1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MMZONE_H 3 #define _LINUX_MMZONE_H 4 5 #ifndef __ASSEMBLY__ 6 #ifndef __GENERATING_BOUNDS_H 7 8 #include <linux/spinlock.h> 9 #include <linux/list.h> 10 #include <linux/wait.h> 11 #include <linux/bitops.h> 12 #include <linux/cache.h> 13 #include <linux/threads.h> 14 #include <linux/numa.h> 15 #include <linux/init.h> 16 #include <linux/seqlock.h> 17 #include <linux/nodemask.h> 18 #include <linux/pageblock-flags.h> 19 #include <linux/page-flags-layout.h> 20 #include <linux/atomic.h> 21 #include <linux/mm_types.h> 22 #include <linux/page-flags.h> 23 #include <linux/local_lock.h> 24 #include <asm/page.h> 25 26 /* Free memory management - zoned buddy allocator. */ 27 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER 28 #define MAX_ORDER 11 29 #else 30 #define MAX_ORDER CONFIG_ARCH_FORCE_MAX_ORDER 31 #endif 32 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 33 34 /* 35 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 36 * costly to service. That is between allocation orders which should 37 * coalesce naturally under reasonable reclaim pressure and those which 38 * will not. 39 */ 40 #define PAGE_ALLOC_COSTLY_ORDER 3 41 42 enum migratetype { 43 MIGRATE_UNMOVABLE, 44 MIGRATE_MOVABLE, 45 MIGRATE_RECLAIMABLE, 46 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 47 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 48 #ifdef CONFIG_CMA 49 /* 50 * MIGRATE_CMA migration type is designed to mimic the way 51 * ZONE_MOVABLE works. Only movable pages can be allocated 52 * from MIGRATE_CMA pageblocks and page allocator never 53 * implicitly change migration type of MIGRATE_CMA pageblock. 54 * 55 * The way to use it is to change migratetype of a range of 56 * pageblocks to MIGRATE_CMA which can be done by 57 * __free_pageblock_cma() function. 58 */ 59 MIGRATE_CMA, 60 #endif 61 #ifdef CONFIG_MEMORY_ISOLATION 62 MIGRATE_ISOLATE, /* can't allocate from here */ 63 #endif 64 MIGRATE_TYPES 65 }; 66 67 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 68 extern const char * const migratetype_names[MIGRATE_TYPES]; 69 70 #ifdef CONFIG_CMA 71 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 72 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 73 #else 74 # define is_migrate_cma(migratetype) false 75 # define is_migrate_cma_page(_page) false 76 #endif 77 78 static inline bool is_migrate_movable(int mt) 79 { 80 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 81 } 82 83 /* 84 * Check whether a migratetype can be merged with another migratetype. 85 * 86 * It is only mergeable when it can fall back to other migratetypes for 87 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c. 88 */ 89 static inline bool migratetype_is_mergeable(int mt) 90 { 91 return mt < MIGRATE_PCPTYPES; 92 } 93 94 #define for_each_migratetype_order(order, type) \ 95 for (order = 0; order < MAX_ORDER; order++) \ 96 for (type = 0; type < MIGRATE_TYPES; type++) 97 98 extern int page_group_by_mobility_disabled; 99 100 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1) 101 102 #define get_pageblock_migratetype(page) \ 103 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK) 104 105 struct free_area { 106 struct list_head free_list[MIGRATE_TYPES]; 107 unsigned long nr_free; 108 }; 109 110 static inline struct page *get_page_from_free_area(struct free_area *area, 111 int migratetype) 112 { 113 return list_first_entry_or_null(&area->free_list[migratetype], 114 struct page, lru); 115 } 116 117 static inline bool free_area_empty(struct free_area *area, int migratetype) 118 { 119 return list_empty(&area->free_list[migratetype]); 120 } 121 122 struct pglist_data; 123 124 #ifdef CONFIG_NUMA 125 enum numa_stat_item { 126 NUMA_HIT, /* allocated in intended node */ 127 NUMA_MISS, /* allocated in non intended node */ 128 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 129 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 130 NUMA_LOCAL, /* allocation from local node */ 131 NUMA_OTHER, /* allocation from other node */ 132 NR_VM_NUMA_EVENT_ITEMS 133 }; 134 #else 135 #define NR_VM_NUMA_EVENT_ITEMS 0 136 #endif 137 138 enum zone_stat_item { 139 /* First 128 byte cacheline (assuming 64 bit words) */ 140 NR_FREE_PAGES, 141 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 142 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 143 NR_ZONE_ACTIVE_ANON, 144 NR_ZONE_INACTIVE_FILE, 145 NR_ZONE_ACTIVE_FILE, 146 NR_ZONE_UNEVICTABLE, 147 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 148 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 149 /* Second 128 byte cacheline */ 150 NR_BOUNCE, 151 #if IS_ENABLED(CONFIG_ZSMALLOC) 152 NR_ZSPAGES, /* allocated in zsmalloc */ 153 #endif 154 NR_FREE_CMA_PAGES, 155 NR_VM_ZONE_STAT_ITEMS }; 156 157 enum node_stat_item { 158 NR_LRU_BASE, 159 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 160 NR_ACTIVE_ANON, /* " " " " " */ 161 NR_INACTIVE_FILE, /* " " " " " */ 162 NR_ACTIVE_FILE, /* " " " " " */ 163 NR_UNEVICTABLE, /* " " " " " */ 164 NR_SLAB_RECLAIMABLE_B, 165 NR_SLAB_UNRECLAIMABLE_B, 166 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 167 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 168 WORKINGSET_NODES, 169 WORKINGSET_REFAULT_BASE, 170 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE, 171 WORKINGSET_REFAULT_FILE, 172 WORKINGSET_ACTIVATE_BASE, 173 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE, 174 WORKINGSET_ACTIVATE_FILE, 175 WORKINGSET_RESTORE_BASE, 176 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE, 177 WORKINGSET_RESTORE_FILE, 178 WORKINGSET_NODERECLAIM, 179 NR_ANON_MAPPED, /* Mapped anonymous pages */ 180 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 181 only modified from process context */ 182 NR_FILE_PAGES, 183 NR_FILE_DIRTY, 184 NR_WRITEBACK, 185 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 186 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 187 NR_SHMEM_THPS, 188 NR_SHMEM_PMDMAPPED, 189 NR_FILE_THPS, 190 NR_FILE_PMDMAPPED, 191 NR_ANON_THPS, 192 NR_VMSCAN_WRITE, 193 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 194 NR_DIRTIED, /* page dirtyings since bootup */ 195 NR_WRITTEN, /* page writings since bootup */ 196 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */ 197 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ 198 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */ 199 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */ 200 NR_KERNEL_STACK_KB, /* measured in KiB */ 201 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 202 NR_KERNEL_SCS_KB, /* measured in KiB */ 203 #endif 204 NR_PAGETABLE, /* used for pagetables */ 205 #ifdef CONFIG_SWAP 206 NR_SWAPCACHE, 207 #endif 208 #ifdef CONFIG_NUMA_BALANCING 209 PGPROMOTE_SUCCESS, /* promote successfully */ 210 PGPROMOTE_CANDIDATE, /* candidate pages to promote */ 211 #endif 212 NR_VM_NODE_STAT_ITEMS 213 }; 214 215 /* 216 * Returns true if the item should be printed in THPs (/proc/vmstat 217 * currently prints number of anon, file and shmem THPs. But the item 218 * is charged in pages). 219 */ 220 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item) 221 { 222 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 223 return false; 224 225 return item == NR_ANON_THPS || 226 item == NR_FILE_THPS || 227 item == NR_SHMEM_THPS || 228 item == NR_SHMEM_PMDMAPPED || 229 item == NR_FILE_PMDMAPPED; 230 } 231 232 /* 233 * Returns true if the value is measured in bytes (most vmstat values are 234 * measured in pages). This defines the API part, the internal representation 235 * might be different. 236 */ 237 static __always_inline bool vmstat_item_in_bytes(int idx) 238 { 239 /* 240 * Global and per-node slab counters track slab pages. 241 * It's expected that changes are multiples of PAGE_SIZE. 242 * Internally values are stored in pages. 243 * 244 * Per-memcg and per-lruvec counters track memory, consumed 245 * by individual slab objects. These counters are actually 246 * byte-precise. 