1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MMZONE_H 3 #define _LINUX_MMZONE_H 4 5 #ifndef __ASSEMBLY__ 6 #ifndef __GENERATING_BOUNDS_H 7 8 #include <linux/spinlock.h> 9 #include <linux/list.h> 10 #include <linux/wait.h> 11 #include <linux/bitops.h> 12 #include <linux/cache.h> 13 #include <linux/threads.h> 14 #include <linux/numa.h> 15 #include <linux/init.h> 16 #include <linux/seqlock.h> 17 #include <linux/nodemask.h> 18 #include <linux/pageblock-flags.h> 19 #include <linux/page-flags-layout.h> 20 #include <linux/atomic.h> 21 #include <linux/mm_types.h> 22 #include <linux/page-flags.h> 23 #include <linux/local_lock.h> 24 #include <asm/page.h> 25 26 /* Free memory management - zoned buddy allocator. */ 27 #ifndef CONFIG_FORCE_MAX_ZONEORDER 28 #define MAX_ORDER 11 29 #else 30 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 31 #endif 32 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 33 34 /* 35 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 36 * costly to service. That is between allocation orders which should 37 * coalesce naturally under reasonable reclaim pressure and those which 38 * will not. 39 */ 40 #define PAGE_ALLOC_COSTLY_ORDER 3 41 42 enum migratetype { 43 MIGRATE_UNMOVABLE, 44 MIGRATE_MOVABLE, 45 MIGRATE_RECLAIMABLE, 46 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 47 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 48 #ifdef CONFIG_CMA 49 /* 50 * MIGRATE_CMA migration type is designed to mimic the way 51 * ZONE_MOVABLE works. Only movable pages can be allocated 52 * from MIGRATE_CMA pageblocks and page allocator never 53 * implicitly change migration type of MIGRATE_CMA pageblock. 54 * 55 * The way to use it is to change migratetype of a range of 56 * pageblocks to MIGRATE_CMA which can be done by 57 * __free_pageblock_cma() function. What is important though 58 * is that a range of pageblocks must be aligned to 59 * MAX_ORDER_NR_PAGES should biggest page be bigger than 60 * a single pageblock. 61 */ 62 MIGRATE_CMA, 63 #endif 64 #ifdef CONFIG_MEMORY_ISOLATION 65 MIGRATE_ISOLATE, /* can't allocate from here */ 66 #endif 67 MIGRATE_TYPES 68 }; 69 70 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 71 extern const char * const migratetype_names[MIGRATE_TYPES]; 72 73 #ifdef CONFIG_CMA 74 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 75 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 76 #else 77 # define is_migrate_cma(migratetype) false 78 # define is_migrate_cma_page(_page) false 79 #endif 80 81 static inline bool is_migrate_movable(int mt) 82 { 83 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 84 } 85 86 #define for_each_migratetype_order(order, type) \ 87 for (order = 0; order < MAX_ORDER; order++) \ 88 for (type = 0; type < MIGRATE_TYPES; type++) 89 90 extern int page_group_by_mobility_disabled; 91 92 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1) 93 94 #define get_pageblock_migratetype(page) \ 95 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK) 96 97 struct free_area { 98 struct list_head free_list[MIGRATE_TYPES]; 99 unsigned long nr_free; 100 }; 101 102 static inline struct page *get_page_from_free_area(struct free_area *area, 103 int migratetype) 104 { 105 return list_first_entry_or_null(&area->free_list[migratetype], 106 struct page, lru); 107 } 108 109 static inline bool free_area_empty(struct free_area *area, int migratetype) 110 { 111 return list_empty(&area->free_list[migratetype]); 112 } 113 114 struct pglist_data; 115 116 /* 117 * Add a wild amount of padding here to ensure data fall into separate 118 * cachelines. There are very few zone structures in the machine, so space 119 * consumption is not a concern here. 120 */ 121 #if defined(CONFIG_SMP) 122 struct zone_padding { 123 char x[0]; 124 } ____cacheline_internodealigned_in_smp; 125 #define ZONE_PADDING(name) struct zone_padding name; 126 #else 127 #define ZONE_PADDING(name) 128 #endif 129 130 #ifdef CONFIG_NUMA 131 enum numa_stat_item { 132 NUMA_HIT, /* allocated in intended node */ 133 NUMA_MISS, /* allocated in non intended node */ 134 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 135 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 136 NUMA_LOCAL, /* allocation from local node */ 137 NUMA_OTHER, /* allocation from other node */ 138 NR_VM_NUMA_EVENT_ITEMS 139 }; 140 #else 141 #define NR_VM_NUMA_EVENT_ITEMS 0 142 #endif 143 144 enum zone_stat_item { 145 /* First 128 byte cacheline (assuming 64 bit words) */ 146 NR_FREE_PAGES, 147 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 148 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 149 NR_ZONE_ACTIVE_ANON, 150 NR_ZONE_INACTIVE_FILE, 151 NR_ZONE_ACTIVE_FILE, 152 NR_ZONE_UNEVICTABLE, 153 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 154 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 155 /* Second 128 byte cacheline */ 156 NR_BOUNCE, 157 #if IS_ENABLED(CONFIG_ZSMALLOC) 158 NR_ZSPAGES, /* allocated in zsmalloc */ 159 #endif 160 NR_FREE_CMA_PAGES, 161 NR_VM_ZONE_STAT_ITEMS }; 162 163 enum node_stat_item { 164 NR_LRU_BASE, 165 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 166 NR_ACTIVE_ANON, /* " " " " " */ 167 NR_INACTIVE_FILE, /* " " " " " */ 168 NR_ACTIVE_FILE, /* " " " " " */ 169 NR_UNEVICTABLE, /* " " " " " */ 170 NR_SLAB_RECLAIMABLE_B, 171 NR_SLAB_UNRECLAIMABLE_B, 172 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 173 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 174 WORKINGSET_NODES, 175 WORKINGSET_REFAULT_BASE, 176 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE, 177 WORKINGSET_REFAULT_FILE, 178 WORKINGSET_ACTIVATE_BASE, 179 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE, 180 WORKINGSET_ACTIVATE_FILE, 181 WORKINGSET_RESTORE_BASE, 182 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE, 183 WORKINGSET_RESTORE_FILE, 184 WORKINGSET_NODERECLAIM, 185 NR_ANON_MAPPED, /* Mapped anonymous pages */ 186 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 187 only modified from process context */ 188 NR_FILE_PAGES, 189 NR_FILE_DIRTY, 190 NR_WRITEBACK, 191 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 192 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 193 NR_SHMEM_THPS, 194 NR_SHMEM_PMDMAPPED, 195 NR_FILE_THPS, 196 NR_FILE_PMDMAPPED, 197 NR_ANON_THPS, 198 NR_VMSCAN_WRITE, 199 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 200 NR_DIRTIED, /* page dirtyings since bootup */ 201 NR_WRITTEN, /* page writings since bootup */ 202 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ 203 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */ 204 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */ 205 NR_KERNEL_STACK_KB, /* measured in KiB */ 206 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 207 NR_KERNEL_SCS_KB, /* measured in KiB */ 208 #endif 209 NR_PAGETABLE, /* used for pagetables */ 210 #ifdef CONFIG_SWAP 211 NR_SWAPCACHE, 212 #endif 213 NR_VM_NODE_STAT_ITEMS 214 }; 215 216 /* 217 * Returns true if the item should be printed in THPs (/proc/vmstat 218 * currently prints number of anon, file and shmem THPs. But the item 219 * is charged in pages). 