xref: /linux-6.15/include/linux/mmzone.h (revision facb4edc)
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3 
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6 
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <generated/bounds.h>
19 #include <asm/atomic.h>
20 #include <asm/page.h>
21 
22 /* Free memory management - zoned buddy allocator.  */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29 
30 /*
31  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32  * costly to service.  That is between allocation orders which should
33  * coelesce naturally under reasonable reclaim pressure and those which
34  * will not.
35  */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37 
38 #define MIGRATE_UNMOVABLE     0
39 #define MIGRATE_RECLAIMABLE   1
40 #define MIGRATE_MOVABLE       2
41 #define MIGRATE_PCPTYPES      3 /* the number of types on the pcp lists */
42 #define MIGRATE_RESERVE       3
43 #define MIGRATE_ISOLATE       4 /* can't allocate from here */
44 #define MIGRATE_TYPES         5
45 
46 #define for_each_migratetype_order(order, type) \
47 	for (order = 0; order < MAX_ORDER; order++) \
48 		for (type = 0; type < MIGRATE_TYPES; type++)
49 
50 extern int page_group_by_mobility_disabled;
51 
52 static inline int get_pageblock_migratetype(struct page *page)
53 {
54 	return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
55 }
56 
57 struct free_area {
58 	struct list_head	free_list[MIGRATE_TYPES];
59 	unsigned long		nr_free;
60 };
61 
62 struct pglist_data;
63 
64 /*
65  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
66  * So add a wild amount of padding here to ensure that they fall into separate
67  * cachelines.  There are very few zone structures in the machine, so space
68  * consumption is not a concern here.
69  */
70 #if defined(CONFIG_SMP)
71 struct zone_padding {
72 	char x[0];
73 } ____cacheline_internodealigned_in_smp;
74 #define ZONE_PADDING(name)	struct zone_padding name;
75 #else
76 #define ZONE_PADDING(name)
77 #endif
78 
79 enum zone_stat_item {
80 	/* First 128 byte cacheline (assuming 64 bit words) */
81 	NR_FREE_PAGES,
82 	NR_LRU_BASE,
83 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
84 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
85 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
86 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
87 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
88 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
89 	NR_ANON_PAGES,	/* Mapped anonymous pages */
90 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
91 			   only modified from process context */
92 	NR_FILE_PAGES,
93 	NR_FILE_DIRTY,
94 	NR_WRITEBACK,
95 	NR_SLAB_RECLAIMABLE,
96 	NR_SLAB_UNRECLAIMABLE,
97 	NR_PAGETABLE,		/* used for pagetables */
98 	NR_KERNEL_STACK,
99 	/* Second 128 byte cacheline */
100 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
101 	NR_BOUNCE,
102 	NR_VMSCAN_WRITE,
103 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
104 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
105 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
106 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
107 	NR_DIRTIED,		/* page dirtyings since bootup */
108 	NR_WRITTEN,		/* page writings since bootup */
109 #ifdef CONFIG_NUMA
110 	NUMA_HIT,		/* allocated in intended node */
111 	NUMA_MISS,		/* allocated in non intended node */
112 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
113 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
114 	NUMA_LOCAL,		/* allocation from local node */
115 	NUMA_OTHER,		/* allocation from other node */
116 #endif
117 	NR_VM_ZONE_STAT_ITEMS };
118 
119 /*
120  * We do arithmetic on the LRU lists in various places in the code,
121  * so it is important to keep the active lists LRU_ACTIVE higher in
122  * the array than the corresponding inactive lists, and to keep
123  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
124  *
125  * This has to be kept in sync with the statistics in zone_stat_item
126  * above and the descriptions in vmstat_text in mm/vmstat.c
127  */
128 #define LRU_BASE 0
129 #define LRU_ACTIVE 1
130 #define LRU_FILE 2
131 
132 enum lru_list {
133 	LRU_INACTIVE_ANON = LRU_BASE,
134 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
135 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
136 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
137 	LRU_UNEVICTABLE,
138 	NR_LRU_LISTS
139 };
140 
141 #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
142 
143 #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
144 
145 static inline int is_file_lru(enum lru_list l)
146 {
147 	return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
148 }
149 
150 static inline int is_active_lru(enum lru_list l)
151 {
152 	return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
153 }
154 
155 static inline int is_unevictable_lru(enum lru_list l)
156 {
157 	return (l == LRU_UNEVICTABLE);
158 }
159 
160 enum zone_watermarks {
161 	WMARK_MIN,
162 	WMARK_LOW,
163 	WMARK_HIGH,
164 	NR_WMARK
165 };
166 
167 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
168 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
169 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
170 
171 struct per_cpu_pages {
172 	int count;		/* number of pages in the list */
173 	int high;		/* high watermark, emptying needed */
174 	int batch;		/* chunk size for buddy add/remove */
175 
176 	/* Lists of pages, one per migrate type stored on the pcp-lists */
177 	struct list_head lists[MIGRATE_PCPTYPES];
178 };
179 
180 struct per_cpu_pageset {
181 	struct per_cpu_pages pcp;
182 #ifdef CONFIG_NUMA
183 	s8 expire;
184 #endif
185 #ifdef CONFIG_SMP
186 	s8 stat_threshold;
187 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
188 #endif
189 };
190 
191 #endif /* !__GENERATING_BOUNDS.H */
192 
193 enum zone_type {
194 #ifdef CONFIG_ZONE_DMA
195 	/*
196 	 * ZONE_DMA is used when there are devices that are not able
197 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
198 	 * carve out the portion of memory that is needed for these devices.
