1 #ifndef _LINUX_MMZONE_H 2 #define _LINUX_MMZONE_H 3 4 #ifndef __ASSEMBLY__ 5 #ifndef __GENERATING_BOUNDS_H 6 7 #include <linux/spinlock.h> 8 #include <linux/list.h> 9 #include <linux/wait.h> 10 #include <linux/bitops.h> 11 #include <linux/cache.h> 12 #include <linux/threads.h> 13 #include <linux/numa.h> 14 #include <linux/init.h> 15 #include <linux/seqlock.h> 16 #include <linux/nodemask.h> 17 #include <linux/pageblock-flags.h> 18 #include <linux/page-flags-layout.h> 19 #include <linux/atomic.h> 20 #include <asm/page.h> 21 22 /* Free memory management - zoned buddy allocator. */ 23 #ifndef CONFIG_FORCE_MAX_ZONEORDER 24 #define MAX_ORDER 11 25 #else 26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 27 #endif 28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 29 30 /* 31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 32 * costly to service. That is between allocation orders which should 33 * coalesce naturally under reasonable reclaim pressure and those which 34 * will not. 35 */ 36 #define PAGE_ALLOC_COSTLY_ORDER 3 37 38 enum { 39 MIGRATE_UNMOVABLE, 40 MIGRATE_RECLAIMABLE, 41 MIGRATE_MOVABLE, 42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 43 MIGRATE_RESERVE = MIGRATE_PCPTYPES, 44 #ifdef CONFIG_CMA 45 /* 46 * MIGRATE_CMA migration type is designed to mimic the way 47 * ZONE_MOVABLE works. Only movable pages can be allocated 48 * from MIGRATE_CMA pageblocks and page allocator never 49 * implicitly change migration type of MIGRATE_CMA pageblock. 50 * 51 * The way to use it is to change migratetype of a range of 52 * pageblocks to MIGRATE_CMA which can be done by 53 * __free_pageblock_cma() function. What is important though 54 * is that a range of pageblocks must be aligned to 55 * MAX_ORDER_NR_PAGES should biggest page be bigger then 56 * a single pageblock. 57 */ 58 MIGRATE_CMA, 59 #endif 60 #ifdef CONFIG_MEMORY_ISOLATION 61 MIGRATE_ISOLATE, /* can't allocate from here */ 62 #endif 63 MIGRATE_TYPES 64 }; 65 66 #ifdef CONFIG_CMA 67 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 68 #else 69 # define is_migrate_cma(migratetype) false 70 #endif 71 72 #define for_each_migratetype_order(order, type) \ 73 for (order = 0; order < MAX_ORDER; order++) \ 74 for (type = 0; type < MIGRATE_TYPES; type++) 75 76 extern int page_group_by_mobility_disabled; 77 78 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1) 79 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1) 80 81 #define get_pageblock_migratetype(page) \ 82 get_pfnblock_flags_mask(page, page_to_pfn(page), \ 83 PB_migrate_end, MIGRATETYPE_MASK) 84 85 static inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 86 { 87 BUILD_BUG_ON(PB_migrate_end - PB_migrate != 2); 88 return get_pfnblock_flags_mask(page, pfn, PB_migrate_end, 89 MIGRATETYPE_MASK); 90 } 91 92 struct free_area { 93 struct list_head free_list[MIGRATE_TYPES]; 94 unsigned long nr_free; 95 }; 96 97 struct pglist_data; 98 99 /* 100 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 101 * So add a wild amount of padding here to ensure that they fall into separate 102 * cachelines. There are very few zone structures in the machine, so space 103 * consumption is not a concern here. 104 */ 105 #if defined(CONFIG_SMP) 106 struct zone_padding { 107 char x[0]; 108 } ____cacheline_internodealigned_in_smp; 109 #define ZONE_PADDING(name) struct zone_padding name; 110 #else 111 #define ZONE_PADDING(name) 112 #endif 113 114 enum zone_stat_item { 115 /* First 128 byte cacheline (assuming 64 bit words) */ 116 NR_FREE_PAGES, 117 NR_ALLOC_BATCH, 118 NR_LRU_BASE, 119 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 120 NR_ACTIVE_ANON, /* " " " " " */ 121 NR_INACTIVE_FILE, /* " " " " " */ 122 NR_ACTIVE_FILE, /* " " " " " */ 123 NR_UNEVICTABLE, /* " " " " " */ 124 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 125 NR_ANON_PAGES, /* Mapped anonymous pages */ 126 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 127 only modified from process context */ 128 NR_FILE_PAGES, 129 NR_FILE_DIRTY, 130 NR_WRITEBACK, 131 NR_SLAB_RECLAIMABLE, 132 NR_SLAB_UNRECLAIMABLE, 133 NR_PAGETABLE, /* used for pagetables */ 134 NR_KERNEL_STACK, 135 /* Second 128 byte cacheline */ 136 NR_UNSTABLE_NFS, /* NFS unstable pages */ 137 NR_BOUNCE, 138 NR_VMSCAN_WRITE, 139 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 140 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 141 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 142 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 143 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 144 NR_DIRTIED, /* page dirtyings since bootup */ 145 NR_WRITTEN, /* page writings since bootup */ 146 NR_PAGES_SCANNED, /* pages scanned since last reclaim */ 147 #ifdef CONFIG_NUMA 148 NUMA_HIT, /* allocated in intended node */ 149 NUMA_MISS, /* allocated in non intended node */ 150 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 151 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 152 NUMA_LOCAL, /* allocation from local node */ 153 NUMA_OTHER, /* allocation from other node */ 154 #endif 155 WORKINGSET_REFAULT, 156 WORKINGSET_ACTIVATE, 157 WORKINGSET_NODERECLAIM, 158 NR_ANON_TRANSPARENT_HUGEPAGES, 159 NR_FREE_CMA_PAGES, 160 NR_VM_ZONE_STAT_ITEMS }; 161 162 /* 163 * We do arithmetic on the LRU lists in various places in the code, 164 * so it is important to keep the active lists LRU_ACTIVE higher in 165 * the array than the corresponding inactive lists, and to keep 166 