xref: /linux-6.15/include/linux/mmzone.h (revision fc4fa6e1)
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3 
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6 
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21 
22 /* Free memory management - zoned buddy allocator.  */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29 
30 /*
31  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32  * costly to service.  That is between allocation orders which should
33  * coalesce naturally under reasonable reclaim pressure and those which
34  * will not.
35  */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37 
38 enum {
39 	MIGRATE_UNMOVABLE,
40 	MIGRATE_RECLAIMABLE,
41 	MIGRATE_MOVABLE,
42 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
43 	MIGRATE_RESERVE = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 	/*
46 	 * MIGRATE_CMA migration type is designed to mimic the way
47 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
48 	 * from MIGRATE_CMA pageblocks and page allocator never
49 	 * implicitly change migration type of MIGRATE_CMA pageblock.
50 	 *
51 	 * The way to use it is to change migratetype of a range of
52 	 * pageblocks to MIGRATE_CMA which can be done by
53 	 * __free_pageblock_cma() function.  What is important though
54 	 * is that a range of pageblocks must be aligned to
55 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 	 * a single pageblock.
57 	 */
58 	MIGRATE_CMA,
59 #endif
60 #ifdef CONFIG_MEMORY_ISOLATION
61 	MIGRATE_ISOLATE,	/* can't allocate from here */
62 #endif
63 	MIGRATE_TYPES
64 };
65 
66 #ifdef CONFIG_CMA
67 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
68 #else
69 #  define is_migrate_cma(migratetype) false
70 #endif
71 
72 #define for_each_migratetype_order(order, type) \
73 	for (order = 0; order < MAX_ORDER; order++) \
74 		for (type = 0; type < MIGRATE_TYPES; type++)
75 
76 extern int page_group_by_mobility_disabled;
77 
78 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
79 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
80 
81 #define get_pageblock_migratetype(page)					\
82 	get_pfnblock_flags_mask(page, page_to_pfn(page),		\
83 			PB_migrate_end, MIGRATETYPE_MASK)
84 
85 static inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
86 {
87 	BUILD_BUG_ON(PB_migrate_end - PB_migrate != 2);
88 	return get_pfnblock_flags_mask(page, pfn, PB_migrate_end,
89 					MIGRATETYPE_MASK);
90 }
91 
92 struct free_area {
93 	struct list_head	free_list[MIGRATE_TYPES];
94 	unsigned long		nr_free;
95 };
96 
97 struct pglist_data;
98 
99 /*
100  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
101  * So add a wild amount of padding here to ensure that they fall into separate
102  * cachelines.  There are very few zone structures in the machine, so space
103  * consumption is not a concern here.
104  */
105 #if defined(CONFIG_SMP)
106 struct zone_padding {
107 	char x[0];
108 } ____cacheline_internodealigned_in_smp;
109 #define ZONE_PADDING(name)	struct zone_padding name;
110 #else
111 #define ZONE_PADDING(name)
112 #endif
113 
114 enum zone_stat_item {
115 	/* First 128 byte cacheline (assuming 64 bit words) */
116 	NR_FREE_PAGES,
117 	NR_ALLOC_BATCH,
118 	NR_LRU_BASE,
119 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
120 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
121 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
122 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
123 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
124 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
125 	NR_ANON_PAGES,	/* Mapped anonymous pages */
126 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
127 			   only modified from process context */
128 	NR_FILE_PAGES,
129 	NR_FILE_DIRTY,
130 	NR_WRITEBACK,
131 	NR_SLAB_RECLAIMABLE,
132 	NR_SLAB_UNRECLAIMABLE,
133 	NR_PAGETABLE,		/* used for pagetables */
134 	NR_KERNEL_STACK,
135 	/* Second 128 byte cacheline */
136 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
137 	NR_BOUNCE,
138 	NR_VMSCAN_WRITE,
139 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
140 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
141 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
142 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
143 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
144 	NR_DIRTIED,		/* page dirtyings since bootup */
145 	NR_WRITTEN,		/* page writings since bootup */
146 	NR_PAGES_SCANNED,	/* pages scanned since last reclaim */
147 #ifdef CONFIG_NUMA
148 	NUMA_HIT,		/* allocated in intended node */
149 	NUMA_MISS,		/* allocated in non intended node */
150 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
151 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
152 	NUMA_LOCAL,		/* allocation from local node */
153 	NUMA_OTHER,		/* allocation from other node */
154 #endif
155 	WORKINGSET_REFAULT,
156 	WORKINGSET_ACTIVATE,
157 	WORKINGSET_NODERECLAIM,
158 	NR_ANON_TRANSPARENT_HUGEPAGES,
159 	NR_FREE_CMA_PAGES,
160 	NR_VM_ZONE_STAT_ITEMS };
161 
162 /*
163  * We do arithmetic on the LRU lists in various places in the code,
164  * so it is important to keep the active lists LRU_ACTIVE higher in
165  * the array than the corresponding inactive lists, and to keep
166  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
167  *
168  * This has to be kept in sync with the statistics in zone_stat_item
169  * above and the descriptions in vmstat_text in mm/vmstat.c
170  */
171 #define LRU_BASE 0
172 #define LRU_ACTIVE 1
173 #define LRU_FILE 2
174 
175 enum lru_list {
176 	LRU_INACTIVE_ANON = LRU_BASE,
177 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
178 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
179 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
180 	LRU_UNEVICTABLE,
181 	NR_LRU_LISTS
182 };
183 
184 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
185 
186 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
187 
188 static inline int is_file_lru(enum lru_list lru)
189 {
190 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
191 }
192 
193 static inline int is_active_lru(enum lru_list lru)
194 {
195 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
196 }
197 
198 static inline int is_unevictable_lru(enum lru_list lru)
199 {
200 	return (lru == LRU_UNEVICTABLE);
201 }
202 
203 struct zone_reclaim_stat {
204 	/*
205 	 * The pageout code in vmscan.c keeps track of how many of the
206 	 * mem/swap backed and file backed pages are referenced.
