1 /* 2 * Mutexes: blocking mutual exclusion locks 3 * 4 * started by Ingo Molnar: 5 * 6 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <[email protected]> 7 * 8 * This file contains the main data structure and API definitions. 9 */ 10 #ifndef __LINUX_MUTEX_H 11 #define __LINUX_MUTEX_H 12 13 #include <asm/current.h> 14 #include <linux/list.h> 15 #include <linux/spinlock_types.h> 16 #include <linux/linkage.h> 17 #include <linux/lockdep.h> 18 19 #include <linux/atomic.h> 20 21 /* 22 * Simple, straightforward mutexes with strict semantics: 23 * 24 * - only one task can hold the mutex at a time 25 * - only the owner can unlock the mutex 26 * - multiple unlocks are not permitted 27 * - recursive locking is not permitted 28 * - a mutex object must be initialized via the API 29 * - a mutex object must not be initialized via memset or copying 30 * - task may not exit with mutex held 31 * - memory areas where held locks reside must not be freed 32 * - held mutexes must not be reinitialized 33 * - mutexes may not be used in hardware or software interrupt 34 * contexts such as tasklets and timers 35 * 36 * These semantics are fully enforced when DEBUG_MUTEXES is 37 * enabled. Furthermore, besides enforcing the above rules, the mutex 38 * debugging code also implements a number of additional features 39 * that make lock debugging easier and faster: 40 * 41 * - uses symbolic names of mutexes, whenever they are printed in debug output 42 * - point-of-acquire tracking, symbolic lookup of function names 43 * - list of all locks held in the system, printout of them 44 * - owner tracking 45 * - detects self-recursing locks and prints out all relevant info 46 * - detects multi-task circular deadlocks and prints out all affected 47 * locks and tasks (and only those tasks) 48 */ 49 struct mutex { 50 /* 1: unlocked, 0: locked, negative: locked, possible waiters */ 51 atomic_t count; 52 spinlock_t wait_lock; 53 struct list_head wait_list; 54 #if defined(CONFIG_DEBUG_MUTEXES) || defined(CONFIG_SMP) 55 struct task_struct *owner; 56 #endif 57 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 58 void *spin_mlock; /* Spinner MCS lock */ 59 #endif 60 #ifdef CONFIG_DEBUG_MUTEXES 61 const char *name; 62 void *magic; 63 #endif 64 #ifdef CONFIG_DEBUG_LOCK_ALLOC 65 struct lockdep_map dep_map; 66 #endif 67 }; 68 69 /* 70 * This is the control structure for tasks blocked on mutex, 71 * which resides on the blocked task's kernel stack: 72 */ 73 struct mutex_waiter { 74 struct list_head list; 75 struct task_struct *task; 76 #ifdef CONFIG_DEBUG_MUTEXES 77 void *magic; 78 #endif 79 }; 80 81 struct ww_class { 82 atomic_long_t stamp; 83 struct lock_class_key acquire_key; 84 struct lock_class_key mutex_key; 85 const char *acquire_name; 86 const char *mutex_name; 87 }; 88 89 struct ww_acquire_ctx { 90 struct task_struct *task; 91 unsigned long stamp; 92 unsigned acquired; 93 #ifdef CONFIG_DEBUG_MUTEXES 94 unsigned done_acquire; 95 struct ww_class *ww_class; 96 struct ww_mutex *contending_lock; 97 #endif 98 #ifdef CONFIG_DEBUG_LOCK_ALLOC 99 struct lockdep_map dep_map; 100 #endif 101 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH 102 unsigned deadlock_inject_interval; 103 unsigned deadlock_inject_countdown; 104 #endif 105 }; 106 107 struct ww_mutex { 108 struct mutex base; 109 struct ww_acquire_ctx *ctx; 110 #ifdef CONFIG_DEBUG_MUTEXES 111 struct ww_class *ww_class; 112 #endif 113 }; 114 115 #ifdef CONFIG_DEBUG_MUTEXES 116 # include <linux/mutex-debug.h> 117 #else 118 # define __DEBUG_MUTEX_INITIALIZER(lockname) 119 /** 120 * mutex_init - initialize the mutex 121 * @mutex: the mutex to be initialized 122 * 123 * Initialize the mutex to unlocked state. 124 * 125 * It is not allowed to initialize an already locked mutex. 