199 	 * The range is arch specific.
200 	 *
201 	 * Some examples
202 	 *
203 	 * Architecture		Limit
204 	 * ---------------------------
205 	 * parisc, ia64, sparc	<4G
206 	 * s390			<2G
207 	 * arm			Various
208 	 * alpha		Unlimited or 0-16MB.
209 	 *
210 	 * i386, x86_64 and multiple other arches
211 	 * 			<16M.
212 	 */
213 	ZONE_DMA,
214 #endif
215 #ifdef CONFIG_ZONE_DMA32
216 	/*
217 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
218 	 * only able to do DMA to the lower 16M but also 32 bit devices that
219 	 * can only do DMA areas below 4G.
220 	 */
221 	ZONE_DMA32,
222 #endif
223 	/*
224 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
225 	 * performed on pages in ZONE_NORMAL if the DMA devices support
226 	 * transfers to all addressable memory.
227 	 */
228 	ZONE_NORMAL,
229 #ifdef CONFIG_HIGHMEM
230 	/*
231 	 * A memory area that is only addressable by the kernel through
232 	 * mapping portions into its own address space. This is for example
233 	 * used by i386 to allow the kernel to address the memory beyond
234 	 * 900MB. The kernel will set up special mappings (page
235 	 * table entries on i386) for each page that the kernel needs to
236 	 * access.
237 	 */
238 	ZONE_HIGHMEM,
239 #endif
240 	ZONE_MOVABLE,
241 	__MAX_NR_ZONES
242 };
243 
244 #ifndef __GENERATING_BOUNDS_H
245 
246 /*
247  * When a memory allocation must conform to specific limitations (such
248  * as being suitable for DMA) the caller will pass in hints to the
249  * allocator in the gfp_mask, in the zone modifier bits.  These bits
250  * are used to select a priority ordered list of memory zones which
251  * match the requested limits. See gfp_zone() in include/linux/gfp.h
252  */
253 
254 #if MAX_NR_ZONES < 2
255 #define ZONES_SHIFT 0
256 #elif MAX_NR_ZONES <= 2
257 #define ZONES_SHIFT 1
258 #elif MAX_NR_ZONES <= 4
259 #define ZONES_SHIFT 2
260 #else
261 #error ZONES_SHIFT -- too many zones configured adjust calculation
262 #endif
263 
264 struct zone_reclaim_stat {
265 	/*
266 	 * The pageout code in vmscan.c keeps track of how many of the
267 	 * mem/swap backed and file backed pages are refeferenced.
268 	 * The higher the rotated/scanned ratio, the more valuable
269 	 * that cache is.
270 	 *
271 	 * The anon LRU stats live in [0], file LRU stats in [1]
272 	 */
273 	unsigned long		recent_rotated[2];
274 	unsigned long		recent_scanned[2];
275 
276 	/*
277 	 * accumulated for batching
278 	 */
279 	unsigned long		nr_saved_scan[NR_LRU_LISTS];
280 };
281 
282 struct zone {
283 	/* Fields commonly accessed by the page allocator */
284 
285 	/* zone watermarks, access with *_wmark_pages(zone) macros */
286 	unsigned long watermark[NR_WMARK];
287 
288 	/*
289 	 * When free pages are below this point, additional steps are taken
290 	 * when reading the number of free pages to avoid per-cpu counter
291 	 * drift allowing watermarks to be breached
292 	 */
293 	unsigned long percpu_drift_mark;
294 
295 	/*
296 	 * We don't know if the memory that we're going to allocate will be freeable
297 	 * or/and it will be released eventually, so to avoid totally wasting several
298 	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
299 	 * to run OOM on the lower zones despite there's tons of freeable ram
300 	 * on the higher zones). This array is recalculated at runtime if the
301 	 * sysctl_lowmem_reserve_ratio sysctl changes.
