xref: /linux-6.15/include/linux/mtd/rawnand.h (revision 0899431f)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  *  Copyright © 2000-2010 David Woodhouse <[email protected]>
4  *                        Steven J. Hill <[email protected]>
5  *		          Thomas Gleixner <[email protected]>
6  *
7  * Info:
8  *	Contains standard defines and IDs for NAND flash devices
9  *
10  * Changelog:
11  *	See git changelog.
12  */
13 #ifndef __LINUX_MTD_RAWNAND_H
14 #define __LINUX_MTD_RAWNAND_H
15 
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/nand.h>
18 #include <linux/mtd/flashchip.h>
19 #include <linux/mtd/bbm.h>
20 #include <linux/mtd/jedec.h>
21 #include <linux/mtd/onfi.h>
22 #include <linux/mutex.h>
23 #include <linux/of.h>
24 #include <linux/types.h>
25 
26 struct nand_chip;
27 
28 /* The maximum number of NAND chips in an array */
29 #define NAND_MAX_CHIPS		8
30 
31 /*
32  * Constants for hardware specific CLE/ALE/NCE function
33  *
34  * These are bits which can be or'ed to set/clear multiple
35  * bits in one go.
36  */
37 /* Select the chip by setting nCE to low */
38 #define NAND_NCE		0x01
39 /* Select the command latch by setting CLE to high */
40 #define NAND_CLE		0x02
41 /* Select the address latch by setting ALE to high */
42 #define NAND_ALE		0x04
43 
44 #define NAND_CTRL_CLE		(NAND_NCE | NAND_CLE)
45 #define NAND_CTRL_ALE		(NAND_NCE | NAND_ALE)
46 #define NAND_CTRL_CHANGE	0x80
47 
48 /*
49  * Standard NAND flash commands
50  */
51 #define NAND_CMD_READ0		0
52 #define NAND_CMD_READ1		1
53 #define NAND_CMD_RNDOUT		5
54 #define NAND_CMD_PAGEPROG	0x10
55 #define NAND_CMD_READOOB	0x50
56 #define NAND_CMD_ERASE1		0x60
57 #define NAND_CMD_STATUS		0x70
58 #define NAND_CMD_SEQIN		0x80
59 #define NAND_CMD_RNDIN		0x85
60 #define NAND_CMD_READID		0x90
61 #define NAND_CMD_ERASE2		0xd0
62 #define NAND_CMD_PARAM		0xec
63 #define NAND_CMD_GET_FEATURES	0xee
64 #define NAND_CMD_SET_FEATURES	0xef
65 #define NAND_CMD_RESET		0xff
66 
67 /* Extended commands for large page devices */
68 #define NAND_CMD_READSTART	0x30
69 #define NAND_CMD_RNDOUTSTART	0xE0
70 #define NAND_CMD_CACHEDPROG	0x15
71 
72 #define NAND_CMD_NONE		-1
73 
74 /* Status bits */
75 #define NAND_STATUS_FAIL	0x01
76 #define NAND_STATUS_FAIL_N1	0x02
77 #define NAND_STATUS_TRUE_READY	0x20
78 #define NAND_STATUS_READY	0x40
79 #define NAND_STATUS_WP		0x80
80 
81 #define NAND_DATA_IFACE_CHECK_ONLY	-1
82 
83 /*
84  * Constants for Hardware ECC
85  */
86 /* Reset Hardware ECC for read */
87 #define NAND_ECC_READ		0
88 /* Reset Hardware ECC for write */
89 #define NAND_ECC_WRITE		1
90 /* Enable Hardware ECC before syndrome is read back from flash */
91 #define NAND_ECC_READSYN	2
92 
93 /*
94  * Enable generic NAND 'page erased' check. This check is only done when
95  * ecc.correct() returns -EBADMSG.
96  * Set this flag if your implementation does not fix bitflips in erased
97  * pages and you want to rely on the default implementation.
98  */
99 #define NAND_ECC_GENERIC_ERASED_CHECK	BIT(0)
100 
101 /*
102  * Option constants for bizarre disfunctionality and real
103  * features.
104  */
105 
106 /* Buswidth is 16 bit */
107 #define NAND_BUSWIDTH_16	BIT(1)
108 
109 /*
110  * When using software implementation of Hamming, we can specify which byte
111  * ordering should be used.
112  */
113 #define NAND_ECC_SOFT_HAMMING_SM_ORDER	BIT(2)
114 
115 /* Chip has cache program function */
116 #define NAND_CACHEPRG		BIT(3)
117 /* Options valid for Samsung large page devices */
118 #define NAND_SAMSUNG_LP_OPTIONS NAND_CACHEPRG
119 
120 /*
121  * Chip requires ready check on read (for auto-incremented sequential read).
122  * True only for small page devices; large page devices do not support
123  * autoincrement.
124  */
125 #define NAND_NEED_READRDY	BIT(8)
126 
127 /* Chip does not allow subpage writes */
128 #define NAND_NO_SUBPAGE_WRITE	BIT(9)
129 
130 /* Device is one of 'new' xD cards that expose fake nand command set */
131 #define NAND_BROKEN_XD		BIT(10)
132 
133 /* Device behaves just like nand, but is readonly */
134 #define NAND_ROM		BIT(11)
135 
136 /* Device supports subpage reads */
137 #define NAND_SUBPAGE_READ	BIT(12)
138 /* Macros to identify the above */
139 #define NAND_HAS_SUBPAGE_READ(chip) ((chip->options & NAND_SUBPAGE_READ))
140 
141 /*
142  * Some MLC NANDs need data scrambling to limit bitflips caused by repeated
143  * patterns.
144  */
145 #define NAND_NEED_SCRAMBLING	BIT(13)
146 
147 /* Device needs 3rd row address cycle */
148 #define NAND_ROW_ADDR_3		BIT(14)
149 
150 /* Non chip related options */
151 /* This option skips the bbt scan during initialization. */
152 #define NAND_SKIP_BBTSCAN	BIT(16)
153 /* Chip may not exist, so silence any errors in scan */
154 #define NAND_SCAN_SILENT_NODEV	BIT(18)
155 
156 /*
157  * Autodetect nand buswidth with readid/onfi.
158  * This suppose the driver will configure the hardware in 8 bits mode
159  * when calling nand_scan_ident, and update its configuration
160  * before calling nand_scan_tail.
161  */
162 #define NAND_BUSWIDTH_AUTO      BIT(19)
163 
164 /*
165  * This option could be defined by controller drivers to protect against
166  * kmap'ed, vmalloc'ed highmem buffers being passed from upper layers
167  */
168 #define NAND_USES_DMA		BIT(20)
169 
170 /*
171  * In case your controller is implementing ->legacy.cmd_ctrl() and is relying
172  * on the default ->cmdfunc() implementation, you may want to let the core
173  * handle the tCCS delay which is required when a column change (RNDIN or
174  * RNDOUT) is requested.
175  * If your controller already takes care of this delay, you don't need to set
176  * this flag.
177  */
178 #define NAND_WAIT_TCCS		BIT(21)
179 
180 /*
181  * Whether the NAND chip is a boot medium. Drivers might use this information
182  * to select ECC algorithms supported by the boot ROM or similar restrictions.
183  */
184 #define NAND_IS_BOOT_MEDIUM	BIT(22)
185 
186 /*
187  * Do not try to tweak the timings at runtime. This is needed when the
188  * controller initializes the timings on itself or when it relies on
189  * configuration done by the bootloader.
