1 #ifndef _LINUX_MMZONE_H 2 #define _LINUX_MMZONE_H 3 4 #ifndef __ASSEMBLY__ 5 #ifndef __GENERATING_BOUNDS_H 6 7 #include <linux/spinlock.h> 8 #include <linux/list.h> 9 #include <linux/wait.h> 10 #include <linux/bitops.h> 11 #include <linux/cache.h> 12 #include <linux/threads.h> 13 #include <linux/numa.h> 14 #include <linux/init.h> 15 #include <linux/seqlock.h> 16 #include <linux/nodemask.h> 17 #include <linux/pageblock-flags.h> 18 #include <generated/bounds.h> 19 #include <linux/atomic.h> 20 #include <asm/page.h> 21 22 /* Free memory management - zoned buddy allocator. */ 23 #ifndef CONFIG_FORCE_MAX_ZONEORDER 24 #define MAX_ORDER 11 25 #else 26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 27 #endif 28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 29 30 /* 31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 32 * costly to service. That is between allocation orders which should 33 * coelesce naturally under reasonable reclaim pressure and those which 34 * will not. 35 */ 36 #define PAGE_ALLOC_COSTLY_ORDER 3 37 38 #define MIGRATE_UNMOVABLE 0 39 #define MIGRATE_RECLAIMABLE 1 40 #define MIGRATE_MOVABLE 2 41 #define MIGRATE_PCPTYPES 3 /* the number of types on the pcp lists */ 42 #define MIGRATE_RESERVE 3 43 #define MIGRATE_ISOLATE 4 /* can't allocate from here */ 44 #define MIGRATE_TYPES 5 45 46 #define for_each_migratetype_order(order, type) \ 47 for (order = 0; order < MAX_ORDER; order++) \ 48 for (type = 0; type < MIGRATE_TYPES; type++) 49 50 extern int page_group_by_mobility_disabled; 51 52 static inline int get_pageblock_migratetype(struct page *page) 53 { 54 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end); 55 } 56 57 struct free_area { 58 struct list_head free_list[MIGRATE_TYPES]; 59 unsigned long nr_free; 60 }; 61 62 struct pglist_data; 63 64 /* 65 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 66 * So add a wild amount of padding here to ensure that they fall into separate 67 * cachelines. There are very few zone structures in the machine, so space 68 * consumption is not a concern here. 69 */ 70 #if defined(CONFIG_SMP) 71 struct zone_padding { 72 char x[0]; 73 } ____cacheline_internodealigned_in_smp; 74 #define ZONE_PADDING(name) struct zone_padding name; 75 #else 76 #define ZONE_PADDING(name) 77 #endif 78 79 enum zone_stat_item { 80 /* First 128 byte cacheline (assuming 64 bit words) */ 81 NR_FREE_PAGES, 82 NR_LRU_BASE, 83 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 84 NR_ACTIVE_ANON, /* " " " " " */ 85 NR_INACTIVE_FILE, /* " " " " " */ 86 NR_ACTIVE_FILE, /* " " " " " */ 87 NR_UNEVICTABLE, /* " " " " " */ 88 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 89 NR_ANON_PAGES, /* Mapped anonymous pages */ 90 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 91 only modified from process context */ 92 NR_FILE_PAGES, 93 NR_FILE_DIRTY, 94 NR_WRITEBACK, 95 NR_SLAB_RECLAIMABLE, 96 NR_SLAB_UNRECLAIMABLE, 97 NR_PAGETABLE, /* used for pagetables */ 98 NR_KERNEL_STACK, 99 /* Second 128 byte cacheline */ 100 NR_UNSTABLE_NFS, /* NFS unstable pages */ 101 NR_BOUNCE, 102 NR_VMSCAN_WRITE, 103 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 104 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 105 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 106 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 107 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 108 NR_DIRTIED, /* page dirtyings since bootup */ 109 NR_WRITTEN, /* page writings since bootup */ 110 #ifdef CONFIG_NUMA 111 NUMA_HIT, /* allocated in intended node */ 112 NUMA_MISS, /* allocated in non intended node */ 113 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 114 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 115 NUMA_LOCAL, /* allocation from local node */ 116 NUMA_OTHER, /* allocation from other node */ 117 #endif 118 NR_ANON_TRANSPARENT_HUGEPAGES, 119 NR_VM_ZONE_STAT_ITEMS }; 120 121 /* 122 * We do arithmetic on the LRU lists in various places in the code, 123 * so it is important to keep the active lists LRU_ACTIVE higher in 124 * the array than the corresponding inactive lists, and to keep 125 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 126 * 127 * This has to be kept in sync with the statistics in zone_stat_item 128 * above and the descriptions in vmstat_text in mm/vmstat.c 129 */ 130 #define LRU_BASE 0 131 #define LRU_ACTIVE 1 132 #define LRU_FILE 2 133 134 enum lru_list { 135 LRU_INACTIVE_ANON = LRU_BASE, 136 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 137 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 138 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 139 LRU_UNEVICTABLE, 140 NR_LRU_LISTS 141 }; 142 143 #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++) 144 145 #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++) 146 147 static inline int is_file_lru(enum lru_list l) 148 { 149 return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE); 150 } 151 152 static inline int is_active_lru(enum lru_list l) 153 { 154 return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE); 155 } 156 157 static inline int is_unevictable_lru(enum lru_list l) 158 { 159 return (l == LRU_UNEVICTABLE); 160 } 161 162 /* Mask used at gathering information at once (see memcontrol.c) */ 163 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 164 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 165 #define LRU_ALL_EVICTABLE (LRU_ALL_FILE | LRU_ALL_ANON) 166 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 167 168 /* Isolate inactive pages */ 169 #define ISOLATE_INACTIVE ((__force isolate_mode_t)0x1) 170 /* Isolate active pages */ 171 #define ISOLATE_ACTIVE ((__force isolate_mode_t)0x2) 172 /* Isolate clean file */ 173 #define ISOLATE_CLEAN ((__force isolate_mode_t)0x4) 174 /* Isolate unmapped file */ 175 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x8) 176 177 /* LRU Isolation modes. */ 178 typedef unsigned __bitwise__ isolate_mode_t; 179 180 enum zone_watermarks { 181 WMARK_MIN, 182 WMARK_LOW, 183 WMARK_HIGH, 184 NR_WMARK 185 }; 186 187 #define min_wmark_pages(z) (z->watermark[WMARK_MIN]) 188 #define low_wmark_pages(z) (z->watermark[WMARK_LOW]) 189 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH]) 190 191 struct per_cpu_pages { 192 int count; /* number of pages in the list */ 193 int high; /* high watermark, emptying needed */ 194 int batch; /* chunk size for buddy add/remove */ 195 196 /* Lists of pages, one per migrate type stored on the pcp-lists */ 197 struct list_head lists[MIGRATE_PCPTYPES]; 198 }; 199 200 struct per_cpu_pageset { 201 struct per_cpu_pages pcp; 202 #ifdef CONFIG_NUMA 203 s8 expire; 204 #endif 205 #ifdef CONFIG_SMP 206 s8 stat_threshold; 207 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 208 #endif 209 }; 210 211 #endif /* !__GENERATING_BOUNDS.H */ 212 213 enum zone_type { 214 #ifdef CONFIG_ZONE_DMA 215 /* 216 * ZONE_DMA is used when there are devices that are not able 217 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 218 * carve out the portion of memory that is needed for these devices. 219 * The range is arch specific. 220 * 221 * Some examples 222 * 223 * Architecture Limit 224 * --------------------------- 225 * parisc, ia64, sparc <4G 226 * s390 <2G 227 * arm Various 228 * alpha Unlimited or 0-16MB. 229 * 230 * i386, x86_64 and multiple other arches 231 * <16M. 232 */ 233 ZONE_DMA, 234 #endif 235 #ifdef CONFIG_ZONE_DMA32 236 /* 237 * x86_64 needs two ZONE_DMAs because it supports devices that are 238 * only able to do DMA to the lower 16M but also 32 bit devices that 239 * can only do DMA areas below 4G. 240 */ 241 ZONE_DMA32, 242 #endif 243 /* 244 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 245 * performed on pages in ZONE_NORMAL if the DMA devices support 246 * transfers to all addressable memory. 247 */ 248 ZONE_NORMAL, 249 #ifdef CONFIG_HIGHMEM 250 /* 251 * A memory area that is only addressable by the kernel through 252 * mapping portions into its own address space. This is for example 253 * used by i386 to allow the kernel to address the memory beyond 254 * 900MB. The kernel will set up special mappings (page 255 * table entries on i386) for each page that the kernel needs to 256 * access. 