xref: /linux-6.15/include/linux/mtd/rawnand.h (revision 66dfdff0)
1 /*
2  *  Copyright © 2000-2010 David Woodhouse <[email protected]>
3  *                        Steven J. Hill <[email protected]>
4  *		          Thomas Gleixner <[email protected]>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * Info:
11  *	Contains standard defines and IDs for NAND flash devices
12  *
13  * Changelog:
14  *	See git changelog.
15  */
16 #ifndef __LINUX_MTD_RAWNAND_H
17 #define __LINUX_MTD_RAWNAND_H
18 
19 #include <linux/wait.h>
20 #include <linux/spinlock.h>
21 #include <linux/mtd/mtd.h>
22 #include <linux/mtd/flashchip.h>
23 #include <linux/mtd/bbm.h>
24 
25 struct mtd_info;
26 struct nand_flash_dev;
27 struct device_node;
28 
29 /* Scan and identify a NAND device */
30 int nand_scan(struct mtd_info *mtd, int max_chips);
31 /*
32  * Separate phases of nand_scan(), allowing board driver to intervene
33  * and override command or ECC setup according to flash type.
34  */
35 int nand_scan_ident(struct mtd_info *mtd, int max_chips,
36 			   struct nand_flash_dev *table);
37 int nand_scan_tail(struct mtd_info *mtd);
38 
39 /* Unregister the MTD device and free resources held by the NAND device */
40 void nand_release(struct mtd_info *mtd);
41 
42 /* Internal helper for board drivers which need to override command function */
43 void nand_wait_ready(struct mtd_info *mtd);
44 
45 /* The maximum number of NAND chips in an array */
46 #define NAND_MAX_CHIPS		8
47 
48 /*
49  * Constants for hardware specific CLE/ALE/NCE function
50  *
51  * These are bits which can be or'ed to set/clear multiple
52  * bits in one go.
53  */
54 /* Select the chip by setting nCE to low */
55 #define NAND_NCE		0x01
56 /* Select the command latch by setting CLE to high */
57 #define NAND_CLE		0x02
58 /* Select the address latch by setting ALE to high */
59 #define NAND_ALE		0x04
60 
61 #define NAND_CTRL_CLE		(NAND_NCE | NAND_CLE)
62 #define NAND_CTRL_ALE		(NAND_NCE | NAND_ALE)
63 #define NAND_CTRL_CHANGE	0x80
64 
65 /*
66  * Standard NAND flash commands
67  */
68 #define NAND_CMD_READ0		0
69 #define NAND_CMD_READ1		1
70 #define NAND_CMD_RNDOUT		5
71 #define NAND_CMD_PAGEPROG	0x10
72 #define NAND_CMD_READOOB	0x50
73 #define NAND_CMD_ERASE1		0x60
74 #define NAND_CMD_STATUS		0x70
75 #define NAND_CMD_SEQIN		0x80
76 #define NAND_CMD_RNDIN		0x85
77 #define NAND_CMD_READID		0x90
78 #define NAND_CMD_ERASE2		0xd0
79 #define NAND_CMD_PARAM		0xec
80 #define NAND_CMD_GET_FEATURES	0xee
81 #define NAND_CMD_SET_FEATURES	0xef
82 #define NAND_CMD_RESET		0xff
83 
84 /* Extended commands for large page devices */
85 #define NAND_CMD_READSTART	0x30
86 #define NAND_CMD_RNDOUTSTART	0xE0
87 #define NAND_CMD_CACHEDPROG	0x15
88 
89 #define NAND_CMD_NONE		-1
90 
91 /* Status bits */
92 #define NAND_STATUS_FAIL	0x01
93 #define NAND_STATUS_FAIL_N1	0x02
94 #define NAND_STATUS_TRUE_READY	0x20
95 #define NAND_STATUS_READY	0x40
96 #define NAND_STATUS_WP		0x80
97 
98 #define NAND_DATA_IFACE_CHECK_ONLY	-1
99 
100 /*
101  * Constants for ECC_MODES
102  */
103 typedef enum {
104 	NAND_ECC_NONE,
105 	NAND_ECC_SOFT,
106 	NAND_ECC_HW,
107 	NAND_ECC_HW_SYNDROME,
108 	NAND_ECC_HW_OOB_FIRST,
109 	NAND_ECC_ON_DIE,
110 } nand_ecc_modes_t;
111 
112 enum nand_ecc_algo {
113 	NAND_ECC_UNKNOWN,
114 	NAND_ECC_HAMMING,
115 	NAND_ECC_BCH,
116 };
117 
118 /*
119  * Constants for Hardware ECC
120  */
121 /* Reset Hardware ECC for read */
122 #define NAND_ECC_READ		0
123 /* Reset Hardware ECC for write */
124 #define NAND_ECC_WRITE		1
125 /* Enable Hardware ECC before syndrome is read back from flash */
126 #define NAND_ECC_READSYN	2
127 
128 /*
129  * Enable generic NAND 'page erased' check. This check is only done when
130  * ecc.correct() returns -EBADMSG.
131  * Set this flag if your implementation does not fix bitflips in erased
132  * pages and you want to rely on the default implementation.
133  */
134 #define NAND_ECC_GENERIC_ERASED_CHECK	BIT(0)
135 #define NAND_ECC_MAXIMIZE		BIT(1)
136 
137 /* Bit mask for flags passed to do_nand_read_ecc */
138 #define NAND_GET_DEVICE		0x80
139 
140 
141 /*
142  * Option constants for bizarre disfunctionality and real
143  * features.
144  */
145 /* Buswidth is 16 bit */
146 #define NAND_BUSWIDTH_16	0x00000002
147 /* Chip has cache program function */
148 #define NAND_CACHEPRG		0x00000008
149 /*
150  * Chip requires ready check on read (for auto-incremented sequential read).
151  * True only for small page devices; large page devices do not support
152  * autoincrement.
153  */
154 #define NAND_NEED_READRDY	0x00000100
155 
156 /* Chip does not allow subpage writes */
157 #define NAND_NO_SUBPAGE_WRITE	0x00000200
158 
159 /* Device is one of 'new' xD cards that expose fake nand command set */
160 #define NAND_BROKEN_XD		0x00000400
161 
162 /* Device behaves just like nand, but is readonly */
163 #define NAND_ROM		0x00000800
164 
165 /* Device supports subpage reads */
166 #define NAND_SUBPAGE_READ	0x00001000
167 
168 /*
169  * Some MLC NANDs need data scrambling to limit bitflips caused by repeated
170  * patterns.
171  */
172 #define NAND_NEED_SCRAMBLING	0x00002000
173 
174 /* Device needs 3rd row address cycle */
175 #define NAND_ROW_ADDR_3		0x00004000
176 
177 /* Options valid for Samsung large page devices */
178 #define NAND_SAMSUNG_LP_OPTIONS NAND_CACHEPRG
179 
180 /* Macros to identify the above */
181 #define NAND_HAS_CACHEPROG(chip) ((chip->options & NAND_CACHEPRG))
182 #define NAND_HAS_SUBPAGE_READ(chip) ((chip->options & NAND_SUBPAGE_READ))
183 #define NAND_HAS_SUBPAGE_WRITE(chip) !((chip)->options & NAND_NO_SUBPAGE_WRITE)
184 
185 /* Non chip related options */
186 /* This option skips the bbt scan during initialization. */
187 #define NAND_SKIP_BBTSCAN	0x00010000
188 /* Chip may not exist, so silence any errors in scan */
189 #define NAND_SCAN_SILENT_NODEV	0x00040000
190 /*
191  * Autodetect nand buswidth with readid/onfi.
192  * This suppose the driver will configure the hardware in 8 bits mode
193  * when calling nand_scan_ident, and update its configuration
194  * before calling nand_scan_tail.
195  */
196 #define NAND_BUSWIDTH_AUTO      0x00080000
197 /*
198  * This option could be defined by controller drivers to protect against
199  * kmap'ed, vmalloc'ed highmem buffers being passed from upper layers
200  */
201 #define NAND_USE_BOUNCE_BUFFER	0x00100000
202 
203 /*
204  * In case your controller is implementing ->cmd_ctrl() and is relying on the
205  * default ->cmdfunc() implementation, you may want to let the core handle the
206  * tCCS delay which is required when a column change (RNDIN or RNDOUT) is
207  * requested.
208  * If your controller already takes care of this delay, you don't need to set
209  * this flag.
