1 #ifndef _LINUX_MMZONE_H 2 #define _LINUX_MMZONE_H 3 4 #ifdef __KERNEL__ 5 #ifndef __ASSEMBLY__ 6 #ifndef __GENERATING_BOUNDS_H 7 8 #include <linux/spinlock.h> 9 #include <linux/list.h> 10 #include <linux/wait.h> 11 #include <linux/bitops.h> 12 #include <linux/cache.h> 13 #include <linux/threads.h> 14 #include <linux/numa.h> 15 #include <linux/init.h> 16 #include <linux/seqlock.h> 17 #include <linux/nodemask.h> 18 #include <linux/pageblock-flags.h> 19 #include <linux/bounds.h> 20 #include <asm/atomic.h> 21 #include <asm/page.h> 22 23 /* Free memory management - zoned buddy allocator. */ 24 #ifndef CONFIG_FORCE_MAX_ZONEORDER 25 #define MAX_ORDER 11 26 #else 27 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 28 #endif 29 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 30 31 /* 32 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 33 * costly to service. That is between allocation orders which should 34 * coelesce naturally under reasonable reclaim pressure and those which 35 * will not. 36 */ 37 #define PAGE_ALLOC_COSTLY_ORDER 3 38 39 #define MIGRATE_UNMOVABLE 0 40 #define MIGRATE_RECLAIMABLE 1 41 #define MIGRATE_MOVABLE 2 42 #define MIGRATE_RESERVE 3 43 #define MIGRATE_ISOLATE 4 /* can't allocate from here */ 44 #define MIGRATE_TYPES 5 45 46 #define for_each_migratetype_order(order, type) \ 47 for (order = 0; order < MAX_ORDER; order++) \ 48 for (type = 0; type < MIGRATE_TYPES; type++) 49 50 extern int page_group_by_mobility_disabled; 51 52 static inline int get_pageblock_migratetype(struct page *page) 53 { 54 if (unlikely(page_group_by_mobility_disabled)) 55 return MIGRATE_UNMOVABLE; 56 57 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end); 58 } 59 60 struct free_area { 61 struct list_head free_list[MIGRATE_TYPES]; 62 unsigned long nr_free; 63 }; 64 65 struct pglist_data; 66 67 /* 68 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 69 * So add a wild amount of padding here to ensure that they fall into separate 70 * cachelines. There are very few zone structures in the machine, so space 71 * consumption is not a concern here. 72 */ 73 #if defined(CONFIG_SMP) 74 struct zone_padding { 75 char x[0]; 76 } ____cacheline_internodealigned_in_smp; 77 #define ZONE_PADDING(name) struct zone_padding name; 78 #else 79 #define ZONE_PADDING(name) 80 #endif 81 82 enum zone_stat_item { 83 /* First 128 byte cacheline (assuming 64 bit words) */ 84 NR_FREE_PAGES, 85 NR_INACTIVE, 86 NR_ACTIVE, 87 NR_ANON_PAGES, /* Mapped anonymous pages */ 88 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 89 only modified from process context */ 90 NR_FILE_PAGES, 91 NR_FILE_DIRTY, 92 NR_WRITEBACK, 93 /* Second 128 byte cacheline */ 94 NR_SLAB_RECLAIMABLE, 95 NR_SLAB_UNRECLAIMABLE, 96 NR_PAGETABLE, /* used for pagetables */ 97 NR_UNSTABLE_NFS, /* NFS unstable pages */ 98 NR_BOUNCE, 99 NR_VMSCAN_WRITE, 100 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 101 #ifdef CONFIG_NUMA 102 NUMA_HIT, /* allocated in intended node */ 103 NUMA_MISS, /* allocated in non intended node */ 104 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 105 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 106 NUMA_LOCAL, /* allocation from local node */ 107 NUMA_OTHER, /* allocation from other node */ 108 #endif 109 NR_VM_ZONE_STAT_ITEMS }; 110 111 struct per_cpu_pages { 112 int count; /* number of pages in the list */ 113 int high; /* high watermark, emptying needed */ 114 int batch; /* chunk size for buddy add/remove */ 115 struct list_head list; /* the list of pages */ 116 }; 117 118 struct per_cpu_pageset { 119 struct per_cpu_pages pcp; 120 #ifdef CONFIG_NUMA 121 s8 expire; 122 #endif 123 #ifdef CONFIG_SMP 124 s8 stat_threshold; 125 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 126 #endif 127 } ____cacheline_aligned_in_smp; 128 129 #ifdef CONFIG_NUMA 130 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)]) 131 #else 132 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)]) 133 #endif 134 135 #endif /* !__GENERATING_BOUNDS.H */ 136 137 enum zone_type { 138 #ifdef CONFIG_ZONE_DMA 139 /* 140 * ZONE_DMA is used when there are devices that are not able 141 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 142 * carve out the portion of memory that is needed for these devices. 