190  */
191 #define NAND_KEEP_TIMINGS	BIT(23)
192 
193 /*
194  * There are different places where the manufacturer stores the factory bad
195  * block markers.
196  *
197  * Position within the block: Each of these pages needs to be checked for a
198  * bad block marking pattern.
199  */
200 #define NAND_BBM_FIRSTPAGE	BIT(24)
201 #define NAND_BBM_SECONDPAGE	BIT(25)
202 #define NAND_BBM_LASTPAGE	BIT(26)
203 
204 /*
205  * Some controllers with pipelined ECC engines override the BBM marker with
206  * data or ECC bytes, thus making bad block detection through bad block marker
207  * impossible. Let's flag those chips so the core knows it shouldn't check the
208  * BBM and consider all blocks good.
209  */
210 #define NAND_NO_BBM_QUIRK	BIT(27)
211 
212 /* Cell info constants */
213 #define NAND_CI_CHIPNR_MSK	0x03
214 #define NAND_CI_CELLTYPE_MSK	0x0C
215 #define NAND_CI_CELLTYPE_SHIFT	2
216 
217 /* Position within the OOB data of the page */
218 #define NAND_BBM_POS_SMALL		5
219 #define NAND_BBM_POS_LARGE		0
220 
221 /**
222  * struct nand_parameters - NAND generic parameters from the parameter page
223  * @model: Model name
224  * @supports_set_get_features: The NAND chip supports setting/getting features
225  * @set_feature_list: Bitmap of features that can be set
226  * @get_feature_list: Bitmap of features that can be get
227  * @onfi: ONFI specific parameters
228  */
229 struct nand_parameters {
230 	/* Generic parameters */
231 	const char *model;
232 	bool supports_set_get_features;
233 	DECLARE_BITMAP(set_feature_list, ONFI_FEATURE_NUMBER);
234 	DECLARE_BITMAP(get_feature_list, ONFI_FEATURE_NUMBER);
235 
236 	/* ONFI parameters */
237 	struct onfi_params *onfi;
238 };
239 
240 /* The maximum expected count of bytes in the NAND ID sequence */
241 #define NAND_MAX_ID_LEN 8
242 
243 /**
244  * struct nand_id - NAND id structure
245  * @data: buffer containing the id bytes.
246  * @len: ID length.
247  */
248 struct nand_id {
249 	u8 data[NAND_MAX_ID_LEN];
250 	int len;
251 };
252 
253 /**
254  * struct nand_ecc_step_info - ECC step information of ECC engine
255  * @stepsize: data bytes per ECC step
256  * @strengths: array of supported strengths
257  * @nstrengths: number of supported strengths
258  */
259 struct nand_ecc_step_info {
260 	int stepsize;
261 	const int *strengths;
262 	int nstrengths;
263 };
264 
265 /**
266  * struct nand_ecc_caps - capability of ECC engine
267  * @stepinfos: array of ECC step information
268  * @nstepinfos: number of ECC step information
269  * @calc_ecc_bytes: driver's hook to calculate ECC bytes per step
270  */
271 struct nand_ecc_caps {
272 	const struct nand_ecc_step_info *stepinfos;
273 	int nstepinfos;
274 	int (*calc_ecc_bytes)(int step_size, int strength);
275 };
276 
277 /* a shorthand to generate struct nand_ecc_caps with only one ECC stepsize */
278 #define NAND_ECC_CAPS_SINGLE(__name, __calc, __step, ...)	\
279 static const int __name##_strengths[] = { __VA_ARGS__ };	\
280 static const struct nand_ecc_step_info __name##_stepinfo = {	\
281 	.stepsize = __step,					\
282 	.strengths = __name##_strengths,			\
283 	.nstrengths = ARRAY_SIZE(__name##_strengths),		\
284 };								\
285 static const struct nand_ecc_caps __name = {			\
286 	.stepinfos = &__name##_stepinfo,			\
287 	.nstepinfos = 1,					\
288 	.calc_ecc_bytes = __calc,				\
289 }
290 
291 /**
292  * struct nand_ecc_ctrl - Control structure for ECC
293  * @engine_type: ECC engine type
294  * @placement:	OOB bytes placement
295  * @algo:	ECC algorithm
296  * @steps:	number of ECC steps per page
297  * @size:	data bytes per ECC step
298  * @bytes:	ECC bytes per step
299  * @strength:	max number of correctible bits per ECC step
300  * @total:	total number of ECC bytes per page
301  * @prepad:	padding information for syndrome based ECC generators
302  * @postpad:	padding information for syndrome based ECC generators
303  * @options:	ECC specific options (see NAND_ECC_XXX flags defined above)
304  * @calc_buf:	buffer for calculated ECC, size is oobsize.
305  * @code_buf:	buffer for ECC read from flash, size is oobsize.
306  * @hwctl:	function to control hardware ECC generator. Must only
307  *		be provided if an hardware ECC is available
308  * @calculate:	function for ECC calculation or readback from ECC hardware
309  * @correct:	function for ECC correction, matching to ECC generator (sw/hw).
310  *		Should return a positive number representing the number of
311  *		corrected bitflips, -EBADMSG if the number of bitflips exceed
312  *		ECC strength, or any other error code if the error is not
313  *		directly related to correction.
314  *		If -EBADMSG is returned the input buffers should be left
315  *		untouched.
316  * @read_page_raw:	function to read a raw page without ECC. This function
317  *			should hide the specific layout used by the ECC
318  *			controller and always return contiguous in-band and
319  *			out-of-band data even if they're not stored
320  *			contiguously on the NAND chip (e.g.
321  *			NAND_ECC_PLACEMENT_INTERLEAVED interleaves in-band and
322  *			out-of-band data).
323  * @write_page_raw:	function to write a raw page without ECC. This function
324  *			should hide the specific layout used by the ECC
325  *			controller and consider the passed data as contiguous
326  *			in-band and out-of-band data. ECC controller is
327  *			responsible for doing the appropriate transformations
328  *			to adapt to its specific layout (e.g.
329  *			NAND_ECC_PLACEMENT_INTERLEAVED interleaves in-band and
330  *			out-of-band data).
331  * @read_page:	function to read a page according to the ECC generator
332  *		requirements; returns maximum number of bitflips corrected in
333  *		any single ECC step, -EIO hw error
334  * @read_subpage:	function to read parts of the page covered by ECC;
335  *			returns same as read_page()
336  * @write_subpage:	function to write parts of the page covered by ECC.
337  * @write_page:	function to write a page according to the ECC generator
338  *		requirements.
