 	if (likely(len >= dev->hard_header_len))
3166 		return true;
3167 	if (len < dev->min_header_len)
3168 		return false;
3169 
3170 	if (capable(CAP_SYS_RAWIO)) {
3171 		memset(ll_header + len, 0, dev->hard_header_len - len);
3172 		return true;
3173 	}
3174 
3175 	if (dev->header_ops && dev->header_ops->validate)
3176 		return dev->header_ops->validate(ll_header, len);
3177 
3178 	return false;
3179 }
3180 
3181 static inline bool dev_has_header(const struct net_device *dev)
3182 {
3183 	return dev->header_ops && dev->header_ops->create;
3184 }
3185 
3186 /*
3187  * Incoming packets are placed on per-CPU queues
3188  */
3189 struct softnet_data {
3190 	struct list_head	poll_list;
3191 	struct sk_buff_head	process_queue;
3192 
3193 	/* stats */
3194 	unsigned int		processed;
3195 	unsigned int		time_squeeze;
3196 #ifdef CONFIG_RPS
3197 	struct softnet_data	*rps_ipi_list;
3198 #endif
3199 	bool			in_net_rx_action;
3200 #ifdef CONFIG_NET_FLOW_LIMIT
3201 	struct sd_flow_limit __rcu *flow_limit;
3202 #endif
3203 	struct Qdisc		*output_queue;
3204 	struct Qdisc		**output_queue_tailp;
3205 	struct sk_buff		*completion_queue;
3206 #ifdef CONFIG_XFRM_OFFLOAD
3207 	struct sk_buff_head	xfrm_backlog;
3208 #endif
3209 	/* written and read only by owning cpu: */
3210 	struct {
3211 		u16 recursion;
3212 		u8  more;
3213 #ifdef CONFIG_NET_EGRESS
3214 		u8  skip_txqueue;
3215 #endif
3216 	} xmit;
3217 #ifdef CONFIG_RPS
3218 	/* input_queue_head should be written by cpu owning this struct,
3219 	 * and only read by other cpus. Worth using a cache line.
3220 	 */
3221 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3222 
3223 	/* Elements below can be accessed between CPUs for RPS/RFS */
3224 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3225 	struct softnet_data	*rps_ipi_next;
3226 	unsigned int		cpu;
3227 	unsigned int		input_queue_tail;
3228 #endif
3229 	unsigned int		received_rps;
3230 	unsigned int		dropped;
3231 	struct sk_buff_head	input_pkt_queue;
3232 	struct napi_struct	backlog;
3233 
3234 	/* Another possibly contended cache line */
3235 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3236 	int			defer_count;
3237 	int			defer_ipi_scheduled;
3238 	struct sk_buff		*defer_list;
3239 	call_single_data_t	defer_csd;
3240 };
3241 
3242 static inline void input_queue_head_incr(struct softnet_data *sd)
3243 {
3244 #ifdef CONFIG_RPS
3245 	sd->input_queue_head++;
3246 #endif
3247 }
3248 
3249 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3250 					      unsigned int *qtail)
3251 {
3252 #ifdef CONFIG_RPS
3253 	*qtail = ++sd->input_queue_tail;
3254 #endif
3255 }
3256 
3257 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3258 
3259 static inline int dev_recursion_level(void)
3260 {
3261 	return this_cpu_read(softnet_data.xmit.recursion);
3262 }
3263 
3264 #define XMIT_RECURSION_LIMIT	8
3265 static inline bool dev_xmit_recursion(void)
3266 {
3267 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3268 			XMIT_RECURSION_LIMIT);
3269 }
3270 
3271 static inline void dev_xmit_recursion_inc(void)
3272 {
3273 	__this_cpu_inc(softnet_data.xmit.recursion);
3274 }
3275 
3276 static inline void dev_xmit_recursion_dec(void)
3277 {
3278 	__this_cpu_dec(softnet_data.xmit.recursion);
3279 }
3280 
3281 void __netif_schedule(struct Qdisc *q);
3282 void netif_schedule_queue(struct netdev_queue *txq);
3283 
3284 static inline void netif_tx_schedule_all(struct net_device *dev)
3285 {
3286 	unsigned int i;
3287 
3288 	for (i = 0; i < dev->num_tx_queues; i++)
3289 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3290 }
3291 
3292 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3293 {
3294 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3295 }
3296 
3297 /**
3298  *	netif_start_queue - allow transmit
3299  *	@dev: network device
3300  *
3301  *	Allow upper layers to call the device hard_start_xmit routine.
3302  */
3303 static inline void netif_start_queue(struct net_device *dev)
3304 {
3305 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3306 }
3307 
3308 static inline void netif_tx_start_all_queues(struct net_device *dev)
3309 {
3310 	unsigned int i;
3311 
3312 	for (i = 0; i < dev->num_tx_queues; i++) {
3313 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3314 		netif_tx_start_queue(txq);
3315 	}
3316 }
3317 
3318 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3319 
3320 /**
3321  *	netif_wake_queue - restart transmit
3322  *	@dev: network device
3323  *
3324  *	Allow upper layers to call the device hard_start_xmit routine.
3325  *	Used for flow control when transmit resources are available.
3326  */
3327 static inline void netif_wake_queue(struct net_device *dev)
3328 {
3329 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3330 }
3331 
3332 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3333 {
3334 	unsigned int i;
3335 
3336 	for (i = 0; i < dev->num_tx_queues; i++) {
3337 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3338 		netif_tx_wake_queue(txq);
3339 	}
3340 }
3341 
3342 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3343 {
3344 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3345 }
3346 
3347 /**
3348  *	netif_stop_queue - stop transmitted packets
3349  *	@dev: network device
3350  *
3351  *	Stop upper layers calling the device hard_start_xmit routine.
3352  *	Used for flow control when transmit resources are unavailable.
3353  */
3354 static inline void netif_stop_queue(struct net_device *dev)
3355 {
3356 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3357 }
3358 
3359 void netif_tx_stop_all_queues(struct net_device *dev);
3360 
3361 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3362 {
3363 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3364 }
3365 
3366 /**
3367  *	netif_queue_stopped - test if transmit queue is flowblocked
3368  *	@dev: network device
3369  *
3370  *	Test if transmit queue on device is currently unable to send.
3371  */
3372 static inline bool netif_queue_stopped(const struct net_device *dev)
3373 {
3374 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3375 }
3376 
3377 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3378 {
3379 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3380 }
3381 
3382 static inline bool
3383 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3384 {
3385 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3386 }
3387 
3388 static inline bool
3389 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3390 {
3391 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3392 }
3393 
3394 /**
3395  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3396  *	@dev_queue: pointer to transmit queue
3397  *	@min_limit: dql minimum limit
3398  *
3399  * Forces xmit_more() to return true until the minimum threshold
3400  * defined by @min_limit is reached (or until the tx queue is
3401  * empty). Warning: to be use with care, misuse will impact the
3402  * latency.
3403  */
3404 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3405 						  unsigned int min_limit)
3406 {
3407 #ifdef CONFIG_BQL
3408 	dev_queue->dql.min_limit = min_limit;
3409 #endif
3410 }
3411 
3412 /**
3413  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3414  *	@dev_queue: pointer to transmit queue
3415  *
3416  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3417  * to give appropriate hint to the CPU.
3418  */
3419 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3420 {
3421 #ifdef CONFIG_BQL
3422 	prefetchw(&dev_queue->dql.num_queued);
3423 #endif
3424 }
3425 
3426 /**
3427  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3428  *	@dev_queue: pointer to transmit queue
3429  *
3430  * BQL enabled drivers might use this helper in their TX completion path,
3431  * to give appropriate hint to the CPU.
