xref: /linux-6.15/include/linux/mtd/cfi.h (revision bcefe12e)
1 
2 /* Common Flash Interface structures
3  * See http://support.intel.com/design/flash/technote/index.htm
4  */
5 
6 #ifndef __MTD_CFI_H__
7 #define __MTD_CFI_H__
8 
9 #include <linux/delay.h>
10 #include <linux/types.h>
11 #include <linux/interrupt.h>
12 #include <linux/mtd/flashchip.h>
13 #include <linux/mtd/map.h>
14 #include <linux/mtd/cfi_endian.h>
15 #include <linux/mtd/xip.h>
16 
17 #ifdef CONFIG_MTD_CFI_I1
18 #define cfi_interleave(cfi) 1
19 #define cfi_interleave_is_1(cfi) (cfi_interleave(cfi) == 1)
20 #else
21 #define cfi_interleave_is_1(cfi) (0)
22 #endif
23 
24 #ifdef CONFIG_MTD_CFI_I2
25 # ifdef cfi_interleave
26 #  undef cfi_interleave
27 #  define cfi_interleave(cfi) ((cfi)->interleave)
28 # else
29 #  define cfi_interleave(cfi) 2
30 # endif
31 #define cfi_interleave_is_2(cfi) (cfi_interleave(cfi) == 2)
32 #else
33 #define cfi_interleave_is_2(cfi) (0)
34 #endif
35 
36 #ifdef CONFIG_MTD_CFI_I4
37 # ifdef cfi_interleave
38 #  undef cfi_interleave
39 #  define cfi_interleave(cfi) ((cfi)->interleave)
40 # else
41 #  define cfi_interleave(cfi) 4
42 # endif
43 #define cfi_interleave_is_4(cfi) (cfi_interleave(cfi) == 4)
44 #else
45 #define cfi_interleave_is_4(cfi) (0)
46 #endif
47 
48 #ifdef CONFIG_MTD_CFI_I8
49 # ifdef cfi_interleave
50 #  undef cfi_interleave
51 #  define cfi_interleave(cfi) ((cfi)->interleave)
52 # else
53 #  define cfi_interleave(cfi) 8
54 # endif
55 #define cfi_interleave_is_8(cfi) (cfi_interleave(cfi) == 8)
56 #else
57 #define cfi_interleave_is_8(cfi) (0)
58 #endif
59 
60 #ifndef cfi_interleave
61 #warning No CONFIG_MTD_CFI_Ix selected. No NOR chip support can work.
62 static inline int cfi_interleave(void *cfi)
63 {
64 	BUG();
65 	return 0;
66 }
67 #endif
68 
69 static inline int cfi_interleave_supported(int i)
70 {
71 	switch (i) {
72 #ifdef CONFIG_MTD_CFI_I1
73 	case 1:
74 #endif
75 #ifdef CONFIG_MTD_CFI_I2
76 	case 2:
77 #endif
78 #ifdef CONFIG_MTD_CFI_I4
79 	case 4:
80 #endif
81 #ifdef CONFIG_MTD_CFI_I8
82 	case 8:
83 #endif
84 		return 1;
85 
86 	default:
87 		return 0;
88 	}
89 }
90 
91 
92 /* NB: these values must represents the number of bytes needed to meet the
93  *     device type (x8, x16, x32).  Eg. a 32 bit device is 4 x 8 bytes.
94  *     These numbers are used in calculations.
95  */
96 #define CFI_DEVICETYPE_X8  (8 / 8)
97 #define CFI_DEVICETYPE_X16 (16 / 8)
98 #define CFI_DEVICETYPE_X32 (32 / 8)
99 #define CFI_DEVICETYPE_X64 (64 / 8)
100 
101 
102 /* Device Interface Code Assignments from the "Common Flash Memory Interface
103  * Publication 100" dated December 1, 2001.
104  */
105 #define CFI_INTERFACE_X8_ASYNC		0x0000
106 #define CFI_INTERFACE_X16_ASYNC		0x0001
107 #define CFI_INTERFACE_X8_BY_X16_ASYNC	0x0002
108 #define CFI_INTERFACE_X32_ASYNC		0x0003
109 #define CFI_INTERFACE_X16_BY_X32_ASYNC	0x0005
110 #define CFI_INTERFACE_NOT_ALLOWED	0xffff
111 
112 
113 /* NB: We keep these structures in memory in HOST byteorder, except
114  * where individually noted.