302 	 */
303 	unsigned long		lowmem_reserve[MAX_NR_ZONES];
304 
305 #ifdef CONFIG_NUMA
306 	int node;
307 	/*
308 	 * zone reclaim becomes active if more unmapped pages exist.
309 	 */
310 	unsigned long		min_unmapped_pages;
311 	unsigned long		min_slab_pages;
312 #endif
313 	struct per_cpu_pageset __percpu *pageset;
314 	/*
315 	 * free areas of different sizes
316 	 */
317 	spinlock_t		lock;
318 	int                     all_unreclaimable; /* All pages pinned */
319 #ifdef CONFIG_MEMORY_HOTPLUG
320 	/* see spanned/present_pages for more description */
321 	seqlock_t		span_seqlock;
322 #endif
323 	struct free_area	free_area[MAX_ORDER];
324 
325 #ifndef CONFIG_SPARSEMEM
326 	/*
327 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
328 	 * In SPARSEMEM, this map is stored in struct mem_section
329 	 */
330 	unsigned long		*pageblock_flags;
331 #endif /* CONFIG_SPARSEMEM */
332 
333 #ifdef CONFIG_COMPACTION
334 	/*
335 	 * On compaction failure, 1<<compact_defer_shift compactions
336 	 * are skipped before trying again. The number attempted since
337 	 * last failure is tracked with compact_considered.
338 	 */
339 	unsigned int		compact_considered;
340 	unsigned int		compact_defer_shift;
341 #endif
342 
343 	ZONE_PADDING(_pad1_)
344 
345 	/* Fields commonly accessed by the page reclaim scanner */
346 	spinlock_t		lru_lock;
347 	struct zone_lru {
348 		struct list_head list;
349 	} lru[NR_LRU_LISTS];
350 
351 	struct zone_reclaim_stat reclaim_stat;
352 
353 	unsigned long		pages_scanned;	   /* since last reclaim */
354 	unsigned long		flags;		   /* zone flags, see below */
355 
356 	/* Zone statistics */
357 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
358 
359 	/*
360 	 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
361 	 * this zone's LRU.  Maintained by the pageout code.
362 	 */
363 	unsigned int inactive_ratio;
364 
365 
366 	ZONE_PADDING(_pad2_)
367 	/* Rarely used or read-mostly fields */
368 
369 	/*
370 	 * wait_table		-- the array holding the hash table
371 	 * wait_table_hash_nr_entries	-- the size of the hash table array
372 	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
373 	 *
374 	 * The purpose of all these is to keep track of the people
375 	 * waiting for a page to become available and make them
376 	 * runnable again when possible. The trouble is that this
377 	 * consumes a lot of space, especially when so few things
378 	 * wait on pages at a given time. So instead of using
379 	 * per-page waitqueues, we use a waitqueue hash table.
380 	 *
381 	 * The bucket discipline is to sleep on the same queue when
382 	 * colliding and wake all in that wait queue when removing.
383 	 * When something wakes, it must check to be sure its page is
384 	 * truly available, a la thundering herd. The cost of a
385 	 * collision is great, but given the expected load of the
386 	 * table, they should be so rare as to be outweighed by the
387 	 * benefits from the saved space.
388 	 *
389 	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
390 	 * primary users of these fields, and in mm/page_alloc.c
391 	 * free_area_init_core() performs the initialization of them.
392 	 */
393 	wait_queue_head_t	* wait_table;
394 	unsigned long		wait_table_hash_nr_entries;
395 	unsigned long		wait_table_bits;
396 
397 	/*
398 	 * Discontig memory support fields.
399 	 */
400 	struct pglist_data	*zone_pgdat;
401 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
402 	unsigned long		zone_start_pfn;
403 
404 	/*
405 	 * zone_start_pfn, spanned_pages and present_pages are all
406 	 * protected by span_seqlock.  It is a seqlock because it has
407 	 * to be read outside of zone->lock, and it is done in the main
408 	 * allocator path.  But, it is written quite infrequently.
409 	 *
410 	 * The lock is declared along with zone->lock because it is
411 	 * frequently read in proximity to zone->lock.  It's good to
412 	 * give them a chance of being in the same cacheline.