3432  */
3433 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3434 {
3435 #ifdef CONFIG_BQL
3436 	prefetchw(&dev_queue->dql.limit);
3437 #endif
3438 }
3439 
3440 /**
3441  *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3442  *	@dev_queue: network device queue
3443  *	@bytes: number of bytes queued to the device queue
3444  *
3445  *	Report the number of bytes queued for sending/completion to the network
3446  *	device hardware queue. @bytes should be a good approximation and should
3447  *	exactly match netdev_completed_queue() @bytes.
3448  *	This is typically called once per packet, from ndo_start_xmit().
3449  */
3450 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3451 					unsigned int bytes)
3452 {
3453 #ifdef CONFIG_BQL
3454 	dql_queued(&dev_queue->dql, bytes);
3455 
3456 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3457 		return;
3458 
3459 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3460 
3461 	/*
3462 	 * The XOFF flag must be set before checking the dql_avail below,
3463 	 * because in netdev_tx_completed_queue we update the dql_completed
3464 	 * before checking the XOFF flag.
3465 	 */
3466 	smp_mb();
3467 
3468 	/* check again in case another CPU has just made room avail */
3469 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3470 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3471 #endif
3472 }
3473 
3474 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3475  * that they should not test BQL status themselves.
3476  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3477  * skb of a batch.
3478  * Returns true if the doorbell must be used to kick the NIC.
3479  */
3480 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3481 					  unsigned int bytes,
3482 					  bool xmit_more)
3483 {
3484 	if (xmit_more) {
3485 #ifdef CONFIG_BQL
3486 		dql_queued(&dev_queue->dql, bytes);
3487 #endif
3488 		return netif_tx_queue_stopped(dev_queue);
3489 	}
3490 	netdev_tx_sent_queue(dev_queue, bytes);
3491 	return true;
3492 }
3493 
3494 /**
3495  *	netdev_sent_queue - report the number of bytes queued to hardware
3496  *	@dev: network device
3497  *	@bytes: number of bytes queued to the hardware device queue
3498  *
3499  *	Report the number of bytes queued for sending/completion to the network
3500  *	device hardware queue#0. @bytes should be a good approximation and should
3501  *	exactly match netdev_completed_queue() @bytes.
3502  *	This is typically called once per packet, from ndo_start_xmit().
3503  */
3504 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3505 {
3506 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3507 }
3508 
3509 static inline bool __netdev_sent_queue(struct net_device *dev,
3510 				       unsigned int bytes,
3511 				       bool xmit_more)
3512 {
3513 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3514 				      xmit_more);
3515 }
3516 
3517 /**
3518  *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3519  *	@dev_queue: network device queue
3520  *	@pkts: number of packets (currently ignored)
3521  *	@bytes: number of bytes dequeued from the device queue
3522  *
3523  *	Must be called at most once per TX completion round (and not per
3524  *	individual packet), so that BQL can adjust its limits appropriately.
3525  */
3526 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3527 					     unsigned int pkts, unsigned int bytes)
3528 {
3529 #ifdef CONFIG_BQL
3530 	if (unlikely(!bytes))
3531 		return;
3532 
3533 	dql_completed(&dev_queue->dql, bytes);
3534 
3535 	/*
3536 	 * Without the memory barrier there is a small possiblity that
3537 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3538 	 * be stopped forever
3539 	 */
3540 	smp_mb();
3541 
3542 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3543 		return;
3544 
3545 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3546 		netif_schedule_queue(dev_queue);
3547 #endif
3548 }
3549 
3550 /**
3551  * 	netdev_completed_queue - report bytes and packets completed by device
3552  * 	@dev: network device
3553  * 	@pkts: actual number of packets sent over the medium
3554  * 	@bytes: actual number of bytes sent over the medium
3555  *
3556  * 	Report the number of bytes and packets transmitted by the network device
3557  * 	hardware queue over the physical medium, @bytes must exactly match the
3558  * 	@bytes amount passed to netdev_sent_queue()
3559  */
3560 static inline void netdev_completed_queue(struct net_device *dev,
3561 					  unsigned int pkts, unsigned int bytes)
3562 {
3563 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3564 }
3565 
3566 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3567 {
3568 #ifdef CONFIG_BQL
3569 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3570 	dql_reset(&q->dql);
3571 #endif
3572 }
3573 
3574 /**
3575  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3576  * 	@dev_queue: network device
3577  *
3578  * 	Reset the bytes and packet count of a network device and clear the
3579  * 	software flow control OFF bit for this network device
3580  */
3581 static inline void netdev_reset_queue(struct net_device *dev_queue)
3582 {
3583 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3584 }
3585 
3586 /**
3587  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3588  * 	@dev: network device
3589  * 	@queue_index: given tx queue index
3590  *
3591  * 	Returns 0 if given tx queue index >= number of device tx queues,
3592  * 	otherwise returns the originally passed tx queue index.
3593  */
3594 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3595 {
3596 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3597 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3598 				     dev->name, queue_index,
3599 				     dev->real_num_tx_queues);
3600 		return 0;
3601 	}
3602 
3603 	return queue_index;
3604 }
3605 
3606 /**
3607  *	netif_running - test if up
3608  *	@dev: network device
3609  *
3610  *	Test if the device has been brought up.
3611  */
3612 static inline bool netif_running(const struct net_device *dev)
3613 {
3614 	return test_bit(__LINK_STATE_START, &dev->state);
3615 }
3616 
3617 /*
3618  * Routines to manage the subqueues on a device.  We only need start,
3619  * stop, and a check if it's stopped.  All other device management is
3620  * done at the overall netdevice level.
3621  * Also test the device if we're multiqueue.
3622  */
3623 
3624 /**
3625  *	netif_start_subqueue - allow sending packets on subqueue
3626  *	@dev: network device
3627  *	@queue_index: sub queue index
3628  *
3629  * Start individual transmit queue of a device with multiple transmit queues.
3630  */
3631 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3632 {
3633 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3634 
3635 	netif_tx_start_queue(txq);
3636 }
3637 
3638 /**
3639  *	netif_stop_subqueue - stop sending packets on subqueue
3640  *	@dev: network device
3641  *	@queue_index: sub queue index
3642  *
3643  * Stop individual transmit queue of a device with multiple transmit queues.
3644  */
3645 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3646 {
3647 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3648 	netif_tx_stop_queue(txq);
3649 }
3650 
3651 /**
3652  *	__netif_subqueue_stopped - test status of subqueue
3653  *	@dev: network device
3654  *	@queue_index: sub queue index
3655  *
3656  * Check individual transmit queue of a device with multiple transmit queues.
3657  */
3658 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3659 					    u16 queue_index)
3660 {
3661 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3662 
3663 	return netif_tx_queue_stopped(txq);
3664 }
3665 
3666 /**
3667  *	netif_subqueue_stopped - test status of subqueue
3668  *	@dev: network device
3669  *	@skb: sub queue buffer pointer
3670  *
3671  * Check individual transmit queue of a device with multiple transmit queues.
3672  */
3673 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3674 					  struct sk_buff *skb)
3675 {
3676 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3677 }
3678 
3679 /**
3680  *	netif_wake_subqueue - allow sending packets on subqueue
3681  *	@dev: network device
3682  *	@queue_index: sub queue index
3683  *
3684  * Resume individual transmit queue of a device with multiple transmit queues.
