1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MMZONE_H 3 #define _LINUX_MMZONE_H 4 5 #ifndef __ASSEMBLY__ 6 #ifndef __GENERATING_BOUNDS_H 7 8 #include <linux/spinlock.h> 9 #include <linux/list.h> 10 #include <linux/list_nulls.h> 11 #include <linux/wait.h> 12 #include <linux/bitops.h> 13 #include <linux/cache.h> 14 #include <linux/threads.h> 15 #include <linux/numa.h> 16 #include <linux/init.h> 17 #include <linux/seqlock.h> 18 #include <linux/nodemask.h> 19 #include <linux/pageblock-flags.h> 20 #include <linux/page-flags-layout.h> 21 #include <linux/atomic.h> 22 #include <linux/mm_types.h> 23 #include <linux/page-flags.h> 24 #include <linux/local_lock.h> 25 #include <linux/zswap.h> 26 #include <asm/page.h> 27 28 /* Free memory management - zoned buddy allocator. */ 29 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER 30 #define MAX_PAGE_ORDER 10 31 #else 32 #define MAX_PAGE_ORDER CONFIG_ARCH_FORCE_MAX_ORDER 33 #endif 34 #define MAX_ORDER_NR_PAGES (1 << MAX_PAGE_ORDER) 35 36 #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES) 37 38 #define NR_PAGE_ORDERS (MAX_PAGE_ORDER + 1) 39 40 /* 41 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 42 * costly to service. That is between allocation orders which should 43 * coalesce naturally under reasonable reclaim pressure and those which 44 * will not. 45 */ 46 #define PAGE_ALLOC_COSTLY_ORDER 3 47 48 enum migratetype { 49 MIGRATE_UNMOVABLE, 50 MIGRATE_MOVABLE, 51 MIGRATE_RECLAIMABLE, 52 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 53 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 54 #ifdef CONFIG_CMA 55 /* 56 * MIGRATE_CMA migration type is designed to mimic the way 57 * ZONE_MOVABLE works. Only movable pages can be allocated 58 * from MIGRATE_CMA pageblocks and page allocator never 59 * implicitly change migration type of MIGRATE_CMA pageblock. 60 * 61 * The way to use it is to change migratetype of a range of 62 * pageblocks to MIGRATE_CMA which can be done by 63 * __free_pageblock_cma() function. 64 */ 65 MIGRATE_CMA, 66 #endif 67 #ifdef CONFIG_MEMORY_ISOLATION 68 MIGRATE_ISOLATE, /* can't allocate from here */ 69 #endif 70 MIGRATE_TYPES 71 }; 72 73 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 74 extern const char * const migratetype_names[MIGRATE_TYPES]; 75 76 #ifdef CONFIG_CMA 77 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 78 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 79 # define is_migrate_cma_folio(folio, pfn) (MIGRATE_CMA == \ 80 get_pfnblock_flags_mask(&folio->page, pfn, MIGRATETYPE_MASK)) 81 #else 82 # define is_migrate_cma(migratetype) false 83 # define is_migrate_cma_page(_page) false 84 # define is_migrate_cma_folio(folio, pfn) false 85 #endif 86 87 static inline bool is_migrate_movable(int mt) 88 { 89 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 90 } 91 92 /* 93 * Check whether a migratetype can be merged with another migratetype. 94 * 95 * It is only mergeable when it can fall back to other migratetypes for 96 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c. 97 */ 98 static inline bool migratetype_is_mergeable(int mt) 99 { 100 return mt < MIGRATE_PCPTYPES; 101 } 102 103 #define for_each_migratetype_order(order, type) \ 104 for (order = 0; order < NR_PAGE_ORDERS; order++) \ 105 for (type = 0; type < MIGRATE_TYPES; type++) 106 107 extern int page_group_by_mobility_disabled; 108 109 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1) 110 111 #define get_pageblock_migratetype(page) \ 112 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK) 113 114 #define folio_migratetype(folio) \ 115 get_pfnblock_flags_mask(&folio->page, folio_pfn(folio), \ 116 MIGRATETYPE_MASK) 117 struct free_area { 118 struct list_head free_list[MIGRATE_TYPES]; 119 unsigned long nr_free; 120 }; 121 122 struct pglist_data; 123 124 #ifdef CONFIG_NUMA 125 enum numa_stat_item { 126 NUMA_HIT, /* allocated in intended node */ 127 NUMA_MISS, /* allocated in non intended node */ 128 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 129 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 130 NUMA_LOCAL, /* allocation from local node */ 131 NUMA_OTHER, /* allocation from other node */ 132 NR_VM_NUMA_EVENT_ITEMS 133 }; 134 #else 135 #define NR_VM_NUMA_EVENT_ITEMS 0 136 #endif 137 138 enum zone_stat_item { 139 /* First 128 byte cacheline (assuming 64 bit words) */ 140 NR_FREE_PAGES, 141 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 142 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 143 NR_ZONE_ACTIVE_ANON, 144 NR_ZONE_INACTIVE_FILE, 145 NR_ZONE_ACTIVE_FILE, 146 NR_ZONE_UNEVICTABLE, 147 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 148 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 149 /* Second 128 byte cacheline */ 150 NR_BOUNCE, 151 #if IS_ENABLED(CONFIG_ZSMALLOC) 152 NR_ZSPAGES, /* allocated in zsmalloc */ 153 #endif 154 NR_FREE_CMA_PAGES, 155 #ifdef CONFIG_UNACCEPTED_MEMORY 156 NR_UNACCEPTED, 157 #endif 158 NR_VM_ZONE_STAT_ITEMS }; 159 160 enum node_stat_item { 161 NR_LRU_BASE, 162 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 163 NR_ACTIVE_ANON, /* " " " " " */ 164 NR_INACTIVE_FILE, /* " " " " " */ 165 NR_ACTIVE_FILE, /* " " " " " */ 166 NR_UNEVICTABLE, /* " " " " " */ 167 NR_SLAB_RECLAIMABLE_B, 168 NR_SLAB_UNRECLAIMABLE_B, 169 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 170 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 171 WORKINGSET_NODES, 172 WORKINGSET_REFAULT_BASE, 173 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE, 174 WORKINGSET_REFAULT_FILE, 175 WORKINGSET_ACTIVATE_BASE, 176 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE, 177 WORKINGSET_ACTIVATE_FILE, 178 WORKINGSET_RESTORE_BASE, 179 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE, 180 WORKINGSET_RESTORE_FILE, 181 WORKINGSET_NODERECLAIM, 182 NR_ANON_MAPPED, /* Mapped anonymous pages */ 183 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 184 only modified from process context */ 185 NR_FILE_PAGES, 186 NR_FILE_DIRTY, 187 NR_WRITEBACK, 188 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 189 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 190 NR_SHMEM_THPS, 191 NR_SHMEM_PMDMAPPED, 192 NR_FILE_THPS, 193 NR_FILE_PMDMAPPED, 194 NR_ANON_THPS, 195 NR_VMSCAN_WRITE, 196 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 197 NR_DIRTIED, /* page dirtyings since bootup */ 198 NR_WRITTEN, /* page writings since bootup */ 199 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */ 200 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ 201 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */ 202 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */ 203 NR_KERNEL_STACK_KB, /* measured in KiB */ 204 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 205 NR_KERNEL_SCS_KB, /* measured in KiB */ 206 #endif 207 NR_PAGETABLE, /* used for pagetables */ 208 NR_SECONDARY_PAGETABLE, /* secondary pagetables, KVM & IOMMU */ 209 #ifdef CONFIG_IOMMU_SUPPORT 210 NR_IOMMU_PAGES, /* # of pages allocated by IOMMU */ 211 #endif 212 #ifdef CONFIG_SWAP 213 NR_SWAPCACHE, 214 #endif 215 #ifdef CONFIG_NUMA_BALANCING 216 PGPROMOTE_SUCCESS, /* promote successfully */ 217 PGPROMOTE_CANDIDATE, /* candidate pages to promote */ 218 #endif 219 /* PGDEMOTE_*: pages demoted */ 220 PGDEMOTE_KSWAPD, 221 PGDEMOTE_DIRECT, 222 PGDEMOTE_KHUGEPAGED, 223 NR_VM_NODE_STAT_ITEMS 224 }; 225 226 /* 227 * Returns true if the item should be printed in THPs (/proc/vmstat 228 * currently prints number of anon, file and shmem THPs. But the item 229 * is charged in pages). 230 */ 231 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item) 232 { 233 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 234 return false; 235 236 return item == NR_ANON_THPS || 237 item == NR_FILE_THPS || 238 item == NR_SHMEM_THPS || 239 item == NR_SHMEM_PMDMAPPED || 240 item == NR_FILE_PMDMAPPED; 241 } 242 243 /* 244 * Returns true if the value is measured in bytes (most vmstat values are 245 * measured in pages). This defines the API part, the internal representation 246 * might be different. 247 */ 248 static __always_inline bool vmstat_item_in_bytes(int idx) 249 { 250 /* 251 * Global and per-node slab counters track slab pages. 252 * It's expected that changes are multiples of PAGE_SIZE. 253 * Internally values are stored in pages. 254 * 255 * Per-memcg and per-lruvec counters track memory, consumed 256 * by individual slab objects. These counters are actually 257 * byte-precise. 