1 /* 2 * Copyright © 2000-2010 David Woodhouse <[email protected]> 3 * Steven J. Hill <[email protected]> 4 * Thomas Gleixner <[email protected]> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * Info: 11 * Contains standard defines and IDs for NAND flash devices 12 * 13 * Changelog: 14 * See git changelog. 15 */ 16 #ifndef __LINUX_MTD_RAWNAND_H 17 #define __LINUX_MTD_RAWNAND_H 18 19 #include <linux/wait.h> 20 #include <linux/spinlock.h> 21 #include <linux/mtd/mtd.h> 22 #include <linux/mtd/flashchip.h> 23 #include <linux/mtd/bbm.h> 24 #include <linux/of.h> 25 #include <linux/types.h> 26 27 struct nand_flash_dev; 28 29 /* Scan and identify a NAND device */ 30 int nand_scan_with_ids(struct mtd_info *mtd, int max_chips, 31 struct nand_flash_dev *ids); 32 33 static inline int nand_scan(struct mtd_info *mtd, int max_chips) 34 { 35 return nand_scan_with_ids(mtd, max_chips, NULL); 36 } 37 38 /* Internal helper for board drivers which need to override command function */ 39 void nand_wait_ready(struct mtd_info *mtd); 40 41 /* The maximum number of NAND chips in an array */ 42 #define NAND_MAX_CHIPS 8 43 44 /* 45 * Constants for hardware specific CLE/ALE/NCE function 46 * 47 * These are bits which can be or'ed to set/clear multiple 48 * bits in one go. 49 */ 50 /* Select the chip by setting nCE to low */ 51 #define NAND_NCE 0x01 52 /* Select the command latch by setting CLE to high */ 53 #define NAND_CLE 0x02 54 /* Select the address latch by setting ALE to high */ 55 #define NAND_ALE 0x04 56 57 #define NAND_CTRL_CLE (NAND_NCE | NAND_CLE) 58 #define NAND_CTRL_ALE (NAND_NCE | NAND_ALE) 59 #define NAND_CTRL_CHANGE 0x80 60 61 /* 62 * Standard NAND flash commands 63 */ 64 #define NAND_CMD_READ0 0 65 #define NAND_CMD_READ1 1 66 #define NAND_CMD_RNDOUT 5 67 #define NAND_CMD_PAGEPROG 0x10 68 #define NAND_CMD_READOOB 0x50 69 #define NAND_CMD_ERASE1 0x60 70 #define NAND_CMD_STATUS 0x70 71 #define NAND_CMD_SEQIN 0x80 72 #define NAND_CMD_RNDIN 0x85 73 #define NAND_CMD_READID 0x90 74 #define NAND_CMD_ERASE2 0xd0 75 #define NAND_CMD_PARAM 0xec 76 #define NAND_CMD_GET_FEATURES 0xee 77 #define NAND_CMD_SET_FEATURES 0xef 78 #define NAND_CMD_RESET 0xff 79 80 /* Extended commands for large page devices */ 81 #define NAND_CMD_READSTART 0x30 82 #define NAND_CMD_RNDOUTSTART 0xE0 83 #define NAND_CMD_CACHEDPROG 0x15 84 85 #define NAND_CMD_NONE -1 86 87 /* Status bits */ 88 #define NAND_STATUS_FAIL 0x01 89 #define NAND_STATUS_FAIL_N1 0x02 90 #define NAND_STATUS_TRUE_READY 0x20 91 #define NAND_STATUS_READY 0x40 92 #define NAND_STATUS_WP 0x80 93 94 #define NAND_DATA_IFACE_CHECK_ONLY -1 95 96 /* 97 * Constants for ECC_MODES 98 */ 99 typedef enum { 100 NAND_ECC_NONE, 101 NAND_ECC_SOFT, 102 NAND_ECC_HW, 103 NAND_ECC_HW_SYNDROME, 104 NAND_ECC_HW_OOB_FIRST, 105 NAND_ECC_ON_DIE, 106 } nand_ecc_modes_t; 107 108 enum nand_ecc_algo { 109 NAND_ECC_UNKNOWN, 110 NAND_ECC_HAMMING, 111 NAND_ECC_BCH, 112 NAND_ECC_RS, 113 }; 114 115 /* 116 * Constants for Hardware ECC 117 */ 118 /* Reset Hardware ECC for read */ 119 #define NAND_ECC_READ 0 120 /* Reset Hardware ECC for write */ 121 #define NAND_ECC_WRITE 1 122 /* Enable Hardware ECC before syndrome is read back from flash */ 123 #define NAND_ECC_READSYN 2 124 125 /* 126 * Enable generic NAND 'page erased' check. This check is only done when 127 * ecc.correct() returns -EBADMSG. 128 * Set this flag if your implementation does not fix bitflips in erased 129 * pages and you want to rely on the default implementation. 130 */ 131 #define NAND_ECC_GENERIC_ERASED_CHECK BIT(0) 132 #define NAND_ECC_MAXIMIZE BIT(1) 133 134 /* Bit mask for flags passed to do_nand_read_ecc */ 135 #define NAND_GET_DEVICE 0x80 136 137 138 /* 139 * Option constants for bizarre disfunctionality and real 140 * features. 141 */ 142 /* Buswidth is 16 bit */ 143 #define NAND_BUSWIDTH_16 0x00000002 144 /* Chip has cache program function */ 145 #define NAND_CACHEPRG 0x00000008 146 /* 147 * Chip requires ready check on read (for auto-incremented sequential read). 148 * True only for small page devices; large page devices do not support 149 * autoincrement. 150 */ 151 #define NAND_NEED_READRDY 0x00000100 152 153 /* Chip does not allow subpage writes */ 154 #define NAND_NO_SUBPAGE_WRITE 0x00000200 155 156 /* Device is one of 'new' xD cards that expose fake nand command set */ 157 #define NAND_BROKEN_XD 0x00000400 158 159 /* Device behaves just like nand, but is readonly */ 160 #define NAND_ROM 0x00000800 161 162 /* Device supports subpage reads */ 163 #define NAND_SUBPAGE_READ 0x00001000 164 165 /* 166 * Some MLC NANDs need data scrambling to limit bitflips caused by repeated 167 * patterns. 168 */ 169 #define NAND_NEED_SCRAMBLING 0x00002000 170 171 /* Device needs 3rd row address cycle */ 172 #define NAND_ROW_ADDR_3 0x00004000 173 174 /* Options valid for Samsung large page devices */ 175 #define NAND_SAMSUNG_LP_OPTIONS NAND_CACHEPRG 176 177 /* Macros to identify the above */ 178 #define NAND_HAS_CACHEPROG(chip) ((chip->options & NAND_CACHEPRG)) 179 #define NAND_HAS_SUBPAGE_READ(chip) ((chip->options & NAND_SUBPAGE_READ)) 180 #define NAND_HAS_SUBPAGE_WRITE(chip) !((chip)->options & NAND_NO_SUBPAGE_WRITE) 181 182 /* Non chip related options */ 183 /* This option skips the bbt scan during initialization. */ 184 #define NAND_SKIP_BBTSCAN 0x00010000 185 /* Chip may not exist, so silence any errors in scan */ 186 #define NAND_SCAN_SILENT_NODEV 0x00040000 187 /* 188 * Autodetect nand buswidth with readid/onfi. 189 * This suppose the driver will configure the hardware in 8 bits mode 190 * when calling nand_scan_ident, and update its configuration 191 * before calling nand_scan_tail. 192 */ 193 #define NAND_BUSWIDTH_AUTO 0x00080000 194 /* 195 * This option could be defined by controller drivers to protect against 196 * kmap'ed, vmalloc'ed highmem buffers being passed from upper layers 197 */ 198 #define NAND_USE_BOUNCE_BUFFER 0x00100000 199 200 /* 201 * In case your controller is implementing ->cmd_ctrl() and is relying on the 202 * default ->cmdfunc() implementation, you may want to let the core handle the 203 * tCCS delay which is required when a column change (RNDIN or RNDOUT) is 204 * requested. 205 * If your controller already takes care of this delay, you don't need to set 206 * this flag. 207 */ 208 #define NAND_WAIT_TCCS 0x00200000 209 210 /* 211 * Whether the NAND chip is a boot medium. Drivers might use this information 212 * to select ECC algorithms supported by the boot ROM or similar restrictions. 