143 * The range is arch specific. 144 * 145 * Some examples 146 * 147 * Architecture Limit 148 * --------------------------- 149 * parisc, ia64, sparc <4G 150 * s390 <2G 151 * arm Various 152 * alpha Unlimited or 0-16MB. 153 * 154 * i386, x86_64 and multiple other arches 155 * <16M. 156 */ 157 ZONE_DMA, 158 #endif 159 #ifdef CONFIG_ZONE_DMA32 160 /* 161 * x86_64 needs two ZONE_DMAs because it supports devices that are 162 * only able to do DMA to the lower 16M but also 32 bit devices that 163 * can only do DMA areas below 4G. 164 */ 165 ZONE_DMA32, 166 #endif 167 /* 168 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 169 * performed on pages in ZONE_NORMAL if the DMA devices support 170 * transfers to all addressable memory. 171 */ 172 ZONE_NORMAL, 173 #ifdef CONFIG_HIGHMEM 174 /* 175 * A memory area that is only addressable by the kernel through 176 * mapping portions into its own address space. This is for example 177 * used by i386 to allow the kernel to address the memory beyond 178 * 900MB. The kernel will set up special mappings (page 179 * table entries on i386) for each page that the kernel needs to 180 * access. 181 */ 182 ZONE_HIGHMEM, 183 #endif 184 ZONE_MOVABLE, 185 __MAX_NR_ZONES 186 }; 187 188 #ifndef __GENERATING_BOUNDS_H 189 190 /* 191 * When a memory allocation must conform to specific limitations (such 192 * as being suitable for DMA) the caller will pass in hints to the 193 * allocator in the gfp_mask, in the zone modifier bits. These bits 194 * are used to select a priority ordered list of memory zones which 195 * match the requested limits. See gfp_zone() in include/linux/gfp.h 196 */ 197 198 #if MAX_NR_ZONES < 2 199 #define ZONES_SHIFT 0 200 #elif MAX_NR_ZONES <= 2 201 #define ZONES_SHIFT 1 202 #elif MAX_NR_ZONES <= 4 203 #define ZONES_SHIFT 2 204 #else 205 #error ZONES_SHIFT -- too many zones configured adjust calculation 206 #endif 207 208 struct zone { 209 /* Fields commonly accessed by the page allocator */ 210 unsigned long pages_min, pages_low, pages_high; 211 /* 212 * We don't know if the memory that we're going to allocate will be freeable 213 * or/and it will be released eventually, so to avoid totally wasting several 214 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 215 * to run OOM on the lower zones despite there's tons of freeable ram 216 * on the higher zones). This array is recalculated at runtime if the 217 * sysctl_lowmem_reserve_ratio sysctl changes. 218 */ 219 unsigned long lowmem_reserve[MAX_NR_ZONES]; 220 221 #ifdef CONFIG_NUMA 222 int node; 223 /* 224 * zone reclaim becomes active if more unmapped pages exist. 225 */ 226 unsigned long min_unmapped_pages; 227 unsigned long min_slab_pages; 228 struct per_cpu_pageset *pageset[NR_CPUS]; 229 #else 230 struct per_cpu_pageset pageset[NR_CPUS]; 231 #endif 232 /* 233 * free areas of different sizes 234 */ 235 spinlock_t lock; 236 #ifdef CONFIG_MEMORY_HOTPLUG 237 /* see spanned/present_pages for more description */ 238 seqlock_t span_seqlock; 239 #endif 240 struct free_area free_area[MAX_ORDER]; 241 242 #ifndef CONFIG_SPARSEMEM 243 /* 244 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 245 * In SPARSEMEM, this map is stored in struct mem_section 246 */ 247 unsigned long *pageblock_flags; 248 #endif /* CONFIG_SPARSEMEM */ 249 250 251 ZONE_PADDING(_pad1_) 252 253 /* Fields commonly accessed by the page reclaim scanner */ 254 spinlock_t lru_lock; 255 struct list_head active_list; 256 struct list_head inactive_list; 257 unsigned long nr_scan_active; 258 unsigned long nr_scan_inactive; 259 unsigned long pages_scanned; /* since last reclaim */ 260 unsigned long flags; /* zone flags, see below */ 261 262 /* Zone statistics */ 263 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 264 265 /* 266 * prev_priority holds the scanning priority for this zone. It is 267 * defined as the scanning priority at which we achieved our reclaim 268 * target at the previous try_to_free_pages() or balance_pgdat() 269 * invokation. 270 * 271 * We use prev_priority as a measure of how much stress page reclaim is 272 * under - it drives the swappiness decision: whether to unmap mapped 273 * pages. 