339  * @write_oob_raw:	function to write chip OOB data without ECC
340  * @read_oob_raw:	function to read chip OOB data without ECC
341  * @read_oob:	function to read chip OOB data
342  * @write_oob:	function to write chip OOB data
343  */
344 struct nand_ecc_ctrl {
345 	enum nand_ecc_engine_type engine_type;
346 	enum nand_ecc_placement placement;
347 	enum nand_ecc_algo algo;
348 	int steps;
349 	int size;
350 	int bytes;
351 	int total;
352 	int strength;
353 	int prepad;
354 	int postpad;
355 	unsigned int options;
356 	u8 *calc_buf;
357 	u8 *code_buf;
358 	void (*hwctl)(struct nand_chip *chip, int mode);
359 	int (*calculate)(struct nand_chip *chip, const uint8_t *dat,
360 			 uint8_t *ecc_code);
361 	int (*correct)(struct nand_chip *chip, uint8_t *dat, uint8_t *read_ecc,
362 		       uint8_t *calc_ecc);
363 	int (*read_page_raw)(struct nand_chip *chip, uint8_t *buf,
364 			     int oob_required, int page);
365 	int (*write_page_raw)(struct nand_chip *chip, const uint8_t *buf,
366 			      int oob_required, int page);
367 	int (*read_page)(struct nand_chip *chip, uint8_t *buf,
368 			 int oob_required, int page);
369 	int (*read_subpage)(struct nand_chip *chip, uint32_t offs,
370 			    uint32_t len, uint8_t *buf, int page);
371 	int (*write_subpage)(struct nand_chip *chip, uint32_t offset,
372 			     uint32_t data_len, const uint8_t *data_buf,
373 			     int oob_required, int page);
374 	int (*write_page)(struct nand_chip *chip, const uint8_t *buf,
375 			  int oob_required, int page);
376 	int (*write_oob_raw)(struct nand_chip *chip, int page);
377 	int (*read_oob_raw)(struct nand_chip *chip, int page);
378 	int (*read_oob)(struct nand_chip *chip, int page);
379 	int (*write_oob)(struct nand_chip *chip, int page);
380 };
381 
382 /**
383  * struct nand_sdr_timings - SDR NAND chip timings
384  *
385  * This struct defines the timing requirements of a SDR NAND chip.
386  * These information can be found in every NAND datasheets and the timings
387  * meaning are described in the ONFI specifications:
388  * www.onfi.org/~/media/ONFI/specs/onfi_3_1_spec.pdf (chapter 4.15 Timing
389  * Parameters)
390  *
391  * All these timings are expressed in picoseconds.
392  *
393  * @tBERS_max: Block erase time
394  * @tCCS_min: Change column setup time
395  * @tPROG_max: Page program time
396  * @tR_max: Page read time
397  * @tALH_min: ALE hold time
398  * @tADL_min: ALE to data loading time
399  * @tALS_min: ALE setup time
400  * @tAR_min: ALE to RE# delay
401  * @tCEA_max: CE# access time
402  * @tCEH_min: CE# high hold time
403  * @tCH_min:  CE# hold time
404  * @tCHZ_max: CE# high to output hi-Z
405  * @tCLH_min: CLE hold time
406  * @tCLR_min: CLE to RE# delay
407  * @tCLS_min: CLE setup time
408  * @tCOH_min: CE# high to output hold
409  * @tCS_min: CE# setup time
410  * @tDH_min: Data hold time
411  * @tDS_min: Data setup time
412  * @tFEAT_max: Busy time for Set Features and Get Features
413  * @tIR_min: Output hi-Z to RE# low
414  * @tITC_max: Interface and Timing Mode Change time
415  * @tRC_min: RE# cycle time
416  * @tREA_max: RE# access time
417  * @tREH_min: RE# high hold time
418  * @tRHOH_min: RE# high to output hold
419  * @tRHW_min: RE# high to WE# low
420  * @tRHZ_max: RE# high to output hi-Z
421  * @tRLOH_min: RE# low to output hold
422  * @tRP_min: RE# pulse width
423  * @tRR_min: Ready to RE# low (data only)
424  * @tRST_max: Device reset time, measured from the falling edge of R/B# to the
425  *	      rising edge of R/B#.
426  * @tWB_max: WE# high to SR[6] low
427  * @tWC_min: WE# cycle time
428  * @tWH_min: WE# high hold time
429  * @tWHR_min: WE# high to RE# low
430  * @tWP_min: WE# pulse width
431  * @tWW_min: WP# transition to WE# low
432  */
433 struct nand_sdr_timings {
434 	u64 tBERS_max;
435 	u32 tCCS_min;
436 	u64 tPROG_max;
437 	u64 tR_max;
438 	u32 tALH_min;
439 	u32 tADL_min;
440 	u32 tALS_min;
441 	u32 tAR_min;
442 	u32 tCEA_max;
443 	u32 tCEH_min;
444 	u32 tCH_min;
445 	u32 tCHZ_max;
446 	u32 tCLH_min;
447 	u32 tCLR_min;
448 	u32 tCLS_min;
449 	u32 tCOH_min;
450 	u32 tCS_min;
451 	u32 tDH_min;
452 	u32 tDS_min;
453 	u32 tFEAT_max;
454 	u32 tIR_min;
455 	u32 tITC_max;
456 	u32 tRC_min;
457 	u32 tREA_max;
458 	u32 tREH_min;
459 	u32 tRHOH_min;
460 	u32 tRHW_min;
461 	u32 tRHZ_max;
462 	u32 tRLOH_min;
463 	u32 tRP_min;
464 	u32 tRR_min;
465 	u64 tRST_max;
466 	u32 tWB_max;
467 	u32 tWC_min;
468 	u32 tWH_min;
469 	u32 tWHR_min;
470 	u32 tWP_min;
471 	u32 tWW_min;
472 };
473 
474 /**
475  * enum nand_interface_type - NAND interface type
476  * @NAND_SDR_IFACE:	Single Data Rate interface
477  */
478 enum nand_interface_type {
479 	NAND_SDR_IFACE,
480 };
481 
482 /**
483  * struct nand_interface_config - NAND interface timing
484  * @type:	 type of the timing
485  * @timings:	 The timing information
486  * @timings.mode: Timing mode as defined in the specification
487  * @timings.sdr: Use it when @type is %NAND_SDR_IFACE.
488  */
489 struct nand_interface_config {
490 	enum nand_interface_type type;
491 	struct nand_timings {
492 		unsigned int mode;
493 		union {
494 			struct nand_sdr_timings sdr;
495 		};
496 	} timings;
497 };
498 
499 /**
500  * nand_get_sdr_timings - get SDR timing from data interface
501  * @conf:	The data interface
502  */
503 static inline const struct nand_sdr_timings *
504 nand_get_sdr_timings(const struct nand_interface_config *conf)
505 {
506 	if (conf->type != NAND_SDR_IFACE)
507 		return ERR_PTR(-EINVAL);
508 
509 	return &conf->timings.sdr;
510 }
511 
512 /**
513  * struct nand_op_cmd_instr - Definition of a command instruction
514  * @opcode: the command to issue in one cycle
515  */
516 struct nand_op_cmd_instr {
517 	u8 opcode;
518 };
519 
520 /**
521  * struct nand_op_addr_instr - Definition of an address instruction
522  * @naddrs: length of the @addrs array
523  * @addrs: array containing the address cycles to issue
524  */
525 struct nand_op_addr_instr {
526 	unsigned int naddrs;
527 	const u8 *addrs;
528 };
529 
530 /**
531  * struct nand_op_data_instr - Definition of a data instruction
532  * @len: number of data bytes to move
533  * @buf: buffer to fill
534  * @buf.in: buffer to fill when reading from the NAND chip
535  * @buf.out: buffer to read from when writing to the NAND chip
536  * @force_8bit: force 8-bit access
537  *
538  * Please note that "in" and "out" are inverted from the ONFI specification
539  * and are from the controller perspective, so a "in" is a read from the NAND
540  * chip while a "out" is a write to the NAND chip.