257 */ 258 ZONE_HIGHMEM, 259 #endif 260 ZONE_MOVABLE, 261 __MAX_NR_ZONES 262 }; 263 264 #ifndef __GENERATING_BOUNDS_H 265 266 /* 267 * When a memory allocation must conform to specific limitations (such 268 * as being suitable for DMA) the caller will pass in hints to the 269 * allocator in the gfp_mask, in the zone modifier bits. These bits 270 * are used to select a priority ordered list of memory zones which 271 * match the requested limits. See gfp_zone() in include/linux/gfp.h 272 */ 273 274 #if MAX_NR_ZONES < 2 275 #define ZONES_SHIFT 0 276 #elif MAX_NR_ZONES <= 2 277 #define ZONES_SHIFT 1 278 #elif MAX_NR_ZONES <= 4 279 #define ZONES_SHIFT 2 280 #else 281 #error ZONES_SHIFT -- too many zones configured adjust calculation 282 #endif 283 284 struct zone_reclaim_stat { 285 /* 286 * The pageout code in vmscan.c keeps track of how many of the 287 * mem/swap backed and file backed pages are refeferenced. 288 * The higher the rotated/scanned ratio, the more valuable 289 * that cache is. 290 * 291 * The anon LRU stats live in [0], file LRU stats in [1] 292 */ 293 unsigned long recent_rotated[2]; 294 unsigned long recent_scanned[2]; 295 }; 296 297 struct zone { 298 /* Fields commonly accessed by the page allocator */ 299 300 /* zone watermarks, access with *_wmark_pages(zone) macros */ 301 unsigned long watermark[NR_WMARK]; 302 303 /* 304 * When free pages are below this point, additional steps are taken 305 * when reading the number of free pages to avoid per-cpu counter 306 * drift allowing watermarks to be breached 307 */ 308 unsigned long percpu_drift_mark; 309 310 /* 311 * We don't know if the memory that we're going to allocate will be freeable 312 * or/and it will be released eventually, so to avoid totally wasting several 313 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 314 * to run OOM on the lower zones despite there's tons of freeable ram 315 * on the higher zones). This array is recalculated at runtime if the 316 * sysctl_lowmem_reserve_ratio sysctl changes. 317 */ 318 unsigned long lowmem_reserve[MAX_NR_ZONES]; 319 320 /* 321 * This is a per-zone reserve of pages that should not be 322 * considered dirtyable memory. 323 */ 324 unsigned long dirty_balance_reserve; 325 326 #ifdef CONFIG_NUMA 327 int node; 328 /* 329 * zone reclaim becomes active if more unmapped pages exist. 330 */ 331 unsigned long min_unmapped_pages; 332 unsigned long min_slab_pages; 333 #endif 334 struct per_cpu_pageset __percpu *pageset; 335 /* 336 * free areas of different sizes 337 */ 338 spinlock_t lock; 339 int all_unreclaimable; /* All pages pinned */ 340 #ifdef CONFIG_MEMORY_HOTPLUG 341 /* see spanned/present_pages for more description */ 342 seqlock_t span_seqlock; 343 #endif 344 struct free_area free_area[MAX_ORDER]; 345 346 #ifndef CONFIG_SPARSEMEM 347 /* 348 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 349 * In SPARSEMEM, this map is stored in struct mem_section 350 */ 351 unsigned long *pageblock_flags; 352 #endif /* CONFIG_SPARSEMEM */ 353 354 #ifdef CONFIG_COMPACTION 355 /* 356 * On compaction failure, 1<<compact_defer_shift compactions 357 * are skipped before trying again. The number attempted since 358 * last failure is tracked with compact_considered. 359 */ 360 unsigned int compact_considered; 361 unsigned int compact_defer_shift; 362 #endif 363 364 ZONE_PADDING(_pad1_) 365 366 /* Fields commonly accessed by the page reclaim scanner */ 367 spinlock_t lru_lock; 368 struct zone_lru { 369 struct list_head list; 370 } lru[NR_LRU_LISTS]; 371 372 struct zone_reclaim_stat reclaim_stat; 373 374 unsigned long pages_scanned; /* since last reclaim */ 375 unsigned long flags; /* zone flags, see below */ 376 377 /* Zone statistics */ 378 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 379 380 /* 381 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on 382 * this zone's LRU. Maintained by the pageout code. 383 */ 384 unsigned int inactive_ratio; 385 386 387 ZONE_PADDING(_pad2_) 388 /* Rarely used or read-mostly fields */ 389 390 /* 391 * wait_table -- the array holding the hash table 392 * wait_table_hash_nr_entries -- the size of the hash table array 393 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 394 * 395 * The purpose of all these is to keep track of the people 396 * waiting for a page to become available and make them 397 * runnable again when possible. The trouble is that this 398 * consumes a lot of space, especially when so few things 399 * wait on pages at a given time. So instead of using 400 * per-page waitqueues, we use a waitqueue hash table. 