274 * 275 * Access to both this field is quite racy even on uniprocessor. But 276 * it is expected to average out OK. 277 */ 278 int prev_priority; 279 280 281 ZONE_PADDING(_pad2_) 282 /* Rarely used or read-mostly fields */ 283 284 /* 285 * wait_table -- the array holding the hash table 286 * wait_table_hash_nr_entries -- the size of the hash table array 287 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 288 * 289 * The purpose of all these is to keep track of the people 290 * waiting for a page to become available and make them 291 * runnable again when possible. The trouble is that this 292 * consumes a lot of space, especially when so few things 293 * wait on pages at a given time. So instead of using 294 * per-page waitqueues, we use a waitqueue hash table. 295 * 296 * The bucket discipline is to sleep on the same queue when 297 * colliding and wake all in that wait queue when removing. 298 * When something wakes, it must check to be sure its page is 299 * truly available, a la thundering herd. The cost of a 300 * collision is great, but given the expected load of the 301 * table, they should be so rare as to be outweighed by the 302 * benefits from the saved space. 303 * 304 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 305 * primary users of these fields, and in mm/page_alloc.c 306 * free_area_init_core() performs the initialization of them. 307 */ 308 wait_queue_head_t * wait_table; 309 unsigned long wait_table_hash_nr_entries; 310 unsigned long wait_table_bits; 311 312 /* 313 * Discontig memory support fields. 314 */ 315 struct pglist_data *zone_pgdat; 316 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 317 unsigned long zone_start_pfn; 318 319 /* 320 * zone_start_pfn, spanned_pages and present_pages are all 321 * protected by span_seqlock. It is a seqlock because it has 322 * to be read outside of zone->lock, and it is done in the main 323 * allocator path. But, it is written quite infrequently. 324 * 325 * The lock is declared along with zone->lock because it is 326 * frequently read in proximity to zone->lock. It's good to 327 * give them a chance of being in the same cacheline. 328 */ 329 unsigned long spanned_pages; /* total size, including holes */ 330 unsigned long present_pages; /* amount of memory (excluding holes) */ 331 332 /* 333 * rarely used fields: 334 */ 335 const char *name; 336 } ____cacheline_internodealigned_in_smp; 337 338 typedef enum { 339 ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */ 340 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 341 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ 342 } zone_flags_t; 343 344 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag) 345 { 346 set_bit(flag, &zone->flags); 347 } 348 349 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag) 350 { 351 return test_and_set_bit(flag, &zone->flags); 352 } 353 354 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag) 355 { 356 clear_bit(flag, &zone->flags); 357 } 358 359 static inline int zone_is_all_unreclaimable(const struct zone *zone) 360 { 361 return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags); 362 } 363 364 static inline int zone_is_reclaim_locked(const struct zone *zone) 365 { 366 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 367 } 368 369 static inline int zone_is_oom_locked(const struct zone *zone) 370 { 371 return test_bit(ZONE_OOM_LOCKED, &zone->flags); 372 } 373 374 /* 375 * The "priority" of VM scanning is how much of the queues we will scan in one 376 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 377 * queues ("queue_length >> 12") during an aging round. 378 */ 379 #define DEF_PRIORITY 12 380 381 /* Maximum number of zones on a zonelist */ 382 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 383 384 #ifdef CONFIG_NUMA 385 386 /* 387 * The NUMA zonelists are doubled becausse we need zonelists that restrict the 388 * allocations to a single node for GFP_THISNODE. 389 * 390 * [0] : Zonelist with fallback 391 * [1] : No fallback (GFP_THISNODE) 392 */ 393 #define MAX_ZONELISTS 2 394 395 396 /* 397 * We cache key information from each zonelist for smaller cache 398 * footprint when scanning for free pages in get_page_from_freelist(). 