541  */
542 struct nand_op_data_instr {
543 	unsigned int len;
544 	union {
545 		void *in;
546 		const void *out;
547 	} buf;
548 	bool force_8bit;
549 };
550 
551 /**
552  * struct nand_op_waitrdy_instr - Definition of a wait ready instruction
553  * @timeout_ms: maximum delay while waiting for the ready/busy pin in ms
554  */
555 struct nand_op_waitrdy_instr {
556 	unsigned int timeout_ms;
557 };
558 
559 /**
560  * enum nand_op_instr_type - Definition of all instruction types
561  * @NAND_OP_CMD_INSTR: command instruction
562  * @NAND_OP_ADDR_INSTR: address instruction
563  * @NAND_OP_DATA_IN_INSTR: data in instruction
564  * @NAND_OP_DATA_OUT_INSTR: data out instruction
565  * @NAND_OP_WAITRDY_INSTR: wait ready instruction
566  */
567 enum nand_op_instr_type {
568 	NAND_OP_CMD_INSTR,
569 	NAND_OP_ADDR_INSTR,
570 	NAND_OP_DATA_IN_INSTR,
571 	NAND_OP_DATA_OUT_INSTR,
572 	NAND_OP_WAITRDY_INSTR,
573 };
574 
575 /**
576  * struct nand_op_instr - Instruction object
577  * @type: the instruction type
578  * @ctx:  extra data associated to the instruction. You'll have to use the
579  *        appropriate element depending on @type
580  * @ctx.cmd: use it if @type is %NAND_OP_CMD_INSTR
581  * @ctx.addr: use it if @type is %NAND_OP_ADDR_INSTR
582  * @ctx.data: use it if @type is %NAND_OP_DATA_IN_INSTR
583  *	      or %NAND_OP_DATA_OUT_INSTR
584  * @ctx.waitrdy: use it if @type is %NAND_OP_WAITRDY_INSTR
585  * @delay_ns: delay the controller should apply after the instruction has been
586  *	      issued on the bus. Most modern controllers have internal timings
587  *	      control logic, and in this case, the controller driver can ignore
588  *	      this field.
589  */
590 struct nand_op_instr {
591 	enum nand_op_instr_type type;
592 	union {
593 		struct nand_op_cmd_instr cmd;
594 		struct nand_op_addr_instr addr;
595 		struct nand_op_data_instr data;
596 		struct nand_op_waitrdy_instr waitrdy;
597 	} ctx;
598 	unsigned int delay_ns;
599 };
600 
601 /*
602  * Special handling must be done for the WAITRDY timeout parameter as it usually
603  * is either tPROG (after a prog), tR (before a read), tRST (during a reset) or
604  * tBERS (during an erase) which all of them are u64 values that cannot be
605  * divided by usual kernel macros and must be handled with the special
606  * DIV_ROUND_UP_ULL() macro.
607  *
608  * Cast to type of dividend is needed here to guarantee that the result won't
609  * be an unsigned long long when the dividend is an unsigned long (or smaller),
610  * which is what the compiler does when it sees ternary operator with 2
611  * different return types (picks the largest type to make sure there's no
612  * loss).
613  */
614 #define __DIVIDE(dividend, divisor) ({						\
615 	(__typeof__(dividend))(sizeof(dividend) <= sizeof(unsigned long) ?	\
616 			       DIV_ROUND_UP(dividend, divisor) :		\
617 			       DIV_ROUND_UP_ULL(dividend, divisor)); 		\
618 	})
619 #define PSEC_TO_NSEC(x) __DIVIDE(x, 1000)
620 #define PSEC_TO_MSEC(x) __DIVIDE(x, 1000000000)
621 
622 #define NAND_OP_CMD(id, ns)						\
623 	{								\
624 		.type = NAND_OP_CMD_INSTR,				\
625 		.ctx.cmd.opcode = id,					\
626 		.delay_ns = ns,						\
627 	}
628 
629 #define NAND_OP_ADDR(ncycles, cycles, ns)				\
630 	{								\
631 		.type = NAND_OP_ADDR_INSTR,				\
632 		.ctx.addr = {						\
633 			.naddrs = ncycles,				\
634 			.addrs = cycles,				\
635 		},							\
636 		.delay_ns = ns,						\
637 	}
638 
639 #define NAND_OP_DATA_IN(l, b, ns)					\
640 	{								\
641 		.type = NAND_OP_DATA_IN_INSTR,				\
642 		.ctx.data = {						\
643 			.len = l,					\
644 			.buf.in = b,					\
645 			.force_8bit = false,				\
646 		},							\
647 		.delay_ns = ns,						\
648 	}
649 
650 #define NAND_OP_DATA_OUT(l, b, ns)					\
651 	{								\
652 		.type = NAND_OP_DATA_OUT_INSTR,				\
653 		.ctx.data = {						\
654 			.len = l,					\
655 			.buf.out = b,					\
656 			.force_8bit = false,				\
657 		},							\
658 		.delay_ns = ns,						\
659 	}
660 
661 #define NAND_OP_8BIT_DATA_IN(l, b, ns)					\
662 	{								\
663 		.type = NAND_OP_DATA_IN_INSTR,				\
664 		.ctx.data = {						\
665 			.len = l,					\
666 			.buf.in = b,					\
667 			.force_8bit = true,				\
668 		},							\
669 		.delay_ns = ns,						\
670 	}
671 
672 #define NAND_OP_8BIT_DATA_OUT(l, b, ns)					\
673 	{								\
674 		.type = NAND_OP_DATA_OUT_INSTR,				\
675 		.ctx.data = {						\
676 			.len = l,					\
677 			.buf.out = b,					\
678 			.force_8bit = true,				\
679 		},							\
680 		.delay_ns = ns,						\
681 	}
682 
683 #define NAND_OP_WAIT_RDY(tout_ms, ns)					\
684 	{								\
685 		.type = NAND_OP_WAITRDY_INSTR,				\
686 		.ctx.waitrdy.timeout_ms = tout_ms,			\
687 		.delay_ns = ns,						\
688 	}
689 
690 /**
691  * struct nand_subop - a sub operation
692  * @cs: the CS line to select for this NAND sub-operation
693  * @instrs: array of instructions
694  * @ninstrs: length of the @instrs array
695  * @first_instr_start_off: offset to start from for the first instruction
696  *			   of the sub-operation
697  * @last_instr_end_off: offset to end at (excluded) for the last instruction
698  *			of the sub-operation
699  *
700  * Both @first_instr_start_off and @last_instr_end_off only apply to data or
701  * address instructions.
702  *
703  * When an operation cannot be handled as is by the NAND controller, it will
704  * be split by the parser into sub-operations which will be passed to the
705  * controller driver.