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 167 * 168 * This has to be kept in sync with the statistics in zone_stat_item 169 * above and the descriptions in vmstat_text in mm/vmstat.c 170 */ 171 #define LRU_BASE 0 172 #define LRU_ACTIVE 1 173 #define LRU_FILE 2 174 175 enum lru_list { 176 LRU_INACTIVE_ANON = LRU_BASE, 177 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 178 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 179 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 180 LRU_UNEVICTABLE, 181 NR_LRU_LISTS 182 }; 183 184 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 185 186 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 187 188 static inline int is_file_lru(enum lru_list lru) 189 { 190 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 191 } 192 193 static inline int is_active_lru(enum lru_list lru) 194 { 195 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 196 } 197 198 static inline int is_unevictable_lru(enum lru_list lru) 199 { 200 return (lru == LRU_UNEVICTABLE); 201 } 202 203 struct zone_reclaim_stat { 204 /* 205 * The pageout code in vmscan.c keeps track of how many of the 206 * mem/swap backed and file backed pages are referenced. 207 * The higher the rotated/scanned ratio, the more valuable 208 * that cache is. 209 * 210 * The anon LRU stats live in [0], file LRU stats in [1] 211 */ 212 unsigned long recent_rotated[2]; 213 unsigned long recent_scanned[2]; 214 }; 215 216 struct lruvec { 217 struct list_head lists[NR_LRU_LISTS]; 218 struct zone_reclaim_stat reclaim_stat; 219 #ifdef CONFIG_MEMCG 220 struct zone *zone; 221 #endif 222 }; 223 224 /* Mask used at gathering information at once (see memcontrol.c) */ 225 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 226 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 227 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 228 229 /* Isolate clean file */ 230 #define ISOLATE_CLEAN ((__force isolate_mode_t)0x1) 231 /* Isolate unmapped file */ 232 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 233 /* Isolate for asynchronous migration */ 234 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 235 /* Isolate unevictable pages */ 236 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 237 238 /* LRU Isolation modes. */ 239 typedef unsigned __bitwise__ isolate_mode_t; 240 241 enum zone_watermarks { 242 WMARK_MIN, 243 WMARK_LOW, 244 WMARK_HIGH, 245 NR_WMARK 246 }; 247 248 #define min_wmark_pages(z) (z->watermark[WMARK_MIN]) 249 #define low_wmark_pages(z) (z->watermark[WMARK_LOW]) 250 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH]) 251 252 struct per_cpu_pages { 253 int count; /* number of pages in the list */ 254 int high; /* high watermark, emptying needed */ 255 int batch; /* chunk size for buddy add/remove */ 256 257 /* Lists of pages, one per migrate type stored on the pcp-lists */ 258 struct list_head lists[MIGRATE_PCPTYPES]; 259 }; 260 261 struct per_cpu_pageset { 262 struct per_cpu_pages pcp; 263 #ifdef CONFIG_NUMA 264 s8 expire; 265 #endif 266 #ifdef CONFIG_SMP 267 s8 stat_threshold; 268 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 269 #endif 270 }; 271 272 #endif /* !__GENERATING_BOUNDS.H */ 273 274 enum zone_type { 275 #ifdef CONFIG_ZONE_DMA 276 /* 277 * ZONE_DMA is used when there are devices that are not able 278 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 279 * carve out the portion of memory that is needed for these devices. 280 * The range is arch specific. 281 * 282 * Some examples 283 * 284 * Architecture Limit 285 * --------------------------- 286 * parisc, ia64, sparc <4G 287 * s390 <2G 288 * arm Various 289 * alpha Unlimited or 0-16MB. 290 * 291 * i386, x86_64 and multiple other arches 292 * <16M. 293 */ 294 ZONE_DMA, 295 #endif 296 #ifdef CONFIG_ZONE_DMA32 297 /* 298 * x86_64 needs two ZONE_DMAs because it supports devices that are 299 * only able to do DMA to the lower 16M but also 32 bit devices that 300 * can only do DMA areas below 4G. 301 */ 302 ZONE_DMA32, 303 #endif 304 /* 305 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 306 * performed on pages in ZONE_NORMAL if the DMA devices support 307 * transfers to all addressable memory. 308 */ 309 ZONE_NORMAL, 310 #ifdef CONFIG_HIGHMEM 311 /* 312 * A memory area that is only addressable by the kernel through 313 * mapping portions into its own address space. This is for example 314 * used by i386 to allow the kernel to address the memory beyond 315 * 900MB. The kernel will set up special mappings (page 316 * table entries on i386) for each page that the kernel needs to 317 * access. 318 */ 319 ZONE_HIGHMEM, 320 #endif 321 ZONE_MOVABLE, 322 #ifdef CONFIG_ZONE_DEVICE 323 ZONE_DEVICE, 324 #endif 325 __MAX_NR_ZONES 326 327 }; 328 329 #ifndef __GENERATING_BOUNDS_H 330 331 struct zone { 332 /* Read-mostly fields */ 333 334 /* zone watermarks, access with *_wmark_pages(zone) macros */ 335 unsigned long watermark[NR_WMARK]; 336 337 /* 338 * We don't know if the memory that we're going to allocate will be freeable 339 * or/and it will be released eventually, so to avoid totally wasting several 340 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 341 * to run OOM on the lower zones despite there's tons of freeable ram 342 * on the higher zones). This array is recalculated at runtime if the 343 * sysctl_lowmem_reserve_ratio sysctl changes. 