258 */ 259 return (idx == NR_SLAB_RECLAIMABLE_B || 260 idx == NR_SLAB_UNRECLAIMABLE_B); 261 } 262 263 /* 264 * We do arithmetic on the LRU lists in various places in the code, 265 * so it is important to keep the active lists LRU_ACTIVE higher in 266 * the array than the corresponding inactive lists, and to keep 267 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 268 * 269 * This has to be kept in sync with the statistics in zone_stat_item 270 * above and the descriptions in vmstat_text in mm/vmstat.c 271 */ 272 #define LRU_BASE 0 273 #define LRU_ACTIVE 1 274 #define LRU_FILE 2 275 276 enum lru_list { 277 LRU_INACTIVE_ANON = LRU_BASE, 278 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 279 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 280 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 281 LRU_UNEVICTABLE, 282 NR_LRU_LISTS 283 }; 284 285 enum vmscan_throttle_state { 286 VMSCAN_THROTTLE_WRITEBACK, 287 VMSCAN_THROTTLE_ISOLATED, 288 VMSCAN_THROTTLE_NOPROGRESS, 289 VMSCAN_THROTTLE_CONGESTED, 290 NR_VMSCAN_THROTTLE, 291 }; 292 293 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 294 295 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 296 297 static inline bool is_file_lru(enum lru_list lru) 298 { 299 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 300 } 301 302 static inline bool is_active_lru(enum lru_list lru) 303 { 304 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 305 } 306 307 #define WORKINGSET_ANON 0 308 #define WORKINGSET_FILE 1 309 #define ANON_AND_FILE 2 310 311 enum lruvec_flags { 312 /* 313 * An lruvec has many dirty pages backed by a congested BDI: 314 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim. 315 * It can be cleared by cgroup reclaim or kswapd. 316 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim. 317 * It can only be cleared by kswapd. 318 * 319 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup 320 * reclaim, but not vice versa. This only applies to the root cgroup. 321 * The goal is to prevent cgroup reclaim on the root cgroup (e.g. 322 * memory.reclaim) to unthrottle an unbalanced node (that was throttled 323 * by kswapd). 324 */ 325 LRUVEC_CGROUP_CONGESTED, 326 LRUVEC_NODE_CONGESTED, 327 }; 328 329 #endif /* !__GENERATING_BOUNDS_H */ 330 331 /* 332 * Evictable pages are divided into multiple generations. The youngest and the 333 * oldest generation numbers, max_seq and min_seq, are monotonically increasing. 334 * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An 335 * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the 336 * corresponding generation. The gen counter in folio->flags stores gen+1 while 337 * a page is on one of lrugen->folios[]. Otherwise it stores 0. 338 * 339 * A page is added to the youngest generation on faulting. The aging needs to 340 * check the accessed bit at least twice before handing this page over to the 341 * eviction. The first check takes care of the accessed bit set on the initial 342 * fault; the second check makes sure this page hasn't been used since then. 343 * This process, AKA second chance, requires a minimum of two generations, 344 * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive 345 * LRU, e.g., /proc/vmstat, these two generations are considered active; the 346 * rest of generations, if they exist, are considered inactive. See 347 * lru_gen_is_active(). 348 * 349 * PG_active is always cleared while a page is on one of lrugen->folios[] so 350 * that the aging needs not to worry about it. And it's set again when a page 351 * considered active is isolated for non-reclaiming purposes, e.g., migration. 352 * See lru_gen_add_folio() and lru_gen_del_folio(). 353 * 354 * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the 355 * number of categories of the active/inactive LRU when keeping track of 356 * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits 357 * in folio->flags. 358 */ 359 #define MIN_NR_GENS 2U 360 #define MAX_NR_GENS 4U 361 362 /* 363 * Each generation is divided into multiple tiers. A page accessed N times 364 * through file descriptors is in tier order_base_2(N). A page in the first tier 365 * (N=0,1) is marked by PG_referenced unless it was faulted in through page 366 * tables or read ahead. A page in any other tier (N>1) is marked by 367 * PG_referenced and PG_workingset. This implies a minimum of two tiers is 368 * supported without using additional bits in folio->flags. 369 * 370 * In contrast to moving across generations which requires the LRU lock, moving 371 * across tiers only involves atomic operations on folio->flags and therefore 372 * has a negligible cost in the buffered access path. In the eviction path, 373 * comparisons of refaulted/(evicted+protected) from the first tier and the 374 * rest infer whether pages accessed multiple times through file descriptors 375 * are statistically hot and thus worth protecting. 376 * 377 * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the 378 * number of categories of the active/inactive LRU when keeping track of 379 * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in 380 * folio->flags. 381 */ 382 #define MAX_NR_TIERS 4U 383 384 #ifndef __GENERATING_BOUNDS_H 385 386 struct lruvec; 387 struct page_vma_mapped_walk; 388 389 #define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF) 390 #define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF) 391 392 #ifdef CONFIG_LRU_GEN 393 394 enum { 395 LRU_GEN_ANON, 396 LRU_GEN_FILE, 397 }; 398 399 enum { 400 LRU_GEN_CORE, 401 LRU_GEN_MM_WALK, 402 LRU_GEN_NONLEAF_YOUNG, 403 NR_LRU_GEN_CAPS 404 }; 405 406 #define MIN_LRU_BATCH BITS_PER_LONG 407 #define MAX_LRU_BATCH (MIN_LRU_BATCH * 64) 408 409 /* whether to keep historical stats from evicted generations */ 410 #ifdef CONFIG_LRU_GEN_STATS 411 #define NR_HIST_GENS MAX_NR_GENS 412 #else 413 #define NR_HIST_GENS 1U 414 #endif 415 416 /* 417 * The youngest generation number is stored in max_seq for both anon and file 418 * types as they are aged on an equal footing. The oldest generation numbers are 419 * stored in min_seq[] separately for anon and file types as clean file pages 420 * can be evicted regardless of swap constraints. 421 * 422 * Normally anon and file min_seq are in sync. But if swapping is constrained, 423 * e.g., out of swap space, file min_seq is allowed to advance and leave anon 424 * min_seq behind. 425 * 426 * The number of pages in each generation is eventually consistent and therefore 427 * can be transiently negative when reset_batch_size() is pending. 428 */ 429 struct lru_gen_folio { 430 /* the aging increments the youngest generation number */ 431 unsigned long max_seq; 432 /* the eviction increments the oldest generation numbers */ 433 unsigned long min_seq[ANON_AND_FILE]; 434 /* the birth time of each generation in jiffies */ 435 unsigned long timestamps[MAX_NR_GENS]; 436 /* the multi-gen LRU lists, lazily sorted on eviction */ 437 struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 438 /* the multi-gen LRU sizes, eventually consistent */ 439 long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 440 /* the exponential moving average of refaulted */ 441 unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS]; 442 /* the exponential moving average of evicted+protected */ 443 unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS]; 444 /* the first tier doesn't need protection, hence the minus one */ 445 unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1]; 446 /* can be modified without holding the LRU lock */ 447 atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 448 atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 449 /* whether the multi-gen LRU is enabled */ 450 bool enabled; 451 /* the memcg generation this lru_gen_folio belongs to */ 452 u8 gen; 453 /* the list segment this lru_gen_folio belongs to */ 454 u8 seg; 455 /* per-node lru_gen_folio list for global reclaim */ 456 struct hlist_nulls_node list; 457 }; 458 459 enum { 460 MM_LEAF_TOTAL, /* total leaf entries */ 461 MM_LEAF_YOUNG, /* young leaf entries */ 462 MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */ 463 MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */ 464 NR_MM_STATS 465 }; 466 467 /* double-buffering Bloom filters */ 468 #define NR_BLOOM_FILTERS 2 469 470 struct lru_gen_mm_state { 471 /* synced with max_seq after each iteration */ 472 unsigned long seq; 473 /* where the current iteration continues after */ 474 struct list_head *head; 475 /* where the last iteration ended before */ 476 struct list_head *tail; 477 /* Bloom filters flip after each iteration */ 478 unsigned long *filters[NR_BLOOM_FILTERS]; 479 /* the mm stats for debugging */ 480 unsigned long stats[NR_HIST_GENS][NR_MM_STATS]; 481 }; 482 483 struct lru_gen_mm_walk { 484 /* the lruvec under reclaim */ 485 struct lruvec *lruvec; 486 /* max_seq from lru_gen_folio: can be out of date */ 487 unsigned long seq; 488 /* the next address within an mm to scan */ 489 unsigned long next_addr; 490 /* to batch promoted pages */ 491 int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 492 /* to batch the mm stats */ 493 int mm_stats[NR_MM_STATS]; 494 /* total batched items */ 495 int batched; 496 bool can_swap; 497 bool force_scan; 498 }; 499 500 /* 501 * For each node, memcgs are divided into two generations: the old and the 502 * young. For each generation, memcgs are randomly sharded into multiple bins 503 * to improve scalability. For each bin, the hlist_nulls is virtually divided 504 * into three segments: the head, the tail and the default. 