207 	 * The higher the rotated/scanned ratio, the more valuable
208 	 * that cache is.
209 	 *
210 	 * The anon LRU stats live in [0], file LRU stats in [1]
211 	 */
212 	unsigned long		recent_rotated[2];
213 	unsigned long		recent_scanned[2];
214 };
215 
216 struct lruvec {
217 	struct list_head lists[NR_LRU_LISTS];
218 	struct zone_reclaim_stat reclaim_stat;
219 #ifdef CONFIG_MEMCG
220 	struct zone *zone;
221 #endif
222 };
223 
224 /* Mask used at gathering information at once (see memcontrol.c) */
225 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
226 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
227 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
228 
229 /* Isolate clean file */
230 #define ISOLATE_CLEAN		((__force isolate_mode_t)0x1)
231 /* Isolate unmapped file */
232 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
233 /* Isolate for asynchronous migration */
234 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
235 /* Isolate unevictable pages */
236 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
237 
238 /* LRU Isolation modes. */
239 typedef unsigned __bitwise__ isolate_mode_t;
240 
241 enum zone_watermarks {
242 	WMARK_MIN,
243 	WMARK_LOW,
244 	WMARK_HIGH,
245 	NR_WMARK
246 };
247 
248 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
249 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
250 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
251 
252 struct per_cpu_pages {
253 	int count;		/* number of pages in the list */
254 	int high;		/* high watermark, emptying needed */
255 	int batch;		/* chunk size for buddy add/remove */
256 
257 	/* Lists of pages, one per migrate type stored on the pcp-lists */
258 	struct list_head lists[MIGRATE_PCPTYPES];
259 };
260 
261 struct per_cpu_pageset {
262 	struct per_cpu_pages pcp;
263 #ifdef CONFIG_NUMA
264 	s8 expire;
265 #endif
266 #ifdef CONFIG_SMP
267 	s8 stat_threshold;
268 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
269 #endif
270 };
271 
272 #endif /* !__GENERATING_BOUNDS.H */
273 
274 enum zone_type {
275 #ifdef CONFIG_ZONE_DMA
276 	/*
277 	 * ZONE_DMA is used when there are devices that are not able
278 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
279 	 * carve out the portion of memory that is needed for these devices.
280 	 * The range is arch specific.
281 	 *
282 	 * Some examples
283 	 *
284 	 * Architecture		Limit
285 	 * ---------------------------
286 	 * parisc, ia64, sparc	<4G
287 	 * s390			<2G
288 	 * arm			Various
289 	 * alpha		Unlimited or 0-16MB.
290 	 *
291 	 * i386, x86_64 and multiple other arches
292 	 * 			<16M.
293 	 */
294 	ZONE_DMA,
295 #endif
296 #ifdef CONFIG_ZONE_DMA32
297 	/*
298 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
299 	 * only able to do DMA to the lower 16M but also 32 bit devices that
300 	 * can only do DMA areas below 4G.
301 	 */
302 	ZONE_DMA32,
303 #endif
304 	/*
305 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
306 	 * performed on pages in ZONE_NORMAL if the DMA devices support
307 	 * transfers to all addressable memory.
308 	 */
309 	ZONE_NORMAL,
310 #ifdef CONFIG_HIGHMEM
311 	/*
312 	 * A memory area that is only addressable by the kernel through
313 	 * mapping portions into its own address space. This is for example
314 	 * used by i386 to allow the kernel to address the memory beyond
315 	 * 900MB. The kernel will set up special mappings (page
316 	 * table entries on i386) for each page that the kernel needs to
317 	 * access.
318 	 */
319 	ZONE_HIGHMEM,
320 #endif
321 	ZONE_MOVABLE,
322 #ifdef CONFIG_ZONE_DEVICE
323 	ZONE_DEVICE,
324 #endif
325 	__MAX_NR_ZONES
326 
327 };
328 
329 #ifndef __GENERATING_BOUNDS_H
330 
331 struct zone {
332 	/* Read-mostly fields */
333 
334 	/* zone watermarks, access with *_wmark_pages(zone) macros */
335 	unsigned long watermark[NR_WMARK];
336 
337 	/*
338 	 * We don't know if the memory that we're going to allocate will be freeable
339 	 * or/and it will be released eventually, so to avoid totally wasting several
340 	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
341 	 * to run OOM on the lower zones despite there's tons of freeable ram
342 	 * on the higher zones). This array is recalculated at runtime if the
343 	 * sysctl_lowmem_reserve_ratio sysctl changes.
