xref: /linux-6.15/include/linux/mmzone.h (revision f7be3455)
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3 
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6 
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <generated/bounds.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21 
22 /* Free memory management - zoned buddy allocator.  */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29 
30 /*
31  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32  * costly to service.  That is between allocation orders which should
33  * coelesce naturally under reasonable reclaim pressure and those which
34  * will not.
35  */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37 
38 #define MIGRATE_UNMOVABLE     0
39 #define MIGRATE_RECLAIMABLE   1
40 #define MIGRATE_MOVABLE       2
41 #define MIGRATE_PCPTYPES      3 /* the number of types on the pcp lists */
42 #define MIGRATE_RESERVE       3
43 #define MIGRATE_ISOLATE       4 /* can't allocate from here */
44 #define MIGRATE_TYPES         5
45 
46 #define for_each_migratetype_order(order, type) \
47 	for (order = 0; order < MAX_ORDER; order++) \
48 		for (type = 0; type < MIGRATE_TYPES; type++)
49 
50 extern int page_group_by_mobility_disabled;
51 
52 static inline int get_pageblock_migratetype(struct page *page)
53 {
54 	return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
55 }
56 
57 struct free_area {
58 	struct list_head	free_list[MIGRATE_TYPES];
59 	unsigned long		nr_free;
60 };
61 
62 struct pglist_data;
63 
64 /*
65  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
66  * So add a wild amount of padding here to ensure that they fall into separate
67  * cachelines.  There are very few zone structures in the machine, so space
68  * consumption is not a concern here.
69  */
70 #if defined(CONFIG_SMP)
71 struct zone_padding {
72 	char x[0];
73 } ____cacheline_internodealigned_in_smp;
74 #define ZONE_PADDING(name)	struct zone_padding name;
75 #else
76 #define ZONE_PADDING(name)
77 #endif
78 
79 enum zone_stat_item {
80 	/* First 128 byte cacheline (assuming 64 bit words) */
81 	NR_FREE_PAGES,
82 	NR_LRU_BASE,
83 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
84 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
85 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
86 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
87 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
88 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
89 	NR_ANON_PAGES,	/* Mapped anonymous pages */
90 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
91 			   only modified from process context */
92 	NR_FILE_PAGES,
93 	NR_FILE_DIRTY,
94 	NR_WRITEBACK,
95 	NR_SLAB_RECLAIMABLE,
96 	NR_SLAB_UNRECLAIMABLE,
97 	NR_PAGETABLE,		/* used for pagetables */
98 	NR_KERNEL_STACK,
99 	/* Second 128 byte cacheline */
100 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
101 	NR_BOUNCE,
102 	NR_VMSCAN_WRITE,
103 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
104 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
105 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
106 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
107 	NR_DIRTIED,		/* page dirtyings since bootup */
108 	NR_WRITTEN,		/* page writings since bootup */
109 #ifdef CONFIG_NUMA
110 	NUMA_HIT,		/* allocated in intended node */
111 	NUMA_MISS,		/* allocated in non intended node */
112 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
113 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
114 	NUMA_LOCAL,		/* allocation from local node */
115 	NUMA_OTHER,		/* allocation from other node */
116 #endif
117 	NR_ANON_TRANSPARENT_HUGEPAGES,
118 	NR_VM_ZONE_STAT_ITEMS };
119 
120 /*
121  * We do arithmetic on the LRU lists in various places in the code,
122  * so it is important to keep the active lists LRU_ACTIVE higher in
123  * the array than the corresponding inactive lists, and to keep
124  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
125  *
126  * This has to be kept in sync with the statistics in zone_stat_item
127  * above and the descriptions in vmstat_text in mm/vmstat.c
128  */
129 #define LRU_BASE 0
130 #define LRU_ACTIVE 1
131 #define LRU_FILE 2
132 
133 enum lru_list {
134 	LRU_INACTIVE_ANON = LRU_BASE,
135 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
136 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
137 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
138 	LRU_UNEVICTABLE,
139 	NR_LRU_LISTS
140 };
141 
142 #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
143 
144 #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
145 
146 static inline int is_file_lru(enum lru_list l)
147 {
148 	return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
149 }
150 
151 static inline int is_active_lru(enum lru_list l)
152 {
153 	return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
154 }
155 
156 static inline int is_unevictable_lru(enum lru_list l)
157 {
158 	return (l == LRU_UNEVICTABLE);
159 }
160 
161 /* Mask used at gathering information at once (see memcontrol.c) */
162 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
163 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
164 #define LRU_ALL_EVICTABLE (LRU_ALL_FILE | LRU_ALL_ANON)
165 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
166 
167 enum zone_watermarks {
168 	WMARK_MIN,
169 	WMARK_LOW,
170 	WMARK_HIGH,
171 	NR_WMARK
172 };
173 
174 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
175 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
176 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
177 
178 struct per_cpu_pages {
179 	int count;		/* number of pages in the list */
180 	int high;		/* high watermark, emptying needed */
181 	int batch;		/* chunk size for buddy add/remove */
182 
183 	/* Lists of pages, one per migrate type stored on the pcp-lists */
184 	struct list_head lists[MIGRATE_PCPTYPES];
185 };
186 
187 struct per_cpu_pageset {
188 	struct per_cpu_pages pcp;
189 #ifdef CONFIG_NUMA
190 	s8 expire;
191 #endif
192 #ifdef CONFIG_SMP
193 	s8 stat_threshold;
194 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
195 #endif
196 };
197 
198 #endif /* !__GENERATING_BOUNDS.H */
199 
200 enum zone_type {
201 #ifdef CONFIG_ZONE_DMA
202 	/*
203 	 * ZONE_DMA is used when there are devices that are not able
204 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
205 	 * carve out the portion of memory that is needed for these devices.