505 * 506 * An onlining memcg is added to the tail of a random bin in the old generation. 507 * The eviction starts at the head of a random bin in the old generation. The 508 * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes 509 * the old generation, is incremented when all its bins become empty. 510 * 511 * There are four operations: 512 * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its 513 * current generation (old or young) and updates its "seg" to "head"; 514 * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its 515 * current generation (old or young) and updates its "seg" to "tail"; 516 * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old 517 * generation, updates its "gen" to "old" and resets its "seg" to "default"; 518 * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the 519 * young generation, updates its "gen" to "young" and resets its "seg" to 520 * "default". 521 * 522 * The events that trigger the above operations are: 523 * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD; 524 * 2. The first attempt to reclaim a memcg below low, which triggers 525 * MEMCG_LRU_TAIL; 526 * 3. The first attempt to reclaim a memcg offlined or below reclaimable size 527 * threshold, which triggers MEMCG_LRU_TAIL; 528 * 4. The second attempt to reclaim a memcg offlined or below reclaimable size 529 * threshold, which triggers MEMCG_LRU_YOUNG; 530 * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG; 531 * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG; 532 * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD. 533 * 534 * Notes: 535 * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing 536 * of their max_seq counters ensures the eventual fairness to all eligible 537 * memcgs. For memcg reclaim, it still relies on mem_cgroup_iter(). 538 * 2. There are only two valid generations: old (seq) and young (seq+1). 539 * MEMCG_NR_GENS is set to three so that when reading the generation counter 540 * locklessly, a stale value (seq-1) does not wraparound to young. 541 */ 542 #define MEMCG_NR_GENS 3 543 #define MEMCG_NR_BINS 8 544 545 struct lru_gen_memcg { 546 /* the per-node memcg generation counter */ 547 unsigned long seq; 548 /* each memcg has one lru_gen_folio per node */ 549 unsigned long nr_memcgs[MEMCG_NR_GENS]; 550 /* per-node lru_gen_folio list for global reclaim */ 551 struct hlist_nulls_head fifo[MEMCG_NR_GENS][MEMCG_NR_BINS]; 552 /* protects the above */ 553 spinlock_t lock; 554 }; 555 556 void lru_gen_init_pgdat(struct pglist_data *pgdat); 557 void lru_gen_init_lruvec(struct lruvec *lruvec); 558 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw); 559 560 void lru_gen_init_memcg(struct mem_cgroup *memcg); 561 void lru_gen_exit_memcg(struct mem_cgroup *memcg); 562 void lru_gen_online_memcg(struct mem_cgroup *memcg); 563 void lru_gen_offline_memcg(struct mem_cgroup *memcg); 564 void lru_gen_release_memcg(struct mem_cgroup *memcg); 565 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid); 566 567 #else /* !CONFIG_LRU_GEN */ 568 569 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat) 570 { 571 } 572 573 static inline void lru_gen_init_lruvec(struct lruvec *lruvec) 574 { 575 } 576 577 static inline bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 578 { 579 return false; 580 } 581 582 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg) 583 { 584 } 585 586 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg) 587 { 588 } 589 590 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg) 591 { 592 } 593 594 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg) 595 { 596 } 597 598 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg) 599 { 600 } 601 602 static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) 603 { 604 } 605 606 #endif /* CONFIG_LRU_GEN */ 607 608 struct lruvec { 609 struct list_head lists[NR_LRU_LISTS]; 610 /* per lruvec lru_lock for memcg */ 611 spinlock_t lru_lock; 612 /* 613 * These track the cost of reclaiming one LRU - file or anon - 614 * over the other. As the observed cost of reclaiming one LRU 615 * increases, the reclaim scan balance tips toward the other. 616 */ 617 unsigned long anon_cost; 618 unsigned long file_cost; 619 /* Non-resident age, driven by LRU movement */ 620 atomic_long_t nonresident_age; 621 /* Refaults at the time of last reclaim cycle */ 622 unsigned long refaults[ANON_AND_FILE]; 623 /* Various lruvec state flags (enum lruvec_flags) */ 624 unsigned long flags; 625 #ifdef CONFIG_LRU_GEN 626 /* evictable pages divided into generations */ 627 struct lru_gen_folio lrugen; 628 #ifdef CONFIG_LRU_GEN_WALKS_MMU 629 /* to concurrently iterate lru_gen_mm_list */ 630 struct lru_gen_mm_state mm_state; 631 #endif 632 #endif /* CONFIG_LRU_GEN */ 633 #ifdef CONFIG_MEMCG 634 struct pglist_data *pgdat; 635 #endif 636 struct zswap_lruvec_state zswap_lruvec_state; 637 }; 638 639 /* Isolate for asynchronous migration */ 640 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 641 /* Isolate unevictable pages */ 642 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 643 644 /* LRU Isolation modes. */ 645 typedef unsigned __bitwise isolate_mode_t; 646 647 enum zone_watermarks { 648 WMARK_MIN, 649 WMARK_LOW, 650 WMARK_HIGH, 651 WMARK_PROMO, 652 NR_WMARK 653 }; 654 655 /* 656 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. Two additional lists 657 * are added for THP. One PCP list is used by GPF_MOVABLE, and the other PCP list 658 * is used by GFP_UNMOVABLE and GFP_RECLAIMABLE. 659 */ 660 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 661 #define NR_PCP_THP 2 662 #else 663 #define NR_PCP_THP 0 664 #endif 665 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1)) 666 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP) 667 668 /* 669 * Flags used in pcp->flags field. 670 * 671 * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the 672 * previous page freeing. To avoid to drain PCP for an accident 673 * high-order page freeing. 674 * 675 * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before 676 * draining PCP for consecutive high-order pages freeing without 677 * allocation if data cache slice of CPU is large enough. To reduce 678 * zone lock contention and keep cache-hot pages reusing. 679 */ 680 #define PCPF_PREV_FREE_HIGH_ORDER BIT(0) 681 #define PCPF_FREE_HIGH_BATCH BIT(1) 682 683 struct per_cpu_pages { 684 spinlock_t lock; /* Protects lists field */ 685 int count; /* number of pages in the list */ 686 int high; /* high watermark, emptying needed */ 687 int high_min; /* min high watermark */ 688 int high_max; /* max high watermark */ 689 int batch; /* chunk size for buddy add/remove */ 690 u8 flags; /* protected by pcp->lock */ 691 u8 alloc_factor; /* batch scaling factor during allocate */ 692 #ifdef CONFIG_NUMA 693 u8 expire; /* When 0, remote pagesets are drained */ 694 #endif 695 short free_count; /* consecutive free count */ 696 697 /* Lists of pages, one per migrate type stored on the pcp-lists */ 698 struct list_head lists[NR_PCP_LISTS]; 699 } ____cacheline_aligned_in_smp; 700 701 struct per_cpu_zonestat { 702 #ifdef CONFIG_SMP 703 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 704 s8 stat_threshold; 705 #endif 706 #ifdef CONFIG_NUMA 707 /* 708 * Low priority inaccurate counters that are only folded 709 * on demand. Use a large type to avoid the overhead of 710 * folding during refresh_cpu_vm_stats. 711 */ 712 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 713 #endif 714 }; 715 716 struct per_cpu_nodestat { 717 s8 stat_threshold; 718 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 719 }; 720 721 #endif /* !__GENERATING_BOUNDS.H */ 722 723 enum zone_type { 724 /* 725 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able 726 * to DMA to all of the addressable memory (ZONE_NORMAL). 727 * On architectures where this area covers the whole 32 bit address 728 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller 729 * DMA addressing constraints. This distinction is important as a 32bit 730 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit 731 * platforms may need both zones as they support peripherals with 732 * different DMA addressing limitations. 733 */ 734 #ifdef CONFIG_ZONE_DMA 735 ZONE_DMA, 736 #endif 737 #ifdef CONFIG_ZONE_DMA32 738 ZONE_DMA32, 739 #endif 740 /* 741 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 742 * performed on pages in ZONE_NORMAL if the DMA devices support 743 * transfers to all addressable memory. 744 */ 745 ZONE_NORMAL, 746 #ifdef CONFIG_HIGHMEM 747 /* 748 * A memory area that is only addressable by the kernel through 749 * mapping portions into its own address space. This is for example 750 * used by i386 to allow the kernel to address the memory beyond 751 * 900MB. The kernel will set up special mappings (page 752 * table entries on i386) for each page that the kernel needs to 753 * access. 