399 * 400 * 1) The BITMAP fullzones tracks which zones in a zonelist have come 401 * up short of free memory since the last time (last_fullzone_zap) 402 * we zero'd fullzones. 403 * 2) The array z_to_n[] maps each zone in the zonelist to its node 404 * id, so that we can efficiently evaluate whether that node is 405 * set in the current tasks mems_allowed. 406 * 407 * Both fullzones and z_to_n[] are one-to-one with the zonelist, 408 * indexed by a zones offset in the zonelist zones[] array. 409 * 410 * The get_page_from_freelist() routine does two scans. During the 411 * first scan, we skip zones whose corresponding bit in 'fullzones' 412 * is set or whose corresponding node in current->mems_allowed (which 413 * comes from cpusets) is not set. During the second scan, we bypass 414 * this zonelist_cache, to ensure we look methodically at each zone. 415 * 416 * Once per second, we zero out (zap) fullzones, forcing us to 417 * reconsider nodes that might have regained more free memory. 418 * The field last_full_zap is the time we last zapped fullzones. 419 * 420 * This mechanism reduces the amount of time we waste repeatedly 421 * reexaming zones for free memory when they just came up low on 422 * memory momentarilly ago. 423 * 424 * The zonelist_cache struct members logically belong in struct 425 * zonelist. However, the mempolicy zonelists constructed for 426 * MPOL_BIND are intentionally variable length (and usually much 427 * shorter). A general purpose mechanism for handling structs with 428 * multiple variable length members is more mechanism than we want 429 * here. We resort to some special case hackery instead. 430 * 431 * The MPOL_BIND zonelists don't need this zonelist_cache (in good 432 * part because they are shorter), so we put the fixed length stuff 433 * at the front of the zonelist struct, ending in a variable length 434 * zones[], as is needed by MPOL_BIND. 435 * 436 * Then we put the optional zonelist cache on the end of the zonelist 437 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in 438 * the fixed length portion at the front of the struct. This pointer 439 * both enables us to find the zonelist cache, and in the case of 440 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) 441 * to know that the zonelist cache is not there. 442 * 443 * The end result is that struct zonelists come in two flavors: 444 * 1) The full, fixed length version, shown below, and 445 * 2) The custom zonelists for MPOL_BIND. 446 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. 447 * 448 * Even though there may be multiple CPU cores on a node modifying 449 * fullzones or last_full_zap in the same zonelist_cache at the same 450 * time, we don't lock it. This is just hint data - if it is wrong now 451 * and then, the allocator will still function, perhaps a bit slower. 452 */ 453 454 455 struct zonelist_cache { 456 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ 457 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ 458 unsigned long last_full_zap; /* when last zap'd (jiffies) */ 459 }; 460 #else 461 #define MAX_ZONELISTS 1 462 struct zonelist_cache; 463 #endif 464 465 /* 466 * This struct contains information about a zone in a zonelist. It is stored 467 * here to avoid dereferences into large structures and lookups of tables 468 */ 469 struct zoneref { 470 struct zone *zone; /* Pointer to actual zone */ 471 int zone_idx; /* zone_idx(zoneref->zone) */ 472 }; 473 474 /* 475 * One allocation request operates on a zonelist. A zonelist 476 * is a list of zones, the first one is the 'goal' of the 477 * allocation, the other zones are fallback zones, in decreasing 478 * priority. 479 * 480 * If zlcache_ptr is not NULL, then it is just the address of zlcache, 481 * as explained above. If zlcache_ptr is NULL, there is no zlcache. 