706  */
707 struct nand_subop {
708 	unsigned int cs;
709 	const struct nand_op_instr *instrs;
710 	unsigned int ninstrs;
711 	unsigned int first_instr_start_off;
712 	unsigned int last_instr_end_off;
713 };
714 
715 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
716 					   unsigned int op_id);
717 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
718 					 unsigned int op_id);
719 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
720 					   unsigned int op_id);
721 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
722 				     unsigned int op_id);
723 
724 /**
725  * struct nand_op_parser_addr_constraints - Constraints for address instructions
726  * @maxcycles: maximum number of address cycles the controller can issue in a
727  *	       single step
728  */
729 struct nand_op_parser_addr_constraints {
730 	unsigned int maxcycles;
731 };
732 
733 /**
734  * struct nand_op_parser_data_constraints - Constraints for data instructions
735  * @maxlen: maximum data length that the controller can handle in a single step
736  */
737 struct nand_op_parser_data_constraints {
738 	unsigned int maxlen;
739 };
740 
741 /**
742  * struct nand_op_parser_pattern_elem - One element of a pattern
743  * @type: the instructuction type
744  * @optional: whether this element of the pattern is optional or mandatory
745  * @ctx: address or data constraint
746  * @ctx.addr: address constraint (number of cycles)
747  * @ctx.data: data constraint (data length)
748  */
749 struct nand_op_parser_pattern_elem {
750 	enum nand_op_instr_type type;
751 	bool optional;
752 	union {
753 		struct nand_op_parser_addr_constraints addr;
754 		struct nand_op_parser_data_constraints data;
755 	} ctx;
756 };
757 
758 #define NAND_OP_PARSER_PAT_CMD_ELEM(_opt)			\
759 	{							\
760 		.type = NAND_OP_CMD_INSTR,			\
761 		.optional = _opt,				\
762 	}
763 
764 #define NAND_OP_PARSER_PAT_ADDR_ELEM(_opt, _maxcycles)		\
765 	{							\
766 		.type = NAND_OP_ADDR_INSTR,			\
767 		.optional = _opt,				\
768 		.ctx.addr.maxcycles = _maxcycles,		\
769 	}
770 
771 #define NAND_OP_PARSER_PAT_DATA_IN_ELEM(_opt, _maxlen)		\
772 	{							\
773 		.type = NAND_OP_DATA_IN_INSTR,			\
774 		.optional = _opt,				\
775 		.ctx.data.maxlen = _maxlen,			\
776 	}
777 
778 #define NAND_OP_PARSER_PAT_DATA_OUT_ELEM(_opt, _maxlen)		\
779 	{							\
780 		.type = NAND_OP_DATA_OUT_INSTR,			\
781 		.optional = _opt,				\
782 		.ctx.data.maxlen = _maxlen,			\
783 	}
784 
785 #define NAND_OP_PARSER_PAT_WAITRDY_ELEM(_opt)			\
786 	{							\
787 		.type = NAND_OP_WAITRDY_INSTR,			\
788 		.optional = _opt,				\
789 	}
790 
791 /**
792  * struct nand_op_parser_pattern - NAND sub-operation pattern descriptor
793  * @elems: array of pattern elements
794  * @nelems: number of pattern elements in @elems array
795  * @exec: the function that will issue a sub-operation
796  *
797  * A pattern is a list of elements, each element reprensenting one instruction
798  * with its constraints. The pattern itself is used by the core to match NAND
799  * chip operation with NAND controller operations.
800  * Once a match between a NAND controller operation pattern and a NAND chip
801  * operation (or a sub-set of a NAND operation) is found, the pattern ->exec()
802  * hook is called so that the controller driver can issue the operation on the
803  * bus.
804  *
805  * Controller drivers should declare as many patterns as they support and pass
806  * this list of patterns (created with the help of the following macro) to
807  * the nand_op_parser_exec_op() helper.
808  */
809 struct nand_op_parser_pattern {
810 	const struct nand_op_parser_pattern_elem *elems;
811 	unsigned int nelems;
812 	int (*exec)(struct nand_chip *chip, const struct nand_subop *subop);
813 };
814 
815 #define NAND_OP_PARSER_PATTERN(_exec, ...)							\
816 	{											\
817 		.exec = _exec,									\
818 		.elems = (const struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ },		\
819 		.nelems = sizeof((struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }) /	\
820 			  sizeof(struct nand_op_parser_pattern_elem),				\
821 	}
822 
823 /**
824  * struct nand_op_parser - NAND controller operation parser descriptor
825  * @patterns: array of supported patterns
826  * @npatterns: length of the @patterns array
827  *
828  * The parser descriptor is just an array of supported patterns which will be
829  * iterated by nand_op_parser_exec_op() everytime it tries to execute an
830  * NAND operation (or tries to determine if a specific operation is supported).
831  *
832  * It is worth mentioning that patterns will be tested in their declaration
833  * order, and the first match will be taken, so it's important to order patterns
834  * appropriately so that simple/inefficient patterns are placed at the end of
835  * the list. Usually, this is where you put single instruction patterns.
836  */
837 struct nand_op_parser {
838 	const struct nand_op_parser_pattern *patterns;
839 	unsigned int npatterns;
840 };
841 
842 #define NAND_OP_PARSER(...)									\
843 	{											\
844 		.patterns = (const struct nand_op_parser_pattern[]) { __VA_ARGS__ },		\
845 		.npatterns = sizeof((struct nand_op_parser_pattern[]) { __VA_ARGS__ }) /	\
846 			     sizeof(struct nand_op_parser_pattern),				\
847 	}
848 
849 /**
850  * struct nand_operation - NAND operation descriptor
851  * @cs: the CS line to select for this NAND operation
852  * @instrs: array of instructions to execute
853  * @ninstrs: length of the @instrs array
854  *
855  * The actual operation structure that will be passed to chip->exec_op().
856  */
857 struct nand_operation {
858 	unsigned int cs;
859 	const struct nand_op_instr *instrs;
860 	unsigned int ninstrs;
861 };
862 
863 #define NAND_OPERATION(_cs, _instrs)				\
864 	{							\
865 		.cs = _cs,					\
866 		.instrs = _instrs,				\
867 		.ninstrs = ARRAY_SIZE(_instrs),			\
868 	}
869 
870 int nand_op_parser_exec_op(struct nand_chip *chip,
871 			   const struct nand_op_parser *parser,
872 			   const struct nand_operation *op, bool check_only);
873 
874 static inline void nand_op_trace(const char *prefix,
875 				 const struct nand_op_instr *instr)
876 {
877 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
878 	switch (instr->type) {
879 	case NAND_OP_CMD_INSTR:
880 		pr_debug("%sCMD      [0x%02x]\n", prefix,
881 			 instr->ctx.cmd.opcode);
882 		break;
883 	case NAND_OP_ADDR_INSTR:
884 		pr_debug("%sADDR     [%d cyc: %*ph]\n", prefix,
885 			 instr->ctx.addr.naddrs,
886 			 instr->ctx.addr.naddrs < 64 ?
887 			 instr->ctx.addr.naddrs : 64,
888 			 instr->ctx.addr.addrs);
889 		break;
890 	case NAND_OP_DATA_IN_INSTR:
891 		pr_debug("%sDATA_IN  [%d B%s]\n", prefix,
892 			 instr->ctx.data.len,
893 			 instr->ctx.data.force_8bit ?
894 			 ", force 8-bit" : "");
895 		break;
896 	case NAND_OP_DATA_OUT_INSTR:
897 		pr_debug("%sDATA_OUT [%d B%s]\n", prefix,
898 			 instr->ctx.data.len,
899 			 instr->ctx.data.force_8bit ?
900 			 ", force 8-bit" : "");
901 		break;
902 	case NAND_OP_WAITRDY_INSTR:
903 		pr_debug("%sWAITRDY  [max %d ms]\n", prefix,
904 			 instr->ctx.waitrdy.timeout_ms);
905 		break;
906 	}
907 #endif
908 }
909 
910 /**
911  * struct nand_controller_ops - Controller operations
912  *
913  * @attach_chip: this method is called after the NAND detection phase after
914  *		 flash ID and MTD fields such as erase size, page size and OOB
915  *		 size have been set up. ECC requirements are available if
916  *		 provided by the NAND chip or device tree. Typically used to
917  *		 choose the appropriate ECC configuration and allocate
918  *		 associated resources.
919  *		 This hook is optional.
920  * @detach_chip: free all resources allocated/claimed in
921  *		 nand_controller_ops->attach_chip().
922  *		 This hook is optional.
923  * @exec_op:	 controller specific method to execute NAND operations.
924  *		 This method replaces chip->legacy.cmdfunc(),
925  *		 chip->legacy.{read,write}_{buf,byte,word}(),
926  *		 chip->legacy.dev_ready() and chip->legacy.waifunc().