401 * 402 * The bucket discipline is to sleep on the same queue when 403 * colliding and wake all in that wait queue when removing. 404 * When something wakes, it must check to be sure its page is 405 * truly available, a la thundering herd. The cost of a 406 * collision is great, but given the expected load of the 407 * table, they should be so rare as to be outweighed by the 408 * benefits from the saved space. 409 * 410 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 411 * primary users of these fields, and in mm/page_alloc.c 412 * free_area_init_core() performs the initialization of them. 413 */ 414 wait_queue_head_t * wait_table; 415 unsigned long wait_table_hash_nr_entries; 416 unsigned long wait_table_bits; 417 418 /* 419 * Discontig memory support fields. 420 */ 421 struct pglist_data *zone_pgdat; 422 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 423 unsigned long zone_start_pfn; 424 425 /* 426 * zone_start_pfn, spanned_pages and present_pages are all 427 * protected by span_seqlock. It is a seqlock because it has 428 * to be read outside of zone->lock, and it is done in the main 429 * allocator path. But, it is written quite infrequently. 430 * 431 * The lock is declared along with zone->lock because it is 432 * frequently read in proximity to zone->lock. It's good to 433 * give them a chance of being in the same cacheline. 434 */ 435 unsigned long spanned_pages; /* total size, including holes */ 436 unsigned long present_pages; /* amount of memory (excluding holes) */ 437 438 /* 439 * rarely used fields: 440 */ 441 const char *name; 442 } ____cacheline_internodealigned_in_smp; 443 444 typedef enum { 445 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 446 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ 447 ZONE_CONGESTED, /* zone has many dirty pages backed by 448 * a congested BDI 449 */ 450 } zone_flags_t; 451 452 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag) 453 { 454 set_bit(flag, &zone->flags); 455 } 456 457 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag) 458 { 459 return test_and_set_bit(flag, &zone->flags); 460 } 461 462 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag) 463 { 464 clear_bit(flag, &zone->flags); 465 } 466 467 static inline int zone_is_reclaim_congested(const struct zone *zone) 468 { 469 return test_bit(ZONE_CONGESTED, &zone->flags); 470 } 471 472 static inline int zone_is_reclaim_locked(const struct zone *zone) 473 { 474 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 475 } 476 477 static inline int zone_is_oom_locked(const struct zone *zone) 478 { 479 return test_bit(ZONE_OOM_LOCKED, &zone->flags); 480 } 481 482 /* 483 * The "priority" of VM scanning is how much of the queues we will scan in one 484 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 485 * queues ("queue_length >> 12") during an aging round. 486 */ 487 #define DEF_PRIORITY 12 488 489 /* Maximum number of zones on a zonelist */ 490 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 491 492 #ifdef CONFIG_NUMA 493 494 /* 495 * The NUMA zonelists are doubled because we need zonelists that restrict the 496 * allocations to a single node for GFP_THISNODE. 497 * 498 * [0] : Zonelist with fallback 499 * [1] : No fallback (GFP_THISNODE) 500 */ 501 #define MAX_ZONELISTS 2 502 503 504 /* 505 * We cache key information from each zonelist for smaller cache 506 * footprint when scanning for free pages in get_page_from_freelist(). 507 * 508 * 1) The BITMAP fullzones tracks which zones in a zonelist have come 509 * up short of free memory since the last time (last_fullzone_zap) 510 * we zero'd fullzones. 511 * 2) The array z_to_n[] maps each zone in the zonelist to its node 512 * id, so that we can efficiently evaluate whether that node is 513 * set in the current tasks mems_allowed. 514 * 515 * Both fullzones and z_to_n[] are one-to-one with the zonelist, 516 * indexed by a zones offset in the zonelist zones[] array. 