413 	 */
414 	unsigned long		spanned_pages;	/* total size, including holes */
415 	unsigned long		present_pages;	/* amount of memory (excluding holes) */
416 
417 	/*
418 	 * rarely used fields:
419 	 */
420 	const char		*name;
421 } ____cacheline_internodealigned_in_smp;
422 
423 typedef enum {
424 	ZONE_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
425 	ZONE_OOM_LOCKED,		/* zone is in OOM killer zonelist */
426 	ZONE_CONGESTED,			/* zone has many dirty pages backed by
427 					 * a congested BDI
428 					 */
429 } zone_flags_t;
430 
431 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
432 {
433 	set_bit(flag, &zone->flags);
434 }
435 
436 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
437 {
438 	return test_and_set_bit(flag, &zone->flags);
439 }
440 
441 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
442 {
443 	clear_bit(flag, &zone->flags);
444 }
445 
446 static inline int zone_is_reclaim_congested(const struct zone *zone)
447 {
448 	return test_bit(ZONE_CONGESTED, &zone->flags);
449 }
450 
451 static inline int zone_is_reclaim_locked(const struct zone *zone)
452 {
453 	return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
454 }
455 
456 static inline int zone_is_oom_locked(const struct zone *zone)
457 {
458 	return test_bit(ZONE_OOM_LOCKED, &zone->flags);
459 }
460 
461 #ifdef CONFIG_SMP
462 unsigned long zone_nr_free_pages(struct zone *zone);
463 #else
464 #define zone_nr_free_pages(zone) zone_page_state(zone, NR_FREE_PAGES)
465 #endif /* CONFIG_SMP */
466 
467 /*
468  * The "priority" of VM scanning is how much of the queues we will scan in one
469  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
470  * queues ("queue_length >> 12") during an aging round.
471  */
472 #define DEF_PRIORITY 12
473 
474 /* Maximum number of zones on a zonelist */
475 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
476 
477 #ifdef CONFIG_NUMA
478 
479 /*
480  * The NUMA zonelists are doubled becausse we need zonelists that restrict the
481  * allocations to a single node for GFP_THISNODE.
482  *
483  * [0]	: Zonelist with fallback
484  * [1]	: No fallback (GFP_THISNODE)
485  */
486 #define MAX_ZONELISTS 2
487 
488 
489 /*
490  * We cache key information from each zonelist for smaller cache
491  * footprint when scanning for free pages in get_page_from_freelist().
492  *
493  * 1) The BITMAP fullzones tracks which zones in a zonelist have come
494  *    up short of free memory since the last time (last_fullzone_zap)
495  *    we zero'd fullzones.
496  * 2) The array z_to_n[] maps each zone in the zonelist to its node
497  *    id, so that we can efficiently evaluate whether that node is
498  *    set in the current tasks mems_allowed.
499  *
500  * Both fullzones and z_to_n[] are one-to-one with the zonelist,
501  * indexed by a zones offset in the zonelist zones[] array.
502  *
503  * The get_page_from_freelist() routine does two scans.  During the
504  * first scan, we skip zones whose corresponding bit in 'fullzones'
505  * is set or whose corresponding node in current->mems_allowed (which
506  * comes from cpusets) is not set.  During the second scan, we bypass
507  * this zonelist_cache, to ensure we look methodically at each zone.
508  *
509  * Once per second, we zero out (zap) fullzones, forcing us to
510  * reconsider nodes that might have regained more free memory.
511  * The field last_full_zap is the time we last zapped fullzones.
512  *
513  * This mechanism reduces the amount of time we waste repeatedly
514  * reexaming zones for free memory when they just came up low on
515  * memory momentarilly ago.
516  *
517  * The zonelist_cache struct members logically belong in struct
518  * zonelist.  However, the mempolicy zonelists constructed for
519  * MPOL_BIND are intentionally variable length (and usually much
520  * shorter).  A general purpose mechanism for handling structs with
521  * multiple variable length members is more mechanism than we want
522  * here.  We resort to some special case hackery instead.
523  *
524  * The MPOL_BIND zonelists don't need this zonelist_cache (in good
525  * part because they are shorter), so we put the fixed length stuff
526  * at the front of the zonelist struct, ending in a variable length
527  * zones[], as is needed by MPOL_BIND.
528  *
529  * Then we put the optional zonelist cache on the end of the zonelist
530  * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
531  * the fixed length portion at the front of the struct.  This pointer
532  * both enables us to find the zonelist cache, and in the case of
533  * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
534  * to know that the zonelist cache is not there.
535  *
536  * The end result is that struct zonelists come in two flavors:
537  *  1) The full, fixed length version, shown below, and
538  *  2) The custom zonelists for MPOL_BIND.