344 */ 345 long lowmem_reserve[MAX_NR_ZONES]; 346 347 #ifdef CONFIG_NUMA 348 int node; 349 #endif 350 351 /* 352 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on 353 * this zone's LRU. Maintained by the pageout code. 354 */ 355 unsigned int inactive_ratio; 356 357 struct pglist_data *zone_pgdat; 358 struct per_cpu_pageset __percpu *pageset; 359 360 /* 361 * This is a per-zone reserve of pages that should not be 362 * considered dirtyable memory. 363 */ 364 unsigned long dirty_balance_reserve; 365 366 #ifndef CONFIG_SPARSEMEM 367 /* 368 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 369 * In SPARSEMEM, this map is stored in struct mem_section 370 */ 371 unsigned long *pageblock_flags; 372 #endif /* CONFIG_SPARSEMEM */ 373 374 #ifdef CONFIG_NUMA 375 /* 376 * zone reclaim becomes active if more unmapped pages exist. 377 */ 378 unsigned long min_unmapped_pages; 379 unsigned long min_slab_pages; 380 #endif /* CONFIG_NUMA */ 381 382 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 383 unsigned long zone_start_pfn; 384 385 /* 386 * spanned_pages is the total pages spanned by the zone, including 387 * holes, which is calculated as: 388 * spanned_pages = zone_end_pfn - zone_start_pfn; 389 * 390 * present_pages is physical pages existing within the zone, which 391 * is calculated as: 392 * present_pages = spanned_pages - absent_pages(pages in holes); 393 * 394 * managed_pages is present pages managed by the buddy system, which 395 * is calculated as (reserved_pages includes pages allocated by the 396 * bootmem allocator): 397 * managed_pages = present_pages - reserved_pages; 398 * 399 * So present_pages may be used by memory hotplug or memory power 400 * management logic to figure out unmanaged pages by checking 401 * (present_pages - managed_pages). And managed_pages should be used 402 * by page allocator and vm scanner to calculate all kinds of watermarks 403 * and thresholds. 404 * 405 * Locking rules: 406 * 407 * zone_start_pfn and spanned_pages are protected by span_seqlock. 408 * It is a seqlock because it has to be read outside of zone->lock, 409 * and it is done in the main allocator path. But, it is written 410 * quite infrequently. 411 * 412 * The span_seq lock is declared along with zone->lock because it is 413 * frequently read in proximity to zone->lock. It's good to 414 * give them a chance of being in the same cacheline. 415 * 416 * Write access to present_pages at runtime should be protected by 417 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of 418 * present_pages should get_online_mems() to get a stable value. 419 * 420 * Read access to managed_pages should be safe because it's unsigned 421 * long. Write access to zone->managed_pages and totalram_pages are 422 * protected by managed_page_count_lock at runtime. Idealy only 423 * adjust_managed_page_count() should be used instead of directly 424 * touching zone->managed_pages and totalram_pages. 425 */ 426 unsigned long managed_pages; 427 unsigned long spanned_pages; 428 unsigned long present_pages; 429 430 const char *name; 431 432 /* 433 * Number of MIGRATE_RESERVE page block. To maintain for just 434 * optimization. Protected by zone->lock. 435 */ 436 int nr_migrate_reserve_block; 437 438 #ifdef CONFIG_MEMORY_ISOLATION 439 /* 440 * Number of isolated pageblock. It is used to solve incorrect 441 * freepage counting problem due to racy retrieving migratetype 442 * of pageblock. Protected by zone->lock. 443 */ 444 unsigned long nr_isolate_pageblock; 445 #endif 446 447 #ifdef CONFIG_MEMORY_HOTPLUG 448 /* see spanned/present_pages for more description */ 449 seqlock_t span_seqlock; 450 #endif 451 452 /* 453 * wait_table -- the array holding the hash table 454 * wait_table_hash_nr_entries -- the size of the hash table array 455 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 456 * 457 * The purpose of all these is to keep track of the people 458 * waiting for a page to become available and make them 459 * runnable again when possible. The trouble is that this 460 * consumes a lot of space, especially when so few things 461 * wait on pages at a given time. So instead of using 462 * per-page waitqueues, we use a waitqueue hash table. 463 * 464 * The bucket discipline is to sleep on the same queue when 465 * colliding and wake all in that wait queue when removing. 466 * When something wakes, it must check to be sure its page is 467 * truly available, a la thundering herd. The cost of a 468 * collision is great, but given the expected load of the 469 * table, they should be so rare as to be outweighed by the 470 * benefits from the saved space. 471 * 472 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 473 * primary users of these fields, and in mm/page_alloc.c 474 * free_area_init_core() performs the initialization of them. 475 */ 476 wait_queue_head_t *wait_table; 477 unsigned long wait_table_hash_nr_entries; 478 unsigned long wait_table_bits; 479 480 ZONE_PADDING(_pad1_) 481 /* free areas of different sizes */ 482 struct free_area free_area[MAX_ORDER]; 483 484 /* zone flags, see below */ 485 unsigned long flags; 486 487 /* Write-intensive fields used from the page allocator */ 488 spinlock_t lock; 489 490 ZONE_PADDING(_pad2_) 491 492 /* Write-intensive fields used by page reclaim */ 493 494 /* Fields commonly accessed by the page reclaim scanner */ 495 spinlock_t lru_lock; 496 struct lruvec lruvec; 497 498 /* Evictions & activations on the inactive file list */ 499 atomic_long_t inactive_age; 500 501 /* 502 * When free pages are below this point, additional steps are taken 503 * when reading the number of free pages to avoid per-cpu counter 504 * drift allowing watermarks to be breached 505 */ 506 unsigned long percpu_drift_mark; 507 508 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 509 /* pfn where compaction free scanner should start */ 510 unsigned long compact_cached_free_pfn; 511 /* pfn where async and sync compaction migration scanner should start */ 512 unsigned long compact_cached_migrate_pfn[2]; 513 #endif 514 515 #ifdef CONFIG_COMPACTION 516 /* 517 * On compaction failure, 1<<compact_defer_shift compactions 518 * are skipped before trying again. The number attempted since 519 * last failure is tracked with compact_considered. 