482 * * 483 * To speed the reading of the zonelist, the zonerefs contain the zone index 484 * of the entry being read. Helper functions to access information given 485 * a struct zoneref are 486 * 487 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 488 * zonelist_zone_idx() - Return the index of the zone for an entry 489 * zonelist_node_idx() - Return the index of the node for an entry 490 */ 491 struct zonelist { 492 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache 493 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 494 #ifdef CONFIG_NUMA 495 struct zonelist_cache zlcache; // optional ... 496 #endif 497 }; 498 499 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 500 struct node_active_region { 501 unsigned long start_pfn; 502 unsigned long end_pfn; 503 int nid; 504 }; 505 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 506 507 #ifndef CONFIG_DISCONTIGMEM 508 /* The array of struct pages - for discontigmem use pgdat->lmem_map */ 509 extern struct page *mem_map; 510 #endif 511 512 /* 513 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 514 * (mostly NUMA machines?) to denote a higher-level memory zone than the 515 * zone denotes. 516 * 517 * On NUMA machines, each NUMA node would have a pg_data_t to describe 518 * it's memory layout. 519 * 520 * Memory statistics and page replacement data structures are maintained on a 521 * per-zone basis. 522 */ 523 struct bootmem_data; 524 typedef struct pglist_data { 525 struct zone node_zones[MAX_NR_ZONES]; 526 struct zonelist node_zonelists[MAX_ZONELISTS]; 527 int nr_zones; 528 #ifdef CONFIG_FLAT_NODE_MEM_MAP 529 struct page *node_mem_map; 530 #endif 531 struct bootmem_data *bdata; 532 #ifdef CONFIG_MEMORY_HOTPLUG 533 /* 534 * Must be held any time you expect node_start_pfn, node_present_pages 535 * or node_spanned_pages stay constant. Holding this will also 536 * guarantee that any pfn_valid() stays that way. 537 * 538 * Nests above zone->lock and zone->size_seqlock. 539 */ 540 spinlock_t node_size_lock; 541 #endif 542 unsigned long node_start_pfn; 543 unsigned long node_present_pages; /* total number of physical pages */ 544 unsigned long node_spanned_pages; /* total size of physical page 545 range, including holes */ 546 int node_id; 547 wait_queue_head_t kswapd_wait; 548 struct task_struct *kswapd; 549 int kswapd_max_order; 550 } pg_data_t; 551 552 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 553 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 554 #ifdef CONFIG_FLAT_NODE_MEM_MAP 555 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 556 #else 557 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 558 #endif 559 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 560 561 #include <linux/memory_hotplug.h> 562 563 void get_zone_counts(unsigned long *active, unsigned long *inactive, 564 unsigned long *free); 565 void build_all_zonelists(void); 566 void wakeup_kswapd(struct zone *zone, int order); 567 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 568 int classzone_idx, int alloc_flags); 569 enum memmap_context { 570 MEMMAP_EARLY, 571 MEMMAP_HOTPLUG, 572 }; 573 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 574 unsigned long size, 575 enum memmap_context context); 576 577 #ifdef CONFIG_HAVE_MEMORY_PRESENT 578 void memory_present(int nid, unsigned long start, unsigned long end); 579 #else 580 static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 581 #endif 582 583 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 584 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 585 #endif 586 587 /* 588 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 589 */ 590 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 591 592 static inline int populated_zone(struct zone *zone) 593 { 594 return (!!zone->present_pages); 595 } 596 597 extern int movable_zone; 598 599 static inline int zone_movable_is_highmem(void) 600 { 601 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP) 602 return movable_zone == ZONE_HIGHMEM; 603 #else 604 return 0; 605 #endif 606 } 607 608 static inline int is_highmem_idx(enum zone_type idx) 609 { 610 #ifdef CONFIG_HIGHMEM 611 return (idx == ZONE_HIGHMEM || 612 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 613 #else 614 return 0; 615 #endif 616 } 617 618 static inline int is_normal_idx(enum zone_type idx) 619 { 620 return (idx == ZONE_NORMAL); 621 } 622 623 /** 624 * is_highmem - helper function to quickly check if a struct zone is a 