220 */ 221 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item) 222 { 223 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 224 return false; 225 226 return item == NR_ANON_THPS || 227 item == NR_FILE_THPS || 228 item == NR_SHMEM_THPS || 229 item == NR_SHMEM_PMDMAPPED || 230 item == NR_FILE_PMDMAPPED; 231 } 232 233 /* 234 * Returns true if the value is measured in bytes (most vmstat values are 235 * measured in pages). This defines the API part, the internal representation 236 * might be different. 237 */ 238 static __always_inline bool vmstat_item_in_bytes(int idx) 239 { 240 /* 241 * Global and per-node slab counters track slab pages. 242 * It's expected that changes are multiples of PAGE_SIZE. 243 * Internally values are stored in pages. 244 * 245 * Per-memcg and per-lruvec counters track memory, consumed 246 * by individual slab objects. These counters are actually 247 * byte-precise. 248 */ 249 return (idx == NR_SLAB_RECLAIMABLE_B || 250 idx == NR_SLAB_UNRECLAIMABLE_B); 251 } 252 253 /* 254 * We do arithmetic on the LRU lists in various places in the code, 255 * so it is important to keep the active lists LRU_ACTIVE higher in 256 * the array than the corresponding inactive lists, and to keep 257 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 258 * 259 * This has to be kept in sync with the statistics in zone_stat_item 260 * above and the descriptions in vmstat_text in mm/vmstat.c 261 */ 262 #define LRU_BASE 0 263 #define LRU_ACTIVE 1 264 #define LRU_FILE 2 265 266 enum lru_list { 267 LRU_INACTIVE_ANON = LRU_BASE, 268 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 269 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 270 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 271 LRU_UNEVICTABLE, 272 NR_LRU_LISTS 273 }; 274 275 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 276 277 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 278 279 static inline bool is_file_lru(enum lru_list lru) 280 { 281 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 282 } 283 284 static inline bool is_active_lru(enum lru_list lru) 285 { 286 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 287 } 288 289 #define ANON_AND_FILE 2 290 291 enum lruvec_flags { 292 LRUVEC_CONGESTED, /* lruvec has many dirty pages 293 * backed by a congested BDI 294 */ 295 }; 296 297 struct lruvec { 298 struct list_head lists[NR_LRU_LISTS]; 299 /* per lruvec lru_lock for memcg */ 300 spinlock_t lru_lock; 301 /* 302 * These track the cost of reclaiming one LRU - file or anon - 303 * over the other. As the observed cost of reclaiming one LRU 304 * increases, the reclaim scan balance tips toward the other. 305 */ 306 unsigned long anon_cost; 307 unsigned long file_cost; 308 /* Non-resident age, driven by LRU movement */ 309 atomic_long_t nonresident_age; 310 /* Refaults at the time of last reclaim cycle */ 311 unsigned long refaults[ANON_AND_FILE]; 312 /* Various lruvec state flags (enum lruvec_flags) */ 313 unsigned long flags; 314 #ifdef CONFIG_MEMCG 315 struct pglist_data *pgdat; 316 #endif 317 }; 318 319 /* Isolate unmapped pages */ 320 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 321 /* Isolate for asynchronous migration */ 322 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 323 /* Isolate unevictable pages */ 324 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 325 326 /* LRU Isolation modes. */ 327 typedef unsigned __bitwise isolate_mode_t; 328 329 enum zone_watermarks { 330 WMARK_MIN, 331 WMARK_LOW, 332 WMARK_HIGH, 333 NR_WMARK 334 }; 335 336 /* 337 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER plus one additional 338 * for pageblock size for THP if configured. 339 */ 340 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 341 #define NR_PCP_THP 1 342 #else 343 #define NR_PCP_THP 0 344 #endif 345 #define NR_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1 + NR_PCP_THP)) 346 347 /* 348 * Shift to encode migratetype and order in the same integer, with order 349 * in the least significant bits. 350 */ 351 #define NR_PCP_ORDER_WIDTH 8 352 #define NR_PCP_ORDER_MASK ((1<<NR_PCP_ORDER_WIDTH) - 1) 353 354 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost) 355 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost) 356 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost) 357 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost) 358 359 /* Fields and list protected by pagesets local_lock in page_alloc.c */ 360 struct per_cpu_pages { 361 int count; /* number of pages in the list */ 362 int high; /* high watermark, emptying needed */ 363 int batch; /* chunk size for buddy add/remove */ 364 short free_factor; /* batch scaling factor during free */ 365 #ifdef CONFIG_NUMA 366 short expire; /* When 0, remote pagesets are drained */ 367 #endif 368 369 /* Lists of pages, one per migrate type stored on the pcp-lists */ 370 struct list_head lists[NR_PCP_LISTS]; 371 }; 372 373 struct per_cpu_zonestat { 374 #ifdef CONFIG_SMP 375 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 376 s8 stat_threshold; 377 #endif 378 #ifdef CONFIG_NUMA 379 /* 380 * Low priority inaccurate counters that are only folded 381 * on demand. Use a large type to avoid the overhead of 382 * folding during refresh_cpu_vm_stats. 383 */ 384 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 385 #endif 386 }; 387 388 struct per_cpu_nodestat { 389 s8 stat_threshold; 390 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 391 }; 392 393 #endif /* !__GENERATING_BOUNDS.H */ 394 395 enum zone_type { 396 /* 397 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able 398 * to DMA to all of the addressable memory (ZONE_NORMAL). 