3685  */
3686 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3687 {
3688 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3689 
3690 	netif_tx_wake_queue(txq);
3691 }
3692 
3693 #ifdef CONFIG_XPS
3694 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3695 			u16 index);
3696 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3697 			  u16 index, enum xps_map_type type);
3698 
3699 /**
3700  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3701  *	@j: CPU/Rx queue index
3702  *	@mask: bitmask of all cpus/rx queues
3703  *	@nr_bits: number of bits in the bitmask
3704  *
3705  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3706  */
3707 static inline bool netif_attr_test_mask(unsigned long j,
3708 					const unsigned long *mask,
3709 					unsigned int nr_bits)
3710 {
3711 	cpu_max_bits_warn(j, nr_bits);
3712 	return test_bit(j, mask);
3713 }
3714 
3715 /**
3716  *	netif_attr_test_online - Test for online CPU/Rx queue
3717  *	@j: CPU/Rx queue index
3718  *	@online_mask: bitmask for CPUs/Rx queues that are online
3719  *	@nr_bits: number of bits in the bitmask
3720  *
3721  * Returns true if a CPU/Rx queue is online.
3722  */
3723 static inline bool netif_attr_test_online(unsigned long j,
3724 					  const unsigned long *online_mask,
3725 					  unsigned int nr_bits)
3726 {
3727 	cpu_max_bits_warn(j, nr_bits);
3728 
3729 	if (online_mask)
3730 		return test_bit(j, online_mask);
3731 
3732 	return (j < nr_bits);
3733 }
3734 
3735 /**
3736  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3737  *	@n: CPU/Rx queue index
3738  *	@srcp: the cpumask/Rx queue mask pointer
3739  *	@nr_bits: number of bits in the bitmask
3740  *
3741  * Returns >= nr_bits if no further CPUs/Rx queues set.
3742  */
3743 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3744 					       unsigned int nr_bits)
3745 {
3746 	/* -1 is a legal arg here. */
3747 	if (n != -1)
3748 		cpu_max_bits_warn(n, nr_bits);
3749 
3750 	if (srcp)
3751 		return find_next_bit(srcp, nr_bits, n + 1);
3752 
3753 	return n + 1;
3754 }
3755 
3756 /**
3757  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3758  *	@n: CPU/Rx queue index
3759  *	@src1p: the first CPUs/Rx queues mask pointer
3760  *	@src2p: the second CPUs/Rx queues mask pointer
3761  *	@nr_bits: number of bits in the bitmask
3762  *
3763  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3764  */
3765 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3766 					  const unsigned long *src2p,
3767 					  unsigned int nr_bits)
3768 {
3769 	/* -1 is a legal arg here. */
3770 	if (n != -1)
3771 		cpu_max_bits_warn(n, nr_bits);
3772 
3773 	if (src1p && src2p)
3774 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3775 	else if (src1p)
3776 		return find_next_bit(src1p, nr_bits, n + 1);
3777 	else if (src2p)
3778 		return find_next_bit(src2p, nr_bits, n + 1);
3779 
3780 	return n + 1;
3781 }
3782 #else
3783 static inline int netif_set_xps_queue(struct net_device *dev,
3784 				      const struct cpumask *mask,
3785 				      u16 index)
3786 {
3787 	return 0;
3788 }
3789 
3790 static inline int __netif_set_xps_queue(struct net_device *dev,
3791 					const unsigned long *mask,
3792 					u16 index, enum xps_map_type type)
3793 {
3794 	return 0;
3795 }
3796 #endif
3797 
3798 /**
3799  *	netif_is_multiqueue - test if device has multiple transmit queues
3800  *	@dev: network device
3801  *
3802  * Check if device has multiple transmit queues
3803  */
3804 static inline bool netif_is_multiqueue(const struct net_device *dev)
3805 {
3806 	return dev->num_tx_queues > 1;
3807 }
3808 
3809 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3810 
3811 #ifdef CONFIG_SYSFS
3812 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3813 #else
3814 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3815 						unsigned int rxqs)
3816 {
3817 	dev->real_num_rx_queues = rxqs;
3818 	return 0;
3819 }
3820 #endif
3821 int netif_set_real_num_queues(struct net_device *dev,
3822 			      unsigned int txq, unsigned int rxq);
3823 
3824 static inline struct netdev_rx_queue *
3825 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3826 {
3827 	return dev->_rx + rxq;
3828 }
3829 
3830 #ifdef CONFIG_SYSFS
3831 static inline unsigned int get_netdev_rx_queue_index(
3832 		struct netdev_rx_queue *queue)
3833 {
3834 	struct net_device *dev = queue->dev;
3835 	int index = queue - dev->_rx;
3836 
3837 	BUG_ON(index >= dev->num_rx_queues);
3838 	return index;
3839 }
3840 #endif
3841 
3842 int netif_get_num_default_rss_queues(void);
3843 
3844 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3845 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3846 
3847 /*
3848  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3849  * interrupt context or with hardware interrupts being disabled.
3850  * (in_hardirq() || irqs_disabled())
3851  *
3852  * We provide four helpers that can be used in following contexts :
3853  *
3854  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3855  *  replacing kfree_skb(skb)
3856  *
3857  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3858  *  Typically used in place of consume_skb(skb) in TX completion path
3859  *
3860  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3861  *  replacing kfree_skb(skb)
3862  *
3863  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3864  *  and consumed a packet. Used in place of consume_skb(skb)
3865  */
3866 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3867 {
3868 	dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3869 }
3870 
3871 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3872 {
3873 	dev_kfree_skb_irq_reason(skb, SKB_CONSUMED);
3874 }
3875 
3876 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3877 {
3878 	dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3879 }
3880 
3881 static inline void dev_consume_skb_any(struct sk_buff *skb)
3882 {
3883 	dev_kfree_skb_any_reason(skb, SKB_CONSUMED);
3884 }
3885 
3886 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3887 			     struct bpf_prog *xdp_prog);
3888 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3889 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3890 int netif_rx(struct sk_buff *skb);
3891 int __netif_rx(struct sk_buff *skb);
3892 
3893 int netif_receive_skb(struct sk_buff *skb);
3894 int netif_receive_skb_core(struct sk_buff *skb);
3895 void netif_receive_skb_list_internal(struct list_head *head);
3896 void netif_receive_skb_list(struct list_head *head);
3897 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3898 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3899 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3900 void napi_get_frags_check(struct napi_struct *napi);
3901 gro_result_t napi_gro_frags(struct napi_struct *napi);
3902 struct packet_offload *gro_find_receive_by_type(__be16 type);
3903 struct packet_offload *gro_find_complete_by_type(__be16 type);
3904 
3905 static inline void napi_free_frags(struct napi_struct *napi)
3906 {
3907 	kfree_skb(napi->skb);
3908 	napi->skb = NULL;
3909 }
3910 
3911 bool netdev_is_rx_handler_busy(struct net_device *dev);
3912 int netdev_rx_handler_register(struct net_device *dev,
3913 			       rx_handler_func_t *rx_handler,
3914 			       void *rx_handler_data);
3915 void netdev_rx_handler_unregister(struct net_device *dev);
3916 
3917 bool dev_valid_name(const char *name);
3918 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3919 {
3920 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3921 }
3922 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3923 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3924 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3925 		void __user *data, bool *need_copyout);
3926 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3927 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3928 unsigned int dev_get_flags(const struct net_device *);
3929 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3930 		       struct netlink_ext_ack *extack);
3931 int dev_change_flags(struct net_device *dev, unsigned int flags,
3932 		     struct netlink_ext_ack *extack);
3933 int dev_set_alias(struct net_device *, const char *, size_t);