210  */
211 #define NAND_WAIT_TCCS		0x00200000
212 
213 /* Options set by nand scan */
214 /* Nand scan has allocated controller struct */
215 #define NAND_CONTROLLER_ALLOC	0x80000000
216 
217 /* Cell info constants */
218 #define NAND_CI_CHIPNR_MSK	0x03
219 #define NAND_CI_CELLTYPE_MSK	0x0C
220 #define NAND_CI_CELLTYPE_SHIFT	2
221 
222 /* Keep gcc happy */
223 struct nand_chip;
224 
225 /* ONFI features */
226 #define ONFI_FEATURE_16_BIT_BUS		(1 << 0)
227 #define ONFI_FEATURE_EXT_PARAM_PAGE	(1 << 7)
228 
229 /* ONFI timing mode, used in both asynchronous and synchronous mode */
230 #define ONFI_TIMING_MODE_0		(1 << 0)
231 #define ONFI_TIMING_MODE_1		(1 << 1)
232 #define ONFI_TIMING_MODE_2		(1 << 2)
233 #define ONFI_TIMING_MODE_3		(1 << 3)
234 #define ONFI_TIMING_MODE_4		(1 << 4)
235 #define ONFI_TIMING_MODE_5		(1 << 5)
236 #define ONFI_TIMING_MODE_UNKNOWN	(1 << 6)
237 
238 /* ONFI feature address */
239 #define ONFI_FEATURE_ADDR_TIMING_MODE	0x1
240 
241 /* Vendor-specific feature address (Micron) */
242 #define ONFI_FEATURE_ADDR_READ_RETRY	0x89
243 #define ONFI_FEATURE_ON_DIE_ECC		0x90
244 #define   ONFI_FEATURE_ON_DIE_ECC_EN	BIT(3)
245 
246 /* ONFI subfeature parameters length */
247 #define ONFI_SUBFEATURE_PARAM_LEN	4
248 
249 /* ONFI optional commands SET/GET FEATURES supported? */
250 #define ONFI_OPT_CMD_SET_GET_FEATURES	(1 << 2)
251 
252 struct nand_onfi_params {
253 	/* rev info and features block */
254 	/* 'O' 'N' 'F' 'I'  */
255 	u8 sig[4];
256 	__le16 revision;
257 	__le16 features;
258 	__le16 opt_cmd;
259 	u8 reserved0[2];
260 	__le16 ext_param_page_length; /* since ONFI 2.1 */
261 	u8 num_of_param_pages;        /* since ONFI 2.1 */
262 	u8 reserved1[17];
263 
264 	/* manufacturer information block */
265 	char manufacturer[12];
266 	char model[20];
267 	u8 jedec_id;
268 	__le16 date_code;
269 	u8 reserved2[13];
270 
271 	/* memory organization block */
272 	__le32 byte_per_page;
273 	__le16 spare_bytes_per_page;
274 	__le32 data_bytes_per_ppage;
275 	__le16 spare_bytes_per_ppage;
276 	__le32 pages_per_block;
277 	__le32 blocks_per_lun;
278 	u8 lun_count;
279 	u8 addr_cycles;
280 	u8 bits_per_cell;
281 	__le16 bb_per_lun;
282 	__le16 block_endurance;
283 	u8 guaranteed_good_blocks;
284 	__le16 guaranteed_block_endurance;
285 	u8 programs_per_page;
286 	u8 ppage_attr;
287 	u8 ecc_bits;
288 	u8 interleaved_bits;
289 	u8 interleaved_ops;
290 	u8 reserved3[13];
291 
292 	/* electrical parameter block */
293 	u8 io_pin_capacitance_max;
294 	__le16 async_timing_mode;
295 	__le16 program_cache_timing_mode;
296 	__le16 t_prog;
297 	__le16 t_bers;
298 	__le16 t_r;
299 	__le16 t_ccs;
300 	__le16 src_sync_timing_mode;
301 	u8 src_ssync_features;
302 	__le16 clk_pin_capacitance_typ;
303 	__le16 io_pin_capacitance_typ;
304 	__le16 input_pin_capacitance_typ;
305 	u8 input_pin_capacitance_max;
306 	u8 driver_strength_support;
307 	__le16 t_int_r;
308 	__le16 t_adl;
309 	u8 reserved4[8];
310 
311 	/* vendor */
312 	__le16 vendor_revision;
313 	u8 vendor[88];
314 
315 	__le16 crc;
316 } __packed;
317 
318 #define ONFI_CRC_BASE	0x4F4E
319 
320 /* Extended ECC information Block Definition (since ONFI 2.1) */
321 struct onfi_ext_ecc_info {
322 	u8 ecc_bits;
323 	u8 codeword_size;
324 	__le16 bb_per_lun;
325 	__le16 block_endurance;
326 	u8 reserved[2];
327 } __packed;
328 
329 #define ONFI_SECTION_TYPE_0	0	/* Unused section. */
330 #define ONFI_SECTION_TYPE_1	1	/* for additional sections. */
331 #define ONFI_SECTION_TYPE_2	2	/* for ECC information. */
332 struct onfi_ext_section {
333 	u8 type;
334 	u8 length;
335 } __packed;
336 
337 #define ONFI_EXT_SECTION_MAX 8
338 
339 /* Extended Parameter Page Definition (since ONFI 2.1) */
340 struct onfi_ext_param_page {
341 	__le16 crc;
342 	u8 sig[4];             /* 'E' 'P' 'P' 'S' */
343 	u8 reserved0[10];
344 	struct onfi_ext_section sections[ONFI_EXT_SECTION_MAX];
345 
346 	/*
347 	 * The actual size of the Extended Parameter Page is in
348 	 * @ext_param_page_length of nand_onfi_params{}.
349 	 * The following are the variable length sections.
350 	 * So we do not add any fields below. Please see the ONFI spec.
351 	 */
352 } __packed;
353 
354 struct jedec_ecc_info {
355 	u8 ecc_bits;
356 	u8 codeword_size;
357 	__le16 bb_per_lun;
358 	__le16 block_endurance;
359 	u8 reserved[2];
360 } __packed;
361 
362 /* JEDEC features */
363 #define JEDEC_FEATURE_16_BIT_BUS	(1 << 0)
364 
365 struct nand_jedec_params {
366 	/* rev info and features block */
367 	/* 'J' 'E' 'S' 'D'  */
368 	u8 sig[4];
369 	__le16 revision;
370 	__le16 features;
371 	u8 opt_cmd[3];
372 	__le16 sec_cmd;
373 	u8 num_of_param_pages;
374 	u8 reserved0[18];
375 
376 	/* manufacturer information block */
377 	char manufacturer[12];
378 	char model[20];
379 	u8 jedec_id[6];
380 	u8 reserved1[10];
381 
382 	/* memory organization block */
383 	__le32 byte_per_page;
384 	__le16 spare_bytes_per_page;
385 	u8 reserved2[6];
386 	__le32 pages_per_block;
387 	__le32 blocks_per_lun;
388 	u8 lun_count;
389 	u8 addr_cycles;
390 	u8 bits_per_cell;
391 	u8 programs_per_page;
392 	u8 multi_plane_addr;
393 	u8 multi_plane_op_attr;
394 	u8 reserved3[38];
395 
396 	/* electrical parameter block */
397 	__le16 async_sdr_speed_grade;
398 	__le16 toggle_ddr_speed_grade;
399 	__le16 sync_ddr_speed_grade;
400 	u8 async_sdr_features;
401 	u8 toggle_ddr_features;
402 	u8 sync_ddr_features;
403 	__le16 t_prog;
404 	__le16 t_bers;
405 	__le16 t_r;
406 	__le16 t_r_multi_plane;
407 	__le16 t_ccs;
408 	__le16 io_pin_capacitance_typ;
409 	__le16 input_pin_capacitance_typ;
410 	__le16 clk_pin_capacitance_typ;
411 	u8 driver_strength_support;
412 	__le16 t_adl;
413 	u8 reserved4[36];
414 
415 	/* ECC and endurance block */
416 	u8 guaranteed_good_blocks;
417 	__le16 guaranteed_block_endurance;
418 	struct jedec_ecc_info ecc_info[4];
419 	u8 reserved5[29];
420 
421 	/* reserved */
422 	u8 reserved6[148];
423 
424 	/* vendor */
425 	__le16 vendor_rev_num;
426 	u8 reserved7[88];
427 
428 	/* CRC for Parameter Page */
429 	__le16 crc;
430 } __packed;
431 
432 /* The maximum expected count of bytes in the NAND ID sequence */
433 #define NAND_MAX_ID_LEN 8
434 
435 /**
436  * struct nand_id - NAND id structure
437  * @data: buffer containing the id bytes.
438  * @len: ID length.
439  */
440 struct nand_id {
441 	u8 data[NAND_MAX_ID_LEN];
442 	int len;
443 };
444 
445 /**
446  * struct nand_hw_control - Control structure for hardware controller (e.g ECC generator) shared among independent devices
447  * @lock:               protection lock
448  * @active:		the mtd device which holds the controller currently
449  * @wq:			wait queue to sleep on if a NAND operation is in
450  *			progress used instead of the per chip wait queue
451  *			when a hw controller is available.