126 */ 127 # define mutex_init(mutex) \ 128 do { \ 129 static struct lock_class_key __key; \ 130 \ 131 __mutex_init((mutex), #mutex, &__key); \ 132 } while (0) 133 static inline void mutex_destroy(struct mutex *lock) {} 134 #endif 135 136 #ifdef CONFIG_DEBUG_LOCK_ALLOC 137 # define __DEP_MAP_MUTEX_INITIALIZER(lockname) \ 138 , .dep_map = { .name = #lockname } 139 # define __WW_CLASS_MUTEX_INITIALIZER(lockname, ww_class) \ 140 , .ww_class = &ww_class 141 #else 142 # define __DEP_MAP_MUTEX_INITIALIZER(lockname) 143 # define __WW_CLASS_MUTEX_INITIALIZER(lockname, ww_class) 144 #endif 145 146 #define __MUTEX_INITIALIZER(lockname) \ 147 { .count = ATOMIC_INIT(1) \ 148 , .wait_lock = __SPIN_LOCK_UNLOCKED(lockname.wait_lock) \ 149 , .wait_list = LIST_HEAD_INIT(lockname.wait_list) \ 150 __DEBUG_MUTEX_INITIALIZER(lockname) \ 151 __DEP_MAP_MUTEX_INITIALIZER(lockname) } 152 153 #define __WW_CLASS_INITIALIZER(ww_class) \ 154 { .stamp = ATOMIC_LONG_INIT(0) \ 155 , .acquire_name = #ww_class "_acquire" \ 156 , .mutex_name = #ww_class "_mutex" } 157 158 #define __WW_MUTEX_INITIALIZER(lockname, class) \ 159 { .base = { \__MUTEX_INITIALIZER(lockname) } \ 160 __WW_CLASS_MUTEX_INITIALIZER(lockname, class) } 161 162 #define DEFINE_MUTEX(mutexname) \ 163 struct mutex mutexname = __MUTEX_INITIALIZER(mutexname) 164 165 #define DEFINE_WW_CLASS(classname) \ 166 struct ww_class classname = __WW_CLASS_INITIALIZER(classname) 167 168 #define DEFINE_WW_MUTEX(mutexname, ww_class) \ 169 struct ww_mutex mutexname = __WW_MUTEX_INITIALIZER(mutexname, ww_class) 170 171 172 extern void __mutex_init(struct mutex *lock, const char *name, 173 struct lock_class_key *key); 174 175 /** 176 * ww_mutex_init - initialize the w/w mutex 177 * @lock: the mutex to be initialized 178 * @ww_class: the w/w class the mutex should belong to 179 * 180 * Initialize the w/w mutex to unlocked state and associate it with the given 181 * class. 182 * 183 * It is not allowed to initialize an already locked mutex. 184 */ 185 static inline void ww_mutex_init(struct ww_mutex *lock, 186 struct ww_class *ww_class) 187 { 188 __mutex_init(&lock->base, ww_class->mutex_name, &ww_class->mutex_key); 189 lock->ctx = NULL; 190 #ifdef CONFIG_DEBUG_MUTEXES 191 lock->ww_class = ww_class; 192 #endif 193 } 194 195 /** 196 * mutex_is_locked - is the mutex locked 197 * @lock: the mutex to be queried 198 * 199 * Returns 1 if the mutex is locked, 0 if unlocked. 200 */ 201 static inline int mutex_is_locked(struct mutex *lock) 202 { 203 return atomic_read(&lock->count) != 1; 204 } 205 206 /* 207 * See kernel/mutex.c for detailed documentation of these APIs. 208 * Also see Documentation/mutex-design.txt. 209 */ 210 #ifdef CONFIG_DEBUG_LOCK_ALLOC 211 extern void mutex_lock_nested(struct mutex *lock, unsigned int subclass); 212 extern void _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest_lock); 213 214 extern int __must_check mutex_lock_interruptible_nested(struct mutex *lock, 215 unsigned int subclass); 216 extern int __must_check mutex_lock_killable_nested(struct mutex *lock, 217 unsigned int subclass); 218 219 #define mutex_lock(lock) mutex_lock_nested(lock, 0) 220 #define mutex_lock_interruptible(lock) mutex_lock_interruptible_nested(lock, 0) 221 #define mutex_lock_killable(lock) mutex_lock_killable_nested(lock, 0) 222 223 #define mutex_lock_nest_lock(lock, nest_lock) \ 224 do { \ 225 typecheck(struct lockdep_map *, &(nest_lock)->dep_map); \ 226 _mutex_lock_nest_lock(lock, &(nest_lock)->dep_map); \ 227 } while (0) 228 229 #else 230 extern void mutex_lock(struct mutex *lock); 231 extern int __must_check mutex_lock_interruptible(struct mutex *lock); 232 extern int __must_check mutex_lock_killable(struct mutex *lock); 233 234 # define mutex_lock_nested(lock, subclass) mutex_lock(lock) 235 # define mutex_lock_interruptible_nested(lock, subclass) mutex_lock_interruptible(lock) 236 # define mutex_lock_killable_nested(lock, subclass) mutex_lock_killable(lock) 237 # define mutex_lock_nest_lock(lock, nest_lock) mutex_lock(lock) 238 #endif 239 240 /* 241 * NOTE: mutex_trylock() follows the spin_trylock() convention, 242 * not the down_trylock() convention! 