625 * highmem zone or not. This is an attempt to keep references 626 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 627 * @zone - pointer to struct zone variable 628 */ 629 static inline int is_highmem(struct zone *zone) 630 { 631 #ifdef CONFIG_HIGHMEM 632 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones; 633 return zone_off == ZONE_HIGHMEM * sizeof(*zone) || 634 (zone_off == ZONE_MOVABLE * sizeof(*zone) && 635 zone_movable_is_highmem()); 636 #else 637 return 0; 638 #endif 639 } 640 641 static inline int is_normal(struct zone *zone) 642 { 643 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; 644 } 645 646 static inline int is_dma32(struct zone *zone) 647 { 648 #ifdef CONFIG_ZONE_DMA32 649 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32; 650 #else 651 return 0; 652 #endif 653 } 654 655 static inline int is_dma(struct zone *zone) 656 { 657 #ifdef CONFIG_ZONE_DMA 658 return zone == zone->zone_pgdat->node_zones + ZONE_DMA; 659 #else 660 return 0; 661 #endif 662 } 663 664 /* These two functions are used to setup the per zone pages min values */ 665 struct ctl_table; 666 struct file; 667 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *, 668 void __user *, size_t *, loff_t *); 669 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 670 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *, 671 void __user *, size_t *, loff_t *); 672 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *, 673 void __user *, size_t *, loff_t *); 674 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 675 struct file *, void __user *, size_t *, loff_t *); 676 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 677 struct file *, void __user *, size_t *, loff_t *); 678 679 extern int numa_zonelist_order_handler(struct ctl_table *, int, 680 struct file *, void __user *, size_t *, loff_t *); 681 extern char numa_zonelist_order[]; 682 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 683 684 #include <linux/topology.h> 685 /* Returns the number of the current Node. */ 686 #ifndef numa_node_id 687 #define numa_node_id() (cpu_to_node(raw_smp_processor_id())) 688 #endif 689 690 #ifndef CONFIG_NEED_MULTIPLE_NODES 691 692 extern struct pglist_data contig_page_data; 693 #define NODE_DATA(nid) (&contig_page_data) 694 #define NODE_MEM_MAP(nid) mem_map 695 696 #else /* CONFIG_NEED_MULTIPLE_NODES */ 697 698 #include <asm/mmzone.h> 699 700 #endif /* !CONFIG_NEED_MULTIPLE_NODES */ 701 702 extern struct pglist_data *first_online_pgdat(void); 703 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 704 extern struct zone *next_zone(struct zone *zone); 705 706 /** 707 * for_each_pgdat - helper macro to iterate over all nodes 708 * @pgdat - pointer to a pg_data_t variable 709 */ 710 #define for_each_online_pgdat(pgdat) \ 711 for (pgdat = first_online_pgdat(); \ 712 pgdat; \ 713 pgdat = next_online_pgdat(pgdat)) 714 /** 715 * for_each_zone - helper macro to iterate over all memory zones 716 * @zone - pointer to struct zone variable 717 * 718 * The user only needs to declare the zone variable, for_each_zone 719 * fills it in. 720 */ 721 #define for_each_zone(zone) \ 722 for (zone = (first_online_pgdat())->node_zones; \ 723 zone; \ 724 zone = next_zone(zone)) 725 726 static inline struct zone *zonelist_zone(struct zoneref *zoneref) 727 { 728 return zoneref->zone; 729 } 730 731 static inline int zonelist_zone_idx(struct zoneref *zoneref) 732 { 733 return zoneref->zone_idx; 734 } 735 736 static inline int zonelist_node_idx(struct zoneref *zoneref) 737 { 738 #ifdef CONFIG_NUMA 739 /* zone_to_nid not available in this context */ 740 return zoneref->zone->node; 741 #else 742 return 0; 743 #endif /* CONFIG_NUMA */ 744 } 745 746 /** 747 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 748 * @z - The cursor used as a starting point for the search 749 * @highest_zoneidx - The zone index of the highest zone to return 750 * @nodes - An optional nodemask to filter the zonelist with 751 * @zone - The first suitable zone found is returned via this parameter 752 * 753 * This function returns the next zone at or below a given zone index that is 754 * within the allowed nodemask using a cursor as the starting point for the 755 * search. The zoneref returned is a cursor that is used as the next starting 756 * point for future calls to next_zones_zonelist(). 