452  */
453 struct nand_hw_control {
454 	spinlock_t lock;
455 	struct nand_chip *active;
456 	wait_queue_head_t wq;
457 };
458 
459 static inline void nand_hw_control_init(struct nand_hw_control *nfc)
460 {
461 	nfc->active = NULL;
462 	spin_lock_init(&nfc->lock);
463 	init_waitqueue_head(&nfc->wq);
464 }
465 
466 /**
467  * struct nand_ecc_step_info - ECC step information of ECC engine
468  * @stepsize: data bytes per ECC step
469  * @strengths: array of supported strengths
470  * @nstrengths: number of supported strengths
471  */
472 struct nand_ecc_step_info {
473 	int stepsize;
474 	const int *strengths;
475 	int nstrengths;
476 };
477 
478 /**
479  * struct nand_ecc_caps - capability of ECC engine
480  * @stepinfos: array of ECC step information
481  * @nstepinfos: number of ECC step information
482  * @calc_ecc_bytes: driver's hook to calculate ECC bytes per step
483  */
484 struct nand_ecc_caps {
485 	const struct nand_ecc_step_info *stepinfos;
486 	int nstepinfos;
487 	int (*calc_ecc_bytes)(int step_size, int strength);
488 };
489 
490 /* a shorthand to generate struct nand_ecc_caps with only one ECC stepsize */
491 #define NAND_ECC_CAPS_SINGLE(__name, __calc, __step, ...)	\
492 static const int __name##_strengths[] = { __VA_ARGS__ };	\
493 static const struct nand_ecc_step_info __name##_stepinfo = {	\
494 	.stepsize = __step,					\
495 	.strengths = __name##_strengths,			\
496 	.nstrengths = ARRAY_SIZE(__name##_strengths),		\
497 };								\
498 static const struct nand_ecc_caps __name = {			\
499 	.stepinfos = &__name##_stepinfo,			\
500 	.nstepinfos = 1,					\
501 	.calc_ecc_bytes = __calc,				\
502 }
503 
504 /**
505  * struct nand_ecc_ctrl - Control structure for ECC
506  * @mode:	ECC mode
507  * @algo:	ECC algorithm
508  * @steps:	number of ECC steps per page
509  * @size:	data bytes per ECC step
510  * @bytes:	ECC bytes per step
511  * @strength:	max number of correctible bits per ECC step
512  * @total:	total number of ECC bytes per page
513  * @prepad:	padding information for syndrome based ECC generators
514  * @postpad:	padding information for syndrome based ECC generators
515  * @options:	ECC specific options (see NAND_ECC_XXX flags defined above)
516  * @priv:	pointer to private ECC control data
517  * @calc_buf:	buffer for calculated ECC, size is oobsize.
518  * @code_buf:	buffer for ECC read from flash, size is oobsize.
519  * @hwctl:	function to control hardware ECC generator. Must only
520  *		be provided if an hardware ECC is available
521  * @calculate:	function for ECC calculation or readback from ECC hardware
522  * @correct:	function for ECC correction, matching to ECC generator (sw/hw).
523  *		Should return a positive number representing the number of
524  *		corrected bitflips, -EBADMSG if the number of bitflips exceed
525  *		ECC strength, or any other error code if the error is not
526  *		directly related to correction.
527  *		If -EBADMSG is returned the input buffers should be left
528  *		untouched.
529  * @read_page_raw:	function to read a raw page without ECC. This function
530  *			should hide the specific layout used by the ECC
531  *			controller and always return contiguous in-band and
532  *			out-of-band data even if they're not stored
533  *			contiguously on the NAND chip (e.g.
534  *			NAND_ECC_HW_SYNDROME interleaves in-band and
535  *			out-of-band data).
536  * @write_page_raw:	function to write a raw page without ECC. This function
537  *			should hide the specific layout used by the ECC
538  *			controller and consider the passed data as contiguous
539  *			in-band and out-of-band data. ECC controller is
540  *			responsible for doing the appropriate transformations
541  *			to adapt to its specific layout (e.g.
542  *			NAND_ECC_HW_SYNDROME interleaves in-band and
543  *			out-of-band data).
544  * @read_page:	function to read a page according to the ECC generator
545  *		requirements; returns maximum number of bitflips corrected in
546  *		any single ECC step, -EIO hw error
547  * @read_subpage:	function to read parts of the page covered by ECC;
548  *			returns same as read_page()
549  * @write_subpage:	function to write parts of the page covered by ECC.
550  * @write_page:	function to write a page according to the ECC generator
551  *		requirements.
552  * @write_oob_raw:	function to write chip OOB data without ECC
553  * @read_oob_raw:	function to read chip OOB data without ECC
554  * @read_oob:	function to read chip OOB data
555  * @write_oob:	function to write chip OOB data
556  */
557 struct nand_ecc_ctrl {
558 	nand_ecc_modes_t mode;
559 	enum nand_ecc_algo algo;
560 	int steps;
561 	int size;
562 	int bytes;
563 	int total;
564 	int strength;
565 	int prepad;
566 	int postpad;
567 	unsigned int options;
568 	void *priv;
569 	u8 *calc_buf;
570 	u8 *code_buf;
571 	void (*hwctl)(struct mtd_info *mtd, int mode);
572 	int (*calculate)(struct mtd_info *mtd, const uint8_t *dat,
573 			uint8_t *ecc_code);
574 	int (*correct)(struct mtd_info *mtd, uint8_t *dat, uint8_t *read_ecc,
575 			uint8_t *calc_ecc);
576 	int (*read_page_raw)(struct mtd_info *mtd, struct nand_chip *chip,
577 			uint8_t *buf, int oob_required, int page);
578 	int (*write_page_raw)(struct mtd_info *mtd, struct nand_chip *chip,
579 			const uint8_t *buf, int oob_required, int page);
580 	int (*read_page)(struct mtd_info *mtd, struct nand_chip *chip,
581 			uint8_t *buf, int oob_required, int page);
582 	int (*read_subpage)(struct mtd_info *mtd, struct nand_chip *chip,
583 			uint32_t offs, uint32_t len, uint8_t *buf, int page);
584 	int (*write_subpage)(struct mtd_info *mtd, struct nand_chip *chip,
585 			uint32_t offset, uint32_t data_len,
586 			const uint8_t *data_buf, int oob_required, int page);
587 	int (*write_page)(struct mtd_info *mtd, struct nand_chip *chip,
588 			const uint8_t *buf, int oob_required, int page);
589 	int (*write_oob_raw)(struct mtd_info *mtd, struct nand_chip *chip,
590 			int page);
591 	int (*read_oob_raw)(struct mtd_info *mtd, struct nand_chip *chip,
592 			int page);
593 	int (*read_oob)(struct mtd_info *mtd, struct nand_chip *chip, int page);
594 	int (*write_oob)(struct mtd_info *mtd, struct nand_chip *chip,
595 			int page);
596 };
597 
598 /**
599  * struct nand_sdr_timings - SDR NAND chip timings
600  *
601  * This struct defines the timing requirements of a SDR NAND chip.
602  * These information can be found in every NAND datasheets and the timings
603  * meaning are described in the ONFI specifications:
604  * www.onfi.org/~/media/ONFI/specs/onfi_3_1_spec.pdf (chapter 4.15 Timing
605  * Parameters)
606  *
607  * All these timings are expressed in picoseconds.
608  *
609  * @tBERS_max: Block erase time
610  * @tCCS_min: Change column setup time
611  * @tPROG_max: Page program time
612  * @tR_max: Page read time
613  * @tALH_min: ALE hold time
614  * @tADL_min: ALE to data loading time
615  * @tALS_min: ALE setup time
616  * @tAR_min: ALE to RE# delay
617  * @tCEA_max: CE# access time
618  * @tCEH_min: CE# high hold time
619  * @tCH_min:  CE# hold time
620  * @tCHZ_max: CE# high to output hi-Z
621  * @tCLH_min: CLE hold time
622  * @tCLR_min: CLE to RE# delay
623  * @tCLS_min: CLE setup time
624  * @tCOH_min: CE# high to output hold
625  * @tCS_min: CE# setup time
626  * @tDH_min: Data hold time
627  * @tDS_min: Data setup time
628  * @tFEAT_max: Busy time for Set Features and Get Features
629  * @tIR_min: Output hi-Z to RE# low
630  * @tITC_max: Interface and Timing Mode Change time
631  * @tRC_min: RE# cycle time
632  * @tREA_max: RE# access time
633  * @tREH_min: RE# high hold time
634  * @tRHOH_min: RE# high to output hold
635  * @tRHW_min: RE# high to WE# low
636  * @tRHZ_max: RE# high to output hi-Z
637  * @tRLOH_min: RE# low to output hold
638  * @tRP_min: RE# pulse width
639  * @tRR_min: Ready to RE# low (data only)
640  * @tRST_max: Device reset time, measured from the falling edge of R/B# to the
641  *	      rising edge of R/B#.