213 */ 214 #define NAND_IS_BOOT_MEDIUM 0x00400000 215 216 /* Options set by nand scan */ 217 /* Nand scan has allocated controller struct */ 218 #define NAND_CONTROLLER_ALLOC 0x80000000 219 220 /* Cell info constants */ 221 #define NAND_CI_CHIPNR_MSK 0x03 222 #define NAND_CI_CELLTYPE_MSK 0x0C 223 #define NAND_CI_CELLTYPE_SHIFT 2 224 225 /* Keep gcc happy */ 226 struct nand_chip; 227 228 /* ONFI version bits */ 229 #define ONFI_VERSION_1_0 BIT(1) 230 #define ONFI_VERSION_2_0 BIT(2) 231 #define ONFI_VERSION_2_1 BIT(3) 232 #define ONFI_VERSION_2_2 BIT(4) 233 #define ONFI_VERSION_2_3 BIT(5) 234 #define ONFI_VERSION_3_0 BIT(6) 235 #define ONFI_VERSION_3_1 BIT(7) 236 #define ONFI_VERSION_3_2 BIT(8) 237 #define ONFI_VERSION_4_0 BIT(9) 238 239 /* ONFI features */ 240 #define ONFI_FEATURE_16_BIT_BUS (1 << 0) 241 #define ONFI_FEATURE_EXT_PARAM_PAGE (1 << 7) 242 243 /* ONFI timing mode, used in both asynchronous and synchronous mode */ 244 #define ONFI_TIMING_MODE_0 (1 << 0) 245 #define ONFI_TIMING_MODE_1 (1 << 1) 246 #define ONFI_TIMING_MODE_2 (1 << 2) 247 #define ONFI_TIMING_MODE_3 (1 << 3) 248 #define ONFI_TIMING_MODE_4 (1 << 4) 249 #define ONFI_TIMING_MODE_5 (1 << 5) 250 #define ONFI_TIMING_MODE_UNKNOWN (1 << 6) 251 252 /* ONFI feature number/address */ 253 #define ONFI_FEATURE_NUMBER 256 254 #define ONFI_FEATURE_ADDR_TIMING_MODE 0x1 255 256 /* Vendor-specific feature address (Micron) */ 257 #define ONFI_FEATURE_ADDR_READ_RETRY 0x89 258 #define ONFI_FEATURE_ON_DIE_ECC 0x90 259 #define ONFI_FEATURE_ON_DIE_ECC_EN BIT(3) 260 261 /* ONFI subfeature parameters length */ 262 #define ONFI_SUBFEATURE_PARAM_LEN 4 263 264 /* ONFI optional commands SET/GET FEATURES supported? */ 265 #define ONFI_OPT_CMD_SET_GET_FEATURES (1 << 2) 266 267 struct nand_onfi_params { 268 /* rev info and features block */ 269 /* 'O' 'N' 'F' 'I' */ 270 u8 sig[4]; 271 __le16 revision; 272 __le16 features; 273 __le16 opt_cmd; 274 u8 reserved0[2]; 275 __le16 ext_param_page_length; /* since ONFI 2.1 */ 276 u8 num_of_param_pages; /* since ONFI 2.1 */ 277 u8 reserved1[17]; 278 279 /* manufacturer information block */ 280 char manufacturer[12]; 281 char model[20]; 282 u8 jedec_id; 283 __le16 date_code; 284 u8 reserved2[13]; 285 286 /* memory organization block */ 287 __le32 byte_per_page; 288 __le16 spare_bytes_per_page; 289 __le32 data_bytes_per_ppage; 290 __le16 spare_bytes_per_ppage; 291 __le32 pages_per_block; 292 __le32 blocks_per_lun; 293 u8 lun_count; 294 u8 addr_cycles; 295 u8 bits_per_cell; 296 __le16 bb_per_lun; 297 __le16 block_endurance; 298 u8 guaranteed_good_blocks; 299 __le16 guaranteed_block_endurance; 300 u8 programs_per_page; 301 u8 ppage_attr; 302 u8 ecc_bits; 303 u8 interleaved_bits; 304 u8 interleaved_ops; 305 u8 reserved3[13]; 306 307 /* electrical parameter block */ 308 u8 io_pin_capacitance_max; 309 __le16 async_timing_mode; 310 __le16 program_cache_timing_mode; 311 __le16 t_prog; 312 __le16 t_bers; 313 __le16 t_r; 314 __le16 t_ccs; 315 __le16 src_sync_timing_mode; 316 u8 src_ssync_features; 317 __le16 clk_pin_capacitance_typ; 318 __le16 io_pin_capacitance_typ; 319 __le16 input_pin_capacitance_typ; 320 u8 input_pin_capacitance_max; 321 u8 driver_strength_support; 322 __le16 t_int_r; 323 __le16 t_adl; 324 u8 reserved4[8]; 325 326 /* vendor */ 327 __le16 vendor_revision; 328 u8 vendor[88]; 329 330 __le16 crc; 331 } __packed; 332 333 #define ONFI_CRC_BASE 0x4F4E 334 335 /* Extended ECC information Block Definition (since ONFI 2.1) */ 336 struct onfi_ext_ecc_info { 337 u8 ecc_bits; 338 u8 codeword_size; 339 __le16 bb_per_lun; 340 __le16 block_endurance; 341 u8 reserved[2]; 342 } __packed; 343 344 #define ONFI_SECTION_TYPE_0 0 /* Unused section. */ 345 #define ONFI_SECTION_TYPE_1 1 /* for additional sections. */ 346 #define ONFI_SECTION_TYPE_2 2 /* for ECC information. */ 347 struct onfi_ext_section { 348 u8 type; 349 u8 length; 350 } __packed; 351 352 #define ONFI_EXT_SECTION_MAX 8 353 354 /* Extended Parameter Page Definition (since ONFI 2.1) */ 355 struct onfi_ext_param_page { 356 __le16 crc; 357 u8 sig[4]; /* 'E' 'P' 'P' 'S' */ 358 u8 reserved0[10]; 359 struct onfi_ext_section sections[ONFI_EXT_SECTION_MAX]; 360 361 /* 362 * The actual size of the Extended Parameter Page is in 363 * @ext_param_page_length of nand_onfi_params{}. 364 * The following are the variable length sections. 365 * So we do not add any fields below. Please see the ONFI spec. 366 */ 367 } __packed; 368 369 struct jedec_ecc_info { 370 u8 ecc_bits; 371 u8 codeword_size; 372 __le16 bb_per_lun; 373 __le16 block_endurance; 374 u8 reserved[2]; 375 } __packed; 376 377 /* JEDEC features */ 378 #define JEDEC_FEATURE_16_BIT_BUS (1 << 0) 379 380 struct nand_jedec_params { 381 /* rev info and features block */ 382 /* 'J' 'E' 'S' 'D' */ 383 u8 sig[4]; 384 __le16 revision; 385 __le16 features; 386 u8 opt_cmd[3]; 387 __le16 sec_cmd; 388 u8 num_of_param_pages; 389 u8 reserved0[18]; 390 391 /* manufacturer information block */ 392 char manufacturer[12]; 393 char model[20]; 394 u8 jedec_id[6]; 395 u8 reserved1[10]; 396 397 /* memory organization block */ 398 __le32 byte_per_page; 399 __le16 spare_bytes_per_page; 400 u8 reserved2[6]; 401 __le32 pages_per_block; 402 __le32 blocks_per_lun; 403 u8 lun_count; 404 u8 addr_cycles; 405 u8 bits_per_cell; 406 u8 programs_per_page; 407 u8 multi_plane_addr; 408 u8 multi_plane_op_attr; 409 u8 reserved3[38]; 410 411 /* electrical parameter block */ 412 __le16 async_sdr_speed_grade; 413 __le16 toggle_ddr_speed_grade; 414 __le16 sync_ddr_speed_grade; 415 u8 async_sdr_features; 416 u8 toggle_ddr_features; 417 u8 sync_ddr_features; 418 __le16 t_prog; 419 __le16 t_bers; 420 __le16 t_r; 421 __le16 t_r_multi_plane; 422 __le16 t_ccs; 423 __le16 io_pin_capacitance_typ; 424 __le16 input_pin_capacitance_typ; 425 __le16 clk_pin_capacitance_typ; 426 u8 driver_strength_support; 427 __le16 t_adl; 428 u8 reserved4[36]; 429 430 /* ECC and endurance block */ 431 u8 guaranteed_good_blocks; 432 __le16 guaranteed_block_endurance; 433 struct jedec_ecc_info ecc_info[4]; 434 u8 reserved5[29]; 435 436 /* reserved */ 437 u8 reserved6[148]; 438 439 /* vendor */ 440 __le16 vendor_rev_num; 441 u8 reserved7[88]; 442 443 /* CRC for Parameter Page */ 444 __le16 crc; 445 } __packed; 446 447 /** 448 * struct onfi_params - ONFI specific parameters that will be reused 449 * @version: ONFI version (BCD encoded), 0 if ONFI is not supported 450 * @tPROG: Page program time 451 * @tBERS: Block erase time 452 * @tR: Page read time 453 * @tCCS: Change column setup time 454 * @async_timing_mode: Supported asynchronous timing mode 455 * @vendor_revision: Vendor specific revision number 456 * @vendor: Vendor specific data 457 */ 458 struct onfi_params { 459 int version; 460 u16 tPROG; 461 u16 tBERS; 462 u16 tR; 463 u16 tCCS; 464 u16 async_timing_mode; 465 u16 vendor_revision; 466 u8 vendor[88]; 467 }; 468 469 /** 470 * struct nand_parameters - NAND generic parameters from the parameter page 471 * @model: Model name 472 * @supports_set_get_features: The NAND chip supports setting/getting features 473 * @set_feature_list: Bitmap of features that can be set 474 * @get_feature_list: Bitmap of features that can be get 475 * @onfi: ONFI specific parameters 476 */ 477 struct nand_parameters { 478 /* Generic parameters */ 479 const char *model; 480 bool supports_set_get_features; 481 DECLARE_BITMAP(set_feature_list, ONFI_FEATURE_NUMBER); 482 DECLARE_BITMAP(get_feature_list, ONFI_FEATURE_NUMBER); 483 484 /* ONFI parameters */ 485 struct onfi_params *onfi; 486 }; 487 488 /* The maximum expected count of bytes in the NAND ID sequence */ 489 #define NAND_MAX_ID_LEN 8 490 491 /** 492 * struct nand_id - NAND id structure 493 * @data: buffer containing the id bytes. 494 * @len: ID length. 495 */ 496 struct nand_id { 497 u8 data[NAND_MAX_ID_LEN]; 498 int len; 499 }; 500 501 /** 502 * struct nand_controller_ops - Controller operations 503 * 504 * @attach_chip: this method is called after the NAND detection phase after 505 * flash ID and MTD fields such as erase size, page size and OOB 506 * size have been set up. ECC requirements are available if 507 * provided by the NAND chip or device tree. Typically used to 508 * choose the appropriate ECC configuration and allocate 509 * associated resources. 510 * This hook is optional. 511 * @detach_chip: free all resources allocated/claimed in 512 * nand_controller_ops->attach_chip(). 513 * This hook is optional. 