539  * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
540  *
541  * Even though there may be multiple CPU cores on a node modifying
542  * fullzones or last_full_zap in the same zonelist_cache at the same
543  * time, we don't lock it.  This is just hint data - if it is wrong now
544  * and then, the allocator will still function, perhaps a bit slower.
545  */
546 
547 
548 struct zonelist_cache {
549 	unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];		/* zone->nid */
550 	DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);	/* zone full? */
551 	unsigned long last_full_zap;		/* when last zap'd (jiffies) */
552 };
553 #else
554 #define MAX_ZONELISTS 1
555 struct zonelist_cache;
556 #endif
557 
558 /*
559  * This struct contains information about a zone in a zonelist. It is stored
560  * here to avoid dereferences into large structures and lookups of tables
561  */
562 struct zoneref {
563 	struct zone *zone;	/* Pointer to actual zone */
564 	int zone_idx;		/* zone_idx(zoneref->zone) */
565 };
566 
567 /*
568  * One allocation request operates on a zonelist. A zonelist
569  * is a list of zones, the first one is the 'goal' of the
570  * allocation, the other zones are fallback zones, in decreasing
571  * priority.
572  *
573  * If zlcache_ptr is not NULL, then it is just the address of zlcache,
574  * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
575  * *
576  * To speed the reading of the zonelist, the zonerefs contain the zone index
577  * of the entry being read. Helper functions to access information given
578  * a struct zoneref are
579  *
580  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
581  * zonelist_zone_idx()	- Return the index of the zone for an entry
582  * zonelist_node_idx()	- Return the index of the node for an entry
583  */
584 struct zonelist {
585 	struct zonelist_cache *zlcache_ptr;		     // NULL or &zlcache
586 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
587 #ifdef CONFIG_NUMA
588 	struct zonelist_cache zlcache;			     // optional ...
589 #endif
590 };
591 
592 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
593 struct node_active_region {
594 	unsigned long start_pfn;
595 	unsigned long end_pfn;
596 	int nid;
597 };
598 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
599 
600 #ifndef CONFIG_DISCONTIGMEM
601 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
602 extern struct page *mem_map;
603 #endif
604 
605 /*
606  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
607  * (mostly NUMA machines?) to denote a higher-level memory zone than the
608  * zone denotes.
609  *
610  * On NUMA machines, each NUMA node would have a pg_data_t to describe
611  * it's memory layout.
612  *
613  * Memory statistics and page replacement data structures are maintained on a
614  * per-zone basis.
615  */
616 struct bootmem_data;
617 typedef struct pglist_data {
618 	struct zone node_zones[MAX_NR_ZONES];
619 	struct zonelist node_zonelists[MAX_ZONELISTS];
620 	int nr_zones;
621 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
622 	struct page *node_mem_map;
623 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
624 	struct page_cgroup *node_page_cgroup;
625 #endif
626 #endif
627 #ifndef CONFIG_NO_BOOTMEM
628 	struct bootmem_data *bdata;
629 #endif
630 #ifdef CONFIG_MEMORY_HOTPLUG
631 	/*
632 	 * Must be held any time you expect node_start_pfn, node_present_pages
633 	 * or node_spanned_pages stay constant.  Holding this will also
634 	 * guarantee that any pfn_valid() stays that way.
635 	 *
636 	 * Nests above zone->lock and zone->size_seqlock.
