1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MMZONE_H 3 #define _LINUX_MMZONE_H 4 5 #ifndef __ASSEMBLY__ 6 #ifndef __GENERATING_BOUNDS_H 7 8 #include <linux/spinlock.h> 9 #include <linux/list.h> 10 #include <linux/wait.h> 11 #include <linux/bitops.h> 12 #include <linux/cache.h> 13 #include <linux/threads.h> 14 #include <linux/numa.h> 15 #include <linux/init.h> 16 #include <linux/seqlock.h> 17 #include <linux/nodemask.h> 18 #include <linux/pageblock-flags.h> 19 #include <linux/page-flags-layout.h> 20 #include <linux/atomic.h> 21 #include <linux/mm_types.h> 22 #include <linux/page-flags.h> 23 #include <asm/page.h> 24 25 /* Free memory management - zoned buddy allocator. */ 26 #ifndef CONFIG_FORCE_MAX_ZONEORDER 27 #define MAX_ORDER 11 28 #else 29 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 30 #endif 31 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 32 33 /* 34 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 35 * costly to service. That is between allocation orders which should 36 * coalesce naturally under reasonable reclaim pressure and those which 37 * will not. 38 */ 39 #define PAGE_ALLOC_COSTLY_ORDER 3 40 41 enum migratetype { 42 MIGRATE_UNMOVABLE, 43 MIGRATE_MOVABLE, 44 MIGRATE_RECLAIMABLE, 45 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 46 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 47 #ifdef CONFIG_CMA 48 /* 49 * MIGRATE_CMA migration type is designed to mimic the way 50 * ZONE_MOVABLE works. Only movable pages can be allocated 51 * from MIGRATE_CMA pageblocks and page allocator never 52 * implicitly change migration type of MIGRATE_CMA pageblock. 53 * 54 * The way to use it is to change migratetype of a range of 55 * pageblocks to MIGRATE_CMA which can be done by 56 * __free_pageblock_cma() function. What is important though 57 * is that a range of pageblocks must be aligned to 58 * MAX_ORDER_NR_PAGES should biggest page be bigger then 59 * a single pageblock. 60 */ 61 MIGRATE_CMA, 62 #endif 63 #ifdef CONFIG_MEMORY_ISOLATION 64 MIGRATE_ISOLATE, /* can't allocate from here */ 65 #endif 66 MIGRATE_TYPES 67 }; 68 69 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 70 extern const char * const migratetype_names[MIGRATE_TYPES]; 71 72 #ifdef CONFIG_CMA 73 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 74 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 75 #else 76 # define is_migrate_cma(migratetype) false 77 # define is_migrate_cma_page(_page) false 78 #endif 79 80 static inline bool is_migrate_movable(int mt) 81 { 82 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 83 } 84 85 #define for_each_migratetype_order(order, type) \ 86 for (order = 0; order < MAX_ORDER; order++) \ 87 for (type = 0; type < MIGRATE_TYPES; type++) 88 89 extern int page_group_by_mobility_disabled; 90 91 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1) 92 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1) 93 94 #define get_pageblock_migratetype(page) \ 95 get_pfnblock_flags_mask(page, page_to_pfn(page), \ 96 PB_migrate_end, MIGRATETYPE_MASK) 97 98 struct free_area { 99 struct list_head free_list[MIGRATE_TYPES]; 100 unsigned long nr_free; 101 }; 102 103 static inline struct page *get_page_from_free_area(struct free_area *area, 104 int migratetype) 105 { 106 return list_first_entry_or_null(&area->free_list[migratetype], 107 struct page, lru); 108 } 109 110 static inline bool free_area_empty(struct free_area *area, int migratetype) 111 { 112 return list_empty(&area->free_list[migratetype]); 113 } 114 115 struct pglist_data; 116 117 /* 118 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel. 119 * So add a wild amount of padding here to ensure that they fall into separate 120 * cachelines. There are very few zone structures in the machine, so space 121 * consumption is not a concern here. 122 */ 123 #if defined(CONFIG_SMP) 124 struct zone_padding { 125 char x[0]; 126 } ____cacheline_internodealigned_in_smp; 127 #define ZONE_PADDING(name) struct zone_padding name; 128 #else 129 #define ZONE_PADDING(name) 130 #endif 131 132 #ifdef CONFIG_NUMA 133 enum numa_stat_item { 134 NUMA_HIT, /* allocated in intended node */ 135 NUMA_MISS, /* allocated in non intended node */ 136 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 137 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 138 NUMA_LOCAL, /* allocation from local node */ 139 NUMA_OTHER, /* allocation from other node */ 140 NR_VM_NUMA_STAT_ITEMS 141 }; 142 #else 143 #define NR_VM_NUMA_STAT_ITEMS 0 144 #endif 145 146 enum zone_stat_item { 147 /* First 128 byte cacheline (assuming 64 bit words) */ 148 NR_FREE_PAGES, 149 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 150 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 151 NR_ZONE_ACTIVE_ANON, 152 NR_ZONE_INACTIVE_FILE, 153 NR_ZONE_ACTIVE_FILE, 154 NR_ZONE_UNEVICTABLE, 155 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 156 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 157 NR_PAGETABLE, /* used for pagetables */ 158 NR_KERNEL_STACK_KB, /* measured in KiB */ 159 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 160 NR_KERNEL_SCS_KB, /* measured in KiB */ 161 #endif 162 /* Second 128 byte cacheline */ 163 NR_BOUNCE, 164 #if IS_ENABLED(CONFIG_ZSMALLOC) 165 NR_ZSPAGES, /* allocated in zsmalloc */ 166 #endif 167 NR_FREE_CMA_PAGES, 168 NR_VM_ZONE_STAT_ITEMS }; 169 170 enum node_stat_item { 171 NR_LRU_BASE, 172 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 173 NR_ACTIVE_ANON, /* " " " " " */ 174 NR_INACTIVE_FILE, /* " " " " " */ 175 NR_ACTIVE_FILE, /* " " " " " */ 176 NR_UNEVICTABLE, /* " " " " " */ 177 NR_SLAB_RECLAIMABLE_B, 178 NR_SLAB_UNRECLAIMABLE_B, 179 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 180 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 181 WORKINGSET_NODES, 182 WORKINGSET_REFAULT, 183 WORKINGSET_ACTIVATE, 184 WORKINGSET_RESTORE, 185 WORKINGSET_NODERECLAIM, 186 