514 */ 515 struct nand_controller_ops { 516 int (*attach_chip)(struct nand_chip *chip); 517 void (*detach_chip)(struct nand_chip *chip); 518 }; 519 520 /** 521 * struct nand_controller - Structure used to describe a NAND controller 522 * 523 * @lock: protection lock 524 * @active: the mtd device which holds the controller currently 525 * @wq: wait queue to sleep on if a NAND operation is in 526 * progress used instead of the per chip wait queue 527 * when a hw controller is available. 528 * @ops: NAND controller operations. 529 */ 530 struct nand_controller { 531 spinlock_t lock; 532 struct nand_chip *active; 533 wait_queue_head_t wq; 534 const struct nand_controller_ops *ops; 535 }; 536 537 static inline void nand_controller_init(struct nand_controller *nfc) 538 { 539 nfc->active = NULL; 540 spin_lock_init(&nfc->lock); 541 init_waitqueue_head(&nfc->wq); 542 } 543 544 /** 545 * struct nand_ecc_step_info - ECC step information of ECC engine 546 * @stepsize: data bytes per ECC step 547 * @strengths: array of supported strengths 548 * @nstrengths: number of supported strengths 549 */ 550 struct nand_ecc_step_info { 551 int stepsize; 552 const int *strengths; 553 int nstrengths; 554 }; 555 556 /** 557 * struct nand_ecc_caps - capability of ECC engine 558 * @stepinfos: array of ECC step information 559 * @nstepinfos: number of ECC step information 560 * @calc_ecc_bytes: driver's hook to calculate ECC bytes per step 561 */ 562 struct nand_ecc_caps { 563 const struct nand_ecc_step_info *stepinfos; 564 int nstepinfos; 565 int (*calc_ecc_bytes)(int step_size, int strength); 566 }; 567 568 /* a shorthand to generate struct nand_ecc_caps with only one ECC stepsize */ 569 #define NAND_ECC_CAPS_SINGLE(__name, __calc, __step, ...) \ 570 static const int __name##_strengths[] = { __VA_ARGS__ }; \ 571 static const struct nand_ecc_step_info __name##_stepinfo = { \ 572 .stepsize = __step, \ 573 .strengths = __name##_strengths, \ 574 .nstrengths = ARRAY_SIZE(__name##_strengths), \ 575 }; \ 576 static const struct nand_ecc_caps __name = { \ 577 .stepinfos = &__name##_stepinfo, \ 578 .nstepinfos = 1, \ 579 .calc_ecc_bytes = __calc, \ 580 } 581 582 /** 583 * struct nand_ecc_ctrl - Control structure for ECC 584 * @mode: ECC mode 585 * @algo: ECC algorithm 586 * @steps: number of ECC steps per page 587 * @size: data bytes per ECC step 588 * @bytes: ECC bytes per step 589 * @strength: max number of correctible bits per ECC step 590 * @total: total number of ECC bytes per page 591 * @prepad: padding information for syndrome based ECC generators 592 * @postpad: padding information for syndrome based ECC generators 593 * @options: ECC specific options (see NAND_ECC_XXX flags defined above) 594 * @priv: pointer to private ECC control data 595 * @calc_buf: buffer for calculated ECC, size is oobsize. 596 * @code_buf: buffer for ECC read from flash, size is oobsize. 597 * @hwctl: function to control hardware ECC generator. Must only 598 * be provided if an hardware ECC is available 599 * @calculate: function for ECC calculation or readback from ECC hardware 600 * @correct: function for ECC correction, matching to ECC generator (sw/hw). 601 * Should return a positive number representing the number of 602 * corrected bitflips, -EBADMSG if the number of bitflips exceed 603 * ECC strength, or any other error code if the error is not 604 * directly related to correction. 605 * If -EBADMSG is returned the input buffers should be left 606 * untouched. 607 * @read_page_raw: function to read a raw page without ECC. This function 608 * should hide the specific layout used by the ECC 609 * controller and always return contiguous in-band and 610 * out-of-band data even if they're not stored 611 * contiguously on the NAND chip (e.g. 612 * NAND_ECC_HW_SYNDROME interleaves in-band and 613 * out-of-band data). 614 * @write_page_raw: function to write a raw page without ECC. This function 615 * should hide the specific layout used by the ECC 616 * controller and consider the passed data as contiguous 617 * in-band and out-of-band data. ECC controller is 618 * responsible for doing the appropriate transformations 619 * to adapt to its specific layout (e.g. 620 * NAND_ECC_HW_SYNDROME interleaves in-band and 621 * out-of-band data). 622 * @read_page: function to read a page according to the ECC generator 623 * requirements; returns maximum number of bitflips corrected in 624 * any single ECC step, -EIO hw error 625 * @read_subpage: function to read parts of the page covered by ECC; 626 * returns same as read_page() 627 * @write_subpage: function to write parts of the page covered by ECC. 628 * @write_page: function to write a page according to the ECC generator 629 * requirements. 630 * @write_oob_raw: function to write chip OOB data without ECC 631 * @read_oob_raw: function to read chip OOB data without ECC 632 * @read_oob: function to read chip OOB data 633 * @write_oob: function to write chip OOB data 634 */ 635 struct nand_ecc_ctrl { 636 nand_ecc_modes_t mode; 637 enum nand_ecc_algo algo; 638 int steps; 639 int size; 640 int bytes; 641 int total; 642 int strength; 643 int prepad; 644 int postpad; 645 unsigned int options; 646 void *priv; 647 u8 *calc_buf; 648 u8 *code_buf; 649 void (*hwctl)(struct mtd_info *mtd, int mode); 650 int (*calculate)(struct mtd_info *mtd, const uint8_t *dat, 651 uint8_t *ecc_code); 652 int (*correct)(struct mtd_info *mtd, uint8_t *dat, uint8_t *read_ecc, 653 uint8_t *calc_ecc); 654 int (*read_page_raw)(struct mtd_info *mtd, struct nand_chip *chip, 655 uint8_t *buf, int oob_required, int page); 656 int (*write_page_raw)(struct mtd_info *mtd, struct nand_chip *chip, 657 const uint8_t *buf, int oob_required, int page); 658 int (*read_page)(struct mtd_info *mtd, struct nand_chip *chip, 659 uint8_t *buf, int oob_required, int page); 660 int (*read_subpage)(struct mtd_info *mtd, struct nand_chip *chip, 661 uint32_t offs, uint32_t len, uint8_t *buf, int page); 662 int (*write_subpage)(struct mtd_info *mtd, struct nand_chip *chip, 663 uint32_t offset, uint32_t data_len, 664 const uint8_t *data_buf, int oob_required, int page); 665 int (*write_page)(struct mtd_info *mtd, struct nand_chip *chip, 666 const uint8_t *buf, int oob_required, int page); 667 int (*write_oob_raw)(struct mtd_info *mtd, struct nand_chip *chip, 668 int page); 669 int (*read_oob_raw)(struct mtd_info *mtd, struct nand_chip *chip, 670 int page); 671 int (*read_oob)(struct mtd_info *mtd, struct nand_chip *chip, int page); 672 int (*write_oob)(struct mtd_info *mtd, struct nand_chip *chip, 673 int page); 674 }; 675 676 /** 677 * struct nand_sdr_timings - SDR NAND chip timings 678 * 679 * This struct defines the timing requirements of a SDR NAND chip. 680 * These information can be found in every NAND datasheets and the timings 681 * meaning are described in the ONFI specifications: 682 * www.onfi.org/~/media/ONFI/specs/onfi_3_1_spec.pdf (chapter 4.15 Timing 683 * Parameters) 684 * 685 * All these timings are expressed in picoseconds. 686 * 687 * @tBERS_max: Block erase time 688 * @tCCS_min: Change column setup time 689 * @tPROG_max: Page program time 690 * @tR_max: Page read time 691 * @tALH_min: ALE hold time 692 * @tADL_min: ALE to data loading time 693 * @tALS_min: ALE setup time 694 * @tAR_min: ALE to RE# delay 695 * @tCEA_max: CE# access time 696 * @tCEH_min: CE# high hold time 697 * @tCH_min: CE# hold time 698 * @tCHZ_max: CE# high to output hi-Z 699 * @tCLH_min: CLE hold time 700 * @tCLR_min: CLE to RE# delay 701 * @tCLS_min: CLE setup time 702 * @tCOH_min: CE# high to output hold 703 * @tCS_min: CE# setup time 704 * @tDH_min: Data hold time 705 * @tDS_min: Data setup time 706 * @tFEAT_max: Busy time for Set Features and Get Features 707 * @tIR_min: Output hi-Z to RE# low 708 * @tITC_max: Interface and Timing Mode Change time 709 * @tRC_min: RE# cycle time 710 * @tREA_max: RE# access time 711 * @tREH_min: RE# high hold time 712 * @tRHOH_min: RE# high to output hold 713 * @tRHW_min: RE# high to WE# low 714 * @tRHZ_max: RE# high to output hi-Z 715 * @tRLOH_min: RE# low to output hold 716 * @tRP_min: RE# pulse width 717 * @tRR_min: Ready to RE# low (data only) 718 * @tRST_max: Device reset time, measured from the falling edge of R/B# to the 719 * rising edge of R/B#. 