344 	 */
345 	long lowmem_reserve[MAX_NR_ZONES];
346 
347 #ifdef CONFIG_NUMA
348 	int node;
349 #endif
350 
351 	/*
352 	 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
353 	 * this zone's LRU.  Maintained by the pageout code.
354 	 */
355 	unsigned int inactive_ratio;
356 
357 	struct pglist_data	*zone_pgdat;
358 	struct per_cpu_pageset __percpu *pageset;
359 
360 	/*
361 	 * This is a per-zone reserve of pages that should not be
362 	 * considered dirtyable memory.
363 	 */
364 	unsigned long		dirty_balance_reserve;
365 
366 #ifndef CONFIG_SPARSEMEM
367 	/*
368 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
369 	 * In SPARSEMEM, this map is stored in struct mem_section
370 	 */
371 	unsigned long		*pageblock_flags;
372 #endif /* CONFIG_SPARSEMEM */
373 
374 #ifdef CONFIG_NUMA
375 	/*
376 	 * zone reclaim becomes active if more unmapped pages exist.
377 	 */
378 	unsigned long		min_unmapped_pages;
379 	unsigned long		min_slab_pages;
380 #endif /* CONFIG_NUMA */
381 
382 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
383 	unsigned long		zone_start_pfn;
384 
385 	/*
386 	 * spanned_pages is the total pages spanned by the zone, including
387 	 * holes, which is calculated as:
388 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
389 	 *
390 	 * present_pages is physical pages existing within the zone, which
391 	 * is calculated as:
392 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
393 	 *
394 	 * managed_pages is present pages managed by the buddy system, which
395 	 * is calculated as (reserved_pages includes pages allocated by the
396 	 * bootmem allocator):
397 	 *	managed_pages = present_pages - reserved_pages;
398 	 *
399 	 * So present_pages may be used by memory hotplug or memory power
400 	 * management logic to figure out unmanaged pages by checking
401 	 * (present_pages - managed_pages). And managed_pages should be used
402 	 * by page allocator and vm scanner to calculate all kinds of watermarks
403 	 * and thresholds.
404 	 *
405 	 * Locking rules:
406 	 *
407 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
408 	 * It is a seqlock because it has to be read outside of zone->lock,
409 	 * and it is done in the main allocator path.  But, it is written
410 	 * quite infrequently.
411 	 *
412 	 * The span_seq lock is declared along with zone->lock because it is
413 	 * frequently read in proximity to zone->lock.  It's good to
414 	 * give them a chance of being in the same cacheline.
415 	 *
416 	 * Write access to present_pages at runtime should be protected by
417 	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
418 	 * present_pages should get_online_mems() to get a stable value.
419 	 *
420 	 * Read access to managed_pages should be safe because it's unsigned
421 	 * long. Write access to zone->managed_pages and totalram_pages are
422 	 * protected by managed_page_count_lock at runtime. Idealy only
423 	 * adjust_managed_page_count() should be used instead of directly
424 	 * touching zone->managed_pages and totalram_pages.
425 	 */
426 	unsigned long		managed_pages;
427 	unsigned long		spanned_pages;
428 	unsigned long		present_pages;
429 
430 	const char		*name;
431 
432 	/*
433 	 * Number of MIGRATE_RESERVE page block. To maintain for just
434 	 * optimization. Protected by zone->lock.
435 	 */
436 	int			nr_migrate_reserve_block;
437 
438 #ifdef CONFIG_MEMORY_ISOLATION
439 	/*
440 	 * Number of isolated pageblock. It is used to solve incorrect
441 	 * freepage counting problem due to racy retrieving migratetype
442 	 * of pageblock. Protected by zone->lock.
443 	 */
444 	unsigned long		nr_isolate_pageblock;
445 #endif
446 
447 #ifdef CONFIG_MEMORY_HOTPLUG
448 	/* see spanned/present_pages for more description */
449 	seqlock_t		span_seqlock;
450 #endif
451 
452 	/*
453 	 * wait_table		-- the array holding the hash table
454 	 * wait_table_hash_nr_entries	-- the size of the hash table array
455 	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
456 	 *
457 	 * The purpose of all these is to keep track of the people
458 	 * waiting for a page to become available and make them
459 	 * runnable again when possible. The trouble is that this
460 	 * consumes a lot of space, especially when so few things
461 	 * wait on pages at a given time. So instead of using
462 	 * per-page waitqueues, we use a waitqueue hash table.
463 	 *
464 	 * The bucket discipline is to sleep on the same queue when
465 	 * colliding and wake all in that wait queue when removing.
466 	 * When something wakes, it must check to be sure its page is
467 	 * truly available, a la thundering herd. The cost of a
468 	 * collision is great, but given the expected load of the
469 	 * table, they should be so rare as to be outweighed by the
470 	 * benefits from the saved space.
471 	 *
472 	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
473 	 * primary users of these fields, and in mm/page_alloc.c
474 	 * free_area_init_core() performs the initialization of them.