520 */ 521 unsigned int compact_considered; 522 unsigned int compact_defer_shift; 523 int compact_order_failed; 524 #endif 525 526 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 527 /* Set to true when the PG_migrate_skip bits should be cleared */ 528 bool compact_blockskip_flush; 529 #endif 530 531 ZONE_PADDING(_pad3_) 532 /* Zone statistics */ 533 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 534 } ____cacheline_internodealigned_in_smp; 535 536 enum zone_flags { 537 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 538 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ 539 ZONE_CONGESTED, /* zone has many dirty pages backed by 540 * a congested BDI 541 */ 542 ZONE_DIRTY, /* reclaim scanning has recently found 543 * many dirty file pages at the tail 544 * of the LRU. 545 */ 546 ZONE_WRITEBACK, /* reclaim scanning has recently found 547 * many pages under writeback 548 */ 549 ZONE_FAIR_DEPLETED, /* fair zone policy batch depleted */ 550 }; 551 552 static inline unsigned long zone_end_pfn(const struct zone *zone) 553 { 554 return zone->zone_start_pfn + zone->spanned_pages; 555 } 556 557 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 558 { 559 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 560 } 561 562 static inline bool zone_is_initialized(struct zone *zone) 563 { 564 return !!zone->wait_table; 565 } 566 567 static inline bool zone_is_empty(struct zone *zone) 568 { 569 return zone->spanned_pages == 0; 570 } 571 572 /* 573 * The "priority" of VM scanning is how much of the queues we will scan in one 574 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 575 * queues ("queue_length >> 12") during an aging round. 576 */ 577 #define DEF_PRIORITY 12 578 579 /* Maximum number of zones on a zonelist */ 580 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 581 582 #ifdef CONFIG_NUMA 583 584 /* 585 * The NUMA zonelists are doubled because we need zonelists that restrict the 586 * allocations to a single node for __GFP_THISNODE. 587 * 588 * [0] : Zonelist with fallback 589 * [1] : No fallback (__GFP_THISNODE) 590 */ 591 #define MAX_ZONELISTS 2 592 593 594 /* 595 * We cache key information from each zonelist for smaller cache 596 * footprint when scanning for free pages in get_page_from_freelist(). 597 * 598 * 1) The BITMAP fullzones tracks which zones in a zonelist have come 599 * up short of free memory since the last time (last_fullzone_zap) 600 * we zero'd fullzones. 601 * 2) The array z_to_n[] maps each zone in the zonelist to its node 602 * id, so that we can efficiently evaluate whether that node is 603 * set in the current tasks mems_allowed. 604 * 605 * Both fullzones and z_to_n[] are one-to-one with the zonelist, 606 * indexed by a zones offset in the zonelist zones[] array. 607 * 608 * The get_page_from_freelist() routine does two scans. During the 609 * first scan, we skip zones whose corresponding bit in 'fullzones' 610 * is set or whose corresponding node in current->mems_allowed (which 611 * comes from cpusets) is not set. During the second scan, we bypass 612 * this zonelist_cache, to ensure we look methodically at each zone. 613 * 614 * Once per second, we zero out (zap) fullzones, forcing us to 615 * reconsider nodes that might have regained more free memory. 616 * The field last_full_zap is the time we last zapped fullzones. 617 * 618 * This mechanism reduces the amount of time we waste repeatedly 619 * reexaming zones for free memory when they just came up low on 620 * memory momentarilly ago. 621 * 622 * The zonelist_cache struct members logically belong in struct 623 * zonelist. However, the mempolicy zonelists constructed for 624 * MPOL_BIND are intentionally variable length (and usually much 625 * shorter). A general purpose mechanism for handling structs with 626 * multiple variable length members is more mechanism than we want 627 * here. We resort to some special case hackery instead. 628 * 629 * The MPOL_BIND zonelists don't need this zonelist_cache (in good 630 * part because they are shorter), so we put the fixed length stuff 631 * at the front of the zonelist struct, ending in a variable length 632 * zones[], as is needed by MPOL_BIND. 633 * 634 * Then we put the optional zonelist cache on the end of the zonelist 635 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in 636 * the fixed length portion at the front of the struct. This pointer 637 * both enables us to find the zonelist cache, and in the case of 638 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) 639 * to know that the zonelist cache is not there. 640 * 641 * The end result is that struct zonelists come in two flavors: 642 * 1) The full, fixed length version, shown below, and 643 * 2) The custom zonelists for MPOL_BIND. 644 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. 