xref: /linux-6.15/include/linux/mmzone.h (revision fe968ca2)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/bitops.h>
12 #include <linux/cache.h>
13 #include <linux/threads.h>
14 #include <linux/numa.h>
15 #include <linux/init.h>
16 #include <linux/seqlock.h>
17 #include <linux/nodemask.h>
18 #include <linux/pageblock-flags.h>
19 #include <linux/page-flags-layout.h>
20 #include <linux/atomic.h>
21 #include <linux/mm_types.h>
22 #include <linux/page-flags.h>
23 #include <linux/local_lock.h>
24 #include <asm/page.h>
25 
26 /* Free memory management - zoned buddy allocator.  */
27 #ifndef CONFIG_FORCE_MAX_ZONEORDER
28 #define MAX_ORDER 11
29 #else
30 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
31 #endif
32 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
33 
34 /*
35  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
36  * costly to service.  That is between allocation orders which should
37  * coalesce naturally under reasonable reclaim pressure and those which
38  * will not.
39  */
40 #define PAGE_ALLOC_COSTLY_ORDER 3
41 
42 enum migratetype {
43 	MIGRATE_UNMOVABLE,
44 	MIGRATE_MOVABLE,
45 	MIGRATE_RECLAIMABLE,
46 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
47 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
48 #ifdef CONFIG_CMA
49 	/*
50 	 * MIGRATE_CMA migration type is designed to mimic the way
51 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
52 	 * from MIGRATE_CMA pageblocks and page allocator never
53 	 * implicitly change migration type of MIGRATE_CMA pageblock.
54 	 *
55 	 * The way to use it is to change migratetype of a range of
56 	 * pageblocks to MIGRATE_CMA which can be done by
57 	 * __free_pageblock_cma() function.  What is important though
58 	 * is that a range of pageblocks must be aligned to
59 	 * MAX_ORDER_NR_PAGES should biggest page be bigger than
60 	 * a single pageblock.
61 	 */
62 	MIGRATE_CMA,
63 #endif
64 #ifdef CONFIG_MEMORY_ISOLATION
65 	MIGRATE_ISOLATE,	/* can't allocate from here */
66 #endif
67 	MIGRATE_TYPES
68 };
69 
70 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
71 extern const char * const migratetype_names[MIGRATE_TYPES];
72 
73 #ifdef CONFIG_CMA
74 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
75 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
76 #else
77 #  define is_migrate_cma(migratetype) false
78 #  define is_migrate_cma_page(_page) false
79 #endif
80 
81 static inline bool is_migrate_movable(int mt)
82 {
83 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
84 }
85 
86 #define for_each_migratetype_order(order, type) \
87 	for (order = 0; order < MAX_ORDER; order++) \
88 		for (type = 0; type < MIGRATE_TYPES; type++)
89 
90 extern int page_group_by_mobility_disabled;
91 
92 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
93 
94 #define get_pageblock_migratetype(page)					\
95 	get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
96 
97 struct free_area {
98 	struct list_head	free_list[MIGRATE_TYPES];
99 	unsigned long		nr_free;
100 };
101 
102 static inline struct page *get_page_from_free_area(struct free_area *area,
103 					    int migratetype)
104 {
105 	return list_first_entry_or_null(&area->free_list[migratetype],
106 					struct page, lru);
107 }
108 
109 static inline bool free_area_empty(struct free_area *area, int migratetype)
110 {
111 	return list_empty(&area->free_list[migratetype]);
112 }
113 
114 struct pglist_data;
115 
116 /*
117  * Add a wild amount of padding here to ensure data fall into separate
118  * cachelines.  There are very few zone structures in the machine, so space
119  * consumption is not a concern here.
120  */
121 #if defined(CONFIG_SMP)
122 struct zone_padding {
123 	char x[0];
124 } ____cacheline_internodealigned_in_smp;
125 #define ZONE_PADDING(name)	struct zone_padding name;
126 #else
127 #define ZONE_PADDING(name)
128 #endif
129 
130 #ifdef CONFIG_NUMA
131 enum numa_stat_item {
132 	NUMA_HIT,		/* allocated in intended node */
133 	NUMA_MISS,		/* allocated in non intended node */
134 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
135 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
136 	NUMA_LOCAL,		/* allocation from local node */
137 	NUMA_OTHER,		/* allocation from other node */
138 	NR_VM_NUMA_EVENT_ITEMS
139 };
140 #else
141 #define NR_VM_NUMA_EVENT_ITEMS 0
142 #endif
143 
144 enum zone_stat_item {
145 	/* First 128 byte cacheline (assuming 64 bit words) */
146 	NR_FREE_PAGES,
147 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
148 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
149 	NR_ZONE_ACTIVE_ANON,
150 	NR_ZONE_INACTIVE_FILE,
151 	NR_ZONE_ACTIVE_FILE,
152 	NR_ZONE_UNEVICTABLE,
153 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
154 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
155 	/* Second 128 byte cacheline */
156 	NR_BOUNCE,
157 #if IS_ENABLED(CONFIG_ZSMALLOC)
158 	NR_ZSPAGES,		/* allocated in zsmalloc */
159 #endif
160 	NR_FREE_CMA_PAGES,
161 	NR_VM_ZONE_STAT_ITEMS };
162 
163 enum node_stat_item {
164 	NR_LRU_BASE,
165 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
166 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
167 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
168 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
169 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
170 	NR_SLAB_RECLAIMABLE_B,
171 	NR_SLAB_UNRECLAIMABLE_B,
172 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
173 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
174 	WORKINGSET_NODES,
175 	WORKINGSET_REFAULT_BASE,
176 	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
177 	WORKINGSET_REFAULT_FILE,
178 	WORKINGSET_ACTIVATE_BASE,
179 	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
180 	WORKINGSET_ACTIVATE_FILE,
181 	WORKINGSET_RESTORE_BASE,
182 	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
183 	WORKINGSET_RESTORE_FILE,
184 	WORKINGSET_NODERECLAIM,
185 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
186 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
187 			   only modified from process context */
188 	NR_FILE_PAGES,
189 	NR_FILE_DIRTY,
190 	NR_WRITEBACK,
191 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
192 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
193 	NR_SHMEM_THPS,
194 	NR_SHMEM_PMDMAPPED,
195 	NR_FILE_THPS,
196 	NR_FILE_PMDMAPPED,
197 	NR_ANON_THPS,
198 	NR_VMSCAN_WRITE,
199 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
200 	NR_DIRTIED,		/* page dirtyings since bootup */
201 	NR_WRITTEN,		/* page writings since bootup */
202 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
203 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
204 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
205 	NR_KERNEL_STACK_KB,	/* measured in KiB */
206 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
207 	NR_KERNEL_SCS_KB,	/* measured in KiB */
208 #endif
209 	NR_PAGETABLE,		/* used for pagetables */
210 #ifdef CONFIG_SWAP
211 	NR_SWAPCACHE,
212 #endif
213 	NR_VM_NODE_STAT_ITEMS
214 };
215 
216 /*
217  * Returns true if the item should be printed in THPs (/proc/vmstat
218  * currently prints number of anon, file and shmem THPs. But the item
219  * is charged in pages).