399 * On architectures where this area covers the whole 32 bit address 400 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller 401 * DMA addressing constraints. This distinction is important as a 32bit 402 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit 403 * platforms may need both zones as they support peripherals with 404 * different DMA addressing limitations. 405 */ 406 #ifdef CONFIG_ZONE_DMA 407 ZONE_DMA, 408 #endif 409 #ifdef CONFIG_ZONE_DMA32 410 ZONE_DMA32, 411 #endif 412 /* 413 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 414 * performed on pages in ZONE_NORMAL if the DMA devices support 415 * transfers to all addressable memory. 416 */ 417 ZONE_NORMAL, 418 #ifdef CONFIG_HIGHMEM 419 /* 420 * A memory area that is only addressable by the kernel through 421 * mapping portions into its own address space. This is for example 422 * used by i386 to allow the kernel to address the memory beyond 423 * 900MB. The kernel will set up special mappings (page 424 * table entries on i386) for each page that the kernel needs to 425 * access. 426 */ 427 ZONE_HIGHMEM, 428 #endif 429 /* 430 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains 431 * movable pages with few exceptional cases described below. Main use 432 * cases for ZONE_MOVABLE are to make memory offlining/unplug more 433 * likely to succeed, and to locally limit unmovable allocations - e.g., 434 * to increase the number of THP/huge pages. Notable special cases are: 435 * 436 * 1. Pinned pages: (long-term) pinning of movable pages might 437 * essentially turn such pages unmovable. Therefore, we do not allow 438 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and 439 * faulted, they come from the right zone right away. However, it is 440 * still possible that address space already has pages in 441 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has 442 * touches that memory before pinning). In such case we migrate them 443 * to a different zone. When migration fails - pinning fails. 444 * 2. memblock allocations: kernelcore/movablecore setups might create 445 * situations where ZONE_MOVABLE contains unmovable allocations 446 * after boot. Memory offlining and allocations fail early. 447 * 3. Memory holes: kernelcore/movablecore setups might create very rare 448 * situations where ZONE_MOVABLE contains memory holes after boot, 449 * for example, if we have sections that are only partially 450 * populated. Memory offlining and allocations fail early. 451 * 4. PG_hwpoison pages: while poisoned pages can be skipped during 452 * memory offlining, such pages cannot be allocated. 453 * 5. Unmovable PG_offline pages: in paravirtualized environments, 454 * hotplugged memory blocks might only partially be managed by the 455 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The 456 * parts not manged by the buddy are unmovable PG_offline pages. In 457 * some cases (virtio-mem), such pages can be skipped during 458 * memory offlining, however, cannot be moved/allocated. These 459 * techniques might use alloc_contig_range() to hide previously 460 * exposed pages from the buddy again (e.g., to implement some sort 461 * of memory unplug in virtio-mem). 462 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create 463 * situations where ZERO_PAGE(0) which is allocated differently 464 * on different platforms may end up in a movable zone. ZERO_PAGE(0) 465 * cannot be migrated. 466 * 7. Memory-hotplug: when using memmap_on_memory and onlining the 467 * memory to the MOVABLE zone, the vmemmap pages are also placed in 468 * such zone. Such pages cannot be really moved around as they are 469 * self-stored in the range, but they are treated as movable when 470 * the range they describe is about to be offlined. 471 * 472 * In general, no unmovable allocations that degrade memory offlining 473 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range()) 474 * have to expect that migrating pages in ZONE_MOVABLE can fail (even 475 * if has_unmovable_pages() states that there are no unmovable pages, 476 * there can be false negatives). 477 */ 478 ZONE_MOVABLE, 479 #ifdef CONFIG_ZONE_DEVICE 480 ZONE_DEVICE, 481 #endif 482 __MAX_NR_ZONES 483 484 }; 485 486 #ifndef __GENERATING_BOUNDS_H 487 488 #define ASYNC_AND_SYNC 2 489 490 struct zone { 491 /* Read-mostly fields */ 492 493 /* zone watermarks, access with *_wmark_pages(zone) macros */ 494 unsigned long _watermark[NR_WMARK]; 495 unsigned long watermark_boost; 496 497 unsigned long nr_reserved_highatomic; 498 499 /* 500 * We don't know if the memory that we're going to allocate will be 501 * freeable or/and it will be released eventually, so to avoid totally 502 * wasting several GB of ram we must reserve some of the lower zone 503 * memory (otherwise we risk to run OOM on the lower zones despite 504 * there being tons of freeable ram on the higher zones). This array is 505 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 506 * changes. 507 */ 508 long lowmem_reserve[MAX_NR_ZONES]; 509 510 #ifdef CONFIG_NUMA 511 int node; 512 #endif 513 struct pglist_data *zone_pgdat; 514 struct per_cpu_pages __percpu *per_cpu_pageset; 515 struct per_cpu_zonestat __percpu *per_cpu_zonestats; 516 /* 517 * the high and batch values are copied to individual pagesets for 518 * faster access 519 */ 520 int pageset_high; 521 int pageset_batch; 522 523 #ifndef CONFIG_SPARSEMEM 524 /* 525 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 526 * In SPARSEMEM, this map is stored in struct mem_section 527 */ 528 unsigned long *pageblock_flags; 529 #endif /* CONFIG_SPARSEMEM */ 530 531 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 532 unsigned long zone_start_pfn; 533 534 /* 535 * spanned_pages is the total pages spanned by the zone, including 536 * holes, which is calculated as: 537 * spanned_pages = zone_end_pfn - zone_start_pfn; 538 * 539 * present_pages is physical pages existing within the zone, which 540 * is calculated as: 541 * present_pages = spanned_pages - absent_pages(pages in holes); 542 * 543 * managed_pages is present pages managed by the buddy system, which 544 * is calculated as (reserved_pages includes pages allocated by the 545 * bootmem allocator): 546 * managed_pages = present_pages - reserved_pages; 547 * 548 * cma pages is present pages that are assigned for CMA use 549 * (MIGRATE_CMA). 