247 */ 248 return (idx == NR_SLAB_RECLAIMABLE_B || 249 idx == NR_SLAB_UNRECLAIMABLE_B); 250 } 251 252 /* 253 * We do arithmetic on the LRU lists in various places in the code, 254 * so it is important to keep the active lists LRU_ACTIVE higher in 255 * the array than the corresponding inactive lists, and to keep 256 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 257 * 258 * This has to be kept in sync with the statistics in zone_stat_item 259 * above and the descriptions in vmstat_text in mm/vmstat.c 260 */ 261 #define LRU_BASE 0 262 #define LRU_ACTIVE 1 263 #define LRU_FILE 2 264 265 enum lru_list { 266 LRU_INACTIVE_ANON = LRU_BASE, 267 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 268 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 269 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 270 LRU_UNEVICTABLE, 271 NR_LRU_LISTS 272 }; 273 274 enum vmscan_throttle_state { 275 VMSCAN_THROTTLE_WRITEBACK, 276 VMSCAN_THROTTLE_ISOLATED, 277 VMSCAN_THROTTLE_NOPROGRESS, 278 VMSCAN_THROTTLE_CONGESTED, 279 NR_VMSCAN_THROTTLE, 280 }; 281 282 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 283 284 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 285 286 static inline bool is_file_lru(enum lru_list lru) 287 { 288 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 289 } 290 291 static inline bool is_active_lru(enum lru_list lru) 292 { 293 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 294 } 295 296 #define WORKINGSET_ANON 0 297 #define WORKINGSET_FILE 1 298 #define ANON_AND_FILE 2 299 300 enum lruvec_flags { 301 LRUVEC_CONGESTED, /* lruvec has many dirty pages 302 * backed by a congested BDI 303 */ 304 }; 305 306 #endif /* !__GENERATING_BOUNDS_H */ 307 308 /* 309 * Evictable pages are divided into multiple generations. The youngest and the 310 * oldest generation numbers, max_seq and min_seq, are monotonically increasing. 311 * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An 312 * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the 313 * corresponding generation. The gen counter in folio->flags stores gen+1 while 314 * a page is on one of lrugen->lists[]. Otherwise it stores 0. 315 * 316 * A page is added to the youngest generation on faulting. The aging needs to 317 * check the accessed bit at least twice before handing this page over to the 318 * eviction. The first check takes care of the accessed bit set on the initial 319 * fault; the second check makes sure this page hasn't been used since then. 320 * This process, AKA second chance, requires a minimum of two generations, 321 * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive 322 * LRU, e.g., /proc/vmstat, these two generations are considered active; the 323 * rest of generations, if they exist, are considered inactive. See 324 * lru_gen_is_active(). 325 * 326 * PG_active is always cleared while a page is on one of lrugen->lists[] so that 327 * the aging needs not to worry about it. And it's set again when a page 328 * considered active is isolated for non-reclaiming purposes, e.g., migration. 329 * See lru_gen_add_folio() and lru_gen_del_folio(). 330 * 331 * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the 332 * number of categories of the active/inactive LRU when keeping track of 333 * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits 334 * in folio->flags. 335 */ 336 #define MIN_NR_GENS 2U 337 #define MAX_NR_GENS 4U 338 339 /* 340 * Each generation is divided into multiple tiers. A page accessed N times 341 * through file descriptors is in tier order_base_2(N). A page in the first tier 342 * (N=0,1) is marked by PG_referenced unless it was faulted in through page 343 * tables or read ahead. A page in any other tier (N>1) is marked by 344 * PG_referenced and PG_workingset. This implies a minimum of two tiers is 345 * supported without using additional bits in folio->flags. 346 * 347 * In contrast to moving across generations which requires the LRU lock, moving 348 * across tiers only involves atomic operations on folio->flags and therefore 349 * has a negligible cost in the buffered access path. In the eviction path, 350 * comparisons of refaulted/(evicted+protected) from the first tier and the 351 * rest infer whether pages accessed multiple times through file descriptors 352 * are statistically hot and thus worth protecting. 353 * 354 * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the 355 * number of categories of the active/inactive LRU when keeping track of 356 * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in 357 * folio->flags. 358 */ 359 #define MAX_NR_TIERS 4U 360 361 #ifndef __GENERATING_BOUNDS_H 362 363 struct lruvec; 364 struct page_vma_mapped_walk; 365 366 #define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF) 367 #define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF) 368 369 #ifdef CONFIG_LRU_GEN 370 371 enum { 372 LRU_GEN_ANON, 373 LRU_GEN_FILE, 374 }; 375 376 enum { 377 LRU_GEN_CORE, 378 LRU_GEN_MM_WALK, 379 LRU_GEN_NONLEAF_YOUNG, 380 NR_LRU_GEN_CAPS 381 }; 382 383 #define MIN_LRU_BATCH BITS_PER_LONG 384 #define MAX_LRU_BATCH (MIN_LRU_BATCH * 64) 385 386 /* whether to keep historical stats from evicted generations */ 387 #ifdef CONFIG_LRU_GEN_STATS 388 #define NR_HIST_GENS MAX_NR_GENS 389 #else 390 #define NR_HIST_GENS 1U 391 #endif 392 393 /* 394 * The youngest generation number is stored in max_seq for both anon and file 395 * types as they are aged on an equal footing. The oldest generation numbers are 396 * stored in min_seq[] separately for anon and file types as clean file pages 397 * can be evicted regardless of swap constraints. 398 * 399 * Normally anon and file min_seq are in sync. But if swapping is constrained, 400 * e.g., out of swap space, file min_seq is allowed to advance and leave anon 401 * min_seq behind. 402 * 403 * The number of pages in each generation is eventually consistent and therefore 404 * can be transiently negative when reset_batch_size() is pending. 405 */ 406 struct lru_gen_struct { 407 /* the aging increments the youngest generation number */ 408 unsigned long max_seq; 409 /* the eviction increments the oldest generation numbers */ 410 unsigned long min_seq[ANON_AND_FILE]; 411 /* the birth time of each generation in jiffies */ 412 unsigned long timestamps[MAX_NR_GENS]; 413 /* the multi-gen LRU lists, lazily sorted on eviction */ 414 struct list_head lists[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 415 /* the multi-gen LRU sizes, eventually consistent */ 416 long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 417 /* the exponential moving average of refaulted */ 418 unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS]; 419 /* the exponential moving average of evicted+protected */ 420 unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS]; 421 /* the first tier doesn't need protection, hence the minus one */ 422 unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1]; 423 /* can be modified without holding the LRU lock */ 424 atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 425 atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 426 /* whether the multi-gen LRU is enabled */ 427 bool enabled; 428 }; 429 430 enum { 431 MM_LEAF_TOTAL, /* total leaf entries */ 432 MM_LEAF_OLD, /* old leaf entries */ 433 MM_LEAF_YOUNG, /* young leaf entries */ 434 MM_NONLEAF_TOTAL, /* total non-leaf entries */ 435 MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */ 436 MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */ 437 NR_MM_STATS 438 }; 439 440 /* double-buffering Bloom filters */ 441 #define NR_BLOOM_FILTERS 2 442 443 struct lru_gen_mm_state { 444 /* set to max_seq after each iteration */ 445 unsigned long seq; 446 /* where the current iteration continues (inclusive) */ 447 struct list_head *head; 448 /* where the last iteration ended (exclusive) */ 449 struct list_head *tail; 450 /* to wait for the last page table walker to finish */ 451 struct wait_queue_head wait; 452 /* Bloom filters flip after each iteration */ 453 unsigned long *filters[NR_BLOOM_FILTERS]; 454 /* the mm stats for debugging */ 455 unsigned long stats[NR_HIST_GENS][NR_MM_STATS]; 456 /* the number of concurrent page table walkers */ 457 int nr_walkers; 458 }; 459 460 struct lru_gen_mm_walk { 461 /* the lruvec under reclaim */ 462 struct