475 	 */
476 	wait_queue_head_t	*wait_table;
477 	unsigned long		wait_table_hash_nr_entries;
478 	unsigned long		wait_table_bits;
479 
480 	ZONE_PADDING(_pad1_)
481 	/* free areas of different sizes */
482 	struct free_area	free_area[MAX_ORDER];
483 
484 	/* zone flags, see below */
485 	unsigned long		flags;
486 
487 	/* Write-intensive fields used from the page allocator */
488 	spinlock_t		lock;
489 
490 	ZONE_PADDING(_pad2_)
491 
492 	/* Write-intensive fields used by page reclaim */
493 
494 	/* Fields commonly accessed by the page reclaim scanner */
495 	spinlock_t		lru_lock;
496 	struct lruvec		lruvec;
497 
498 	/* Evictions & activations on the inactive file list */
499 	atomic_long_t		inactive_age;
500 
501 	/*
502 	 * When free pages are below this point, additional steps are taken
503 	 * when reading the number of free pages to avoid per-cpu counter
504 	 * drift allowing watermarks to be breached
505 	 */
506 	unsigned long percpu_drift_mark;
507 
508 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
509 	/* pfn where compaction free scanner should start */
510 	unsigned long		compact_cached_free_pfn;
511 	/* pfn where async and sync compaction migration scanner should start */
512 	unsigned long		compact_cached_migrate_pfn[2];
513 #endif
514 
515 #ifdef CONFIG_COMPACTION
516 	/*
517 	 * On compaction failure, 1<<compact_defer_shift compactions
518 	 * are skipped before trying again. The number attempted since
519 	 * last failure is tracked with compact_considered.
520 	 */
521 	unsigned int		compact_considered;
522 	unsigned int		compact_defer_shift;
523 	int			compact_order_failed;
524 #endif
525 
526 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
527 	/* Set to true when the PG_migrate_skip bits should be cleared */
528 	bool			compact_blockskip_flush;
529 #endif
530 
531 	ZONE_PADDING(_pad3_)
532 	/* Zone statistics */
533 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
534 } ____cacheline_internodealigned_in_smp;
535 
536 enum zone_flags {
537 	ZONE_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
538 	ZONE_OOM_LOCKED,		/* zone is in OOM killer zonelist */
539 	ZONE_CONGESTED,			/* zone has many dirty pages backed by
540 					 * a congested BDI
541 					 */
542 	ZONE_DIRTY,			/* reclaim scanning has recently found
543 					 * many dirty file pages at the tail
544 					 * of the LRU.
545 					 */
546 	ZONE_WRITEBACK,			/* reclaim scanning has recently found
547 					 * many pages under writeback
548 					 */
549 	ZONE_FAIR_DEPLETED,		/* fair zone policy batch depleted */
550 };
551 
552 static inline unsigned long zone_end_pfn(const struct zone *zone)
553 {
554 	return zone->zone_start_pfn + zone->spanned_pages;
555 }
556 
557 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
558 {
559 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
560 }
561 
562 static inline bool zone_is_initialized(struct zone *zone)
563 {
564 	return !!zone->wait_table;
565 }
566 
567 static inline bool zone_is_empty(struct zone *zone)
568 {
569 	return zone->spanned_pages == 0;
570 }
571 
572 /*
573  * The "priority" of VM scanning is how much of the queues we will scan in one
574  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
575  * queues ("queue_length >> 12") during an aging round.
576  */
577 #define DEF_PRIORITY 12
578 
579 /* Maximum number of zones on a zonelist */
580 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
581 
582 #ifdef CONFIG_NUMA
583 
584 /*
585  * The NUMA zonelists are doubled because we need zonelists that restrict the
586  * allocations to a single node for __GFP_THISNODE.
587  *
588  * [0]	: Zonelist with fallback
589  * [1]	: No fallback (__GFP_THISNODE)
590  */
591 #define MAX_ZONELISTS 2
592 
593 
594 /*
595  * We cache key information from each zonelist for smaller cache
596  * footprint when scanning for free pages in get_page_from_freelist().
597  *
598  * 1) The BITMAP fullzones tracks which zones in a zonelist have come
599  *    up short of free memory since the last time (last_fullzone_zap)
600  *    we zero'd fullzones.
601  * 2) The array z_to_n[] maps each zone in the zonelist to its node
602  *    id, so that we can efficiently evaluate whether that node is
603  *    set in the current tasks mems_allowed.
604  *
605  * Both fullzones and z_to_n[] are one-to-one with the zonelist,
606  * indexed by a zones offset in the zonelist zones[] array.
607  *
608  * The get_page_from_freelist() routine does two scans.  During the
609  * first scan, we skip zones whose corresponding bit in 'fullzones'
610  * is set or whose corresponding node in current->mems_allowed (which
611  * comes from cpusets) is not set.  During the second scan, we bypass
612  * this zonelist_cache, to ensure we look methodically at each zone.
613  *
614  * Once per second, we zero out (zap) fullzones, forcing us to
615  * reconsider nodes that might have regained more free memory.
616  * The field last_full_zap is the time we last zapped fullzones.
617  *
618  * This mechanism reduces the amount of time we waste repeatedly
619  * reexaming zones for free memory when they just came up low on
620  * memory momentarilly ago.