645 * 646 * Even though there may be multiple CPU cores on a node modifying 647 * fullzones or last_full_zap in the same zonelist_cache at the same 648 * time, we don't lock it. This is just hint data - if it is wrong now 649 * and then, the allocator will still function, perhaps a bit slower. 650 */ 651 652 653 struct zonelist_cache { 654 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ 655 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ 656 unsigned long last_full_zap; /* when last zap'd (jiffies) */ 657 }; 658 #else 659 #define MAX_ZONELISTS 1 660 struct zonelist_cache; 661 #endif 662 663 /* 664 * This struct contains information about a zone in a zonelist. It is stored 665 * here to avoid dereferences into large structures and lookups of tables 666 */ 667 struct zoneref { 668 struct zone *zone; /* Pointer to actual zone */ 669 int zone_idx; /* zone_idx(zoneref->zone) */ 670 }; 671 672 /* 673 * One allocation request operates on a zonelist. A zonelist 674 * is a list of zones, the first one is the 'goal' of the 675 * allocation, the other zones are fallback zones, in decreasing 676 * priority. 677 * 678 * If zlcache_ptr is not NULL, then it is just the address of zlcache, 679 * as explained above. If zlcache_ptr is NULL, there is no zlcache. 680 * * 681 * To speed the reading of the zonelist, the zonerefs contain the zone index 682 * of the entry being read. Helper functions to access information given 683 * a struct zoneref are 684 * 685 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 686 * zonelist_zone_idx() - Return the index of the zone for an entry 687 * zonelist_node_idx() - Return the index of the node for an entry 688 */ 689 struct zonelist { 690 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache 691 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 692 #ifdef CONFIG_NUMA 693 struct zonelist_cache zlcache; // optional ... 694 #endif 695 }; 696 697 #ifndef CONFIG_DISCONTIGMEM 698 /* The array of struct pages - for discontigmem use pgdat->lmem_map */ 699 extern struct page *mem_map; 700 #endif 701 702 /* 703 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 704 * (mostly NUMA machines?) to denote a higher-level memory zone than the 705 * zone denotes. 706 * 707 * On NUMA machines, each NUMA node would have a pg_data_t to describe 708 * it's memory layout. 709 * 710 * Memory statistics and page replacement data structures are maintained on a 711 * per-zone basis. 712 */ 713 struct bootmem_data; 714 typedef struct pglist_data { 715 struct zone node_zones[MAX_NR_ZONES]; 716 struct zonelist node_zonelists[MAX_ZONELISTS]; 717 int nr_zones; 718 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 719 struct page *node_mem_map; 720 #ifdef CONFIG_PAGE_EXTENSION 721 struct page_ext *node_page_ext; 722 #endif 723 #endif 724 #ifndef CONFIG_NO_BOOTMEM 725 struct bootmem_data *bdata; 726 #endif 727 #ifdef CONFIG_MEMORY_HOTPLUG 728 /* 729 * Must be held any time you expect node_start_pfn, node_present_pages 730 * or node_spanned_pages stay constant. Holding this will also 731 * guarantee that any pfn_valid() stays that way. 732 * 733 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 734 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG. 735 * 736 * Nests above zone->lock and zone->span_seqlock 737 */ 738 spinlock_t node_size_lock; 739 #endif 740 unsigned long node_start_pfn; 741 unsigned long node_present_pages; /* total number of physical pages */ 742 unsigned long node_spanned_pages; /* total size of physical page 743 range, including holes */ 744 int node_id; 745 wait_queue_head_t kswapd_wait; 746 wait_queue_head_t pfmemalloc_wait; 747 struct task_struct *kswapd; /* Protected by 748 mem_hotplug_begin/end() */ 749 int kswapd_max_order; 750 enum zone_type classzone_idx; 751 #ifdef CONFIG_NUMA_BALANCING 752 /* Lock serializing the migrate rate limiting window */ 753 spinlock_t numabalancing_migrate_lock; 754 755 /* Rate limiting time interval */ 756 unsigned long numabalancing_migrate_next_window; 757 758 /* Number of pages migrated during the rate limiting time interval */ 759 unsigned long numabalancing_migrate_nr_pages; 760 #endif 761 762 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 763 /* 764 * If memory initialisation on large machines is deferred then this 765 * is the first PFN that needs to be initialised. 766 */ 767 unsigned long first_deferred_pfn; 768 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 769 } pg_data_t; 770 771 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 772 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 773 #ifdef CONFIG_FLAT_NODE_MEM_MAP 774 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 775 #else 776 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 777 #endif 778 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 779 780 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 781 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 782 783 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 784 { 785 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 786 } 787 788 static inline bool pgdat_is_empty(pg_data_t *pgdat) 789 { 790 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; 791 } 792 793 static inline int zone_id(const struct zone *zone) 794 { 795 struct pglist_data *pgdat = zone->zone_pgdat; 796 797 return zone - pgdat->node_zones; 798 } 799 800 #ifdef CONFIG_ZONE_DEVICE 801 static inline bool is_dev_zone(const struct zone *zone) 802 { 803 return zone_id(zone) == ZONE_DEVICE; 