206 	 * The range is arch specific.
207 	 *
208 	 * Some examples
209 	 *
210 	 * Architecture		Limit
211 	 * ---------------------------
212 	 * parisc, ia64, sparc	<4G
213 	 * s390			<2G
214 	 * arm			Various
215 	 * alpha		Unlimited or 0-16MB.
216 	 *
217 	 * i386, x86_64 and multiple other arches
218 	 * 			<16M.
219 	 */
220 	ZONE_DMA,
221 #endif
222 #ifdef CONFIG_ZONE_DMA32
223 	/*
224 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
225 	 * only able to do DMA to the lower 16M but also 32 bit devices that
226 	 * can only do DMA areas below 4G.
227 	 */
228 	ZONE_DMA32,
229 #endif
230 	/*
231 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
232 	 * performed on pages in ZONE_NORMAL if the DMA devices support
233 	 * transfers to all addressable memory.
234 	 */
235 	ZONE_NORMAL,
236 #ifdef CONFIG_HIGHMEM
237 	/*
238 	 * A memory area that is only addressable by the kernel through
239 	 * mapping portions into its own address space. This is for example
240 	 * used by i386 to allow the kernel to address the memory beyond
241 	 * 900MB. The kernel will set up special mappings (page
242 	 * table entries on i386) for each page that the kernel needs to
243 	 * access.
244 	 */
245 	ZONE_HIGHMEM,
246 #endif
247 	ZONE_MOVABLE,
248 	__MAX_NR_ZONES
249 };
250 
251 #ifndef __GENERATING_BOUNDS_H
252 
253 /*
254  * When a memory allocation must conform to specific limitations (such
255  * as being suitable for DMA) the caller will pass in hints to the
256  * allocator in the gfp_mask, in the zone modifier bits.  These bits
257  * are used to select a priority ordered list of memory zones which
258  * match the requested limits. See gfp_zone() in include/linux/gfp.h
259  */
260 
261 #if MAX_NR_ZONES < 2
262 #define ZONES_SHIFT 0
263 #elif MAX_NR_ZONES <= 2
264 #define ZONES_SHIFT 1
265 #elif MAX_NR_ZONES <= 4
266 #define ZONES_SHIFT 2
267 #else
268 #error ZONES_SHIFT -- too many zones configured adjust calculation
269 #endif
270 
271 struct zone_reclaim_stat {
272 	/*
273 	 * The pageout code in vmscan.c keeps track of how many of the
274 	 * mem/swap backed and file backed pages are refeferenced.
275 	 * The higher the rotated/scanned ratio, the more valuable
276 	 * that cache is.
277 	 *
278 	 * The anon LRU stats live in [0], file LRU stats in [1]
279 	 */
280 	unsigned long		recent_rotated[2];
281 	unsigned long		recent_scanned[2];
282 };
283 
284 struct zone {
285 	/* Fields commonly accessed by the page allocator */
286 
287 	/* zone watermarks, access with *_wmark_pages(zone) macros */
288 	unsigned long watermark[NR_WMARK];
289 
290 	/*
291 	 * When free pages are below this point, additional steps are taken
292 	 * when reading the number of free pages to avoid per-cpu counter
293 	 * drift allowing watermarks to be breached
294 	 */
295 	unsigned long percpu_drift_mark;
296 
297 	/*
298 	 * We don't know if the memory that we're going to allocate will be freeable
299 	 * or/and it will be released eventually, so to avoid totally wasting several
300 	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
301 	 * to run OOM on the lower zones despite there's tons of freeable ram
302 	 * on the higher zones). This array is recalculated at runtime if the
303 	 * sysctl_lowmem_reserve_ratio sysctl changes.