3934 int dev_get_alias(const struct net_device *, char *, size_t);
3935 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3936 			       const char *pat, int new_ifindex);
3937 static inline
3938 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3939 			     const char *pat)
3940 {
3941 	return __dev_change_net_namespace(dev, net, pat, 0);
3942 }
3943 int __dev_set_mtu(struct net_device *, int);
3944 int dev_set_mtu(struct net_device *, int);
3945 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3946 			      struct netlink_ext_ack *extack);
3947 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3948 			struct netlink_ext_ack *extack);
3949 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3950 			     struct netlink_ext_ack *extack);
3951 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3952 int dev_get_port_parent_id(struct net_device *dev,
3953 			   struct netdev_phys_item_id *ppid, bool recurse);
3954 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3955 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3956 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3957 				    struct netdev_queue *txq, int *ret);
3958 
3959 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3960 u8 dev_xdp_prog_count(struct net_device *dev);
3961 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3962 
3963 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3964 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3965 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3966 bool is_skb_forwardable(const struct net_device *dev,
3967 			const struct sk_buff *skb);
3968 
3969 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3970 						 const struct sk_buff *skb,
3971 						 const bool check_mtu)
3972 {
3973 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3974 	unsigned int len;
3975 
3976 	if (!(dev->flags & IFF_UP))
3977 		return false;
3978 
3979 	if (!check_mtu)
3980 		return true;
3981 
3982 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3983 	if (skb->len <= len)
3984 		return true;
3985 
3986 	/* if TSO is enabled, we don't care about the length as the packet
3987 	 * could be forwarded without being segmented before
3988 	 */
3989 	if (skb_is_gso(skb))
3990 		return true;
3991 
3992 	return false;
3993 }
3994 
3995 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev);
3996 
3997 static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev)
3998 {
3999 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
4000 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
4001 
4002 	if (likely(p))
4003 		return p;
4004 
4005 	return netdev_core_stats_alloc(dev);
4006 }
4007 
4008 #define DEV_CORE_STATS_INC(FIELD)						\
4009 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
4010 {										\
4011 	struct net_device_core_stats __percpu *p;				\
4012 										\
4013 	p = dev_core_stats(dev);						\
4014 	if (p)									\
4015 		this_cpu_inc(p->FIELD);						\
4016 }
4017 DEV_CORE_STATS_INC(rx_dropped)
4018 DEV_CORE_STATS_INC(tx_dropped)
4019 DEV_CORE_STATS_INC(rx_nohandler)
4020 DEV_CORE_STATS_INC(rx_otherhost_dropped)
4021 
4022 static __always_inline int ____dev_forward_skb(struct net_device *dev,
4023 					       struct sk_buff *skb,
4024 					       const bool check_mtu)
4025 {
4026 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4027 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4028 		dev_core_stats_rx_dropped_inc(dev);
4029 		kfree_skb(skb);
4030 		return NET_RX_DROP;
4031 	}
4032 
4033 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4034 	skb->priority = 0;
4035 	return 0;
4036 }
4037 
4038 bool dev_nit_active(struct net_device *dev);
4039 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4040 
4041 static inline void __dev_put(struct net_device *dev)
4042 {
4043 	if (dev) {
4044 #ifdef CONFIG_PCPU_DEV_REFCNT
4045 		this_cpu_dec(*dev->pcpu_refcnt);
4046 #else
4047 		refcount_dec(&dev->dev_refcnt);
4048 #endif
4049 	}
4050 }
4051 
4052 static inline void __dev_hold(struct net_device *dev)
4053 {
4054 	if (dev) {
4055 #ifdef CONFIG_PCPU_DEV_REFCNT
4056 		this_cpu_inc(*dev->pcpu_refcnt);
4057 #else
4058 		refcount_inc(&dev->dev_refcnt);
4059 #endif
4060 	}
4061 }
4062 
4063 static inline void __netdev_tracker_alloc(struct net_device *dev,
4064 					  netdevice_tracker *tracker,
4065 					  gfp_t gfp)
4066 {
4067 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4068 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4069 #endif
4070 }
4071 
4072 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4073  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4074  */
4075 static inline void netdev_tracker_alloc(struct net_device *dev,
4076 					netdevice_tracker *tracker, gfp_t gfp)
4077 {
4078 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4079 	refcount_dec(&dev->refcnt_tracker.no_tracker);
4080 	__netdev_tracker_alloc(dev, tracker, gfp);
4081 #endif
4082 }
4083 
4084 static inline void netdev_tracker_free(struct net_device *dev,
4085 				       netdevice_tracker *tracker)
4086 {
4087 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4088 	ref_tracker_free(&dev->refcnt_tracker, tracker);
4089 #endif
4090 }
4091 
4092 static inline void netdev_hold(struct net_device *dev,
4093 			       netdevice_tracker *tracker, gfp_t gfp)
4094 {
4095 	if (dev) {
4096 		__dev_hold(dev);
4097 		__netdev_tracker_alloc(dev, tracker, gfp);
4098 	}
4099 }
4100 
4101 static inline void netdev_put(struct net_device *dev,
4102 			      netdevice_tracker *tracker)
4103 {
4104 	if (dev) {
4105 		netdev_tracker_free(dev, tracker);
4106 		__dev_put(dev);
4107 	}
4108 }
4109 
4110 /**
4111  *	dev_hold - get reference to device
4112  *	@dev: network device
4113  *
4114  * Hold reference to device to keep it from being freed.
4115  * Try using netdev_hold() instead.
4116  */
4117 static inline void dev_hold(struct net_device *dev)
4118 {
4119 	netdev_hold(dev, NULL, GFP_ATOMIC);
4120 }
4121 
4122 /**
4123  *	dev_put - release reference to device
4124  *	@dev: network device
4125  *
4126  * Release reference to device to allow it to be freed.
4127  * Try using netdev_put() instead.
4128  */
4129 static inline void dev_put(struct net_device *dev)
4130 {
4131 	netdev_put(dev, NULL);
4132 }
4133 
4134 static inline void netdev_ref_replace(struct net_device *odev,
4135 				      struct net_device *ndev,
4136 				      netdevice_tracker *tracker,
4137 				      gfp_t gfp)
4138 {
4139 	if (odev)
4140 		netdev_tracker_free(odev, tracker);
4141 
4142 	__dev_hold(ndev);
4143 	__dev_put(odev);
4144 
4145 	if (ndev)
4146 		__netdev_tracker_alloc(ndev, tracker, gfp);
4147 }
4148 
4149 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4150  * and _off may be called from IRQ context, but it is caller
4151  * who is responsible for serialization of these calls.
4152  *
4153  * The name carrier is inappropriate, these functions should really be
4154  * called netif_lowerlayer_*() because they represent the state of any
4155  * kind of lower layer not just hardware media.
4156  */
4157 void linkwatch_fire_event(struct net_device *dev);
4158 
4159 /**
4160  *	netif_carrier_ok - test if carrier present
4161  *	@dev: network device
4162  *
4163  * Check if carrier is present on device
4164  */
4165 static inline bool netif_carrier_ok(const struct net_device *dev)
4166 {
4167 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4168 }
4169 
4170 unsigned long dev_trans_start(struct net_device *dev);
4171 
4172 void __netdev_watchdog_up(struct net_device *dev);
4173 
4174 void netif_carrier_on(struct net_device *dev);
4175 void netif_carrier_off(struct net_device *dev);
4176 void netif_carrier_event(struct net_device *dev);
4177 
4178 /**
4179  *	netif_dormant_on - mark device as dormant.
4180  *	@dev: network device
4181  *
4182  * Mark device as dormant (as per RFC2863).
4183  *
4184  * The dormant state indicates that the relevant interface is not
4185  * actually in a condition to pass packets (i.e., it is not 'up') but is
4186  * in a "pending" state, waiting for some external event.  For "on-
4187  * demand" interfaces, this new state identifies the situation where the
4188  * interface is waiting for events to place it in the up state.