243 * 244 * Returns 1 if the mutex has been acquired successfully, and 0 on contention. 245 */ 246 extern int mutex_trylock(struct mutex *lock); 247 extern void mutex_unlock(struct mutex *lock); 248 249 /** 250 * ww_acquire_init - initialize a w/w acquire context 251 * @ctx: w/w acquire context to initialize 252 * @ww_class: w/w class of the context 253 * 254 * Initializes an context to acquire multiple mutexes of the given w/w class. 255 * 256 * Context-based w/w mutex acquiring can be done in any order whatsoever within 257 * a given lock class. Deadlocks will be detected and handled with the 258 * wait/wound logic. 259 * 260 * Mixing of context-based w/w mutex acquiring and single w/w mutex locking can 261 * result in undetected deadlocks and is so forbidden. Mixing different contexts 262 * for the same w/w class when acquiring mutexes can also result in undetected 263 * deadlocks, and is hence also forbidden. Both types of abuse will be caught by 264 * enabling CONFIG_PROVE_LOCKING. 265 * 266 * Nesting of acquire contexts for _different_ w/w classes is possible, subject 267 * to the usual locking rules between different lock classes. 268 * 269 * An acquire context must be released with ww_acquire_fini by the same task 270 * before the memory is freed. It is recommended to allocate the context itself 271 * on the stack. 272 */ 273 static inline void ww_acquire_init(struct ww_acquire_ctx *ctx, 274 struct ww_class *ww_class) 275 { 276 ctx->task = current; 277 ctx->stamp = atomic_long_inc_return(&ww_class->stamp); 278 ctx->acquired = 0; 279 #ifdef CONFIG_DEBUG_MUTEXES 280 ctx->ww_class = ww_class; 281 ctx->done_acquire = 0; 282 ctx->contending_lock = NULL; 283 #endif 284 #ifdef CONFIG_DEBUG_LOCK_ALLOC 285 debug_check_no_locks_freed((void *)ctx, sizeof(*ctx)); 286 lockdep_init_map(&ctx->dep_map, ww_class->acquire_name, 287 &ww_class->acquire_key, 0); 288 mutex_acquire(&ctx->dep_map, 0, 0, _RET_IP_); 289 #endif 290 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH 291 ctx->deadlock_inject_interval = 1; 292 ctx->deadlock_inject_countdown = ctx->stamp & 0xf; 293 #endif 294 } 295 296 /** 297 * ww_acquire_done - marks the end of the acquire phase 298 * @ctx: the acquire context 299 * 300 * Marks the end of the acquire phase, any further w/w mutex lock calls using 301 * this context are forbidden. 302 * 303 * Calling this function is optional, it is just useful to document w/w mutex 304 * code and clearly designated the acquire phase from actually using the locked 305 * data structures. 306 */ 307 static inline void ww_acquire_done(struct ww_acquire_ctx *ctx) 308 { 309 #ifdef CONFIG_DEBUG_MUTEXES 310 lockdep_assert_held(ctx); 311 312 DEBUG_LOCKS_WARN_ON(ctx->done_acquire); 313 ctx->done_acquire = 1; 314 #endif 315 } 316 317 /** 318 * ww_acquire_fini - releases a w/w acquire context 319 * @ctx: the acquire context to free 320 * 321 * Releases a w/w acquire context. This must be called _after_ all acquired w/w 322 * mutexes have been released with ww_mutex_unlock. 323 */ 324 static inline void ww_acquire_fini(struct ww_acquire_ctx *ctx) 325 { 326 #ifdef CONFIG_DEBUG_MUTEXES 327 mutex_release(&ctx->dep_map, 0, _THIS_IP_); 328 329 DEBUG_LOCKS_WARN_ON(ctx->acquired); 330 if (!config_enabled(CONFIG_PROVE_LOCKING)) 331 /* 332 * lockdep will normally handle this, 333 * but fail without anyway 334 */ 335 ctx->done_acquire = 1; 336 337 if (!config_enabled(CONFIG_DEBUG_LOCK_ALLOC)) 338 /* ensure ww_acquire_fini will still fail if called twice */ 339 ctx->acquired = ~0U; 340 #endif 341 } 342 343 extern int __must_check __ww_mutex_lock(struct ww_mutex *lock, 344 struct ww_acquire_ctx *ctx); 345 extern int __must_check __ww_mutex_lock_interruptible(struct ww_mutex *lock, 346 struct ww_acquire_ctx *ctx); 347 348 /** 349 * ww_mutex_lock - acquire the w/w mutex 350 * @lock: the mutex to be acquired 351 * @ctx: w/w acquire context, or NULL to acquire only a single lock. 352 * 353 * Lock the w/w mutex exclusively for this task. 354 * 355 * Deadlocks within a given w/w class of locks are detected and handled with the 356 * wait/wound algorithm. If the lock isn't immediately avaiable this function 357 * will either sleep until it is (wait case). Or it selects the current context 358 * for backing off by returning -EDEADLK (wound case). Trying to acquire the 359 * same lock with the same context twice is also detected and signalled by 360 * returning -EALREADY. Returns 0 if the mutex was successfully acquired. 