754 */ 755 ZONE_HIGHMEM, 756 #endif 757 /* 758 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains 759 * movable pages with few exceptional cases described below. Main use 760 * cases for ZONE_MOVABLE are to make memory offlining/unplug more 761 * likely to succeed, and to locally limit unmovable allocations - e.g., 762 * to increase the number of THP/huge pages. Notable special cases are: 763 * 764 * 1. Pinned pages: (long-term) pinning of movable pages might 765 * essentially turn such pages unmovable. Therefore, we do not allow 766 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and 767 * faulted, they come from the right zone right away. However, it is 768 * still possible that address space already has pages in 769 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has 770 * touches that memory before pinning). In such case we migrate them 771 * to a different zone. When migration fails - pinning fails. 772 * 2. memblock allocations: kernelcore/movablecore setups might create 773 * situations where ZONE_MOVABLE contains unmovable allocations 774 * after boot. Memory offlining and allocations fail early. 775 * 3. Memory holes: kernelcore/movablecore setups might create very rare 776 * situations where ZONE_MOVABLE contains memory holes after boot, 777 * for example, if we have sections that are only partially 778 * populated. Memory offlining and allocations fail early. 779 * 4. PG_hwpoison pages: while poisoned pages can be skipped during 780 * memory offlining, such pages cannot be allocated. 781 * 5. Unmovable PG_offline pages: in paravirtualized environments, 782 * hotplugged memory blocks might only partially be managed by the 783 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The 784 * parts not manged by the buddy are unmovable PG_offline pages. In 785 * some cases (virtio-mem), such pages can be skipped during 786 * memory offlining, however, cannot be moved/allocated. These 787 * techniques might use alloc_contig_range() to hide previously 788 * exposed pages from the buddy again (e.g., to implement some sort 789 * of memory unplug in virtio-mem). 790 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create 791 * situations where ZERO_PAGE(0) which is allocated differently 792 * on different platforms may end up in a movable zone. ZERO_PAGE(0) 793 * cannot be migrated. 794 * 7. Memory-hotplug: when using memmap_on_memory and onlining the 795 * memory to the MOVABLE zone, the vmemmap pages are also placed in 796 * such zone. Such pages cannot be really moved around as they are 797 * self-stored in the range, but they are treated as movable when 798 * the range they describe is about to be offlined. 799 * 800 * In general, no unmovable allocations that degrade memory offlining 801 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range()) 802 * have to expect that migrating pages in ZONE_MOVABLE can fail (even 803 * if has_unmovable_pages() states that there are no unmovable pages, 804 * there can be false negatives). 805 */ 806 ZONE_MOVABLE, 807 #ifdef CONFIG_ZONE_DEVICE 808 ZONE_DEVICE, 809 #endif 810 __MAX_NR_ZONES 811 812 }; 813 814 #ifndef __GENERATING_BOUNDS_H 815 816 #define ASYNC_AND_SYNC 2 817 818 struct zone { 819 /* Read-mostly fields */ 820 821 /* zone watermarks, access with *_wmark_pages(zone) macros */ 822 unsigned long _watermark[NR_WMARK]; 823 unsigned long watermark_boost; 824 825 unsigned long nr_reserved_highatomic; 826 827 /* 828 * We don't know if the memory that we're going to allocate will be 829 * freeable or/and it will be released eventually, so to avoid totally 830 * wasting several GB of ram we must reserve some of the lower zone 831 * memory (otherwise we risk to run OOM on the lower zones despite 832 * there being tons of freeable ram on the higher zones). This array is 833 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 834 * changes. 835 */ 836 long lowmem_reserve[MAX_NR_ZONES]; 837 838 #ifdef CONFIG_NUMA 839 int node; 840 #endif 841 struct pglist_data *zone_pgdat; 842 struct per_cpu_pages __percpu *per_cpu_pageset; 843 struct per_cpu_zonestat __percpu *per_cpu_zonestats; 844 /* 845 * the high and batch values are copied to individual pagesets for 846 * faster access 847 */ 848 int pageset_high_min; 849 int pageset_high_max; 850 int pageset_batch; 851 852 #ifndef CONFIG_SPARSEMEM 853 /* 854 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 855 * In SPARSEMEM, this map is stored in struct mem_section 856 */ 857 unsigned long *pageblock_flags; 858 #endif /* CONFIG_SPARSEMEM */ 859 860 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 861 unsigned long zone_start_pfn; 862 863 /* 864 * spanned_pages is the total pages spanned by the zone, including 865 * holes, which is calculated as: 866 * spanned_pages = zone_end_pfn - zone_start_pfn; 867 * 868 * present_pages is physical pages existing within the zone, which 869 * is calculated as: 870 * present_pages = spanned_pages - absent_pages(pages in holes); 871 * 872 * present_early_pages is present pages existing within the zone 873 * located on memory available since early boot, excluding hotplugged 874 * memory. 875 * 876 * managed_pages is present pages managed by the buddy system, which 877 * is calculated as (reserved_pages includes pages allocated by the 878 * bootmem allocator): 879 * managed_pages = present_pages - reserved_pages; 880 * 881 * cma pages is present pages that are assigned for CMA use 882 * (MIGRATE_CMA). 883 * 884 * So present_pages may be used by memory hotplug or memory power 885 * management logic to figure out unmanaged pages by checking 886 * (present_pages - managed_pages). And managed_pages should be used 887 * by page allocator and vm scanner to calculate all kinds of watermarks 888 * and thresholds. 889 * 890 * Locking rules: 891 * 892 * zone_start_pfn and spanned_pages are protected by span_seqlock. 893 * It is a seqlock because it has to be read outside of zone->lock, 894 * and it is done in the main allocator path. But, it is written 895 * quite infrequently. 896 * 897 * The span_seq lock is declared along with zone->lock because it is 898 * frequently read in proximity to zone->lock. It's good to 899 * give them a chance of being in the same cacheline. 900 * 901 * Write access to present_pages at runtime should be protected by 902 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of 903 * present_pages should use get_online_mems() to get a stable value. 904 */ 905 atomic_long_t managed_pages; 906 unsigned long spanned_pages; 907 unsigned long present_pages; 908 #if defined(CONFIG_MEMORY_HOTPLUG) 909 unsigned long present_early_pages; 910 #endif 911 #ifdef CONFIG_CMA 912 unsigned long cma_pages; 913 #endif 914 915 const char *name; 916 917 #ifdef CONFIG_MEMORY_ISOLATION 918 /* 919 * Number of isolated pageblock. It is used to solve incorrect 920 * freepage counting problem due to racy retrieving migratetype 921 * of pageblock. Protected by zone->lock. 922 */ 923 unsigned long nr_isolate_pageblock; 924 #endif 925 926 #ifdef CONFIG_MEMORY_HOTPLUG 927 /* see spanned/present_pages for more description */ 928 seqlock_t span_seqlock; 929 #endif 930 931 int initialized; 932 933 /* Write-intensive fields used from the page allocator */ 934 CACHELINE_PADDING(_pad1_); 935 936 /* free areas of different sizes */ 937 struct free_area free_area[NR_PAGE_ORDERS]; 938 939 #ifdef CONFIG_UNACCEPTED_MEMORY 940 /* Pages to be accepted. All pages on the list are MAX_PAGE_ORDER */ 941 struct list_head unaccepted_pages; 942 #endif 943 944 /* zone flags, see below */ 945 unsigned long flags; 946 947 /* Primarily protects free_area */ 948 spinlock_t lock; 949 950 /* Write-intensive fields used by compaction and vmstats. */ 951 CACHELINE_PADDING(_pad2_); 952 953 /* 954 * When free pages are below this point, additional steps are taken 955 * when reading the number of free pages to avoid per-cpu counter 956 * drift allowing watermarks to be breached 957 */ 958 unsigned long percpu_drift_mark; 959 960 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 961 /* pfn where compaction free scanner should start */ 962 unsigned long compact_cached_free_pfn; 963 /* pfn where compaction migration scanner should start */ 964 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC]; 965 unsigned long compact_init_migrate_pfn; 966 unsigned long compact_init_free_pfn; 967 #endif 968 969 #ifdef CONFIG_COMPACTION 970 /* 971 * On compaction failure, 1<<compact_defer_shift compactions 972 * are skipped before trying again. The number attempted since 973 * last failure is tracked with compact_considered. 974 * compact_order_failed is the minimum compaction failed order. 