637 	 */
638 	spinlock_t node_size_lock;
639 #endif
640 	unsigned long node_start_pfn;
641 	unsigned long node_present_pages; /* total number of physical pages */
642 	unsigned long node_spanned_pages; /* total size of physical page
643 					     range, including holes */
644 	int node_id;
645 	wait_queue_head_t kswapd_wait;
646 	struct task_struct *kswapd;
647 	int kswapd_max_order;
648 } pg_data_t;
649 
650 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
651 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
652 #ifdef CONFIG_FLAT_NODE_MEM_MAP
653 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
654 #else
655 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
656 #endif
657 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
658 
659 #include <linux/memory_hotplug.h>
660 
661 extern struct mutex zonelists_mutex;
662 void build_all_zonelists(void *data);
663 void wakeup_kswapd(struct zone *zone, int order);
664 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
665 		int classzone_idx, int alloc_flags);
666 enum memmap_context {
667 	MEMMAP_EARLY,
668 	MEMMAP_HOTPLUG,
669 };
670 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
671 				     unsigned long size,
672 				     enum memmap_context context);
673 
674 #ifdef CONFIG_HAVE_MEMORY_PRESENT
675 void memory_present(int nid, unsigned long start, unsigned long end);
676 #else
677 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
678 #endif
679 
680 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
681 int local_memory_node(int node_id);
682 #else
683 static inline int local_memory_node(int node_id) { return node_id; };
684 #endif
685 
686 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
687 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
688 #endif
689 
690 /*
691  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
692  */
693 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
694 
695 static inline int populated_zone(struct zone *zone)
696 {
697 	return (!!zone->present_pages);
698 }
699 
700 extern int movable_zone;
701 
702 static inline int zone_movable_is_highmem(void)
703 {
704 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
705 	return movable_zone == ZONE_HIGHMEM;
706 #else
707 	return 0;
708 #endif
709 }
710 
711 static inline int is_highmem_idx(enum zone_type idx)
712 {
713 #ifdef CONFIG_HIGHMEM
714 	return (idx == ZONE_HIGHMEM ||
715 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
716 #else
717 	return 0;
718 #endif
719 }
720 
721 static inline int is_normal_idx(enum zone_type idx)
722 {
723 	return (idx == ZONE_NORMAL);
724 }
725 
726 /**
727  * is_highmem - helper function to quickly check if a struct zone is a
728  *              highmem zone or not.  This is an attempt to keep references
729  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
730  * @zone - pointer to struct zone variable
731  */
732 static inline int is_highmem(struct zone *zone)
733 {
734 #ifdef CONFIG_HIGHMEM
735 	int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
736 	return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
737 	       (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
738 		zone_movable_is_highmem());
739 #else
740 	return 0;
741 #endif
742 }
743 
744 static inline int is_normal(struct zone *zone)
745 {
746 	return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
747 }
748 
749 static inline int is_dma32(struct zone *zone)
750 {
751 #ifdef CONFIG_ZONE_DMA32
752 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
753 #else
754 	return 0;
755 #endif
756 }
757 
758 static inline int is_dma(struct zone *zone)
759 {
760 #ifdef CONFIG_ZONE_DMA
761 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
762 #else
763 	return 0;
764 #endif
765 }
766 
767 /* These two functions are used to setup the per zone pages min values */
768 struct ctl_table;
769 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
770 					void __user *, size_t *, loff_t *);
771 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
772 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
773 					void __user *, size_t *, loff_t *);
774 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
775 					void __user *, size_t *, loff_t *);
776 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
777 			void __user *, size_t *, loff_t *);
778 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
779 			void __user *, size_t *, loff_t *);
780 
781 extern int numa_zonelist_order_handler(struct ctl_table *, int,
782 			void __user *, size_t *, loff_t *);
783 extern char numa_zonelist_order[];
784 #define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */
785 
786 #ifndef CONFIG_NEED_MULTIPLE_NODES
787 
788 extern struct pglist_data contig_page_data;
789 #define NODE_DATA(nid)		(&contig_page_data)
790 #define NODE_MEM_MAP(nid)	mem_map
791 
792 #else /* CONFIG_NEED_MULTIPLE_NODES */
793 
794 #include <asm/mmzone.h>
795 
796 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
797 
798 extern struct pglist_data *first_online_pgdat(void);
799 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
800 extern struct zone *next_zone(struct zone *zone);
801 
802 /**
803  * for_each_online_pgdat - helper macro to iterate over all online nodes
804  * @pgdat - pointer to a pg_data_t variable
805  */
806 #define for_each_online_pgdat(pgdat)			\
807 	for (pgdat = first_online_pgdat();		\
808 	     pgdat;					\
809 	     pgdat = next_online_pgdat(pgdat))
810 /**
811  * for_each_zone - helper macro to iterate over all memory zones
812  * @zone - pointer to struct zone variable
813  *
814  * The user only needs to declare the zone variable, for_each_zone
815  * fills it in.
816  */
817 #define for_each_zone(zone)			        \
818 	for (zone = (first_online_pgdat())->node_zones; \
819 	     zone;					\
820 	     zone = next_zone(zone))
821 
822 #define for_each_populated_zone(zone)		        \
823 	for (zone = (first_online_pgdat())->node_zones; \
824 	     zone;					\
825 	     zone = next_zone(zone))			\
826 		if (!populated_zone(zone))		\
827 			; /* do nothing */		\
828 		else
829 
830 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
831 {
832 	return zoneref->zone;
833 }
834 
835 static inline int zonelist_zone_idx(struct zoneref *zoneref)
836 {
837 	return zoneref->zone_idx;
838 }
839 
840 static inline int zonelist_node_idx(struct zoneref *zoneref)
841 {
842 #ifdef CONFIG_NUMA
843 	/* zone_to_nid not available in this context */
844 	return zoneref->zone->node;
845 #else
846 	return 0;
847 #endif /* CONFIG_NUMA */
848 }
849 
850 /**
851  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
852  * @z - The cursor used as a starting point for the search
853  * @highest_zoneidx - The zone index of the highest zone to return
854  * @nodes - An optional nodemask to filter the zonelist with
855  * @zone - The first suitable zone found is returned via this parameter
856  *
857  * This function returns the next zone at or below a given zone index that is
858  * within the allowed nodemask using a cursor as the starting point for the
859  * search. The zoneref returned is a cursor that represents the current zone
860  * being examined. It should be advanced by one before calling
861  * next_zones_zonelist again.