220  */
221 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
222 {
223 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
224 		return false;
225 
226 	return item == NR_ANON_THPS ||
227 	       item == NR_FILE_THPS ||
228 	       item == NR_SHMEM_THPS ||
229 	       item == NR_SHMEM_PMDMAPPED ||
230 	       item == NR_FILE_PMDMAPPED;
231 }
232 
233 /*
234  * Returns true if the value is measured in bytes (most vmstat values are
235  * measured in pages). This defines the API part, the internal representation
236  * might be different.
237  */
238 static __always_inline bool vmstat_item_in_bytes(int idx)
239 {
240 	/*
241 	 * Global and per-node slab counters track slab pages.
242 	 * It's expected that changes are multiples of PAGE_SIZE.
243 	 * Internally values are stored in pages.
244 	 *
245 	 * Per-memcg and per-lruvec counters track memory, consumed
246 	 * by individual slab objects. These counters are actually
247 	 * byte-precise.
248 	 */
249 	return (idx == NR_SLAB_RECLAIMABLE_B ||
250 		idx == NR_SLAB_UNRECLAIMABLE_B);
251 }
252 
253 /*
254  * We do arithmetic on the LRU lists in various places in the code,
255  * so it is important to keep the active lists LRU_ACTIVE higher in
256  * the array than the corresponding inactive lists, and to keep
257  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
258  *
259  * This has to be kept in sync with the statistics in zone_stat_item
260  * above and the descriptions in vmstat_text in mm/vmstat.c
261  */
262 #define LRU_BASE 0
263 #define LRU_ACTIVE 1
264 #define LRU_FILE 2
265 
266 enum lru_list {
267 	LRU_INACTIVE_ANON = LRU_BASE,
268 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
269 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
270 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
271 	LRU_UNEVICTABLE,
272 	NR_LRU_LISTS
273 };
274 
275 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
276 
277 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
278 
279 static inline bool is_file_lru(enum lru_list lru)
280 {
281 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
282 }
283 
284 static inline bool is_active_lru(enum lru_list lru)
285 {
286 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
287 }
288 
289 #define ANON_AND_FILE 2
290 
291 enum lruvec_flags {
292 	LRUVEC_CONGESTED,		/* lruvec has many dirty pages
293 					 * backed by a congested BDI
294 					 */
295 };
296 
297 struct lruvec {
298 	struct list_head		lists[NR_LRU_LISTS];
299 	/* per lruvec lru_lock for memcg */
300 	spinlock_t			lru_lock;
301 	/*
302 	 * These track the cost of reclaiming one LRU - file or anon -
303 	 * over the other. As the observed cost of reclaiming one LRU
304 	 * increases, the reclaim scan balance tips toward the other.
305 	 */
306 	unsigned long			anon_cost;
307 	unsigned long			file_cost;
308 	/* Non-resident age, driven by LRU movement */
309 	atomic_long_t			nonresident_age;
310 	/* Refaults at the time of last reclaim cycle */
311 	unsigned long			refaults[ANON_AND_FILE];
312 	/* Various lruvec state flags (enum lruvec_flags) */
313 	unsigned long			flags;
314 #ifdef CONFIG_MEMCG
315 	struct pglist_data *pgdat;
316 #endif
317 };
318 
319 /* Isolate unmapped pages */
320 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
321 /* Isolate for asynchronous migration */
322 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
323 /* Isolate unevictable pages */
324 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
325 
326 /* LRU Isolation modes. */
327 typedef unsigned __bitwise isolate_mode_t;
328 
329 enum zone_watermarks {
330 	WMARK_MIN,
331 	WMARK_LOW,
332 	WMARK_HIGH,
333 	NR_WMARK
334 };
335 
336 /*
337  * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER plus one additional
338  * for pageblock size for THP if configured.
339  */
340 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
341 #define NR_PCP_THP 1
342 #else
343 #define NR_PCP_THP 0
344 #endif
345 #define NR_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1 + NR_PCP_THP))
346 
347 /*
348  * Shift to encode migratetype and order in the same integer, with order
349  * in the least significant bits.
350  */
351 #define NR_PCP_ORDER_WIDTH 8
352 #define NR_PCP_ORDER_MASK ((1<<NR_PCP_ORDER_WIDTH) - 1)
353 
354 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
355 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
356 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
357 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
358 
359 /* Fields and list protected by pagesets local_lock in page_alloc.c */
360 struct per_cpu_pages {
361 	int count;		/* number of pages in the list */
362 	int high;		/* high watermark, emptying needed */
363 	int batch;		/* chunk size for buddy add/remove */
364 	short free_factor;	/* batch scaling factor during free */
365 #ifdef CONFIG_NUMA
366 	short expire;		/* When 0, remote pagesets are drained */
367 #endif
368 
369 	/* Lists of pages, one per migrate type stored on the pcp-lists */
370 	struct list_head lists[NR_PCP_LISTS];
371 };
372 
373 struct per_cpu_zonestat {
374 #ifdef CONFIG_SMP
375 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
376 	s8 stat_threshold;
377 #endif
378 #ifdef CONFIG_NUMA
379 	/*
380 	 * Low priority inaccurate counters that are only folded
381 	 * on demand. Use a large type to avoid the overhead of
382 	 * folding during refresh_cpu_vm_stats.