720 * @tWB_max: WE# high to SR[6] low 721 * @tWC_min: WE# cycle time 722 * @tWH_min: WE# high hold time 723 * @tWHR_min: WE# high to RE# low 724 * @tWP_min: WE# pulse width 725 * @tWW_min: WP# transition to WE# low 726 */ 727 struct nand_sdr_timings { 728 u64 tBERS_max; 729 u32 tCCS_min; 730 u64 tPROG_max; 731 u64 tR_max; 732 u32 tALH_min; 733 u32 tADL_min; 734 u32 tALS_min; 735 u32 tAR_min; 736 u32 tCEA_max; 737 u32 tCEH_min; 738 u32 tCH_min; 739 u32 tCHZ_max; 740 u32 tCLH_min; 741 u32 tCLR_min; 742 u32 tCLS_min; 743 u32 tCOH_min; 744 u32 tCS_min; 745 u32 tDH_min; 746 u32 tDS_min; 747 u32 tFEAT_max; 748 u32 tIR_min; 749 u32 tITC_max; 750 u32 tRC_min; 751 u32 tREA_max; 752 u32 tREH_min; 753 u32 tRHOH_min; 754 u32 tRHW_min; 755 u32 tRHZ_max; 756 u32 tRLOH_min; 757 u32 tRP_min; 758 u32 tRR_min; 759 u64 tRST_max; 760 u32 tWB_max; 761 u32 tWC_min; 762 u32 tWH_min; 763 u32 tWHR_min; 764 u32 tWP_min; 765 u32 tWW_min; 766 }; 767 768 /** 769 * enum nand_data_interface_type - NAND interface timing type 770 * @NAND_SDR_IFACE: Single Data Rate interface 771 */ 772 enum nand_data_interface_type { 773 NAND_SDR_IFACE, 774 }; 775 776 /** 777 * struct nand_data_interface - NAND interface timing 778 * @type: type of the timing 779 * @timings: The timing, type according to @type 780 * @timings.sdr: Use it when @type is %NAND_SDR_IFACE. 781 */ 782 struct nand_data_interface { 783 enum nand_data_interface_type type; 784 union { 785 struct nand_sdr_timings sdr; 786 } timings; 787 }; 788 789 /** 790 * nand_get_sdr_timings - get SDR timing from data interface 791 * @conf: The data interface 792 */ 793 static inline const struct nand_sdr_timings * 794 nand_get_sdr_timings(const struct nand_data_interface *conf) 795 { 796 if (conf->type != NAND_SDR_IFACE) 797 return ERR_PTR(-EINVAL); 798 799 return &conf->timings.sdr; 800 } 801 802 /** 803 * struct nand_manufacturer_ops - NAND Manufacturer operations 804 * @detect: detect the NAND memory organization and capabilities 805 * @init: initialize all vendor specific fields (like the ->read_retry() 806 * implementation) if any. 807 * @cleanup: the ->init() function may have allocated resources, ->cleanup() 808 * is here to let vendor specific code release those resources. 809 * @fixup_onfi_param_page: apply vendor specific fixups to the ONFI parameter 810 * page. This is called after the checksum is verified. 811 */ 812 struct nand_manufacturer_ops { 813 void (*detect)(struct nand_chip *chip); 814 int (*init)(struct nand_chip *chip); 815 void (*cleanup)(struct nand_chip *chip); 816 void (*fixup_onfi_param_page)(struct nand_chip *chip, 817 struct nand_onfi_params *p); 818 }; 819 820 /** 821 * struct nand_op_cmd_instr - Definition of a command instruction 822 * @opcode: the command to issue in one cycle 823 */ 824 struct nand_op_cmd_instr { 825 u8 opcode; 826 }; 827 828 /** 829 * struct nand_op_addr_instr - Definition of an address instruction 830 * @naddrs: length of the @addrs array 831 * @addrs: array containing the address cycles to issue 832 */ 833 struct nand_op_addr_instr { 834 unsigned int naddrs; 835 const u8 *addrs; 836 }; 837 838 /** 839 * struct nand_op_data_instr - Definition of a data instruction 840 * @len: number of data bytes to move 841 * @buf: buffer to fill 842 * @buf.in: buffer to fill when reading from the NAND chip 843 * @buf.out: buffer to read from when writing to the NAND chip 844 * @force_8bit: force 8-bit access 845 * 846 * Please note that "in" and "out" are inverted from the ONFI specification 847 * and are from the controller perspective, so a "in" is a read from the NAND 848 * chip while a "out" is a write to the NAND chip. 849 */ 850 struct nand_op_data_instr { 851 unsigned int len; 852 union { 853 void *in; 854 const void *out; 855 } buf; 856 bool force_8bit; 857 }; 858 859 /** 860 * struct nand_op_waitrdy_instr - Definition of a wait ready instruction 861 * @timeout_ms: maximum delay while waiting for the ready/busy pin in ms 862 */ 863 struct nand_op_waitrdy_instr { 864 unsigned int timeout_ms; 865 }; 866 867 /** 868 * enum nand_op_instr_type - Definition of all instruction types 869 * @NAND_OP_CMD_INSTR: command instruction 870 * @NAND_OP_ADDR_INSTR: address instruction 871 * @NAND_OP_DATA_IN_INSTR: data in instruction 872 * @NAND_OP_DATA_OUT_INSTR: data out instruction 873 * @NAND_OP_WAITRDY_INSTR: wait ready instruction 874 */ 875 enum nand_op_instr_type { 876 NAND_OP_CMD_INSTR, 877 NAND_OP_ADDR_INSTR, 878 NAND_OP_DATA_IN_INSTR, 879 NAND_OP_DATA_OUT_INSTR, 880 NAND_OP_WAITRDY_INSTR, 881 }; 882 883 /** 884 * struct nand_op_instr - Instruction object 885 * @type: the instruction type 886 * @ctx: extra data associated to the instruction. You'll have to use the 887 * appropriate element depending on @type 888 * @ctx.cmd: use it if @type is %NAND_OP_CMD_INSTR 889 * @ctx.addr: use it if @type is %NAND_OP_ADDR_INSTR 890 * @ctx.data: use it if @type is %NAND_OP_DATA_IN_INSTR 891 * or %NAND_OP_DATA_OUT_INSTR 892 * @ctx.waitrdy: use it if @type is %NAND_OP_WAITRDY_INSTR 893 * @delay_ns: delay the controller should apply after the instruction has been 894 * issued on the bus. Most modern controllers have internal timings 895 * control logic, and in this case, the controller driver can ignore 896 * this field. 897 */ 898 struct nand_op_instr { 899 enum nand_op_instr_type type; 900 union { 901 struct nand_op_cmd_instr cmd; 902 struct nand_op_addr_instr addr; 903 struct nand_op_data_instr data; 904 struct nand_op_waitrdy_instr waitrdy; 905 } ctx; 906 unsigned int delay_ns; 907 }; 908 909 /* 910 * Special handling must be done for the WAITRDY timeout parameter as it usually 911 * is either tPROG (after a prog), tR (before a read), tRST (during a reset) or 912 * tBERS (during an erase) which all of them are u64 values that cannot be 913 * divided by usual kernel macros and must be handled with the special 914 * DIV_ROUND_UP_ULL() macro. 915 * 916 * Cast to type of dividend is needed here to guarantee that the result won't 917 * be an unsigned long long when the dividend is an unsigned long (or smaller), 918 * which is what the compiler does when it sees ternary operator with 2 919 * different return types (picks the largest type to make sure there's no 920 * loss). 