xref: /linux-6.15/include/linux/mmzone.h (revision f5e4e7fd)
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3 
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6 
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21 
22 /* Free memory management - zoned buddy allocator.  */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29 
30 /*
31  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32  * costly to service.  That is between allocation orders which should
33  * coalesce naturally under reasonable reclaim pressure and those which
34  * will not.
35  */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37 
38 enum {
39 	MIGRATE_UNMOVABLE,
40 	MIGRATE_RECLAIMABLE,
41 	MIGRATE_MOVABLE,
42 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
43 	MIGRATE_RESERVE = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 	/*
46 	 * MIGRATE_CMA migration type is designed to mimic the way
47 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
48 	 * from MIGRATE_CMA pageblocks and page allocator never
49 	 * implicitly change migration type of MIGRATE_CMA pageblock.
50 	 *
51 	 * The way to use it is to change migratetype of a range of
52 	 * pageblocks to MIGRATE_CMA which can be done by
53 	 * __free_pageblock_cma() function.  What is important though
54 	 * is that a range of pageblocks must be aligned to
55 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 	 * a single pageblock.
57 	 */
58 	MIGRATE_CMA,
59 #endif
60 #ifdef CONFIG_MEMORY_ISOLATION
61 	MIGRATE_ISOLATE,	/* can't allocate from here */
62 #endif
63 	MIGRATE_TYPES
64 };
65 
66 #ifdef CONFIG_CMA
67 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
68 #else
69 #  define is_migrate_cma(migratetype) false
70 #endif
71 
72 #define for_each_migratetype_order(order, type) \
73 	for (order = 0; order < MAX_ORDER; order++) \
74 		for (type = 0; type < MIGRATE_TYPES; type++)
75 
76 extern int page_group_by_mobility_disabled;
77 
78 static inline int get_pageblock_migratetype(struct page *page)
79 {
80 	return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
81 }
82 
83 struct free_area {
84 	struct list_head	free_list[MIGRATE_TYPES];
85 	unsigned long		nr_free;
86 };
87 
88 struct pglist_data;
89 
90 /*
91  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
92  * So add a wild amount of padding here to ensure that they fall into separate
93  * cachelines.  There are very few zone structures in the machine, so space
94  * consumption is not a concern here.
95  */
96 #if defined(CONFIG_SMP)
97 struct zone_padding {
98 	char x[0];
99 } ____cacheline_internodealigned_in_smp;
100 #define ZONE_PADDING(name)	struct zone_padding name;
101 #else
102 #define ZONE_PADDING(name)
103 #endif
104 
105 enum zone_stat_item {
106 	/* First 128 byte cacheline (assuming 64 bit words) */
107 	NR_FREE_PAGES,
108 	NR_LRU_BASE,
109 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
110 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
111 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
112 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
113 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
114 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
115 	NR_ANON_PAGES,	/* Mapped anonymous pages */
116 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
117 			   only modified from process context */
118 	NR_FILE_PAGES,
119 	NR_FILE_DIRTY,
120 	NR_WRITEBACK,
121 	NR_SLAB_RECLAIMABLE,
122 	NR_SLAB_UNRECLAIMABLE,
123 	NR_PAGETABLE,		/* used for pagetables */
124 	NR_KERNEL_STACK,
125 	/* Second 128 byte cacheline */
126 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
127 	NR_BOUNCE,
128 	NR_VMSCAN_WRITE,
129 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
130 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
131 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
132 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
133 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
134 	NR_DIRTIED,		/* page dirtyings since bootup */
135 	NR_WRITTEN,		/* page writings since bootup */
136 #ifdef CONFIG_NUMA
137 	NUMA_HIT,		/* allocated in intended node */
138 	NUMA_MISS,		/* allocated in non intended node */
139 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
140 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
141 	NUMA_LOCAL,		/* allocation from local node */
142 	NUMA_OTHER,		/* allocation from other node */
143 #endif
144 	NR_ANON_TRANSPARENT_HUGEPAGES,
145 	NR_FREE_CMA_PAGES,
146 	NR_VM_ZONE_STAT_ITEMS };
147 
148 /*
149  * We do arithmetic on the LRU lists in various places in the code,
150  * so it is important to keep the active lists LRU_ACTIVE higher in
151  * the array than the corresponding inactive lists, and to keep
152  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
153  *
154  * This has to be kept in sync with the statistics in zone_stat_item
155  * above and the descriptions in vmstat_text in mm/vmstat.c
156  */
157 #define LRU_BASE 0
158 #define LRU_ACTIVE 1
159 #define LRU_FILE 2
160 
161 enum lru_list {
162 	LRU_INACTIVE_ANON = LRU_BASE,
163 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
164 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
165 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
166 	LRU_UNEVICTABLE,
167 	NR_LRU_LISTS
168 };
169 
170 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
171 
172 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
173 
174 static inline int is_file_lru(enum lru_list lru)
175 {
176 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
177 }
178 
179 static inline int is_active_lru(enum lru_list lru)
180 {
181 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
182 }
183 
184 static inline int is_unevictable_lru(enum lru_list lru)
185 {
186 	return (lru == LRU_UNEVICTABLE);
187 }
188 
189 struct zone_reclaim_stat {
190 	/*
191 	 * The pageout code in vmscan.c keeps track of how many of the
192 	 * mem/swap backed and file backed pages are referenced.