383 	 */
384 	unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
385 #endif
386 };
387 
388 struct per_cpu_nodestat {
389 	s8 stat_threshold;
390 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
391 };
392 
393 #endif /* !__GENERATING_BOUNDS.H */
394 
395 enum zone_type {
396 	/*
397 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
398 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
399 	 * On architectures where this area covers the whole 32 bit address
400 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
401 	 * DMA addressing constraints. This distinction is important as a 32bit
402 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
403 	 * platforms may need both zones as they support peripherals with
404 	 * different DMA addressing limitations.
405 	 */
406 #ifdef CONFIG_ZONE_DMA
407 	ZONE_DMA,
408 #endif
409 #ifdef CONFIG_ZONE_DMA32
410 	ZONE_DMA32,
411 #endif
412 	/*
413 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
414 	 * performed on pages in ZONE_NORMAL if the DMA devices support
415 	 * transfers to all addressable memory.
416 	 */
417 	ZONE_NORMAL,
418 #ifdef CONFIG_HIGHMEM
419 	/*
420 	 * A memory area that is only addressable by the kernel through
421 	 * mapping portions into its own address space. This is for example
422 	 * used by i386 to allow the kernel to address the memory beyond
423 	 * 900MB. The kernel will set up special mappings (page
424 	 * table entries on i386) for each page that the kernel needs to
425 	 * access.
426 	 */
427 	ZONE_HIGHMEM,
428 #endif
429 	/*
430 	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
431 	 * movable pages with few exceptional cases described below. Main use
432 	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
433 	 * likely to succeed, and to locally limit unmovable allocations - e.g.,
434 	 * to increase the number of THP/huge pages. Notable special cases are:
435 	 *
436 	 * 1. Pinned pages: (long-term) pinning of movable pages might
437 	 *    essentially turn such pages unmovable. Therefore, we do not allow
438 	 *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
439 	 *    faulted, they come from the right zone right away. However, it is
440 	 *    still possible that address space already has pages in
441 	 *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
442 	 *    touches that memory before pinning). In such case we migrate them
443 	 *    to a different zone. When migration fails - pinning fails.
444 	 * 2. memblock allocations: kernelcore/movablecore setups might create
445 	 *    situations where ZONE_MOVABLE contains unmovable allocations
446 	 *    after boot. Memory offlining and allocations fail early.
447 	 * 3. Memory holes: kernelcore/movablecore setups might create very rare
448 	 *    situations where ZONE_MOVABLE contains memory holes after boot,
449 	 *    for example, if we have sections that are only partially
450 	 *    populated. Memory offlining and allocations fail early.
451 	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
452 	 *    memory offlining, such pages cannot be allocated.
453 	 * 5. Unmovable PG_offline pages: in paravirtualized environments,
454 	 *    hotplugged memory blocks might only partially be managed by the
455 	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
456 	 *    parts not manged by the buddy are unmovable PG_offline pages. In
457 	 *    some cases (virtio-mem), such pages can be skipped during
458 	 *    memory offlining, however, cannot be moved/allocated. These
459 	 *    techniques might use alloc_contig_range() to hide previously
460 	 *    exposed pages from the buddy again (e.g., to implement some sort
461 	 *    of memory unplug in virtio-mem).
462 	 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
463 	 *    situations where ZERO_PAGE(0) which is allocated differently
464 	 *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
465 	 *    cannot be migrated.
466 	 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
467 	 *    memory to the MOVABLE zone, the vmemmap pages are also placed in
468 	 *    such zone. Such pages cannot be really moved around as they are
469 	 *    self-stored in the range, but they are treated as movable when
470 	 *    the range they describe is about to be offlined.
471 	 *
472 	 * In general, no unmovable allocations that degrade memory offlining
473 	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
474 	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
475 	 * if has_unmovable_pages() states that there are no unmovable pages,
476 	 * there can be false negatives).
477 	 */
478 	ZONE_MOVABLE,
479 #ifdef CONFIG_ZONE_DEVICE
480 	ZONE_DEVICE,
481 #endif
482 	__MAX_NR_ZONES
483 
484 };
485 
486 #ifndef __GENERATING_BOUNDS_H
487 
488 #define ASYNC_AND_SYNC 2
489 
490 struct zone {
491 	/* Read-mostly fields */
492 
493 	/* zone watermarks, access with *_wmark_pages(zone) macros */
494 	unsigned long _watermark[NR_WMARK];
495 	unsigned long watermark_boost;
496 
497 	unsigned long nr_reserved_highatomic;
498 
499 	/*
500 	 * We don't know if the memory that we're going to allocate will be
501 	 * freeable or/and it will be released eventually, so to avoid totally
502 	 * wasting several GB of ram we must reserve some of the lower zone
503 	 * memory (otherwise we risk to run OOM on the lower zones despite
504 	 * there being tons of freeable ram on the higher zones).  This array is
505 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
506 	 * changes.
507 	 */
508 	long lowmem_reserve[MAX_NR_ZONES];
509 
510 #ifdef CONFIG_NUMA
511 	int node;
512 #endif
513 	struct pglist_data	*zone_pgdat;
514 	struct per_cpu_pages	__percpu *per_cpu_pageset;
515 	struct per_cpu_zonestat	__percpu *per_cpu_zonestats;
516 	/*
517 	 * the high and batch values are copied to individual pagesets for
518 	 * faster access
519 	 */
520 	int pageset_high;
521 	int pageset_batch;
522 
523 #ifndef CONFIG_SPARSEMEM
524 	/*
525 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
526 	 * In SPARSEMEM, this map is stored in struct mem_section
527 	 */
528 	unsigned long		*pageblock_flags;
529 #endif /* CONFIG_SPARSEMEM */
530 
531 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
532 	unsigned long		zone_start_pfn;
533 
534 	/*
535 	 * spanned_pages is the total pages spanned by the zone, including
536 	 * holes, which is calculated as:
537 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
538 	 *
539 	 * present_pages is physical pages existing within the zone, which
540 	 * is calculated as:
541 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
542 	 *
543 	 * managed_pages is present pages managed by the buddy system, which
544 	 * is calculated as (reserved_pages includes pages allocated by the
545 	 * bootmem allocator):
546 	 *	managed_pages = present_pages - reserved_pages;
547 	 *
548 	 * cma pages is present pages that are assigned for CMA use
549 	 * (MIGRATE_CMA).