304 	 */
305 	unsigned long		lowmem_reserve[MAX_NR_ZONES];
306 
307 #ifdef CONFIG_NUMA
308 	int node;
309 	/*
310 	 * zone reclaim becomes active if more unmapped pages exist.
311 	 */
312 	unsigned long		min_unmapped_pages;
313 	unsigned long		min_slab_pages;
314 #endif
315 	struct per_cpu_pageset __percpu *pageset;
316 	/*
317 	 * free areas of different sizes
318 	 */
319 	spinlock_t		lock;
320 	int                     all_unreclaimable; /* All pages pinned */
321 #ifdef CONFIG_MEMORY_HOTPLUG
322 	/* see spanned/present_pages for more description */
323 	seqlock_t		span_seqlock;
324 #endif
325 	struct free_area	free_area[MAX_ORDER];
326 
327 #ifndef CONFIG_SPARSEMEM
328 	/*
329 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
330 	 * In SPARSEMEM, this map is stored in struct mem_section
331 	 */
332 	unsigned long		*pageblock_flags;
333 #endif /* CONFIG_SPARSEMEM */
334 
335 #ifdef CONFIG_COMPACTION
336 	/*
337 	 * On compaction failure, 1<<compact_defer_shift compactions
338 	 * are skipped before trying again. The number attempted since
339 	 * last failure is tracked with compact_considered.
340 	 */
341 	unsigned int		compact_considered;
342 	unsigned int		compact_defer_shift;
343 #endif
344 
345 	ZONE_PADDING(_pad1_)
346 
347 	/* Fields commonly accessed by the page reclaim scanner */
348 	spinlock_t		lru_lock;
349 	struct zone_lru {
350 		struct list_head list;
351 	} lru[NR_LRU_LISTS];
352 
353 	struct zone_reclaim_stat reclaim_stat;
354 
355 	unsigned long		pages_scanned;	   /* since last reclaim */
356 	unsigned long		flags;		   /* zone flags, see below */
357 
358 	/* Zone statistics */
359 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
360 
361 	/*
362 	 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
363 	 * this zone's LRU.  Maintained by the pageout code.
364 	 */
365 	unsigned int inactive_ratio;
366 
367 
368 	ZONE_PADDING(_pad2_)
369 	/* Rarely used or read-mostly fields */
370 
371 	/*
372 	 * wait_table		-- the array holding the hash table
373 	 * wait_table_hash_nr_entries	-- the size of the hash table array
374 	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
375 	 *
376 	 * The purpose of all these is to keep track of the people
377 	 * waiting for a page to become available and make them
378 	 * runnable again when possible. The trouble is that this
379 	 * consumes a lot of space, especially when so few things
380 	 * wait on pages at a given time. So instead of using
381 	 * per-page waitqueues, we use a waitqueue hash table.
382 	 *
383 	 * The bucket discipline is to sleep on the same queue when
384 	 * colliding and wake all in that wait queue when removing.
385 	 * When something wakes, it must check to be sure its page is
386 	 * truly available, a la thundering herd. The cost of a
387 	 * collision is great, but given the expected load of the
388 	 * table, they should be so rare as to be outweighed by the
389 	 * benefits from the saved space.
390 	 *
391 	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
392 	 * primary users of these fields, and in mm/page_alloc.c
393 	 * free_area_init_core() performs the initialization of them.
394 	 */
395 	wait_queue_head_t	* wait_table;
396 	unsigned long		wait_table_hash_nr_entries;
397 	unsigned long		wait_table_bits;
398 
399 	/*
400 	 * Discontig memory support fields.
401 	 */
402 	struct pglist_data	*zone_pgdat;
403 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
404 	unsigned long		zone_start_pfn;
405 
406 	/*
407 	 * zone_start_pfn, spanned_pages and present_pages are all
408 	 * protected by span_seqlock.  It is a seqlock because it has
409 	 * to be read outside of zone->lock, and it is done in the main
410 	 * allocator path.  But, it is written quite infrequently.
411 	 *
412 	 * The lock is declared along with zone->lock because it is
413 	 * frequently read in proximity to zone->lock.  It's good to
414 	 * give them a chance of being in the same cacheline.