804 } 805 #else 806 static inline bool is_dev_zone(const struct zone *zone) 807 { 808 return false; 809 } 810 #endif 811 812 #include <linux/memory_hotplug.h> 813 814 extern struct mutex zonelists_mutex; 815 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone); 816 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx); 817 bool zone_watermark_ok(struct zone *z, unsigned int order, 818 unsigned long mark, int classzone_idx, int alloc_flags); 819 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 820 unsigned long mark, int classzone_idx, int alloc_flags); 821 enum memmap_context { 822 MEMMAP_EARLY, 823 MEMMAP_HOTPLUG, 824 }; 825 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 826 unsigned long size); 827 828 extern void lruvec_init(struct lruvec *lruvec); 829 830 static inline struct zone *lruvec_zone(struct lruvec *lruvec) 831 { 832 #ifdef CONFIG_MEMCG 833 return lruvec->zone; 834 #else 835 return container_of(lruvec, struct zone, lruvec); 836 #endif 837 } 838 839 #ifdef CONFIG_HAVE_MEMORY_PRESENT 840 void memory_present(int nid, unsigned long start, unsigned long end); 841 #else 842 static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 843 #endif 844 845 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 846 int local_memory_node(int node_id); 847 #else 848 static inline int local_memory_node(int node_id) { return node_id; }; 849 #endif 850 851 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 852 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 853 #endif 854 855 /* 856 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 857 */ 858 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 859 860 static inline int populated_zone(struct zone *zone) 861 { 862 return (!!zone->present_pages); 863 } 864 865 extern int movable_zone; 866 867 #ifdef CONFIG_HIGHMEM 868 static inline int zone_movable_is_highmem(void) 869 { 870 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 871 return movable_zone == ZONE_HIGHMEM; 872 #else 873 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM; 874 #endif 875 } 876 #endif 877 878 static inline int is_highmem_idx(enum zone_type idx) 879 { 880 #ifdef CONFIG_HIGHMEM 881 return (idx == ZONE_HIGHMEM || 882 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 883 #else 884 return 0; 885 #endif 886 } 887 888 /** 889 * is_highmem - helper function to quickly check if a struct zone is a 890 * highmem zone or not. This is an attempt to keep references 891 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 892 * @zone - pointer to struct zone variable 893 */ 894 static inline int is_highmem(struct zone *zone) 895 { 896 #ifdef CONFIG_HIGHMEM 897 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones; 898 return zone_off == ZONE_HIGHMEM * sizeof(*zone) || 899 (zone_off == ZONE_MOVABLE * sizeof(*zone) && 900 zone_movable_is_highmem()); 901 #else 902 return 0; 903 #endif 904 } 905 906 /* These two functions are used to setup the per zone pages min values */ 907 struct ctl_table; 908 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 909 void __user *, size_t *, loff_t *); 910 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 911 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 912 void __user *, size_t *, loff_t *); 913 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 914 void __user *, size_t *, loff_t *); 915 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 916 void __user *, size_t *, loff_t *); 917 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 918 void __user *, size_t *, loff_t *); 919 920 extern int numa_zonelist_order_handler(struct ctl_table *, int, 921 void __user *, size_t *, loff_t *); 922 extern char numa_zonelist_order[]; 923 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 924 925 #ifndef CONFIG_NEED_MULTIPLE_NODES 926 927 extern struct pglist_data contig_page_data; 928 #define NODE_DATA(nid) (&contig_page_data) 929 #define NODE_MEM_MAP(nid) mem_map 930 931 #else /* CONFIG_NEED_MULTIPLE_NODES */ 932 933 #include <asm/mmzone.h> 934 935 #endif /* !CONFIG_NEED_MULTIPLE_NODES */ 936 937 extern struct pglist_data *first_online_pgdat(void); 938 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 939 extern struct zone *next_zone(struct zone *zone); 940 941 /** 942 * for_each_online_pgdat - helper macro to iterate over all online nodes 943 * @pgdat - pointer to a pg_data_t variable 944 */ 945 #define for_each_online_pgdat(pgdat) \ 946 for (pgdat = first_online_pgdat(); \ 947 pgdat; \ 948 pgdat = next_online_pgdat(pgdat)) 949 /** 950 * for_each_zone - helper macro to iterate over all memory zones 951 * @zone - pointer to struct zone variable 952 * 953 * The user only needs to declare the zone variable, for_each_zone 954 * fills it in. 955 */ 956 #define for_each_zone(zone) \ 957 for (zone = (first_online_pgdat())->node_zones; \ 958 zone; \ 959 zone = next_zone(zone)) 960 961 #define for_each_populated_zone(zone) \ 962 for (zone = (first_online_pgdat())->node_zones; \ 963 zone; \ 964 zone = next_zone(zone)) \ 965 if (!populated_zone(zone)) \ 966 ; /* do nothing */ \ 967 else 968 969 static inline struct zone *zonelist_zone(struct zoneref *zoneref) 970 { 971 return zoneref->zone; 972 } 973 974 static inline int zonelist_zone_idx(struct zoneref *zoneref) 975 { 976 return zoneref->zone_idx; 977 } 978 979 static inline int zonelist_node_idx(struct zoneref *zoneref) 980 { 981 #ifdef CONFIG_NUMA 982 /* zone_to_nid not available in this context */ 983 return zoneref->zone->node; 984 #else 985 return 0; 986 #endif /* CONFIG_NUMA */ 987 } 988 989 /** 990 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 991 * @z - The cursor used as a starting point for the search 992 * @highest_zoneidx - The zone index of the highest zone to return 993 * @nodes - An optional nodemask to filter the zonelist with 994 * 995 * This function returns the next zone at or below a given zone index that is 996 * within the allowed nodemask using a cursor as the starting point for the 997 * search. The zoneref returned is a cursor that represents the current zone 998 * being examined. It should be advanced by one before calling 999 * next_zones_zonelist again. 