193 	 * The higher the rotated/scanned ratio, the more valuable
194 	 * that cache is.
195 	 *
196 	 * The anon LRU stats live in [0], file LRU stats in [1]
197 	 */
198 	unsigned long		recent_rotated[2];
199 	unsigned long		recent_scanned[2];
200 };
201 
202 struct lruvec {
203 	struct list_head lists[NR_LRU_LISTS];
204 	struct zone_reclaim_stat reclaim_stat;
205 #ifdef CONFIG_MEMCG
206 	struct zone *zone;
207 #endif
208 };
209 
210 /* Mask used at gathering information at once (see memcontrol.c) */
211 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
212 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
213 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
214 
215 /* Isolate clean file */
216 #define ISOLATE_CLEAN		((__force isolate_mode_t)0x1)
217 /* Isolate unmapped file */
218 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
219 /* Isolate for asynchronous migration */
220 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
221 /* Isolate unevictable pages */
222 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
223 
224 /* LRU Isolation modes. */
225 typedef unsigned __bitwise__ isolate_mode_t;
226 
227 enum zone_watermarks {
228 	WMARK_MIN,
229 	WMARK_LOW,
230 	WMARK_HIGH,
231 	NR_WMARK
232 };
233 
234 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
235 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
236 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
237 
238 struct per_cpu_pages {
239 	int count;		/* number of pages in the list */
240 	int high;		/* high watermark, emptying needed */
241 	int batch;		/* chunk size for buddy add/remove */
242 
243 	/* Lists of pages, one per migrate type stored on the pcp-lists */
244 	struct list_head lists[MIGRATE_PCPTYPES];
245 };
246 
247 struct per_cpu_pageset {
248 	struct per_cpu_pages pcp;
249 #ifdef CONFIG_NUMA
250 	s8 expire;
251 #endif
252 #ifdef CONFIG_SMP
253 	s8 stat_threshold;
254 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
255 #endif
256 };
257 
258 #endif /* !__GENERATING_BOUNDS.H */
259 
260 enum zone_type {
261 #ifdef CONFIG_ZONE_DMA
262 	/*
263 	 * ZONE_DMA is used when there are devices that are not able
264 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
265 	 * carve out the portion of memory that is needed for these devices.
266 	 * The range is arch specific.
267 	 *
268 	 * Some examples
269 	 *
270 	 * Architecture		Limit
271 	 * ---------------------------
272 	 * parisc, ia64, sparc	<4G
273 	 * s390			<2G
274 	 * arm			Various
275 	 * alpha		Unlimited or 0-16MB.
276 	 *
277 	 * i386, x86_64 and multiple other arches
278 	 * 			<16M.
279 	 */
280 	ZONE_DMA,
281 #endif
282 #ifdef CONFIG_ZONE_DMA32
283 	/*
284 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
285 	 * only able to do DMA to the lower 16M but also 32 bit devices that
286 	 * can only do DMA areas below 4G.
287 	 */
288 	ZONE_DMA32,
289 #endif
290 	/*
291 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
292 	 * performed on pages in ZONE_NORMAL if the DMA devices support
293 	 * transfers to all addressable memory.
294 	 */
295 	ZONE_NORMAL,
296 #ifdef CONFIG_HIGHMEM
297 	/*
298 	 * A memory area that is only addressable by the kernel through
299 	 * mapping portions into its own address space. This is for example
300 	 * used by i386 to allow the kernel to address the memory beyond
301 	 * 900MB. The kernel will set up special mappings (page
302 	 * table entries on i386) for each page that the kernel needs to
303 	 * access.
304 	 */
305 	ZONE_HIGHMEM,
306 #endif
307 	ZONE_MOVABLE,
308 	__MAX_NR_ZONES
309 };
310 
311 #ifndef __GENERATING_BOUNDS_H
312 
313 struct zone {
314 	/* Fields commonly accessed by the page allocator */
315 
316 	/* zone watermarks, access with *_wmark_pages(zone) macros */
317 	unsigned long watermark[NR_WMARK];
318 
319 	/*
320 	 * When free pages are below this point, additional steps are taken
321 	 * when reading the number of free pages to avoid per-cpu counter
322 	 * drift allowing watermarks to be breached
323 	 */
324 	unsigned long percpu_drift_mark;
325 
326 	/*
327 	 * We don't know if the memory that we're going to allocate will be freeable
328 	 * or/and it will be released eventually, so to avoid totally wasting several
329 	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
330 	 * to run OOM on the lower zones despite there's tons of freeable ram
331 	 * on the higher zones). This array is recalculated at runtime if the
332 	 * sysctl_lowmem_reserve_ratio sysctl changes.
333 	 */
334 	unsigned long		lowmem_reserve[MAX_NR_ZONES];
335 
336 	/*
337 	 * This is a per-zone reserve of pages that should not be
338 	 * considered dirtyable memory.