415 	 */
416 	unsigned long		spanned_pages;	/* total size, including holes */
417 	unsigned long		present_pages;	/* amount of memory (excluding holes) */
418 
419 	/*
420 	 * rarely used fields:
421 	 */
422 	const char		*name;
423 } ____cacheline_internodealigned_in_smp;
424 
425 typedef enum {
426 	ZONE_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
427 	ZONE_OOM_LOCKED,		/* zone is in OOM killer zonelist */
428 	ZONE_CONGESTED,			/* zone has many dirty pages backed by
429 					 * a congested BDI
430 					 */
431 } zone_flags_t;
432 
433 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
434 {
435 	set_bit(flag, &zone->flags);
436 }
437 
438 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
439 {
440 	return test_and_set_bit(flag, &zone->flags);
441 }
442 
443 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
444 {
445 	clear_bit(flag, &zone->flags);
446 }
447 
448 static inline int zone_is_reclaim_congested(const struct zone *zone)
449 {
450 	return test_bit(ZONE_CONGESTED, &zone->flags);
451 }
452 
453 static inline int zone_is_reclaim_locked(const struct zone *zone)
454 {
455 	return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
456 }
457 
458 static inline int zone_is_oom_locked(const struct zone *zone)
459 {
460 	return test_bit(ZONE_OOM_LOCKED, &zone->flags);
461 }
462 
463 /*
464  * The "priority" of VM scanning is how much of the queues we will scan in one
465  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
466  * queues ("queue_length >> 12") during an aging round.
467  */
468 #define DEF_PRIORITY 12
469 
470 /* Maximum number of zones on a zonelist */
471 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
472 
473 #ifdef CONFIG_NUMA
474 
475 /*
476  * The NUMA zonelists are doubled because we need zonelists that restrict the
477  * allocations to a single node for GFP_THISNODE.
478  *
479  * [0]	: Zonelist with fallback
480  * [1]	: No fallback (GFP_THISNODE)
481  */
482 #define MAX_ZONELISTS 2
483 
484 
485 /*
486  * We cache key information from each zonelist for smaller cache
487  * footprint when scanning for free pages in get_page_from_freelist().
488  *
489  * 1) The BITMAP fullzones tracks which zones in a zonelist have come
490  *    up short of free memory since the last time (last_fullzone_zap)
491  *    we zero'd fullzones.
492  * 2) The array z_to_n[] maps each zone in the zonelist to its node
493  *    id, so that we can efficiently evaluate whether that node is
494  *    set in the current tasks mems_allowed.
495  *
496  * Both fullzones and z_to_n[] are one-to-one with the zonelist,
497  * indexed by a zones offset in the zonelist zones[] array.
498  *
499  * The get_page_from_freelist() routine does two scans.  During the
500  * first scan, we skip zones whose corresponding bit in 'fullzones'
501  * is set or whose corresponding node in current->mems_allowed (which
502  * comes from cpusets) is not set.  During the second scan, we bypass
503  * this zonelist_cache, to ensure we look methodically at each zone.
504  *
505  * Once per second, we zero out (zap) fullzones, forcing us to
506  * reconsider nodes that might have regained more free memory.
507  * The field last_full_zap is the time we last zapped fullzones.
508  *
509  * This mechanism reduces the amount of time we waste repeatedly
510  * reexaming zones for free memory when they just came up low on
511  * memory momentarilly ago.
512  *
513  * The zonelist_cache struct members logically belong in struct
514  * zonelist.  However, the mempolicy zonelists constructed for
515  * MPOL_BIND are intentionally variable length (and usually much
516  * shorter).  A general purpose mechanism for handling structs with
517  * multiple variable length members is more mechanism than we want
518  * here.  We resort to some special case hackery instead.
519  *
520  * The MPOL_BIND zonelists don't need this zonelist_cache (in good
521  * part because they are shorter), so we put the fixed length stuff
522  * at the front of the zonelist struct, ending in a variable length
523  * zones[], as is needed by MPOL_BIND.
524  *
525  * Then we put the optional zonelist cache on the end of the zonelist
526  * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
527  * the fixed length portion at the front of the struct.  This pointer
528  * both enables us to find the zonelist cache, and in the case of
529  * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
530  * to know that the zonelist cache is not there.
531  *
532  * The end result is that struct zonelists come in two flavors:
533  *  1) The full, fixed length version, shown below, and
534  *  2) The custom zonelists for MPOL_BIND.
535  * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
536  *
537  * Even though there may be multiple CPU cores on a node modifying
538  * fullzones or last_full_zap in the same zonelist_cache at the same
539  * time, we don't lock it.  This is just hint data - if it is wrong now
540  * and then, the allocator will still function, perhaps a bit slower.