lruvec *lruvec; 463 /* unstable max_seq from lru_gen_struct */ 464 unsigned long max_seq; 465 /* the next address within an mm to scan */ 466 unsigned long next_addr; 467 /* to batch promoted pages */ 468 int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 469 /* to batch the mm stats */ 470 int mm_stats[NR_MM_STATS]; 471 /* total batched items */ 472 int batched; 473 bool can_swap; 474 bool force_scan; 475 }; 476 477 void lru_gen_init_lruvec(struct lruvec *lruvec); 478 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw); 479 480 #ifdef CONFIG_MEMCG 481 void lru_gen_init_memcg(struct mem_cgroup *memcg); 482 void lru_gen_exit_memcg(struct mem_cgroup *memcg); 483 #endif 484 485 #else /* !CONFIG_LRU_GEN */ 486 487 static inline void lru_gen_init_lruvec(struct lruvec *lruvec) 488 { 489 } 490 491 static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 492 { 493 } 494 495 #ifdef CONFIG_MEMCG 496 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg) 497 { 498 } 499 500 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg) 501 { 502 } 503 #endif 504 505 #endif /* CONFIG_LRU_GEN */ 506 507 struct lruvec { 508 struct list_head lists[NR_LRU_LISTS]; 509 /* per lruvec lru_lock for memcg */ 510 spinlock_t lru_lock; 511 /* 512 * These track the cost of reclaiming one LRU - file or anon - 513 * over the other. As the observed cost of reclaiming one LRU 514 * increases, the reclaim scan balance tips toward the other. 515 */ 516 unsigned long anon_cost; 517 unsigned long file_cost; 518 /* Non-resident age, driven by LRU movement */ 519 atomic_long_t nonresident_age; 520 /* Refaults at the time of last reclaim cycle */ 521 unsigned long refaults[ANON_AND_FILE]; 522 /* Various lruvec state flags (enum lruvec_flags) */ 523 unsigned long flags; 524 #ifdef CONFIG_LRU_GEN 525 /* evictable pages divided into generations */ 526 struct lru_gen_struct lrugen; 527 /* to concurrently iterate lru_gen_mm_list */ 528 struct lru_gen_mm_state mm_state; 529 #endif 530 #ifdef CONFIG_MEMCG 531 struct pglist_data *pgdat; 532 #endif 533 }; 534 535 /* Isolate unmapped pages */ 536 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 537 /* Isolate for asynchronous migration */ 538 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 539 /* Isolate unevictable pages */ 540 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 541 542 /* LRU Isolation modes. */ 543 typedef unsigned __bitwise isolate_mode_t; 544 545 enum zone_watermarks { 546 WMARK_MIN, 547 WMARK_LOW, 548 WMARK_HIGH, 549 WMARK_PROMO, 550 NR_WMARK 551 }; 552 553 /* 554 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list 555 * for THP which will usually be GFP_MOVABLE. Even if it is another type, 556 * it should not contribute to serious fragmentation causing THP allocation 557 * failures. 558 */ 559 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 560 #define NR_PCP_THP 1 561 #else 562 #define NR_PCP_THP 0 563 #endif 564 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1)) 565 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP) 566 567 /* 568 * Shift to encode migratetype and order in the same integer, with order 569 * in the least significant bits. 570 */ 571 #define NR_PCP_ORDER_WIDTH 8 572 #define NR_PCP_ORDER_MASK ((1<<NR_PCP_ORDER_WIDTH) - 1) 573 574 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost) 575 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost) 576 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost) 577 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost) 578 579 /* Fields and list protected by pagesets local_lock in page_alloc.c */ 580 struct per_cpu_pages { 581 spinlock_t lock; /* Protects lists field */ 582 int count; /* number of pages in the list */ 583 int high; /* high watermark, emptying needed */ 584 int batch; /* chunk size for buddy add/remove */ 585 short free_factor; /* batch scaling factor during free */ 586 #ifdef CONFIG_NUMA 587 short expire; /* When 0, remote pagesets are drained */ 588 #endif 589 590 /* Lists of pages, one per migrate type stored on the pcp-lists */ 591 struct list_head lists[NR_PCP_LISTS]; 592 } ____cacheline_aligned_in_smp; 593 594 struct per_cpu_zonestat { 595 #ifdef CONFIG_SMP 596 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 597 s8 stat_threshold; 598 #endif 599 #ifdef CONFIG_NUMA 600 /* 601 * Low priority inaccurate counters that are only folded 602 * on demand. Use a large type to avoid the overhead of 603 * folding during refresh_cpu_vm_stats. 604 */ 605 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 606 #endif 607 }; 608 609 struct per_cpu_nodestat { 610 s8 stat_threshold; 611 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 612 }; 613 614 #endif /* !__GENERATING_BOUNDS.H */ 615 616 enum zone_type { 617 /* 618 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able 619 * to DMA to all of the addressable memory (ZONE_NORMAL). 620 * On architectures where this area covers the whole 32 bit address 621 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller 622 * DMA addressing constraints. This distinction is important as a 32bit 623 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit 624 * platforms may need both zones as they support peripherals with 625 * different DMA addressing limitations. 626 */ 627 #ifdef CONFIG_ZONE_DMA 628 ZONE_DMA, 629 #endif 630 #ifdef CONFIG_ZONE_DMA32 631 ZONE_DMA32, 632 #endif 633 /* 634 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 635 * performed on pages in ZONE_NORMAL if the DMA devices support 636 * transfers to all addressable memory. 637 */ 638 ZONE_NORMAL, 639 #ifdef CONFIG_HIGHMEM 640 /* 641 * A memory area that is only addressable by the kernel through 642 * mapping portions into its own address space. This is for example 643 * used by i386 to allow the kernel to address the memory beyond 644 * 900MB. The kernel will set up special mappings (page 645 * table entries on i386) for each page that the kernel needs to 646 * access. 647 */ 648 ZONE_HIGHMEM, 649 #endif 650 /* 651 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains 652 * movable pages with few exceptional cases described below. Main use 653 * cases for ZONE_MOVABLE are to make memory offlining/unplug more 654 * likely to succeed, and to locally limit unmovable allocations - e.g., 655 * to increase the number of THP/huge pages. Notable special cases are: 656 * 657 * 1. Pinned pages: (long-term) pinning of movable pages might 658 * essentially turn such pages unmovable. Therefore, we do not allow 659 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and 660 * faulted, they come from the right zone right away. However, it is 661 * still possible that address space already has pages in 662 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has 663 * touches that memory before pinning). In such case we migrate them 664 * to a different zone. When migration fails - pinning fails. 665 * 2. memblock allocations: kernelcore/movablecore setups might create 666 * situations where ZONE_MOVABLE contains unmovable allocations 667 * after boot. Memory offlining and allocations fail early. 668 * 3. Memory holes: kernelcore/movablecore setups might create very rare 669 * situations where ZONE_MOVABLE contains memory holes after boot, 670 * for example, if we have sections that are only partially 671 * populated. Memory offlining and allocations fail early. 672 * 4. PG_hwpoison pages: while poisoned pages can be skipped during 673 * memory offlining, such pages cannot be allocated. 674 * 5. Unmovable PG_offline pages: in paravirtualized environments, 675 * hotplugged memory blocks might only partially be managed by the 676 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The 677 * parts not manged by the buddy are unmovable PG_offline pages. In 678 * some cases (virtio-mem), such pages can be skipped during 679 * memory offlining, however, cannot be moved/allocated. These 680 * techniques might use alloc_contig_range() to hide previously 681 * exposed pages from the buddy again (e.g., to implement some sort 682 * of memory unplug in virtio-mem). 