550 * 551 * So present_pages may be used by memory hotplug or memory power 552 * management logic to figure out unmanaged pages by checking 553 * (present_pages - managed_pages). And managed_pages should be used 554 * by page allocator and vm scanner to calculate all kinds of watermarks 555 * and thresholds. 556 * 557 * Locking rules: 558 * 559 * zone_start_pfn and spanned_pages are protected by span_seqlock. 560 * It is a seqlock because it has to be read outside of zone->lock, 561 * and it is done in the main allocator path. But, it is written 562 * quite infrequently. 563 * 564 * The span_seq lock is declared along with zone->lock because it is 565 * frequently read in proximity to zone->lock. It's good to 566 * give them a chance of being in the same cacheline. 567 * 568 * Write access to present_pages at runtime should be protected by 569 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of 570 * present_pages should get_online_mems() to get a stable value. 571 */ 572 atomic_long_t managed_pages; 573 unsigned long spanned_pages; 574 unsigned long present_pages; 575 #ifdef CONFIG_CMA 576 unsigned long cma_pages; 577 #endif 578 579 const char *name; 580 581 #ifdef CONFIG_MEMORY_ISOLATION 582 /* 583 * Number of isolated pageblock. It is used to solve incorrect 584 * freepage counting problem due to racy retrieving migratetype 585 * of pageblock. Protected by zone->lock. 586 */ 587 unsigned long nr_isolate_pageblock; 588 #endif 589 590 #ifdef CONFIG_MEMORY_HOTPLUG 591 /* see spanned/present_pages for more description */ 592 seqlock_t span_seqlock; 593 #endif 594 595 int initialized; 596 597 /* Write-intensive fields used from the page allocator */ 598 ZONE_PADDING(_pad1_) 599 600 /* free areas of different sizes */ 601 struct free_area free_area[MAX_ORDER]; 602 603 /* zone flags, see below */ 604 unsigned long flags; 605 606 /* Primarily protects free_area */ 607 spinlock_t lock; 608 609 /* Write-intensive fields used by compaction and vmstats. */ 610 ZONE_PADDING(_pad2_) 611 612 /* 613 * When free pages are below this point, additional steps are taken 614 * when reading the number of free pages to avoid per-cpu counter 615 * drift allowing watermarks to be breached 616 */ 617 unsigned long percpu_drift_mark; 618 619 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 620 /* pfn where compaction free scanner should start */ 621 unsigned long compact_cached_free_pfn; 622 /* pfn where compaction migration scanner should start */ 623 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC]; 624 unsigned long compact_init_migrate_pfn; 625 unsigned long compact_init_free_pfn; 626 #endif 627 628 #ifdef CONFIG_COMPACTION 629 /* 630 * On compaction failure, 1<<compact_defer_shift compactions 631 * are skipped before trying again. The number attempted since 632 * last failure is tracked with compact_considered. 633 * compact_order_failed is the minimum compaction failed order. 634 */ 635 unsigned int compact_considered; 636 unsigned int compact_defer_shift; 637 int compact_order_failed; 638 #endif 639 640 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 641 /* Set to true when the PG_migrate_skip bits should be cleared */ 642 bool compact_blockskip_flush; 643 #endif 644 645 bool contiguous; 646 647 ZONE_PADDING(_pad3_) 648 /* Zone statistics */ 649 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 650 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 651 } ____cacheline_internodealigned_in_smp; 652 653 enum pgdat_flags { 654 PGDAT_DIRTY, /* reclaim scanning has recently found 655 * many dirty file pages at the tail 656 * of the LRU. 657 */ 658 PGDAT_WRITEBACK, /* reclaim scanning has recently found 659 * many pages under writeback 660 */ 661 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 662 }; 663 664 enum zone_flags { 665 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. 666 * Cleared when kswapd is woken. 667 */ 668 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */ 669 }; 670 671 static inline unsigned long zone_managed_pages(struct zone *zone) 672 { 673 return (unsigned long)atomic_long_read(&zone->managed_pages); 674 } 675 676 static inline unsigned long zone_cma_pages(struct zone *zone) 677 { 678 #ifdef CONFIG_CMA 679 return zone->cma_pages; 680 #else 681 return 0; 682 #endif 683 } 684 685 static inline unsigned long zone_end_pfn(const struct zone *zone) 686 { 687 return zone->zone_start_pfn + zone->spanned_pages; 688 } 689 690 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 691 { 692 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 693 } 694 695 static inline bool zone_is_initialized(struct zone *zone) 696 { 697 return zone->initialized; 698 } 699 700 static inline bool zone_is_empty(struct zone *zone) 701 { 702 return zone->spanned_pages == 0; 703 } 704 705 /* 706 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 707 * intersection with the given zone 708 */ 709 static inline bool zone_intersects(struct zone *zone, 710 unsigned long start_pfn, unsigned long nr_pages) 711 { 712 if (zone_is_empty(zone)) 713 return false; 714 if (start_pfn >= zone_end_pfn(zone) || 715 start_pfn + nr_pages <= zone->zone_start_pfn) 716 return false; 717 718 return true; 719 } 720 721 /* 722 * The "priority" of VM scanning is how much of the queues we will scan in one 723 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 724 * queues ("queue_length >> 12") during an aging round. 725 */ 726 #define DEF_PRIORITY 12 727 728 /* Maximum number of zones on a zonelist */ 729 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 730 731 enum { 732 ZONELIST_FALLBACK, /* zonelist with fallback */ 733 #ifdef CONFIG_NUMA 734 /* 735 * The NUMA zonelists are doubled because we need zonelists that 736 * restrict the allocations to a single node for __GFP_THISNODE. 737 */ 738 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 739 #endif 740 MAX_ZONELISTS 741 }; 742 743 /* 744 * This struct contains information about a zone in a zonelist. It is stored 745 * here to avoid dereferences into large structures and lookups of tables 746 */ 747 struct zoneref { 748 struct zone *zone; /* Pointer to actual zone */ 749 int zone_idx; /* zone_idx(zoneref->zone) */ 750 }; 751 752 /* 753 * One allocation request operates on a zonelist. A zonelist 754 * is a list of zones, the first one is the 'goal' of the 755 * allocation, the other zones are fallback zones, in decreasing 756 * priority. 