642  * @tWB_max: WE# high to SR[6] low
643  * @tWC_min: WE# cycle time
644  * @tWH_min: WE# high hold time
645  * @tWHR_min: WE# high to RE# low
646  * @tWP_min: WE# pulse width
647  * @tWW_min: WP# transition to WE# low
648  */
649 struct nand_sdr_timings {
650 	u64 tBERS_max;
651 	u32 tCCS_min;
652 	u64 tPROG_max;
653 	u64 tR_max;
654 	u32 tALH_min;
655 	u32 tADL_min;
656 	u32 tALS_min;
657 	u32 tAR_min;
658 	u32 tCEA_max;
659 	u32 tCEH_min;
660 	u32 tCH_min;
661 	u32 tCHZ_max;
662 	u32 tCLH_min;
663 	u32 tCLR_min;
664 	u32 tCLS_min;
665 	u32 tCOH_min;
666 	u32 tCS_min;
667 	u32 tDH_min;
668 	u32 tDS_min;
669 	u32 tFEAT_max;
670 	u32 tIR_min;
671 	u32 tITC_max;
672 	u32 tRC_min;
673 	u32 tREA_max;
674 	u32 tREH_min;
675 	u32 tRHOH_min;
676 	u32 tRHW_min;
677 	u32 tRHZ_max;
678 	u32 tRLOH_min;
679 	u32 tRP_min;
680 	u32 tRR_min;
681 	u64 tRST_max;
682 	u32 tWB_max;
683 	u32 tWC_min;
684 	u32 tWH_min;
685 	u32 tWHR_min;
686 	u32 tWP_min;
687 	u32 tWW_min;
688 };
689 
690 /**
691  * enum nand_data_interface_type - NAND interface timing type
692  * @NAND_SDR_IFACE:	Single Data Rate interface
693  */
694 enum nand_data_interface_type {
695 	NAND_SDR_IFACE,
696 };
697 
698 /**
699  * struct nand_data_interface - NAND interface timing
700  * @type:	type of the timing
701  * @timings:	The timing, type according to @type
702  */
703 struct nand_data_interface {
704 	enum nand_data_interface_type type;
705 	union {
706 		struct nand_sdr_timings sdr;
707 	} timings;
708 };
709 
710 /**
711  * nand_get_sdr_timings - get SDR timing from data interface
712  * @conf:	The data interface
713  */
714 static inline const struct nand_sdr_timings *
715 nand_get_sdr_timings(const struct nand_data_interface *conf)
716 {
717 	if (conf->type != NAND_SDR_IFACE)
718 		return ERR_PTR(-EINVAL);
719 
720 	return &conf->timings.sdr;
721 }
722 
723 /**
724  * struct nand_manufacturer_ops - NAND Manufacturer operations
725  * @detect: detect the NAND memory organization and capabilities
726  * @init: initialize all vendor specific fields (like the ->read_retry()
727  *	  implementation) if any.
728  * @cleanup: the ->init() function may have allocated resources, ->cleanup()
729  *	     is here to let vendor specific code release those resources.
730  */
731 struct nand_manufacturer_ops {
732 	void (*detect)(struct nand_chip *chip);
733 	int (*init)(struct nand_chip *chip);
734 	void (*cleanup)(struct nand_chip *chip);
735 };
736 
737 /**
738  * struct nand_op_cmd_instr - Definition of a command instruction
739  * @opcode: the command to issue in one cycle
740  */
741 struct nand_op_cmd_instr {
742 	u8 opcode;
743 };
744 
745 /**
746  * struct nand_op_addr_instr - Definition of an address instruction
747  * @naddrs: length of the @addrs array
748  * @addrs: array containing the address cycles to issue
749  */
750 struct nand_op_addr_instr {
751 	unsigned int naddrs;
752 	const u8 *addrs;
753 };
754 
755 /**
756  * struct nand_op_data_instr - Definition of a data instruction
757  * @len: number of data bytes to move
758  * @in: buffer to fill when reading from the NAND chip
759  * @out: buffer to read from when writing to the NAND chip
760  * @force_8bit: force 8-bit access
761  *
762  * Please note that "in" and "out" are inverted from the ONFI specification
763  * and are from the controller perspective, so a "in" is a read from the NAND
764  * chip while a "out" is a write to the NAND chip.
765  */
766 struct nand_op_data_instr {
767 	unsigned int len;
768 	union {
769 		void *in;
770 		const void *out;
771 	} buf;
772 	bool force_8bit;
773 };
774 
775 /**
776  * struct nand_op_waitrdy_instr - Definition of a wait ready instruction
777  * @timeout_ms: maximum delay while waiting for the ready/busy pin in ms
778  */
779 struct nand_op_waitrdy_instr {
780 	unsigned int timeout_ms;
781 };
782 
783 /**
784  * enum nand_op_instr_type - Definition of all instruction types
785  * @NAND_OP_CMD_INSTR: command instruction
786  * @NAND_OP_ADDR_INSTR: address instruction
787  * @NAND_OP_DATA_IN_INSTR: data in instruction
788  * @NAND_OP_DATA_OUT_INSTR: data out instruction
789  * @NAND_OP_WAITRDY_INSTR: wait ready instruction
790  */
791 enum nand_op_instr_type {
792 	NAND_OP_CMD_INSTR,
793 	NAND_OP_ADDR_INSTR,
794 	NAND_OP_DATA_IN_INSTR,
795 	NAND_OP_DATA_OUT_INSTR,
796 	NAND_OP_WAITRDY_INSTR,
797 };
798 
799 /**
800  * struct nand_op_instr - Instruction object
801  * @type: the instruction type
802  * @cmd/@addr/@data/@waitrdy: extra data associated to the instruction.
803  *                            You'll have to use the appropriate element
804  *                            depending on @type
805  * @delay_ns: delay the controller should apply after the instruction has been
806  *	      issued on the bus. Most modern controllers have internal timings
807  *	      control logic, and in this case, the controller driver can ignore
808  *	      this field.
809  */
810 struct nand_op_instr {
811 	enum nand_op_instr_type type;
812 	union {
813 		struct nand_op_cmd_instr cmd;
814 		struct nand_op_addr_instr addr;
815 		struct nand_op_data_instr data;
816 		struct nand_op_waitrdy_instr waitrdy;
817 	} ctx;
818 	unsigned int delay_ns;
819 };
820 
821 /*
822  * Special handling must be done for the WAITRDY timeout parameter as it usually
823  * is either tPROG (after a prog), tR (before a read), tRST (during a reset) or
824  * tBERS (during an erase) which all of them are u64 values that cannot be
825  * divided by usual kernel macros and must be handled with the special
826  * DIV_ROUND_UP_ULL() macro.
827  */
828 #define __DIVIDE(dividend, divisor) ({					\
829 	sizeof(dividend) == sizeof(u32) ?				\
830 		DIV_ROUND_UP(dividend, divisor) :			\
831 		DIV_ROUND_UP_ULL(dividend, divisor);			\
832 		})
833 #define PSEC_TO_NSEC(x) __DIVIDE(x, 1000)
834 #define PSEC_TO_MSEC(x) __DIVIDE(x, 1000000000)
835 
836 #define NAND_OP_CMD(id, ns)						\
837 	{								\
838 		.type = NAND_OP_CMD_INSTR,				\
839 		.ctx.cmd.opcode = id,					\
840 		.delay_ns = ns,						\
841 	}
842 
843 #define NAND_OP_ADDR(ncycles, cycles, ns)				\
844 	{								\
845 		.type = NAND_OP_ADDR_INSTR,				\
846 		.ctx.addr = {						\
847 			.naddrs = ncycles,				\
848 			.addrs = cycles,				\
849 		},							\
850 		.delay_ns = ns,						\
851 	}
852 
853 #define NAND_OP_DATA_IN(l, b, ns)					\
854 	{								\
855 		.type = NAND_OP_DATA_IN_INSTR,				\
856 		.ctx.data = {						\
857 			.len = l,					\
858 			.buf.in = b,					\
859 			.force_8bit = false,				\
860 		},							\
861 		.delay_ns = ns,						\
862 	}
863 
864 #define NAND_OP_DATA_OUT(l, b, ns)					\
865 	{								\
866 		.type = NAND_OP_DATA_OUT_INSTR,				\
867 		.ctx.data = {						\
868 			.len = l,					\
869 			.buf.out = b,					\
870 			.force_8bit = false,				\
871 		},							\
872 		.delay_ns = ns,						\
873 	}
874 
875 #define NAND_OP_8BIT_DATA_IN(l, b, ns)					\
876 	{								\
877 		.type = NAND_OP_DATA_IN_INSTR,				\
878 		.ctx.data = {						\
879 			.len = l,					\
880 			.buf.in = b,					\
881 			.force_8bit = true,				\
882 		},							\
883 		.delay_ns = ns,						\
884 	}
885 
886 #define NAND_OP_8BIT_DATA_OUT(l, b, ns)					\
887 	{								\
888 		.type = NAND_OP_DATA_OUT_INSTR,				\
889 		.ctx.data = {						\
890 			.len = l,					\
891 			.buf.out = b,					\
892 			.force_8bit = true,				\
893 		},							\
894 		.delay_ns = ns,						\
895 	}
896 
897 #define NAND_OP_WAIT_RDY(tout_ms, ns)					\
898 	{								\
899 		.type = NAND_OP_WAITRDY_INSTR,				\
900 		.ctx.waitrdy.timeout_ms = tout_ms,			\
901 		.delay_ns = ns,						\
902 	}
903 
904 /**
905  * struct nand_subop - a sub operation
906  * @instrs: array of instructions
907  * @ninstrs: length of the @instrs array
908  * @first_instr_start_off: offset to start from for the first instruction
909  *			   of the sub-operation
910  * @last_instr_end_off: offset to end at (excluded) for the last instruction
911  *			of the sub-operation
912  *
913  * Both @first_instr_start_off and @last_instr_end_off only apply to data or
914  * address instructions.