927  * @setup_interface: setup the data interface and timing. If chipnr is set to
928  *		     %NAND_DATA_IFACE_CHECK_ONLY this means the configuration
929  *		     should not be applied but only checked.
930  *		     This hook is optional.
931  */
932 struct nand_controller_ops {
933 	int (*attach_chip)(struct nand_chip *chip);
934 	void (*detach_chip)(struct nand_chip *chip);
935 	int (*exec_op)(struct nand_chip *chip,
936 		       const struct nand_operation *op,
937 		       bool check_only);
938 	int (*setup_interface)(struct nand_chip *chip, int chipnr,
939 			       const struct nand_interface_config *conf);
940 };
941 
942 /**
943  * struct nand_controller - Structure used to describe a NAND controller
944  *
945  * @lock:		lock used to serialize accesses to the NAND controller
946  * @ops:		NAND controller operations.
947  */
948 struct nand_controller {
949 	struct mutex lock;
950 	const struct nand_controller_ops *ops;
951 };
952 
953 static inline void nand_controller_init(struct nand_controller *nfc)
954 {
955 	mutex_init(&nfc->lock);
956 }
957 
958 /**
959  * struct nand_legacy - NAND chip legacy fields/hooks
960  * @IO_ADDR_R: address to read the 8 I/O lines of the flash device
961  * @IO_ADDR_W: address to write the 8 I/O lines of the flash device
962  * @select_chip: select/deselect a specific target/die
963  * @read_byte: read one byte from the chip
964  * @write_byte: write a single byte to the chip on the low 8 I/O lines
965  * @write_buf: write data from the buffer to the chip
966  * @read_buf: read data from the chip into the buffer
967  * @cmd_ctrl: hardware specific function for controlling ALE/CLE/nCE. Also used
968  *	      to write command and address
969  * @cmdfunc: hardware specific function for writing commands to the chip.
970  * @dev_ready: hardware specific function for accessing device ready/busy line.
971  *	       If set to NULL no access to ready/busy is available and the
972  *	       ready/busy information is read from the chip status register.
973  * @waitfunc: hardware specific function for wait on ready.
974  * @block_bad: check if a block is bad, using OOB markers
975  * @block_markbad: mark a block bad
976  * @set_features: set the NAND chip features
977  * @get_features: get the NAND chip features
978  * @chip_delay: chip dependent delay for transferring data from array to read
979  *		regs (tR).
980  * @dummy_controller: dummy controller implementation for drivers that can
981  *		      only control a single chip
982  *
983  * If you look at this structure you're already wrong. These fields/hooks are
984  * all deprecated.
985  */
986 struct nand_legacy {
987 	void __iomem *IO_ADDR_R;
988 	void __iomem *IO_ADDR_W;
989 	void (*select_chip)(struct nand_chip *chip, int cs);
990 	u8 (*read_byte)(struct nand_chip *chip);
991 	void (*write_byte)(struct nand_chip *chip, u8 byte);
992 	void (*write_buf)(struct nand_chip *chip, const u8 *buf, int len);
993 	void (*read_buf)(struct nand_chip *chip, u8 *buf, int len);
994 	void (*cmd_ctrl)(struct nand_chip *chip, int dat, unsigned int ctrl);
995 	void (*cmdfunc)(struct nand_chip *chip, unsigned command, int column,
996 			int page_addr);
997 	int (*dev_ready)(struct nand_chip *chip);
998 	int (*waitfunc)(struct nand_chip *chip);
999 	int (*block_bad)(struct nand_chip *chip, loff_t ofs);
1000 	int (*block_markbad)(struct nand_chip *chip, loff_t ofs);
1001 	int (*set_features)(struct nand_chip *chip, int feature_addr,
1002 			    u8 *subfeature_para);
1003 	int (*get_features)(struct nand_chip *chip, int feature_addr,
1004 			    u8 *subfeature_para);
1005 	int chip_delay;
1006 	struct nand_controller dummy_controller;
1007 };
1008 
1009 /**
1010  * struct nand_chip_ops - NAND chip operations
1011  * @suspend: Suspend operation
1012  * @resume: Resume operation
1013  * @lock_area: Lock operation
1014  * @unlock_area: Unlock operation
1015  * @setup_read_retry: Set the read-retry mode (mostly needed for MLC NANDs)
1016  * @choose_interface_config: Choose the best interface configuration
1017  */
1018 struct nand_chip_ops {
1019 	int (*suspend)(struct nand_chip *chip);
1020 	void (*resume)(struct nand_chip *chip);
1021 	int (*lock_area)(struct nand_chip *chip, loff_t ofs, uint64_t len);
1022 	int (*unlock_area)(struct nand_chip *chip, loff_t ofs, uint64_t len);
1023 	int (*setup_read_retry)(struct nand_chip *chip, int retry_mode);
1024 	int (*choose_interface_config)(struct nand_chip *chip,
1025 				       struct nand_interface_config *iface);
1026 };
1027 
1028 /**
1029  * struct nand_manufacturer - NAND manufacturer structure
1030  * @desc: The manufacturer description
1031  * @priv: Private information for the manufacturer driver
1032  */
1033 struct nand_manufacturer {
1034 	const struct nand_manufacturer_desc *desc;
1035 	void *priv;
1036 };
1037 
1038 /**
1039  * struct nand_secure_region - NAND secure region structure
1040  * @offset: Offset of the start of the secure region
1041  * @size: Size of the secure region
1042  */
1043 struct nand_secure_region {
1044 	u64 offset;
1045 	u64 size;
1046 };
1047 
1048 /**
1049  * struct nand_chip - NAND Private Flash Chip Data
1050  * @base: Inherit from the generic NAND device
1051  * @id: Holds NAND ID
1052  * @parameters: Holds generic parameters under an easily readable form
1053  * @manufacturer: Manufacturer information
1054  * @ops: NAND chip operations
1055  * @legacy: All legacy fields/hooks. If you develop a new driver, don't even try
1056  *          to use any of these fields/hooks, and if you're modifying an
1057  *          existing driver that is using those fields/hooks, you should
1058  *          consider reworking the driver and avoid using them.
1059  * @options: Various chip options. They can partly be set to inform nand_scan
1060  *           about special functionality. See the defines for further
1061  *           explanation.
1062  * @current_interface_config: The currently used NAND interface configuration
1063  * @best_interface_config: The best NAND interface configuration which fits both
1064  *                         the NAND chip and NAND controller constraints. If
1065  *                         unset, the default reset interface configuration must
1066  *                         be used.
1067  * @bbt_erase_shift: Number of address bits in a bbt entry
1068  * @bbt_options: Bad block table specific options. All options used here must
1069  *               come from bbm.h. By default, these options will be copied to
1070  *               the appropriate nand_bbt_descr's.
1071  * @badblockpos: Bad block marker position in the oob area
1072  * @badblockbits: Minimum number of set bits in a good block's bad block marker
1073  *                position; i.e., BBM = 11110111b is good when badblockbits = 7
1074  * @bbt_td: Bad block table descriptor for flash lookup
1075  * @bbt_md: Bad block table mirror descriptor
1076  * @badblock_pattern: Bad block scan pattern used for initial bad block scan
1077  * @bbt: Bad block table pointer
1078  * @page_shift: Number of address bits in a page (column address bits)
1079  * @phys_erase_shift: Number of address bits in a physical eraseblock
1080  * @chip_shift: Number of address bits in one chip
1081  * @pagemask: Page number mask = number of (pages / chip) - 1
1082  * @subpagesize: Holds the subpagesize
1083  * @data_buf: Buffer for data, size is (page size + oobsize)
1084  * @oob_poi: pointer on the OOB area covered by data_buf
1085  * @pagecache: Structure containing page cache related fields
1086  * @pagecache.bitflips: Number of bitflips of the cached page
1087  * @pagecache.page: Page number currently in the cache. -1 means no page is
1088  *                  currently cached
1089  * @buf_align: Minimum buffer alignment required by a platform
1090  * @lock: Lock protecting the suspended field. Also used to serialize accesses
1091  *        to the NAND device
1092  * @suspended: Set to 1 when the device is suspended, 0 when it's not
1093  * @cur_cs: Currently selected target. -1 means no target selected, otherwise we
1094  *          should always have cur_cs >= 0 && cur_cs < nanddev_ntargets().