115  */
116 
117 /* Basic Query Structure */
118 struct cfi_ident {
119 	uint8_t  qry[3];
120 	uint16_t P_ID;
121 	uint16_t P_ADR;
122 	uint16_t A_ID;
123 	uint16_t A_ADR;
124 	uint8_t  VccMin;
125 	uint8_t  VccMax;
126 	uint8_t  VppMin;
127 	uint8_t  VppMax;
128 	uint8_t  WordWriteTimeoutTyp;
129 	uint8_t  BufWriteTimeoutTyp;
130 	uint8_t  BlockEraseTimeoutTyp;
131 	uint8_t  ChipEraseTimeoutTyp;
132 	uint8_t  WordWriteTimeoutMax;
133 	uint8_t  BufWriteTimeoutMax;
134 	uint8_t  BlockEraseTimeoutMax;
135 	uint8_t  ChipEraseTimeoutMax;
136 	uint8_t  DevSize;
137 	uint16_t InterfaceDesc;
138 	uint16_t MaxBufWriteSize;
139 	uint8_t  NumEraseRegions;
140 	uint32_t EraseRegionInfo[0]; /* Not host ordered */
141 } __attribute__((packed));
142 
143 /* Extended Query Structure for both PRI and ALT */
144 
145 struct cfi_extquery {
146 	uint8_t  pri[3];
147 	uint8_t  MajorVersion;
148 	uint8_t  MinorVersion;
149 } __attribute__((packed));
150 
151 /* Vendor-Specific PRI for Intel/Sharp Extended Command Set (0x0001) */
152 
153 struct cfi_pri_intelext {
154 	uint8_t  pri[3];
155 	uint8_t  MajorVersion;
156 	uint8_t  MinorVersion;
157 	uint32_t FeatureSupport; /* if bit 31 is set then an additional uint32_t feature
158 				    block follows - FIXME - not currently supported */
159 	uint8_t  SuspendCmdSupport;
160 	uint16_t BlkStatusRegMask;
161 	uint8_t  VccOptimal;
162 	uint8_t  VppOptimal;
163 	uint8_t  NumProtectionFields;
164 	uint16_t ProtRegAddr;
165 	uint8_t  FactProtRegSize;
166 	uint8_t  UserProtRegSize;
167 	uint8_t  extra[0];
168 } __attribute__((packed));
169 
170 struct cfi_intelext_otpinfo {
171 	uint32_t ProtRegAddr;
172 	uint16_t FactGroups;
173 	uint8_t  FactProtRegSize;
174 	uint16_t UserGroups;
175 	uint8_t  UserProtRegSize;
176 } __attribute__((packed));
177 
178 struct cfi_intelext_blockinfo {
179 	uint16_t NumIdentBlocks;
180 	uint16_t BlockSize;
181 	uint16_t MinBlockEraseCycles;
182 	uint8_t  BitsPerCell;
183 	uint8_t  BlockCap;
184 } __attribute__((packed));
185 
186 struct cfi_intelext_regioninfo {
187 	uint16_t NumIdentPartitions;
188 	uint8_t  NumOpAllowed;
189 	uint8_t  NumOpAllowedSimProgMode;
190 	uint8_t  NumOpAllowedSimEraMode;
191 	uint8_t  NumBlockTypes;
192 	struct cfi_intelext_blockinfo BlockTypes[1];
193 } __attribute__((packed));
194 
195 struct cfi_intelext_programming_regioninfo {
196 	uint8_t  ProgRegShift;
197 	uint8_t  Reserved1;
198 	uint8_t  ControlValid;
199 	uint8_t  Reserved2;
200 	uint8_t  ControlInvalid;
201 	uint8_t  Reserved3;
202 } __attribute__((packed));
203 
204 /* Vendor-Specific PRI for AMD/Fujitsu Extended Command Set (0x0002) */
205 
206 struct cfi_pri_amdstd {
207 	uint8_t  pri[3];
208 	uint8_t  MajorVersion;
209 	uint8_t  MinorVersion;
210 	uint8_t  SiliconRevision; /* bits 1-0: Address Sensitive Unlock */
211 	uint8_t  EraseSuspend;
212 	uint8_t  BlkProt;
213 	uint8_t  TmpBlkUnprotect;
214 	uint8_t  BlkProtUnprot;
215 	uint8_t  SimultaneousOps;
216 	uint8_t  BurstMode;
217 	uint8_t  PageMode;