NR_ANON_MAPPED, /* Mapped anonymous pages */ 187 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 188 only modified from process context */ 189 NR_FILE_PAGES, 190 NR_FILE_DIRTY, 191 NR_WRITEBACK, 192 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 193 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 194 NR_SHMEM_THPS, 195 NR_SHMEM_PMDMAPPED, 196 NR_FILE_THPS, 197 NR_FILE_PMDMAPPED, 198 NR_ANON_THPS, 199 NR_VMSCAN_WRITE, 200 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 201 NR_DIRTIED, /* page dirtyings since bootup */ 202 NR_WRITTEN, /* page writings since bootup */ 203 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ 204 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */ 205 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */ 206 NR_VM_NODE_STAT_ITEMS 207 }; 208 209 /* 210 * Returns true if the value is measured in bytes (most vmstat values are 211 * measured in pages). This defines the API part, the internal representation 212 * might be different. 213 */ 214 static __always_inline bool vmstat_item_in_bytes(int idx) 215 { 216 /* 217 * Global and per-node slab counters track slab pages. 218 * It's expected that changes are multiples of PAGE_SIZE. 219 * Internally values are stored in pages. 220 * 221 * Per-memcg and per-lruvec counters track memory, consumed 222 * by individual slab objects. These counters are actually 223 * byte-precise. 224 */ 225 return (idx == NR_SLAB_RECLAIMABLE_B || 226 idx == NR_SLAB_UNRECLAIMABLE_B); 227 } 228 229 /* 230 * We do arithmetic on the LRU lists in various places in the code, 231 * so it is important to keep the active lists LRU_ACTIVE higher in 232 * the array than the corresponding inactive lists, and to keep 233 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 234 * 235 * This has to be kept in sync with the statistics in zone_stat_item 236 * above and the descriptions in vmstat_text in mm/vmstat.c 237 */ 238 #define LRU_BASE 0 239 #define LRU_ACTIVE 1 240 #define LRU_FILE 2 241 242 enum lru_list { 243 LRU_INACTIVE_ANON = LRU_BASE, 244 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 245 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 246 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 247 LRU_UNEVICTABLE, 248 NR_LRU_LISTS 249 }; 250 251 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 252 253 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 254 255 static inline bool is_file_lru(enum lru_list lru) 256 { 257 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 258 } 259 260 static inline bool is_active_lru(enum lru_list lru) 261 { 262 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 263 } 264 265 enum lruvec_flags { 266 LRUVEC_CONGESTED, /* lruvec has many dirty pages 267 * backed by a congested BDI 268 */ 269 }; 270 271 struct lruvec { 272 struct list_head lists[NR_LRU_LISTS]; 273 /* 274 * These track the cost of reclaiming one LRU - file or anon - 275 * over the other. As the observed cost of reclaiming one LRU 276 * increases, the reclaim scan balance tips toward the other. 277 */ 278 unsigned long anon_cost; 279 unsigned long file_cost; 280 /* Non-resident age, driven by LRU movement */ 281 atomic_long_t nonresident_age; 282 /* Refaults at the time of last reclaim cycle */ 283 unsigned long refaults; 284 /* Various lruvec state flags (enum lruvec_flags) */ 285 unsigned long flags; 286 #ifdef CONFIG_MEMCG 287 struct pglist_data *pgdat; 288 #endif 289 }; 290 291 /* Isolate unmapped pages */ 292 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 293 /* Isolate for asynchronous migration */ 294 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 295 /* Isolate unevictable pages */ 296 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 297 298 /* LRU Isolation modes. */ 299 typedef unsigned __bitwise isolate_mode_t; 300 301 enum zone_watermarks { 302 WMARK_MIN, 303 WMARK_LOW, 304 WMARK_HIGH, 305 NR_WMARK 306 }; 307 308 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost) 309 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost) 310 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost) 311 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost) 312 313 struct per_cpu_pages { 314 int count; /* number of pages in the list */ 315 int high; /* high watermark, emptying needed */ 316 int batch; /* chunk size for buddy add/remove */ 317 318 /* Lists of pages, one per migrate type stored on the pcp-lists */ 319 struct list_head lists[MIGRATE_PCPTYPES]; 320 }; 321 322 struct per_cpu_pageset { 323 struct per_cpu_pages pcp; 324 #ifdef CONFIG_NUMA 325 s8 expire; 326 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS]; 327 #endif 328 #ifdef CONFIG_SMP 329 s8 stat_threshold; 330 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 331 #endif 332 }; 333 334 struct per_cpu_nodestat { 335 s8 stat_threshold; 336 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 337 }; 338 339 #endif /* !__GENERATING_BOUNDS.H */ 340 341 enum zone_type { 342 /* 343 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able 344 * to DMA to all of the addressable memory (ZONE_NORMAL). 345 * On architectures where this area covers the whole 32 bit address 346 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller 347 * DMA addressing constraints. This distinction is important as a 32bit 348 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit 349 * platforms may need both zones as they support peripherals with 350 * different DMA addressing limitations. 351 * 352 * Some examples: 353 * 354 * - i386 and x86_64 have a fixed 16M ZONE_DMA and ZONE_DMA32 for the 355 * rest of the lower 4G. 356 * 357 * - arm only uses ZONE_DMA, the size, up to 4G, may vary depending on 358 * the specific device. 359 * 360 * - arm64 has a fixed 1G ZONE_DMA and ZONE_DMA32 for the rest of the 361 * lower 4G. 362 * 363 * - powerpc only uses ZONE_DMA, the size, up to 2G, may vary 364 * depending on the specific device. 