1095  *          NAND Controller drivers should not modify this value, but they're
1096  *          allowed to read it.
1097  * @read_retries: The number of read retry modes supported
1098  * @secure_regions: Structure containing the secure regions info
1099  * @nr_secure_regions: Number of secure regions
1100  * @controller: The hardware controller	structure which is shared among multiple
1101  *              independent devices
1102  * @ecc: The ECC controller structure
1103  * @priv: Chip private data
1104  */
1105 struct nand_chip {
1106 	struct nand_device base;
1107 	struct nand_id id;
1108 	struct nand_parameters parameters;
1109 	struct nand_manufacturer manufacturer;
1110 	struct nand_chip_ops ops;
1111 	struct nand_legacy legacy;
1112 	unsigned int options;
1113 
1114 	/* Data interface */
1115 	const struct nand_interface_config *current_interface_config;
1116 	struct nand_interface_config *best_interface_config;
1117 
1118 	/* Bad block information */
1119 	unsigned int bbt_erase_shift;
1120 	unsigned int bbt_options;
1121 	unsigned int badblockpos;
1122 	unsigned int badblockbits;
1123 	struct nand_bbt_descr *bbt_td;
1124 	struct nand_bbt_descr *bbt_md;
1125 	struct nand_bbt_descr *badblock_pattern;
1126 	u8 *bbt;
1127 
1128 	/* Device internal layout */
1129 	unsigned int page_shift;
1130 	unsigned int phys_erase_shift;
1131 	unsigned int chip_shift;
1132 	unsigned int pagemask;
1133 	unsigned int subpagesize;
1134 
1135 	/* Buffers */
1136 	u8 *data_buf;
1137 	u8 *oob_poi;
1138 	struct {
1139 		unsigned int bitflips;
1140 		int page;
1141 	} pagecache;
1142 	unsigned long buf_align;
1143 
1144 	/* Internals */
1145 	struct mutex lock;
1146 	unsigned int suspended : 1;
1147 	int cur_cs;
1148 	int read_retries;
1149 	struct nand_secure_region *secure_regions;
1150 	u8 nr_secure_regions;
1151 
1152 	/* Externals */
1153 	struct nand_controller *controller;
1154 	struct nand_ecc_ctrl ecc;
1155 	void *priv;
1156 };
1157 
1158 static inline struct nand_chip *mtd_to_nand(struct mtd_info *mtd)
1159 {
1160 	return container_of(mtd, struct nand_chip, base.mtd);
1161 }
1162 
1163 static inline struct mtd_info *nand_to_mtd(struct nand_chip *chip)
1164 {
1165 	return &chip->base.mtd;
1166 }
1167 
1168 static inline void *nand_get_controller_data(struct nand_chip *chip)
1169 {
1170 	return chip->priv;
1171 }
1172 
1173 static inline void nand_set_controller_data(struct nand_chip *chip, void *priv)
1174 {
1175 	chip->priv = priv;
1176 }
1177 
1178 static inline void nand_set_manufacturer_data(struct nand_chip *chip,
1179 					      void *priv)
1180 {
1181 	chip->manufacturer.priv = priv;
1182 }
1183 
1184 static inline void *nand_get_manufacturer_data(struct nand_chip *chip)
1185 {
1186 	return chip->manufacturer.priv;
1187 }
1188 
1189 static inline void nand_set_flash_node(struct nand_chip *chip,
1190 				       struct device_node *np)
1191 {
1192 	mtd_set_of_node(nand_to_mtd(chip), np);
1193 }
1194 
1195 static inline struct device_node *nand_get_flash_node(struct nand_chip *chip)
1196 {
1197 	return mtd_get_of_node(nand_to_mtd(chip));
1198 }
1199 
1200 /**
1201  * nand_get_interface_config - Retrieve the current interface configuration
1202  *                             of a NAND chip
1203  * @chip: The NAND chip
1204  */
1205 static inline const struct nand_interface_config *
1206 nand_get_interface_config(struct nand_chip *chip)
1207 {
1208 	return chip->current_interface_config;
1209 }
1210 
1211 /*
1212  * A helper for defining older NAND chips where the second ID byte fully
1213  * defined the chip, including the geometry (chip size, eraseblock size, page
1214  * size). All these chips have 512 bytes NAND page size.
1215  */
1216 #define LEGACY_ID_NAND(nm, devid, chipsz, erasesz, opts)          \
1217 	{ .name = (nm), {{ .dev_id = (devid) }}, .pagesize = 512, \
1218 	  .chipsize = (chipsz), .erasesize = (erasesz), .options = (opts) }
1219 
1220 /*
1221  * A helper for defining newer chips which report their page size and
1222  * eraseblock size via the extended ID bytes.
1223  *
1224  * The real difference between LEGACY_ID_NAND and EXTENDED_ID_NAND is that with
1225  * EXTENDED_ID_NAND, manufacturers overloaded the same device ID so that the
1226  * device ID now only represented a particular total chip size (and voltage,
1227  * buswidth), and the page size, eraseblock size, and OOB size could vary while
1228  * using the same device ID.
1229  */
1230 #define EXTENDED_ID_NAND(nm, devid, chipsz, opts)                      \
1231 	{ .name = (nm), {{ .dev_id = (devid) }}, .chipsize = (chipsz), \
1232 	  .options = (opts) }
1233 
1234 #define NAND_ECC_INFO(_strength, _step)	\
1235 			{ .strength_ds = (_strength), .step_ds = (_step) }
1236 #define NAND_ECC_STRENGTH(type)		((type)->ecc.strength_ds)
1237 #define NAND_ECC_STEP(type)		((type)->ecc.step_ds)
1238 
1239 /**
1240  * struct nand_flash_dev - NAND Flash Device ID Structure
1241  * @name: a human-readable name of the NAND chip
1242  * @dev_id: the device ID (the second byte of the full chip ID array)
1243  * @mfr_id: manufacturer ID part of the full chip ID array (refers the same
1244  *          memory address as ``id[0]``)
1245  * @dev_id: device ID part of the full chip ID array (refers the same memory
1246  *          address as ``id[1]``)
1247  * @id: full device ID array
1248  * @pagesize: size of the NAND page in bytes; if 0, then the real page size (as
1249  *            well as the eraseblock size) is determined from the extended NAND
1250  *            chip ID array)
1251  * @chipsize: total chip size in MiB
1252  * @erasesize: eraseblock size in bytes (determined from the extended ID if 0)
1253  * @options: stores various chip bit options
1254  * @id_len: The valid length of the @id.
1255  * @oobsize: OOB size
1256  * @ecc: ECC correctability and step information from the datasheet.
1257  * @ecc.strength_ds: The ECC correctability from the datasheet, same as the
1258  *                   @ecc_strength_ds in nand_chip{}.