517 * 518 * The get_page_from_freelist() routine does two scans. During the 519 * first scan, we skip zones whose corresponding bit in 'fullzones' 520 * is set or whose corresponding node in current->mems_allowed (which 521 * comes from cpusets) is not set. During the second scan, we bypass 522 * this zonelist_cache, to ensure we look methodically at each zone. 523 * 524 * Once per second, we zero out (zap) fullzones, forcing us to 525 * reconsider nodes that might have regained more free memory. 526 * The field last_full_zap is the time we last zapped fullzones. 527 * 528 * This mechanism reduces the amount of time we waste repeatedly 529 * reexaming zones for free memory when they just came up low on 530 * memory momentarilly ago. 531 * 532 * The zonelist_cache struct members logically belong in struct 533 * zonelist. However, the mempolicy zonelists constructed for 534 * MPOL_BIND are intentionally variable length (and usually much 535 * shorter). A general purpose mechanism for handling structs with 536 * multiple variable length members is more mechanism than we want 537 * here. We resort to some special case hackery instead. 538 * 539 * The MPOL_BIND zonelists don't need this zonelist_cache (in good 540 * part because they are shorter), so we put the fixed length stuff 541 * at the front of the zonelist struct, ending in a variable length 542 * zones[], as is needed by MPOL_BIND. 543 * 544 * Then we put the optional zonelist cache on the end of the zonelist 545 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in 546 * the fixed length portion at the front of the struct. This pointer 547 * both enables us to find the zonelist cache, and in the case of 548 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) 549 * to know that the zonelist cache is not there. 550 * 551 * The end result is that struct zonelists come in two flavors: 552 * 1) The full, fixed length version, shown below, and 553 * 2) The custom zonelists for MPOL_BIND. 554 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. 555 * 556 * Even though there may be multiple CPU cores on a node modifying 557 * fullzones or last_full_zap in the same zonelist_cache at the same 558 * time, we don't lock it. This is just hint data - if it is wrong now 559 * and then, the allocator will still function, perhaps a bit slower. 560 */ 561 562 563 struct zonelist_cache { 564 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ 565 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ 566 unsigned long last_full_zap; /* when last zap'd (jiffies) */ 567 }; 568 #else 569 #define MAX_ZONELISTS 1 570 struct zonelist_cache; 571 #endif 572 573 /* 574 * This struct contains information about a zone in a zonelist. It is stored 575 * here to avoid dereferences into large structures and lookups of tables 576 */ 577 struct zoneref { 578 struct zone *zone; /* Pointer to actual zone */ 579 int zone_idx; /* zone_idx(zoneref->zone) */ 580 }; 581 582 /* 583 * One allocation request operates on a zonelist. A zonelist 584 * is a list of zones, the first one is the 'goal' of the 585 * allocation, the other zones are fallback zones, in decreasing 586 * priority. 587 * 588 * If zlcache_ptr is not NULL, then it is just the address of zlcache, 589 * as explained above. If zlcache_ptr is NULL, there is no zlcache. 590 * * 591 * To speed the reading of the zonelist, the zonerefs contain the zone index 592 * of the entry being read. Helper functions to access information given 593 * a struct zoneref are 594 * 595 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 596 * zonelist_zone_idx() - Return the index of the zone for an entry 597 * zonelist_node_idx() - Return the index of the node for an entry 598 */ 599 struct zonelist { 600 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache 601 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 602 #ifdef CONFIG_NUMA 603 struct zonelist_cache zlcache; // optional ... 