365 * 366 * - s390 uses ZONE_DMA fixed to the lower 2G. 367 * 368 * - ia64 and riscv only use ZONE_DMA32. 369 * 370 * - parisc uses neither. 371 */ 372 #ifdef CONFIG_ZONE_DMA 373 ZONE_DMA, 374 #endif 375 #ifdef CONFIG_ZONE_DMA32 376 ZONE_DMA32, 377 #endif 378 /* 379 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 380 * performed on pages in ZONE_NORMAL if the DMA devices support 381 * transfers to all addressable memory. 382 */ 383 ZONE_NORMAL, 384 #ifdef CONFIG_HIGHMEM 385 /* 386 * A memory area that is only addressable by the kernel through 387 * mapping portions into its own address space. This is for example 388 * used by i386 to allow the kernel to address the memory beyond 389 * 900MB. The kernel will set up special mappings (page 390 * table entries on i386) for each page that the kernel needs to 391 * access. 392 */ 393 ZONE_HIGHMEM, 394 #endif 395 ZONE_MOVABLE, 396 #ifdef CONFIG_ZONE_DEVICE 397 ZONE_DEVICE, 398 #endif 399 __MAX_NR_ZONES 400 401 }; 402 403 #ifndef __GENERATING_BOUNDS_H 404 405 struct zone { 406 /* Read-mostly fields */ 407 408 /* zone watermarks, access with *_wmark_pages(zone) macros */ 409 unsigned long _watermark[NR_WMARK]; 410 unsigned long watermark_boost; 411 412 unsigned long nr_reserved_highatomic; 413 414 /* 415 * We don't know if the memory that we're going to allocate will be 416 * freeable or/and it will be released eventually, so to avoid totally 417 * wasting several GB of ram we must reserve some of the lower zone 418 * memory (otherwise we risk to run OOM on the lower zones despite 419 * there being tons of freeable ram on the higher zones). This array is 420 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 421 * changes. 422 */ 423 long lowmem_reserve[MAX_NR_ZONES]; 424 425 #ifdef CONFIG_NUMA 426 int node; 427 #endif 428 struct pglist_data *zone_pgdat; 429 struct per_cpu_pageset __percpu *pageset; 430 431 #ifndef CONFIG_SPARSEMEM 432 /* 433 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 434 * In SPARSEMEM, this map is stored in struct mem_section 435 */ 436 unsigned long *pageblock_flags; 437 #endif /* CONFIG_SPARSEMEM */ 438 439 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 440 unsigned long zone_start_pfn; 441 442 /* 443 * spanned_pages is the total pages spanned by the zone, including 444 * holes, which is calculated as: 445 * spanned_pages = zone_end_pfn - zone_start_pfn; 446 * 447 * present_pages is physical pages existing within the zone, which 448 * is calculated as: 449 * present_pages = spanned_pages - absent_pages(pages in holes); 450 * 451 * managed_pages is present pages managed by the buddy system, which 452 * is calculated as (reserved_pages includes pages allocated by the 453 * bootmem allocator): 454 * managed_pages = present_pages - reserved_pages; 455 * 456 * So present_pages may be used by memory hotplug or memory power 457 * management logic to figure out unmanaged pages by checking 458 * (present_pages - managed_pages). And managed_pages should be used 459 * by page allocator and vm scanner to calculate all kinds of watermarks 460 * and thresholds. 461 * 462 * Locking rules: 463 * 464 * zone_start_pfn and spanned_pages are protected by span_seqlock. 465 * It is a seqlock because it has to be read outside of zone->lock, 466 * and it is done in the main allocator path. But, it is written 467 * quite infrequently. 468 * 469 * The span_seq lock is declared along with zone->lock because it is 470 * frequently read in proximity to zone->lock. It's good to 471 * give them a chance of being in the same cacheline. 472 * 473 * Write access to present_pages at runtime should be protected by 474 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of 475 * present_pages should get_online_mems() to get a stable value. 476 */ 477 atomic_long_t managed_pages; 478 unsigned long spanned_pages; 479 unsigned long present_pages; 480 481 const char *name; 482 483 #ifdef CONFIG_MEMORY_ISOLATION 484 /* 485 * Number of isolated pageblock. It is used to solve incorrect 486 * freepage counting problem due to racy retrieving migratetype 487 * of pageblock. Protected by zone->lock. 488 */ 489 unsigned long nr_isolate_pageblock; 490 #endif 491 492 #ifdef CONFIG_MEMORY_HOTPLUG 493 /* see spanned/present_pages for more description */ 494 seqlock_t span_seqlock; 495 #endif 496 497 int initialized; 498 499 /* Write-intensive fields used from the page allocator */ 500 ZONE_PADDING(_pad1_) 501 502 /* free areas of different sizes */ 503 struct free_area free_area[MAX_ORDER]; 504 505 /* zone flags, see below */ 506 unsigned long flags; 507 508 /* Primarily protects free_area */ 509 spinlock_t lock; 510 511 /* Write-intensive fields used by compaction and vmstats. */ 512 ZONE_PADDING(_pad2_) 513 514 /* 515 * When free pages are below this point, additional steps are taken 516 * when reading the number of free pages to avoid per-cpu counter 517 * drift allowing watermarks to be breached 518 */ 519 unsigned long percpu_drift_mark; 520 521 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 522 /* pfn where compaction free scanner should start */ 523 unsigned long compact_cached_free_pfn; 524 /* pfn where async and sync compaction migration scanner should start */ 525 unsigned long compact_cached_migrate_pfn[2]; 526 unsigned long compact_init_migrate_pfn; 527 unsigned long compact_init_free_pfn; 528 #endif 529 530 #ifdef CONFIG_COMPACTION 531 /* 532 * On compaction failure, 1<<compact_defer_shift compactions 533 * are skipped before trying again. The number attempted since 534 * last failure is tracked with compact_considered. 