921 */ 922 #define __DIVIDE(dividend, divisor) ({ \ 923 (__typeof__(dividend))(sizeof(dividend) <= sizeof(unsigned long) ? \ 924 DIV_ROUND_UP(dividend, divisor) : \ 925 DIV_ROUND_UP_ULL(dividend, divisor)); \ 926 }) 927 #define PSEC_TO_NSEC(x) __DIVIDE(x, 1000) 928 #define PSEC_TO_MSEC(x) __DIVIDE(x, 1000000000) 929 930 #define NAND_OP_CMD(id, ns) \ 931 { \ 932 .type = NAND_OP_CMD_INSTR, \ 933 .ctx.cmd.opcode = id, \ 934 .delay_ns = ns, \ 935 } 936 937 #define NAND_OP_ADDR(ncycles, cycles, ns) \ 938 { \ 939 .type = NAND_OP_ADDR_INSTR, \ 940 .ctx.addr = { \ 941 .naddrs = ncycles, \ 942 .addrs = cycles, \ 943 }, \ 944 .delay_ns = ns, \ 945 } 946 947 #define NAND_OP_DATA_IN(l, b, ns) \ 948 { \ 949 .type = NAND_OP_DATA_IN_INSTR, \ 950 .ctx.data = { \ 951 .len = l, \ 952 .buf.in = b, \ 953 .force_8bit = false, \ 954 }, \ 955 .delay_ns = ns, \ 956 } 957 958 #define NAND_OP_DATA_OUT(l, b, ns) \ 959 { \ 960 .type = NAND_OP_DATA_OUT_INSTR, \ 961 .ctx.data = { \ 962 .len = l, \ 963 .buf.out = b, \ 964 .force_8bit = false, \ 965 }, \ 966 .delay_ns = ns, \ 967 } 968 969 #define NAND_OP_8BIT_DATA_IN(l, b, ns) \ 970 { \ 971 .type = NAND_OP_DATA_IN_INSTR, \ 972 .ctx.data = { \ 973 .len = l, \ 974 .buf.in = b, \ 975 .force_8bit = true, \ 976 }, \ 977 .delay_ns = ns, \ 978 } 979 980 #define NAND_OP_8BIT_DATA_OUT(l, b, ns) \ 981 { \ 982 .type = NAND_OP_DATA_OUT_INSTR, \ 983 .ctx.data = { \ 984 .len = l, \ 985 .buf.out = b, \ 986 .force_8bit = true, \ 987 }, \ 988 .delay_ns = ns, \ 989 } 990 991 #define NAND_OP_WAIT_RDY(tout_ms, ns) \ 992 { \ 993 .type = NAND_OP_WAITRDY_INSTR, \ 994 .ctx.waitrdy.timeout_ms = tout_ms, \ 995 .delay_ns = ns, \ 996 } 997 998 /** 999 * struct nand_subop - a sub operation 1000 * @instrs: array of instructions 1001 * @ninstrs: length of the @instrs array 1002 * @first_instr_start_off: offset to start from for the first instruction 1003 * of the sub-operation 1004 * @last_instr_end_off: offset to end at (excluded) for the last instruction 1005 * of the sub-operation 1006 * 1007 * Both @first_instr_start_off and @last_instr_end_off only apply to data or 1008 * address instructions. 1009 * 1010 * When an operation cannot be handled as is by the NAND controller, it will 1011 * be split by the parser into sub-operations which will be passed to the 1012 * controller driver. 1013 */ 1014 struct nand_subop { 1015 const struct nand_op_instr *instrs; 1016 unsigned int ninstrs; 1017 unsigned int first_instr_start_off; 1018 unsigned int last_instr_end_off; 1019 }; 1020 1021 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop, 1022 unsigned int op_id); 1023 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop, 1024 unsigned int op_id); 1025 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop, 1026 unsigned int op_id); 1027 unsigned int nand_subop_get_data_len(const struct nand_subop *subop, 1028 unsigned int op_id); 1029 1030 /** 1031 * struct nand_op_parser_addr_constraints - Constraints for address instructions 1032 * @maxcycles: maximum number of address cycles the controller can issue in a 1033 * single step 1034 */ 1035 struct nand_op_parser_addr_constraints { 1036 unsigned int maxcycles; 1037 }; 1038 1039 /** 1040 * struct nand_op_parser_data_constraints - Constraints for data instructions 1041 * @maxlen: maximum data length that the controller can handle in a single step 1042 */ 1043 struct nand_op_parser_data_constraints { 1044 unsigned int maxlen; 1045 }; 1046 1047 /** 1048 * struct nand_op_parser_pattern_elem - One element of a pattern 1049 * @type: the instructuction type 1050 * @optional: whether this element of the pattern is optional or mandatory 1051 * @ctx: address or data constraint 1052 * @ctx.addr: address constraint (number of cycles) 1053 * @ctx.data: data constraint (data length) 1054 */ 1055 struct nand_op_parser_pattern_elem { 1056 enum nand_op_instr_type type; 1057 bool optional; 1058 union { 1059 struct nand_op_parser_addr_constraints addr; 1060 struct nand_op_parser_data_constraints data; 1061 } ctx; 1062 }; 1063 1064 #define NAND_OP_PARSER_PAT_CMD_ELEM(_opt) \ 1065 { \ 1066 .type = NAND_OP_CMD_INSTR, \ 1067 .optional = _opt, \ 1068 } 1069 1070 #define NAND_OP_PARSER_PAT_ADDR_ELEM(_opt, _maxcycles) \ 1071 { \ 1072 .type = NAND_OP_ADDR_INSTR, \ 1073 .optional = _opt, \ 1074 .ctx.addr.maxcycles = _maxcycles, \ 1075 } 1076 1077 #define NAND_OP_PARSER_PAT_DATA_IN_ELEM(_opt, _maxlen) \ 1078 { \ 1079 .type = NAND_OP_DATA_IN_INSTR, \ 1080 .optional = _opt, \ 1081 .ctx.data.maxlen = _maxlen, \ 1082 } 1083 1084 #define NAND_OP_PARSER_PAT_DATA_OUT_ELEM(_opt, _maxlen) \ 1085 { \ 1086 .type = NAND_OP_DATA_OUT_INSTR, \ 1087 .optional = _opt, \ 1088 .ctx.data.maxlen = _maxlen, \ 1089 } 1090 1091 #define NAND_OP_PARSER_PAT_WAITRDY_ELEM(_opt) \ 1092 { \ 1093 .type = NAND_OP_WAITRDY_INSTR, \ 1094 .optional = _opt, \ 1095 } 1096 1097 /** 1098 * struct nand_op_parser_pattern - NAND sub-operation pattern descriptor 1099 * @elems: array of pattern elements 1100 * @nelems: number of pattern elements in @elems array 1101 * @exec: the function that will issue a sub-operation 1102 * 1103 * A pattern is a list of elements, each element reprensenting one instruction 1104 * with its constraints. The pattern itself is used by the core to match NAND 1105 * chip operation with NAND controller operations. 1106 * Once a match between a NAND controller operation pattern and a NAND chip 1107 * operation (or a sub-set of a NAND operation) is found, the pattern ->exec() 1108 * hook is called so that the controller driver can issue the operation on the 1109 * bus. 1110 * 1111 * Controller drivers should declare as many patterns as they support and pass 1112 * this list of patterns (created with the help of the following macro) to 1113 * the nand_op_parser_exec_op() helper. 1114 */ 1115 struct nand_op_parser_pattern { 1116 const struct nand_op_parser_pattern_elem *elems; 1117 unsigned int nelems; 1118 int (*exec)(struct nand_chip *chip, const struct nand_subop *subop); 1119 }; 1120 1121 #define NAND_OP_PARSER_PATTERN(_exec, ...) \ 1122 { \ 1123 .exec = _exec, \ 1124 .elems = (struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }, \ 1125 .nelems = sizeof((struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }) / \ 1126 sizeof(struct nand_op_parser_pattern_elem), \ 1127 } 1128 1129 /** 1130 * struct nand_op_parser - NAND controller operation parser descriptor 1131 * @patterns: array of supported patterns 1132 * @npatterns: length of the @patterns array 1133 * 1134 * The parser descriptor is just an array of supported patterns which will be 1135 * iterated by nand_op_parser_exec_op() everytime it tries to execute an 1136 * NAND operation (or tries to determine if a specific operation is supported). 1137 * 1138 * It is worth mentioning that patterns will be tested in their declaration 1139 * order, and the first match will be taken, so it's important to order patterns 1140 * appropriately so that simple/inefficient patterns are placed at the end of 1141 * the list. Usually, this is where you put single instruction patterns. 1142 */ 1143 struct nand_op_parser { 1144 const struct nand_op_parser_pattern *patterns; 1145 unsigned int npatterns; 1146 }; 1147 1148 #define NAND_OP_PARSER(...) \ 1149 { \ 1150 .patterns = (struct nand_op_parser_pattern[]) { __VA_ARGS__ }, \ 1151 .npatterns = sizeof((struct nand_op_parser_pattern[]) { __VA_ARGS__ }) / \ 1152 sizeof(struct nand_op_parser_pattern), \ 1153 } 1154 1155 /** 1156 * struct nand_operation - NAND operation descriptor 1157 * @instrs: array of instructions to execute 1158 * @ninstrs: length of the @instrs array 1159 * 1160 * The actual operation structure that will be passed to chip->exec_op(). 1161 */ 1162 struct nand_operation { 1163 const struct nand_op_instr *instrs; 1164 unsigned int ninstrs; 1165 }; 1166 1167 #define NAND_OPERATION(_instrs) \ 1168 { \ 1169 .instrs = _instrs, \ 1170 .ninstrs = ARRAY_SIZE(_instrs), \ 1171 } 1172 1173 int nand_op_parser_exec_op(struct nand_chip *chip, 1174 const struct nand_op_parser *parser, 1175 const struct nand_operation *op, bool check_only); 1176 1177 /** 1178 * struct nand_chip - NAND Private Flash Chip Data 1179 * @mtd: MTD device registered to the MTD framework 1180 * @IO_ADDR_R: [BOARDSPECIFIC] address to read the 8 I/O lines of the 1181 * flash device 1182 * @IO_ADDR_W: [BOARDSPECIFIC] address to write the 8 I/O lines of the 1183 * flash device. 