683 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create 684 * situations where ZERO_PAGE(0) which is allocated differently 685 * on different platforms may end up in a movable zone. ZERO_PAGE(0) 686 * cannot be migrated. 687 * 7. Memory-hotplug: when using memmap_on_memory and onlining the 688 * memory to the MOVABLE zone, the vmemmap pages are also placed in 689 * such zone. Such pages cannot be really moved around as they are 690 * self-stored in the range, but they are treated as movable when 691 * the range they describe is about to be offlined. 692 * 693 * In general, no unmovable allocations that degrade memory offlining 694 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range()) 695 * have to expect that migrating pages in ZONE_MOVABLE can fail (even 696 * if has_unmovable_pages() states that there are no unmovable pages, 697 * there can be false negatives). 698 */ 699 ZONE_MOVABLE, 700 #ifdef CONFIG_ZONE_DEVICE 701 ZONE_DEVICE, 702 #endif 703 __MAX_NR_ZONES 704 705 }; 706 707 #ifndef __GENERATING_BOUNDS_H 708 709 #define ASYNC_AND_SYNC 2 710 711 struct zone { 712 /* Read-mostly fields */ 713 714 /* zone watermarks, access with *_wmark_pages(zone) macros */ 715 unsigned long _watermark[NR_WMARK]; 716 unsigned long watermark_boost; 717 718 unsigned long nr_reserved_highatomic; 719 720 /* 721 * We don't know if the memory that we're going to allocate will be 722 * freeable or/and it will be released eventually, so to avoid totally 723 * wasting several GB of ram we must reserve some of the lower zone 724 * memory (otherwise we risk to run OOM on the lower zones despite 725 * there being tons of freeable ram on the higher zones). This array is 726 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 727 * changes. 728 */ 729 long lowmem_reserve[MAX_NR_ZONES]; 730 731 #ifdef CONFIG_NUMA 732 int node; 733 #endif 734 struct pglist_data *zone_pgdat; 735 struct per_cpu_pages __percpu *per_cpu_pageset; 736 struct per_cpu_zonestat __percpu *per_cpu_zonestats; 737 /* 738 * the high and batch values are copied to individual pagesets for 739 * faster access 740 */ 741 int pageset_high; 742 int pageset_batch; 743 744 #ifndef CONFIG_SPARSEMEM 745 /* 746 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 747 * In SPARSEMEM, this map is stored in struct mem_section 748 */ 749 unsigned long *pageblock_flags; 750 #endif /* CONFIG_SPARSEMEM */ 751 752 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 753 unsigned long zone_start_pfn; 754 755 /* 756 * spanned_pages is the total pages spanned by the zone, including 757 * holes, which is calculated as: 758 * spanned_pages = zone_end_pfn - zone_start_pfn; 759 * 760 * present_pages is physical pages existing within the zone, which 761 * is calculated as: 762 * present_pages = spanned_pages - absent_pages(pages in holes); 763 * 764 * present_early_pages is present pages existing within the zone 765 * located on memory available since early boot, excluding hotplugged 766 * memory. 767 * 768 * managed_pages is present pages managed by the buddy system, which 769 * is calculated as (reserved_pages includes pages allocated by the 770 * bootmem allocator): 771 * managed_pages = present_pages - reserved_pages; 772 * 773 * cma pages is present pages that are assigned for CMA use 774 * (MIGRATE_CMA). 775 * 776 * So present_pages may be used by memory hotplug or memory power 777 * management logic to figure out unmanaged pages by checking 778 * (present_pages - managed_pages). And managed_pages should be used 779 * by page allocator and vm scanner to calculate all kinds of watermarks 780 * and thresholds. 781 * 782 * Locking rules: 783 * 784 * zone_start_pfn and spanned_pages are protected by span_seqlock. 785 * It is a seqlock because it has to be read outside of zone->lock, 786 * and it is done in the main allocator path. But, it is written 787 * quite infrequently. 788 * 789 * The span_seq lock is declared along with zone->lock because it is 790 * frequently read in proximity to zone->lock. It's good to 791 * give them a chance of being in the same cacheline. 792 * 793 * Write access to present_pages at runtime should be protected by 794 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of 795 * present_pages should use get_online_mems() to get a stable value. 796 */ 797 atomic_long_t managed_pages; 798 unsigned long spanned_pages; 799 unsigned long present_pages; 800 #if defined(CONFIG_MEMORY_HOTPLUG) 801 unsigned long present_early_pages; 802 #endif 803 #ifdef CONFIG_CMA 804 unsigned long cma_pages; 805 #endif 806 807 const char *name; 808 809 #ifdef CONFIG_MEMORY_ISOLATION 810 /* 811 * Number of isolated pageblock. It is used to solve incorrect 812 * freepage counting problem due to racy retrieving migratetype 813 * of pageblock. Protected by zone->lock. 814 */ 815 unsigned long nr_isolate_pageblock; 816 #endif 817 818 #ifdef CONFIG_MEMORY_HOTPLUG 819 /* see spanned/present_pages for more description */ 820 seqlock_t span_seqlock; 821 #endif 822 823 int initialized; 824 825 /* Write-intensive fields used from the page allocator */ 826 CACHELINE_PADDING(_pad1_); 827 828 /* free areas of different sizes */ 829 struct free_area free_area[MAX_ORDER]; 830 831 /* zone flags, see below */ 832 unsigned long flags; 833 834 /* Primarily protects free_area */ 835 spinlock_t lock; 836 837 /* Write-intensive fields used by compaction and vmstats. */ 838 CACHELINE_PADDING(_pad2_); 839 840 /* 841 * When free pages are below this point, additional steps are taken 842 * when reading the number of free pages to avoid per-cpu counter 843 * drift allowing watermarks to be breached 844 */ 845 unsigned long percpu_drift_mark; 846 847 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 848 /* pfn where compaction free scanner should start */ 849 unsigned long compact_cached_free_pfn; 850 /* pfn where compaction migration scanner should start */ 851 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC]; 852 unsigned long compact_init_migrate_pfn; 853 unsigned long compact_init_free_pfn; 854 #endif 855 856 #ifdef CONFIG_COMPACTION 857 /* 858 * On compaction failure, 1<<compact_defer_shift compactions 859 * are skipped before trying again. The number attempted since 860 * last failure is tracked with compact_considered. 861 * compact_order_failed is the minimum compaction failed order. 862 */ 863 unsigned int compact_considered; 864 unsigned int compact_defer_shift; 865 int compact_order_failed; 866 #endif 867 868 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 869 /* Set to true when the PG_migrate_skip bits should be cleared */ 870 bool compact_blockskip_flush; 871 #endif 872 873 bool contiguous; 874 875 CACHELINE_PADDING(_pad3_); 876 /* Zone statistics */ 877 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 878 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 879 } ____cacheline_internodealigned_in_smp; 880 881 enum pgdat_flags { 882 PGDAT_DIRTY, /* reclaim scanning has recently found 883 * many dirty file pages at the tail 884 * of the LRU. 885 */ 886 PGDAT_WRITEBACK, /* reclaim scanning has recently found 887 * many pages under writeback 888 */ 889 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 890 }; 891 892 enum zone_flags { 893 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. 894 * Cleared when kswapd is woken. 895 */ 896 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */ 897 }; 898 899 static inline unsigned long zone_managed_pages(struct zone *zone) 900 { 901 return (unsigned long)atomic_long_read(&zone->managed_pages); 902 } 903 904 static inline unsigned long zone_cma_pages(struct zone *zone) 905 { 906 #ifdef CONFIG_CMA 907 return zone->cma_pages; 908 #else 909 return 0; 910 #endif 911 } 912 913 static inline unsigned long zone_end_pfn(const struct zone *zone) 914 { 915 return zone->zone_start_pfn + zone->spanned_pages; 916 } 917 918 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 919 { 920 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 921 } 922 923 static inline bool zone_is_initialized(struct zone *zone) 924 { 925 return zone->initialized; 926 } 927 928 static inline bool zone_is_empty(struct zone *zone) 929 { 930 return zone->spanned_pages == 0; 931 } 932 933 #ifndef BUILD_VDSO32_64 934 /* 935 * The zone field is never updated after free_area_init_core() 936 * sets it, so none of the operations on it need to be atomic. 