621  *
622  * The zonelist_cache struct members logically belong in struct
623  * zonelist.  However, the mempolicy zonelists constructed for
624  * MPOL_BIND are intentionally variable length (and usually much
625  * shorter).  A general purpose mechanism for handling structs with
626  * multiple variable length members is more mechanism than we want
627  * here.  We resort to some special case hackery instead.
628  *
629  * The MPOL_BIND zonelists don't need this zonelist_cache (in good
630  * part because they are shorter), so we put the fixed length stuff
631  * at the front of the zonelist struct, ending in a variable length
632  * zones[], as is needed by MPOL_BIND.
633  *
634  * Then we put the optional zonelist cache on the end of the zonelist
635  * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
636  * the fixed length portion at the front of the struct.  This pointer
637  * both enables us to find the zonelist cache, and in the case of
638  * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
639  * to know that the zonelist cache is not there.
640  *
641  * The end result is that struct zonelists come in two flavors:
642  *  1) The full, fixed length version, shown below, and
643  *  2) The custom zonelists for MPOL_BIND.
644  * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
645  *
646  * Even though there may be multiple CPU cores on a node modifying
647  * fullzones or last_full_zap in the same zonelist_cache at the same
648  * time, we don't lock it.  This is just hint data - if it is wrong now
649  * and then, the allocator will still function, perhaps a bit slower.
650  */
651 
652 
653 struct zonelist_cache {
654 	unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];		/* zone->nid */
655 	DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);	/* zone full? */
656 	unsigned long last_full_zap;		/* when last zap'd (jiffies) */
657 };
658 #else
659 #define MAX_ZONELISTS 1
660 struct zonelist_cache;
661 #endif
662 
663 /*
664  * This struct contains information about a zone in a zonelist. It is stored
665  * here to avoid dereferences into large structures and lookups of tables
666  */
667 struct zoneref {
668 	struct zone *zone;	/* Pointer to actual zone */
669 	int zone_idx;		/* zone_idx(zoneref->zone) */
670 };
671 
672 /*
673  * One allocation request operates on a zonelist. A zonelist
674  * is a list of zones, the first one is the 'goal' of the
675  * allocation, the other zones are fallback zones, in decreasing
676  * priority.
677  *
678  * If zlcache_ptr is not NULL, then it is just the address of zlcache,
679  * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
680  * *
681  * To speed the reading of the zonelist, the zonerefs contain the zone index
682  * of the entry being read. Helper functions to access information given
683  * a struct zoneref are
684  *
685  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
686  * zonelist_zone_idx()	- Return the index of the zone for an entry
687  * zonelist_node_idx()	- Return the index of the node for an entry
688  */
689 struct zonelist {
690 	struct zonelist_cache *zlcache_ptr;		     // NULL or &zlcache
691 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
692 #ifdef CONFIG_NUMA
693 	struct zonelist_cache zlcache;			     // optional ...
694 #endif
695 };
696 
697 #ifndef CONFIG_DISCONTIGMEM
698 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
699 extern struct page *mem_map;
700 #endif
701 
702 /*
703  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
704  * (mostly NUMA machines?) to denote a higher-level memory zone than the
705  * zone denotes.
706  *
707  * On NUMA machines, each NUMA node would have a pg_data_t to describe
708  * it's memory layout.
709  *
710  * Memory statistics and page replacement data structures are maintained on a
711  * per-zone basis.
712  */
713 struct bootmem_data;
714 typedef struct pglist_data {
715 	struct zone node_zones[MAX_NR_ZONES];
716 	struct zonelist node_zonelists[MAX_ZONELISTS];
717 	int nr_zones;
718 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
719 	struct page *node_mem_map;
720 #ifdef CONFIG_PAGE_EXTENSION
721 	struct page_ext *node_page_ext;
722 #endif
723 #endif
724 #ifndef CONFIG_NO_BOOTMEM
725 	struct bootmem_data *bdata;
726 #endif
727 #ifdef CONFIG_MEMORY_HOTPLUG
728 	/*
729 	 * Must be held any time you expect node_start_pfn, node_present_pages
730 	 * or node_spanned_pages stay constant.  Holding this will also
731 	 * guarantee that any pfn_valid() stays that way.
732 	 *
733 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
734 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
735 	 *
736 	 * Nests above zone->lock and zone->span_seqlock
737 	 */
738 	spinlock_t node_size_lock;
739 #endif
740 	unsigned long node_start_pfn;
741 	unsigned long node_present_pages; /* total number of physical pages */
742 	unsigned long node_spanned_pages; /* total size of physical page
743 					     range, including holes */
744 	int node_id;
745 	wait_queue_head_t kswapd_wait;
746 	wait_queue_head_t pfmemalloc_wait;
747 	struct task_struct *kswapd;	/* Protected by
748 					   mem_hotplug_begin/end() */
749 	int kswapd_max_order;
750 	enum zone_type classzone_idx;
751 #ifdef CONFIG_NUMA_BALANCING
752 	/* Lock serializing the migrate rate limiting window */
753 	spinlock_t numabalancing_migrate_lock;
754 
755 	/* Rate limiting time interval */
756 	unsigned long numabalancing_migrate_next_window;
757 
758 	/* Number of pages migrated during the rate limiting time interval */
759 	unsigned long numabalancing_migrate_nr_pages;
760 #endif
761 
762 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
763 	/*
764 	 * If memory initialisation on large machines is deferred then this
765 	 * is the first PFN that needs to be initialised.