975 */ 976 unsigned int compact_considered; 977 unsigned int compact_defer_shift; 978 int compact_order_failed; 979 #endif 980 981 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 982 /* Set to true when the PG_migrate_skip bits should be cleared */ 983 bool compact_blockskip_flush; 984 #endif 985 986 bool contiguous; 987 988 CACHELINE_PADDING(_pad3_); 989 /* Zone statistics */ 990 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 991 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 992 } ____cacheline_internodealigned_in_smp; 993 994 enum pgdat_flags { 995 PGDAT_DIRTY, /* reclaim scanning has recently found 996 * many dirty file pages at the tail 997 * of the LRU. 998 */ 999 PGDAT_WRITEBACK, /* reclaim scanning has recently found 1000 * many pages under writeback 1001 */ 1002 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 1003 }; 1004 1005 enum zone_flags { 1006 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. 1007 * Cleared when kswapd is woken. 1008 */ 1009 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */ 1010 ZONE_BELOW_HIGH, /* zone is below high watermark. */ 1011 }; 1012 1013 static inline unsigned long wmark_pages(const struct zone *z, 1014 enum zone_watermarks w) 1015 { 1016 return z->_watermark[w] + z->watermark_boost; 1017 } 1018 1019 static inline unsigned long min_wmark_pages(const struct zone *z) 1020 { 1021 return wmark_pages(z, WMARK_MIN); 1022 } 1023 1024 static inline unsigned long low_wmark_pages(const struct zone *z) 1025 { 1026 return wmark_pages(z, WMARK_LOW); 1027 } 1028 1029 static inline unsigned long high_wmark_pages(const struct zone *z) 1030 { 1031 return wmark_pages(z, WMARK_HIGH); 1032 } 1033 1034 static inline unsigned long promo_wmark_pages(const struct zone *z) 1035 { 1036 return wmark_pages(z, WMARK_PROMO); 1037 } 1038 1039 static inline unsigned long zone_managed_pages(struct zone *zone) 1040 { 1041 return (unsigned long)atomic_long_read(&zone->managed_pages); 1042 } 1043 1044 static inline unsigned long zone_cma_pages(struct zone *zone) 1045 { 1046 #ifdef CONFIG_CMA 1047 return zone->cma_pages; 1048 #else 1049 return 0; 1050 #endif 1051 } 1052 1053 static inline unsigned long zone_end_pfn(const struct zone *zone) 1054 { 1055 return zone->zone_start_pfn + zone->spanned_pages; 1056 } 1057 1058 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 1059 { 1060 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 1061 } 1062 1063 static inline bool zone_is_initialized(struct zone *zone) 1064 { 1065 return zone->initialized; 1066 } 1067 1068 static inline bool zone_is_empty(struct zone *zone) 1069 { 1070 return zone->spanned_pages == 0; 1071 } 1072 1073 #ifndef BUILD_VDSO32_64 1074 /* 1075 * The zone field is never updated after free_area_init_core() 1076 * sets it, so none of the operations on it need to be atomic. 1077 */ 1078 1079 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1080 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1081 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1082 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1083 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1084 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1085 #define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH) 1086 #define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH) 1087 1088 /* 1089 * Define the bit shifts to access each section. For non-existent 1090 * sections we define the shift as 0; that plus a 0 mask ensures 1091 * the compiler will optimise away reference to them. 1092 */ 1093 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1094 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1095 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1096 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1097 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1098 1099 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1100 #ifdef NODE_NOT_IN_PAGE_FLAGS 1101 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1102 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \ 1103 SECTIONS_PGOFF : ZONES_PGOFF) 1104 #else 1105 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1106 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \ 1107 NODES_PGOFF : ZONES_PGOFF) 1108 #endif 1109 1110 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1111 1112 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1113 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1114 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1115 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1116 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1117 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1118 1119 static inline enum zone_type page_zonenum(const struct page *page) 1120 { 1121 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1122 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1123 } 1124 1125 static inline enum zone_type folio_zonenum(const struct folio *folio) 1126 { 1127 return page_zonenum(&folio->page); 1128 } 1129 1130 #ifdef CONFIG_ZONE_DEVICE 1131 static inline bool is_zone_device_page(const struct page *page) 1132 { 1133 return page_zonenum(page) == ZONE_DEVICE; 1134 } 1135 1136 /* 1137 * Consecutive zone device pages should not be merged into the same sgl 1138 * or bvec segment with other types of pages or if they belong to different 1139 * pgmaps. Otherwise getting the pgmap of a given segment is not possible 1140 * without scanning the entire segment. This helper returns true either if 1141 * both pages are not zone device pages or both pages are zone device pages 1142 * with the same pgmap. 1143 */ 1144 static inline bool zone_device_pages_have_same_pgmap(const struct page *a, 1145 const struct page *b) 1146 { 1147 if (is_zone_device_page(a) != is_zone_device_page(b)) 1148 return false; 1149 if (!is_zone_device_page(a)) 1150 return true; 1151 return a->pgmap == b->pgmap; 1152 } 1153 1154 extern void memmap_init_zone_device(struct zone *, unsigned long, 1155 unsigned long, struct dev_pagemap *); 1156 #else 1157 static inline bool is_zone_device_page(const struct page *page) 1158 { 1159 return false; 1160 } 1161 static inline bool zone_device_pages_have_same_pgmap(const struct page *a, 1162 const struct page *b) 1163 { 1164 return true; 1165 } 1166 #endif 1167 1168 static inline bool folio_is_zone_device(const struct folio *folio) 1169 { 1170 return is_zone_device_page(&folio->page); 1171 } 1172 1173 static inline bool is_zone_movable_page(const struct page *page) 1174 { 1175 return page_zonenum(page) == ZONE_MOVABLE; 1176 } 1177 1178 static inline bool folio_is_zone_movable(const struct folio *folio) 1179 { 1180 return folio_zonenum(folio) == ZONE_MOVABLE; 1181 } 1182 #endif 1183 1184 /* 1185 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 1186 * intersection with the given zone 1187 */ 1188 static inline bool zone_intersects(struct zone *zone, 1189 unsigned long start_pfn, unsigned long nr_pages) 1190 { 1191 if (zone_is_empty(zone)) 1192 return false; 1193 if (start_pfn >= zone_end_pfn(zone) || 1194 start_pfn + nr_pages <= zone->zone_start_pfn) 1195 return false; 1196 1197 return true; 1198 } 1199 1200 /* 1201 * The "priority" of VM scanning is how much of the queues we will scan in one 1202 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 1203 * queues ("queue_length >> 12") during an aging round. 1204 */ 1205 #define DEF_PRIORITY 12 1206 1207 /* Maximum number of zones on a zonelist */ 1208 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 1209 1210 enum { 1211 ZONELIST_FALLBACK, /* zonelist with fallback */ 1212 #ifdef CONFIG_NUMA 1213 /* 1214 * The NUMA zonelists are doubled because we need zonelists that 1215 * restrict the allocations to a single node for __GFP_THISNODE. 1216 */ 1217 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 1218 #endif 1219 MAX_ZONELISTS 1220 }; 1221 1222 /* 1223 * This struct contains information about a zone in a zonelist. It is stored 1224 * here to avoid dereferences into large structures and lookups of tables 1225 */ 1226 struct zoneref { 1227 struct zone *zone; /* Pointer to actual zone */ 1228 int zone_idx; /* zone_idx(zoneref->zone) */ 1229 }; 1230 1231 /* 1232 * One allocation request operates on a zonelist. A zonelist 1233 * is a list of zones, the first one is the 'goal' of the 1234 * allocation, the other zones are fallback zones, in decreasing 1235 * priority. 1236 * 1237 * To speed the reading of the zonelist, the zonerefs contain the zone index 1238 * of the entry being read. Helper functions to access information given 1239 * a struct zoneref are 1240 * 1241 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 1242 * zonelist_zone_idx() - Return the index of the zone for an entry 1243 * zonelist_node_idx() - Return the index of the node for an entry 1244 */ 1245 struct zonelist { 1246 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 1247 }; 1248 1249 /* 1250 * The array of struct pages for flatmem. 1251 * It must be declared for SPARSEMEM as well because there are configurations 1252 * that rely on that. 1253 */ 1254 extern struct page *mem_map; 1255 1256 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1257 struct deferred_split { 1258 spinlock_t split_queue_lock; 1259 struct list_head split_queue; 1260 unsigned long split_queue_len; 1261 }; 1262 #endif 1263 1264 #ifdef CONFIG_MEMORY_FAILURE 1265 /* 1266 * Per NUMA node memory failure handling statistics. 