1000 */ 1001 struct zoneref *next_zones_zonelist(struct zoneref *z, 1002 enum zone_type highest_zoneidx, 1003 nodemask_t *nodes); 1004 1005 /** 1006 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1007 * @zonelist - The zonelist to search for a suitable zone 1008 * @highest_zoneidx - The zone index of the highest zone to return 1009 * @nodes - An optional nodemask to filter the zonelist with 1010 * @zone - The first suitable zone found is returned via this parameter 1011 * 1012 * This function returns the first zone at or below a given zone index that is 1013 * within the allowed nodemask. The zoneref returned is a cursor that can be 1014 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1015 * one before calling. 1016 */ 1017 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1018 enum zone_type highest_zoneidx, 1019 nodemask_t *nodes, 1020 struct zone **zone) 1021 { 1022 struct zoneref *z = next_zones_zonelist(zonelist->_zonerefs, 1023 highest_zoneidx, nodes); 1024 *zone = zonelist_zone(z); 1025 return z; 1026 } 1027 1028 /** 1029 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1030 * @zone - The current zone in the iterator 1031 * @z - The current pointer within zonelist->zones being iterated 1032 * @zlist - The zonelist being iterated 1033 * @highidx - The zone index of the highest zone to return 1034 * @nodemask - Nodemask allowed by the allocator 1035 * 1036 * This iterator iterates though all zones at or below a given zone index and 1037 * within a given nodemask 1038 */ 1039 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1040 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \ 1041 zone; \ 1042 z = next_zones_zonelist(++z, highidx, nodemask), \ 1043 zone = zonelist_zone(z)) \ 1044 1045 /** 1046 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1047 * @zone - The current zone in the iterator 1048 * @z - The current pointer within zonelist->zones being iterated 1049 * @zlist - The zonelist being iterated 1050 * @highidx - The zone index of the highest zone to return 1051 * 1052 * This iterator iterates though all zones at or below a given zone index. 1053 */ 1054 #define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1055 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1056 1057 #ifdef CONFIG_SPARSEMEM 1058 #include <asm/sparsemem.h> 1059 #endif 1060 1061 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 1062 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1063 static inline unsigned long early_pfn_to_nid(unsigned long pfn) 1064 { 1065 return 0; 1066 } 1067 #endif 1068 1069 #ifdef CONFIG_FLATMEM 1070 #define pfn_to_nid(pfn) (0) 1071 #endif 1072 1073 #ifdef CONFIG_SPARSEMEM 1074 1075 /* 1076 * SECTION_SHIFT #bits space required to store a section # 1077 * 1078 * PA_SECTION_SHIFT physical address to/from section number 1079 * PFN_SECTION_SHIFT pfn to/from section number 1080 */ 1081 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1082 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1083 1084 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1085 1086 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1087 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1088 1089 #define SECTION_BLOCKFLAGS_BITS \ 1090 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1091 1092 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1093 #error Allocator MAX_ORDER exceeds SECTION_SIZE 1094 #endif 1095 1096 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 1097 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 1098 1099 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1100 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1101 1102 struct page; 1103 struct page_ext; 1104 struct mem_section { 1105 /* 1106 * This is, logically, a pointer to an array of struct 1107 * pages. However, it is stored with some other magic. 1108 * (see sparse.c::sparse_init_one_section()) 1109 * 1110 * Additionally during early boot we encode node id of 1111 * the location of the section here to guide allocation. 1112 * (see sparse.c::memory_present()) 1113 * 1114 * Making it a UL at least makes someone do a cast 1115 * before using it wrong. 1116 */ 1117 unsigned long section_mem_map; 1118 1119 /* See declaration of similar field in struct zone */ 1120 unsigned long *pageblock_flags; 1121 #ifdef CONFIG_PAGE_EXTENSION 1122 /* 1123 * If !SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1124 * section. (see page_ext.h about this.) 1125 */ 1126 struct page_ext *page_ext; 1127 unsigned long pad; 1128 #endif 1129 /* 1130 * WARNING: mem_section must be a power-of-2 in size for the 1131 * calculation and use of SECTION_ROOT_MASK to make sense. 