757 * 758 * To speed the reading of the zonelist, the zonerefs contain the zone index 759 * of the entry being read. Helper functions to access information given 760 * a struct zoneref are 761 * 762 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 763 * zonelist_zone_idx() - Return the index of the zone for an entry 764 * zonelist_node_idx() - Return the index of the node for an entry 765 */ 766 struct zonelist { 767 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 768 }; 769 770 /* 771 * The array of struct pages for flatmem. 772 * It must be declared for SPARSEMEM as well because there are configurations 773 * that rely on that. 774 */ 775 extern struct page *mem_map; 776 777 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 778 struct deferred_split { 779 spinlock_t split_queue_lock; 780 struct list_head split_queue; 781 unsigned long split_queue_len; 782 }; 783 #endif 784 785 /* 786 * On NUMA machines, each NUMA node would have a pg_data_t to describe 787 * it's memory layout. On UMA machines there is a single pglist_data which 788 * describes the whole memory. 789 * 790 * Memory statistics and page replacement data structures are maintained on a 791 * per-zone basis. 792 */ 793 typedef struct pglist_data { 794 /* 795 * node_zones contains just the zones for THIS node. Not all of the 796 * zones may be populated, but it is the full list. It is referenced by 797 * this node's node_zonelists as well as other node's node_zonelists. 798 */ 799 struct zone node_zones[MAX_NR_ZONES]; 800 801 /* 802 * node_zonelists contains references to all zones in all nodes. 803 * Generally the first zones will be references to this node's 804 * node_zones. 805 */ 806 struct zonelist node_zonelists[MAX_ZONELISTS]; 807 808 int nr_zones; /* number of populated zones in this node */ 809 #ifdef CONFIG_FLATMEM /* means !SPARSEMEM */ 810 struct page *node_mem_map; 811 #ifdef CONFIG_PAGE_EXTENSION 812 struct page_ext *node_page_ext; 813 #endif 814 #endif 815 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) 816 /* 817 * Must be held any time you expect node_start_pfn, 818 * node_present_pages, node_spanned_pages or nr_zones to stay constant. 819 * Also synchronizes pgdat->first_deferred_pfn during deferred page 820 * init. 821 * 822 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 823 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG 824 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. 825 * 826 * Nests above zone->lock and zone->span_seqlock 827 */ 828 spinlock_t node_size_lock; 829 #endif 830 unsigned long node_start_pfn; 831 unsigned long node_present_pages; /* total number of physical pages */ 832 unsigned long node_spanned_pages; /* total size of physical page 833 range, including holes */ 834 int node_id; 835 wait_queue_head_t kswapd_wait; 836 wait_queue_head_t pfmemalloc_wait; 837 struct task_struct *kswapd; /* Protected by 838 mem_hotplug_begin/end() */ 839 int kswapd_order; 840 enum zone_type kswapd_highest_zoneidx; 841 842 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 843 844 #ifdef CONFIG_COMPACTION 845 int kcompactd_max_order; 846 enum zone_type kcompactd_highest_zoneidx; 847 wait_queue_head_t kcompactd_wait; 848 struct task_struct *kcompactd; 849 #endif 850 /* 851 * This is a per-node reserve of pages that are not available 852 * to userspace allocations. 853 */ 854 unsigned long totalreserve_pages; 855 856 #ifdef CONFIG_NUMA 857 /* 858 * node reclaim becomes active if more unmapped pages exist. 859 */ 860 unsigned long min_unmapped_pages; 861 unsigned long min_slab_pages; 862 #endif /* CONFIG_NUMA */ 863 864 /* Write-intensive fields used by page reclaim */ 865 ZONE_PADDING(_pad1_) 866 867 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 868 /* 869 * If memory initialisation on large machines is deferred then this 870 * is the first PFN that needs to be initialised. 871 */ 872 unsigned long first_deferred_pfn; 873 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 874 875 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 876 struct deferred_split deferred_split_queue; 877 #endif 878 879 /* Fields commonly accessed by the page reclaim scanner */ 880 881 /* 882 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. 883 * 884 * Use mem_cgroup_lruvec() to look up lruvecs. 885 */ 886 struct lruvec __lruvec; 887 888 unsigned long flags; 889 890 ZONE_PADDING(_pad2_) 891 892 /* Per-node vmstats */ 893 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 894 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 895 } pg_data_t; 896 897 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 898 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 899 #ifdef CONFIG_FLATMEM 900 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 901 #else 902 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 903 #endif 904 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 905 906 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 907 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 908 909 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 910 { 911 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 912 } 913 914 static inline bool pgdat_is_empty(pg_data_t *pgdat) 915 { 916 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; 917 } 918 919 #include <linux/memory_hotplug.h> 920 921 void build_all_zonelists(pg_data_t *pgdat); 922 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, 923 enum zone_type highest_zoneidx); 924 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 925 int highest_zoneidx, unsigned int alloc_flags, 926 long free_pages); 927 bool zone_watermark_ok(struct zone *z, unsigned int order, 928 unsigned long mark, int highest_zoneidx, 929 unsigned int alloc_flags); 930 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 931 unsigned long mark, int highest_zoneidx); 932 /* 933 * Memory initialization context, use to differentiate memory added by 934 * the platform statically or via memory hotplug interface. 