1267 */ 1268 struct memory_failure_stats { 1269 /* 1270 * Number of raw pages poisoned. 1271 * Cases not accounted: memory outside kernel control, offline page, 1272 * arch-specific memory_failure (SGX), hwpoison_filter() filtered 1273 * error events, and unpoison actions from hwpoison_unpoison. 1274 */ 1275 unsigned long total; 1276 /* 1277 * Recovery results of poisoned raw pages handled by memory_failure, 1278 * in sync with mf_result. 1279 * total = ignored + failed + delayed + recovered. 1280 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted. 1281 */ 1282 unsigned long ignored; 1283 unsigned long failed; 1284 unsigned long delayed; 1285 unsigned long recovered; 1286 }; 1287 #endif 1288 1289 /* 1290 * On NUMA machines, each NUMA node would have a pg_data_t to describe 1291 * it's memory layout. On UMA machines there is a single pglist_data which 1292 * describes the whole memory. 1293 * 1294 * Memory statistics and page replacement data structures are maintained on a 1295 * per-zone basis. 1296 */ 1297 typedef struct pglist_data { 1298 /* 1299 * node_zones contains just the zones for THIS node. Not all of the 1300 * zones may be populated, but it is the full list. It is referenced by 1301 * this node's node_zonelists as well as other node's node_zonelists. 1302 */ 1303 struct zone node_zones[MAX_NR_ZONES]; 1304 1305 /* 1306 * node_zonelists contains references to all zones in all nodes. 1307 * Generally the first zones will be references to this node's 1308 * node_zones. 1309 */ 1310 struct zonelist node_zonelists[MAX_ZONELISTS]; 1311 1312 int nr_zones; /* number of populated zones in this node */ 1313 #ifdef CONFIG_FLATMEM /* means !SPARSEMEM */ 1314 struct page *node_mem_map; 1315 #ifdef CONFIG_PAGE_EXTENSION 1316 struct page_ext *node_page_ext; 1317 #endif 1318 #endif 1319 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) 1320 /* 1321 * Must be held any time you expect node_start_pfn, 1322 * node_present_pages, node_spanned_pages or nr_zones to stay constant. 1323 * Also synchronizes pgdat->first_deferred_pfn during deferred page 1324 * init. 1325 * 1326 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 1327 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG 1328 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. 1329 * 1330 * Nests above zone->lock and zone->span_seqlock 1331 */ 1332 spinlock_t node_size_lock; 1333 #endif 1334 unsigned long node_start_pfn; 1335 unsigned long node_present_pages; /* total number of physical pages */ 1336 unsigned long node_spanned_pages; /* total size of physical page 1337 range, including holes */ 1338 int node_id; 1339 wait_queue_head_t kswapd_wait; 1340 wait_queue_head_t pfmemalloc_wait; 1341 1342 /* workqueues for throttling reclaim for different reasons. */ 1343 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE]; 1344 1345 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */ 1346 unsigned long nr_reclaim_start; /* nr pages written while throttled 1347 * when throttling started. */ 1348 #ifdef CONFIG_MEMORY_HOTPLUG 1349 struct mutex kswapd_lock; 1350 #endif 1351 struct task_struct *kswapd; /* Protected by kswapd_lock */ 1352 int kswapd_order; 1353 enum zone_type kswapd_highest_zoneidx; 1354 1355 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 1356 1357 #ifdef CONFIG_COMPACTION 1358 int kcompactd_max_order; 1359 enum zone_type kcompactd_highest_zoneidx; 1360 wait_queue_head_t kcompactd_wait; 1361 struct task_struct *kcompactd; 1362 bool proactive_compact_trigger; 1363 #endif 1364 /* 1365 * This is a per-node reserve of pages that are not available 1366 * to userspace allocations. 1367 */ 1368 unsigned long totalreserve_pages; 1369 1370 #ifdef CONFIG_NUMA 1371 /* 1372 * node reclaim becomes active if more unmapped pages exist. 1373 */ 1374 unsigned long min_unmapped_pages; 1375 unsigned long min_slab_pages; 1376 #endif /* CONFIG_NUMA */ 1377 1378 /* Write-intensive fields used by page reclaim */ 1379 CACHELINE_PADDING(_pad1_); 1380 1381 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1382 /* 1383 * If memory initialisation on large machines is deferred then this 1384 * is the first PFN that needs to be initialised. 1385 */ 1386 unsigned long first_deferred_pfn; 1387 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1388 1389 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1390 struct deferred_split deferred_split_queue; 1391 #endif 1392 1393 #ifdef CONFIG_NUMA_BALANCING 1394 /* start time in ms of current promote rate limit period */ 1395 unsigned int nbp_rl_start; 1396 /* number of promote candidate pages at start time of current rate limit period */ 1397 unsigned long nbp_rl_nr_cand; 1398 /* promote threshold in ms */ 1399 unsigned int nbp_threshold; 1400 /* start time in ms of current promote threshold adjustment period */ 1401 unsigned int nbp_th_start; 1402 /* 1403 * number of promote candidate pages at start time of current promote 1404 * threshold adjustment period 1405 */ 1406 unsigned long nbp_th_nr_cand; 1407 #endif 1408 /* Fields commonly accessed by the page reclaim scanner */ 1409 1410 /* 1411 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. 1412 * 1413 * Use mem_cgroup_lruvec() to look up lruvecs. 1414 */ 1415 struct lruvec __lruvec; 1416 1417 unsigned long flags; 1418 1419 #ifdef CONFIG_LRU_GEN 1420 /* kswap mm walk data */ 1421 struct lru_gen_mm_walk mm_walk; 1422 /* lru_gen_folio list */ 1423 struct lru_gen_memcg memcg_lru; 1424 #endif 1425 1426 CACHELINE_PADDING(_pad2_); 1427 1428 /* Per-node vmstats */ 1429 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 1430 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 1431 #ifdef CONFIG_NUMA 1432 struct memory_tier __rcu *memtier; 1433 #endif 1434 #ifdef CONFIG_MEMORY_FAILURE 1435 struct memory_failure_stats mf_stats; 1436 #endif 1437 } pg_data_t; 1438 1439 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 1440 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 1441 1442 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 1443 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 1444 1445 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 1446 { 1447 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 1448 } 1449 1450 #include <linux/memory_hotplug.h> 1451 1452 void build_all_zonelists(pg_data_t *pgdat); 1453 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, 1454 enum zone_type highest_zoneidx); 1455 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 1456 int highest_zoneidx, unsigned int alloc_flags, 1457 long free_pages); 1458 bool zone_watermark_ok(struct zone *z, unsigned int order, 1459 unsigned long mark, int highest_zoneidx, 1460 unsigned int alloc_flags); 1461 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 1462 unsigned long mark, int highest_zoneidx); 1463 /* 1464 * Memory initialization context, use to differentiate memory added by 1465 * the platform statically or via memory hotplug interface. 1466 */ 1467 enum meminit_context { 1468 MEMINIT_EARLY, 1469 MEMINIT_HOTPLUG, 1470 }; 1471 1472 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 1473 unsigned long size); 1474 1475 extern void lruvec_init(struct lruvec *lruvec); 1476 1477 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 1478 { 1479 #ifdef CONFIG_MEMCG 1480 return lruvec->pgdat; 1481 #else 1482 return container_of(lruvec, struct pglist_data, __lruvec); 1483 #endif 1484 } 1485 1486 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 1487 int local_memory_node(int node_id); 1488 #else 1489 static inline int local_memory_node(int node_id) { return node_id; }; 1490 #endif 1491 1492 /* 1493 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 1494 */ 1495 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 1496 1497 #ifdef CONFIG_ZONE_DEVICE 1498 static inline bool zone_is_zone_device(struct zone *zone) 1499 { 1500 return zone_idx(zone) == ZONE_DEVICE; 1501 } 1502 #else 1503 static inline bool zone_is_zone_device(struct zone *zone) 1504 { 1505 return false; 1506 } 1507 #endif 1508 1509 /* 1510 * Returns true if a zone has pages managed by the buddy allocator. 1511 * All the reclaim decisions have to use this function rather than 1512 * populated_zone(). If the whole zone is reserved then we can easily 1513 * end up with populated_zone() && !managed_zone(). 