339 	 */
340 	unsigned long		dirty_balance_reserve;
341 
342 #ifdef CONFIG_NUMA
343 	int node;
344 	/*
345 	 * zone reclaim becomes active if more unmapped pages exist.
346 	 */
347 	unsigned long		min_unmapped_pages;
348 	unsigned long		min_slab_pages;
349 #endif
350 	struct per_cpu_pageset __percpu *pageset;
351 	/*
352 	 * free areas of different sizes
353 	 */
354 	spinlock_t		lock;
355 	int                     all_unreclaimable; /* All pages pinned */
356 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
357 	/* Set to true when the PG_migrate_skip bits should be cleared */
358 	bool			compact_blockskip_flush;
359 
360 	/* pfns where compaction scanners should start */
361 	unsigned long		compact_cached_free_pfn;
362 	unsigned long		compact_cached_migrate_pfn;
363 #endif
364 #ifdef CONFIG_MEMORY_HOTPLUG
365 	/* see spanned/present_pages for more description */
366 	seqlock_t		span_seqlock;
367 #endif
368 	struct free_area	free_area[MAX_ORDER];
369 
370 #ifndef CONFIG_SPARSEMEM
371 	/*
372 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
373 	 * In SPARSEMEM, this map is stored in struct mem_section
374 	 */
375 	unsigned long		*pageblock_flags;
376 #endif /* CONFIG_SPARSEMEM */
377 
378 #ifdef CONFIG_COMPACTION
379 	/*
380 	 * On compaction failure, 1<<compact_defer_shift compactions
381 	 * are skipped before trying again. The number attempted since
382 	 * last failure is tracked with compact_considered.
383 	 */
384 	unsigned int		compact_considered;
385 	unsigned int		compact_defer_shift;
386 	int			compact_order_failed;
387 #endif
388 
389 	ZONE_PADDING(_pad1_)
390 
391 	/* Fields commonly accessed by the page reclaim scanner */
392 	spinlock_t		lru_lock;
393 	struct lruvec		lruvec;
394 
395 	unsigned long		pages_scanned;	   /* since last reclaim */
396 	unsigned long		flags;		   /* zone flags, see below */
397 
398 	/* Zone statistics */
399 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
400 
401 	/*
402 	 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
403 	 * this zone's LRU.  Maintained by the pageout code.
404 	 */
405 	unsigned int inactive_ratio;
406 
407 
408 	ZONE_PADDING(_pad2_)
409 	/* Rarely used or read-mostly fields */
410 
411 	/*
412 	 * wait_table		-- the array holding the hash table
413 	 * wait_table_hash_nr_entries	-- the size of the hash table array
414 	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
415 	 *
416 	 * The purpose of all these is to keep track of the people
417 	 * waiting for a page to become available and make them
418 	 * runnable again when possible. The trouble is that this
419 	 * consumes a lot of space, especially when so few things
420 	 * wait on pages at a given time. So instead of using
421 	 * per-page waitqueues, we use a waitqueue hash table.
422 	 *
423 	 * The bucket discipline is to sleep on the same queue when
424 	 * colliding and wake all in that wait queue when removing.
425 	 * When something wakes, it must check to be sure its page is
426 	 * truly available, a la thundering herd. The cost of a
427 	 * collision is great, but given the expected load of the
428 	 * table, they should be so rare as to be outweighed by the
429 	 * benefits from the saved space.
430 	 *
431 	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
432 	 * primary users of these fields, and in mm/page_alloc.c
433 	 * free_area_init_core() performs the initialization of them.
434 	 */
435 	wait_queue_head_t	* wait_table;
436 	unsigned long		wait_table_hash_nr_entries;
437 	unsigned long		wait_table_bits;
438 
439 	/*
440 	 * Discontig memory support fields.
441 	 */
442 	struct pglist_data	*zone_pgdat;
443 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
444 	unsigned long		zone_start_pfn;
445 
446 	/*
447 	 * spanned_pages is the total pages spanned by the zone, including
448 	 * holes, which is calculated as:
449 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
450 	 *
451 	 * present_pages is physical pages existing within the zone, which
452 	 * is calculated as:
453 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
454 	 *
455 	 * managed_pages is present pages managed by the buddy system, which
456 	 * is calculated as (reserved_pages includes pages allocated by the
457 	 * bootmem allocator):
458 	 *	managed_pages = present_pages - reserved_pages;
459 	 *
460 	 * So present_pages may be used by memory hotplug or memory power
461 	 * management logic to figure out unmanaged pages by checking
462 	 * (present_pages - managed_pages). And managed_pages should be used
463 	 * by page allocator and vm scanner to calculate all kinds of watermarks
464 	 * and thresholds.
465 	 *
466 	 * Locking rules:
467 	 *
468 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
469 	 * It is a seqlock because it has to be read outside of zone->lock,
470 	 * and it is done in the main allocator path.  But, it is written
471 	 * quite infrequently.
472 	 *
473 	 * The span_seq lock is declared along with zone->lock because it is
474 	 * frequently read in proximity to zone->lock.  It's good to
475 	 * give them a chance of being in the same cacheline.