915  *
916  * When an operation cannot be handled as is by the NAND controller, it will
917  * be split by the parser into sub-operations which will be passed to the
918  * controller driver.
919  */
920 struct nand_subop {
921 	const struct nand_op_instr *instrs;
922 	unsigned int ninstrs;
923 	unsigned int first_instr_start_off;
924 	unsigned int last_instr_end_off;
925 };
926 
927 int nand_subop_get_addr_start_off(const struct nand_subop *subop,
928 				  unsigned int op_id);
929 int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
930 				unsigned int op_id);
931 int nand_subop_get_data_start_off(const struct nand_subop *subop,
932 				  unsigned int op_id);
933 int nand_subop_get_data_len(const struct nand_subop *subop,
934 			    unsigned int op_id);
935 
936 /**
937  * struct nand_op_parser_addr_constraints - Constraints for address instructions
938  * @maxcycles: maximum number of address cycles the controller can issue in a
939  *	       single step
940  */
941 struct nand_op_parser_addr_constraints {
942 	unsigned int maxcycles;
943 };
944 
945 /**
946  * struct nand_op_parser_data_constraints - Constraints for data instructions
947  * @maxlen: maximum data length that the controller can handle in a single step
948  */
949 struct nand_op_parser_data_constraints {
950 	unsigned int maxlen;
951 };
952 
953 /**
954  * struct nand_op_parser_pattern_elem - One element of a pattern
955  * @type: the instructuction type
956  * @optional: whether this element of the pattern is optional or mandatory
957  * @addr/@data: address or data constraint (number of cycles or data length)
958  */
959 struct nand_op_parser_pattern_elem {
960 	enum nand_op_instr_type type;
961 	bool optional;
962 	union {
963 		struct nand_op_parser_addr_constraints addr;
964 		struct nand_op_parser_data_constraints data;
965 	} ctx;
966 };
967 
968 #define NAND_OP_PARSER_PAT_CMD_ELEM(_opt)			\
969 	{							\
970 		.type = NAND_OP_CMD_INSTR,			\
971 		.optional = _opt,				\
972 	}
973 
974 #define NAND_OP_PARSER_PAT_ADDR_ELEM(_opt, _maxcycles)		\
975 	{							\
976 		.type = NAND_OP_ADDR_INSTR,			\
977 		.optional = _opt,				\
978 		.ctx.addr.maxcycles = _maxcycles,		\
979 	}
980 
981 #define NAND_OP_PARSER_PAT_DATA_IN_ELEM(_opt, _maxlen)		\
982 	{							\
983 		.type = NAND_OP_DATA_IN_INSTR,			\
984 		.optional = _opt,				\
985 		.ctx.data.maxlen = _maxlen,			\
986 	}
987 
988 #define NAND_OP_PARSER_PAT_DATA_OUT_ELEM(_opt, _maxlen)		\
989 	{							\
990 		.type = NAND_OP_DATA_OUT_INSTR,			\
991 		.optional = _opt,				\
992 		.ctx.data.maxlen = _maxlen,			\
993 	}
994 
995 #define NAND_OP_PARSER_PAT_WAITRDY_ELEM(_opt)			\
996 	{							\
997 		.type = NAND_OP_WAITRDY_INSTR,			\
998 		.optional = _opt,				\
999 	}
1000 
1001 /**
1002  * struct nand_op_parser_pattern - NAND sub-operation pattern descriptor
1003  * @elems: array of pattern elements
1004  * @nelems: number of pattern elements in @elems array
1005  * @exec: the function that will issue a sub-operation
1006  *
1007  * A pattern is a list of elements, each element reprensenting one instruction
1008  * with its constraints. The pattern itself is used by the core to match NAND
1009  * chip operation with NAND controller operations.
1010  * Once a match between a NAND controller operation pattern and a NAND chip
1011  * operation (or a sub-set of a NAND operation) is found, the pattern ->exec()
1012  * hook is called so that the controller driver can issue the operation on the
1013  * bus.
1014  *
1015  * Controller drivers should declare as many patterns as they support and pass
1016  * this list of patterns (created with the help of the following macro) to
1017  * the nand_op_parser_exec_op() helper.
1018  */
1019 struct nand_op_parser_pattern {
1020 	const struct nand_op_parser_pattern_elem *elems;
1021 	unsigned int nelems;
1022 	int (*exec)(struct nand_chip *chip, const struct nand_subop *subop);
1023 };
1024 
1025 #define NAND_OP_PARSER_PATTERN(_exec, ...)							\
1026 	{											\
1027 		.exec = _exec,									\
1028 		.elems = (struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ },		\
1029 		.nelems = sizeof((struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }) /	\
1030 			  sizeof(struct nand_op_parser_pattern_elem),				\
1031 	}
1032 
1033 /**
1034  * struct nand_op_parser - NAND controller operation parser descriptor
1035  * @patterns: array of supported patterns
1036  * @npatterns: length of the @patterns array
1037  *
1038  * The parser descriptor is just an array of supported patterns which will be
1039  * iterated by nand_op_parser_exec_op() everytime it tries to execute an
1040  * NAND operation (or tries to determine if a specific operation is supported).
1041  *
1042  * It is worth mentioning that patterns will be tested in their declaration
1043  * order, and the first match will be taken, so it's important to order patterns
1044  * appropriately so that simple/inefficient patterns are placed at the end of
1045  * the list. Usually, this is where you put single instruction patterns.
1046  */
1047 struct nand_op_parser {
1048 	const struct nand_op_parser_pattern *patterns;
1049 	unsigned int npatterns;
1050 };
1051 
1052 #define NAND_OP_PARSER(...)									\
1053 	{											\
1054 		.patterns = (struct nand_op_parser_pattern[]) { __VA_ARGS__ },			\
1055 		.npatterns = sizeof((struct nand_op_parser_pattern[]) { __VA_ARGS__ }) /	\
1056 			     sizeof(struct nand_op_parser_pattern),				\
1057 	}
1058 
1059 /**
1060  * struct nand_operation - NAND operation descriptor
1061  * @instrs: array of instructions to execute
1062  * @ninstrs: length of the @instrs array
1063  *
1064  * The actual operation structure that will be passed to chip->exec_op().
1065  */
1066 struct nand_operation {
1067 	const struct nand_op_instr *instrs;
1068 	unsigned int ninstrs;
1069 };
1070 
1071 #define NAND_OPERATION(_instrs)					\
1072 	{							\
1073 		.instrs = _instrs,				\
1074 		.ninstrs = ARRAY_SIZE(_instrs),			\
1075 	}
1076 
1077 int nand_op_parser_exec_op(struct nand_chip *chip,
1078 			   const struct nand_op_parser *parser,
1079 			   const struct nand_operation *op, bool check_only);
1080 
1081 /**
1082  * struct nand_chip - NAND Private Flash Chip Data
1083  * @mtd:		MTD device registered to the MTD framework
1084  * @IO_ADDR_R:		[BOARDSPECIFIC] address to read the 8 I/O lines of the
1085  *			flash device
1086  * @IO_ADDR_W:		[BOARDSPECIFIC] address to write the 8 I/O lines of the
1087  *			flash device.
1088  * @read_byte:		[REPLACEABLE] read one byte from the chip
1089  * @read_word:		[REPLACEABLE] read one word from the chip
1090  * @write_byte:		[REPLACEABLE] write a single byte to the chip on the
1091  *			low 8 I/O lines
1092  * @write_buf:		[REPLACEABLE] write data from the buffer to the chip
1093  * @read_buf:		[REPLACEABLE] read data from the chip into the buffer
1094  * @select_chip:	[REPLACEABLE] select chip nr
1095  * @block_bad:		[REPLACEABLE] check if a block is bad, using OOB markers
1096  * @block_markbad:	[REPLACEABLE] mark a block bad
1097  * @cmd_ctrl:		[BOARDSPECIFIC] hardwarespecific function for controlling
1098  *			ALE/CLE/nCE. Also used to write command and address
1099  * @dev_ready:		[BOARDSPECIFIC] hardwarespecific function for accessing
1100  *			device ready/busy line. If set to NULL no access to
1101  *			ready/busy is available and the ready/busy information
1102  *			is read from the chip status register.
1103  * @cmdfunc:		[REPLACEABLE] hardwarespecific function for writing
1104  *			commands to the chip.