937 */ 938 939 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 940 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 941 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 942 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 943 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 944 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 945 #define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH) 946 #define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH) 947 948 /* 949 * Define the bit shifts to access each section. For non-existent 950 * sections we define the shift as 0; that plus a 0 mask ensures 951 * the compiler will optimise away reference to them. 952 */ 953 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 954 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 955 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 956 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 957 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 958 959 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 960 #ifdef NODE_NOT_IN_PAGE_FLAGS 961 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 962 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \ 963 SECTIONS_PGOFF : ZONES_PGOFF) 964 #else 965 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 966 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \ 967 NODES_PGOFF : ZONES_PGOFF) 968 #endif 969 970 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 971 972 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 973 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 974 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 975 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 976 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 977 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 978 979 static inline enum zone_type page_zonenum(const struct page *page) 980 { 981 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 982 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 983 } 984 985 static inline enum zone_type folio_zonenum(const struct folio *folio) 986 { 987 return page_zonenum(&folio->page); 988 } 989 990 #ifdef CONFIG_ZONE_DEVICE 991 static inline bool is_zone_device_page(const struct page *page) 992 { 993 return page_zonenum(page) == ZONE_DEVICE; 994 } 995 extern void memmap_init_zone_device(struct zone *, unsigned long, 996 unsigned long, struct dev_pagemap *); 997 #else 998 static inline bool is_zone_device_page(const struct page *page) 999 { 1000 return false; 1001 } 1002 #endif 1003 1004 static inline bool folio_is_zone_device(const struct folio *folio) 1005 { 1006 return is_zone_device_page(&folio->page); 1007 } 1008 1009 static inline bool is_zone_movable_page(const struct page *page) 1010 { 1011 return page_zonenum(page) == ZONE_MOVABLE; 1012 } 1013 #endif 1014 1015 /* 1016 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 1017 * intersection with the given zone 1018 */ 1019 static inline bool zone_intersects(struct zone *zone, 1020 unsigned long start_pfn, unsigned long nr_pages) 1021 { 1022 if (zone_is_empty(zone)) 1023 return false; 1024 if (start_pfn >= zone_end_pfn(zone) || 1025 start_pfn + nr_pages <= zone->zone_start_pfn) 1026 return false; 1027 1028 return true; 1029 } 1030 1031 /* 1032 * The "priority" of VM scanning is how much of the queues we will scan in one 1033 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 1034 * queues ("queue_length >> 12") during an aging round. 1035 */ 1036 #define DEF_PRIORITY 12 1037 1038 /* Maximum number of zones on a zonelist */ 1039 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 1040 1041 enum { 1042 ZONELIST_FALLBACK, /* zonelist with fallback */ 1043 #ifdef CONFIG_NUMA 1044 /* 1045 * The NUMA zonelists are doubled because we need zonelists that 1046 * restrict the allocations to a single node for __GFP_THISNODE. 1047 */ 1048 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 1049 #endif 1050 MAX_ZONELISTS 1051 }; 1052 1053 /* 1054 * This struct contains information about a zone in a zonelist. It is stored 1055 * here to avoid dereferences into large structures and lookups of tables 1056 */ 1057 struct zoneref { 1058 struct zone *zone; /* Pointer to actual zone */ 1059 int zone_idx; /* zone_idx(zoneref->zone) */ 1060 }; 1061 1062 /* 1063 * One allocation request operates on a zonelist. A zonelist 1064 * is a list of zones, the first one is the 'goal' of the 1065 * allocation, the other zones are fallback zones, in decreasing 1066 * priority. 1067 * 1068 * To speed the reading of the zonelist, the zonerefs contain the zone index 1069 * of the entry being read. Helper functions to access information given 1070 * a struct zoneref are 1071 * 1072 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 1073 * zonelist_zone_idx() - Return the index of the zone for an entry 1074 * zonelist_node_idx() - Return the index of the node for an entry 1075 */ 1076 struct zonelist { 1077 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 1078 }; 1079 1080 /* 1081 * The array of struct pages for flatmem. 1082 * It must be declared for SPARSEMEM as well because there are configurations 1083 * that rely on that. 1084 */ 1085 extern struct page *mem_map; 1086 1087 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1088 struct deferred_split { 1089 spinlock_t split_queue_lock; 1090 struct list_head split_queue; 1091 unsigned long split_queue_len; 1092 }; 1093 #endif 1094 1095 /* 1096 * On NUMA machines, each NUMA node would have a pg_data_t to describe 1097 * it's memory layout. On UMA machines there is a single pglist_data which 1098 * describes the whole memory. 1099 * 1100 * Memory statistics and page replacement data structures are maintained on a 1101 * per-zone basis. 1102 */ 1103 typedef struct pglist_data { 1104 /* 1105 * node_zones contains just the zones for THIS node. Not all of the 1106 * zones may be populated, but it is the full list. It is referenced by 1107 * this node's node_zonelists as well as other node's node_zonelists. 1108 */ 1109 struct zone node_zones[MAX_NR_ZONES]; 1110 1111 /* 1112 * node_zonelists contains references to all zones in all nodes. 1113 * Generally the first zones will be references to this node's 1114 * node_zones. 1115 */ 1116 struct zonelist node_zonelists[MAX_ZONELISTS]; 1117 1118 int nr_zones; /* number of populated zones in this node */ 1119 #ifdef CONFIG_FLATMEM /* means !SPARSEMEM */ 1120 struct page *node_mem_map; 1121 #ifdef CONFIG_PAGE_EXTENSION 1122 struct page_ext *node_page_ext; 1123 #endif 1124 #endif 1125 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) 1126 /* 1127 * Must be held any time you expect node_start_pfn, 1128 * node_present_pages, node_spanned_pages or nr_zones to stay constant. 1129 * Also synchronizes pgdat->first_deferred_pfn during deferred page 1130 * init. 1131 * 1132 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 1133 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG 1134 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. 1135 * 1136 * Nests above zone->lock and zone->span_seqlock 1137 */ 1138 spinlock_t node_size_lock; 1139 #endif 1140 unsigned long node_start_pfn; 1141 unsigned long node_present_pages; /* total number of physical pages */ 1142 unsigned long node_spanned_pages; /* total size of physical page 1143 range, including holes */ 1144 int node_id; 1145 wait_queue_head_t kswapd_wait; 1146 wait_queue_head_t pfmemalloc_wait; 1147 1148 /* workqueues for throttling reclaim for different reasons. */ 1149 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE]; 1150 1151 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */ 1152 unsigned long nr_reclaim_start; /* nr pages written while throttled 1153 * when throttling started. */ 1154 #ifdef CONFIG_MEMORY_HOTPLUG 1155 struct mutex kswapd_lock; 1156 #endif 1157 struct task_struct *kswapd; /* Protected by kswapd_lock */ 1158 int kswapd_order; 1159 enum zone_type kswapd_highest_zoneidx; 1160 1161 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 1162 1163 #ifdef CONFIG_COMPACTION 1164 int kcompactd_max_order; 1165 enum zone_type kcompactd_highest_zoneidx; 1166 wait_queue_head_t kcompactd_wait; 1167 struct task_struct *kcompactd; 1168 bool proactive_compact_trigger; 1169 #endif 1170 /* 1171 * This is a per-node reserve of pages that are not available 1172 * to userspace allocations. 