476 	 *
477 	 * Write access to present_pages at runtime should be protected by
478 	 * lock_memory_hotplug()/unlock_memory_hotplug().  Any reader who can't
479 	 * tolerant drift of present_pages should hold memory hotplug lock to
480 	 * get a stable value.
481 	 *
482 	 * Read access to managed_pages should be safe because it's unsigned
483 	 * long. Write access to zone->managed_pages and totalram_pages are
484 	 * protected by managed_page_count_lock at runtime. Idealy only
485 	 * adjust_managed_page_count() should be used instead of directly
486 	 * touching zone->managed_pages and totalram_pages.
487 	 */
488 	unsigned long		spanned_pages;
489 	unsigned long		present_pages;
490 	unsigned long		managed_pages;
491 
492 	/*
493 	 * rarely used fields:
494 	 */
495 	const char		*name;
496 } ____cacheline_internodealigned_in_smp;
497 
498 typedef enum {
499 	ZONE_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
500 	ZONE_OOM_LOCKED,		/* zone is in OOM killer zonelist */
501 	ZONE_CONGESTED,			/* zone has many dirty pages backed by
502 					 * a congested BDI
503 					 */
504 	ZONE_TAIL_LRU_DIRTY,		/* reclaim scanning has recently found
505 					 * many dirty file pages at the tail
506 					 * of the LRU.
507 					 */
508 	ZONE_WRITEBACK,			/* reclaim scanning has recently found
509 					 * many pages under writeback
510 					 */
511 } zone_flags_t;
512 
513 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
514 {
515 	set_bit(flag, &zone->flags);
516 }
517 
518 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
519 {
520 	return test_and_set_bit(flag, &zone->flags);
521 }
522 
523 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
524 {
525 	clear_bit(flag, &zone->flags);
526 }
527 
528 static inline int zone_is_reclaim_congested(const struct zone *zone)
529 {
530 	return test_bit(ZONE_CONGESTED, &zone->flags);
531 }
532 
533 static inline int zone_is_reclaim_dirty(const struct zone *zone)
534 {
535 	return test_bit(ZONE_TAIL_LRU_DIRTY, &zone->flags);
536 }
537 
538 static inline int zone_is_reclaim_writeback(const struct zone *zone)
539 {
540 	return test_bit(ZONE_WRITEBACK, &zone->flags);
541 }
542 
543 static inline int zone_is_reclaim_locked(const struct zone *zone)
544 {
545 	return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
546 }
547 
548 static inline int zone_is_oom_locked(const struct zone *zone)
549 {
550 	return test_bit(ZONE_OOM_LOCKED, &zone->flags);
551 }
552 
553 static inline unsigned long zone_end_pfn(const struct zone *zone)
554 {
555 	return zone->zone_start_pfn + zone->spanned_pages;
556 }
557 
558 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
559 {
560 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
561 }
562 
563 static inline bool zone_is_initialized(struct zone *zone)
564 {
565 	return !!zone->wait_table;
566 }
567 
568 static inline bool zone_is_empty(struct zone *zone)
569 {
570 	return zone->spanned_pages == 0;
571 }
572 
573 /*
574  * The "priority" of VM scanning is how much of the queues we will scan in one
575  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
576  * queues ("queue_length >> 12") during an aging round.
577  */
578 #define DEF_PRIORITY 12
579 
580 /* Maximum number of zones on a zonelist */
581 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
582 
583 #ifdef CONFIG_NUMA
584 
585 /*
586  * The NUMA zonelists are doubled because we need zonelists that restrict the
587  * allocations to a single node for GFP_THISNODE.
588  *
589  * [0]	: Zonelist with fallback
590  * [1]	: No fallback (GFP_THISNODE)
591  */
592 #define MAX_ZONELISTS 2
593 
594 
595 /*
596  * We cache key information from each zonelist for smaller cache
597  * footprint when scanning for free pages in get_page_from_freelist().
598  *
599  * 1) The BITMAP fullzones tracks which zones in a zonelist have come
600  *    up short of free memory since the last time (last_fullzone_zap)
601  *    we zero'd fullzones.
602  * 2) The array z_to_n[] maps each zone in the zonelist to its node
603  *    id, so that we can efficiently evaluate whether that node is
604  *    set in the current tasks mems_allowed.
605  *
606  * Both fullzones and z_to_n[] are one-to-one with the zonelist,
607  * indexed by a zones offset in the zonelist zones[] array.
608  *
609  * The get_page_from_freelist() routine does two scans.  During the
610  * first scan, we skip zones whose corresponding bit in 'fullzones'
611  * is set or whose corresponding node in current->mems_allowed (which
612  * comes from cpusets) is not set.  During the second scan, we bypass
613  * this zonelist_cache, to ensure we look methodically at each zone.
614  *
615  * Once per second, we zero out (zap) fullzones, forcing us to
616  * reconsider nodes that might have regained more free memory.
617  * The field last_full_zap is the time we last zapped fullzones.