550 	 *
551 	 * So present_pages may be used by memory hotplug or memory power
552 	 * management logic to figure out unmanaged pages by checking
553 	 * (present_pages - managed_pages). And managed_pages should be used
554 	 * by page allocator and vm scanner to calculate all kinds of watermarks
555 	 * and thresholds.
556 	 *
557 	 * Locking rules:
558 	 *
559 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
560 	 * It is a seqlock because it has to be read outside of zone->lock,
561 	 * and it is done in the main allocator path.  But, it is written
562 	 * quite infrequently.
563 	 *
564 	 * The span_seq lock is declared along with zone->lock because it is
565 	 * frequently read in proximity to zone->lock.  It's good to
566 	 * give them a chance of being in the same cacheline.
567 	 *
568 	 * Write access to present_pages at runtime should be protected by
569 	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
570 	 * present_pages should get_online_mems() to get a stable value.
571 	 */
572 	atomic_long_t		managed_pages;
573 	unsigned long		spanned_pages;
574 	unsigned long		present_pages;
575 #ifdef CONFIG_CMA
576 	unsigned long		cma_pages;
577 #endif
578 
579 	const char		*name;
580 
581 #ifdef CONFIG_MEMORY_ISOLATION
582 	/*
583 	 * Number of isolated pageblock. It is used to solve incorrect
584 	 * freepage counting problem due to racy retrieving migratetype
585 	 * of pageblock. Protected by zone->lock.
586 	 */
587 	unsigned long		nr_isolate_pageblock;
588 #endif
589 
590 #ifdef CONFIG_MEMORY_HOTPLUG
591 	/* see spanned/present_pages for more description */
592 	seqlock_t		span_seqlock;
593 #endif
594 
595 	int initialized;
596 
597 	/* Write-intensive fields used from the page allocator */
598 	ZONE_PADDING(_pad1_)
599 
600 	/* free areas of different sizes */
601 	struct free_area	free_area[MAX_ORDER];
602 
603 	/* zone flags, see below */
604 	unsigned long		flags;
605 
606 	/* Primarily protects free_area */
607 	spinlock_t		lock;
608 
609 	/* Write-intensive fields used by compaction and vmstats. */
610 	ZONE_PADDING(_pad2_)
611 
612 	/*
613 	 * When free pages are below this point, additional steps are taken
614 	 * when reading the number of free pages to avoid per-cpu counter
615 	 * drift allowing watermarks to be breached
616 	 */
617 	unsigned long percpu_drift_mark;
618 
619 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
620 	/* pfn where compaction free scanner should start */
621 	unsigned long		compact_cached_free_pfn;
622 	/* pfn where compaction migration scanner should start */
623 	unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC];
624 	unsigned long		compact_init_migrate_pfn;
625 	unsigned long		compact_init_free_pfn;
626 #endif
627 
628 #ifdef CONFIG_COMPACTION
629 	/*
630 	 * On compaction failure, 1<<compact_defer_shift compactions
631 	 * are skipped before trying again. The number attempted since
632 	 * last failure is tracked with compact_considered.
633 	 * compact_order_failed is the minimum compaction failed order.
634 	 */
635 	unsigned int		compact_considered;
636 	unsigned int		compact_defer_shift;
637 	int			compact_order_failed;
638 #endif
639 
640 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
641 	/* Set to true when the PG_migrate_skip bits should be cleared */
642 	bool			compact_blockskip_flush;
643 #endif
644 
645 	bool			contiguous;
646 
647 	ZONE_PADDING(_pad3_)
648 	/* Zone statistics */
649 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
650 	atomic_long_t		vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
651 } ____cacheline_internodealigned_in_smp;
652 
653 enum pgdat_flags {
654 	PGDAT_DIRTY,			/* reclaim scanning has recently found
655 					 * many dirty file pages at the tail
656 					 * of the LRU.
657 					 */
658 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
659 					 * many pages under writeback
660 					 */
661 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
662 };
663 
664 enum zone_flags {
665 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
666 					 * Cleared when kswapd is woken.
667 					 */
668 	ZONE_RECLAIM_ACTIVE,		/* kswapd may be scanning the zone. */
669 };
670 
671 static inline unsigned long zone_managed_pages(struct zone *zone)
672 {
673 	return (unsigned long)atomic_long_read(&zone->managed_pages);
674 }
675 
676 static inline unsigned long zone_cma_pages(struct zone *zone)
677 {
678 #ifdef CONFIG_CMA
679 	return zone->cma_pages;
680 #else
681 	return 0;
682 #endif
683 }
684 
685 static inline unsigned long zone_end_pfn(const struct zone *zone)
686 {
687 	return zone->zone_start_pfn + zone->spanned_pages;
688 }
689 
690 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
691 {
692 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
693 }
694 
695 static inline bool zone_is_initialized(struct zone *zone)
696 {
697 	return zone->initialized;
698 }
699 
700 static inline bool zone_is_empty(struct zone *zone)
701 {
702 	return zone->spanned_pages == 0;
703 }
704 
705 /*
706  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
707  * intersection with the given zone
708  */
709 static inline bool zone_intersects(struct zone *zone,
710 		unsigned long start_pfn, unsigned long nr_pages)
711 {
712 	if (zone_is_empty(zone))
713 		return false;
714 	if (start_pfn >= zone_end_pfn(zone) ||
715 	    start_pfn + nr_pages <= zone->zone_start_pfn)
716 		return false;
717 
718 	return true;
719 }
720 
721 /*
722  * The "priority" of VM scanning is how much of the queues we will scan in one
723  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
724  * queues ("queue_length >> 12") during an aging round.