1173 */ 1174 unsigned long totalreserve_pages; 1175 1176 #ifdef CONFIG_NUMA 1177 /* 1178 * node reclaim becomes active if more unmapped pages exist. 1179 */ 1180 unsigned long min_unmapped_pages; 1181 unsigned long min_slab_pages; 1182 #endif /* CONFIG_NUMA */ 1183 1184 /* Write-intensive fields used by page reclaim */ 1185 CACHELINE_PADDING(_pad1_); 1186 1187 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1188 /* 1189 * If memory initialisation on large machines is deferred then this 1190 * is the first PFN that needs to be initialised. 1191 */ 1192 unsigned long first_deferred_pfn; 1193 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1194 1195 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1196 struct deferred_split deferred_split_queue; 1197 #endif 1198 1199 #ifdef CONFIG_NUMA_BALANCING 1200 /* start time in ms of current promote rate limit period */ 1201 unsigned int nbp_rl_start; 1202 /* number of promote candidate pages at start time of current rate limit period */ 1203 unsigned long nbp_rl_nr_cand; 1204 /* promote threshold in ms */ 1205 unsigned int nbp_threshold; 1206 /* start time in ms of current promote threshold adjustment period */ 1207 unsigned int nbp_th_start; 1208 /* 1209 * number of promote candidate pages at stat time of current promote 1210 * threshold adjustment period 1211 */ 1212 unsigned long nbp_th_nr_cand; 1213 #endif 1214 /* Fields commonly accessed by the page reclaim scanner */ 1215 1216 /* 1217 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. 1218 * 1219 * Use mem_cgroup_lruvec() to look up lruvecs. 1220 */ 1221 struct lruvec __lruvec; 1222 1223 unsigned long flags; 1224 1225 #ifdef CONFIG_LRU_GEN 1226 /* kswap mm walk data */ 1227 struct lru_gen_mm_walk mm_walk; 1228 #endif 1229 1230 CACHELINE_PADDING(_pad2_); 1231 1232 /* Per-node vmstats */ 1233 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 1234 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 1235 #ifdef CONFIG_NUMA 1236 struct memory_tier __rcu *memtier; 1237 #endif 1238 } pg_data_t; 1239 1240 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 1241 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 1242 1243 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 1244 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 1245 1246 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 1247 { 1248 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 1249 } 1250 1251 static inline bool pgdat_is_empty(pg_data_t *pgdat) 1252 { 1253 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; 1254 } 1255 1256 #include <linux/memory_hotplug.h> 1257 1258 void build_all_zonelists(pg_data_t *pgdat); 1259 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, 1260 enum zone_type highest_zoneidx); 1261 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 1262 int highest_zoneidx, unsigned int alloc_flags, 1263 long free_pages); 1264 bool zone_watermark_ok(struct zone *z, unsigned int order, 1265 unsigned long mark, int highest_zoneidx, 1266 unsigned int alloc_flags); 1267 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 1268 unsigned long mark, int highest_zoneidx); 1269 /* 1270 * Memory initialization context, use to differentiate memory added by 1271 * the platform statically or via memory hotplug interface. 1272 */ 1273 enum meminit_context { 1274 MEMINIT_EARLY, 1275 MEMINIT_HOTPLUG, 1276 }; 1277 1278 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 1279 unsigned long size); 1280 1281 extern void lruvec_init(struct lruvec *lruvec); 1282 1283 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 1284 { 1285 #ifdef CONFIG_MEMCG 1286 return lruvec->pgdat; 1287 #else 1288 return container_of(lruvec, struct pglist_data, __lruvec); 1289 #endif 1290 } 1291 1292 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 1293 int local_memory_node(int node_id); 1294 #else 1295 static inline int local_memory_node(int node_id) { return node_id; }; 1296 #endif 1297 1298 /* 1299 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 1300 */ 1301 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 1302 1303 #ifdef CONFIG_ZONE_DEVICE 1304 static inline bool zone_is_zone_device(struct zone *zone) 1305 { 1306 return zone_idx(zone) == ZONE_DEVICE; 1307 } 1308 #else 1309 static inline bool zone_is_zone_device(struct zone *zone) 1310 { 1311 return false; 1312 } 1313 #endif 1314 1315 /* 1316 * Returns true if a zone has pages managed by the buddy allocator. 1317 * All the reclaim decisions have to use this function rather than 1318 * populated_zone(). If the whole zone is reserved then we can easily 1319 * end up with populated_zone() && !managed_zone(). 1320 */ 1321 static inline bool managed_zone(struct zone *zone) 1322 { 1323 return zone_managed_pages(zone); 1324 } 1325 1326 /* Returns true if a zone has memory */ 1327 static inline bool populated_zone(struct zone *zone) 1328 { 1329 return zone->present_pages; 1330 } 1331 1332 #ifdef CONFIG_NUMA 1333 static inline int zone_to_nid(struct zone *zone) 1334 { 1335 return zone->node; 1336 } 1337 1338 static inline void zone_set_nid(struct zone *zone, int nid) 1339 { 1340 zone->node = nid; 1341 } 1342 #else 1343 static inline int zone_to_nid(struct zone *zone) 1344 { 1345 return 0; 1346 } 1347 1348 static inline void zone_set_nid(struct zone *zone, int nid) {} 1349 #endif 1350 1351 extern int movable_zone; 1352 1353 static inline int is_highmem_idx(enum zone_type idx) 1354 { 1355 #ifdef CONFIG_HIGHMEM 1356 return (idx == ZONE_HIGHMEM || 1357 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM)); 1358 #else 1359 return 0; 1360 #endif 1361 } 1362 1363 /** 1364 * is_highmem - helper function to quickly check if a struct zone is a 1365 * highmem zone or not. This is an attempt to keep references 1366 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 1367 * @zone: pointer to struct zone variable 1368 * Return: 1 for a highmem zone, 0 otherwise 1369 */ 1370 static inline int is_highmem(struct zone *zone) 1371 { 1372 return is_highmem_idx(zone_idx(zone)); 1373 } 1374 1375 #ifdef CONFIG_ZONE_DMA 1376 bool has_managed_dma(void); 1377 #else 1378 static inline bool has_managed_dma(void) 1379 { 1380 return false; 1381 } 1382 #endif 1383 1384 /* These two functions are used to setup the per zone pages min values */ 1385 struct ctl_table; 1386 1387 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *, 1388 loff_t *); 1389 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *, 1390 size_t *, loff_t *); 1391 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES]; 1392 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *, 1393 size_t *, loff_t *); 1394 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *, int, 1395 void *, size_t *, loff_t *); 1396 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 1397 void *, size_t *, loff_t *); 1398 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 1399 void *, size_t *, loff_t *); 1400 int numa_zonelist_order_handler(struct ctl_table *, int, 1401 void *, size_t *, loff_t *); 1402 extern int percpu_pagelist_high_fraction; 1403 extern char numa_zonelist_order[]; 1404 #define NUMA_ZONELIST_ORDER_LEN 16 1405 1406 #ifndef CONFIG_NUMA 1407 1408 extern struct pglist_data contig_page_data; 1409 static inline struct pglist_data *NODE_DATA(int nid) 1410 { 1411 return &contig_page_data; 1412 } 1413 1414 #else /* CONFIG_NUMA */ 1415 1416 #include <asm/mmzone.h> 1417 1418 #endif /* !CONFIG_NUMA */ 1419 1420 extern struct pglist_data *first_online_pgdat(void); 1421 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 1422 extern struct zone *next_zone(struct zone *zone); 1423 1424 /** 1425 * for_each_online_pgdat - helper macro to iterate over all online nodes 