218 	uint8_t  VppMin;
219 	uint8_t  VppMax;
220 	uint8_t  TopBottom;
221 } __attribute__((packed));
222 
223 /* Vendor-Specific PRI for Atmel chips (command set 0x0002) */
224 
225 struct cfi_pri_atmel {
226 	uint8_t pri[3];
227 	uint8_t MajorVersion;
228 	uint8_t MinorVersion;
229 	uint8_t Features;
230 	uint8_t BottomBoot;
231 	uint8_t BurstMode;
232 	uint8_t PageMode;
233 } __attribute__((packed));
234 
235 struct cfi_pri_query {
236 	uint8_t  NumFields;
237 	uint32_t ProtField[1]; /* Not host ordered */
238 } __attribute__((packed));
239 
240 struct cfi_bri_query {
241 	uint8_t  PageModeReadCap;
242 	uint8_t  NumFields;
243 	uint32_t ConfField[1]; /* Not host ordered */
244 } __attribute__((packed));
245 
246 #define P_ID_NONE               0x0000
247 #define P_ID_INTEL_EXT          0x0001
248 #define P_ID_AMD_STD            0x0002
249 #define P_ID_INTEL_STD          0x0003
250 #define P_ID_AMD_EXT            0x0004
251 #define P_ID_WINBOND            0x0006
252 #define P_ID_ST_ADV             0x0020
253 #define P_ID_MITSUBISHI_STD     0x0100
254 #define P_ID_MITSUBISHI_EXT     0x0101
255 #define P_ID_SST_PAGE           0x0102
256 #define P_ID_INTEL_PERFORMANCE  0x0200
257 #define P_ID_INTEL_DATA         0x0210
258 #define P_ID_RESERVED           0xffff
259 
260 
261 #define CFI_MODE_CFI	1
262 #define CFI_MODE_JEDEC	0
263 
264 struct cfi_private {
265 	uint16_t cmdset;
266 	void *cmdset_priv;
267 	int interleave;
268 	int device_type;
269 	int cfi_mode;		/* Are we a JEDEC device pretending to be CFI? */
270 	int addr_unlock1;
271 	int addr_unlock2;
272 	struct mtd_info *(*cmdset_setup)(struct map_info *);
273 	struct cfi_ident *cfiq; /* For now only one. We insist that all devs
274 				  must be of the same type. */
275 	int mfr, id;
276 	int numchips;
277 	unsigned long chipshift; /* Because they're of the same type */
278 	const char *im_name;	 /* inter_module name for cmdset_setup */
279 	struct flchip chips[0];  /* per-chip data structure for each chip */
280 };
281 
282 /*
283  * Returns the command address according to the given geometry.
284  */
285 static inline uint32_t cfi_build_cmd_addr(uint32_t cmd_ofs,
286 				struct map_info *map, struct cfi_private *cfi)
287 {
288 	unsigned bankwidth = map_bankwidth(map);
289 	unsigned interleave = cfi_interleave(cfi);
290 	unsigned type = cfi->device_type;
291 	uint32_t addr;
292 
293 	addr = (cmd_ofs * type) * interleave;
294 
295 	/* Modify the unlock address if we are in compatiblity mode.
296 	 * For 16bit devices on 8 bit busses
297 	 * and 32bit devices on 16 bit busses
298 	 * set the low bit of the alternating bit sequence of the address.
299 	 */
300 	if (((type * interleave) > bankwidth) && ((uint8_t)cmd_ofs == 0xaa))
301 		addr |= (type >> 1)*interleave;
302 
303 	return  addr;
304 }
305 
306 /*
307  * Transforms the CFI command for the given geometry (bus width & interleave).
308  * It looks too long to be inline, but in the common case it should almost all
309  * get optimised away.