604 #endif 605 }; 606 607 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 608 struct node_active_region { 609 unsigned long start_pfn; 610 unsigned long end_pfn; 611 int nid; 612 }; 613 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 614 615 #ifndef CONFIG_DISCONTIGMEM 616 /* The array of struct pages - for discontigmem use pgdat->lmem_map */ 617 extern struct page *mem_map; 618 #endif 619 620 /* 621 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 622 * (mostly NUMA machines?) to denote a higher-level memory zone than the 623 * zone denotes. 624 * 625 * On NUMA machines, each NUMA node would have a pg_data_t to describe 626 * it's memory layout. 627 * 628 * Memory statistics and page replacement data structures are maintained on a 629 * per-zone basis. 630 */ 631 struct bootmem_data; 632 typedef struct pglist_data { 633 struct zone node_zones[MAX_NR_ZONES]; 634 struct zonelist node_zonelists[MAX_ZONELISTS]; 635 int nr_zones; 636 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 637 struct page *node_mem_map; 638 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 639 struct page_cgroup *node_page_cgroup; 640 #endif 641 #endif 642 #ifndef CONFIG_NO_BOOTMEM 643 struct bootmem_data *bdata; 644 #endif 645 #ifdef CONFIG_MEMORY_HOTPLUG 646 /* 647 * Must be held any time you expect node_start_pfn, node_present_pages 648 * or node_spanned_pages stay constant. Holding this will also 649 * guarantee that any pfn_valid() stays that way. 650 * 651 * Nests above zone->lock and zone->size_seqlock. 652 */ 653 spinlock_t node_size_lock; 654 #endif 655 unsigned long node_start_pfn; 656 unsigned long node_present_pages; /* total number of physical pages */ 657 unsigned long node_spanned_pages; /* total size of physical page 658 range, including holes */ 659 int node_id; 660 wait_queue_head_t kswapd_wait; 661 struct task_struct *kswapd; 662 int kswapd_max_order; 663 enum zone_type classzone_idx; 664 } pg_data_t; 665 666 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 667 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 668 #ifdef CONFIG_FLAT_NODE_MEM_MAP 669 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 670 #else 671 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 672 #endif 673 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 674 675 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 676 677 #define node_end_pfn(nid) ({\ 678 pg_data_t *__pgdat = NODE_DATA(nid);\ 679 __pgdat->node_start_pfn + __pgdat->node_spanned_pages;\ 680 }) 681 682 #include <linux/memory_hotplug.h> 683 684 extern struct mutex zonelists_mutex; 685 void build_all_zonelists(void *data); 686 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx); 687 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 688 int classzone_idx, int alloc_flags); 689 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 690 int classzone_idx, int alloc_flags); 691 enum memmap_context { 692 MEMMAP_EARLY, 693 MEMMAP_HOTPLUG, 694 }; 695 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 696 unsigned long size, 697 enum memmap_context context); 698 699 #ifdef CONFIG_HAVE_MEMORY_PRESENT 700 void memory_present(int nid, unsigned long start, unsigned long end); 701 #else 702 static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 703 #endif 704 705 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 706 int local_memory_node(int node_id); 707 #else 708 static inline int local_memory_node(int node_id) { return node_id; }; 709 #endif 710 711 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 712 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 713 #endif 714 715 /* 716 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 717 */ 718 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 719 720 static inline int populated_zone(struct zone *zone) 721 { 722 return (!!zone->present_pages); 723 } 724 725 extern int movable_zone; 726 727 static inline int zone_movable_is_highmem(void) 728 { 729 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE) 730 return movable_zone == ZONE_HIGHMEM; 731 #else 732 return 0; 733 #endif 734 } 735 736 static inline int is_highmem_idx(enum zone_type idx) 737 { 738 #ifdef CONFIG_HIGHMEM 739 return (idx == ZONE_HIGHMEM || 740 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 741 #else 742 return 0; 743 #endif 744 } 745 746 static inline int is_normal_idx(enum zone_type idx) 747 { 748 return (idx == ZONE_NORMAL); 749 } 750 