757 */ 758 struct zoneref *next_zones_zonelist(struct zoneref *z, 759 enum zone_type highest_zoneidx, 760 nodemask_t *nodes, 761 struct zone **zone); 762 763 /** 764 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 765 * @zonelist - The zonelist to search for a suitable zone 766 * @highest_zoneidx - The zone index of the highest zone to return 767 * @nodes - An optional nodemask to filter the zonelist with 768 * @zone - The first suitable zone found is returned via this parameter 769 * 770 * This function returns the first zone at or below a given zone index that is 771 * within the allowed nodemask. The zoneref returned is a cursor that can be 772 * used to iterate the zonelist with next_zones_zonelist. The cursor should 773 * not be used by the caller as it does not match the value of the zone 774 * returned. 775 */ 776 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 777 enum zone_type highest_zoneidx, 778 nodemask_t *nodes, 779 struct zone **zone) 780 { 781 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes, 782 zone); 783 } 784 785 /** 786 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 787 * @zone - The current zone in the iterator 788 * @z - The current pointer within zonelist->zones being iterated 789 * @zlist - The zonelist being iterated 790 * @highidx - The zone index of the highest zone to return 791 * @nodemask - Nodemask allowed by the allocator 792 * 793 * This iterator iterates though all zones at or below a given zone index and 794 * within a given nodemask 795 */ 796 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 797 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \ 798 zone; \ 799 z = next_zones_zonelist(z, highidx, nodemask, &zone)) \ 800 801 /** 802 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 803 * @zone - The current zone in the iterator 804 * @z - The current pointer within zonelist->zones being iterated 805 * @zlist - The zonelist being iterated 806 * @highidx - The zone index of the highest zone to return 807 * 808 * This iterator iterates though all zones at or below a given zone index. 809 */ 810 #define for_each_zone_zonelist(zone, z, zlist, highidx) \ 811 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 812 813 #ifdef CONFIG_SPARSEMEM 814 #include <asm/sparsemem.h> 815 #endif 816 817 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 818 !defined(CONFIG_ARCH_POPULATES_NODE_MAP) 819 static inline unsigned long early_pfn_to_nid(unsigned long pfn) 820 { 821 return 0; 822 } 823 #endif 824 825 #ifdef CONFIG_FLATMEM 826 #define pfn_to_nid(pfn) (0) 827 #endif 828 829 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 830 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 831 832 #ifdef CONFIG_SPARSEMEM 833 834 /* 835 * SECTION_SHIFT #bits space required to store a section # 836 * 837 * PA_SECTION_SHIFT physical address to/from section number 838 * PFN_SECTION_SHIFT pfn to/from section number 839 */ 840 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS) 841 842 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 843 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 844 845 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 846 847 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 848 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 849 850 #define SECTION_BLOCKFLAGS_BITS \ 851 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 852 853 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 854 #error Allocator MAX_ORDER exceeds SECTION_SIZE 855 #endif 856 857 struct page; 858 struct mem_section { 859 /* 860 * This is, logically, a pointer to an array of struct 861 * pages. However, it is stored with some other magic. 862 * (see sparse.c::sparse_init_one_section()) 863 * 864 * Additionally during early boot we encode node id of 865 * the location of the section here to guide allocation. 866 * (see sparse.c::memory_present()) 867 * 868 * Making it a UL at least makes someone do a cast 869 * before using it wrong. 