618  *
619  * This mechanism reduces the amount of time we waste repeatedly
620  * reexaming zones for free memory when they just came up low on
621  * memory momentarilly ago.
622  *
623  * The zonelist_cache struct members logically belong in struct
624  * zonelist.  However, the mempolicy zonelists constructed for
625  * MPOL_BIND are intentionally variable length (and usually much
626  * shorter).  A general purpose mechanism for handling structs with
627  * multiple variable length members is more mechanism than we want
628  * here.  We resort to some special case hackery instead.
629  *
630  * The MPOL_BIND zonelists don't need this zonelist_cache (in good
631  * part because they are shorter), so we put the fixed length stuff
632  * at the front of the zonelist struct, ending in a variable length
633  * zones[], as is needed by MPOL_BIND.
634  *
635  * Then we put the optional zonelist cache on the end of the zonelist
636  * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
637  * the fixed length portion at the front of the struct.  This pointer
638  * both enables us to find the zonelist cache, and in the case of
639  * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
640  * to know that the zonelist cache is not there.
641  *
642  * The end result is that struct zonelists come in two flavors:
643  *  1) The full, fixed length version, shown below, and
644  *  2) The custom zonelists for MPOL_BIND.
645  * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
646  *
647  * Even though there may be multiple CPU cores on a node modifying
648  * fullzones or last_full_zap in the same zonelist_cache at the same
649  * time, we don't lock it.  This is just hint data - if it is wrong now
650  * and then, the allocator will still function, perhaps a bit slower.
651  */
652 
653 
654 struct zonelist_cache {
655 	unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];		/* zone->nid */
656 	DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);	/* zone full? */
657 	unsigned long last_full_zap;		/* when last zap'd (jiffies) */
658 };
659 #else
660 #define MAX_ZONELISTS 1
661 struct zonelist_cache;
662 #endif
663 
664 /*
665  * This struct contains information about a zone in a zonelist. It is stored
666  * here to avoid dereferences into large structures and lookups of tables
667  */
668 struct zoneref {
669 	struct zone *zone;	/* Pointer to actual zone */
670 	int zone_idx;		/* zone_idx(zoneref->zone) */
671 };
672 
673 /*
674  * One allocation request operates on a zonelist. A zonelist
675  * is a list of zones, the first one is the 'goal' of the
676  * allocation, the other zones are fallback zones, in decreasing
677  * priority.
678  *
679  * If zlcache_ptr is not NULL, then it is just the address of zlcache,
680  * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
681  * *
682  * To speed the reading of the zonelist, the zonerefs contain the zone index
683  * of the entry being read. Helper functions to access information given
684  * a struct zoneref are
685  *
686  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
687  * zonelist_zone_idx()	- Return the index of the zone for an entry
688  * zonelist_node_idx()	- Return the index of the node for an entry
689  */
690 struct zonelist {
691 	struct zonelist_cache *zlcache_ptr;		     // NULL or &zlcache
692 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
693 #ifdef CONFIG_NUMA
694 	struct zonelist_cache zlcache;			     // optional ...
695 #endif
696 };
697 
698 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
699 struct node_active_region {
700 	unsigned long start_pfn;
701 	unsigned long end_pfn;
702 	int nid;
703 };
704 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
705 
706 #ifndef CONFIG_DISCONTIGMEM
707 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
708 extern struct page *mem_map;
709 #endif
710 
711 /*
712  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
713  * (mostly NUMA machines?) to denote a higher-level memory zone than the
714  * zone denotes.
715  *
716  * On NUMA machines, each NUMA node would have a pg_data_t to describe
717  * it's memory layout.
718  *
719  * Memory statistics and page replacement data structures are maintained on a
720  * per-zone basis.
721  */
722 struct bootmem_data;
723 typedef struct pglist_data {
724 	struct zone node_zones[MAX_NR_ZONES];
725 	struct zonelist node_zonelists[MAX_ZONELISTS];
726 	int nr_zones;
727 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
728 	struct page *node_mem_map;
729 #ifdef CONFIG_MEMCG
730 	struct page_cgroup *node_page_cgroup;
731 #endif
732 #endif
733 #ifndef CONFIG_NO_BOOTMEM
734 	struct bootmem_data *bdata;
735 #endif
736 #ifdef CONFIG_MEMORY_HOTPLUG
737 	/*
738 	 * Must be held any time you expect node_start_pfn, node_present_pages
739 	 * or node_spanned_pages stay constant.  Holding this will also
740 	 * guarantee that any pfn_valid() stays that way.
741 	 *
742 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
743 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
744 	 *
745 	 * Nests above zone->lock and zone->span_seqlock
746 	 */
747 	spinlock_t node_size_lock;
748 #endif
749 	unsigned long node_start_pfn;
750 	unsigned long node_present_pages; /* total number of physical pages */
751 	unsigned long node_spanned_pages; /* total size of physical page
752 					     range, including holes */
753 	int node_id;
754 	nodemask_t reclaim_nodes;	/* Nodes allowed to reclaim from */
755 	wait_queue_head_t kswapd_wait;
756 	wait_queue_head_t pfmemalloc_wait;
757 	struct task_struct *kswapd;	/* Protected by lock_memory_hotplug() */
758 	int kswapd_max_order;
759 	enum zone_type classzone_idx;
760 #ifdef CONFIG_NUMA_BALANCING
761 	/*
762 	 * Lock serializing the per destination node AutoNUMA memory
763 	 * migration rate limiting data.
