1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (c) 2016-2017 Micron Technology, Inc. 4 * 5 * Authors: 6 * Peter Pan <[email protected]> 7 */ 8 #ifndef __LINUX_MTD_SPINAND_H 9 #define __LINUX_MTD_SPINAND_H 10 11 #include <linux/mutex.h> 12 #include <linux/bitops.h> 13 #include <linux/device.h> 14 #include <linux/mtd/mtd.h> 15 #include <linux/mtd/nand.h> 16 #include <linux/spi/spi.h> 17 #include <linux/spi/spi-mem.h> 18 19 /** 20 * Standard SPI NAND flash operations 21 */ 22 23 #define SPINAND_RESET_OP \ 24 SPI_MEM_OP(SPI_MEM_OP_CMD(0xff, 1), \ 25 SPI_MEM_OP_NO_ADDR, \ 26 SPI_MEM_OP_NO_DUMMY, \ 27 SPI_MEM_OP_NO_DATA) 28 29 #define SPINAND_WR_EN_DIS_OP(enable) \ 30 SPI_MEM_OP(SPI_MEM_OP_CMD((enable) ? 0x06 : 0x04, 1), \ 31 SPI_MEM_OP_NO_ADDR, \ 32 SPI_MEM_OP_NO_DUMMY, \ 33 SPI_MEM_OP_NO_DATA) 34 35 #define SPINAND_READID_OP(ndummy, buf, len) \ 36 SPI_MEM_OP(SPI_MEM_OP_CMD(0x9f, 1), \ 37 SPI_MEM_OP_NO_ADDR, \ 38 SPI_MEM_OP_DUMMY(ndummy, 1), \ 39 SPI_MEM_OP_DATA_IN(len, buf, 1)) 40 41 #define SPINAND_SET_FEATURE_OP(reg, valptr) \ 42 SPI_MEM_OP(SPI_MEM_OP_CMD(0x1f, 1), \ 43 SPI_MEM_OP_ADDR(1, reg, 1), \ 44 SPI_MEM_OP_NO_DUMMY, \ 45 SPI_MEM_OP_DATA_OUT(1, valptr, 1)) 46 47 #define SPINAND_GET_FEATURE_OP(reg, valptr) \ 48 SPI_MEM_OP(SPI_MEM_OP_CMD(0x0f, 1), \ 49 SPI_MEM_OP_ADDR(1, reg, 1), \ 50 SPI_MEM_OP_NO_DUMMY, \ 51 SPI_MEM_OP_DATA_IN(1, valptr, 1)) 52 53 #define SPINAND_BLK_ERASE_OP(addr) \ 54 SPI_MEM_OP(SPI_MEM_OP_CMD(0xd8, 1), \ 55 SPI_MEM_OP_ADDR(3, addr, 1), \ 56 SPI_MEM_OP_NO_DUMMY, \ 57 SPI_MEM_OP_NO_DATA) 58 59 #define SPINAND_PAGE_READ_OP(addr) \ 60 SPI_MEM_OP(SPI_MEM_OP_CMD(0x13, 1), \ 61 SPI_MEM_OP_ADDR(3, addr, 1), \ 62 SPI_MEM_OP_NO_DUMMY, \ 63 SPI_MEM_OP_NO_DATA) 64 65 #define SPINAND_PAGE_READ_FROM_CACHE_OP(fast, addr, ndummy, buf, len) \ 66 SPI_MEM_OP(SPI_MEM_OP_CMD(fast ? 0x0b : 0x03, 1), \ 67 SPI_MEM_OP_ADDR(2, addr, 1), \ 68 SPI_MEM_OP_DUMMY(ndummy, 1), \ 69 SPI_MEM_OP_DATA_IN(len, buf, 1)) 70 71 #define SPINAND_PAGE_READ_FROM_CACHE_X2_OP(addr, ndummy, buf, len) \ 72 SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1), \ 73 SPI_MEM_OP_ADDR(2, addr, 1), \ 74 SPI_MEM_OP_DUMMY(ndummy, 1), \ 75 SPI_MEM_OP_DATA_IN(len, buf, 2)) 76 77 #define SPINAND_PAGE_READ_FROM_CACHE_X4_OP(addr, ndummy, buf, len) \ 78 SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1), \ 79 SPI_MEM_OP_ADDR(2, addr, 1), \ 80 SPI_MEM_OP_DUMMY(ndummy, 1), \ 81 SPI_MEM_OP_DATA_IN(len, buf, 4)) 82 83 #define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(addr, ndummy, buf, len) \ 84 SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1), \ 85 SPI_MEM_OP_ADDR(2, addr, 2), \ 86 SPI_MEM_OP_DUMMY(ndummy, 2), \ 87 SPI_MEM_OP_DATA_IN(len, buf, 2)) 88 89 #define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(addr, ndummy, buf, len) \ 90 SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1), \ 91 SPI_MEM_OP_ADDR(2, addr, 4), \ 92 SPI_MEM_OP_DUMMY(ndummy, 4), \ 93 SPI_MEM_OP_DATA_IN(len, buf, 4)) 94 95 #define SPINAND_PROG_EXEC_OP(addr) \ 96 SPI_MEM_OP(SPI_MEM_OP_CMD(0x10, 1), \ 97 SPI_MEM_OP_ADDR(3, addr, 1), \ 98 SPI_MEM_OP_NO_DUMMY, \ 99 SPI_MEM_OP_NO_DATA) 100 101 #define SPINAND_PROG_LOAD(reset, addr, buf, len) \ 102 SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x02 : 0x84, 1), \ 103 SPI_MEM_OP_ADDR(2, addr, 1), \ 104 SPI_MEM_OP_NO_DUMMY, \ 105 SPI_MEM_OP_DATA_OUT(len, buf, 1)) 106 107 #define SPINAND_PROG_LOAD_X4(reset, addr, buf, len) \ 108 SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x32 : 0x34, 1), \ 109 SPI_MEM_OP_ADDR(2, addr, 1), \ 110 