1514 */ 1515 static inline bool managed_zone(struct zone *zone) 1516 { 1517 return zone_managed_pages(zone); 1518 } 1519 1520 /* Returns true if a zone has memory */ 1521 static inline bool populated_zone(struct zone *zone) 1522 { 1523 return zone->present_pages; 1524 } 1525 1526 #ifdef CONFIG_NUMA 1527 static inline int zone_to_nid(struct zone *zone) 1528 { 1529 return zone->node; 1530 } 1531 1532 static inline void zone_set_nid(struct zone *zone, int nid) 1533 { 1534 zone->node = nid; 1535 } 1536 #else 1537 static inline int zone_to_nid(struct zone *zone) 1538 { 1539 return 0; 1540 } 1541 1542 static inline void zone_set_nid(struct zone *zone, int nid) {} 1543 #endif 1544 1545 extern int movable_zone; 1546 1547 static inline int is_highmem_idx(enum zone_type idx) 1548 { 1549 #ifdef CONFIG_HIGHMEM 1550 return (idx == ZONE_HIGHMEM || 1551 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM)); 1552 #else 1553 return 0; 1554 #endif 1555 } 1556 1557 /** 1558 * is_highmem - helper function to quickly check if a struct zone is a 1559 * highmem zone or not. This is an attempt to keep references 1560 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 1561 * @zone: pointer to struct zone variable 1562 * Return: 1 for a highmem zone, 0 otherwise 1563 */ 1564 static inline int is_highmem(struct zone *zone) 1565 { 1566 return is_highmem_idx(zone_idx(zone)); 1567 } 1568 1569 #ifdef CONFIG_ZONE_DMA 1570 bool has_managed_dma(void); 1571 #else 1572 static inline bool has_managed_dma(void) 1573 { 1574 return false; 1575 } 1576 #endif 1577 1578 1579 #ifndef CONFIG_NUMA 1580 1581 extern struct pglist_data contig_page_data; 1582 static inline struct pglist_data *NODE_DATA(int nid) 1583 { 1584 return &contig_page_data; 1585 } 1586 1587 #else /* CONFIG_NUMA */ 1588 1589 #include <asm/mmzone.h> 1590 1591 #endif /* !CONFIG_NUMA */ 1592 1593 extern struct pglist_data *first_online_pgdat(void); 1594 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 1595 extern struct zone *next_zone(struct zone *zone); 1596 1597 /** 1598 * for_each_online_pgdat - helper macro to iterate over all online nodes 1599 * @pgdat: pointer to a pg_data_t variable 1600 */ 1601 #define for_each_online_pgdat(pgdat) \ 1602 for (pgdat = first_online_pgdat(); \ 1603 pgdat; \ 1604 pgdat = next_online_pgdat(pgdat)) 1605 /** 1606 * for_each_zone - helper macro to iterate over all memory zones 1607 * @zone: pointer to struct zone variable 1608 * 1609 * The user only needs to declare the zone variable, for_each_zone 1610 * fills it in. 1611 */ 1612 #define for_each_zone(zone) \ 1613 for (zone = (first_online_pgdat())->node_zones; \ 1614 zone; \ 1615 zone = next_zone(zone)) 1616 1617 #define for_each_populated_zone(zone) \ 1618 for (zone = (first_online_pgdat())->node_zones; \ 1619 zone; \ 1620 zone = next_zone(zone)) \ 1621 if (!populated_zone(zone)) \ 1622 ; /* do nothing */ \ 1623 else 1624 1625 static inline struct zone *zonelist_zone(struct zoneref *zoneref) 1626 { 1627 return zoneref->zone; 1628 } 1629 1630 static inline int zonelist_zone_idx(struct zoneref *zoneref) 1631 { 1632 return zoneref->zone_idx; 1633 } 1634 1635 static inline int zonelist_node_idx(struct zoneref *zoneref) 1636 { 1637 return zone_to_nid(zoneref->zone); 1638 } 1639 1640 struct zoneref *__next_zones_zonelist(struct zoneref *z, 1641 enum zone_type highest_zoneidx, 1642 nodemask_t *nodes); 1643 1644 /** 1645 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 1646 * @z: The cursor used as a starting point for the search 1647 * @highest_zoneidx: The zone index of the highest zone to return 1648 * @nodes: An optional nodemask to filter the zonelist with 1649 * 1650 * This function returns the next zone at or below a given zone index that is 1651 * within the allowed nodemask using a cursor as the starting point for the 1652 * search. The zoneref returned is a cursor that represents the current zone 1653 * being examined. It should be advanced by one before calling 1654 * next_zones_zonelist again. 1655 * 1656 * Return: the next zone at or below highest_zoneidx within the allowed 1657 * nodemask using a cursor within a zonelist as a starting point 1658 */ 1659 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 1660 enum zone_type highest_zoneidx, 1661 nodemask_t *nodes) 1662 { 1663 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 1664 return z; 1665 return __next_zones_zonelist(z, highest_zoneidx, nodes); 1666 } 1667 1668 /** 1669 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1670 * @zonelist: The zonelist to search for a suitable zone 1671 * @highest_zoneidx: The zone index of the highest zone to return 1672 * @nodes: An optional nodemask to filter the zonelist with 1673 * 1674 * This function returns the first zone at or below a given zone index that is 1675 * within the allowed nodemask. The zoneref returned is a cursor that can be 1676 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1677 * one before calling. 1678 * 1679 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1680 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1681 * update due to cpuset modification. 1682 * 1683 * Return: Zoneref pointer for the first suitable zone found 1684 */ 1685 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1686 enum zone_type highest_zoneidx, 1687 nodemask_t *nodes) 1688 { 1689 return next_zones_zonelist(zonelist->_zonerefs, 1690 highest_zoneidx, nodes); 1691 } 1692 1693 /** 1694 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1695 * @zone: The current zone in the iterator 1696 * @z: The current pointer within zonelist->_zonerefs being iterated 1697 * @zlist: The zonelist being iterated 1698 * @highidx: The zone index of the highest zone to return 1699 * @nodemask: Nodemask allowed by the allocator 1700 * 1701 * This iterator iterates though all zones at or below a given zone index and 1702 * within a given nodemask 1703 */ 1704 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1705 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1706 zone; \ 1707 z = next_zones_zonelist(++z, highidx, nodemask), \ 1708 zone = zonelist_zone(z)) 1709 1710 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \ 1711 for (zone = zonelist_zone(z); \ 1712 zone; \ 1713 z = next_zones_zonelist(++z, highidx, nodemask), \ 1714 zone = zonelist_zone(z)) 1715 1716 1717 /** 1718 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1719 * @zone: The current zone in the iterator 1720 * @z: The current pointer within zonelist->zones being iterated 1721 * @zlist: The zonelist being iterated 1722 * @highidx: The zone index of the highest zone to return 1723 * 1724 * This iterator iterates though all zones at or below a given zone index. 1725 */ 1726 #define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1727 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1728 1729 /* Whether the 'nodes' are all movable nodes */ 1730 static inline bool movable_only_nodes(nodemask_t *nodes) 1731 { 1732 struct zonelist *zonelist; 1733 struct zoneref *z; 1734 int nid; 1735 1736 if (nodes_empty(*nodes)) 1737 return false; 1738 1739 /* 1740 * We can chose arbitrary node from the nodemask to get a 1741 * zonelist as they are interlinked. We just need to find 1742 * at least one zone that can satisfy kernel allocations. 1743 */ 1744 nid = first_node(*nodes); 1745 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 1746 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes); 1747 return (!zonelist_zone(z)) ? true : false; 1748 } 1749 1750 1751 #ifdef CONFIG_SPARSEMEM 1752 #include <asm/sparsemem.h> 1753 #endif 1754 1755 #ifdef CONFIG_FLATMEM 1756 #define pfn_to_nid(pfn) (0) 1757 #endif 1758 1759 #ifdef CONFIG_SPARSEMEM 1760 1761 /* 1762 * PA_SECTION_SHIFT physical address to/from section number 1763 * PFN_SECTION_SHIFT pfn to/from section number 1764 */ 1765 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1766 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1767 1768 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1769 1770 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1771 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1772 1773 #define SECTION_BLOCKFLAGS_BITS \ 1774 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1775 1776 #if (MAX_PAGE_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS 1777 #error Allocator MAX_PAGE_ORDER exceeds SECTION_SIZE 1778 #endif 1779 1780 static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1781 { 1782 return pfn >> PFN_SECTION_SHIFT; 1783 } 1784 static inline unsigned long section_nr_to_pfn(unsigned long sec) 1785 { 1786 return sec << PFN_SECTION_SHIFT; 1787 } 1788 1789 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1790 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1791 1792 #define SUBSECTION_SHIFT 21 1793 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT) 1794 1795 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) 1796 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) 1797 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) 1798 1799 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS 1800 #error Subsection size exceeds section size 1801 #else 1802 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) 1803 #endif 1804 1805 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) 1806 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) 1807 1808 struct mem_section_usage { 1809 struct rcu_head rcu; 1810 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1811 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); 1812 #endif 1813 /* See declaration of similar field in struct zone */ 1814 unsigned long pageblock_flags[0]; 1815 }; 1816 1817 void subsection_map_init(unsigned long pfn, unsigned long nr_pages); 1818 1819 struct page; 1820 struct page_ext; 1821 struct mem_section { 1822 /* 1823 * This is, logically, a pointer to an array of struct 1824 * pages. However, it is stored with some other magic. 