862  */
863 struct zoneref *next_zones_zonelist(struct zoneref *z,
864 					enum zone_type highest_zoneidx,
865 					nodemask_t *nodes,
866 					struct zone **zone);
867 
868 /**
869  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
870  * @zonelist - The zonelist to search for a suitable zone
871  * @highest_zoneidx - The zone index of the highest zone to return
872  * @nodes - An optional nodemask to filter the zonelist with
873  * @zone - The first suitable zone found is returned via this parameter
874  *
875  * This function returns the first zone at or below a given zone index that is
876  * within the allowed nodemask. The zoneref returned is a cursor that can be
877  * used to iterate the zonelist with next_zones_zonelist by advancing it by
878  * one before calling.
879  */
880 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
881 					enum zone_type highest_zoneidx,
882 					nodemask_t *nodes,
883 					struct zone **zone)
884 {
885 	return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
886 								zone);
887 }
888 
889 /**
890  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
891  * @zone - The current zone in the iterator
892  * @z - The current pointer within zonelist->zones being iterated
893  * @zlist - The zonelist being iterated
894  * @highidx - The zone index of the highest zone to return
895  * @nodemask - Nodemask allowed by the allocator
896  *
897  * This iterator iterates though all zones at or below a given zone index and
898  * within a given nodemask
899  */
900 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
901 	for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone);	\
902 		zone;							\
903 		z = next_zones_zonelist(++z, highidx, nodemask, &zone))	\
904 
905 /**
906  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
907  * @zone - The current zone in the iterator
908  * @z - The current pointer within zonelist->zones being iterated
909  * @zlist - The zonelist being iterated
910  * @highidx - The zone index of the highest zone to return
911  *
912  * This iterator iterates though all zones at or below a given zone index.
913  */
914 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
915 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
916 
917 #ifdef CONFIG_SPARSEMEM
918 #include <asm/sparsemem.h>
919 #endif
920 
921 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
922 	!defined(CONFIG_ARCH_POPULATES_NODE_MAP)
923 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
924 {
925 	return 0;
926 }
927 #endif
928 
929 #ifdef CONFIG_FLATMEM
930 #define pfn_to_nid(pfn)		(0)
931 #endif
932 
933 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
934 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
935 
936 #ifdef CONFIG_SPARSEMEM
937 
938 /*
939  * SECTION_SHIFT    		#bits space required to store a section #
940  *
941  * PA_SECTION_SHIFT		physical address to/from section number
942  * PFN_SECTION_SHIFT		pfn to/from section number
943  */
944 #define SECTIONS_SHIFT		(MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
945 
946 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
947 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
948 
949 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
950 
951 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
952 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
953 
954 #define SECTION_BLOCKFLAGS_BITS \
955 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
956 
957 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
958 #error Allocator MAX_ORDER exceeds SECTION_SIZE
959 #endif
960 
961 struct page;
962 struct page_cgroup;
963 struct mem_section {
964 	/*
965 	 * This is, logically, a pointer to an array of struct
966 	 * pages.  However, it is stored with some other magic.
967 	 * (see sparse.c::sparse_init_one_section())
968 	 *
969 	 * Additionally during early boot we encode node id of
970 	 * the location of the section here to guide allocation.
971 	 * (see sparse.c::memory_present())
972 	 *
973 	 * Making it a UL at least makes someone do a cast
974 	 * before using it wrong.
975 	 */
976 	unsigned long section_mem_map;
977 
978 	/* See declaration of similar field in struct zone */
979 	unsigned long *pageblock_flags;
980 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
981 	/*
982 	 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
983 	 * section. (see memcontrol.h/page_cgroup.h about this.)