310  */
311 static inline map_word cfi_build_cmd(u_long cmd, struct map_info *map, struct cfi_private *cfi)
312 {
313 	map_word val = { {0} };
314 	int wordwidth, words_per_bus, chip_mode, chips_per_word;
315 	unsigned long onecmd;
316 	int i;
317 
318 	/* We do it this way to give the compiler a fighting chance
319 	   of optimising away all the crap for 'bankwidth' larger than
320 	   an unsigned long, in the common case where that support is
321 	   disabled */
322 	if (map_bankwidth_is_large(map)) {
323 		wordwidth = sizeof(unsigned long);
324 		words_per_bus = (map_bankwidth(map)) / wordwidth; // i.e. normally 1
325 	} else {
326 		wordwidth = map_bankwidth(map);
327 		words_per_bus = 1;
328 	}
329 
330 	chip_mode = map_bankwidth(map) / cfi_interleave(cfi);
331 	chips_per_word = wordwidth * cfi_interleave(cfi) / map_bankwidth(map);
332 
333 	/* First, determine what the bit-pattern should be for a single
334 	   device, according to chip mode and endianness... */
335 	switch (chip_mode) {
336 	default: BUG();
337 	case 1:
338 		onecmd = cmd;
339 		break;
340 	case 2:
341 		onecmd = cpu_to_cfi16(cmd);
342 		break;
343 	case 4:
344 		onecmd = cpu_to_cfi32(cmd);
345 		break;
346 	}
347 
348 	/* Now replicate it across the size of an unsigned long, or
349 	   just to the bus width as appropriate */
350 	switch (chips_per_word) {
351 	default: BUG();
352 #if BITS_PER_LONG >= 64
353 	case 8:
354 		onecmd |= (onecmd << (chip_mode * 32));
355 #endif
356 	case 4:
357 		onecmd |= (onecmd << (chip_mode * 16));
358 	case 2:
359 		onecmd |= (onecmd << (chip_mode * 8));
360 	case 1:
361 		;
362 	}
363 
364 	/* And finally, for the multi-word case, replicate it
365 	   in all words in the structure */
366 	for (i=0; i < words_per_bus; i++) {
367 		val.x[i] = onecmd;
368 	}
369 
370 	return val;
371 }
372 #define CMD(x)  cfi_build_cmd((x), map, cfi)
373 
374 
375 static inline unsigned long cfi_merge_status(map_word val, struct map_info *map,
376 					   struct cfi_private *cfi)
377 {
378 	int wordwidth, words_per_bus, chip_mode, chips_per_word;
379 	unsigned long onestat, res = 0;
380 	int i;
381 
382 	/* We do it this way to give the compiler a fighting chance
383 	   of optimising away all the crap for 'bankwidth' larger than
384 	   an unsigned long, in the common case where that support is
385 	   disabled */
386 	if (map_bankwidth_is_large(map)) {
387 		wordwidth = sizeof(unsigned long);
388 		words_per_bus = (map_bankwidth(map)) / wordwidth; // i.e. normally 1
389 	} else {
390 		wordwidth = map_bankwidth(map);
391 		words_per_bus = 1;
392 	}
393 
394 	chip_mode = map_bankwidth(map) / cfi_interleave(cfi);
395 	chips_per_word = wordwidth * cfi_interleave(cfi) / map_bankwidth(map);
396 
397 	onestat = val.x[0];
398 	/* Or all status words together */
399 	for (i=1; i < words_per_bus; i++) {
400 		onestat |= val.x[i];
401 	}
402 
403 	res = onestat;
404 	switch(chips_per_word) {
405 	default: BUG();
406 #if BITS_PER_LONG >= 64
407 	case 8:
408 		res |= (onestat >> (chip_mode * 32));
409 #endif
410 	case 4:
411 		res |= (onestat >> (chip_mode * 16));
412 	case 2:
413 		res |= (onestat >> (chip_mode * 8));
414 	case 1:
415 		;
416 	}
417 
418 	/* Last, determine what the bit-pattern should be for a single
419 	   device, according to chip mode and endianness... */
420 	switch (chip_mode) {
421 	case 1:
422 		break;
423 	case 2:
424 		res = cfi16_to_cpu(res);
425 		break;
426 	case 4:
427 		res = cfi32_to_cpu(res);
428 		break;
429 	default: BUG();
430 	}
431 	return res;
432 }
433 
434 #define MERGESTATUS(x) cfi_merge_status((x), map, cfi)
435 
436 
437 /*
438  * Sends a CFI command to a bank of flash for the given geometry.