1105  * @waitfunc:		[REPLACEABLE] hardwarespecific function for wait on
1106  *			ready.
1107  * @exec_op:		controller specific method to execute NAND operations.
1108  *			This method replaces ->cmdfunc(),
1109  *			->{read,write}_{buf,byte,word}(), ->dev_ready() and
1110  *			->waifunc().
1111  * @setup_read_retry:	[FLASHSPECIFIC] flash (vendor) specific function for
1112  *			setting the read-retry mode. Mostly needed for MLC NAND.
1113  * @ecc:		[BOARDSPECIFIC] ECC control structure
1114  * @buf_align:		minimum buffer alignment required by a platform
1115  * @hwcontrol:		platform-specific hardware control structure
1116  * @erase:		[REPLACEABLE] erase function
1117  * @scan_bbt:		[REPLACEABLE] function to scan bad block table
1118  * @chip_delay:		[BOARDSPECIFIC] chip dependent delay for transferring
1119  *			data from array to read regs (tR).
1120  * @state:		[INTERN] the current state of the NAND device
1121  * @oob_poi:		"poison value buffer," used for laying out OOB data
1122  *			before writing
1123  * @page_shift:		[INTERN] number of address bits in a page (column
1124  *			address bits).
1125  * @phys_erase_shift:	[INTERN] number of address bits in a physical eraseblock
1126  * @bbt_erase_shift:	[INTERN] number of address bits in a bbt entry
1127  * @chip_shift:		[INTERN] number of address bits in one chip
1128  * @options:		[BOARDSPECIFIC] various chip options. They can partly
1129  *			be set to inform nand_scan about special functionality.
1130  *			See the defines for further explanation.
1131  * @bbt_options:	[INTERN] bad block specific options. All options used
1132  *			here must come from bbm.h. By default, these options
1133  *			will be copied to the appropriate nand_bbt_descr's.
1134  * @badblockpos:	[INTERN] position of the bad block marker in the oob
1135  *			area.
1136  * @badblockbits:	[INTERN] minimum number of set bits in a good block's
1137  *			bad block marker position; i.e., BBM == 11110111b is
1138  *			not bad when badblockbits == 7
1139  * @bits_per_cell:	[INTERN] number of bits per cell. i.e., 1 means SLC.
1140  * @ecc_strength_ds:	[INTERN] ECC correctability from the datasheet.
1141  *			Minimum amount of bit errors per @ecc_step_ds guaranteed
1142  *			to be correctable. If unknown, set to zero.
1143  * @ecc_step_ds:	[INTERN] ECC step required by the @ecc_strength_ds,
1144  *			also from the datasheet. It is the recommended ECC step
1145  *			size, if known; if unknown, set to zero.
1146  * @onfi_timing_mode_default: [INTERN] default ONFI timing mode. This field is
1147  *			      set to the actually used ONFI mode if the chip is
1148  *			      ONFI compliant or deduced from the datasheet if
1149  *			      the NAND chip is not ONFI compliant.
1150  * @numchips:		[INTERN] number of physical chips
1151  * @chipsize:		[INTERN] the size of one chip for multichip arrays
1152  * @pagemask:		[INTERN] page number mask = number of (pages / chip) - 1
1153  * @data_buf:		[INTERN] buffer for data, size is (page size + oobsize).
1154  * @pagebuf:		[INTERN] holds the pagenumber which is currently in
1155  *			data_buf.
1156  * @pagebuf_bitflips:	[INTERN] holds the bitflip count for the page which is
1157  *			currently in data_buf.
1158  * @subpagesize:	[INTERN] holds the subpagesize
1159  * @id:			[INTERN] holds NAND ID
1160  * @onfi_version:	[INTERN] holds the chip ONFI version (BCD encoded),
1161  *			non 0 if ONFI supported.
1162  * @jedec_version:	[INTERN] holds the chip JEDEC version (BCD encoded),
1163  *			non 0 if JEDEC supported.
1164  * @onfi_params:	[INTERN] holds the ONFI page parameter when ONFI is
1165  *			supported, 0 otherwise.
1166  * @jedec_params:	[INTERN] holds the JEDEC parameter page when JEDEC is
1167  *			supported, 0 otherwise.
1168  * @max_bb_per_die:	[INTERN] the max number of bad blocks each die of a
1169  *			this nand device will encounter their life times.
1170  * @blocks_per_die:	[INTERN] The number of PEBs in a die
1171  * @data_interface:	[INTERN] NAND interface timing information
1172  * @read_retries:	[INTERN] the number of read retry modes supported
1173  * @onfi_set_features:	[REPLACEABLE] set the features for ONFI nand
1174  * @onfi_get_features:	[REPLACEABLE] get the features for ONFI nand
1175  * @setup_data_interface: [OPTIONAL] setup the data interface and timing. If
1176  *			  chipnr is set to %NAND_DATA_IFACE_CHECK_ONLY this
1177  *			  means the configuration should not be applied but
1178  *			  only checked.
1179  * @bbt:		[INTERN] bad block table pointer
1180  * @bbt_td:		[REPLACEABLE] bad block table descriptor for flash
1181  *			lookup.
1182  * @bbt_md:		[REPLACEABLE] bad block table mirror descriptor
1183  * @badblock_pattern:	[REPLACEABLE] bad block scan pattern used for initial
1184  *			bad block scan.
1185  * @controller:		[REPLACEABLE] a pointer to a hardware controller
1186  *			structure which is shared among multiple independent
1187  *			devices.
1188  * @priv:		[OPTIONAL] pointer to private chip data
1189  * @manufacturer:	[INTERN] Contains manufacturer information
1190  */
1191 
1192 struct nand_chip {
1193 	struct mtd_info mtd;
1194 	void __iomem *IO_ADDR_R;
1195 	void __iomem *IO_ADDR_W;
1196 
1197 	uint8_t (*read_byte)(struct mtd_info *mtd);
1198 	u16 (*read_word)(struct mtd_info *mtd);
1199 	void (*write_byte)(struct mtd_info *mtd, uint8_t byte);
1200 	void (*write_buf)(struct mtd_info *mtd, const uint8_t *buf, int len);
1201 	void (*read_buf)(struct mtd_info *mtd, uint8_t *buf, int len);
1202 	void (*select_chip)(struct mtd_info *mtd, int chip);
1203 	int (*block_bad)(struct mtd_info *mtd, loff_t ofs);
1204 	int (*block_markbad)(struct mtd_info *mtd, loff_t ofs);
1205 	void (*cmd_ctrl)(struct mtd_info *mtd, int dat, unsigned int ctrl);
1206 	int (*dev_ready)(struct mtd_info *mtd);
1207 	void (*cmdfunc)(struct mtd_info *mtd, unsigned command, int column,
1208 			int page_addr);
1209 	int(*waitfunc)(struct mtd_info *mtd, struct nand_chip *this);
1210 	int (*exec_op)(struct nand_chip *chip,
1211 		       const struct nand_operation *op,
1212 		       bool check_only);
1213 	int (*erase)(struct mtd_info *mtd, int page);
1214 	int (*scan_bbt)(struct mtd_info *mtd);
1215 	int (*onfi_set_features)(struct mtd_info *mtd, struct nand_chip *chip,
1216 			int feature_addr, uint8_t *subfeature_para);
1217 	int (*onfi_get_features)(struct mtd_info *mtd, struct nand_chip *chip,
1218 			int feature_addr, uint8_t *subfeature_para);
1219 	int (*setup_read_retry)(struct mtd_info *mtd, int retry_mode);
1220 	int (*setup_data_interface)(struct mtd_info *mtd, int chipnr,
1221 				    const struct nand_data_interface *conf);
1222 
1223 	int chip_delay;
1224 	unsigned int options;
1225 	unsigned int bbt_options;
1226 
1227 	int page_shift;
1228 	int phys_erase_shift;
1229 	int bbt_erase_shift;
1230 	int chip_shift;
1231 	int numchips;
1232 	uint64_t chipsize;
1233 	int pagemask;