541  */
542 
543 
544 struct zonelist_cache {
545 	unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];		/* zone->nid */
546 	DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);	/* zone full? */
547 	unsigned long last_full_zap;		/* when last zap'd (jiffies) */
548 };
549 #else
550 #define MAX_ZONELISTS 1
551 struct zonelist_cache;
552 #endif
553 
554 /*
555  * This struct contains information about a zone in a zonelist. It is stored
556  * here to avoid dereferences into large structures and lookups of tables
557  */
558 struct zoneref {
559 	struct zone *zone;	/* Pointer to actual zone */
560 	int zone_idx;		/* zone_idx(zoneref->zone) */
561 };
562 
563 /*
564  * One allocation request operates on a zonelist. A zonelist
565  * is a list of zones, the first one is the 'goal' of the
566  * allocation, the other zones are fallback zones, in decreasing
567  * priority.
568  *
569  * If zlcache_ptr is not NULL, then it is just the address of zlcache,
570  * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
571  * *
572  * To speed the reading of the zonelist, the zonerefs contain the zone index
573  * of the entry being read. Helper functions to access information given
574  * a struct zoneref are
575  *
576  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
577  * zonelist_zone_idx()	- Return the index of the zone for an entry
578  * zonelist_node_idx()	- Return the index of the node for an entry
579  */
580 struct zonelist {
581 	struct zonelist_cache *zlcache_ptr;		     // NULL or &zlcache
582 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
583 #ifdef CONFIG_NUMA
584 	struct zonelist_cache zlcache;			     // optional ...
585 #endif
586 };
587 
588 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
589 struct node_active_region {
590 	unsigned long start_pfn;
591 	unsigned long end_pfn;
592 	int nid;
593 };
594 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
595 
596 #ifndef CONFIG_DISCONTIGMEM
597 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
598 extern struct page *mem_map;
599 #endif
600 
601 /*
602  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
603  * (mostly NUMA machines?) to denote a higher-level memory zone than the
604  * zone denotes.
605  *
606  * On NUMA machines, each NUMA node would have a pg_data_t to describe
607  * it's memory layout.
608  *
609  * Memory statistics and page replacement data structures are maintained on a
610  * per-zone basis.
611  */
612 struct bootmem_data;
613 typedef struct pglist_data {
614 	struct zone node_zones[MAX_NR_ZONES];
615 	struct zonelist node_zonelists[MAX_ZONELISTS];
616 	int nr_zones;
617 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
618 	struct page *node_mem_map;
619 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
620 	struct page_cgroup *node_page_cgroup;
621 #endif
622 #endif
623 #ifndef CONFIG_NO_BOOTMEM
624 	struct bootmem_data *bdata;
625 #endif
626 #ifdef CONFIG_MEMORY_HOTPLUG
627 	/*
628 	 * Must be held any time you expect node_start_pfn, node_present_pages
629 	 * or node_spanned_pages stay constant.  Holding this will also
630 	 * guarantee that any pfn_valid() stays that way.
631 	 *
632 	 * Nests above zone->lock and zone->size_seqlock.
633 	 */
634 	spinlock_t node_size_lock;
635 #endif
636 	unsigned long node_start_pfn;
637 	unsigned long node_present_pages; /* total number of physical pages */
638 	unsigned long node_spanned_pages; /* total size of physical page
639 					     range, including holes */
640 	int node_id;
641 	wait_queue_head_t kswapd_wait;
642 	struct task_struct *kswapd;
643 	int kswapd_max_order;
644 	enum zone_type classzone_idx;
645 } pg_data_t;
646 
647 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
648 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
649 #ifdef CONFIG_FLAT_NODE_MEM_MAP
650 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
651 #else
652 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
653 #endif
654 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
655 
656 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
657 
658 #define node_end_pfn(nid) ({\
659 	pg_data_t *__pgdat = NODE_DATA(nid);\
660 	__pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
661 })
662 
663 #include <linux/memory_hotplug.h>
664 
665 extern struct mutex zonelists_mutex;
666 void build_all_zonelists(void *data);
667 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
668 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
669 		int classzone_idx, int alloc_flags);
670 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
671 		int classzone_idx, int alloc_flags);
672 enum memmap_context {
673 	MEMMAP_EARLY,
674 	MEMMAP_HOTPLUG,
675 };
676 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
677 				     unsigned long size,
678 				     enum memmap_context context);
679 
680 #ifdef CONFIG_HAVE_MEMORY_PRESENT
681 void memory_present(int nid, unsigned long start, unsigned long end);
682 #else
683 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
684 #endif
685 
686 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
687 int local_memory_node(int node_id);
688 #else
689 static inline int local_memory_node(int node_id) { return node_id; };
690 #endif
691 
692 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
693 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
694 #endif
695 
696 /*
697  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