870 */ 871 unsigned long section_mem_map; 872 873 /* See declaration of similar field in struct zone */ 874 unsigned long *pageblock_flags; 875 }; 876 877 #ifdef CONFIG_SPARSEMEM_EXTREME 878 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 879 #else 880 #define SECTIONS_PER_ROOT 1 881 #endif 882 883 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 884 #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT) 885 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 886 887 #ifdef CONFIG_SPARSEMEM_EXTREME 888 extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 889 #else 890 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 891 #endif 892 893 static inline struct mem_section *__nr_to_section(unsigned long nr) 894 { 895 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 896 return NULL; 897 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 898 } 899 extern int __section_nr(struct mem_section* ms); 900 extern unsigned long usemap_size(void); 901 902 /* 903 * We use the lower bits of the mem_map pointer to store 904 * a little bit of information. There should be at least 905 * 3 bits here due to 32-bit alignment. 906 */ 907 #define SECTION_MARKED_PRESENT (1UL<<0) 908 #define SECTION_HAS_MEM_MAP (1UL<<1) 909 #define SECTION_MAP_LAST_BIT (1UL<<2) 910 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 911 #define SECTION_NID_SHIFT 2 912 913 static inline struct page *__section_mem_map_addr(struct mem_section *section) 914 { 915 unsigned long map = section->section_mem_map; 916 map &= SECTION_MAP_MASK; 917 return (struct page *)map; 918 } 919 920 static inline int present_section(struct mem_section *section) 921 { 922 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 923 } 924 925 static inline int present_section_nr(unsigned long nr) 926 { 927 return present_section(__nr_to_section(nr)); 928 } 929 930 static inline int valid_section(struct mem_section *section) 931 { 932 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 933 } 934 935 static inline int valid_section_nr(unsigned long nr) 936 { 937 return valid_section(__nr_to_section(nr)); 938 } 939 940 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 941 { 942 return __nr_to_section(pfn_to_section_nr(pfn)); 943 } 944 945 static inline int pfn_valid(unsigned long pfn) 946 { 947 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 948 return 0; 949 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 950 } 951 952 static inline int pfn_present(unsigned long pfn) 953 { 954 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 955 return 0; 956 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 957 } 958 959 /* 960 * These are _only_ used during initialisation, therefore they 961 * can use __initdata ... They could have names to indicate 962 * this restriction. 963 */ 964 #ifdef CONFIG_NUMA 965 #define pfn_to_nid(pfn) \ 966 ({ \ 967 unsigned long __pfn_to_nid_pfn = (pfn); \ 968 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 969 }) 970 #else 971 #define pfn_to_nid(pfn) (0) 972 #endif 973 974 #define early_pfn_valid(pfn) pfn_valid(pfn) 975 void sparse_init(void); 976 #else 977 #define sparse_init() do {} while (0) 978 #define sparse_index_init(_sec, _nid) do {} while (0) 979 #endif /* CONFIG_SPARSEMEM */ 980 981 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 982 #define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid)) 983 #else 984 #define early_pfn_in_nid(pfn, nid) (1) 985 #endif 986 987 #ifndef early_pfn_valid 988 #define early_pfn_valid(pfn) (1) 989 #endif 990 991 void memory_present(int nid, unsigned long start, unsigned long end); 992 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 993 994 /* 995 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 996 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 997 * pfn_valid_within() should be used in this case; we optimise this away 998 * when we have no holes within a MAX_ORDER_NR_PAGES block. 999 */ 1000 #ifdef CONFIG_HOLES_IN_ZONE 1001 #define pfn_valid_within(pfn) pfn_valid(pfn) 1002 #else 1003 #define pfn_valid_within(pfn) (1) 1004 #endif 1005 1006 #endif /* !__GENERATING_BOUNDS.H */ 1007 #endif /* !__ASSEMBLY__ */ 1008 #endif /* __KERNEL__ */ 1009 #endif /* _LINUX_MMZONE_H */ 1010