4189  */
4190 static inline void netif_dormant_on(struct net_device *dev)
4191 {
4192 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4193 		linkwatch_fire_event(dev);
4194 }
4195 
4196 /**
4197  *	netif_dormant_off - set device as not dormant.
4198  *	@dev: network device
4199  *
4200  * Device is not in dormant state.
4201  */
4202 static inline void netif_dormant_off(struct net_device *dev)
4203 {
4204 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4205 		linkwatch_fire_event(dev);
4206 }
4207 
4208 /**
4209  *	netif_dormant - test if device is dormant
4210  *	@dev: network device
4211  *
4212  * Check if device is dormant.
4213  */
4214 static inline bool netif_dormant(const struct net_device *dev)
4215 {
4216 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4217 }
4218 
4219 
4220 /**
4221  *	netif_testing_on - mark device as under test.
4222  *	@dev: network device
4223  *
4224  * Mark device as under test (as per RFC2863).
4225  *
4226  * The testing state indicates that some test(s) must be performed on
4227  * the interface. After completion, of the test, the interface state
4228  * will change to up, dormant, or down, as appropriate.
4229  */
4230 static inline void netif_testing_on(struct net_device *dev)
4231 {
4232 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4233 		linkwatch_fire_event(dev);
4234 }
4235 
4236 /**
4237  *	netif_testing_off - set device as not under test.
4238  *	@dev: network device
4239  *
4240  * Device is not in testing state.
4241  */
4242 static inline void netif_testing_off(struct net_device *dev)
4243 {
4244 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4245 		linkwatch_fire_event(dev);
4246 }
4247 
4248 /**
4249  *	netif_testing - test if device is under test
4250  *	@dev: network device
4251  *
4252  * Check if device is under test
4253  */
4254 static inline bool netif_testing(const struct net_device *dev)
4255 {
4256 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4257 }
4258 
4259 
4260 /**
4261  *	netif_oper_up - test if device is operational
4262  *	@dev: network device
4263  *
4264  * Check if carrier is operational
4265  */
4266 static inline bool netif_oper_up(const struct net_device *dev)
4267 {
4268 	return (dev->operstate == IF_OPER_UP ||
4269 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4270 }
4271 
4272 /**
4273  *	netif_device_present - is device available or removed
4274  *	@dev: network device
4275  *
4276  * Check if device has not been removed from system.
4277  */
4278 static inline bool netif_device_present(const struct net_device *dev)
4279 {
4280 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4281 }
4282 
4283 void netif_device_detach(struct net_device *dev);
4284 
4285 void netif_device_attach(struct net_device *dev);
4286 
4287 /*
4288  * Network interface message level settings
4289  */
4290 
4291 enum {
4292 	NETIF_MSG_DRV_BIT,
4293 	NETIF_MSG_PROBE_BIT,
4294 	NETIF_MSG_LINK_BIT,
4295 	NETIF_MSG_TIMER_BIT,
4296 	NETIF_MSG_IFDOWN_BIT,
4297 	NETIF_MSG_IFUP_BIT,
4298 	NETIF_MSG_RX_ERR_BIT,
4299 	NETIF_MSG_TX_ERR_BIT,
4300 	NETIF_MSG_TX_QUEUED_BIT,
4301 	NETIF_MSG_INTR_BIT,
4302 	NETIF_MSG_TX_DONE_BIT,
4303 	NETIF_MSG_RX_STATUS_BIT,
4304 	NETIF_MSG_PKTDATA_BIT,
4305 	NETIF_MSG_HW_BIT,
4306 	NETIF_MSG_WOL_BIT,
4307 
4308 	/* When you add a new bit above, update netif_msg_class_names array
4309 	 * in net/ethtool/common.c
4310 	 */
4311 	NETIF_MSG_CLASS_COUNT,
4312 };
4313 /* Both ethtool_ops interface and internal driver implementation use u32 */
4314 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4315 
4316 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4317 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4318 
4319 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4320 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4321 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4322 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4323 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4324 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4325 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4326 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4327 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4328 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4329 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4330 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4331 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4332 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4333 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4334 
4335 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4336 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4337 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4338 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4339 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4340 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4341 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4342 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4343 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4344 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4345 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4346 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4347 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4348 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4349 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4350 
4351 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4352 {
4353 	/* use default */
4354 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4355 		return default_msg_enable_bits;
4356 	if (debug_value == 0)	/* no output */
4357 		return 0;
4358 	/* set low N bits */
4359 	return (1U << debug_value) - 1;
4360 }
4361 
4362 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4363 {
4364 	spin_lock(&txq->_xmit_lock);
4365 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4366 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4367 }
4368 
4369 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4370 {
4371 	__acquire(&txq->_xmit_lock);
4372 	return true;
4373 }
4374 
4375 static inline void __netif_tx_release(struct netdev_queue *txq)
4376 {
4377 	__release(&txq->_xmit_lock);
4378 }
4379 
4380 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4381 {
4382 	spin_lock_bh(&txq->_xmit_lock);
4383 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4384 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4385 }
4386 
4387 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4388 {
4389 	bool ok = spin_trylock(&txq->_xmit_lock);
4390 
4391 	if (likely(ok)) {
4392 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4393 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4394 	}
4395 	return ok;
4396 }
4397 
4398 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4399 {
4400 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4401 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4402 	spin_unlock(&txq->_xmit_lock);
4403 }
4404 
4405 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4406 {
4407 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4408 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4409 	spin_unlock_bh(&txq->_xmit_lock);
4410 }
4411 
4412 /*
4413  * txq->trans_start can be read locklessly from dev_watchdog()
4414  */
4415 static inline void txq_trans_update(struct netdev_queue *txq)
4416 {
4417 	if (txq->xmit_lock_owner != -1)
4418 		WRITE_ONCE(txq->trans_start, jiffies);
4419 }
4420 
4421 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4422 {
4423 	unsigned long now = jiffies;
4424 
4425 	if (READ_ONCE(txq->trans_start) != now)
4426 		WRITE_ONCE(txq->trans_start, now);
4427 }
4428 
4429 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4430 static inline void netif_trans_update(struct net_device *dev)
4431 {
4432 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4433 
4434 	txq_trans_cond_update(txq);
4435 }
4436 
4437 /**
4438  *	netif_tx_lock - grab network device transmit lock
4439  *	@dev: network device
4440  *
4441  * Get network device transmit lock
4442  */
4443 void netif_tx_lock(struct net_device *dev);
4444 
4445 static inline void netif_tx_lock_bh(struct net_device *dev)
4446 {
4447 	local_bh_disable();
4448 	netif_tx_lock(dev);
4449 }
4450 
4451 void netif_tx_unlock(struct net_device *dev);
4452 
4453 static inline void netif_tx_unlock_bh(struct net_device *dev)
4454 {
4455 	netif_tx_unlock(dev);
4456 	local_bh_enable();
4457 }
4458 
4459 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4460 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4461 		__netif_tx_lock(txq, cpu);		\
4462 	} else {					\
4463 		__netif_tx_acquire(txq);		\
4464 	}						\
4465 }
4466 
4467 #define HARD_TX_TRYLOCK(dev, txq)			\
4468 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4469 		__netif_tx_trylock(txq) :		\
4470 		__netif_tx_acquire(txq))
4471 
4472 #define HARD_TX_UNLOCK(dev, txq) {			\
4473 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4474 		__netif_tx_unlock(txq);			\
4475 	} else {					\
4476 		__netif_tx_release(txq);		\
4477 	}						\
4478 }
4479 
4480 static inline void netif_tx_disable(struct net_device *dev)
4481 {
4482 	unsigned int i;
4483 	int cpu;
4484 
4485 	local_bh_disable();
4486 	cpu = smp_processor_id();
4487 	spin_lock(&dev->tx_global_lock);
4488 	for (i = 0; i < dev->num_tx_queues; i++) {
4489 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4490 
4491 		__netif_tx_lock(txq, cpu);
4492 		netif_tx_stop_queue(txq);
4493 		__netif_tx_unlock(txq);
4494 	}
4495 	spin_unlock(&dev->tx_global_lock);
4496 	local_bh_enable();
4497 }
4498 
4499 static inline void netif_addr_lock(struct net_device *dev)
4500 {
4501 	unsigned char nest_level = 0;
4502 
4503 #ifdef CONFIG_LOCKDEP
4504 	nest_level = dev->nested_level;
4505 #endif
4506 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4507 }
4508 
4509 static inline void netif_addr_lock_bh(struct net_device *dev)
4510 {
4511 	unsigned char nest_level = 0;
4512 
4513 #ifdef CONFIG_LOCKDEP
4514 	nest_level = dev->nested_level;
4515 #endif
4516 	local_bh_disable();
4517 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4518 }
4519 
4520 static inline void netif_addr_unlock(struct net_device *dev)
4521 {
4522 	spin_unlock(&dev->addr_list_lock);
4523 }
4524 
4525 static inline void netif_addr_unlock_bh(struct net_device *dev)
4526 {
4527 	spin_unlock_bh(&dev->addr_list_lock);
4528 }
4529 
4530 /*
4531  * dev_addrs walker. Should be used only for read access. Call with
4532  * rcu_read_lock held.