361 * 362 * In the wound case the caller must release all currently held w/w mutexes for 363 * the given context and then wait for this contending lock to be available by 364 * calling ww_mutex_lock_slow. Alternatively callers can opt to not acquire this 365 * lock and proceed with trying to acquire further w/w mutexes (e.g. when 366 * scanning through lru lists trying to free resources). 367 * 368 * The mutex must later on be released by the same task that 369 * acquired it. The task may not exit without first unlocking the mutex. Also, 370 * kernel memory where the mutex resides must not be freed with the mutex still 371 * locked. The mutex must first be initialized (or statically defined) before it 372 * can be locked. memset()-ing the mutex to 0 is not allowed. The mutex must be 373 * of the same w/w lock class as was used to initialize the acquire context. 374 * 375 * A mutex acquired with this function must be released with ww_mutex_unlock. 376 */ 377 static inline int ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 378 { 379 if (ctx) 380 return __ww_mutex_lock(lock, ctx); 381 else { 382 mutex_lock(&lock->base); 383 return 0; 384 } 385 } 386 387 /** 388 * ww_mutex_lock_interruptible - acquire the w/w mutex, interruptible 389 * @lock: the mutex to be acquired 390 * @ctx: w/w acquire context 391 * 392 * Lock the w/w mutex exclusively for this task. 393 * 394 * Deadlocks within a given w/w class of locks are detected and handled with the 395 * wait/wound algorithm. If the lock isn't immediately avaiable this function 396 * will either sleep until it is (wait case). Or it selects the current context 397 * for backing off by returning -EDEADLK (wound case). Trying to acquire the 398 * same lock with the same context twice is also detected and signalled by 399 * returning -EALREADY. Returns 0 if the mutex was successfully acquired. If a 400 * signal arrives while waiting for the lock then this function returns -EINTR. 401 * 402 * In the wound case the caller must release all currently held w/w mutexes for 403 * the given context and then wait for this contending lock to be available by 404 * calling ww_mutex_lock_slow_interruptible. Alternatively callers can opt to 405 * not acquire this lock and proceed with trying to acquire further w/w mutexes 406 * (e.g. when scanning through lru lists trying to free resources). 407 * 408 * The mutex must later on be released by the same task that 409 * acquired it. The task may not exit without first unlocking the mutex. Also, 410 * kernel memory where the mutex resides must not be freed with the mutex still 411 * locked. The mutex must first be initialized (or statically defined) before it 412 * can be locked. memset()-ing the mutex to 0 is not allowed. The mutex must be 413 * of the same w/w lock class as was used to initialize the acquire context. 414 * 415 * A mutex acquired with this function must be released with ww_mutex_unlock. 416 */ 417 static inline int __must_check ww_mutex_lock_interruptible(struct ww_mutex *lock, 418 struct ww_acquire_ctx *ctx) 419 { 420 if (ctx) 421 return __ww_mutex_lock_interruptible(lock, ctx); 422 else 423 return mutex_lock_interruptible(&lock->base); 424 } 425 426 /** 427 * ww_mutex_lock_slow - slowpath acquiring of the w/w mutex 428 * @lock: the mutex to be acquired 429 * @ctx: w/w acquire context 430 * 431 * Acquires a w/w mutex with the given context after a wound case. This function 432 * will sleep until the lock becomes available. 