535 */ 536 unsigned int compact_considered; 537 unsigned int compact_defer_shift; 538 int compact_order_failed; 539 #endif 540 541 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 542 /* Set to true when the PG_migrate_skip bits should be cleared */ 543 bool compact_blockskip_flush; 544 #endif 545 546 bool contiguous; 547 548 ZONE_PADDING(_pad3_) 549 /* Zone statistics */ 550 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 551 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS]; 552 } ____cacheline_internodealigned_in_smp; 553 554 enum pgdat_flags { 555 PGDAT_DIRTY, /* reclaim scanning has recently found 556 * many dirty file pages at the tail 557 * of the LRU. 558 */ 559 PGDAT_WRITEBACK, /* reclaim scanning has recently found 560 * many pages under writeback 561 */ 562 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 563 }; 564 565 enum zone_flags { 566 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. 567 * Cleared when kswapd is woken. 568 */ 569 }; 570 571 static inline unsigned long zone_managed_pages(struct zone *zone) 572 { 573 return (unsigned long)atomic_long_read(&zone->managed_pages); 574 } 575 576 static inline unsigned long zone_end_pfn(const struct zone *zone) 577 { 578 return zone->zone_start_pfn + zone->spanned_pages; 579 } 580 581 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 582 { 583 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 584 } 585 586 static inline bool zone_is_initialized(struct zone *zone) 587 { 588 return zone->initialized; 589 } 590 591 static inline bool zone_is_empty(struct zone *zone) 592 { 593 return zone->spanned_pages == 0; 594 } 595 596 /* 597 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 598 * intersection with the given zone 599 */ 600 static inline bool zone_intersects(struct zone *zone, 601 unsigned long start_pfn, unsigned long nr_pages) 602 { 603 if (zone_is_empty(zone)) 604 return false; 605 if (start_pfn >= zone_end_pfn(zone) || 606 start_pfn + nr_pages <= zone->zone_start_pfn) 607 return false; 608 609 return true; 610 } 611 612 /* 613 * The "priority" of VM scanning is how much of the queues we will scan in one 614 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 615 * queues ("queue_length >> 12") during an aging round. 616 */ 617 #define DEF_PRIORITY 12 618 619 /* Maximum number of zones on a zonelist */ 620 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 621 622 enum { 623 ZONELIST_FALLBACK, /* zonelist with fallback */ 624 #ifdef CONFIG_NUMA 625 /* 626 * The NUMA zonelists are doubled because we need zonelists that 627 * restrict the allocations to a single node for __GFP_THISNODE. 628 */ 629 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 630 #endif 631 MAX_ZONELISTS 632 }; 633 634 /* 635 * This struct contains information about a zone in a zonelist. It is stored 636 * here to avoid dereferences into large structures and lookups of tables 637 */ 638 struct zoneref { 639 struct zone *zone; /* Pointer to actual zone */ 640 int zone_idx; /* zone_idx(zoneref->zone) */ 641 }; 642 643 /* 644 * One allocation request operates on a zonelist. A zonelist 645 * is a list of zones, the first one is the 'goal' of the 646 * allocation, the other zones are fallback zones, in decreasing 647 * priority. 648 * 649 * To speed the reading of the zonelist, the zonerefs contain the zone index 650 * of the entry being read. Helper functions to access information given 651 * a struct zoneref are 652 * 653 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 654 * zonelist_zone_idx() - Return the index of the zone for an entry 655 * zonelist_node_idx() - Return the index of the node for an entry 656 */ 657 struct zonelist { 658 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 659 }; 660 661 #ifndef CONFIG_DISCONTIGMEM 662 /* The array of struct pages - for discontigmem use pgdat->lmem_map */ 663 extern struct page *mem_map; 664 #endif 665 666 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 667 struct deferred_split { 668 spinlock_t split_queue_lock; 669 struct list_head split_queue; 670 unsigned long split_queue_len; 671 }; 672 #endif 673 674 /* 675 * On NUMA machines, each NUMA node would have a pg_data_t to describe 676 * it's memory layout. On UMA machines there is a single pglist_data which 677 * describes the whole memory. 678 * 679 * Memory statistics and page replacement data structures are maintained on a 680 * per-zone basis. 681 */ 682 typedef struct pglist_data { 683 /* 684 * node_zones contains just the zones for THIS node. Not all of the 685 * zones may be populated, but it is the full list. It is referenced by 686 * this node's node_zonelists as well as other node's node_zonelists. 687 */ 688 struct zone node_zones[MAX_NR_ZONES]; 689 690 /* 691 * node_zonelists contains references to all zones in all nodes. 692 * Generally the first zones will be references to this node's 693 * node_zones. 694 */ 695 struct zonelist node_zonelists[MAX_ZONELISTS]; 696 697 int nr_zones; /* number of populated zones in this node */ 698 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 699 struct page *node_mem_map; 700 #ifdef CONFIG_PAGE_EXTENSION 701 struct page_ext *node_page_ext; 702 #endif 703 #endif 704 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) 705 /* 706 * Must be held any time you expect node_start_pfn, 707 * node_present_pages, node_spanned_pages or nr_zones to stay constant. 708 * Also synchronizes pgdat->first_deferred_pfn during deferred page 709 * init. 710 * 711 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 712 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG 713 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. 714 * 715 * Nests above zone->lock and zone->span_seqlock 716 */ 717 spinlock_t node_size_lock; 718 #endif 719 unsigned long node_start_pfn; 720 unsigned long node_present_pages; /* total number of physical pages */ 721 unsigned long node_spanned_pages; /* total size of physical page 722 range, including holes */ 723 int node_id; 724 wait_queue_head_t kswapd_wait; 725 wait_queue_head_t pfmemalloc_wait; 726 struct task_struct *kswapd; /* Protected by 727 mem_hotplug_begin/end() */ 728 int kswapd_order; 729 enum zone_type kswapd_highest_zoneidx; 730 731 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 732 733 #ifdef CONFIG_COMPACTION 734 int kcompactd_max_order; 735 enum zone_type kcompactd_highest_zoneidx; 736 wait_queue_head_t kcompactd_wait; 737 struct task_struct *kcompactd; 738 #endif 739 /* 740 * This is a per-node reserve of pages that are not available 741 * to userspace allocations. 