1132 */ 1133 }; 1134 1135 #ifdef CONFIG_SPARSEMEM_EXTREME 1136 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1137 #else 1138 #define SECTIONS_PER_ROOT 1 1139 #endif 1140 1141 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1142 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1143 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1144 1145 #ifdef CONFIG_SPARSEMEM_EXTREME 1146 extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 1147 #else 1148 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1149 #endif 1150 1151 static inline struct mem_section *__nr_to_section(unsigned long nr) 1152 { 1153 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1154 return NULL; 1155 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1156 } 1157 extern int __section_nr(struct mem_section* ms); 1158 extern unsigned long usemap_size(void); 1159 1160 /* 1161 * We use the lower bits of the mem_map pointer to store 1162 * a little bit of information. There should be at least 1163 * 3 bits here due to 32-bit alignment. 1164 */ 1165 #define SECTION_MARKED_PRESENT (1UL<<0) 1166 #define SECTION_HAS_MEM_MAP (1UL<<1) 1167 #define SECTION_MAP_LAST_BIT (1UL<<2) 1168 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1169 #define SECTION_NID_SHIFT 2 1170 1171 static inline struct page *__section_mem_map_addr(struct mem_section *section) 1172 { 1173 unsigned long map = section->section_mem_map; 1174 map &= SECTION_MAP_MASK; 1175 return (struct page *)map; 1176 } 1177 1178 static inline int present_section(struct mem_section *section) 1179 { 1180 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1181 } 1182 1183 static inline int present_section_nr(unsigned long nr) 1184 { 1185 return present_section(__nr_to_section(nr)); 1186 } 1187 1188 static inline int valid_section(struct mem_section *section) 1189 { 1190 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1191 } 1192 1193 static inline int valid_section_nr(unsigned long nr) 1194 { 1195 return valid_section(__nr_to_section(nr)); 1196 } 1197 1198 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1199 { 1200 return __nr_to_section(pfn_to_section_nr(pfn)); 1201 } 1202 1203 #ifndef CONFIG_HAVE_ARCH_PFN_VALID 1204 static inline int pfn_valid(unsigned long pfn) 1205 { 1206 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1207 return 0; 1208 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1209 } 1210 #endif 1211 1212 static inline int pfn_present(unsigned long pfn) 1213 { 1214 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1215 return 0; 1216 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1217 } 1218 1219 /* 1220 * These are _only_ used during initialisation, therefore they 1221 * can use __initdata ... They could have names to indicate 1222 * this restriction. 1223 */ 1224 #ifdef CONFIG_NUMA 1225 #define pfn_to_nid(pfn) \ 1226 ({ \ 1227 unsigned long __pfn_to_nid_pfn = (pfn); \ 1228 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1229 }) 1230 #else 1231 #define pfn_to_nid(pfn) (0) 1232 #endif 1233 1234 #define early_pfn_valid(pfn) pfn_valid(pfn) 1235 void sparse_init(void); 1236 #else 1237 #define sparse_init() do {} while (0) 1238 #define sparse_index_init(_sec, _nid) do {} while (0) 1239 #endif /* CONFIG_SPARSEMEM */ 1240 1241 /* 1242 * During memory init memblocks map pfns to nids. The search is expensive and 1243 * this caches recent lookups. The implementation of __early_pfn_to_nid 1244 * may treat start/end as pfns or sections. 1245 */ 1246 struct mminit_pfnnid_cache { 1247 unsigned long last_start; 1248 unsigned long last_end; 1249 int last_nid; 1250 }; 1251 1252 #ifndef early_pfn_valid 1253 #define early_pfn_valid(pfn) (1) 1254 #endif 1255 1256 void memory_present(int nid, unsigned long start, unsigned long end); 1257 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 1258 1259 /* 1260 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1261 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 1262 * pfn_valid_within() should be used in this case; we optimise this away 1263 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1264 */ 1265 #ifdef CONFIG_HOLES_IN_ZONE 1266 #define pfn_valid_within(pfn) pfn_valid(pfn) 1267 #else 1268 #define pfn_valid_within(pfn) (1) 1269 #endif 1270 1271 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1272 /* 1273 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1274 * associated with it or not. In FLATMEM, it is expected that holes always 1275 * have valid memmap as long as there is valid PFNs either side of the hole. 1276 * In SPARSEMEM, it is assumed that a valid section has a memmap for the 1277 * entire section. 1278 * 1279 * However, an ARM, and maybe other embedded architectures in the future 1280 * free memmap backing holes to save memory on the assumption the memmap is 1281 * never used. The page_zone linkages are then broken even though pfn_valid() 1282 * returns true. A walker of the full memmap must then do this additional 1283 * check to ensure the memmap they are looking at is sane by making sure 1284 * the zone and PFN linkages are still valid. This is expensive, but walkers 1285 * of the full memmap are extremely rare. 1286 */ 1287 int memmap_valid_within(unsigned long pfn, 1288 struct page *page, struct zone *zone); 1289 #else 1290 static inline int memmap_valid_within(unsigned long pfn, 1291 struct page *page, struct zone *zone) 1292 { 1293 return 1; 1294 } 1295 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1296 1297 #endif /* !__GENERATING_BOUNDS.H */ 1298 #endif /* !__ASSEMBLY__ */ 1299 #endif /* _LINUX_MMZONE_H */ 1300