764 	 */
765 	spinlock_t numabalancing_migrate_lock;
766 
767 	/* Rate limiting time interval */
768 	unsigned long numabalancing_migrate_next_window;
769 
770 	/* Number of pages migrated during the rate limiting time interval */
771 	unsigned long numabalancing_migrate_nr_pages;
772 #endif
773 } pg_data_t;
774 
775 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
776 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
777 #ifdef CONFIG_FLAT_NODE_MEM_MAP
778 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
779 #else
780 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
781 #endif
782 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
783 
784 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
785 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
786 
787 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
788 {
789 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
790 }
791 
792 static inline bool pgdat_is_empty(pg_data_t *pgdat)
793 {
794 	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
795 }
796 
797 #include <linux/memory_hotplug.h>
798 
799 extern struct mutex zonelists_mutex;
800 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
801 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
802 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
803 		int classzone_idx, int alloc_flags);
804 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
805 		int classzone_idx, int alloc_flags);
806 enum memmap_context {
807 	MEMMAP_EARLY,
808 	MEMMAP_HOTPLUG,
809 };
810 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
811 				     unsigned long size,
812 				     enum memmap_context context);
813 
814 extern void lruvec_init(struct lruvec *lruvec);
815 
816 static inline struct zone *lruvec_zone(struct lruvec *lruvec)
817 {
818 #ifdef CONFIG_MEMCG
819 	return lruvec->zone;
820 #else
821 	return container_of(lruvec, struct zone, lruvec);
822 #endif
823 }
824 
825 #ifdef CONFIG_HAVE_MEMORY_PRESENT
826 void memory_present(int nid, unsigned long start, unsigned long end);
827 #else
828 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
829 #endif
830 
831 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
832 int local_memory_node(int node_id);
833 #else
834 static inline int local_memory_node(int node_id) { return node_id; };
835 #endif
836 
837 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
838 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
839 #endif
840 
841 /*
842  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
843  */
844 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
845 
846 static inline int populated_zone(struct zone *zone)
847 {
848 	return (!!zone->present_pages);
849 }
850 
851 extern int movable_zone;
852 
853 static inline int zone_movable_is_highmem(void)
854 {
855 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
856 	return movable_zone == ZONE_HIGHMEM;
857 #else
858 	return 0;
859 #endif
860 }
861 
862 static inline int is_highmem_idx(enum zone_type idx)
863 {
864 #ifdef CONFIG_HIGHMEM
865 	return (idx == ZONE_HIGHMEM ||
866 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
867 #else
868 	return 0;
869 #endif
870 }
871 
872 /**
873  * is_highmem - helper function to quickly check if a struct zone is a
874  *              highmem zone or not.  This is an attempt to keep references
875  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
876  * @zone - pointer to struct zone variable
877  */
878 static inline int is_highmem(struct zone *zone)
879 {
880 #ifdef CONFIG_HIGHMEM
881 	int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
882 	return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
883 	       (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
884 		zone_movable_is_highmem());
885 #else
886 	return 0;
887 #endif
888 }
889 
890 /* These two functions are used to setup the per zone pages min values */
891 struct ctl_table;
892 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
893 					void __user *, size_t *, loff_t *);
894 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
895 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
896 					void __user *, size_t *, loff_t *);
897 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
898 					void __user *, size_t *, loff_t *);
899 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
900 			void __user *, size_t *, loff_t *);
901 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
902 			void __user *, size_t *, loff_t *);
903 
904 extern int numa_zonelist_order_handler(struct ctl_table *, int,
905 			void __user *, size_t *, loff_t *);
906 extern char numa_zonelist_order[];
907 #define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */
908 
909 #ifndef CONFIG_NEED_MULTIPLE_NODES
910 
911 extern struct pglist_data contig_page_data;
912 #define NODE_DATA(nid)		(&contig_page_data)
913 #define NODE_MEM_MAP(nid)	mem_map
914 
915 #else /* CONFIG_NEED_MULTIPLE_NODES */
916 
917 #include <asm/mmzone.h>
918 
919 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
920 
921 extern struct pglist_data *first_online_pgdat(void);
922 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
923 extern struct zone *next_zone(struct zone *zone);
924 
925 /**
926  * for_each_online_pgdat - helper macro to iterate over all online nodes
927  * @pgdat - pointer to a pg_data_t variable
928  */
929 #define for_each_online_pgdat(pgdat)			\
930 	for (pgdat = first_online_pgdat();		\
931 	     pgdat;					\
932 	     pgdat = next_online_pgdat(pgdat))
933 /**
934  * for_each_zone - helper macro to iterate over all memory zones
935  * @zone - pointer to struct zone variable
936  *
937  * The user only needs to declare the zone variable, for_each_zone
938  * fills it in.