725  */
726 #define DEF_PRIORITY 12
727 
728 /* Maximum number of zones on a zonelist */
729 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
730 
731 enum {
732 	ZONELIST_FALLBACK,	/* zonelist with fallback */
733 #ifdef CONFIG_NUMA
734 	/*
735 	 * The NUMA zonelists are doubled because we need zonelists that
736 	 * restrict the allocations to a single node for __GFP_THISNODE.
737 	 */
738 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
739 #endif
740 	MAX_ZONELISTS
741 };
742 
743 /*
744  * This struct contains information about a zone in a zonelist. It is stored
745  * here to avoid dereferences into large structures and lookups of tables
746  */
747 struct zoneref {
748 	struct zone *zone;	/* Pointer to actual zone */
749 	int zone_idx;		/* zone_idx(zoneref->zone) */
750 };
751 
752 /*
753  * One allocation request operates on a zonelist. A zonelist
754  * is a list of zones, the first one is the 'goal' of the
755  * allocation, the other zones are fallback zones, in decreasing
756  * priority.
757  *
758  * To speed the reading of the zonelist, the zonerefs contain the zone index
759  * of the entry being read. Helper functions to access information given
760  * a struct zoneref are
761  *
762  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
763  * zonelist_zone_idx()	- Return the index of the zone for an entry
764  * zonelist_node_idx()	- Return the index of the node for an entry
765  */
766 struct zonelist {
767 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
768 };
769 
770 /*
771  * The array of struct pages for flatmem.
772  * It must be declared for SPARSEMEM as well because there are configurations
773  * that rely on that.
774  */
775 extern struct page *mem_map;
776 
777 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
778 struct deferred_split {
779 	spinlock_t split_queue_lock;
780 	struct list_head split_queue;
781 	unsigned long split_queue_len;
782 };
783 #endif
784 
785 /*
786  * On NUMA machines, each NUMA node would have a pg_data_t to describe
787  * it's memory layout. On UMA machines there is a single pglist_data which
788  * describes the whole memory.
789  *
790  * Memory statistics and page replacement data structures are maintained on a
791  * per-zone basis.
792  */
793 typedef struct pglist_data {
794 	/*
795 	 * node_zones contains just the zones for THIS node. Not all of the
796 	 * zones may be populated, but it is the full list. It is referenced by
797 	 * this node's node_zonelists as well as other node's node_zonelists.
798 	 */
799 	struct zone node_zones[MAX_NR_ZONES];
800 
801 	/*
802 	 * node_zonelists contains references to all zones in all nodes.
803 	 * Generally the first zones will be references to this node's
804 	 * node_zones.
805 	 */
806 	struct zonelist node_zonelists[MAX_ZONELISTS];
807 
808 	int nr_zones; /* number of populated zones in this node */
809 #ifdef CONFIG_FLATMEM	/* means !SPARSEMEM */
810 	struct page *node_mem_map;
811 #ifdef CONFIG_PAGE_EXTENSION
812 	struct page_ext *node_page_ext;
813 #endif
814 #endif
815 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
816 	/*
817 	 * Must be held any time you expect node_start_pfn,
818 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
819 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
820 	 * init.
821 	 *
822 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
823 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
824 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
825 	 *
826 	 * Nests above zone->lock and zone->span_seqlock
827 	 */
828 	spinlock_t node_size_lock;
829 #endif
830 	unsigned long node_start_pfn;
831 	unsigned long node_present_pages; /* total number of physical pages */
832 	unsigned long node_spanned_pages; /* total size of physical page
833 					     range, including holes */
834 	int node_id;
835 	wait_queue_head_t kswapd_wait;
836 	wait_queue_head_t pfmemalloc_wait;
837 	struct task_struct *kswapd;	/* Protected by
838 					   mem_hotplug_begin/end() */
839 	int kswapd_order;
840 	enum zone_type kswapd_highest_zoneidx;
841 
842 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
843 
844 #ifdef CONFIG_COMPACTION
845 	int kcompactd_max_order;
846 	enum zone_type kcompactd_highest_zoneidx;
847 	wait_queue_head_t kcompactd_wait;
848 	struct task_struct *kcompactd;
849 #endif
850 	/*
851 	 * This is a per-node reserve of pages that are not available
852 	 * to userspace allocations.
853 	 */
854 	unsigned long		totalreserve_pages;
855 
856 #ifdef CONFIG_NUMA
857 	/*
858 	 * node reclaim becomes active if more unmapped pages exist.
859 	 */
860 	unsigned long		min_unmapped_pages;
861 	unsigned long		min_slab_pages;
862 #endif /* CONFIG_NUMA */
863 
864 	/* Write-intensive fields used by page reclaim */
865 	ZONE_PADDING(_pad1_)
866 
867 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
868 	/*
869 	 * If memory initialisation on large machines is deferred then this
870 	 * is the first PFN that needs to be initialised.
871 	 */
872 	unsigned long first_deferred_pfn;
873 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
874 
875 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
876 	struct deferred_split deferred_split_queue;
877 #endif
878 
879 	/* Fields commonly accessed by the page reclaim scanner */
880 
881 	/*
882 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
883 	 *
884 	 * Use mem_cgroup_lruvec() to look up lruvecs.
885 	 */
886 	struct lruvec		__lruvec;
887 
888 	unsigned long		flags;
889 
890 	ZONE_PADDING(_pad2_)
891 
892 	/* Per-node vmstats */
893 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
894 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
895 } pg_data_t;
896 
897 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
898 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
899 #ifdef CONFIG_FLATMEM
900 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
901 #else
902 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
903 #endif
904 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
905 
906 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
907 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
908 
909 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
910 {
911 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
912 }
913 
914 static inline bool pgdat_is_empty(pg_data_t *pgdat)
915 {
916 	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
917 }
918 
919 #include <linux/memory_hotplug.h>
920 
921 void build_all_zonelists(pg_data_t *pgdat);
922 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
923 		   enum zone_type highest_zoneidx);
924 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
925 			 int highest_zoneidx, unsigned int alloc_flags,
926 			 long free_pages);
927 bool zone_watermark_ok(struct zone *z, unsigned int order,
928 		unsigned long mark, int highest_zoneidx,
929 		unsigned int alloc_flags);
930 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
931 		unsigned long mark, int highest_zoneidx);
932 /*
933  * Memory initialization context, use to differentiate memory added by
934  * the platform statically or via memory hotplug interface.