1184 * @read_byte: [REPLACEABLE] read one byte from the chip 1185 * @read_word: [REPLACEABLE] read one word from the chip 1186 * @write_byte: [REPLACEABLE] write a single byte to the chip on the 1187 * low 8 I/O lines 1188 * @write_buf: [REPLACEABLE] write data from the buffer to the chip 1189 * @read_buf: [REPLACEABLE] read data from the chip into the buffer 1190 * @select_chip: [REPLACEABLE] select chip nr 1191 * @block_bad: [REPLACEABLE] check if a block is bad, using OOB markers 1192 * @block_markbad: [REPLACEABLE] mark a block bad 1193 * @cmd_ctrl: [BOARDSPECIFIC] hardwarespecific function for controlling 1194 * ALE/CLE/nCE. Also used to write command and address 1195 * @dev_ready: [BOARDSPECIFIC] hardwarespecific function for accessing 1196 * device ready/busy line. If set to NULL no access to 1197 * ready/busy is available and the ready/busy information 1198 * is read from the chip status register. 1199 * @cmdfunc: [REPLACEABLE] hardwarespecific function for writing 1200 * commands to the chip. 1201 * @waitfunc: [REPLACEABLE] hardwarespecific function for wait on 1202 * ready. 1203 * @exec_op: controller specific method to execute NAND operations. 1204 * This method replaces ->cmdfunc(), 1205 * ->{read,write}_{buf,byte,word}(), ->dev_ready() and 1206 * ->waifunc(). 1207 * @setup_read_retry: [FLASHSPECIFIC] flash (vendor) specific function for 1208 * setting the read-retry mode. Mostly needed for MLC NAND. 1209 * @ecc: [BOARDSPECIFIC] ECC control structure 1210 * @buf_align: minimum buffer alignment required by a platform 1211 * @dummy_controller: dummy controller implementation for drivers that can 1212 * only control a single chip 1213 * @erase: [REPLACEABLE] erase function 1214 * @chip_delay: [BOARDSPECIFIC] chip dependent delay for transferring 1215 * data from array to read regs (tR). 1216 * @state: [INTERN] the current state of the NAND device 1217 * @oob_poi: "poison value buffer," used for laying out OOB data 1218 * before writing 1219 * @page_shift: [INTERN] number of address bits in a page (column 1220 * address bits). 1221 * @phys_erase_shift: [INTERN] number of address bits in a physical eraseblock 1222 * @bbt_erase_shift: [INTERN] number of address bits in a bbt entry 1223 * @chip_shift: [INTERN] number of address bits in one chip 1224 * @options: [BOARDSPECIFIC] various chip options. They can partly 1225 * be set to inform nand_scan about special functionality. 1226 * See the defines for further explanation. 1227 * @bbt_options: [INTERN] bad block specific options. All options used 1228 * here must come from bbm.h. By default, these options 1229 * will be copied to the appropriate nand_bbt_descr's. 1230 * @badblockpos: [INTERN] position of the bad block marker in the oob 1231 * area. 1232 * @badblockbits: [INTERN] minimum number of set bits in a good block's 1233 * bad block marker position; i.e., BBM == 11110111b is 1234 * not bad when badblockbits == 7 1235 * @bits_per_cell: [INTERN] number of bits per cell. i.e., 1 means SLC. 1236 * @ecc_strength_ds: [INTERN] ECC correctability from the datasheet. 1237 * Minimum amount of bit errors per @ecc_step_ds guaranteed 1238 * to be correctable. If unknown, set to zero. 1239 * @ecc_step_ds: [INTERN] ECC step required by the @ecc_strength_ds, 1240 * also from the datasheet. It is the recommended ECC step 1241 * size, if known; if unknown, set to zero. 1242 * @onfi_timing_mode_default: [INTERN] default ONFI timing mode. This field is 1243 * set to the actually used ONFI mode if the chip is 1244 * ONFI compliant or deduced from the datasheet if 1245 * the NAND chip is not ONFI compliant. 1246 * @numchips: [INTERN] number of physical chips 1247 * @chipsize: [INTERN] the size of one chip for multichip arrays 1248 * @pagemask: [INTERN] page number mask = number of (pages / chip) - 1 1249 * @data_buf: [INTERN] buffer for data, size is (page size + oobsize). 1250 * @pagebuf: [INTERN] holds the pagenumber which is currently in 1251 * data_buf. 1252 * @pagebuf_bitflips: [INTERN] holds the bitflip count for the page which is 1253 * currently in data_buf. 1254 * @subpagesize: [INTERN] holds the subpagesize 1255 * @id: [INTERN] holds NAND ID 1256 * @parameters: [INTERN] holds generic parameters under an easily 1257 * readable form. 1258 * @max_bb_per_die: [INTERN] the max number of bad blocks each die of a 1259 * this nand device will encounter their life times. 1260 * @blocks_per_die: [INTERN] The number of PEBs in a die 1261 * @data_interface: [INTERN] NAND interface timing information 1262 * @read_retries: [INTERN] the number of read retry modes supported 1263 * @set_features: [REPLACEABLE] set the NAND chip features 1264 * @get_features: [REPLACEABLE] get the NAND chip features 1265 * @setup_data_interface: [OPTIONAL] setup the data interface and timing. If 1266 * chipnr is set to %NAND_DATA_IFACE_CHECK_ONLY this 1267 * means the configuration should not be applied but 1268 * only checked. 1269 * @bbt: [INTERN] bad block table pointer 1270 * @bbt_td: [REPLACEABLE] bad block table descriptor for flash 1271 * lookup. 1272 * @bbt_md: [REPLACEABLE] bad block table mirror descriptor 1273 * @badblock_pattern: [REPLACEABLE] bad block scan pattern used for initial 1274 * bad block scan. 1275 * @controller: [REPLACEABLE] a pointer to a hardware controller 1276 * structure which is shared among multiple independent 1277 * devices. 1278 * @priv: [OPTIONAL] pointer to private chip data 1279 * @manufacturer: [INTERN] Contains manufacturer information 1280 * @manufacturer.desc: [INTERN] Contains manufacturer's description 1281 * @manufacturer.priv: [INTERN] Contains manufacturer private information 1282 */ 1283 1284 struct nand_chip { 1285 struct mtd_info mtd; 1286 void __iomem *IO_ADDR_R; 1287 void __iomem *IO_ADDR_W; 1288 1289 uint8_t (*read_byte)(struct mtd_info *mtd); 1290 u16 (*read_word)(struct mtd_info *mtd); 1291 void (*write_byte)(struct mtd_info *mtd, uint8_t byte); 1292 void (*write_buf)(struct mtd_info *mtd, const uint8_t *buf, int len); 1293 void (*read_buf)(struct mtd_info *mtd, uint8_t *buf, int len); 1294 void (*select_chip)(struct mtd_info *mtd, int chip); 1295 int (*block_bad)(struct mtd_info *mtd, loff_t ofs); 1296 int (*block_markbad)(struct mtd_info *mtd, loff_t ofs); 1297 void (*cmd_ctrl)(struct mtd_info *mtd, int dat, unsigned int ctrl); 1298 int (*dev_ready)(struct mtd_info *mtd); 1299 void (*cmdfunc)(struct mtd_info *mtd, unsigned command, int column, 1300 int page_addr); 1301 int(*waitfunc)(struct mtd_info *mtd, struct nand_chip *this); 1302 int (*exec_op)(struct nand_chip *chip, 1303 const struct nand_operation *op, 1304 bool check_only); 1305 int (*erase)(struct mtd_info *mtd, int page); 1306 int (*set_features)(struct mtd_info *mtd, struct nand_chip *chip, 1307 int feature_addr, uint8_t *subfeature_para); 1308 int (*get_features)(struct mtd_info *mtd, struct nand_chip *chip, 1309 int feature_addr, uint8_t *subfeature_para); 1310 int (*setup_read_retry)(struct mtd_info *mtd, int retry_mode); 1311 int (*setup_data_interface)(struct mtd_info *mtd, int chipnr, 1312 const struct nand_data_interface *conf); 1313 1314 int chip_delay; 1315 unsigned int options; 1316 unsigned int bbt_options; 1317 1318 int page_shift; 1319 int phys_erase_shift; 1320 int bbt_erase_shift; 1321 int chip_shift; 1322 int numchips; 1323 uint64_t chipsize; 1324 int pagemask; 1325 u8 *data_buf; 1326 int pagebuf; 1327 unsigned int pagebuf_bitflips; 1328 int subpagesize; 1329 uint8_t bits_per_cell; 1330 uint16_t ecc_strength_ds; 1331 uint16_t ecc_step_ds; 1332 int onfi_timing_mode_default; 1333 int badblockpos; 1334 int badblockbits; 1335 1336 