766 	 */
767 	unsigned long first_deferred_pfn;
768 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
769 } pg_data_t;
770 
771 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
772 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
773 #ifdef CONFIG_FLAT_NODE_MEM_MAP
774 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
775 #else
776 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
777 #endif
778 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
779 
780 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
781 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
782 
783 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
784 {
785 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
786 }
787 
788 static inline bool pgdat_is_empty(pg_data_t *pgdat)
789 {
790 	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
791 }
792 
793 static inline int zone_id(const struct zone *zone)
794 {
795 	struct pglist_data *pgdat = zone->zone_pgdat;
796 
797 	return zone - pgdat->node_zones;
798 }
799 
800 #ifdef CONFIG_ZONE_DEVICE
801 static inline bool is_dev_zone(const struct zone *zone)
802 {
803 	return zone_id(zone) == ZONE_DEVICE;
804 }
805 #else
806 static inline bool is_dev_zone(const struct zone *zone)
807 {
808 	return false;
809 }
810 #endif
811 
812 #include <linux/memory_hotplug.h>
813 
814 extern struct mutex zonelists_mutex;
815 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
816 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
817 bool zone_watermark_ok(struct zone *z, unsigned int order,
818 		unsigned long mark, int classzone_idx, int alloc_flags);
819 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
820 		unsigned long mark, int classzone_idx, int alloc_flags);
821 enum memmap_context {
822 	MEMMAP_EARLY,
823 	MEMMAP_HOTPLUG,
824 };
825 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
826 				     unsigned long size);
827 
828 extern void lruvec_init(struct lruvec *lruvec);
829 
830 static inline struct zone *lruvec_zone(struct lruvec *lruvec)
831 {
832 #ifdef CONFIG_MEMCG
833 	return lruvec->zone;
834 #else
835 	return container_of(lruvec, struct zone, lruvec);
836 #endif
837 }
838 
839 #ifdef CONFIG_HAVE_MEMORY_PRESENT
840 void memory_present(int nid, unsigned long start, unsigned long end);
841 #else
842 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
843 #endif
844 
845 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
846 int local_memory_node(int node_id);
847 #else
848 static inline int local_memory_node(int node_id) { return node_id; };
849 #endif
850 
851 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
852 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
853 #endif
854 
855 /*
856  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
857  */
858 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
859 
860 static inline int populated_zone(struct zone *zone)
861 {
862 	return (!!zone->present_pages);
863 }
864 
865 extern int movable_zone;
866 
867 #ifdef CONFIG_HIGHMEM
868 static inline int zone_movable_is_highmem(void)
869 {
870 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
871 	return movable_zone == ZONE_HIGHMEM;
872 #else
873 	return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
874 #endif
875 }
876 #endif
877 
878 static inline int is_highmem_idx(enum zone_type idx)
879 {
880 #ifdef CONFIG_HIGHMEM
881 	return (idx == ZONE_HIGHMEM ||
882 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
883 #else
884 	return 0;
885 #endif
886 }
887 
888 /**
889  * is_highmem - helper function to quickly check if a struct zone is a
890  *              highmem zone or not.  This is an attempt to keep references
891  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
892  * @zone - pointer to struct zone variable
893  */
894 static inline int is_highmem(struct zone *zone)
895 {
896 #ifdef CONFIG_HIGHMEM
897 	int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
898 	return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
899 	       (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
900 		zone_movable_is_highmem());
901 #else
902 	return 0;
903 #endif
904 }
905 
906 /* These two functions are used to setup the per zone pages min values */
907 struct ctl_table;
908 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
909 					void __user *, size_t *, loff_t *);
910 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
911 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
912 					void __user *, size_t *, loff_t *);
913 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
914 					void __user *, size_t *, loff_t *);
915 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
916 			void __user *, size_t *, loff_t *);
917 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
918 			void __user *, size_t *, loff_t *);
919 
920 extern int numa_zonelist_order_handler(struct ctl_table *, int,
921 			void __user *, size_t *, loff_t *);
922 extern char numa_zonelist_order[];
923 #define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */
924 
925 #ifndef CONFIG_NEED_MULTIPLE_NODES
926 
927 extern struct pglist_data contig_page_data;
928 #define NODE_DATA(nid)		(&contig_page_data)
929 #define NODE_MEM_MAP(nid)	mem_map
930 
931 #else /* CONFIG_NEED_MULTIPLE_NODES */
932 
933 #include <asm/mmzone.h>
934 
935 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
936 
937 extern struct pglist_data *first_online_pgdat(void);
938 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
939 extern struct zone *next_zone(struct zone *zone);
940 
941 /**
942  * for_each_online_pgdat - helper macro to iterate over all online nodes
943  * @pgdat - pointer to a pg_data_t variable
944  */
945 #define for_each_online_pgdat(pgdat)			\
946 	for (pgdat = first_online_pgdat();		\
947 	     pgdat;					\
948 	     pgdat = next_online_pgdat(pgdat))
949 /**
950  * for_each_zone - helper macro to iterate over all memory zones
951  * @zone - pointer to struct zone variable
952  *
953  * The user only needs to declare the zone variable, for_each_zone
954  * fills it in.