4533  */
4534 #define for_each_dev_addr(dev, ha) \
4535 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4536 
4537 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4538 
4539 void ether_setup(struct net_device *dev);
4540 
4541 /* Support for loadable net-drivers */
4542 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4543 				    unsigned char name_assign_type,
4544 				    void (*setup)(struct net_device *),
4545 				    unsigned int txqs, unsigned int rxqs);
4546 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4547 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4548 
4549 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4550 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4551 			 count)
4552 
4553 int register_netdev(struct net_device *dev);
4554 void unregister_netdev(struct net_device *dev);
4555 
4556 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4557 
4558 /* General hardware address lists handling functions */
4559 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4560 		   struct netdev_hw_addr_list *from_list, int addr_len);
4561 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4562 		      struct netdev_hw_addr_list *from_list, int addr_len);
4563 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4564 		       struct net_device *dev,
4565 		       int (*sync)(struct net_device *, const unsigned char *),
4566 		       int (*unsync)(struct net_device *,
4567 				     const unsigned char *));
4568 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4569 			   struct net_device *dev,
4570 			   int (*sync)(struct net_device *,
4571 				       const unsigned char *, int),
4572 			   int (*unsync)(struct net_device *,
4573 					 const unsigned char *, int));
4574 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4575 			      struct net_device *dev,
4576 			      int (*unsync)(struct net_device *,
4577 					    const unsigned char *, int));
4578 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4579 			  struct net_device *dev,
4580 			  int (*unsync)(struct net_device *,
4581 					const unsigned char *));
4582 void __hw_addr_init(struct netdev_hw_addr_list *list);
4583 
4584 /* Functions used for device addresses handling */
4585 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4586 		  const void *addr, size_t len);
4587 
4588 static inline void
4589 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4590 {
4591 	dev_addr_mod(dev, 0, addr, len);
4592 }
4593 
4594 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4595 {
4596 	__dev_addr_set(dev, addr, dev->addr_len);
4597 }
4598 
4599 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4600 		 unsigned char addr_type);
4601 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4602 		 unsigned char addr_type);
4603 
4604 /* Functions used for unicast addresses handling */
4605 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4606 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4607 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4608 int dev_uc_sync(struct net_device *to, struct net_device *from);
4609 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4610 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4611 void dev_uc_flush(struct net_device *dev);
4612 void dev_uc_init(struct net_device *dev);
4613 
4614 /**
4615  *  __dev_uc_sync - Synchonize device's unicast list
4616  *  @dev:  device to sync
4617  *  @sync: function to call if address should be added
4618  *  @unsync: function to call if address should be removed
4619  *
4620  *  Add newly added addresses to the interface, and release
4621  *  addresses that have been deleted.
4622  */
4623 static inline int __dev_uc_sync(struct net_device *dev,
4624 				int (*sync)(struct net_device *,
4625 					    const unsigned char *),
4626 				int (*unsync)(struct net_device *,
4627 					      const unsigned char *))
4628 {
4629 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4630 }
4631 
4632 /**
4633  *  __dev_uc_unsync - Remove synchronized addresses from device
4634  *  @dev:  device to sync
4635  *  @unsync: function to call if address should be removed
4636  *
4637  *  Remove all addresses that were added to the device by dev_uc_sync().
4638  */
4639 static inline void __dev_uc_unsync(struct net_device *dev,
4640 				   int (*unsync)(struct net_device *,
4641 						 const unsigned char *))
4642 {
4643 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4644 }
4645 
4646 /* Functions used for multicast addresses handling */
4647 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4648 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4649 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4650 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4651 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4652 int dev_mc_sync(struct net_device *to, struct net_device *from);
4653 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4654 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4655 void dev_mc_flush(struct net_device *dev);
4656 void dev_mc_init(struct net_device *dev);
4657 
4658 /**
4659  *  __dev_mc_sync - Synchonize device's multicast list
4660  *  @dev:  device to sync
4661  *  @sync: function to call if address should be added
4662  *  @unsync: function to call if address should be removed
4663  *
4664  *  Add newly added addresses to the interface, and release
4665  *  addresses that have been deleted.
4666  */
4667 static inline int __dev_mc_sync(struct net_device *dev,
4668 				int (*sync)(struct net_device *,
4669 					    const unsigned char *),
4670 				int (*unsync)(struct net_device *,
4671 					      const unsigned char *))
4672 {
4673 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4674 }
4675 
4676 /**
4677  *  __dev_mc_unsync - Remove synchronized addresses from device
4678  *  @dev:  device to sync
4679  *  @unsync: function to call if address should be removed
4680  *
4681  *  Remove all addresses that were added to the device by dev_mc_sync().