742 */ 743 unsigned long totalreserve_pages; 744 745 #ifdef CONFIG_NUMA 746 /* 747 * node reclaim becomes active if more unmapped pages exist. 748 */ 749 unsigned long min_unmapped_pages; 750 unsigned long min_slab_pages; 751 #endif /* CONFIG_NUMA */ 752 753 /* Write-intensive fields used by page reclaim */ 754 ZONE_PADDING(_pad1_) 755 spinlock_t lru_lock; 756 757 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 758 /* 759 * If memory initialisation on large machines is deferred then this 760 * is the first PFN that needs to be initialised. 761 */ 762 unsigned long first_deferred_pfn; 763 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 764 765 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 766 struct deferred_split deferred_split_queue; 767 #endif 768 769 /* Fields commonly accessed by the page reclaim scanner */ 770 771 /* 772 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. 773 * 774 * Use mem_cgroup_lruvec() to look up lruvecs. 775 */ 776 struct lruvec __lruvec; 777 778 unsigned long flags; 779 780 ZONE_PADDING(_pad2_) 781 782 /* Per-node vmstats */ 783 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 784 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 785 } pg_data_t; 786 787 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 788 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 789 #ifdef CONFIG_FLAT_NODE_MEM_MAP 790 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 791 #else 792 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 793 #endif 794 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 795 796 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 797 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 798 799 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 800 { 801 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 802 } 803 804 static inline bool pgdat_is_empty(pg_data_t *pgdat) 805 { 806 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; 807 } 808 809 #include <linux/memory_hotplug.h> 810 811 void build_all_zonelists(pg_data_t *pgdat); 812 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, 813 enum zone_type highest_zoneidx); 814 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 815 int highest_zoneidx, unsigned int alloc_flags, 816 long free_pages); 817 bool zone_watermark_ok(struct zone *z, unsigned int order, 818 unsigned long mark, int highest_zoneidx, 819 unsigned int alloc_flags); 820 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 821 unsigned long mark, int highest_zoneidx); 822 enum memmap_context { 823 MEMMAP_EARLY, 824 MEMMAP_HOTPLUG, 825 }; 826 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 827 unsigned long size); 828 829 extern void lruvec_init(struct lruvec *lruvec); 830 831 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 832 { 833 #ifdef CONFIG_MEMCG 834 return lruvec->pgdat; 835 #else 836 return container_of(lruvec, struct pglist_data, __lruvec); 837 #endif 838 } 839 840 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx); 841 842 #ifdef CONFIG_HAVE_MEMORY_PRESENT 843 void memory_present(int nid, unsigned long start, unsigned long end); 844 #else 845 static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 846 #endif 847 848 #if defined(CONFIG_SPARSEMEM) 849 void memblocks_present(void); 850 #else 851 static inline void memblocks_present(void) {} 852 #endif 853 854 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 855 int local_memory_node(int node_id); 856 #else 857 static inline int local_memory_node(int node_id) { return node_id; }; 858 #endif 859 860 /* 861 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 862 */ 863 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 864 865 /* 866 * Returns true if a zone has pages managed by the buddy allocator. 867 * All the reclaim decisions have to use this function rather than 868 * populated_zone(). If the whole zone is reserved then we can easily 869 * end up with populated_zone() && !managed_zone(). 870 */ 871 static inline bool managed_zone(struct zone *zone) 872 { 873 return zone_managed_pages(zone); 874 } 875 876 /* Returns true if a zone has memory */ 877 static inline bool populated_zone(struct zone *zone) 878 { 879 return zone->present_pages; 880 } 881 882 #ifdef CONFIG_NUMA 883 static inline int zone_to_nid(struct zone *zone) 884 { 885 return zone->node; 886 } 887 888 static inline void zone_set_nid(struct zone *zone, int nid) 889 { 890 zone->node = nid; 891 } 892 #else 893 static inline int zone_to_nid(struct zone *zone) 894 { 895 return 0; 896 } 897 898 static inline void zone_set_nid(struct zone *zone, int nid) {} 899 #endif 900 901 extern int movable_zone; 902 903 #ifdef CONFIG_HIGHMEM 904 static inline int zone_movable_is_highmem(void) 905 { 906 #ifdef CONFIG_NEED_MULTIPLE_NODES 907 return movable_zone == ZONE_HIGHMEM; 908 #else 909 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM; 910 #endif 911 } 912 #endif 913 914 static inline int is_highmem_idx(enum zone_type idx) 915 { 916 #ifdef CONFIG_HIGHMEM 917 return (idx == ZONE_HIGHMEM || 918 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 919 #else 920 return 0; 921 #endif 922 } 923 924 /** 925 * is_highmem - helper function to quickly check if a struct zone is a 926 * highmem zone or not. This is an attempt to keep references 927 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 928 * @zone - pointer to struct zone variable 929 */ 930 static inline int is_highmem(struct zone *zone) 931 { 932 #ifdef CONFIG_HIGHMEM 933 return is_highmem_idx(zone_idx(zone)); 934 #else 935 