935  */
936 enum meminit_context {
937 	MEMINIT_EARLY,
938 	MEMINIT_HOTPLUG,
939 };
940 
941 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
942 				     unsigned long size);
943 
944 extern void lruvec_init(struct lruvec *lruvec);
945 
946 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
947 {
948 #ifdef CONFIG_MEMCG
949 	return lruvec->pgdat;
950 #else
951 	return container_of(lruvec, struct pglist_data, __lruvec);
952 #endif
953 }
954 
955 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
956 int local_memory_node(int node_id);
957 #else
958 static inline int local_memory_node(int node_id) { return node_id; };
959 #endif
960 
961 /*
962  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
963  */
964 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
965 
966 #ifdef CONFIG_ZONE_DEVICE
967 static inline bool zone_is_zone_device(struct zone *zone)
968 {
969 	return zone_idx(zone) == ZONE_DEVICE;
970 }
971 #else
972 static inline bool zone_is_zone_device(struct zone *zone)
973 {
974 	return false;
975 }
976 #endif
977 
978 /*
979  * Returns true if a zone has pages managed by the buddy allocator.
980  * All the reclaim decisions have to use this function rather than
981  * populated_zone(). If the whole zone is reserved then we can easily
982  * end up with populated_zone() && !managed_zone().
983  */
984 static inline bool managed_zone(struct zone *zone)
985 {
986 	return zone_managed_pages(zone);
987 }
988 
989 /* Returns true if a zone has memory */
990 static inline bool populated_zone(struct zone *zone)
991 {
992 	return zone->present_pages;
993 }
994 
995 #ifdef CONFIG_NUMA
996 static inline int zone_to_nid(struct zone *zone)
997 {
998 	return zone->node;
999 }
1000 
1001 static inline void zone_set_nid(struct zone *zone, int nid)
1002 {
1003 	zone->node = nid;
1004 }
1005 #else
1006 static inline int zone_to_nid(struct zone *zone)
1007 {
1008 	return 0;
1009 }
1010 
1011 static inline void zone_set_nid(struct zone *zone, int nid) {}
1012 #endif
1013 
1014 extern int movable_zone;
1015 
1016 static inline int is_highmem_idx(enum zone_type idx)
1017 {
1018 #ifdef CONFIG_HIGHMEM
1019 	return (idx == ZONE_HIGHMEM ||
1020 		(idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1021 #else
1022 	return 0;
1023 #endif
1024 }
1025 
1026 /**
1027  * is_highmem - helper function to quickly check if a struct zone is a
1028  *              highmem zone or not.  This is an attempt to keep references
1029  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1030  * @zone: pointer to struct zone variable
1031  * Return: 1 for a highmem zone, 0 otherwise
1032  */
1033 static inline int is_highmem(struct zone *zone)
1034 {
1035 #ifdef CONFIG_HIGHMEM
1036 	return is_highmem_idx(zone_idx(zone));
1037 #else
1038 	return 0;
1039 #endif
1040 }
1041 
1042 /* These two functions are used to setup the per zone pages min values */
1043 struct ctl_table;
1044 
1045 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
1046 		loff_t *);
1047 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
1048 		size_t *, loff_t *);
1049 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
1050 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
1051 		size_t *, loff_t *);
1052 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *, int,
1053 		void *, size_t *, loff_t *);
1054 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
1055 		void *, size_t *, loff_t *);
1056 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
1057 		void *, size_t *, loff_t *);
1058 int numa_zonelist_order_handler(struct ctl_table *, int,
1059 		void *, size_t *, loff_t *);
1060 extern int percpu_pagelist_high_fraction;
1061 extern char numa_zonelist_order[];
1062 #define NUMA_ZONELIST_ORDER_LEN	16
1063 
1064 #ifndef CONFIG_NUMA
1065 
1066 extern struct pglist_data contig_page_data;
1067 static inline struct pglist_data *NODE_DATA(int nid)
1068 {
1069 	return &contig_page_data;
1070 }
1071 #define NODE_MEM_MAP(nid)	mem_map
1072 
1073 #else /* CONFIG_NUMA */
1074 
1075 #include <asm/mmzone.h>
1076 
1077 #endif /* !CONFIG_NUMA */
1078 
1079 extern struct pglist_data *first_online_pgdat(void);
1080 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1081 extern struct zone *next_zone(struct zone *zone);
1082 
1083 /**
1084  * for_each_online_pgdat - helper macro to iterate over all online nodes
1085  * @pgdat: pointer to a pg_data_t variable
1086  */
1087 #define for_each_online_pgdat(pgdat)			\
1088 	for (pgdat = first_online_pgdat();		\
1089 	     pgdat;					\
1090 	     pgdat = next_online_pgdat(pgdat))
1091 /**
1092  * for_each_zone - helper macro to iterate over all memory zones
1093  * @zone: pointer to struct zone variable
1094  *
1095  * The user only needs to declare the zone variable, for_each_zone
1096  * fills it in.
1097  */
1098 #define for_each_zone(zone)			        \
1099 	for (zone = (first_online_pgdat())->node_zones; \
1100 	     zone;					\
1101 	     zone = next_zone(zone))
1102 
1103 #define for_each_populated_zone(zone)		        \
1104 	for (zone = (first_online_pgdat())->node_zones; \
1105 	     zone;					\
1106 	     zone = next_zone(zone))			\
1107 		if (!populated_zone(zone))		\
1108 			; /* do nothing */		\
1109 		else
1110 
1111 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1112 {
1113 	return zoneref->zone;
1114 }
1115 
1116 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1117 {
1118 	return zoneref->zone_idx;
1119 }
1120 
1121 static inline int zonelist_node_idx(struct zoneref *zoneref)
1122 {
1123 	return zone_to_nid(zoneref->zone);
1124 }
1125 
1126 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1127 					enum zone_type highest_zoneidx,
1128 					nodemask_t *nodes);
1129 
1130 /**
1131  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1132  * @z: The cursor used as a starting point for the search
1133  * @highest_zoneidx: The zone index of the highest zone to return
1134  * @nodes: An optional nodemask to filter the zonelist with
1135  *
1136  * This function returns the next zone at or below a given zone index that is
1137  * within the allowed nodemask using a cursor as the starting point for the
1138  * search. The zoneref returned is a cursor that represents the current zone
1139  * being examined. It should be advanced by one before calling
1140  * next_zones_zonelist again.