struct nand_id id; 1337 struct nand_parameters parameters; 1338 u16 max_bb_per_die; 1339 u32 blocks_per_die; 1340 1341 struct nand_data_interface data_interface; 1342 1343 int read_retries; 1344 1345 flstate_t state; 1346 1347 uint8_t *oob_poi; 1348 struct nand_controller *controller; 1349 1350 struct nand_ecc_ctrl ecc; 1351 unsigned long buf_align; 1352 struct nand_controller dummy_controller; 1353 1354 uint8_t *bbt; 1355 struct nand_bbt_descr *bbt_td; 1356 struct nand_bbt_descr *bbt_md; 1357 1358 struct nand_bbt_descr *badblock_pattern; 1359 1360 void *priv; 1361 1362 struct { 1363 const struct nand_manufacturer *desc; 1364 void *priv; 1365 } manufacturer; 1366 }; 1367 1368 static inline int nand_exec_op(struct nand_chip *chip, 1369 const struct nand_operation *op) 1370 { 1371 if (!chip->exec_op) 1372 return -ENOTSUPP; 1373 1374 return chip->exec_op(chip, op, false); 1375 } 1376 1377 extern const struct mtd_ooblayout_ops nand_ooblayout_sp_ops; 1378 extern const struct mtd_ooblayout_ops nand_ooblayout_lp_ops; 1379 1380 static inline void nand_set_flash_node(struct nand_chip *chip, 1381 struct device_node *np) 1382 { 1383 mtd_set_of_node(&chip->mtd, np); 1384 } 1385 1386 static inline struct device_node *nand_get_flash_node(struct nand_chip *chip) 1387 { 1388 return mtd_get_of_node(&chip->mtd); 1389 } 1390 1391 static inline struct nand_chip *mtd_to_nand(struct mtd_info *mtd) 1392 { 1393 return container_of(mtd, struct nand_chip, mtd); 1394 } 1395 1396 static inline struct mtd_info *nand_to_mtd(struct nand_chip *chip) 1397 { 1398 return &chip->mtd; 1399 } 1400 1401 static inline void *nand_get_controller_data(struct nand_chip *chip) 1402 { 1403 return chip->priv; 1404 } 1405 1406 static inline void nand_set_controller_data(struct nand_chip *chip, void *priv) 1407 { 1408 chip->priv = priv; 1409 } 1410 1411 static inline void nand_set_manufacturer_data(struct nand_chip *chip, 1412 void *priv) 1413 { 1414 chip->manufacturer.priv = priv; 1415 } 1416 1417 static inline void *nand_get_manufacturer_data(struct nand_chip *chip) 1418 { 1419 return chip->manufacturer.priv; 1420 } 1421 1422 /* 1423 * NAND Flash Manufacturer ID Codes 1424 */ 1425 #define NAND_MFR_TOSHIBA 0x98 1426 #define NAND_MFR_ESMT 0xc8 1427 #define NAND_MFR_SAMSUNG 0xec 1428 #define NAND_MFR_FUJITSU 0x04 1429 #define NAND_MFR_NATIONAL 0x8f 1430 #define NAND_MFR_RENESAS 0x07 1431 #define NAND_MFR_STMICRO 0x20 1432 #define NAND_MFR_HYNIX 0xad 1433 #define NAND_MFR_MICRON 0x2c 1434 #define NAND_MFR_AMD 0x01 1435 #define NAND_MFR_MACRONIX 0xc2 1436 #define NAND_MFR_EON 0x92 1437 #define NAND_MFR_SANDISK 0x45 1438 #define NAND_MFR_INTEL 0x89 1439 #define NAND_MFR_ATO 0x9b 1440 #define NAND_MFR_WINBOND 0xef 1441 1442 1443 /* 1444 * A helper for defining older NAND chips where the second ID byte fully 1445 * defined the chip, including the geometry (chip size, eraseblock size, page 1446 * size). All these chips have 512 bytes NAND page size. 1447 */ 1448 #define LEGACY_ID_NAND(nm, devid, chipsz, erasesz, opts) \ 1449 { .name = (nm), {{ .dev_id = (devid) }}, .pagesize = 512, \ 1450 .chipsize = (chipsz), .erasesize = (erasesz), .options = (opts) } 1451 1452 /* 1453 * A helper for defining newer chips which report their page size and 1454 * eraseblock size via the extended ID bytes. 1455 * 1456 * The real difference between LEGACY_ID_NAND and EXTENDED_ID_NAND is that with 1457 * EXTENDED_ID_NAND, manufacturers overloaded the same device ID so that the 1458 * device ID now only represented a particular total chip size (and voltage, 1459 * buswidth), and the page size, eraseblock size, and OOB size could vary while 1460 * using the same device ID. 1461 */ 1462 #define EXTENDED_ID_NAND(nm, devid, chipsz, opts) \ 1463 { .name = (nm), {{ .dev_id = (devid) }}, .chipsize = (chipsz), \ 1464 .options = (opts) } 1465 1466 #define NAND_ECC_INFO(_strength, _step) \ 1467 { .strength_ds = (_strength), .step_ds = (_step) } 1468 #define NAND_ECC_STRENGTH(type) ((type)->ecc.strength_ds) 1469 #define NAND_ECC_STEP(type) ((type)->ecc.step_ds) 1470 1471 /** 1472 * struct nand_flash_dev - NAND Flash Device ID Structure 1473 * @name: a human-readable name of the NAND chip 1474 * @dev_id: the device ID (the second byte of the full chip ID array) 1475 * @mfr_id: manufecturer ID part of the full chip ID array (refers the same 1476 * memory address as @id[0]) 1477 * @dev_id: device ID part of the full chip ID array (refers the same memory 1478 * address as @id[1]) 1479 * @id: full device ID array 1480 * @pagesize: size of the NAND page in bytes; if 0, then the real page size (as 1481 * well as the eraseblock size) is determined from the extended NAND 1482 * chip ID array) 1483 * @chipsize: total chip size in MiB 1484 * @erasesize: eraseblock size in bytes (determined from the extended ID if 0) 1485 * @options: stores various chip bit options 1486 * @id_len: The valid length of the @id. 1487 * @oobsize: OOB size 1488 * @ecc: ECC correctability and step information from the datasheet. 1489 * @ecc.strength_ds: The ECC correctability from the datasheet, same as the 1490 * @ecc_strength_ds in nand_chip{}. 1491 * @ecc.step_ds: The ECC step required by the @ecc.strength_ds, same as the 1492 * @ecc_step_ds in nand_chip{}, also from the datasheet. 1493 * For example, the "4bit ECC for each 512Byte" can be set with 1494 * NAND_ECC_INFO(4, 512). 1495 * @onfi_timing_mode_default: the default ONFI timing mode entered after a NAND 1496 * reset. Should be deduced from timings described 1497 * in the datasheet. 1498 * 1499 */ 1500 struct nand_flash_dev { 1501 char *name; 1502 union { 1503 struct { 1504 uint8_t mfr_id; 1505 uint8_t dev_id; 1506 }; 1507 uint8_t id[NAND_MAX_ID_LEN]; 1508 }; 1509 unsigned int pagesize; 1510 unsigned int chipsize; 1511 unsigned int erasesize; 1512 unsigned int options; 1513 uint16_t id_len; 1514 uint16_t oobsize; 1515 struct { 1516 uint16_t strength_ds; 1517 uint16_t step_ds; 1518 } ecc; 1519 int onfi_timing_mode_default; 1520 }; 1521 1522 /** 1523 * struct nand_manufacturer - NAND Flash Manufacturer structure 1524 * @name: Manufacturer name 1525 * @id: manufacturer ID code of device. 1526 * @ops: manufacturer operations 1527 */ 1528 struct nand_manufacturer { 1529 int id; 1530 char *name; 1531 const struct nand_manufacturer_ops *ops; 1532 }; 1533 1534 const struct nand_manufacturer *nand_get_manufacturer(u8 id); 1535 1536 static inline const char * 1537 nand_manufacturer_name(const struct nand_manufacturer *manufacturer) 1538 { 1539 return manufacturer ? manufacturer->name : "Unknown"; 1540 } 1541 1542 extern struct nand_flash_dev nand_flash_ids[]; 1543 1544 extern const struct nand_manufacturer_ops toshiba_nand_manuf_ops; 1545 extern const struct nand_manufacturer_ops samsung_nand_manuf_ops; 1546 extern const struct nand_manufacturer_ops hynix_nand_manuf_ops; 1547 extern const struct nand_manufacturer_ops micron_nand_manuf_ops; 1548 extern const struct nand_manufacturer_ops amd_nand_manuf_ops; 1549 extern const struct nand_manufacturer_ops macronix_nand_manuf_ops; 1550 1551 int nand_create_bbt(struct nand_chip *chip); 1552 int nand_markbad_bbt(struct mtd_info *mtd, loff_t offs); 1553 int nand_isreserved_bbt(struct mtd_info *mtd, loff_t offs); 1554 int nand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt); 1555 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, 1556 int allowbbt); 1557 1558 /** 1559 * struct platform_nand_chip - chip level device structure 1560 * @nr_chips: max. number of chips to scan for 1561 * @chip_offset: chip number offset 1562 * @nr_partitions: number of