4682  */
4683 static inline void __dev_mc_unsync(struct net_device *dev,
4684 				   int (*unsync)(struct net_device *,
4685 						 const unsigned char *))
4686 {
4687 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4688 }
4689 
4690 /* Functions used for secondary unicast and multicast support */
4691 void dev_set_rx_mode(struct net_device *dev);
4692 int dev_set_promiscuity(struct net_device *dev, int inc);
4693 int dev_set_allmulti(struct net_device *dev, int inc);
4694 void netdev_state_change(struct net_device *dev);
4695 void __netdev_notify_peers(struct net_device *dev);
4696 void netdev_notify_peers(struct net_device *dev);
4697 void netdev_features_change(struct net_device *dev);
4698 /* Load a device via the kmod */
4699 void dev_load(struct net *net, const char *name);
4700 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4701 					struct rtnl_link_stats64 *storage);
4702 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4703 			     const struct net_device_stats *netdev_stats);
4704 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4705 			   const struct pcpu_sw_netstats __percpu *netstats);
4706 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4707 
4708 extern int		netdev_max_backlog;
4709 extern int		dev_rx_weight;
4710 extern int		dev_tx_weight;
4711 extern int		gro_normal_batch;
4712 
4713 enum {
4714 	NESTED_SYNC_IMM_BIT,
4715 	NESTED_SYNC_TODO_BIT,
4716 };
4717 
4718 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4719 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4720 
4721 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4722 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4723 
4724 struct netdev_nested_priv {
4725 	unsigned char flags;
4726 	void *data;
4727 };
4728 
4729 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4730 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4731 						     struct list_head **iter);
4732 
4733 /* iterate through upper list, must be called under RCU read lock */
4734 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4735 	for (iter = &(dev)->adj_list.upper, \
4736 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4737 	     updev; \
4738 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4739 
4740 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4741 				  int (*fn)(struct net_device *upper_dev,
4742 					    struct netdev_nested_priv *priv),
4743 				  struct netdev_nested_priv *priv);
4744 
4745 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4746 				  struct net_device *upper_dev);
4747 
4748 bool netdev_has_any_upper_dev(struct net_device *dev);
4749 
4750 void *netdev_lower_get_next_private(struct net_device *dev,
4751 				    struct list_head **iter);
4752 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4753 					struct list_head **iter);
4754 
4755 #define netdev_for_each_lower_private(dev, priv, iter) \
4756 	for (iter = (dev)->adj_list.lower.next, \
4757 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4758 	     priv; \
4759 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4760 
4761 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4762 	for (iter = &(dev)->adj_list.lower, \
4763 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4764 	     priv; \
4765 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4766 
4767 void *netdev_lower_get_next(struct net_device *dev,
4768 				struct list_head **iter);
4769 
4770 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4771 	for (iter = (dev)->adj_list.lower.next, \
4772 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4773 	     ldev; \
4774 	     ldev = netdev_lower_get_next(dev, &(iter)))
4775 
4776 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4777 					     struct list_head **iter);
4778 int netdev_walk_all_lower_dev(struct net_device *dev,
4779 			      int (*fn)(struct net_device *lower_dev,
4780 					struct netdev_nested_priv *priv),
4781 			      struct netdev_nested_priv *priv);
4782 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4783 				  int (*fn)(struct net_device *lower_dev,
4784 					    struct netdev_nested_priv *priv),
4785 				  struct netdev_nested_priv *priv);
4786 
4787 void *netdev_adjacent_get_private(struct list_head *adj_list);
4788 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4789 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4790 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4791 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4792 			  struct netlink_ext_ack *extack);
4793 int netdev_master_upper_dev_link(struct net_device *dev,
4794 				 struct net_device *upper_dev,
4795 				 void *upper_priv, void *upper_info,
4796 				 struct netlink_ext_ack *extack);
4797 void netdev_upper_dev_unlink(struct net_device *dev,
4798 			     struct net_device *upper_dev);
4799 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4800 				   struct net_device *new_dev,
4801 				   struct net_device *dev,
4802 				   struct netlink_ext_ack *extack);
4803 void netdev_adjacent_change_commit(struct net_device *old_dev,
4804 				   struct net_device *new_dev,
4805 				   struct net_device *dev);
4806 void netdev_adjacent_change_abort(struct net_device *old_dev,
4807 				  struct net_device *new_dev,
4808 				  struct net_device *dev);
4809 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4810 void *netdev_lower_dev_get_private(struct net_device *dev,
4811 				   struct net_device *lower_dev);
4812 void netdev_lower_state_changed(struct net_device *lower_dev,
4813 				void *lower_state_info);
4814 
4815 /* RSS keys are 40 or 52 bytes long */
4816 #define NETDEV_RSS_KEY_LEN 52
4817 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4818 void netdev_rss_key_fill(void *buffer, size_t len);
4819 
4820 int skb_checksum_help(struct sk_buff *skb);
4821 int skb_crc32c_csum_help(struct sk_buff *skb);
4822 int skb_csum_hwoffload_help(struct sk_buff *skb,
4823 			    const netdev_features_t features);
4824 
4825 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4826 				  netdev_features_t features, bool tx_path);
4827 struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb,
4828 				    netdev_features_t features, __be16 type);
4829 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4830 				    netdev_features_t features);
4831 
4832 struct netdev_bonding_info {
4833 	ifslave	slave;
4834 	ifbond	master;
4835 };
4836 
4837 struct netdev_notifier_bonding_info {
4838 	struct netdev_notifier_info info; /* must be first */
4839 	struct netdev_bonding_info  bonding_info;
4840 };
4841 
4842 void netdev_bonding_info_change(struct net_device *dev,
4843 				struct netdev_bonding_info *bonding_info);
4844 
4845 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4846 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4847 #else
4848 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4849 				  const void *data)
4850 {
4851 }
4852 #endif
4853 
4854 static inline
4855 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4856 {
4857 	return __skb_gso_segment(skb, features, true);
4858 }
4859 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4860 
4861 static inline bool can_checksum_protocol(netdev_features_t features,
4862 					 __be16 protocol)
4863 {
4864 	if (protocol == htons(ETH_P_FCOE))
4865 		return !!(features & NETIF_F_FCOE_CRC);
4866 
4867 	/* Assume this is an IP checksum (not SCTP CRC) */
4868 
4869 	if (features & NETIF_F_HW_CSUM) {
4870 		/* Can checksum everything */
4871 		return true;
4872 	}
4873 
4874 	switch (protocol) {
4875 	case htons(ETH_P_IP):
4876 		return !!(features & NETIF_F_IP_CSUM);
4877 	case htons(ETH_P_IPV6):
4878 		return !!(features & NETIF_F_IPV6_CSUM);
4879 	default:
4880 		return false;
4881 	}
4882 }
4883 
4884 #ifdef CONFIG_BUG
4885 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4886 #else
4887 static inline void netdev_rx_csum_fault(struct net_device *dev,
4888 					struct sk_buff *skb)
4889 {
4890 }
4891 #endif
4892 /* rx skb timestamps */
4893 void net_enable_timestamp(void);
4894 void net_disable_timestamp(void);
4895 
4896 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4897 					const struct skb_shared_hwtstamps *hwtstamps,
4898 					bool cycles)
4899 {
4900 	const struct net_device_ops *ops = dev->netdev_ops;
4901 
4902 	if (ops->ndo_get_tstamp)
4903 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4904 
4905 	return hwtstamps->hwtstamp;
4906 }
4907 
4908 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4909 					      struct sk_buff *skb, struct net_device *dev,
4910 					      bool more)
4911 {
4912 	__this_cpu_write(softnet_data.xmit.more, more);
4913 	return ops->ndo_start_xmit(skb, dev);
4914 }
4915 
4916 static inline bool netdev_xmit_more(void)
4917 {
4918 	return __this_cpu_read(softnet_data.xmit.more);
4919 }
4920 
4921 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4922 					    struct netdev_queue *txq, bool more)
4923 {
4924 	const struct net_device_ops *ops = dev->netdev_ops;
4925 	netdev_tx_t rc;
4926 
4927 	rc = __netdev_start_xmit(ops, skb, dev, more);
4928 	if (rc == NETDEV_TX_OK)
4929 		txq_trans_update(txq);
4930 
4931 	return rc;
4932 }
4933 
4934 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4935 				const void *ns);
4936 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4937 				 const void *ns);
4938 
4939 extern const struct kobj_ns_type_operations net_ns_type_operations;
4940 
4941 const char *netdev_drivername(const struct net_device *dev);
4942 
4943 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4944 							  netdev_features_t f2)
4945 {
4946 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4947 		if (f1 & NETIF_F_HW_CSUM)
4948 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4949 		else
4950 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4951 	}
4952 
4953 	return f1 & f2;
4954 }
4955 
4956 static inline netdev_features_t netdev_get_wanted_features(
4957 	struct net_device *dev)
4958 {
4959 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4960 }
4961 netdev_features_t netdev_increment_features(netdev_features_t all,
4962 	netdev_features_t one, netdev_features_t mask);
4963 
4964 /* Allow TSO being used on stacked device :
4965  * Performing the GSO segmentation before last device
4966  * is a performance improvement.