935 */ 936 enum meminit_context { 937 MEMINIT_EARLY, 938 MEMINIT_HOTPLUG, 939 }; 940 941 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 942 unsigned long size); 943 944 extern void lruvec_init(struct lruvec *lruvec); 945 946 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 947 { 948 #ifdef CONFIG_MEMCG 949 return lruvec->pgdat; 950 #else 951 return container_of(lruvec, struct pglist_data, __lruvec); 952 #endif 953 } 954 955 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 956 int local_memory_node(int node_id); 957 #else 958 static inline int local_memory_node(int node_id) { return node_id; }; 959 #endif 960 961 /* 962 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 963 */ 964 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 965 966 #ifdef CONFIG_ZONE_DEVICE 967 static inline bool zone_is_zone_device(struct zone *zone) 968 { 969 return zone_idx(zone) == ZONE_DEVICE; 970 } 971 #else 972 static inline bool zone_is_zone_device(struct zone *zone) 973 { 974 return false; 975 } 976 #endif 977 978 /* 979 * Returns true if a zone has pages managed by the buddy allocator. 980 * All the reclaim decisions have to use this function rather than 981 * populated_zone(). If the whole zone is reserved then we can easily 982 * end up with populated_zone() && !managed_zone(). 983 */ 984 static inline bool managed_zone(struct zone *zone) 985 { 986 return zone_managed_pages(zone); 987 } 988 989 /* Returns true if a zone has memory */ 990 static inline bool populated_zone(struct zone *zone) 991 { 992 return zone->present_pages; 993 } 994 995 #ifdef CONFIG_NUMA 996 static inline int zone_to_nid(struct zone *zone) 997 { 998 return zone->node; 999 } 1000 1001 static inline void zone_set_nid(struct zone *zone, int nid) 1002 { 1003 zone->node = nid; 1004 } 1005 #else 1006 static inline int zone_to_nid(struct zone *zone) 1007 { 1008 return 0; 1009 } 1010 1011 static inline void zone_set_nid(struct zone *zone, int nid) {} 1012 #endif 1013 1014 extern int movable_zone; 1015 1016 static inline int is_highmem_idx(enum zone_type idx) 1017 { 1018 #ifdef CONFIG_HIGHMEM 1019 return (idx == ZONE_HIGHMEM || 1020 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM)); 1021 #else 1022 return 0; 1023 #endif 1024 } 1025 1026 /** 1027 * is_highmem - helper function to quickly check if a struct zone is a 1028 * highmem zone or not. This is an attempt to keep references 1029 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 1030 * @zone: pointer to struct zone variable 1031 * Return: 1 for a highmem zone, 0 otherwise 1032 */ 1033 static inline int is_highmem(struct zone *zone) 1034 { 1035 #ifdef CONFIG_HIGHMEM 1036 return is_highmem_idx(zone_idx(zone)); 1037 #else 1038 return 0; 1039 #endif 1040 } 1041 1042 /* These two functions are used to setup the per zone pages min values */ 1043 struct ctl_table; 1044 1045 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *, 1046 loff_t *); 1047 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *, 1048 size_t *, loff_t *); 1049 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES]; 1050 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *, 1051 size_t *, loff_t *); 1052 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *, int, 1053 void *, size_t *, loff_t *); 1054 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 1055 void *, size_t *, loff_t *); 1056 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 1057 void *, size_t *, loff_t *); 1058 int numa_zonelist_order_handler(struct ctl_table *, int, 1059 void *, size_t *, loff_t *); 1060 extern int percpu_pagelist_high_fraction; 1061 extern char numa_zonelist_order[]; 1062 #define NUMA_ZONELIST_ORDER_LEN 16 1063 1064 #ifndef CONFIG_NUMA 1065 1066 extern struct pglist_data contig_page_data; 1067 static inline struct pglist_data *NODE_DATA(int nid) 1068 { 1069 return &contig_page_data; 1070 } 1071 #define NODE_MEM_MAP(nid) mem_map 1072 1073 #else /* CONFIG_NUMA */ 1074 1075 #include <asm/mmzone.h> 1076 1077 #endif /* !CONFIG_NUMA */ 1078 1079 extern struct pglist_data *first_online_pgdat(void); 1080 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 1081 extern struct zone *next_zone(struct zone *zone); 1082 1083 /** 1084 * for_each_online_pgdat - helper macro to iterate over all online nodes 1085 * @pgdat: pointer to a pg_data_t variable 1086 */ 1087 #define for_each_online_pgdat(pgdat) \ 1088 for (pgdat = first_online_pgdat(); \ 1089 pgdat; \ 1090 pgdat = next_online_pgdat(pgdat)) 1091 /** 1092 * for_each_zone - helper macro to iterate over all memory zones 1093 * @zone: pointer to struct zone variable 1094 * 1095 * The user only needs to declare the zone variable, for_each_zone 1096 * fills it in. 1097 */ 1098 #define for_each_zone(zone) \ 1099 for (zone = (first_online_pgdat())->node_zones; \ 1100 zone; \ 1101 zone = next_zone(zone)) 1102 1103 #define for_each_populated_zone(zone) \ 1104 for (zone = (first_online_pgdat())->node_zones; \ 1105 zone; \ 1106 zone = next_zone(zone)) \ 1107 if (!populated_zone(zone)) \ 1108 ; /* do nothing */ \ 1109 else 1110 1111 static inline struct zone *zonelist_zone(struct zoneref *zoneref) 1112 { 1113 return zoneref->zone; 1114 } 1115 1116 static inline int zonelist_zone_idx(struct zoneref *zoneref) 1117 { 1118 return zoneref->zone_idx; 1119 } 1120 1121 static inline int zonelist_node_idx(struct zoneref *zoneref) 1122 { 1123 return zone_to_nid(zoneref->zone); 1124 } 1125 1126 struct zoneref *__next_zones_zonelist(struct zoneref *z, 1127 enum zone_type highest_zoneidx, 1128 nodemask_t *nodes); 1129 1130 /** 1131 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 1132 * @z: The cursor used as a starting point for the search 1133 * @highest_zoneidx: The zone index of the highest zone to return 1134 * @nodes: An optional nodemask to filter the zonelist with 1135 * 1136 * This function returns the next zone at or below a given zone index that is 1137 * within the allowed nodemask using a cursor as the starting point for the 1138 * search. The zoneref returned is a cursor that represents the current zone 1139 * being examined. It should be advanced by one before calling 1140 * next_zones_zonelist again. 1141 * 1142 * Return: the next zone at or below highest_zoneidx within the allowed 1143 * nodemask using a cursor within a zonelist as a starting point 1144 */ 1145 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 1146 enum zone_type highest_zoneidx, 1147 nodemask_t *nodes) 1148 { 1149 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 1150 return z; 1151 return __next_zones_zonelist(z, highest_zoneidx, nodes); 1152 } 1153 1154 /** 1155 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1156 * @zonelist: The zonelist to search for a suitable zone 1157 * @highest_zoneidx: The zone index of the highest zone to return 1158 * @nodes: An optional nodemask to filter the zonelist with 1159 * 1160 * This function returns the first zone at or below a given zone index that is 1161 * within the allowed nodemask. The zoneref returned is a cursor that can be 1162 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1163 * one before calling. 