1825 * (see sparse.c::sparse_init_one_section()) 1826 * 1827 * Additionally during early boot we encode node id of 1828 * the location of the section here to guide allocation. 1829 * (see sparse.c::memory_present()) 1830 * 1831 * Making it a UL at least makes someone do a cast 1832 * before using it wrong. 1833 */ 1834 unsigned long section_mem_map; 1835 1836 struct mem_section_usage *usage; 1837 #ifdef CONFIG_PAGE_EXTENSION 1838 /* 1839 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1840 * section. (see page_ext.h about this.) 1841 */ 1842 struct page_ext *page_ext; 1843 unsigned long pad; 1844 #endif 1845 /* 1846 * WARNING: mem_section must be a power-of-2 in size for the 1847 * calculation and use of SECTION_ROOT_MASK to make sense. 1848 */ 1849 }; 1850 1851 #ifdef CONFIG_SPARSEMEM_EXTREME 1852 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1853 #else 1854 #define SECTIONS_PER_ROOT 1 1855 #endif 1856 1857 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1858 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1859 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1860 1861 #ifdef CONFIG_SPARSEMEM_EXTREME 1862 extern struct mem_section **mem_section; 1863 #else 1864 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1865 #endif 1866 1867 static inline unsigned long *section_to_usemap(struct mem_section *ms) 1868 { 1869 return ms->usage->pageblock_flags; 1870 } 1871 1872 static inline struct mem_section *__nr_to_section(unsigned long nr) 1873 { 1874 unsigned long root = SECTION_NR_TO_ROOT(nr); 1875 1876 if (unlikely(root >= NR_SECTION_ROOTS)) 1877 return NULL; 1878 1879 #ifdef CONFIG_SPARSEMEM_EXTREME 1880 if (!mem_section || !mem_section[root]) 1881 return NULL; 1882 #endif 1883 return &mem_section[root][nr & SECTION_ROOT_MASK]; 1884 } 1885 extern size_t mem_section_usage_size(void); 1886 1887 /* 1888 * We use the lower bits of the mem_map pointer to store 1889 * a little bit of information. The pointer is calculated 1890 * as mem_map - section_nr_to_pfn(pnum). The result is 1891 * aligned to the minimum alignment of the two values: 1892 * 1. All mem_map arrays are page-aligned. 1893 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT 1894 * lowest bits. PFN_SECTION_SHIFT is arch-specific 1895 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the 1896 * worst combination is powerpc with 256k pages, 1897 * which results in PFN_SECTION_SHIFT equal 6. 1898 * To sum it up, at least 6 bits are available on all architectures. 1899 * However, we can exceed 6 bits on some other architectures except 1900 * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available 1901 * with the worst case of 64K pages on arm64) if we make sure the 1902 * exceeded bit is not applicable to powerpc. 1903 */ 1904 enum { 1905 SECTION_MARKED_PRESENT_BIT, 1906 SECTION_HAS_MEM_MAP_BIT, 1907 SECTION_IS_ONLINE_BIT, 1908 SECTION_IS_EARLY_BIT, 1909 #ifdef CONFIG_ZONE_DEVICE 1910 SECTION_TAINT_ZONE_DEVICE_BIT, 1911 #endif 1912 SECTION_MAP_LAST_BIT, 1913 }; 1914 1915 #define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT) 1916 #define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT) 1917 #define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT) 1918 #define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT) 1919 #ifdef CONFIG_ZONE_DEVICE 1920 #define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT) 1921 #endif 1922 #define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1)) 1923 #define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT 1924 1925 static inline struct page *__section_mem_map_addr(struct mem_section *section) 1926 { 1927 unsigned long map = section->section_mem_map; 1928 map &= SECTION_MAP_MASK; 1929 return (struct page *)map; 1930 } 1931 1932 static inline int present_section(struct mem_section *section) 1933 { 1934 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1935 } 1936 1937 static inline int present_section_nr(unsigned long nr) 1938 { 1939 return present_section(__nr_to_section(nr)); 1940 } 1941 1942 static inline int valid_section(struct mem_section *section) 1943 { 1944 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1945 } 1946 1947 static inline int early_section(struct mem_section *section) 1948 { 1949 return (section && (section->section_mem_map & SECTION_IS_EARLY)); 1950 } 1951 1952 static inline int valid_section_nr(unsigned long nr) 1953 { 1954 return valid_section(__nr_to_section(nr)); 1955 } 1956 1957 static inline int online_section(struct mem_section *section) 1958 { 1959 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 1960 } 1961 1962 #ifdef CONFIG_ZONE_DEVICE 1963 static inline int online_device_section(struct mem_section *section) 1964 { 1965 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE; 1966 1967 return section && ((section->section_mem_map & flags) == flags); 1968 } 1969 #else 1970 static inline int online_device_section(struct mem_section *section) 1971 { 1972 return 0; 1973 } 1974 #endif 1975 1976 static inline int online_section_nr(unsigned long nr) 1977 { 1978 return online_section(__nr_to_section(nr)); 1979 } 1980 1981 #ifdef CONFIG_MEMORY_HOTPLUG 1982 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1983 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1984 #endif 1985 1986 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1987 { 1988 return __nr_to_section(pfn_to_section_nr(pfn)); 1989 } 1990 1991 extern unsigned long __highest_present_section_nr; 1992 1993 static inline int subsection_map_index(unsigned long pfn) 1994 { 1995 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; 1996 } 1997 1998 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1999 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 2000 { 2001 int idx = subsection_map_index(pfn); 2002 struct mem_section_usage *usage = READ_ONCE(ms->usage); 2003 2004 return usage ? test_bit(idx, usage->subsection_map) : 0; 2005 } 2006 #else 2007 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 2008 { 2009 return 1; 2010 } 2011 #endif 2012 2013 #ifndef CONFIG_HAVE_ARCH_PFN_VALID 2014 /** 2015 * pfn_valid - check if there is a valid memory map entry for a PFN 2016 * @pfn: the page frame number to check 2017 * 2018 * Check if there is a valid memory map entry aka struct page for the @pfn. 2019 * Note, that availability of the memory map entry does not imply that 2020 * there is actual usable memory at that @pfn. The struct page may 2021 * represent a hole or an unusable page frame. 2022 * 2023 * Return: 1 for PFNs that have memory map entries and 0 otherwise 2024 */ 2025 static inline int pfn_valid(unsigned long pfn) 2026 { 2027 struct mem_section *ms; 2028 int ret; 2029 2030 /* 2031 * Ensure the upper PAGE_SHIFT bits are clear in the 2032 * pfn. Else it might lead to false positives when 2033 * some of the upper bits are set, but the lower bits 2034 * match a valid pfn. 2035 */ 2036 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn) 2037 return 0; 2038 2039 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 2040 return 0; 2041 ms = __pfn_to_section(pfn); 2042 rcu_read_lock_sched(); 2043 if (!valid_section(ms)) { 2044 rcu_read_unlock_sched(); 2045 return 0; 2046 } 2047 /* 2048 * Traditionally early sections always returned pfn_valid() for 2049 * the entire section-sized span. 2050 */ 2051 ret = early_section(ms) || pfn_section_valid(ms, pfn); 2052 rcu_read_unlock_sched(); 2053 2054 return ret; 2055 } 2056 #endif 2057 2058 static inline int pfn_in_present_section(unsigned long pfn) 2059 { 2060 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 2061 return 0; 2062 return present_section(__pfn_to_section(pfn)); 2063 } 2064 2065 static inline unsigned long next_present_section_nr(unsigned long section_nr) 2066 { 2067 while (++section_nr <= __highest_present_section_nr) { 2068 if (present_section_nr(section_nr)) 2069 return section_nr; 2070 } 2071 2072 return -1; 2073 } 2074 2075 /* 2076 * These are _only_ used during initialisation, therefore they 2077 * can use __initdata ... They could have names to indicate 2078 * this restriction. 2079 */ 2080 #ifdef CONFIG_NUMA 2081 #define pfn_to_nid(pfn) \ 2082 ({ \ 2083 unsigned long __pfn_to_nid_pfn = (pfn); \ 2084 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 2085 }) 2086 #else 2087 #define pfn_to_nid(pfn) (0) 2088 #endif 2089 2090 void sparse_init(void); 2091 #else 2092 #define sparse_init() do {} while (0) 2093 #define sparse_index_init(_sec, _nid) do {} while (0) 2094 #define pfn_in_present_section pfn_valid 2095 #define subsection_map_init(_pfn, _nr_pages) do {} while (0) 2096 #endif /* CONFIG_SPARSEMEM */ 2097 2098 #endif /* !__GENERATING_BOUNDS.H */ 2099 #endif /* !__ASSEMBLY__ */ 2100 #endif /* _LINUX_MMZONE_H */ 2101