698  */
699 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
700 
701 static inline int populated_zone(struct zone *zone)
702 {
703 	return (!!zone->present_pages);
704 }
705 
706 extern int movable_zone;
707 
708 static inline int zone_movable_is_highmem(void)
709 {
710 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
711 	return movable_zone == ZONE_HIGHMEM;
712 #else
713 	return 0;
714 #endif
715 }
716 
717 static inline int is_highmem_idx(enum zone_type idx)
718 {
719 #ifdef CONFIG_HIGHMEM
720 	return (idx == ZONE_HIGHMEM ||
721 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
722 #else
723 	return 0;
724 #endif
725 }
726 
727 static inline int is_normal_idx(enum zone_type idx)
728 {
729 	return (idx == ZONE_NORMAL);
730 }
731 
732 /**
733  * is_highmem - helper function to quickly check if a struct zone is a
734  *              highmem zone or not.  This is an attempt to keep references
735  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
736  * @zone - pointer to struct zone variable
737  */
738 static inline int is_highmem(struct zone *zone)
739 {
740 #ifdef CONFIG_HIGHMEM
741 	int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
742 	return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
743 	       (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
744 		zone_movable_is_highmem());
745 #else
746 	return 0;
747 #endif
748 }
749 
750 static inline int is_normal(struct zone *zone)
751 {
752 	return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
753 }
754 
755 static inline int is_dma32(struct zone *zone)
756 {
757 #ifdef CONFIG_ZONE_DMA32
758 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
759 #else
760 	return 0;
761 #endif
762 }
763 
764 static inline int is_dma(struct zone *zone)
765 {
766 #ifdef CONFIG_ZONE_DMA
767 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
768 #else
769 	return 0;
770 #endif
771 }
772 
773 /* These two functions are used to setup the per zone pages min values */
774 struct ctl_table;
775 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
776 					void __user *, size_t *, loff_t *);
777 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
778 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
779 					void __user *, size_t *, loff_t *);
780 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
781 					void __user *, size_t *, loff_t *);
782 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
783 			void __user *, size_t *, loff_t *);
784 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
785 			void __user *, size_t *, loff_t *);
786 
787 extern int numa_zonelist_order_handler(struct ctl_table *, int,
788 			void __user *, size_t *, loff_t *);
789 extern char numa_zonelist_order[];
790 #define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */
791 
792 #ifndef CONFIG_NEED_MULTIPLE_NODES
793 
794 extern struct pglist_data contig_page_data;
795 #define NODE_DATA(nid)		(&contig_page_data)
796 #define NODE_MEM_MAP(nid)	mem_map
797 
798 #else /* CONFIG_NEED_MULTIPLE_NODES */
799 
800 #include <asm/mmzone.h>
801 
802 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
803 
804 extern struct pglist_data *first_online_pgdat(void);
805 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
806 extern struct zone *next_zone(struct zone *zone);
807 
808 /**
809  * for_each_online_pgdat - helper macro to iterate over all online nodes
810  * @pgdat - pointer to a pg_data_t variable
811  */
812 #define for_each_online_pgdat(pgdat)			\
813 	for (pgdat = first_online_pgdat();		\
814 	     pgdat;					\
815 	     pgdat = next_online_pgdat(pgdat))
816 /**
817  * for_each_zone - helper macro to iterate over all memory zones
818  * @zone - pointer to struct zone variable
819  *
820  * The user only needs to declare the zone variable, for_each_zone
821  * fills it in.
822  */
823 #define for_each_zone(zone)			        \
824 	for (zone = (first_online_pgdat())->node_zones; \
825 	     zone;					\
826 	     zone = next_zone(zone))
827 
828 #define for_each_populated_zone(zone)		        \
829 	for (zone = (first_online_pgdat())->node_zones; \
830 	     zone;					\
831 	     zone = next_zone(zone))			\
832 		if (!populated_zone(zone))		\
833 			; /* do nothing */		\
834 		else
835 
836 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
837 {
838 	return zoneref->zone;
839 }
840 
841 static inline int zonelist_zone_idx(struct zoneref *zoneref)
842 {
843 	return zoneref->zone_idx;
844 }
845 
846 static inline int zonelist_node_idx(struct zoneref *zoneref)
847 {
848 #ifdef CONFIG_NUMA
849 	/* zone_to_nid not available in this context */
850 	return zoneref->zone->node;
851 #else
852 	return 0;
853 #endif /* CONFIG_NUMA */
854 }
855 
856 /**
857  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
858  * @z - The cursor used as a starting point for the search
859  * @highest_zoneidx - The zone index of the highest zone to return
860  * @nodes - An optional nodemask to filter the zonelist with
861  * @zone - The first suitable zone found is returned via this parameter
862  *
863  * This function returns the next zone at or below a given zone index that is
864  * within the allowed nodemask using a cursor as the starting point for the
865  * search. The zoneref returned is a cursor that represents the current zone
866  * being examined. It should be advanced by one before calling
867  * next_zones_zonelist again.