433 * 434 * The caller must have released all w/w mutexes already acquired with the 435 * context and then call this function on the contended lock. 436 * 437 * Afterwards the caller may continue to (re)acquire the other w/w mutexes it 438 * needs with ww_mutex_lock. Note that the -EALREADY return code from 439 * ww_mutex_lock can be used to avoid locking this contended mutex twice. 440 * 441 * It is forbidden to call this function with any other w/w mutexes associated 442 * with the context held. It is forbidden to call this on anything else than the 443 * contending mutex. 444 * 445 * Note that the slowpath lock acquiring can also be done by calling 446 * ww_mutex_lock directly. This function here is simply to help w/w mutex 447 * locking code readability by clearly denoting the slowpath. 448 */ 449 static inline void 450 ww_mutex_lock_slow(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 451 { 452 int ret; 453 #ifdef CONFIG_DEBUG_MUTEXES 454 DEBUG_LOCKS_WARN_ON(!ctx->contending_lock); 455 #endif 456 ret = ww_mutex_lock(lock, ctx); 457 (void)ret; 458 } 459 460 /** 461 * ww_mutex_lock_slow_interruptible - slowpath acquiring of the w/w mutex, 462 * interruptible 463 * @lock: the mutex to be acquired 464 * @ctx: w/w acquire context 465 * 466 * Acquires a w/w mutex with the given context after a wound case. This function 467 * will sleep until the lock becomes available and returns 0 when the lock has 468 * been acquired. If a signal arrives while waiting for the lock then this 469 * function returns -EINTR. 470 * 471 * The caller must have released all w/w mutexes already acquired with the 472 * context and then call this function on the contended lock. 473 * 474 * Afterwards the caller may continue to (re)acquire the other w/w mutexes it 475 * needs with ww_mutex_lock. Note that the -EALREADY return code from 476 * ww_mutex_lock can be used to avoid locking this contended mutex twice. 477 * 478 * It is forbidden to call this function with any other w/w mutexes associated 479 * with the given context held. It is forbidden to call this on anything else 480 * than the contending mutex. 481 * 482 * Note that the slowpath lock acquiring can also be done by calling 483 * ww_mutex_lock_interruptible directly. This function here is simply to help 484 * w/w mutex locking code readability by clearly denoting the slowpath. 485 */ 486 static inline int __must_check 487 ww_mutex_lock_slow_interruptible(struct ww_mutex *lock, 488 struct ww_acquire_ctx *ctx) 489 { 490 #ifdef CONFIG_DEBUG_MUTEXES 491 DEBUG_LOCKS_WARN_ON(!ctx->contending_lock); 492 #endif 493 return ww_mutex_lock_interruptible(lock, ctx); 494 } 495 496 extern void ww_mutex_unlock(struct ww_mutex *lock); 497 498 /** 499 * ww_mutex_trylock - tries to acquire the w/w mutex without acquire context 500 * @lock: mutex to lock 501 * 502 * Trylocks a mutex without acquire context, so no deadlock detection is 503 * possible. Returns 1 if the mutex has been acquired successfully, 0 otherwise. 504 */ 505 static inline int __must_check ww_mutex_trylock(struct ww_mutex *lock) 506 { 507 return mutex_trylock(&lock->base); 508 } 509 510 /*** 511 * ww_mutex_destroy - mark a w/w mutex unusable 512 * @lock: the mutex to be destroyed 513 * 514 * This function marks the mutex uninitialized, and any subsequent 515 * use of the mutex is forbidden. The mutex must not be locked when 516 * this function is called. 517 */ 518 static inline void ww_mutex_destroy(struct ww_mutex *lock) 519 { 520 mutex_destroy(&lock->base); 521 } 522 523 /** 524 * ww_mutex_is_locked - is the w/w mutex locked 525 * @lock: the mutex to be queried 526 * 527 * Returns 1 if the mutex is locked, 0 if unlocked. 528 */ 529 static inline bool ww_mutex_is_locked(struct ww_mutex *lock) 530 { 531 return mutex_is_locked(&lock->base); 532 } 533 534 extern int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock); 535 536 #ifndef CONFIG_HAVE_ARCH_MUTEX_CPU_RELAX 537 #define arch_mutex_cpu_relax() cpu_relax() 538 #endif 539 540 #endif 541