1141  *
1142  * Return: the next zone at or below highest_zoneidx within the allowed
1143  * nodemask using a cursor within a zonelist as a starting point
1144  */
1145 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1146 					enum zone_type highest_zoneidx,
1147 					nodemask_t *nodes)
1148 {
1149 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1150 		return z;
1151 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1152 }
1153 
1154 /**
1155  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1156  * @zonelist: The zonelist to search for a suitable zone
1157  * @highest_zoneidx: The zone index of the highest zone to return
1158  * @nodes: An optional nodemask to filter the zonelist with
1159  *
1160  * This function returns the first zone at or below a given zone index that is
1161  * within the allowed nodemask. The zoneref returned is a cursor that can be
1162  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1163  * one before calling.
1164  *
1165  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1166  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1167  * update due to cpuset modification.
1168  *
1169  * Return: Zoneref pointer for the first suitable zone found
1170  */
1171 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1172 					enum zone_type highest_zoneidx,
1173 					nodemask_t *nodes)
1174 {
1175 	return next_zones_zonelist(zonelist->_zonerefs,
1176 							highest_zoneidx, nodes);
1177 }
1178 
1179 /**
1180  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1181  * @zone: The current zone in the iterator
1182  * @z: The current pointer within zonelist->_zonerefs being iterated
1183  * @zlist: The zonelist being iterated
1184  * @highidx: The zone index of the highest zone to return
1185  * @nodemask: Nodemask allowed by the allocator
1186  *
1187  * This iterator iterates though all zones at or below a given zone index and
1188  * within a given nodemask
1189  */
1190 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1191 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1192 		zone;							\
1193 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1194 			zone = zonelist_zone(z))
1195 
1196 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1197 	for (zone = z->zone;	\
1198 		zone;							\
1199 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1200 			zone = zonelist_zone(z))
1201 
1202 
1203 /**
1204  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1205  * @zone: The current zone in the iterator
1206  * @z: The current pointer within zonelist->zones being iterated
1207  * @zlist: The zonelist being iterated
1208  * @highidx: The zone index of the highest zone to return
1209  *
1210  * This iterator iterates though all zones at or below a given zone index.
1211  */
1212 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1213 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1214 
1215 #ifdef CONFIG_SPARSEMEM
1216 #include <asm/sparsemem.h>
1217 #endif
1218 
1219 #ifdef CONFIG_FLATMEM
1220 #define pfn_to_nid(pfn)		(0)
1221 #endif
1222 
1223 #ifdef CONFIG_SPARSEMEM
1224 
1225 /*
1226  * PA_SECTION_SHIFT		physical address to/from section number
1227  * PFN_SECTION_SHIFT		pfn to/from section number
1228  */
1229 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1230 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1231 
1232 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1233 
1234 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1235 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1236 
1237 #define SECTION_BLOCKFLAGS_BITS \
1238 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1239 
1240 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1241 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1242 #endif
1243 
1244 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1245 {
1246 	return pfn >> PFN_SECTION_SHIFT;
1247 }
1248 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1249 {
1250 	return sec << PFN_SECTION_SHIFT;
1251 }
1252 
1253 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1254 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1255 
1256 #define SUBSECTION_SHIFT 21
1257 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1258 
1259 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1260 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1261 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1262 
1263 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1264 #error Subsection size exceeds section size
1265 #else
1266 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1267 #endif
1268 
1269 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1270 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1271 
1272 struct mem_section_usage {
1273 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1274 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1275 #endif
1276 	/* See declaration of similar field in struct zone */
1277 	unsigned long pageblock_flags[0];
1278 };
1279 
1280 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1281 
1282 struct page;
1283 struct page_ext;
1284 struct mem_section {
1285 	/*
1286 	 * This is, logically, a pointer to an array of struct
1287 	 * pages.  However, it is stored with some other magic.
1288 	 * (see sparse.c::sparse_init_one_section())
1289 	 *
1290 	 * Additionally during early boot we encode node id of
1291 	 * the location of the section here to guide allocation.
1292 	 * (see sparse.c::memory_present())
1293 	 *
1294 	 * Making it a UL at least makes someone do a cast
1295 	 * before using it wrong.
1296 	 */
1297 	unsigned long section_mem_map;
1298 
1299 	struct mem_section_usage *usage;
1300 #ifdef CONFIG_PAGE_EXTENSION
1301 	/*
1302 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1303 	 * section. (see page_ext.h about this.)
1304 	 */
1305 	struct page_ext *page_ext;
1306 	unsigned long pad;
1307 #endif
1308 	/*
1309 	 * WARNING: mem_section must be a power-of-2 in size for the
1310 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1311 	 */
1312 };
1313 
1314 #ifdef CONFIG_SPARSEMEM_EXTREME
1315 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1316 #else
1317 #define SECTIONS_PER_ROOT	1
1318 #endif
1319 
1320 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1321 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1322 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1323 
1324 #ifdef CONFIG_SPARSEMEM_EXTREME
1325 extern struct mem_section **mem_section;
1326 #else
1327 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1328 #endif
1329 
1330 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1331 {
1332 	return ms->usage->pageblock_flags;
1333 }
1334 
1335 static inline struct mem_section *__nr_to_section(unsigned long nr)
1336 {
1337 #ifdef CONFIG_SPARSEMEM_EXTREME
1338 	if (!mem_section)
1339 		return NULL;
1340 #endif
1341 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1342 		return NULL;
1343 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1344 }
1345 extern unsigned long __section_nr(struct mem_section *ms);
1346 extern size_t mem_section_usage_size(void);
1347 
1348 /*
1349  * We use the lower bits of the mem_map pointer to store
1350  * a little bit of information.  The pointer is calculated
1351  * as mem_map - section_nr_to_pfn(pnum).  The result is
1352  * aligned to the minimum alignment of the two values:
1353  *   1. All mem_map arrays are page-aligned.