return 0; 936 #endif 937 } 938 939 /* These two functions are used to setup the per zone pages min values */ 940 struct ctl_table; 941 942 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *, 943 loff_t *); 944 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *, 945 size_t *, loff_t *); 946 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES]; 947 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *, 948 size_t *, loff_t *); 949 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 950 void *, size_t *, loff_t *); 951 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 952 void *, size_t *, loff_t *); 953 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 954 void *, size_t *, loff_t *); 955 int numa_zonelist_order_handler(struct ctl_table *, int, 956 void *, size_t *, loff_t *); 957 extern int percpu_pagelist_fraction; 958 extern char numa_zonelist_order[]; 959 #define NUMA_ZONELIST_ORDER_LEN 16 960 961 #ifndef CONFIG_NEED_MULTIPLE_NODES 962 963 extern struct pglist_data contig_page_data; 964 #define NODE_DATA(nid) (&contig_page_data) 965 #define NODE_MEM_MAP(nid) mem_map 966 967 #else /* CONFIG_NEED_MULTIPLE_NODES */ 968 969 #include <asm/mmzone.h> 970 971 #endif /* !CONFIG_NEED_MULTIPLE_NODES */ 972 973 extern struct pglist_data *first_online_pgdat(void); 974 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 975 extern struct zone *next_zone(struct zone *zone); 976 977 /** 978 * for_each_online_pgdat - helper macro to iterate over all online nodes 979 * @pgdat - pointer to a pg_data_t variable 980 */ 981 #define for_each_online_pgdat(pgdat) \ 982 for (pgdat = first_online_pgdat(); \ 983 pgdat; \ 984 pgdat = next_online_pgdat(pgdat)) 985 /** 986 * for_each_zone - helper macro to iterate over all memory zones 987 * @zone - pointer to struct zone variable 988 * 989 * The user only needs to declare the zone variable, for_each_zone 990 * fills it in. 991 */ 992 #define for_each_zone(zone) \ 993 for (zone = (first_online_pgdat())->node_zones; \ 994 zone; \ 995 zone = next_zone(zone)) 996 997 #define for_each_populated_zone(zone) \ 998 for (zone = (first_online_pgdat())->node_zones; \ 999 zone; \ 1000 zone = next_zone(zone)) \ 1001 if (!populated_zone(zone)) \ 1002 ; /* do nothing */ \ 1003 else 1004 1005 static inline struct zone *zonelist_zone(struct zoneref *zoneref) 1006 { 1007 return zoneref->zone; 1008 } 1009 1010 static inline int zonelist_zone_idx(struct zoneref *zoneref) 1011 { 1012 return zoneref->zone_idx; 1013 } 1014 1015 static inline int zonelist_node_idx(struct zoneref *zoneref) 1016 { 1017 return zone_to_nid(zoneref->zone); 1018 } 1019 1020 struct zoneref *__next_zones_zonelist(struct zoneref *z, 1021 enum zone_type highest_zoneidx, 1022 nodemask_t *nodes); 1023 1024 /** 1025 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 1026 * @z - The cursor used as a starting point for the search 1027 * @highest_zoneidx - The zone index of the highest zone to return 1028 * @nodes - An optional nodemask to filter the zonelist with 1029 * 1030 * This function returns the next zone at or below a given zone index that is 1031 * within the allowed nodemask using a cursor as the starting point for the 1032 * search. The zoneref returned is a cursor that represents the current zone 1033 * being examined. It should be advanced by one before calling 1034 * next_zones_zonelist again. 1035 */ 1036 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 1037 enum zone_type highest_zoneidx, 1038 nodemask_t *nodes) 1039 { 1040 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 1041 return z; 1042 return __next_zones_zonelist(z, highest_zoneidx, nodes); 1043 } 1044 1045 /** 1046 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1047 * @zonelist - The zonelist to search for a suitable zone 1048 * @highest_zoneidx - The zone index of the highest zone to return 1049 * @nodes - An optional nodemask to filter the zonelist with 1050 * @return - Zoneref pointer for the first suitable zone found (see below) 1051 * 1052 * This function returns the first zone at or below a given zone index that is 1053 * within the allowed nodemask. The zoneref returned is a cursor that can be 1054 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1055 * one before calling. 1056 * 1057 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1058 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1059 * update due to cpuset modification. 1060 */ 1061 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1062 enum zone_type highest_zoneidx, 1063 nodemask_t *nodes) 1064 { 1065 return next_zones_zonelist(zonelist->_zonerefs, 1066 highest_zoneidx, nodes); 1067 } 1068 1069 /** 1070 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1071 * @zone - The current zone in the iterator 1072 * @z - The current pointer within zonelist->_zonerefs being iterated 1073 * @zlist - The zonelist being iterated 1074 * @highidx - The zone index of the highest zone to return 1075 * @nodemask - Nodemask allowed by the allocator 1076 * 1077 * This iterator iterates though all zones at or below a given zone index and 1078 * within a given nodemask 1079 */ 1080 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1081 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1082 zone; \ 1083 z = next_zones_zonelist(++z, highidx, nodemask), \ 1084 zone = zonelist_zone(z)) 1085 1086 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1087 for (zone = z->zone; \ 1088 zone; \ 1089 z = next_zones_zonelist(++z, highidx, nodemask), \ 1090 zone = zonelist_zone(z)) 1091 1092 1093 /** 1094 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1095 * @zone - The current zone in the iterator 1096 * @z - The current pointer within zonelist->zones being iterated 1097 * @zlist - The zonelist being iterated 1098 * @highidx - The zone index of the highest zone to return 1099 * 1100 * This iterator iterates though all zones at or below a given zone index. 