partitions pointed to by partitions (or zero) 1563 * @partitions: mtd partition list 1564 * @chip_delay: R/B delay value in us 1565 * @options: Option flags, e.g. 16bit buswidth 1566 * @bbt_options: BBT option flags, e.g. NAND_BBT_USE_FLASH 1567 * @part_probe_types: NULL-terminated array of probe types 1568 */ 1569 struct platform_nand_chip { 1570 int nr_chips; 1571 int chip_offset; 1572 int nr_partitions; 1573 struct mtd_partition *partitions; 1574 int chip_delay; 1575 unsigned int options; 1576 unsigned int bbt_options; 1577 const char **part_probe_types; 1578 }; 1579 1580 /* Keep gcc happy */ 1581 struct platform_device; 1582 1583 /** 1584 * struct platform_nand_ctrl - controller level device structure 1585 * @probe: platform specific function to probe/setup hardware 1586 * @remove: platform specific function to remove/teardown hardware 1587 * @dev_ready: platform specific function to read ready/busy pin 1588 * @select_chip: platform specific chip select function 1589 * @cmd_ctrl: platform specific function for controlling 1590 * ALE/CLE/nCE. Also used to write command and address 1591 * @write_buf: platform specific function for write buffer 1592 * @read_buf: platform specific function for read buffer 1593 * @priv: private data to transport driver specific settings 1594 * 1595 * All fields are optional and depend on the hardware driver requirements 1596 */ 1597 struct platform_nand_ctrl { 1598 int (*probe)(struct platform_device *pdev); 1599 void (*remove)(struct platform_device *pdev); 1600 int (*dev_ready)(struct mtd_info *mtd); 1601 void (*select_chip)(struct mtd_info *mtd, int chip); 1602 void (*cmd_ctrl)(struct mtd_info *mtd, int dat, unsigned int ctrl); 1603 void (*write_buf)(struct mtd_info *mtd, const uint8_t *buf, int len); 1604 void (*read_buf)(struct mtd_info *mtd, uint8_t *buf, int len); 1605 void *priv; 1606 }; 1607 1608 /** 1609 * struct platform_nand_data - container structure for platform-specific data 1610 * @chip: chip level chip structure 1611 * @ctrl: controller level device structure 1612 */ 1613 struct platform_nand_data { 1614 struct platform_nand_chip chip; 1615 struct platform_nand_ctrl ctrl; 1616 }; 1617 1618 /* return the supported asynchronous timing mode. */ 1619 static inline int onfi_get_async_timing_mode(struct nand_chip *chip) 1620 { 1621 if (!chip->parameters.onfi) 1622 return ONFI_TIMING_MODE_UNKNOWN; 1623 1624 return chip->parameters.onfi->async_timing_mode; 1625 } 1626 1627 int onfi_fill_data_interface(struct nand_chip *chip, 1628 enum nand_data_interface_type type, 1629 int timing_mode); 1630 1631 /* 1632 * Check if it is a SLC nand. 1633 * The !nand_is_slc() can be used to check the MLC/TLC nand chips. 1634 * We do not distinguish the MLC and TLC now. 1635 */ 1636 static inline bool nand_is_slc(struct nand_chip *chip) 1637 { 1638 WARN(chip->bits_per_cell == 0, 1639 "chip->bits_per_cell is used uninitialized\n"); 1640 return chip->bits_per_cell == 1; 1641 } 1642 1643 /** 1644 * Check if the opcode's address should be sent only on the lower 8 bits 1645 * @command: opcode to check 1646 */ 1647 static inline int nand_opcode_8bits(unsigned int command) 1648 { 1649 switch (command) { 1650 case NAND_CMD_READID: 1651 case NAND_CMD_PARAM: 1652 case NAND_CMD_GET_FEATURES: 1653 case NAND_CMD_SET_FEATURES: 1654 return 1; 1655 default: 1656 break; 1657 } 1658 return 0; 1659 } 1660 1661 /* get timing characteristics from ONFI timing mode. */ 1662 const struct nand_sdr_timings *onfi_async_timing_mode_to_sdr_timings(int mode); 1663 1664 int nand_check_erased_ecc_chunk(void *data, int datalen, 1665 void *ecc, int ecclen, 1666 void *extraoob, int extraooblen, 1667 int threshold); 1668 1669 int nand_ecc_choose_conf(struct nand_chip *chip, 1670 const struct nand_ecc_caps *caps, int oobavail); 1671 1672 /* Default write_oob implementation */ 1673 int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page); 1674 1675 /* Default write_oob syndrome implementation */ 1676 int nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip, 1677 int page); 1678 1679 /* Default read_oob implementation */ 1680 int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page); 1681 1682 /* Default read_oob syndrome implementation */ 1683 int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip, 1684 int page); 1685 1686 /* Wrapper to use in order for controllers/vendors to GET/SET FEATURES */ 1687 int nand_get_features(struct nand_chip *chip, int addr, u8 *subfeature_param); 1688 int nand_set_features(struct nand_chip *chip, int addr, u8 *subfeature_param); 1689 /* Stub used by drivers that do not support GET/SET FEATURES operations */ 1690 int nand_get_set_features_notsupp(struct mtd_info *mtd, struct nand_chip *chip, 1691 int addr, u8 *subfeature_param); 1692 1693 /* Default read_page_raw implementation */ 1694 int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, 1695 uint8_t *buf, int oob_required, int page); 1696 int nand_read_page_raw_notsupp(struct mtd_info *mtd, struct nand_chip *chip, 1697 u8 *buf, int oob_required, int page); 1698 1699 /* Default write_page_raw implementation */ 1700 int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, 1701 const uint8_t *buf, int oob_required, int page); 1702 int nand_write_page_raw_notsupp(struct mtd_info *mtd, struct nand_chip *chip, 1703 const u8 *buf, int oob_required, int page); 1704 1705 /* Reset and initialize a NAND device */ 1706 int nand_reset(struct nand_chip *chip, int chipnr); 1707 1708 /* NAND operation helpers */ 1709 int nand_reset_op(struct nand_chip *chip); 1710 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf, 1711 unsigned int len); 1712 int nand_status_op(struct nand_chip *chip, u8 *status); 1713 int nand_exit_status_op(struct nand_chip *chip); 1714 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock); 1715 int nand_read_page_op(struct nand_chip *chip, unsigned int page, 1716 unsigned int offset_in_page, void *buf, unsigned int len); 1717 int nand_change_read_column_op(struct nand_chip *chip, 1718 unsigned int offset_in_page, void *buf, 1719 unsigned int len, bool force_8bit); 1720 int nand_read_oob_op(struct nand_chip *chip, unsigned int page, 1721 unsigned int offset_in_page, void *buf, unsigned int len); 1722 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page, 1723 unsigned int offset_in_page, const void *buf, 1724 unsigned int len); 1725 int nand_prog_page_end_op(struct nand_chip *chip); 1726 int nand_prog_page_op(struct nand_chip *chip, unsigned int page, 1727 unsigned int offset_in_page, const void *buf, 1728 unsigned int len); 1729 int nand_change_write_column_op(struct nand_chip *chip, 1730 unsigned int offset_in_page, const void *buf, 1731 unsigned int len, bool force_8bit); 1732 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len, 1733 bool force_8bit); 1734 int nand_write_data_op(struct nand_chip *chip, const void *buf, 1735 unsigned int len, bool force_8bit); 1736 1737 /* 1738 * Free resources held by the NAND device, must be called on error after a 1739 * sucessful nand_scan(). 1740 */ 1741 void nand_cleanup(struct nand_chip *chip); 1742 /* Unregister the MTD device and calls nand_cleanup() */ 1743 void nand_release(struct mtd_info *mtd); 1744 1745 /* Default extended ID decoding function */ 1746 void nand_decode_ext_id(struct nand_chip *chip); 1747 1748 /* 1749 * External helper for controller drivers that have to implement the WAITRDY 1750 * instruction and have no physical pin to check it. 1751 */ 1752 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms); 1753 1754 #endif /* __LINUX_MTD_RAWNAND_H */ 1755