868  */
869 struct zoneref *next_zones_zonelist(struct zoneref *z,
870 					enum zone_type highest_zoneidx,
871 					nodemask_t *nodes,
872 					struct zone **zone);
873 
874 /**
875  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
876  * @zonelist - The zonelist to search for a suitable zone
877  * @highest_zoneidx - The zone index of the highest zone to return
878  * @nodes - An optional nodemask to filter the zonelist with
879  * @zone - The first suitable zone found is returned via this parameter
880  *
881  * This function returns the first zone at or below a given zone index that is
882  * within the allowed nodemask. The zoneref returned is a cursor that can be
883  * used to iterate the zonelist with next_zones_zonelist by advancing it by
884  * one before calling.
885  */
886 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
887 					enum zone_type highest_zoneidx,
888 					nodemask_t *nodes,
889 					struct zone **zone)
890 {
891 	return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
892 								zone);
893 }
894 
895 /**
896  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
897  * @zone - The current zone in the iterator
898  * @z - The current pointer within zonelist->zones being iterated
899  * @zlist - The zonelist being iterated
900  * @highidx - The zone index of the highest zone to return
901  * @nodemask - Nodemask allowed by the allocator
902  *
903  * This iterator iterates though all zones at or below a given zone index and
904  * within a given nodemask
905  */
906 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
907 	for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone);	\
908 		zone;							\
909 		z = next_zones_zonelist(++z, highidx, nodemask, &zone))	\
910 
911 /**
912  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
913  * @zone - The current zone in the iterator
914  * @z - The current pointer within zonelist->zones being iterated
915  * @zlist - The zonelist being iterated
916  * @highidx - The zone index of the highest zone to return
917  *
918  * This iterator iterates though all zones at or below a given zone index.
919  */
920 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
921 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
922 
923 #ifdef CONFIG_SPARSEMEM
924 #include <asm/sparsemem.h>
925 #endif
926 
927 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
928 	!defined(CONFIG_ARCH_POPULATES_NODE_MAP)
929 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
930 {
931 	return 0;
932 }
933 #endif
934 
935 #ifdef CONFIG_FLATMEM
936 #define pfn_to_nid(pfn)		(0)
937 #endif
938 
939 #ifdef CONFIG_SPARSEMEM
940 
941 /*
942  * SECTION_SHIFT    		#bits space required to store a section #
943  *
944  * PA_SECTION_SHIFT		physical address to/from section number
945  * PFN_SECTION_SHIFT		pfn to/from section number
946  */
947 #define SECTIONS_SHIFT		(MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
948 
949 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
950 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
951 
952 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
953 
954 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
955 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
956 
957 #define SECTION_BLOCKFLAGS_BITS \
958 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
959 
960 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
961 #error Allocator MAX_ORDER exceeds SECTION_SIZE
962 #endif
963 
964 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
965 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
966 
967 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
968 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
969 
970 struct page;
971 struct page_cgroup;
972 struct mem_section {
973 	/*
974 	 * This is, logically, a pointer to an array of struct
975 	 * pages.  However, it is stored with some other magic.
976 	 * (see sparse.c::sparse_init_one_section())
977 	 *
978 	 * Additionally during early boot we encode node id of
979 	 * the location of the section here to guide allocation.
980 	 * (see sparse.c::memory_present())
981 	 *
982 	 * Making it a UL at least makes someone do a cast
983 	 * before using it wrong.
984 	 */
985 	unsigned long section_mem_map;
986 
987 	/* See declaration of similar field in struct zone */
988 	unsigned long *pageblock_flags;
989 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
990 	/*
991 	 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
992 	 * section. (see memcontrol.h/page_cgroup.h about this.)