1234 	u8 *data_buf;
1235 	int pagebuf;
1236 	unsigned int pagebuf_bitflips;
1237 	int subpagesize;
1238 	uint8_t bits_per_cell;
1239 	uint16_t ecc_strength_ds;
1240 	uint16_t ecc_step_ds;
1241 	int onfi_timing_mode_default;
1242 	int badblockpos;
1243 	int badblockbits;
1244 
1245 	struct nand_id id;
1246 	int onfi_version;
1247 	int jedec_version;
1248 	union {
1249 		struct nand_onfi_params	onfi_params;
1250 		struct nand_jedec_params jedec_params;
1251 	};
1252 	u16 max_bb_per_die;
1253 	u32 blocks_per_die;
1254 
1255 	struct nand_data_interface data_interface;
1256 
1257 	int read_retries;
1258 
1259 	flstate_t state;
1260 
1261 	uint8_t *oob_poi;
1262 	struct nand_hw_control *controller;
1263 
1264 	struct nand_ecc_ctrl ecc;
1265 	unsigned long buf_align;
1266 	struct nand_hw_control hwcontrol;
1267 
1268 	uint8_t *bbt;
1269 	struct nand_bbt_descr *bbt_td;
1270 	struct nand_bbt_descr *bbt_md;
1271 
1272 	struct nand_bbt_descr *badblock_pattern;
1273 
1274 	void *priv;
1275 
1276 	struct {
1277 		const struct nand_manufacturer *desc;
1278 		void *priv;
1279 	} manufacturer;
1280 };
1281 
1282 static inline int nand_exec_op(struct nand_chip *chip,
1283 			       const struct nand_operation *op)
1284 {
1285 	if (!chip->exec_op)
1286 		return -ENOTSUPP;
1287 
1288 	return chip->exec_op(chip, op, false);
1289 }
1290 
1291 extern const struct mtd_ooblayout_ops nand_ooblayout_sp_ops;
1292 extern const struct mtd_ooblayout_ops nand_ooblayout_lp_ops;
1293 
1294 static inline void nand_set_flash_node(struct nand_chip *chip,
1295 				       struct device_node *np)
1296 {
1297 	mtd_set_of_node(&chip->mtd, np);
1298 }
1299 
1300 static inline struct device_node *nand_get_flash_node(struct nand_chip *chip)
1301 {
1302 	return mtd_get_of_node(&chip->mtd);
1303 }
1304 
1305 static inline struct nand_chip *mtd_to_nand(struct mtd_info *mtd)
1306 {
1307 	return container_of(mtd, struct nand_chip, mtd);
1308 }
1309 
1310 static inline struct mtd_info *nand_to_mtd(struct nand_chip *chip)
1311 {
1312 	return &chip->mtd;
1313 }
1314 
1315 static inline void *nand_get_controller_data(struct nand_chip *chip)
1316 {
1317 	return chip->priv;
1318 }
1319 
1320 static inline void nand_set_controller_data(struct nand_chip *chip, void *priv)
1321 {
1322 	chip->priv = priv;
1323 }
1324 
1325 static inline void nand_set_manufacturer_data(struct nand_chip *chip,
1326 					      void *priv)
1327 {
1328 	chip->manufacturer.priv = priv;
1329 }
1330 
1331 static inline void *nand_get_manufacturer_data(struct nand_chip *chip)
1332 {
1333 	return chip->manufacturer.priv;
1334 }
1335 
1336 /*
1337  * NAND Flash Manufacturer ID Codes
1338  */
1339 #define NAND_MFR_TOSHIBA	0x98
1340 #define NAND_MFR_ESMT		0xc8
1341 #define NAND_MFR_SAMSUNG	0xec
1342 #define NAND_MFR_FUJITSU	0x04
1343 #define NAND_MFR_NATIONAL	0x8f
1344 #define NAND_MFR_RENESAS	0x07
1345 #define NAND_MFR_STMICRO	0x20
1346 #define NAND_MFR_HYNIX		0xad
1347 #define NAND_MFR_MICRON		0x2c
1348 #define NAND_MFR_AMD		0x01
1349 #define NAND_MFR_MACRONIX	0xc2
1350 #define NAND_MFR_EON		0x92
1351 #define NAND_MFR_SANDISK	0x45
1352 #define NAND_MFR_INTEL		0x89
1353 #define NAND_MFR_ATO		0x9b
1354 #define NAND_MFR_WINBOND	0xef
1355 
1356 
1357 /*
1358  * A helper for defining older NAND chips where the second ID byte fully
1359  * defined the chip, including the geometry (chip size, eraseblock size, page
1360  * size). All these chips have 512 bytes NAND page size.
1361  */
1362 #define LEGACY_ID_NAND(nm, devid, chipsz, erasesz, opts)          \
1363 	{ .name = (nm), {{ .dev_id = (devid) }}, .pagesize = 512, \
1364 	  .chipsize = (chipsz), .erasesize = (erasesz), .options = (opts) }
1365 
1366 /*
1367  * A helper for defining newer chips which report their page size and
1368  * eraseblock size via the extended ID bytes.
1369  *
1370  * The real difference between LEGACY_ID_NAND and EXTENDED_ID_NAND is that with
1371  * EXTENDED_ID_NAND, manufacturers overloaded the same device ID so that the
1372  * device ID now only represented a particular total chip size (and voltage,
1373  * buswidth), and the page size, eraseblock size, and OOB size could vary while
1374  * using the same device ID.
1375  */
1376 #define EXTENDED_ID_NAND(nm, devid, chipsz, opts)                      \
1377 	{ .name = (nm), {{ .dev_id = (devid) }}, .chipsize = (chipsz), \
1378 	  .options = (opts) }
1379 
1380 #define NAND_ECC_INFO(_strength, _step)	\
1381 			{ .strength_ds = (_strength), .step_ds = (_step) }
1382 #define NAND_ECC_STRENGTH(type)		((type)->ecc.strength_ds)
1383 #define NAND_ECC_STEP(type)		((type)->ecc.step_ds)
1384 
1385 /**
1386  * struct nand_flash_dev - NAND Flash Device ID Structure
1387  * @name: a human-readable name of the NAND chip
1388  * @dev_id: the device ID (the second byte of the full chip ID array)
1389  * @mfr_id: manufecturer ID part of the full chip ID array (refers the same
1390  *          memory address as @id[0])
1391  * @dev_id: device ID part of the full chip ID array (refers the same memory
1392  *          address as @id[1])
1393  * @id: full device ID array
1394  * @pagesize: size of the NAND page in bytes; if 0, then the real page size (as
1395  *            well as the eraseblock size) is determined from the extended NAND
1396  *            chip ID array)
1397  * @chipsize: total chip size in MiB
1398  * @erasesize: eraseblock size in bytes (determined from the extended ID if 0)
1399  * @options: stores various chip bit options
1400  * @id_len: The valid length of the @id.
1401  * @oobsize: OOB size
1402  * @ecc: ECC correctability and step information from the datasheet.
1403  * @ecc.strength_ds: The ECC correctability from the datasheet, same as the
1404  *                   @ecc_strength_ds in nand_chip{}.
1405  * @ecc.step_ds: The ECC step required by the @ecc.strength_ds, same as the
1406  *               @ecc_step_ds in nand_chip{}, also from the datasheet.
1407  *               For example, the "4bit ECC for each 512Byte" can be set with
1408  *               NAND_ECC_INFO(4, 512).
1409  * @onfi_timing_mode_default: the default ONFI timing mode entered after a NAND
1410  *			      reset. Should be deduced from timings described
1411  *			      in the datasheet.
1412  *
1413  */
1414 struct nand_flash_dev {
1415 	char *name;
1416 	union {
1417 		struct {
1418 			uint8_t mfr_id;
1419 			uint8_t dev_id;
1420 		};
1421 		uint8_t id[NAND_MAX_ID_LEN];
1422 	};
1423 	unsigned int pagesize;
1424 	unsigned int chipsize;
1425 	unsigned int erasesize;
1426 	unsigned int options;
1427 	uint16_t id_len;
1428 	uint16_t oobsize;
1429 	struct {
1430 		uint16_t strength_ds;
1431 		uint16_t step_ds;
1432 	} ecc;
1433 	int onfi_timing_mode_default;
1434 };
1435 
1436 /**
1437  * struct nand_manufacturer - NAND Flash Manufacturer structure
1438  * @name:	Manufacturer name
1439  * @id:		manufacturer ID code of device.