1101 */ 1102 #define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1103 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1104 1105 #ifdef CONFIG_SPARSEMEM 1106 #include <asm/sparsemem.h> 1107 #endif 1108 1109 #ifdef CONFIG_FLATMEM 1110 #define pfn_to_nid(pfn) (0) 1111 #endif 1112 1113 #ifdef CONFIG_SPARSEMEM 1114 1115 /* 1116 * SECTION_SHIFT #bits space required to store a section # 1117 * 1118 * PA_SECTION_SHIFT physical address to/from section number 1119 * PFN_SECTION_SHIFT pfn to/from section number 1120 */ 1121 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1122 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1123 1124 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1125 1126 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1127 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1128 1129 #define SECTION_BLOCKFLAGS_BITS \ 1130 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1131 1132 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1133 #error Allocator MAX_ORDER exceeds SECTION_SIZE 1134 #endif 1135 1136 static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1137 { 1138 return pfn >> PFN_SECTION_SHIFT; 1139 } 1140 static inline unsigned long section_nr_to_pfn(unsigned long sec) 1141 { 1142 return sec << PFN_SECTION_SHIFT; 1143 } 1144 1145 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1146 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1147 1148 #define SUBSECTION_SHIFT 21 1149 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT) 1150 1151 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) 1152 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) 1153 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) 1154 1155 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS 1156 #error Subsection size exceeds section size 1157 #else 1158 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) 1159 #endif 1160 1161 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) 1162 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) 1163 1164 struct mem_section_usage { 1165 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1166 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); 1167 #endif 1168 /* See declaration of similar field in struct zone */ 1169 unsigned long pageblock_flags[0]; 1170 }; 1171 1172 void subsection_map_init(unsigned long pfn, unsigned long nr_pages); 1173 1174 struct page; 1175 struct page_ext; 1176 struct mem_section { 1177 /* 1178 * This is, logically, a pointer to an array of struct 1179 * pages. However, it is stored with some other magic. 1180 * (see sparse.c::sparse_init_one_section()) 1181 * 1182 * Additionally during early boot we encode node id of 1183 * the location of the section here to guide allocation. 1184 * (see sparse.c::memory_present()) 1185 * 1186 * Making it a UL at least makes someone do a cast 1187 * before using it wrong. 1188 */ 1189 unsigned long section_mem_map; 1190 1191 struct mem_section_usage *usage; 1192 #ifdef CONFIG_PAGE_EXTENSION 1193 /* 1194 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1195 * section. (see page_ext.h about this.) 1196 */ 1197 struct page_ext *page_ext; 1198 unsigned long pad; 1199 #endif 1200 /* 1201 * WARNING: mem_section must be a power-of-2 in size for the 1202 * calculation and use of SECTION_ROOT_MASK to make sense. 1203 */ 1204 }; 1205 1206 #ifdef CONFIG_SPARSEMEM_EXTREME 1207 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1208 #else 1209 #define SECTIONS_PER_ROOT 1 1210 #endif 1211 1212 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1213 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1214 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1215 1216 #ifdef CONFIG_SPARSEMEM_EXTREME 1217 extern struct mem_section **mem_section; 1218 #else 1219 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1220 #endif 1221 1222 static inline unsigned long *section_to_usemap(struct mem_section *ms) 1223 { 1224 return ms->usage->pageblock_flags; 1225 } 1226 1227 static inline struct mem_section *__nr_to_section(unsigned long nr) 1228 { 1229 #ifdef CONFIG_SPARSEMEM_EXTREME 1230 if (!mem_section) 1231 return NULL; 1232 #endif 1233 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1234 return NULL; 1235 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1236 } 1237 extern unsigned long __section_nr(struct mem_section *ms); 1238 extern size_t mem_section_usage_size(void); 1239 1240 /* 1241 * We use the lower bits of the mem_map pointer to store 1242 * a little bit of information. The pointer is calculated 1243 * as mem_map - section_nr_to_pfn(pnum). The result is 1244 * aligned to the minimum alignment of the two values: 1245 * 1. All mem_map arrays are page-aligned. 1246 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT 1247 * lowest bits. PFN_SECTION_SHIFT is arch-specific 1248 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the 1249 * worst combination is powerpc with 256k pages, 1250 * which results in PFN_SECTION_SHIFT equal 6. 1251 * To sum it up, at least 6 bits are available. 