1426 * @pgdat: pointer to a pg_data_t variable 1427 */ 1428 #define for_each_online_pgdat(pgdat) \ 1429 for (pgdat = first_online_pgdat(); \ 1430 pgdat; \ 1431 pgdat = next_online_pgdat(pgdat)) 1432 /** 1433 * for_each_zone - helper macro to iterate over all memory zones 1434 * @zone: pointer to struct zone variable 1435 * 1436 * The user only needs to declare the zone variable, for_each_zone 1437 * fills it in. 1438 */ 1439 #define for_each_zone(zone) \ 1440 for (zone = (first_online_pgdat())->node_zones; \ 1441 zone; \ 1442 zone = next_zone(zone)) 1443 1444 #define for_each_populated_zone(zone) \ 1445 for (zone = (first_online_pgdat())->node_zones; \ 1446 zone; \ 1447 zone = next_zone(zone)) \ 1448 if (!populated_zone(zone)) \ 1449 ; /* do nothing */ \ 1450 else 1451 1452 static inline struct zone *zonelist_zone(struct zoneref *zoneref) 1453 { 1454 return zoneref->zone; 1455 } 1456 1457 static inline int zonelist_zone_idx(struct zoneref *zoneref) 1458 { 1459 return zoneref->zone_idx; 1460 } 1461 1462 static inline int zonelist_node_idx(struct zoneref *zoneref) 1463 { 1464 return zone_to_nid(zoneref->zone); 1465 } 1466 1467 struct zoneref *__next_zones_zonelist(struct zoneref *z, 1468 enum zone_type highest_zoneidx, 1469 nodemask_t *nodes); 1470 1471 /** 1472 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 1473 * @z: The cursor used as a starting point for the search 1474 * @highest_zoneidx: The zone index of the highest zone to return 1475 * @nodes: An optional nodemask to filter the zonelist with 1476 * 1477 * This function returns the next zone at or below a given zone index that is 1478 * within the allowed nodemask using a cursor as the starting point for the 1479 * search. The zoneref returned is a cursor that represents the current zone 1480 * being examined. It should be advanced by one before calling 1481 * next_zones_zonelist again. 1482 * 1483 * Return: the next zone at or below highest_zoneidx within the allowed 1484 * nodemask using a cursor within a zonelist as a starting point 1485 */ 1486 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 1487 enum zone_type highest_zoneidx, 1488 nodemask_t *nodes) 1489 { 1490 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 1491 return z; 1492 return __next_zones_zonelist(z, highest_zoneidx, nodes); 1493 } 1494 1495 /** 1496 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1497 * @zonelist: The zonelist to search for a suitable zone 1498 * @highest_zoneidx: The zone index of the highest zone to return 1499 * @nodes: An optional nodemask to filter the zonelist with 1500 * 1501 * This function returns the first zone at or below a given zone index that is 1502 * within the allowed nodemask. The zoneref returned is a cursor that can be 1503 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1504 * one before calling. 1505 * 1506 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1507 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1508 * update due to cpuset modification. 1509 * 1510 * Return: Zoneref pointer for the first suitable zone found 1511 */ 1512 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1513 enum zone_type highest_zoneidx, 1514 nodemask_t *nodes) 1515 { 1516 return next_zones_zonelist(zonelist->_zonerefs, 1517 highest_zoneidx, nodes); 1518 } 1519 1520 /** 1521 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1522 * @zone: The current zone in the iterator 1523 * @z: The current pointer within zonelist->_zonerefs being iterated 1524 * @zlist: The zonelist being iterated 1525 * @highidx: The zone index of the highest zone to return 1526 * @nodemask: Nodemask allowed by the allocator 1527 * 1528 * This iterator iterates though all zones at or below a given zone index and 1529 * within a given nodemask 1530 */ 1531 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1532 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1533 zone; \ 1534 z = next_zones_zonelist(++z, highidx, nodemask), \ 1535 zone = zonelist_zone(z)) 1536 1537 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \ 1538 for (zone = z->zone; \ 1539 zone; \ 1540 z = next_zones_zonelist(++z, highidx, nodemask), \ 1541 zone = zonelist_zone(z)) 1542 1543 1544 /** 1545 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1546 * @zone: The current zone in the iterator 1547 * @z: The current pointer within zonelist->zones being iterated 1548 * @zlist: The zonelist being iterated 1549 * @highidx: The zone index of the highest zone to return 1550 * 1551 * This iterator iterates though all zones at or below a given zone index. 1552 */ 1553 #define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1554 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1555 1556 /* Whether the 'nodes' are all movable nodes */ 1557 static inline bool movable_only_nodes(nodemask_t *nodes) 1558 { 1559 struct zonelist *zonelist; 1560 struct zoneref *z; 1561 int nid; 1562 1563 if (nodes_empty(*nodes)) 1564 return false; 1565 1566 /* 1567 * We can chose arbitrary node from the nodemask to get a 1568 * zonelist as they are interlinked. We just need to find 1569 * at least one zone that can satisfy kernel allocations. 1570 */ 1571 nid = first_node(*nodes); 1572 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 1573 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes); 1574 return (!z->zone) ? true : false; 1575 } 1576 1577 1578 #ifdef CONFIG_SPARSEMEM 1579 #include <asm/sparsemem.h> 1580 #endif 1581 1582 #ifdef CONFIG_FLATMEM 1583 #define pfn_to_nid(pfn) (0) 1584 #endif 1585 1586 #ifdef CONFIG_SPARSEMEM 1587 1588 /* 1589 * PA_SECTION_SHIFT physical address to/from section number 1590 * PFN_SECTION_SHIFT pfn to/from section number 1591 */ 1592 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1593 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1594 1595 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1596 1597 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1598 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1599 1600 #define SECTION_BLOCKFLAGS_BITS \ 1601 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1602 1603 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1604 #error Allocator MAX_ORDER exceeds SECTION_SIZE 1605 #endif 1606 1607 static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1608 { 1609 return pfn >> PFN_SECTION_SHIFT; 1610 } 1611 static inline unsigned long section_nr_to_pfn(unsigned long sec) 1612 { 1613 return sec << PFN_SECTION_SHIFT; 1614 } 1615 1616 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1617 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1618 1619 #define SUBSECTION_SHIFT 21 1620 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT) 1621 1622 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) 1623 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) 1624 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) 1625 1626 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS 1627 #error Subsection size exceeds section size 1628 #else 1629 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) 1630 #endif 1631 1632 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) 1633 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) 1634 1635 struct mem_section_usage { 1636 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1637 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); 1638 #endif 1639 /* See declaration of similar field in struct zone */ 1640 unsigned long pageblock_flags[0]; 1641 }; 1642 1643 void subsection_map_init(unsigned long pfn, unsigned long nr_pages); 1644 1645 struct page; 1646 struct page_ext; 1647 struct mem_section { 1648 /* 1649 * This is, logically, a pointer to an array of struct 1650 * pages. However, it is stored with some other magic. 1651 * (see sparse.c::sparse_init_one_section()) 1652 * 1653 * Additionally during early boot we encode node id of 1654 * the location of the section here to guide allocation. 1655 * (see sparse.c::memory_present()) 1656 * 1657 * Making it a UL at least makes someone do a cast 1658 * before using it wrong. 