1440  * @ops:	manufacturer operations
1441 */
1442 struct nand_manufacturer {
1443 	int id;
1444 	char *name;
1445 	const struct nand_manufacturer_ops *ops;
1446 };
1447 
1448 const struct nand_manufacturer *nand_get_manufacturer(u8 id);
1449 
1450 static inline const char *
1451 nand_manufacturer_name(const struct nand_manufacturer *manufacturer)
1452 {
1453 	return manufacturer ? manufacturer->name : "Unknown";
1454 }
1455 
1456 extern struct nand_flash_dev nand_flash_ids[];
1457 
1458 extern const struct nand_manufacturer_ops toshiba_nand_manuf_ops;
1459 extern const struct nand_manufacturer_ops samsung_nand_manuf_ops;
1460 extern const struct nand_manufacturer_ops hynix_nand_manuf_ops;
1461 extern const struct nand_manufacturer_ops micron_nand_manuf_ops;
1462 extern const struct nand_manufacturer_ops amd_nand_manuf_ops;
1463 extern const struct nand_manufacturer_ops macronix_nand_manuf_ops;
1464 
1465 int nand_default_bbt(struct mtd_info *mtd);
1466 int nand_markbad_bbt(struct mtd_info *mtd, loff_t offs);
1467 int nand_isreserved_bbt(struct mtd_info *mtd, loff_t offs);
1468 int nand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt);
1469 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
1470 		    int allowbbt);
1471 int nand_do_read(struct mtd_info *mtd, loff_t from, size_t len,
1472 		 size_t *retlen, uint8_t *buf);
1473 
1474 /**
1475  * struct platform_nand_chip - chip level device structure
1476  * @nr_chips:		max. number of chips to scan for
1477  * @chip_offset:	chip number offset
1478  * @nr_partitions:	number of partitions pointed to by partitions (or zero)
1479  * @partitions:		mtd partition list
1480  * @chip_delay:		R/B delay value in us
1481  * @options:		Option flags, e.g. 16bit buswidth
1482  * @bbt_options:	BBT option flags, e.g. NAND_BBT_USE_FLASH
1483  * @part_probe_types:	NULL-terminated array of probe types
1484  */
1485 struct platform_nand_chip {
1486 	int nr_chips;
1487 	int chip_offset;
1488 	int nr_partitions;
1489 	struct mtd_partition *partitions;
1490 	int chip_delay;
1491 	unsigned int options;
1492 	unsigned int bbt_options;
1493 	const char **part_probe_types;
1494 };
1495 
1496 /* Keep gcc happy */
1497 struct platform_device;
1498 
1499 /**
1500  * struct platform_nand_ctrl - controller level device structure
1501  * @probe:		platform specific function to probe/setup hardware
1502  * @remove:		platform specific function to remove/teardown hardware
1503  * @hwcontrol:		platform specific hardware control structure
1504  * @dev_ready:		platform specific function to read ready/busy pin
1505  * @select_chip:	platform specific chip select function
1506  * @cmd_ctrl:		platform specific function for controlling
1507  *			ALE/CLE/nCE. Also used to write command and address
1508  * @write_buf:		platform specific function for write buffer
1509  * @read_buf:		platform specific function for read buffer
1510  * @read_byte:		platform specific function to read one byte from chip
1511  * @priv:		private data to transport driver specific settings
1512  *
1513  * All fields are optional and depend on the hardware driver requirements
1514  */
1515 struct platform_nand_ctrl {
1516 	int (*probe)(struct platform_device *pdev);
1517 	void (*remove)(struct platform_device *pdev);
1518 	void (*hwcontrol)(struct mtd_info *mtd, int cmd);
1519 	int (*dev_ready)(struct mtd_info *mtd);
1520 	void (*select_chip)(struct mtd_info *mtd, int chip);
1521 	void (*cmd_ctrl)(struct mtd_info *mtd, int dat, unsigned int ctrl);
1522 	void (*write_buf)(struct mtd_info *mtd, const uint8_t *buf, int len);
1523 	void (*read_buf)(struct mtd_info *mtd, uint8_t *buf, int len);
1524 	unsigned char (*read_byte)(struct mtd_info *mtd);
1525 	void *priv;
1526 };
1527 
1528 /**
1529  * struct platform_nand_data - container structure for platform-specific data
1530  * @chip:		chip level chip structure
1531  * @ctrl:		controller level device structure
1532  */
1533 struct platform_nand_data {
1534 	struct platform_nand_chip chip;
1535 	struct platform_nand_ctrl ctrl;
1536 };
1537 
1538 /* return the supported features. */
1539 static inline int onfi_feature(struct nand_chip *chip)
1540 {
1541 	return chip->onfi_version ? le16_to_cpu(chip->onfi_params.features) : 0;
1542 }
1543 
1544 /* return the supported asynchronous timing mode. */
1545 static inline int onfi_get_async_timing_mode(struct nand_chip *chip)
1546 {
1547 	if (!chip->onfi_version)
1548 		return ONFI_TIMING_MODE_UNKNOWN;
1549 	return le16_to_cpu(chip->onfi_params.async_timing_mode);
1550 }
1551 
1552 /* return the supported synchronous timing mode. */
1553 static inline int onfi_get_sync_timing_mode(struct nand_chip *chip)
1554 {
1555 	if (!chip->onfi_version)
1556 		return ONFI_TIMING_MODE_UNKNOWN;
1557 	return le16_to_cpu(chip->onfi_params.src_sync_timing_mode);
1558 }
1559 
1560 int onfi_fill_data_interface(struct nand_chip *chip,
1561 			     enum nand_data_interface_type type,
1562 			     int timing_mode);
1563 
1564 /*
1565  * Check if it is a SLC nand.
1566  * The !nand_is_slc() can be used to check the MLC/TLC nand chips.
1567  * We do not distinguish the MLC and TLC now.
1568  */
1569 static inline bool nand_is_slc(struct nand_chip *chip)
1570 {
1571 	WARN(chip->bits_per_cell == 0,
1572 	     "chip->bits_per_cell is used uninitialized\n");
1573 	return chip->bits_per_cell == 1;
1574 }
1575 
1576 /**
1577  * Check if the opcode's address should be sent only on the lower 8 bits
1578  * @command: opcode to check
1579  */
1580 static inline int nand_opcode_8bits(unsigned int command)
1581 {
1582 	switch (command) {
1583 	case NAND_CMD_READID:
1584 	case NAND_CMD_PARAM:
1585 	case NAND_CMD_GET_FEATURES:
1586 	case NAND_CMD_SET_FEATURES:
1587 		return 1;
1588 	default:
1589 		break;
1590 	}
1591 	return 0;
1592 }
1593 
1594 /* return the supported JEDEC features. */
1595 static inline int jedec_feature(struct nand_chip *chip)
1596 {
1597 	return chip->jedec_version ? le16_to_cpu(chip->jedec_params.features)
1598 		: 0;
1599 }
1600 
1601 /* get timing characteristics from ONFI timing mode. */
1602 const struct nand_sdr_timings *onfi_async_timing_mode_to_sdr_timings(int mode);
1603 
1604 int nand_check_erased_ecc_chunk(void *data, int datalen,
1605 				void *ecc, int ecclen,
1606 				void *extraoob, int extraooblen,
1607 				int threshold);
1608 
1609 int nand_check_ecc_caps(struct nand_chip *chip,
1610 			const struct nand_ecc_caps *caps, int oobavail);
1611 
1612 int nand_match_ecc_req(struct nand_chip *chip,
1613 		       const struct nand_ecc_caps *caps,  int oobavail);
1614 
1615 int nand_maximize_ecc(struct nand_chip *chip,
1616 		      const struct nand_ecc_caps *caps, int oobavail);
1617 
1618 /* Default write_oob implementation */
1619 int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page);
1620 
1621 /* Default write_oob syndrome implementation */
1622 int nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1623 			    int page);
1624 
1625 /* Default read_oob implementation */
1626 int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page);
1627 
1628 /* Default read_oob syndrome implementation */
1629 int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1630 			   int page);
1631 
1632 /* Stub used by drivers that do not support GET/SET FEATURES operations */
1633 int nand_onfi_get_set_features_notsupp(struct mtd_info *mtd,
1634 				       struct nand_chip *chip, int addr,
1635 				       u8 *subfeature_param);
1636 
1637 /* Default read_page_raw implementation */
1638 int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1639 		       uint8_t *buf, int oob_required, int page);
1640 
1641 /* Default write_page_raw implementation */
1642 int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1643 			const uint8_t *buf, int oob_required, int page);
1644 
1645 /* Reset and initialize a NAND device */
1646 int nand_reset(struct nand_chip *chip, int chipnr);
1647 
1648 /* NAND operation helpers */
1649 int nand_reset_op(struct nand_chip *chip);
1650 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1651 		   unsigned int len);
1652 int nand_status_op(struct nand_chip *chip, u8 *status);
1653 int nand_exit_status_op(struct nand_chip *chip);
1654 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock);
1655 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1656 		      unsigned int offset_in_page, void *buf, unsigned int len);
1657 int nand_change_read_column_op(struct nand_chip *chip,
1658 			       unsigned int offset_in_page, void *buf,
1659 			       unsigned int len, bool force_8bit);
1660 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1661 		     unsigned int offset_in_page, void *buf, unsigned int len);
1662 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1663 			    unsigned int offset_in_page, const void *buf,
1664 			    unsigned int len);
1665 int nand_prog_page_end_op(struct nand_chip *chip);
1666 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1667 		      unsigned int offset_in_page, const void *buf,
1668 		      unsigned int len);
1669 int nand_change_write_column_op(struct nand_chip *chip,
1670 				unsigned int offset_in_page, const void *buf,
1671 				unsigned int len, bool force_8bit);
1672 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
1673 		      bool force_8bit);
1674 int nand_write_data_op(struct nand_chip *chip, const void *buf,
1675 		       unsigned int len, bool force_8bit);
1676 
1677 /* Free resources held by the NAND device */
1678 void nand_cleanup(struct nand_chip *chip);
1679 
1680 /* Default extended ID decoding function */
1681 void nand_decode_ext_id(struct nand_chip *chip);
1682 
1683 /*
1684  * External helper for controller drivers that have to implement the WAITRDY
1685  * instruction and have no physical pin to check it.
1686  */
1687 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms);
1688 
1689 #endif /* __LINUX_MTD_RAWNAND_H */
1690