955  */
956 #define for_each_zone(zone)			        \
957 	for (zone = (first_online_pgdat())->node_zones; \
958 	     zone;					\
959 	     zone = next_zone(zone))
960 
961 #define for_each_populated_zone(zone)		        \
962 	for (zone = (first_online_pgdat())->node_zones; \
963 	     zone;					\
964 	     zone = next_zone(zone))			\
965 		if (!populated_zone(zone))		\
966 			; /* do nothing */		\
967 		else
968 
969 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
970 {
971 	return zoneref->zone;
972 }
973 
974 static inline int zonelist_zone_idx(struct zoneref *zoneref)
975 {
976 	return zoneref->zone_idx;
977 }
978 
979 static inline int zonelist_node_idx(struct zoneref *zoneref)
980 {
981 #ifdef CONFIG_NUMA
982 	/* zone_to_nid not available in this context */
983 	return zoneref->zone->node;
984 #else
985 	return 0;
986 #endif /* CONFIG_NUMA */
987 }
988 
989 /**
990  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
991  * @z - The cursor used as a starting point for the search
992  * @highest_zoneidx - The zone index of the highest zone to return
993  * @nodes - An optional nodemask to filter the zonelist with
994  *
995  * This function returns the next zone at or below a given zone index that is
996  * within the allowed nodemask using a cursor as the starting point for the
997  * search. The zoneref returned is a cursor that represents the current zone
998  * being examined. It should be advanced by one before calling
999  * next_zones_zonelist again.
1000  */
1001 struct zoneref *next_zones_zonelist(struct zoneref *z,
1002 					enum zone_type highest_zoneidx,
1003 					nodemask_t *nodes);
1004 
1005 /**
1006  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1007  * @zonelist - The zonelist to search for a suitable zone
1008  * @highest_zoneidx - The zone index of the highest zone to return
1009  * @nodes - An optional nodemask to filter the zonelist with
1010  * @zone - The first suitable zone found is returned via this parameter
1011  *
1012  * This function returns the first zone at or below a given zone index that is
1013  * within the allowed nodemask. The zoneref returned is a cursor that can be
1014  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1015  * one before calling.
1016  */
1017 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1018 					enum zone_type highest_zoneidx,
1019 					nodemask_t *nodes,
1020 					struct zone **zone)
1021 {
1022 	struct zoneref *z = next_zones_zonelist(zonelist->_zonerefs,
1023 							highest_zoneidx, nodes);
1024 	*zone = zonelist_zone(z);
1025 	return z;
1026 }
1027 
1028 /**
1029  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1030  * @zone - The current zone in the iterator
1031  * @z - The current pointer within zonelist->zones being iterated
1032  * @zlist - The zonelist being iterated
1033  * @highidx - The zone index of the highest zone to return
1034  * @nodemask - Nodemask allowed by the allocator
1035  *
1036  * This iterator iterates though all zones at or below a given zone index and
1037  * within a given nodemask
1038  */
1039 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1040 	for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone);	\
1041 		zone;							\
1042 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1043 			zone = zonelist_zone(z))			\
1044 
1045 /**
1046  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1047  * @zone - The current zone in the iterator
1048  * @z - The current pointer within zonelist->zones being iterated
1049  * @zlist - The zonelist being iterated
1050  * @highidx - The zone index of the highest zone to return
1051  *
1052  * This iterator iterates though all zones at or below a given zone index.
1053  */
1054 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1055 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1056 
1057 #ifdef CONFIG_SPARSEMEM
1058 #include <asm/sparsemem.h>
1059 #endif
1060 
1061 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1062 	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1063 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1064 {
1065 	return 0;
1066 }
1067 #endif
1068 
1069 #ifdef CONFIG_FLATMEM
1070 #define pfn_to_nid(pfn)		(0)
1071 #endif
1072 
1073 #ifdef CONFIG_SPARSEMEM
1074 
1075 /*
1076  * SECTION_SHIFT    		#bits space required to store a section #
1077  *
1078  * PA_SECTION_SHIFT		physical address to/from section number
1079  * PFN_SECTION_SHIFT		pfn to/from section number
1080  */
1081 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1082 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1083 
1084 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1085 
1086 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1087 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1088 
1089 #define SECTION_BLOCKFLAGS_BITS \
1090 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1091 
1092 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1093 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1094 #endif
1095 
1096 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1097 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1098 
1099 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1100 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1101 
1102 struct page;
1103 struct page_ext;
1104 struct mem_section {
1105 	/*
1106 	 * This is, logically, a pointer to an array of struct
1107 	 * pages.  However, it is stored with some other magic.
1108 	 * (see sparse.c::sparse_init_one_section())
1109 	 *
1110 	 * Additionally during early boot we encode node id of
1111 	 * the location of the section here to guide allocation.
1112 	 * (see sparse.c::memory_present())
1113 	 *
1114 	 * Making it a UL at least makes someone do a cast
1115 	 * before using it wrong.
1116 	 */
1117 	unsigned long section_mem_map;
1118 
1119 	/* See declaration of similar field in struct zone */
1120 	unsigned long *pageblock_flags;
1121 #ifdef CONFIG_PAGE_EXTENSION
1122 	/*
1123 	 * If !SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1124 	 * section. (see page_ext.h about this.)