939  */
940 #define for_each_zone(zone)			        \
941 	for (zone = (first_online_pgdat())->node_zones; \
942 	     zone;					\
943 	     zone = next_zone(zone))
944 
945 #define for_each_populated_zone(zone)		        \
946 	for (zone = (first_online_pgdat())->node_zones; \
947 	     zone;					\
948 	     zone = next_zone(zone))			\
949 		if (!populated_zone(zone))		\
950 			; /* do nothing */		\
951 		else
952 
953 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
954 {
955 	return zoneref->zone;
956 }
957 
958 static inline int zonelist_zone_idx(struct zoneref *zoneref)
959 {
960 	return zoneref->zone_idx;
961 }
962 
963 static inline int zonelist_node_idx(struct zoneref *zoneref)
964 {
965 #ifdef CONFIG_NUMA
966 	/* zone_to_nid not available in this context */
967 	return zoneref->zone->node;
968 #else
969 	return 0;
970 #endif /* CONFIG_NUMA */
971 }
972 
973 /**
974  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
975  * @z - The cursor used as a starting point for the search
976  * @highest_zoneidx - The zone index of the highest zone to return
977  * @nodes - An optional nodemask to filter the zonelist with
978  * @zone - The first suitable zone found is returned via this parameter
979  *
980  * This function returns the next zone at or below a given zone index that is
981  * within the allowed nodemask using a cursor as the starting point for the
982  * search. The zoneref returned is a cursor that represents the current zone
983  * being examined. It should be advanced by one before calling
984  * next_zones_zonelist again.
985  */
986 struct zoneref *next_zones_zonelist(struct zoneref *z,
987 					enum zone_type highest_zoneidx,
988 					nodemask_t *nodes,
989 					struct zone **zone);
990 
991 /**
992  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
993  * @zonelist - The zonelist to search for a suitable zone
994  * @highest_zoneidx - The zone index of the highest zone to return
995  * @nodes - An optional nodemask to filter the zonelist with
996  * @zone - The first suitable zone found is returned via this parameter
997  *
998  * This function returns the first zone at or below a given zone index that is
999  * within the allowed nodemask. The zoneref returned is a cursor that can be
1000  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1001  * one before calling.
1002  */
1003 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1004 					enum zone_type highest_zoneidx,
1005 					nodemask_t *nodes,
1006 					struct zone **zone)
1007 {
1008 	return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
1009 								zone);
1010 }
1011 
1012 /**
1013  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1014  * @zone - The current zone in the iterator
1015  * @z - The current pointer within zonelist->zones being iterated
1016  * @zlist - The zonelist being iterated
1017  * @highidx - The zone index of the highest zone to return
1018  * @nodemask - Nodemask allowed by the allocator
1019  *
1020  * This iterator iterates though all zones at or below a given zone index and
1021  * within a given nodemask
1022  */
1023 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1024 	for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone);	\
1025 		zone;							\
1026 		z = next_zones_zonelist(++z, highidx, nodemask, &zone))	\
1027 
1028 /**
1029  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1030  * @zone - The current zone in the iterator
1031  * @z - The current pointer within zonelist->zones being iterated
1032  * @zlist - The zonelist being iterated
1033  * @highidx - The zone index of the highest zone to return
1034  *
1035  * This iterator iterates though all zones at or below a given zone index.
1036  */
1037 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1038 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1039 
1040 #ifdef CONFIG_SPARSEMEM
1041 #include <asm/sparsemem.h>
1042 #endif
1043 
1044 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1045 	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1046 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1047 {
1048 	return 0;
1049 }
1050 #endif
1051 
1052 #ifdef CONFIG_FLATMEM
1053 #define pfn_to_nid(pfn)		(0)
1054 #endif
1055 
1056 #ifdef CONFIG_SPARSEMEM
1057 
1058 /*
1059  * SECTION_SHIFT    		#bits space required to store a section #
1060  *
1061  * PA_SECTION_SHIFT		physical address to/from section number
1062  * PFN_SECTION_SHIFT		pfn to/from section number
1063  */
1064 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1065 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1066 
1067 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1068 
1069 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1070 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1071 
1072 #define SECTION_BLOCKFLAGS_BITS \
1073 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1074 
1075 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1076 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1077 #endif
1078 
1079 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1080 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1081 
1082 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1083 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1084 
1085 struct page;
1086 struct page_cgroup;
1087 struct mem_section {
1088 	/*
1089 	 * This is, logically, a pointer to an array of struct
1090 	 * pages.  However, it is stored with some other magic.
1091 	 * (see sparse.c::sparse_init_one_section())
1092 	 *
1093 	 * Additionally during early boot we encode node id of
1094 	 * the location of the section here to guide allocation.
1095 	 * (see sparse.c::memory_present())
1096 	 *
1097 	 * Making it a UL at least makes someone do a cast
1098 	 * before using it wrong.
1099 	 */
1100 	unsigned long section_mem_map;
1101 
1102 	/* See declaration of similar field in struct zone */
1103 	unsigned long *pageblock_flags;
1104 #ifdef CONFIG_MEMCG
1105 	/*
1106 	 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1107 	 * section. (see memcontrol.h/page_cgroup.h about this.)