1164 * 1165 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1166 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1167 * update due to cpuset modification. 1168 * 1169 * Return: Zoneref pointer for the first suitable zone found 1170 */ 1171 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1172 enum zone_type highest_zoneidx, 1173 nodemask_t *nodes) 1174 { 1175 return next_zones_zonelist(zonelist->_zonerefs, 1176 highest_zoneidx, nodes); 1177 } 1178 1179 /** 1180 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1181 * @zone: The current zone in the iterator 1182 * @z: The current pointer within zonelist->_zonerefs being iterated 1183 * @zlist: The zonelist being iterated 1184 * @highidx: The zone index of the highest zone to return 1185 * @nodemask: Nodemask allowed by the allocator 1186 * 1187 * This iterator iterates though all zones at or below a given zone index and 1188 * within a given nodemask 1189 */ 1190 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1191 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1192 zone; \ 1193 z = next_zones_zonelist(++z, highidx, nodemask), \ 1194 zone = zonelist_zone(z)) 1195 1196 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \ 1197 for (zone = z->zone; \ 1198 zone; \ 1199 z = next_zones_zonelist(++z, highidx, nodemask), \ 1200 zone = zonelist_zone(z)) 1201 1202 1203 /** 1204 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1205 * @zone: The current zone in the iterator 1206 * @z: The current pointer within zonelist->zones being iterated 1207 * @zlist: The zonelist being iterated 1208 * @highidx: The zone index of the highest zone to return 1209 * 1210 * This iterator iterates though all zones at or below a given zone index. 1211 */ 1212 #define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1213 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1214 1215 #ifdef CONFIG_SPARSEMEM 1216 #include <asm/sparsemem.h> 1217 #endif 1218 1219 #ifdef CONFIG_FLATMEM 1220 #define pfn_to_nid(pfn) (0) 1221 #endif 1222 1223 #ifdef CONFIG_SPARSEMEM 1224 1225 /* 1226 * PA_SECTION_SHIFT physical address to/from section number 1227 * PFN_SECTION_SHIFT pfn to/from section number 1228 */ 1229 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1230 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1231 1232 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1233 1234 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1235 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1236 1237 #define SECTION_BLOCKFLAGS_BITS \ 1238 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1239 1240 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1241 #error Allocator MAX_ORDER exceeds SECTION_SIZE 1242 #endif 1243 1244 static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1245 { 1246 return pfn >> PFN_SECTION_SHIFT; 1247 } 1248 static inline unsigned long section_nr_to_pfn(unsigned long sec) 1249 { 1250 return sec << PFN_SECTION_SHIFT; 1251 } 1252 1253 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1254 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1255 1256 #define SUBSECTION_SHIFT 21 1257 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT) 1258 1259 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) 1260 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) 1261 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) 1262 1263 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS 1264 #error Subsection size exceeds section size 1265 #else 1266 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) 1267 #endif 1268 1269 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) 1270 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) 1271 1272 struct mem_section_usage { 1273 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1274 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); 1275 #endif 1276 /* See declaration of similar field in struct zone */ 1277 unsigned long pageblock_flags[0]; 1278 }; 1279 1280 void subsection_map_init(unsigned long pfn, unsigned long nr_pages); 1281 1282 struct page; 1283 struct page_ext; 1284 struct mem_section { 1285 /* 1286 * This is, logically, a pointer to an array of struct 1287 * pages. However, it is stored with some other magic. 1288 * (see sparse.c::sparse_init_one_section()) 1289 * 1290 * Additionally during early boot we encode node id of 1291 * the location of the section here to guide allocation. 1292 * (see sparse.c::memory_present()) 1293 * 1294 * Making it a UL at least makes someone do a cast 1295 * before using it wrong. 1296 */ 1297 unsigned long section_mem_map; 1298 1299 struct mem_section_usage *usage; 1300 #ifdef CONFIG_PAGE_EXTENSION 1301 /* 1302 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1303 * section. (see page_ext.h about this.) 1304 */ 1305 struct page_ext *page_ext; 1306 unsigned long pad; 1307 #endif 1308 /* 1309 * WARNING: mem_section must be a power-of-2 in size for the 1310 * calculation and use of SECTION_ROOT_MASK to make sense. 1311 */ 1312 }; 1313 1314 #ifdef CONFIG_SPARSEMEM_EXTREME 1315 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1316 #else 1317 #define SECTIONS_PER_ROOT 1 1318 #endif 1319 1320 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1321 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1322 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1323 1324 #ifdef CONFIG_SPARSEMEM_EXTREME 1325 extern struct mem_section **mem_section; 1326 #else 1327 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1328 #endif 1329 1330 static inline unsigned long *section_to_usemap(struct mem_section *ms) 1331 { 1332 return ms->usage->pageblock_flags; 1333 } 1334 1335 static inline struct mem_section *__nr_to_section(unsigned long nr) 1336 { 1337 #ifdef CONFIG_SPARSEMEM_EXTREME 1338 if (!mem_section) 1339 return NULL; 1340 #endif 1341 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1342 return NULL; 1343 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1344 } 1345 extern unsigned long __section_nr(struct mem_section *ms); 1346 extern size_t mem_section_usage_size(void); 1347 1348 /* 1349 * We use the lower bits of the mem_map pointer to store 1350 * a little bit of information. The pointer is calculated 1351 * as mem_map - section_nr_to_pfn(pnum). The result is 1352 * aligned to the minimum alignment of the two values: 1353 * 1. All mem_map arrays are page-aligned. 