1125 	 */
1126 	struct page_ext *page_ext;
1127 	unsigned long pad;
1128 #endif
1129 	/*
1130 	 * WARNING: mem_section must be a power-of-2 in size for the
1131 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1132 	 */
1133 };
1134 
1135 #ifdef CONFIG_SPARSEMEM_EXTREME
1136 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1137 #else
1138 #define SECTIONS_PER_ROOT	1
1139 #endif
1140 
1141 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1142 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1143 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1144 
1145 #ifdef CONFIG_SPARSEMEM_EXTREME
1146 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1147 #else
1148 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1149 #endif
1150 
1151 static inline struct mem_section *__nr_to_section(unsigned long nr)
1152 {
1153 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1154 		return NULL;
1155 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1156 }
1157 extern int __section_nr(struct mem_section* ms);
1158 extern unsigned long usemap_size(void);
1159 
1160 /*
1161  * We use the lower bits of the mem_map pointer to store
1162  * a little bit of information.  There should be at least
1163  * 3 bits here due to 32-bit alignment.
1164  */
1165 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1166 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1167 #define SECTION_MAP_LAST_BIT	(1UL<<2)
1168 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1169 #define SECTION_NID_SHIFT	2
1170 
1171 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1172 {
1173 	unsigned long map = section->section_mem_map;
1174 	map &= SECTION_MAP_MASK;
1175 	return (struct page *)map;
1176 }
1177 
1178 static inline int present_section(struct mem_section *section)
1179 {
1180 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1181 }
1182 
1183 static inline int present_section_nr(unsigned long nr)
1184 {
1185 	return present_section(__nr_to_section(nr));
1186 }
1187 
1188 static inline int valid_section(struct mem_section *section)
1189 {
1190 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1191 }
1192 
1193 static inline int valid_section_nr(unsigned long nr)
1194 {
1195 	return valid_section(__nr_to_section(nr));
1196 }
1197 
1198 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1199 {
1200 	return __nr_to_section(pfn_to_section_nr(pfn));
1201 }
1202 
1203 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1204 static inline int pfn_valid(unsigned long pfn)
1205 {
1206 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1207 		return 0;
1208 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1209 }
1210 #endif
1211 
1212 static inline int pfn_present(unsigned long pfn)
1213 {
1214 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1215 		return 0;
1216 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1217 }
1218 
1219 /*
1220  * These are _only_ used during initialisation, therefore they
1221  * can use __initdata ...  They could have names to indicate
1222  * this restriction.
1223  */
1224 #ifdef CONFIG_NUMA
1225 #define pfn_to_nid(pfn)							\
1226 ({									\
1227 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1228 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1229 })
1230 #else
1231 #define pfn_to_nid(pfn)		(0)
1232 #endif
1233 
1234 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1235 void sparse_init(void);
1236 #else
1237 #define sparse_init()	do {} while (0)
1238 #define sparse_index_init(_sec, _nid)  do {} while (0)
1239 #endif /* CONFIG_SPARSEMEM */
1240 
1241 /*
1242  * During memory init memblocks map pfns to nids. The search is expensive and
1243  * this caches recent lookups. The implementation of __early_pfn_to_nid
1244  * may treat start/end as pfns or sections.
1245  */
1246 struct mminit_pfnnid_cache {
1247 	unsigned long last_start;
1248 	unsigned long last_end;
1249 	int last_nid;
1250 };
1251 
1252 #ifndef early_pfn_valid
1253 #define early_pfn_valid(pfn)	(1)
1254 #endif
1255 
1256 void memory_present(int nid, unsigned long start, unsigned long end);
1257 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1258 
1259 /*
1260  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1261  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1262  * pfn_valid_within() should be used in this case; we optimise this away
1263  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1264  */
1265 #ifdef CONFIG_HOLES_IN_ZONE
1266 #define pfn_valid_within(pfn) pfn_valid(pfn)
1267 #else
1268 #define pfn_valid_within(pfn) (1)
1269 #endif
1270 
1271 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1272 /*
1273  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1274  * associated with it or not. In FLATMEM, it is expected that holes always
1275  * have valid memmap as long as there is valid PFNs either side of the hole.
1276  * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1277  * entire section.
1278  *
1279  * However, an ARM, and maybe other embedded architectures in the future
1280  * free memmap backing holes to save memory on the assumption the memmap is
1281  * never used. The page_zone linkages are then broken even though pfn_valid()
1282  * returns true. A walker of the full memmap must then do this additional
1283  * check to ensure the memmap they are looking at is sane by making sure
1284  * the zone and PFN linkages are still valid. This is expensive, but walkers
1285  * of the full memmap are extremely rare.
1286  */
1287 int memmap_valid_within(unsigned long pfn,
1288 					struct page *page, struct zone *zone);
1289 #else
1290 static inline int memmap_valid_within(unsigned long pfn,
1291 					struct page *page, struct zone *zone)
1292 {
1293 	return 1;
1294 }
1295 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1296 
1297 #endif /* !__GENERATING_BOUNDS.H */
1298 #endif /* !__ASSEMBLY__ */
1299 #endif /* _LINUX_MMZONE_H */
1300