1108 	 */
1109 	struct page_cgroup *page_cgroup;
1110 	unsigned long pad;
1111 #endif
1112 	/*
1113 	 * WARNING: mem_section must be a power-of-2 in size for the
1114 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1115 	 */
1116 };
1117 
1118 #ifdef CONFIG_SPARSEMEM_EXTREME
1119 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1120 #else
1121 #define SECTIONS_PER_ROOT	1
1122 #endif
1123 
1124 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1125 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1126 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1127 
1128 #ifdef CONFIG_SPARSEMEM_EXTREME
1129 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1130 #else
1131 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1132 #endif
1133 
1134 static inline struct mem_section *__nr_to_section(unsigned long nr)
1135 {
1136 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1137 		return NULL;
1138 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1139 }
1140 extern int __section_nr(struct mem_section* ms);
1141 extern unsigned long usemap_size(void);
1142 
1143 /*
1144  * We use the lower bits of the mem_map pointer to store
1145  * a little bit of information.  There should be at least
1146  * 3 bits here due to 32-bit alignment.
1147  */
1148 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1149 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1150 #define SECTION_MAP_LAST_BIT	(1UL<<2)
1151 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1152 #define SECTION_NID_SHIFT	2
1153 
1154 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1155 {
1156 	unsigned long map = section->section_mem_map;
1157 	map &= SECTION_MAP_MASK;
1158 	return (struct page *)map;
1159 }
1160 
1161 static inline int present_section(struct mem_section *section)
1162 {
1163 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1164 }
1165 
1166 static inline int present_section_nr(unsigned long nr)
1167 {
1168 	return present_section(__nr_to_section(nr));
1169 }
1170 
1171 static inline int valid_section(struct mem_section *section)
1172 {
1173 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1174 }
1175 
1176 static inline int valid_section_nr(unsigned long nr)
1177 {
1178 	return valid_section(__nr_to_section(nr));
1179 }
1180 
1181 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1182 {
1183 	return __nr_to_section(pfn_to_section_nr(pfn));
1184 }
1185 
1186 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1187 static inline int pfn_valid(unsigned long pfn)
1188 {
1189 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1190 		return 0;
1191 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1192 }
1193 #endif
1194 
1195 static inline int pfn_present(unsigned long pfn)
1196 {
1197 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1198 		return 0;
1199 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1200 }
1201 
1202 /*
1203  * These are _only_ used during initialisation, therefore they
1204  * can use __initdata ...  They could have names to indicate
1205  * this restriction.
1206  */
1207 #ifdef CONFIG_NUMA
1208 #define pfn_to_nid(pfn)							\
1209 ({									\
1210 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1211 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1212 })
1213 #else
1214 #define pfn_to_nid(pfn)		(0)
1215 #endif
1216 
1217 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1218 void sparse_init(void);
1219 #else
1220 #define sparse_init()	do {} while (0)
1221 #define sparse_index_init(_sec, _nid)  do {} while (0)
1222 #endif /* CONFIG_SPARSEMEM */
1223 
1224 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1225 bool early_pfn_in_nid(unsigned long pfn, int nid);
1226 #else
1227 #define early_pfn_in_nid(pfn, nid)	(1)
1228 #endif
1229 
1230 #ifndef early_pfn_valid
1231 #define early_pfn_valid(pfn)	(1)
1232 #endif
1233 
1234 void memory_present(int nid, unsigned long start, unsigned long end);
1235 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1236 
1237 /*
1238  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1239  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1240  * pfn_valid_within() should be used in this case; we optimise this away
1241  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1242  */
1243 #ifdef CONFIG_HOLES_IN_ZONE
1244 #define pfn_valid_within(pfn) pfn_valid(pfn)
1245 #else
1246 #define pfn_valid_within(pfn) (1)
1247 #endif
1248 
1249 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1250 /*
1251  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1252  * associated with it or not. In FLATMEM, it is expected that holes always
1253  * have valid memmap as long as there is valid PFNs either side of the hole.
1254  * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1255  * entire section.
1256  *
1257  * However, an ARM, and maybe other embedded architectures in the future
1258  * free memmap backing holes to save memory on the assumption the memmap is
1259  * never used. The page_zone linkages are then broken even though pfn_valid()
1260  * returns true. A walker of the full memmap must then do this additional
1261  * check to ensure the memmap they are looking at is sane by making sure
1262  * the zone and PFN linkages are still valid. This is expensive, but walkers
1263  * of the full memmap are extremely rare.
1264  */
1265 int memmap_valid_within(unsigned long pfn,
1266 					struct page *page, struct zone *zone);
1267 #else
1268 static inline int memmap_valid_within(unsigned long pfn,
1269 					struct page *page, struct zone *zone)
1270 {
1271 	return 1;
1272 }
1273 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1274 
1275 #endif /* !__GENERATING_BOUNDS.H */
1276 #endif /* !__ASSEMBLY__ */
1277 #endif /* _LINUX_MMZONE_H */
1278