1659 */ 1660 unsigned long section_mem_map; 1661 1662 struct mem_section_usage *usage; 1663 #ifdef CONFIG_PAGE_EXTENSION 1664 /* 1665 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1666 * section. (see page_ext.h about this.) 1667 */ 1668 struct page_ext *page_ext; 1669 unsigned long pad; 1670 #endif 1671 /* 1672 * WARNING: mem_section must be a power-of-2 in size for the 1673 * calculation and use of SECTION_ROOT_MASK to make sense. 1674 */ 1675 }; 1676 1677 #ifdef CONFIG_SPARSEMEM_EXTREME 1678 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1679 #else 1680 #define SECTIONS_PER_ROOT 1 1681 #endif 1682 1683 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1684 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1685 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1686 1687 #ifdef CONFIG_SPARSEMEM_EXTREME 1688 extern struct mem_section **mem_section; 1689 #else 1690 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1691 #endif 1692 1693 static inline unsigned long *section_to_usemap(struct mem_section *ms) 1694 { 1695 return ms->usage->pageblock_flags; 1696 } 1697 1698 static inline struct mem_section *__nr_to_section(unsigned long nr) 1699 { 1700 unsigned long root = SECTION_NR_TO_ROOT(nr); 1701 1702 if (unlikely(root >= NR_SECTION_ROOTS)) 1703 return NULL; 1704 1705 #ifdef CONFIG_SPARSEMEM_EXTREME 1706 if (!mem_section || !mem_section[root]) 1707 return NULL; 1708 #endif 1709 return &mem_section[root][nr & SECTION_ROOT_MASK]; 1710 } 1711 extern size_t mem_section_usage_size(void); 1712 1713 /* 1714 * We use the lower bits of the mem_map pointer to store 1715 * a little bit of information. The pointer is calculated 1716 * as mem_map - section_nr_to_pfn(pnum). The result is 1717 * aligned to the minimum alignment of the two values: 1718 * 1. All mem_map arrays are page-aligned. 1719 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT 1720 * lowest bits. PFN_SECTION_SHIFT is arch-specific 1721 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the 1722 * worst combination is powerpc with 256k pages, 1723 * which results in PFN_SECTION_SHIFT equal 6. 1724 * To sum it up, at least 6 bits are available on all architectures. 1725 * However, we can exceed 6 bits on some other architectures except 1726 * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available 1727 * with the worst case of 64K pages on arm64) if we make sure the 1728 * exceeded bit is not applicable to powerpc. 1729 */ 1730 enum { 1731 SECTION_MARKED_PRESENT_BIT, 1732 SECTION_HAS_MEM_MAP_BIT, 1733 SECTION_IS_ONLINE_BIT, 1734 SECTION_IS_EARLY_BIT, 1735 #ifdef CONFIG_ZONE_DEVICE 1736 SECTION_TAINT_ZONE_DEVICE_BIT, 1737 #endif 1738 SECTION_MAP_LAST_BIT, 1739 }; 1740 1741 #define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT) 1742 #define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT) 1743 #define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT) 1744 #define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT) 1745 #ifdef CONFIG_ZONE_DEVICE 1746 #define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT) 1747 #endif 1748 #define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1)) 1749 #define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT 1750 1751 static inline struct page *__section_mem_map_addr(struct mem_section *section) 1752 { 1753 unsigned long map = section->section_mem_map; 1754 map &= SECTION_MAP_MASK; 1755 return (struct page *)map; 1756 } 1757 1758 static inline int present_section(struct mem_section *section) 1759 { 1760 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1761 } 1762 1763 static inline int present_section_nr(unsigned long nr) 1764 { 1765 return present_section(__nr_to_section(nr)); 1766 } 1767 1768 static inline int valid_section(struct mem_section *section) 1769 { 1770 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1771 } 1772 1773 static inline int early_section(struct mem_section *section) 1774 { 1775 return (section && (section->section_mem_map & SECTION_IS_EARLY)); 1776 } 1777 1778 static inline int valid_section_nr(unsigned long nr) 1779 { 1780 return valid_section(__nr_to_section(nr)); 1781 } 1782 1783 static inline int online_section(struct mem_section *section) 1784 { 1785 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 1786 } 1787 1788 #ifdef CONFIG_ZONE_DEVICE 1789 static inline int online_device_section(struct mem_section *section) 1790 { 1791 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE; 1792 1793 return section && ((section->section_mem_map & flags) == flags); 1794 } 1795 #else 1796 static inline int online_device_section(struct mem_section *section) 1797 { 1798 return 0; 1799 } 1800 #endif 1801 1802 static inline int online_section_nr(unsigned long nr) 1803 { 1804 return online_section(__nr_to_section(nr)); 1805 } 1806 1807 #ifdef CONFIG_MEMORY_HOTPLUG 1808 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1809 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1810 #endif 1811 1812 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1813 { 1814 return __nr_to_section(pfn_to_section_nr(pfn)); 1815 } 1816 1817 extern unsigned long __highest_present_section_nr; 1818 1819 static inline int subsection_map_index(unsigned long pfn) 1820 { 1821 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; 1822 } 1823 1824 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1825 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1826 { 1827 int idx = subsection_map_index(pfn); 1828 1829 return test_bit(idx, ms->usage->subsection_map); 1830 } 1831 #else 1832 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1833 { 1834 return 1; 1835 } 1836 #endif 1837 1838 #ifndef CONFIG_HAVE_ARCH_PFN_VALID 1839 /** 1840 * pfn_valid - check if there is a valid memory map entry for a PFN 1841 * @pfn: the page frame number to check 1842 * 1843 * Check if there is a valid memory map entry aka struct page for the @pfn. 1844 * Note, that availability of the memory map entry does not imply that 1845 * there is actual usable memory at that @pfn. The struct page may 1846 * represent a hole or an unusable page frame. 1847 * 1848 * Return: 1 for PFNs that have memory map entries and 0 otherwise 1849 */ 1850 static inline int pfn_valid(unsigned long pfn) 1851 { 1852 struct mem_section *ms; 1853 1854 /* 1855 * Ensure the upper PAGE_SHIFT bits are clear in the 1856 * pfn. Else it might lead to false positives when 1857 * some of the upper bits are set, but the lower bits 1858 * match a valid pfn. 1859 */ 1860 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn) 1861 return 0; 1862 1863 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1864 return 0; 1865 ms = __pfn_to_section(pfn); 1866 if (!valid_section(ms)) 1867 return 0; 1868 /* 1869 * Traditionally early sections always returned pfn_valid() for 1870 * the entire section-sized span. 1871 */ 1872 return early_section(ms) || pfn_section_valid(ms, pfn); 1873 } 1874 #endif 1875 1876 static inline int pfn_in_present_section(unsigned long pfn) 1877 { 1878 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1879 return 0; 1880 return present_section(__pfn_to_section(pfn)); 1881 } 1882 1883 static inline unsigned long next_present_section_nr(unsigned long section_nr) 1884 { 1885 while (++section_nr <= __highest_present_section_nr) { 1886 if (present_section_nr(section_nr)) 1887 return section_nr; 1888 } 1889 1890 return -1; 1891 } 1892 1893 /* 1894 * These are _only_ used during initialisation, therefore they 1895 * can use __initdata ... They could have names to indicate 1896 * this restriction. 1897 */ 1898 #ifdef CONFIG_NUMA 1899 #define pfn_to_nid(pfn) \ 1900 ({ \ 1901 unsigned long __pfn_to_nid_pfn = (pfn); \ 1902 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1903 }) 1904 #else 1905 #define pfn_to_nid(pfn) (0) 1906 #endif 1907 1908 void sparse_init(void); 1909 #else 1910 #define sparse_init() do {} while (0) 1911 #define sparse_index_init(_sec, _nid) do {} while (0) 1912 #define pfn_in_present_section pfn_valid 1913 #define subsection_map_init(_pfn, _nr_pages) do {} while (0) 1914 #endif /* CONFIG_SPARSEMEM */ 1915 1916 #endif /* !__GENERATING_BOUNDS.H */ 1917 #endif /* !__ASSEMBLY__ */ 1918 #endif /* _LINUX_MMZONE_H */ 1919