993 	 */
994 	struct page_cgroup *page_cgroup;
995 	unsigned long pad;
996 #endif
997 };
998 
999 #ifdef CONFIG_SPARSEMEM_EXTREME
1000 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1001 #else
1002 #define SECTIONS_PER_ROOT	1
1003 #endif
1004 
1005 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1006 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1007 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1008 
1009 #ifdef CONFIG_SPARSEMEM_EXTREME
1010 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1011 #else
1012 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1013 #endif
1014 
1015 static inline struct mem_section *__nr_to_section(unsigned long nr)
1016 {
1017 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1018 		return NULL;
1019 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1020 }
1021 extern int __section_nr(struct mem_section* ms);
1022 extern unsigned long usemap_size(void);
1023 
1024 /*
1025  * We use the lower bits of the mem_map pointer to store
1026  * a little bit of information.  There should be at least
1027  * 3 bits here due to 32-bit alignment.
1028  */
1029 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1030 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1031 #define SECTION_MAP_LAST_BIT	(1UL<<2)
1032 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1033 #define SECTION_NID_SHIFT	2
1034 
1035 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1036 {
1037 	unsigned long map = section->section_mem_map;
1038 	map &= SECTION_MAP_MASK;
1039 	return (struct page *)map;
1040 }
1041 
1042 static inline int present_section(struct mem_section *section)
1043 {
1044 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1045 }
1046 
1047 static inline int present_section_nr(unsigned long nr)
1048 {
1049 	return present_section(__nr_to_section(nr));
1050 }
1051 
1052 static inline int valid_section(struct mem_section *section)
1053 {
1054 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1055 }
1056 
1057 static inline int valid_section_nr(unsigned long nr)
1058 {
1059 	return valid_section(__nr_to_section(nr));
1060 }
1061 
1062 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1063 {
1064 	return __nr_to_section(pfn_to_section_nr(pfn));
1065 }
1066 
1067 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1068 static inline int pfn_valid(unsigned long pfn)
1069 {
1070 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1071 		return 0;
1072 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1073 }
1074 #endif
1075 
1076 static inline int pfn_present(unsigned long pfn)
1077 {
1078 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1079 		return 0;
1080 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1081 }
1082 
1083 /*
1084  * These are _only_ used during initialisation, therefore they
1085  * can use __initdata ...  They could have names to indicate
1086  * this restriction.
1087  */
1088 #ifdef CONFIG_NUMA
1089 #define pfn_to_nid(pfn)							\
1090 ({									\
1091 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1092 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1093 })
1094 #else
1095 #define pfn_to_nid(pfn)		(0)
1096 #endif
1097 
1098 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1099 void sparse_init(void);
1100 #else
1101 #define sparse_init()	do {} while (0)
1102 #define sparse_index_init(_sec, _nid)  do {} while (0)
1103 #endif /* CONFIG_SPARSEMEM */
1104 
1105 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1106 bool early_pfn_in_nid(unsigned long pfn, int nid);
1107 #else
1108 #define early_pfn_in_nid(pfn, nid)	(1)
1109 #endif
1110 
1111 #ifndef early_pfn_valid
1112 #define early_pfn_valid(pfn)	(1)
1113 #endif
1114 
1115 void memory_present(int nid, unsigned long start, unsigned long end);
1116 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1117 
1118 /*
1119  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1120  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1121  * pfn_valid_within() should be used in this case; we optimise this away
1122  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1123  */
1124 #ifdef CONFIG_HOLES_IN_ZONE
1125 #define pfn_valid_within(pfn) pfn_valid(pfn)
1126 #else
1127 #define pfn_valid_within(pfn) (1)
1128 #endif
1129 
1130 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1131 /*
1132  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1133  * associated with it or not. In FLATMEM, it is expected that holes always
1134  * have valid memmap as long as there is valid PFNs either side of the hole.
1135  * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1136  * entire section.
1137  *
1138  * However, an ARM, and maybe other embedded architectures in the future
1139  * free memmap backing holes to save memory on the assumption the memmap is
1140  * never used. The page_zone linkages are then broken even though pfn_valid()
1141  * returns true. A walker of the full memmap must then do this additional
1142  * check to ensure the memmap they are looking at is sane by making sure
1143  * the zone and PFN linkages are still valid. This is expensive, but walkers
1144  * of the full memmap are extremely rare.
1145  */
1146 int memmap_valid_within(unsigned long pfn,
1147 					struct page *page, struct zone *zone);
1148 #else
1149 static inline int memmap_valid_within(unsigned long pfn,
1150 					struct page *page, struct zone *zone)
1151 {
1152 	return 1;
1153 }
1154 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1155 
1156 #endif /* !__GENERATING_BOUNDS.H */
1157 #endif /* !__ASSEMBLY__ */
1158 #endif /* _LINUX_MMZONE_H */
1159