439  *
440  * Returns the offset in flash where the command was written.
441  * If prev_val is non-null, it will be set to the value at the command address,
442  * before the command was written.
443  */
444 static inline uint32_t cfi_send_gen_cmd(u_char cmd, uint32_t cmd_addr, uint32_t base,
445 				struct map_info *map, struct cfi_private *cfi,
446 				int type, map_word *prev_val)
447 {
448 	map_word val;
449 	uint32_t addr = base + cfi_build_cmd_addr(cmd_addr, map, cfi);
450 	val = cfi_build_cmd(cmd, map, cfi);
451 
452 	if (prev_val)
453 		*prev_val = map_read(map, addr);
454 
455 	map_write(map, val, addr);
456 
457 	return addr - base;
458 }
459 
460 static inline uint8_t cfi_read_query(struct map_info *map, uint32_t addr)
461 {
462 	map_word val = map_read(map, addr);
463 
464 	if (map_bankwidth_is_1(map)) {
465 		return val.x[0];
466 	} else if (map_bankwidth_is_2(map)) {
467 		return cfi16_to_cpu(val.x[0]);
468 	} else {
469 		/* No point in a 64-bit byteswap since that would just be
470 		   swapping the responses from different chips, and we are
471 		   only interested in one chip (a representative sample) */
472 		return cfi32_to_cpu(val.x[0]);
473 	}
474 }
475 
476 static inline uint16_t cfi_read_query16(struct map_info *map, uint32_t addr)
477 {
478 	map_word val = map_read(map, addr);
479 
480 	if (map_bankwidth_is_1(map)) {
481 		return val.x[0] & 0xff;
482 	} else if (map_bankwidth_is_2(map)) {
483 		return cfi16_to_cpu(val.x[0]);
484 	} else {
485 		/* No point in a 64-bit byteswap since that would just be
486 		   swapping the responses from different chips, and we are
487 		   only interested in one chip (a representative sample) */
488 		return cfi32_to_cpu(val.x[0]);
489 	}
490 }
491 
492 static inline void cfi_udelay(int us)
493 {
494 	if (us >= 1000) {
495 		msleep((us+999)/1000);
496 	} else {
497 		udelay(us);
498 		cond_resched();
499 	}
500 }
501 
502 int __xipram cfi_qry_present(struct map_info *map, __u32 base,
503 			     struct cfi_private *cfi);
504 int __xipram cfi_qry_mode_on(uint32_t base, struct map_info *map,
505 			     struct cfi_private *cfi);
506 void __xipram cfi_qry_mode_off(uint32_t base, struct map_info *map,
507 			       struct cfi_private *cfi);
508 
509 struct cfi_extquery *cfi_read_pri(struct map_info *map, uint16_t adr, uint16_t size,
510 			     const char* name);
511 struct cfi_fixup {
512 	uint16_t mfr;
513 	uint16_t id;
514 	void (*fixup)(struct mtd_info *mtd, void* param);
515 	void* param;
516 };
517 
518 #define CFI_MFR_ANY 0xffff
519 #define CFI_ID_ANY  0xffff
520 
521 #define CFI_MFR_AMD 0x0001
522 #define CFI_MFR_ATMEL 0x001F
523 #define CFI_MFR_SAMSUNG 0x00EC
524 #define CFI_MFR_ST  0x0020 	/* STMicroelectronics */
525 
526 void cfi_fixup(struct mtd_info *mtd, struct cfi_fixup* fixups);
527 
528 typedef int (*varsize_frob_t)(struct map_info *map, struct flchip *chip,
529 			      unsigned long adr, int len, void *thunk);
530 
531 int cfi_varsize_frob(struct mtd_info *mtd, varsize_frob_t frob,
532 	loff_t ofs, size_t len, void *thunk);
533 
534 
535 #endif /* __MTD_CFI_H__ */
536