1354  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1355  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1356  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1357  *      worst combination is powerpc with 256k pages,
1358  *      which results in PFN_SECTION_SHIFT equal 6.
1359  * To sum it up, at least 6 bits are available.
1360  */
1361 #define SECTION_MARKED_PRESENT		(1UL<<0)
1362 #define SECTION_HAS_MEM_MAP		(1UL<<1)
1363 #define SECTION_IS_ONLINE		(1UL<<2)
1364 #define SECTION_IS_EARLY		(1UL<<3)
1365 #define SECTION_TAINT_ZONE_DEVICE	(1UL<<4)
1366 #define SECTION_MAP_LAST_BIT		(1UL<<5)
1367 #define SECTION_MAP_MASK		(~(SECTION_MAP_LAST_BIT-1))
1368 #define SECTION_NID_SHIFT		3
1369 
1370 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1371 {
1372 	unsigned long map = section->section_mem_map;
1373 	map &= SECTION_MAP_MASK;
1374 	return (struct page *)map;
1375 }
1376 
1377 static inline int present_section(struct mem_section *section)
1378 {
1379 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1380 }
1381 
1382 static inline int present_section_nr(unsigned long nr)
1383 {
1384 	return present_section(__nr_to_section(nr));
1385 }
1386 
1387 static inline int valid_section(struct mem_section *section)
1388 {
1389 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1390 }
1391 
1392 static inline int early_section(struct mem_section *section)
1393 {
1394 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1395 }
1396 
1397 static inline int valid_section_nr(unsigned long nr)
1398 {
1399 	return valid_section(__nr_to_section(nr));
1400 }
1401 
1402 static inline int online_section(struct mem_section *section)
1403 {
1404 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1405 }
1406 
1407 static inline int online_device_section(struct mem_section *section)
1408 {
1409 	unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1410 
1411 	return section && ((section->section_mem_map & flags) == flags);
1412 }
1413 
1414 static inline int online_section_nr(unsigned long nr)
1415 {
1416 	return online_section(__nr_to_section(nr));
1417 }
1418 
1419 #ifdef CONFIG_MEMORY_HOTPLUG
1420 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1421 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1422 #endif
1423 
1424 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1425 {
1426 	return __nr_to_section(pfn_to_section_nr(pfn));
1427 }
1428 
1429 extern unsigned long __highest_present_section_nr;
1430 
1431 static inline int subsection_map_index(unsigned long pfn)
1432 {
1433 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1434 }
1435 
1436 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1437 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1438 {
1439 	int idx = subsection_map_index(pfn);
1440 
1441 	return test_bit(idx, ms->usage->subsection_map);
1442 }
1443 #else
1444 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1445 {
1446 	return 1;
1447 }
1448 #endif
1449 
1450 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1451 /**
1452  * pfn_valid - check if there is a valid memory map entry for a PFN
1453  * @pfn: the page frame number to check
1454  *
1455  * Check if there is a valid memory map entry aka struct page for the @pfn.
1456  * Note, that availability of the memory map entry does not imply that
1457  * there is actual usable memory at that @pfn. The struct page may
1458  * represent a hole or an unusable page frame.
1459  *
1460  * Return: 1 for PFNs that have memory map entries and 0 otherwise
1461  */
1462 static inline int pfn_valid(unsigned long pfn)
1463 {
1464 	struct mem_section *ms;
1465 
1466 	/*
1467 	 * Ensure the upper PAGE_SHIFT bits are clear in the
1468 	 * pfn. Else it might lead to false positives when
1469 	 * some of the upper bits are set, but the lower bits
1470 	 * match a valid pfn.
1471 	 */
1472 	if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
1473 		return 0;
1474 
1475 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1476 		return 0;
1477 	ms = __nr_to_section(pfn_to_section_nr(pfn));
1478 	if (!valid_section(ms))
1479 		return 0;
1480 	/*
1481 	 * Traditionally early sections always returned pfn_valid() for
1482 	 * the entire section-sized span.
1483 	 */
1484 	return early_section(ms) || pfn_section_valid(ms, pfn);
1485 }
1486 #endif
1487 
1488 static inline int pfn_in_present_section(unsigned long pfn)
1489 {
1490 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1491 		return 0;
1492 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1493 }
1494 
1495 static inline unsigned long next_present_section_nr(unsigned long section_nr)
1496 {
1497 	while (++section_nr <= __highest_present_section_nr) {
1498 		if (present_section_nr(section_nr))
1499 			return section_nr;
1500 	}
1501 
1502 	return -1;
1503 }
1504 
1505 /*
1506  * These are _only_ used during initialisation, therefore they
1507  * can use __initdata ...  They could have names to indicate
1508  * this restriction.
1509  */
1510 #ifdef CONFIG_NUMA
1511 #define pfn_to_nid(pfn)							\
1512 ({									\
1513 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1514 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1515 })
1516 #else
1517 #define pfn_to_nid(pfn)		(0)
1518 #endif
1519 
1520 void sparse_init(void);
1521 #else
1522 #define sparse_init()	do {} while (0)
1523 #define sparse_index_init(_sec, _nid)  do {} while (0)
1524 #define pfn_in_present_section pfn_valid
1525 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1526 #endif /* CONFIG_SPARSEMEM */
1527 
1528 /*
1529  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1530  * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1531  * pfn_valid_within() should be used in this case; we optimise this away
1532  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1533  */
1534 #ifdef CONFIG_HOLES_IN_ZONE
1535 #define pfn_valid_within(pfn) pfn_valid(pfn)
1536 #else
1537 #define pfn_valid_within(pfn) (1)
1538 #endif
1539 
1540 #endif /* !__GENERATING_BOUNDS.H */
1541 #endif /* !__ASSEMBLY__ */
1542 #endif /* _LINUX_MMZONE_H */
1543