SPI_MEM_OP_NO_DUMMY, \ 111 SPI_MEM_OP_DATA_OUT(len, buf, 4)) 112 113 /** 114 * Standard SPI NAND flash commands 115 */ 116 #define SPINAND_CMD_PROG_LOAD_X4 0x32 117 #define SPINAND_CMD_PROG_LOAD_RDM_DATA_X4 0x34 118 119 /* feature register */ 120 #define REG_BLOCK_LOCK 0xa0 121 #define BL_ALL_UNLOCKED 0x00 122 123 /* configuration register */ 124 #define REG_CFG 0xb0 125 #define CFG_OTP_ENABLE BIT(6) 126 #define CFG_ECC_ENABLE BIT(4) 127 #define CFG_QUAD_ENABLE BIT(0) 128 129 /* status register */ 130 #define REG_STATUS 0xc0 131 #define STATUS_BUSY BIT(0) 132 #define STATUS_ERASE_FAILED BIT(2) 133 #define STATUS_PROG_FAILED BIT(3) 134 #define STATUS_ECC_MASK GENMASK(5, 4) 135 #define STATUS_ECC_NO_BITFLIPS (0 << 4) 136 #define STATUS_ECC_HAS_BITFLIPS (1 << 4) 137 #define STATUS_ECC_UNCOR_ERROR (2 << 4) 138 139 struct spinand_op; 140 struct spinand_device; 141 142 #define SPINAND_MAX_ID_LEN 4 143 144 /** 145 * struct spinand_id - SPI NAND id structure 146 * @data: buffer containing the id bytes. Currently 4 bytes large, but can 147 * be extended if required 148 * @len: ID length 149 * 150 * struct_spinand_id->data contains all bytes returned after a READ_ID command, 151 * including dummy bytes if the chip does not emit ID bytes right after the 152 * READ_ID command. The responsibility to extract real ID bytes is left to 153 * struct_manufacurer_ops->detect(). 154 */ 155 struct spinand_id { 156 u8 data[SPINAND_MAX_ID_LEN]; 157 int len; 158 }; 159 160 /** 161 * struct manufacurer_ops - SPI NAND manufacturer specific operations 162 * @detect: detect a SPI NAND device. Every time a SPI NAND device is probed 163 * the core calls the struct_manufacurer_ops->detect() hook of each 164 * registered manufacturer until one of them return 1. Note that 165 * the first thing to check in this hook is that the manufacturer ID 166 * in struct_spinand_device->id matches the manufacturer whose 167 * ->detect() hook has been called. Should return 1 if there's a 168 * match, 0 if the manufacturer ID does not match and a negative 169 * error code otherwise. When true is returned, the core assumes 170 * that properties of the NAND chip (spinand->base.memorg and 171 * spinand->base.eccreq) have been filled 172 * @init: initialize a SPI NAND device 173 * @cleanup: cleanup a SPI NAND device 174 * 175 * Each SPI NAND manufacturer driver should implement this interface so that 176 * NAND chips coming from this vendor can be detected and initialized properly. 177 */ 178 struct spinand_manufacturer_ops { 179 int (*detect)(struct spinand_device *spinand); 180 int (*init)(struct spinand_device *spinand); 181 void (*cleanup)(struct spinand_device *spinand); 182 }; 183 184 /** 185 * struct spinand_manufacturer - SPI NAND manufacturer instance 186 * @id: manufacturer ID 187 * @name: manufacturer name 188 * @ops: manufacturer operations 189 */ 190 struct spinand_manufacturer { 191 u8 id; 192 char *name; 193 const struct spinand_manufacturer_ops *ops; 194 }; 195 196 /* SPI NAND manufacturers */ 197 extern const struct spinand_manufacturer macronix_spinand_manufacturer; 198 extern const struct spinand_manufacturer micron_spinand_manufacturer; 199 extern const struct spinand_manufacturer winbond_spinand_manufacturer; 200 201 /** 202 * struct spinand_op_variants - SPI NAND operation variants 203 * @ops: the list of variants for a given operation 204 * @nops: the number of variants 205 * 206 * Some operations like read-from-cache/write-to-cache have several variants 207 * depending on the number of IO lines you use to transfer data or address 208 * cycles. This structure is a way to describe the different variants supported 209 * by a chip and let the core pick the best one based on the SPI mem controller 210 * capabilities. 