1252 */ 1253 #define SECTION_MARKED_PRESENT (1UL<<0) 1254 #define SECTION_HAS_MEM_MAP (1UL<<1) 1255 #define SECTION_IS_ONLINE (1UL<<2) 1256 #define SECTION_IS_EARLY (1UL<<3) 1257 #define SECTION_MAP_LAST_BIT (1UL<<4) 1258 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1259 #define SECTION_NID_SHIFT 3 1260 1261 static inline struct page *__section_mem_map_addr(struct mem_section *section) 1262 { 1263 unsigned long map = section->section_mem_map; 1264 map &= SECTION_MAP_MASK; 1265 return (struct page *)map; 1266 } 1267 1268 static inline int present_section(struct mem_section *section) 1269 { 1270 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1271 } 1272 1273 static inline int present_section_nr(unsigned long nr) 1274 { 1275 return present_section(__nr_to_section(nr)); 1276 } 1277 1278 static inline int valid_section(struct mem_section *section) 1279 { 1280 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1281 } 1282 1283 static inline int early_section(struct mem_section *section) 1284 { 1285 return (section && (section->section_mem_map & SECTION_IS_EARLY)); 1286 } 1287 1288 static inline int valid_section_nr(unsigned long nr) 1289 { 1290 return valid_section(__nr_to_section(nr)); 1291 } 1292 1293 static inline int online_section(struct mem_section *section) 1294 { 1295 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 1296 } 1297 1298 static inline int online_section_nr(unsigned long nr) 1299 { 1300 return online_section(__nr_to_section(nr)); 1301 } 1302 1303 #ifdef CONFIG_MEMORY_HOTPLUG 1304 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1305 #ifdef CONFIG_MEMORY_HOTREMOVE 1306 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1307 #endif 1308 #endif 1309 1310 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1311 { 1312 return __nr_to_section(pfn_to_section_nr(pfn)); 1313 } 1314 1315 extern unsigned long __highest_present_section_nr; 1316 1317 static inline int subsection_map_index(unsigned long pfn) 1318 { 1319 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; 1320 } 1321 1322 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1323 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1324 { 1325 int idx = subsection_map_index(pfn); 1326 1327 return test_bit(idx, ms->usage->subsection_map); 1328 } 1329 #else 1330 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1331 { 1332 return 1; 1333 } 1334 #endif 1335 1336 #ifndef CONFIG_HAVE_ARCH_PFN_VALID 1337 static inline int pfn_valid(unsigned long pfn) 1338 { 1339 struct mem_section *ms; 1340 1341 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1342 return 0; 1343 ms = __nr_to_section(pfn_to_section_nr(pfn)); 1344 if (!valid_section(ms)) 1345 return 0; 1346 /* 1347 * Traditionally early sections always returned pfn_valid() for 1348 * the entire section-sized span. 1349 */ 1350 return early_section(ms) || pfn_section_valid(ms, pfn); 1351 } 1352 #endif 1353 1354 static inline int pfn_in_present_section(unsigned long pfn) 1355 { 1356 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1357 return 0; 1358 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1359 } 1360 1361 static inline unsigned long next_present_section_nr(unsigned long section_nr) 1362 { 1363 while (++section_nr <= __highest_present_section_nr) { 1364 if (present_section_nr(section_nr)) 1365 return section_nr; 1366 } 1367 1368 return -1; 1369 } 1370 1371 /* 1372 * These are _only_ used during initialisation, therefore they 1373 * can use __initdata ... They could have names to indicate 1374 * this restriction. 1375 */ 1376 #ifdef CONFIG_NUMA 1377 #define pfn_to_nid(pfn) \ 1378 ({ \ 1379 unsigned long __pfn_to_nid_pfn = (pfn); \ 1380 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1381 }) 1382 #else 1383 #define pfn_to_nid(pfn) (0) 1384 #endif 1385 1386 #define early_pfn_valid(pfn) pfn_valid(pfn) 1387 void sparse_init(void); 1388 #else 1389 #define sparse_init() do {} while (0) 1390 #define sparse_index_init(_sec, _nid) do {} while (0) 1391 #define pfn_in_present_section pfn_valid 1392 #define subsection_map_init(_pfn, _nr_pages) do {} while (0) 1393 #endif /* CONFIG_SPARSEMEM */ 1394 1395 /* 1396 * During memory init memblocks map pfns to nids. The search is expensive and 1397 * this caches recent lookups. The implementation of __early_pfn_to_nid 1398 * may treat start/end as pfns or sections. 1399 */ 1400 struct mminit_pfnnid_cache { 1401 unsigned long last_start; 1402 unsigned long last_end; 1403 int last_nid; 1404 }; 1405 1406 #ifndef early_pfn_valid 1407 #define early_pfn_valid(pfn) (1) 1408 #endif 1409 1410 void memory_present(int nid, unsigned long start, unsigned long end); 1411 1412 /* 1413 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1414 * need to check pfn validity within that MAX_ORDER_NR_PAGES block. 1415 * pfn_valid_within() should be used in this case; we optimise this away 1416 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1417 */ 1418 #ifdef CONFIG_HOLES_IN_ZONE 1419 #define pfn_valid_within(pfn) pfn_valid(pfn) 1420 #else 1421 #define pfn_valid_within(pfn) (1) 1422 #endif 1423 1424 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1425 /* 1426 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1427 * associated with it or not. This means that a struct page exists for this 1428 * pfn. The caller cannot assume the page is fully initialized in general. 1429 * Hotplugable pages might not have been onlined yet. pfn_to_online_page() 1430 * will ensure the struct page is fully online and initialized. Special pages 1431 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly. 1432 * 1433 * In FLATMEM, it is expected that holes always have valid memmap as long as 1434 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed 1435 * that a valid section has a memmap for the entire section. 1436 * 1437 * However, an ARM, and maybe other embedded architectures in the future 1438 * free memmap backing holes to save memory on the assumption the memmap is 1439 * never used. The page_zone linkages are then broken even though pfn_valid() 1440 * returns true. A walker of the full memmap must then do this additional 1441 * check to ensure the memmap they are looking at is sane by making sure 1442 * the zone and PFN linkages are still valid. This is expensive, but walkers 1443 * of the full memmap are extremely rare. 1444 */ 1445 bool memmap_valid_within(unsigned long pfn, 1446 struct page *page, struct zone *zone); 1447 #else 1448 static inline bool memmap_valid_within(unsigned long pfn, 1449 struct page *page, struct zone *zone) 1450 { 1451 return true; 1452 } 1453 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1454 1455 #endif /* !__GENERATING_BOUNDS.H */ 1456 #endif /* !__ASSEMBLY__ */ 1457 #endif /* _LINUX_MMZONE_H */ 1458