4967  */
4968 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4969 							netdev_features_t mask)
4970 {
4971 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4972 }
4973 
4974 int __netdev_update_features(struct net_device *dev);
4975 void netdev_update_features(struct net_device *dev);
4976 void netdev_change_features(struct net_device *dev);
4977 
4978 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4979 					struct net_device *dev);
4980 
4981 netdev_features_t passthru_features_check(struct sk_buff *skb,
4982 					  struct net_device *dev,
4983 					  netdev_features_t features);
4984 netdev_features_t netif_skb_features(struct sk_buff *skb);
4985 
4986 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4987 {
4988 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4989 
4990 	/* check flags correspondence */
4991 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4992 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4993 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4994 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4995 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4996 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4997 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4998 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4999 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
5000 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
5001 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
5002 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
5003 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
5004 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
5005 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
5006 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
5007 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
5008 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5009 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5010 
5011 	return (features & feature) == feature;
5012 }
5013 
5014 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5015 {
5016 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5017 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5018 }
5019 
5020 static inline bool netif_needs_gso(struct sk_buff *skb,
5021 				   netdev_features_t features)
5022 {
5023 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5024 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5025 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5026 }
5027 
5028 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
5029 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
5030 void netif_inherit_tso_max(struct net_device *to,
5031 			   const struct net_device *from);
5032 
5033 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
5034 					int pulled_hlen, u16 mac_offset,
5035 					int mac_len)
5036 {
5037 	skb->protocol = protocol;
5038 	skb->encapsulation = 1;
5039 	skb_push(skb, pulled_hlen);
5040 	skb_reset_transport_header(skb);
5041 	skb->mac_header = mac_offset;
5042 	skb->network_header = skb->mac_header + mac_len;
5043 	skb->mac_len = mac_len;
5044 }
5045 
5046 static inline bool netif_is_macsec(const struct net_device *dev)
5047 {
5048 	return dev->priv_flags & IFF_MACSEC;
5049 }
5050 
5051 static inline bool netif_is_macvlan(const struct net_device *dev)
5052 {
5053 	return dev->priv_flags & IFF_MACVLAN;
5054 }
5055 
5056 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5057 {
5058 	return dev->priv_flags & IFF_MACVLAN_PORT;
5059 }
5060 
5061 static inline bool netif_is_bond_master(const struct net_device *dev)
5062 {
5063 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5064 }
5065 
5066 static inline bool netif_is_bond_slave(const struct net_device *dev)
5067 {
5068 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5069 }
5070 
5071 static inline bool netif_supports_nofcs(struct net_device *dev)
5072 {
5073 	return dev->priv_flags & IFF_SUPP_NOFCS;
5074 }
5075 
5076 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5077 {
5078 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5079 }
5080 
5081 static inline bool netif_is_l3_master(const struct net_device *dev)
5082 {
5083 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5084 }
5085 
5086 static inline bool netif_is_l3_slave(const struct net_device *dev)
5087 {
5088 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5089 }
5090 
5091 static inline bool netif_is_bridge_master(const struct net_device *dev)
5092 {
5093 	return dev->priv_flags & IFF_EBRIDGE;
5094 }
5095 
5096 static inline bool netif_is_bridge_port(const struct net_device *dev)
5097 {
5098 	return dev->priv_flags & IFF_BRIDGE_PORT;
5099 }
5100 
5101 static inline bool netif_is_ovs_master(const struct net_device *dev)
5102 {
5103 	return dev->priv_flags & IFF_OPENVSWITCH;
5104 }
5105 
5106 static inline bool netif_is_ovs_port(const struct net_device *dev)
5107 {
5108 	return dev->priv_flags & IFF_OVS_DATAPATH;
5109 }
5110 
5111 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5112 {
5113 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5114 }
5115 
5116 static inline bool netif_is_team_master(const struct net_device *dev)
5117 {
5118 	return dev->priv_flags & IFF_TEAM;
5119 }
5120 
5121 static inline bool netif_is_team_port(const struct net_device *dev)
5122 {
5123 	return dev->priv_flags & IFF_TEAM_PORT;
5124 }
5125 
5126 static inline bool netif_is_lag_master(const struct net_device *dev)
5127 {
5128 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5129 }
5130 
5131 static inline bool netif_is_lag_port(const struct net_device *dev)
5132 {
5133 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5134 }
5135 
5136 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5137 {
5138 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5139 }
5140 
5141 static inline bool netif_is_failover(const struct net_device *dev)
5142 {
5143 	return dev->priv_flags & IFF_FAILOVER;
5144 }
5145 
5146 static inline bool netif_is_failover_slave(const struct net_device *dev)
5147 {
5148 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5149 }
5150 
5151 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5152 static inline void netif_keep_dst(struct net_device *dev)
5153 {
5154 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5155 }
5156 
5157 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5158 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5159 {
5160 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5161 	return netif_is_macsec(dev);
5162 }
5163 
5164 extern struct pernet_operations __net_initdata loopback_net_ops;
5165 
5166 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5167 
5168 /* netdev_printk helpers, similar to dev_printk */
5169 
5170 static inline const char *netdev_name(const struct net_device *dev)
5171 {
5172 	if (!dev->name[0] || strchr(dev->name, '%'))
5173 		return "(unnamed net_device)";
5174 	return dev->name;
5175 }
5176 
5177 static inline const char *netdev_reg_state(const struct net_device *dev)
5178 {
5179 	switch (dev->reg_state) {
5180 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5181 	case NETREG_REGISTERED: return "";
5182 	case NETREG_UNREGISTERING: return " (unregistering)";
5183 	case NETREG_UNREGISTERED: return " (unregistered)";
5184 	case NETREG_RELEASED: return " (released)";
5185 	case NETREG_DUMMY: return " (dummy)";
5186 	}
5187 
5188 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5189 	return " (unknown)";
5190 }
5191 
5192 #define MODULE_ALIAS_NETDEV(device) \
5193 	MODULE_ALIAS("netdev-" device)
5194 
5195 /*
5196  * netdev_WARN() acts like dev_printk(), but with the key difference
5197  * of using a WARN/WARN_ON to get the message out, including the
5198  * file/line information and a backtrace.
5199  */
5200 #define netdev_WARN(dev, format, args...)			\
5201 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5202 	     netdev_reg_state(dev), ##args)
5203 
5204 #define netdev_WARN_ONCE(dev, format, args...)				\
5205 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5206 		  netdev_reg_state(dev), ##args)
5207 
5208 /*
5209  *	The list of packet types we will receive (as opposed to discard)
5210  *	and the routines to invoke.
5211  *
5212  *	Why 16. Because with 16 the only overlap we get on a hash of the
5213  *	low nibble of the protocol value is RARP/SNAP/X.25.
5214  *
5215  *		0800	IP
5216  *		0001	802.3
5217  *		0002	AX.25
5218  *		0004	802.2
5219  *		8035	RARP
5220  *		0005	SNAP
5221  *		0805	X.25
5222  *		0806	ARP
5223  *		8137	IPX
5224  *		0009	Localtalk
5225  *		86DD	IPv6
5226  */
5227 #define PTYPE_HASH_SIZE	(16)
5228 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5229 
5230 extern struct list_head ptype_all __read_mostly;
5231 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5232 
5233 extern struct net_device *blackhole_netdev;
5234 
5235 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5236 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5237 #define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
5238 		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5239 
5240 #endif	/* _LINUX_NETDEVICE_H */
5241