1259  * @ecc.step_ds: The ECC step required by the @ecc.strength_ds, same as the
1260  *               @ecc_step_ds in nand_chip{}, also from the datasheet.
1261  *               For example, the "4bit ECC for each 512Byte" can be set with
1262  *               NAND_ECC_INFO(4, 512).
1263  */
1264 struct nand_flash_dev {
1265 	char *name;
1266 	union {
1267 		struct {
1268 			uint8_t mfr_id;
1269 			uint8_t dev_id;
1270 		};
1271 		uint8_t id[NAND_MAX_ID_LEN];
1272 	};
1273 	unsigned int pagesize;
1274 	unsigned int chipsize;
1275 	unsigned int erasesize;
1276 	unsigned int options;
1277 	uint16_t id_len;
1278 	uint16_t oobsize;
1279 	struct {
1280 		uint16_t strength_ds;
1281 		uint16_t step_ds;
1282 	} ecc;
1283 };
1284 
1285 int nand_create_bbt(struct nand_chip *chip);
1286 
1287 /*
1288  * Check if it is a SLC nand.
1289  * The !nand_is_slc() can be used to check the MLC/TLC nand chips.
1290  * We do not distinguish the MLC and TLC now.
1291  */
1292 static inline bool nand_is_slc(struct nand_chip *chip)
1293 {
1294 	WARN(nanddev_bits_per_cell(&chip->base) == 0,
1295 	     "chip->bits_per_cell is used uninitialized\n");
1296 	return nanddev_bits_per_cell(&chip->base) == 1;
1297 }
1298 
1299 /**
1300  * nand_opcode_8bits - Check if the opcode's address should be sent only on the
1301  *	lower 8 bits
1302  * @command: opcode to check
1303  */
1304 static inline int nand_opcode_8bits(unsigned int command)
1305 {
1306 	switch (command) {
1307 	case NAND_CMD_READID:
1308 	case NAND_CMD_PARAM:
1309 	case NAND_CMD_GET_FEATURES:
1310 	case NAND_CMD_SET_FEATURES:
1311 		return 1;
1312 	default:
1313 		break;
1314 	}
1315 	return 0;
1316 }
1317 
1318 int rawnand_sw_hamming_init(struct nand_chip *chip);
1319 int rawnand_sw_hamming_calculate(struct nand_chip *chip,
1320 				 const unsigned char *buf,
1321 				 unsigned char *code);
1322 int rawnand_sw_hamming_correct(struct nand_chip *chip,
1323 			       unsigned char *buf,
1324 			       unsigned char *read_ecc,
1325 			       unsigned char *calc_ecc);
1326 void rawnand_sw_hamming_cleanup(struct nand_chip *chip);
1327 int rawnand_sw_bch_init(struct nand_chip *chip);
1328 int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf,
1329 			   unsigned char *read_ecc, unsigned char *calc_ecc);
1330 void rawnand_sw_bch_cleanup(struct nand_chip *chip);
1331 
1332 int nand_check_erased_ecc_chunk(void *data, int datalen,
1333 				void *ecc, int ecclen,
1334 				void *extraoob, int extraooblen,
1335 				int threshold);
1336 
1337 int nand_ecc_choose_conf(struct nand_chip *chip,
1338 			 const struct nand_ecc_caps *caps, int oobavail);
1339 
1340 /* Default write_oob implementation */
1341 int nand_write_oob_std(struct nand_chip *chip, int page);
1342 
1343 /* Default read_oob implementation */
1344 int nand_read_oob_std(struct nand_chip *chip, int page);
1345 
1346 /* Stub used by drivers that do not support GET/SET FEATURES operations */
1347 int nand_get_set_features_notsupp(struct nand_chip *chip, int addr,
1348 				  u8 *subfeature_param);
1349 
1350 /* read_page_raw implementations */
1351 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
1352 		       int page);
1353 int nand_monolithic_read_page_raw(struct nand_chip *chip, uint8_t *buf,
1354 				  int oob_required, int page);
1355 
1356 /* write_page_raw implementations */
1357 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1358 			int oob_required, int page);
1359 int nand_monolithic_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1360 				   int oob_required, int page);
1361 
1362 /* Reset and initialize a NAND device */
1363 int nand_reset(struct nand_chip *chip, int chipnr);
1364 
1365 /* NAND operation helpers */
1366 int nand_reset_op(struct nand_chip *chip);
1367 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1368 		   unsigned int len);
1369 int nand_status_op(struct nand_chip *chip, u8 *status);
1370 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock);
1371 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1372 		      unsigned int offset_in_page, void *buf, unsigned int len);
1373 int nand_change_read_column_op(struct nand_chip *chip,
1374 			       unsigned int offset_in_page, void *buf,
1375 			       unsigned int len, bool force_8bit);
1376 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1377 		     unsigned int offset_in_page, void *buf, unsigned int len);
1378 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1379 			    unsigned int offset_in_page, const void *buf,
1380 			    unsigned int len);
1381 int nand_prog_page_end_op(struct nand_chip *chip);
1382 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1383 		      unsigned int offset_in_page, const void *buf,
1384 		      unsigned int len);
1385 int nand_change_write_column_op(struct nand_chip *chip,
1386 				unsigned int offset_in_page, const void *buf,
1387 				unsigned int len, bool force_8bit);
1388 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
1389 		      bool force_8bit, bool check_only);
1390 int nand_write_data_op(struct nand_chip *chip, const void *buf,
1391 		       unsigned int len, bool force_8bit);
1392 
1393 /* Scan and identify a NAND device */
1394 int nand_scan_with_ids(struct nand_chip *chip, unsigned int max_chips,
1395 		       struct nand_flash_dev *ids);
1396 
1397 static inline int nand_scan(struct nand_chip *chip, unsigned int max_chips)
1398 {
1399 	return nand_scan_with_ids(chip, max_chips, NULL);
1400 }
1401 
1402 /* Internal helper for board drivers which need to override command function */
1403 void nand_wait_ready(struct nand_chip *chip);
1404 
1405 /*
1406  * Free resources held by the NAND device, must be called on error after a
1407  * sucessful nand_scan().
1408  */
1409 void nand_cleanup(struct nand_chip *chip);
1410 
1411 /*
1412  * External helper for controller drivers that have to implement the WAITRDY
1413  * instruction and have no physical pin to check it.
1414  */
1415 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms);
1416 struct gpio_desc;
1417 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
1418 		      unsigned long timeout_ms);
1419 
1420 /* Select/deselect a NAND target. */
1421 void nand_select_target(struct nand_chip *chip, unsigned int cs);
1422 void nand_deselect_target(struct nand_chip *chip);
1423 
1424 /* Bitops */
1425 void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src,
1426 		       unsigned int src_off, unsigned int nbits);
1427 
1428 /**
1429  * nand_get_data_buf() - Get the internal page buffer
1430  * @chip: NAND chip object
1431  *
1432  * Returns the pre-allocated page buffer after invalidating the cache. This
1433  * function should be used by drivers that do not want to allocate their own
1434  * bounce buffer and still need such a buffer for specific operations (most
1435  * commonly when reading OOB data only).
1436  *
1437  * Be careful to never call this function in the write/write_oob path, because
1438  * the core may have placed the data to be written out in this buffer.
1439  *
1440  * Return: pointer to the page cache buffer
1441  */
1442 static inline void *nand_get_data_buf(struct nand_chip *chip)
1443 {
1444 	chip->pagecache.page = -1;
1445 
1446 	return chip->data_buf;
1447 }
1448 
1449 #endif /* __LINUX_MTD_RAWNAND_H */
1450