211 */ 212 struct spinand_op_variants { 213 const struct spi_mem_op *ops; 214 unsigned int nops; 215 }; 216 217 #define SPINAND_OP_VARIANTS(name, ...) \ 218 const struct spinand_op_variants name = { \ 219 .ops = (struct spi_mem_op[]) { __VA_ARGS__ }, \ 220 .nops = sizeof((struct spi_mem_op[]){ __VA_ARGS__ }) / \ 221 sizeof(struct spi_mem_op), \ 222 } 223 224 /** 225 * spinand_ecc_info - description of the on-die ECC implemented by a SPI NAND 226 * chip 227 * @get_status: get the ECC status. Should return a positive number encoding 228 * the number of corrected bitflips if correction was possible or 229 * -EBADMSG if there are uncorrectable errors. I can also return 230 * other negative error codes if the error is not caused by 231 * uncorrectable bitflips 232 * @ooblayout: the OOB layout used by the on-die ECC implementation 233 */ 234 struct spinand_ecc_info { 235 int (*get_status)(struct spinand_device *spinand, u8 status); 236 const struct mtd_ooblayout_ops *ooblayout; 237 }; 238 239 #define SPINAND_HAS_QE_BIT BIT(0) 240 241 /** 242 * struct spinand_info - Structure used to describe SPI NAND chips 243 * @model: model name 244 * @devid: device ID 245 * @flags: OR-ing of the SPINAND_XXX flags 246 * @memorg: memory organization 247 * @eccreq: ECC requirements 248 * @eccinfo: on-die ECC info 249 * @op_variants: operations variants 250 * @op_variants.read_cache: variants of the read-cache operation 251 * @op_variants.write_cache: variants of the write-cache operation 252 * @op_variants.update_cache: variants of the update-cache operation 253 * @select_target: function used to select a target/die. Required only for 254 * multi-die chips 255 * 256 * Each SPI NAND manufacturer driver should have a spinand_info table 257 * describing all the chips supported by the driver. 258 */ 259 struct spinand_info { 260 const char *model; 261 u8 devid; 262 u32 flags; 263 struct nand_memory_organization memorg; 264 struct nand_ecc_req eccreq; 265 struct spinand_ecc_info eccinfo; 266 struct { 267 const struct spinand_op_variants *read_cache; 268 const struct spinand_op_variants *write_cache; 269 const struct spinand_op_variants *update_cache; 270 } op_variants; 271 int (*select_target)(struct spinand_device *spinand, 272 unsigned int target); 273 }; 274 275 #define SPINAND_INFO_OP_VARIANTS(__read, __write, __update) \ 276 { \ 277 .read_cache = __read, \ 278 .write_cache = __write, \ 279 .update_cache = __update, \ 280 } 281 282 #define SPINAND_ECCINFO(__ooblayout, __get_status) \ 283 .eccinfo = { \ 284 .ooblayout = __ooblayout, \ 285 .get_status = __get_status, \ 286 } 287 288 #define SPINAND_SELECT_TARGET(__func) \ 289 .select_target = __func, 290 291 #define SPINAND_INFO(__model, __id, __memorg, __eccreq, __op_variants, \ 292 __flags, ...) \ 293 { \ 294 .model = __model, \ 295 .devid = __id, \ 296 .memorg = __memorg, \ 297 .eccreq = __eccreq, \ 298 .op_variants = __op_variants, \ 299 .flags = __flags, \ 300 __VA_ARGS__ \ 301 } 302 303 /** 304 * struct spinand_device - SPI NAND device instance 305 * @base: NAND device instance 306 * @spimem: pointer to the SPI mem object 307 * @lock: lock used to serialize accesses to the NAND 308 * @id: NAND ID as returned by READ_ID 309 * @flags: NAND flags 310 * @op_templates: various SPI mem op templates 311 * @op_templates.read_cache: read cache op template 312 * @op_templates.write_cache: write cache op template 313 * @op_templates.update_cache: update cache op template 314 * @select_target: select a specific target/die. Usually called before sending 315 * a command addressing a page or an eraseblock embedded in 316 * this die. Only required if your chip exposes several dies 317 * @cur_target: currently selected target/die 318 * @eccinfo: on-die ECC information 319 * @cfg_cache: config register cache. One entry per die 320 * @databuf: bounce buffer for data 321 * @oobbuf: bounce buffer for OOB data 322 * @scratchbuf: buffer used for everything but page accesses. This is needed 323 * because the spi-mem interface explicitly requests that buffers 324 * passed in spi_mem_op be DMA-able, so we can't based the bufs on 325 * the stack 326 * @manufacturer: SPI NAND manufacturer information 327 * @priv: manufacturer private data 328 */ 329 struct spinand_device { 330 struct nand_device base; 331 struct spi_mem *spimem; 332 struct mutex lock; 333 struct spinand_id id; 334 u32 flags; 335 336 struct { 337 const struct spi_mem_op *read_cache; 338 const struct spi_mem_op *write_cache; 339 const struct spi_mem_op *update_cache; 340 } op_templates; 341 342 int (*select_target)(struct spinand_device *spinand, 343 unsigned int target); 344 unsigned int cur_target; 345 346 struct spinand_ecc_info eccinfo; 347 348 u8 *cfg_cache; 349 u8 *databuf; 350 u8 *oobbuf; 351 u8 *scratchbuf; 352 const struct spinand_manufacturer *manufacturer; 353 void *priv; 354 }; 355 356 /** 357 * mtd_to_spinand() - Get the SPI NAND device attached to an MTD instance 358 * @mtd: MTD instance 359 * 360 * Return: the SPI NAND device attached to @mtd. 361 */ 362 static inline struct spinand_device *mtd_to_spinand(struct mtd_info *mtd) 363 { 364 return container_of(mtd_to_nanddev(mtd), struct spinand_device, base); 365 } 366 367 /** 368 * spinand_to_mtd() - Get the MTD device embedded in a SPI NAND device 369 * @spinand: SPI NAND device 370 * 371 * Return: the MTD device embedded in @spinand. 372 */ 373 static inline struct mtd_info *spinand_to_mtd(struct spinand_device *spinand) 374 { 375 return nanddev_to_mtd(&spinand->base); 376 } 377 378 /** 379 * nand_to_spinand() - Get the SPI NAND device embedding an NAND object 380 * @nand: NAND object 381 * 382 * Return: the SPI NAND device embedding @nand. 383 */ 384 static inline struct spinand_device *nand_to_spinand(struct nand_device *nand) 385 { 386 return container_of(nand, struct spinand_device, base); 387 } 388 389 /** 390 * spinand_to_nand() - Get the NAND device embedded in a SPI NAND object 391 * @spinand: SPI NAND device 392 * 393 * Return: the NAND device embedded in @spinand. 394 */ 395 static inline struct nand_device * 396 spinand_to_nand(struct spinand_device *spinand) 397 { 398 return &spinand->base; 399 } 400 401 /** 402 * spinand_set_of_node - Attach a DT node to a SPI NAND device 403 * @spinand: SPI NAND device 404 * @np: DT node 405 * 406 * Attach a DT node to a SPI NAND device. 407 */ 408 static inline void spinand_set_of_node(struct spinand_device *spinand, 409 struct device_node *np) 410 { 411 nanddev_set_of_node(&spinand->base, np); 412 } 413 414 int spinand_match_and_init(struct spinand_device *dev, 415 const struct spinand_info *table, 416 unsigned int table_size, u8 devid); 417 418 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val); 419 int spinand_select_target(struct spinand_device *spinand, unsigned int target); 420 421 #endif /* __LINUX_MTD_SPINAND_H */ 422