1354 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT 1355 * lowest bits. PFN_SECTION_SHIFT is arch-specific 1356 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the 1357 * worst combination is powerpc with 256k pages, 1358 * which results in PFN_SECTION_SHIFT equal 6. 1359 * To sum it up, at least 6 bits are available. 1360 */ 1361 #define SECTION_MARKED_PRESENT (1UL<<0) 1362 #define SECTION_HAS_MEM_MAP (1UL<<1) 1363 #define SECTION_IS_ONLINE (1UL<<2) 1364 #define SECTION_IS_EARLY (1UL<<3) 1365 #define SECTION_TAINT_ZONE_DEVICE (1UL<<4) 1366 #define SECTION_MAP_LAST_BIT (1UL<<5) 1367 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1368 #define SECTION_NID_SHIFT 3 1369 1370 static inline struct page *__section_mem_map_addr(struct mem_section *section) 1371 { 1372 unsigned long map = section->section_mem_map; 1373 map &= SECTION_MAP_MASK; 1374 return (struct page *)map; 1375 } 1376 1377 static inline int present_section(struct mem_section *section) 1378 { 1379 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1380 } 1381 1382 static inline int present_section_nr(unsigned long nr) 1383 { 1384 return present_section(__nr_to_section(nr)); 1385 } 1386 1387 static inline int valid_section(struct mem_section *section) 1388 { 1389 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1390 } 1391 1392 static inline int early_section(struct mem_section *section) 1393 { 1394 return (section && (section->section_mem_map & SECTION_IS_EARLY)); 1395 } 1396 1397 static inline int valid_section_nr(unsigned long nr) 1398 { 1399 return valid_section(__nr_to_section(nr)); 1400 } 1401 1402 static inline int online_section(struct mem_section *section) 1403 { 1404 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 1405 } 1406 1407 static inline int online_device_section(struct mem_section *section) 1408 { 1409 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE; 1410 1411 return section && ((section->section_mem_map & flags) == flags); 1412 } 1413 1414 static inline int online_section_nr(unsigned long nr) 1415 { 1416 return online_section(__nr_to_section(nr)); 1417 } 1418 1419 #ifdef CONFIG_MEMORY_HOTPLUG 1420 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1421 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1422 #endif 1423 1424 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1425 { 1426 return __nr_to_section(pfn_to_section_nr(pfn)); 1427 } 1428 1429 extern unsigned long __highest_present_section_nr; 1430 1431 static inline int subsection_map_index(unsigned long pfn) 1432 { 1433 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; 1434 } 1435 1436 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1437 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1438 { 1439 int idx = subsection_map_index(pfn); 1440 1441 return test_bit(idx, ms->usage->subsection_map); 1442 } 1443 #else 1444 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1445 { 1446 return 1; 1447 } 1448 #endif 1449 1450 #ifndef CONFIG_HAVE_ARCH_PFN_VALID 1451 /** 1452 * pfn_valid - check if there is a valid memory map entry for a PFN 1453 * @pfn: the page frame number to check 1454 * 1455 * Check if there is a valid memory map entry aka struct page for the @pfn. 1456 * Note, that availability of the memory map entry does not imply that 1457 * there is actual usable memory at that @pfn. The struct page may 1458 * represent a hole or an unusable page frame. 1459 * 1460 * Return: 1 for PFNs that have memory map entries and 0 otherwise 1461 */ 1462 static inline int pfn_valid(unsigned long pfn) 1463 { 1464 struct mem_section *ms; 1465 1466 /* 1467 * Ensure the upper PAGE_SHIFT bits are clear in the 1468 * pfn. Else it might lead to false positives when 1469 * some of the upper bits are set, but the lower bits 1470 * match a valid pfn. 1471 */ 1472 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn) 1473 return 0; 1474 1475 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1476 return 0; 1477 ms = __nr_to_section(pfn_to_section_nr(pfn)); 1478 if (!valid_section(ms)) 1479 return 0; 1480 /* 1481 * Traditionally early sections always returned pfn_valid() for 1482 * the entire section-sized span. 1483 */ 1484 return early_section(ms) || pfn_section_valid(ms, pfn); 1485 } 1486 #endif 1487 1488 static inline int pfn_in_present_section(unsigned long pfn) 1489 { 1490 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1491 return 0; 1492 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1493 } 1494 1495 static inline unsigned long next_present_section_nr(unsigned long section_nr) 1496 { 1497 while (++section_nr <= __highest_present_section_nr) { 1498 if (present_section_nr(section_nr)) 1499 return section_nr; 1500 } 1501 1502 return -1; 1503 } 1504 1505 /* 1506 * These are _only_ used during initialisation, therefore they 1507 * can use __initdata ... They could have names to indicate 1508 * this restriction. 1509 */ 1510 #ifdef CONFIG_NUMA 1511 #define pfn_to_nid(pfn) \ 1512 ({ \ 1513 unsigned long __pfn_to_nid_pfn = (pfn); \ 1514 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1515 }) 1516 #else 1517 #define pfn_to_nid(pfn) (0) 1518 #endif 1519 1520 void sparse_init(void); 1521 #else 1522 #define sparse_init() do {} while (0) 1523 #define sparse_index_init(_sec, _nid) do {} while (0) 1524 #define pfn_in_present_section pfn_valid 1525 #define subsection_map_init(_pfn, _nr_pages) do {} while (0) 1526 #endif /* CONFIG_SPARSEMEM */ 1527 1528 /* 1529 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1530 * need to check pfn validity within that MAX_ORDER_NR_PAGES block. 1531 * pfn_valid_within() should be used in this case; we optimise this away 1532 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1533 */ 1534 #ifdef CONFIG_HOLES_IN_ZONE 1535 #define pfn_valid_within(pfn) pfn_valid(pfn) 1536 #else 1537 #define pfn_valid_within(pfn) (1) 1538 #endif 1539 1540 #endif /* !__GENERATING_BOUNDS.H */ 1541 #endif /* !__ASSEMBLY__ */ 1542 #endif /* _LINUX_MMZONE_H */ 1543