984 	 */
985 	struct page_cgroup *page_cgroup;
986 	unsigned long pad;
987 #endif
988 };
989 
990 #ifdef CONFIG_SPARSEMEM_EXTREME
991 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
992 #else
993 #define SECTIONS_PER_ROOT	1
994 #endif
995 
996 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
997 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
998 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
999 
1000 #ifdef CONFIG_SPARSEMEM_EXTREME
1001 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1002 #else
1003 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1004 #endif
1005 
1006 static inline struct mem_section *__nr_to_section(unsigned long nr)
1007 {
1008 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1009 		return NULL;
1010 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1011 }
1012 extern int __section_nr(struct mem_section* ms);
1013 extern unsigned long usemap_size(void);
1014 
1015 /*
1016  * We use the lower bits of the mem_map pointer to store
1017  * a little bit of information.  There should be at least
1018  * 3 bits here due to 32-bit alignment.
1019  */
1020 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1021 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1022 #define SECTION_MAP_LAST_BIT	(1UL<<2)
1023 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1024 #define SECTION_NID_SHIFT	2
1025 
1026 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1027 {
1028 	unsigned long map = section->section_mem_map;
1029 	map &= SECTION_MAP_MASK;
1030 	return (struct page *)map;
1031 }
1032 
1033 static inline int present_section(struct mem_section *section)
1034 {
1035 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1036 }
1037 
1038 static inline int present_section_nr(unsigned long nr)
1039 {
1040 	return present_section(__nr_to_section(nr));
1041 }
1042 
1043 static inline int valid_section(struct mem_section *section)
1044 {
1045 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1046 }
1047 
1048 static inline int valid_section_nr(unsigned long nr)
1049 {
1050 	return valid_section(__nr_to_section(nr));
1051 }
1052 
1053 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1054 {
1055 	return __nr_to_section(pfn_to_section_nr(pfn));
1056 }
1057 
1058 static inline int pfn_valid(unsigned long pfn)
1059 {
1060 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1061 		return 0;
1062 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1063 }
1064 
1065 static inline int pfn_present(unsigned long pfn)
1066 {
1067 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1068 		return 0;
1069 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1070 }
1071 
1072 /*
1073  * These are _only_ used during initialisation, therefore they
1074  * can use __initdata ...  They could have names to indicate
1075  * this restriction.
1076  */
1077 #ifdef CONFIG_NUMA
1078 #define pfn_to_nid(pfn)							\
1079 ({									\
1080 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1081 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1082 })
1083 #else
1084 #define pfn_to_nid(pfn)		(0)
1085 #endif
1086 
1087 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1088 void sparse_init(void);
1089 #else
1090 #define sparse_init()	do {} while (0)
1091 #define sparse_index_init(_sec, _nid)  do {} while (0)
1092 #endif /* CONFIG_SPARSEMEM */
1093 
1094 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1095 bool early_pfn_in_nid(unsigned long pfn, int nid);
1096 #else
1097 #define early_pfn_in_nid(pfn, nid)	(1)
1098 #endif
1099 
1100 #ifndef early_pfn_valid
1101 #define early_pfn_valid(pfn)	(1)
1102 #endif
1103 
1104 void memory_present(int nid, unsigned long start, unsigned long end);
1105 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1106 
1107 /*
1108  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1109  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1110  * pfn_valid_within() should be used in this case; we optimise this away
1111  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1112  */
1113 #ifdef CONFIG_HOLES_IN_ZONE
1114 #define pfn_valid_within(pfn) pfn_valid(pfn)
1115 #else
1116 #define pfn_valid_within(pfn) (1)
1117 #endif
1118 
1119 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1120 /*
1121  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1122  * associated with it or not. In FLATMEM, it is expected that holes always
1123  * have valid memmap as long as there is valid PFNs either side of the hole.
1124  * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1125  * entire section.
1126  *
1127  * However, an ARM, and maybe other embedded architectures in the future
1128  * free memmap backing holes to save memory on the assumption the memmap is
1129  * never used. The page_zone linkages are then broken even though pfn_valid()
1130  * returns true. A walker of the full memmap must then do this additional
1131  * check to ensure the memmap they are looking at is sane by making sure
1132  * the zone and PFN linkages are still valid. This is expensive, but walkers
1133  * of the full memmap are extremely rare.
1134  */
1135 int memmap_valid_within(unsigned long pfn,
1136 					struct page *page, struct zone *zone);
1137 #else
1138 static inline int memmap_valid_within(unsigned long pfn,
1139 					struct page *page, struct zone *zone)
1140 {
1141 	return 1;
1142 }
1143 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1144 
1145 #endif /* !__GENERATING_BOUNDS.H */
1146 #endif /* !__ASSEMBLY__ */
1147 #endif /* _LINUX_MMZONE_H */
1148