751 /** 752 * is_highmem - helper function to quickly check if a struct zone is a 753 * highmem zone or not. This is an attempt to keep references 754 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 755 * @zone - pointer to struct zone variable 756 */ 757 static inline int is_highmem(struct zone *zone) 758 { 759 #ifdef CONFIG_HIGHMEM 760 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones; 761 return zone_off == ZONE_HIGHMEM * sizeof(*zone) || 762 (zone_off == ZONE_MOVABLE * sizeof(*zone) && 763 zone_movable_is_highmem()); 764 #else 765 return 0; 766 #endif 767 } 768 769 static inline int is_normal(struct zone *zone) 770 { 771 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; 772 } 773 774 static inline int is_dma32(struct zone *zone) 775 { 776 #ifdef CONFIG_ZONE_DMA32 777 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32; 778 #else 779 return 0; 780 #endif 781 } 782 783 static inline int is_dma(struct zone *zone) 784 { 785 #ifdef CONFIG_ZONE_DMA 786 return zone == zone->zone_pgdat->node_zones + ZONE_DMA; 787 #else 788 return 0; 789 #endif 790 } 791 792 /* These two functions are used to setup the per zone pages min values */ 793 struct ctl_table; 794 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 795 void __user *, size_t *, loff_t *); 796 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 797 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 798 void __user *, size_t *, loff_t *); 799 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 800 void __user *, size_t *, loff_t *); 801 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 802 void __user *, size_t *, loff_t *); 803 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 804 void __user *, size_t *, loff_t *); 805 806 extern int numa_zonelist_order_handler(struct ctl_table *, int, 807 void __user *, size_t *, loff_t *); 808 extern char numa_zonelist_order[]; 809 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 810 811 #ifndef CONFIG_NEED_MULTIPLE_NODES 812 813 extern struct pglist_data contig_page_data; 814 #define NODE_DATA(nid) (&contig_page_data) 815 #define NODE_MEM_MAP(nid) mem_map 816 817 #else /* CONFIG_NEED_MULTIPLE_NODES */ 818 819 #include <asm/mmzone.h> 820 821 #endif /* !CONFIG_NEED_MULTIPLE_NODES */ 822 823 extern struct pglist_data *first_online_pgdat(void); 824 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 825 extern struct zone *next_zone(struct zone *zone); 826 827 /** 828 * for_each_online_pgdat - helper macro to iterate over all online nodes 829 * @pgdat - pointer to a pg_data_t variable 830 */ 831 #define for_each_online_pgdat(pgdat) \ 832 for (pgdat = first_online_pgdat(); \ 833 pgdat; \ 834 pgdat = next_online_pgdat(pgdat)) 835 /** 836 * for_each_zone - helper macro to iterate over all memory zones 837 * @zone - pointer to struct zone variable 838 * 839 * The user only needs to declare the zone variable, for_each_zone 840 * fills it in. 841 */ 842 #define for_each_zone(zone) \ 843 for (zone = (first_online_pgdat())->node_zones; \ 844 zone; \ 845 zone = next_zone(zone)) 846 847 #define for_each_populated_zone(zone) \ 848 for (zone = (first_online_pgdat())->node_zones; \ 849 zone; \ 850 zone = next_zone(zone)) \ 851 if (!populated_zone(zone)) \ 852 ; /* do nothing */ \ 853 else 854 855 static inline struct zone *zonelist_zone(struct zoneref *zoneref) 856 { 857 return zoneref->zone; 858 } 859 860 static inline int zonelist_zone_idx(struct zoneref *zoneref) 861 { 862 return zoneref->zone_idx; 863 } 864 865 static inline int zonelist_node_idx(struct zoneref *zoneref) 866 { 867 #ifdef CONFIG_NUMA 868 /* zone_to_nid not available in this context */ 869 return zoneref->zone->node; 870 #else 871 return 0; 872 #endif /* CONFIG_NUMA */ 873 } 874 875 /** 876 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 877 * @z - The cursor used as a starting point for the search 878 * @highest_zoneidx - The zone index of the highest zone to return 879 * @nodes - An optional nodemask to filter the zonelist with 880 * @zone - The first suitable zone found is returned via this parameter 881 * 882 * This function returns the next zone at or below a given zone index that is 883 * within the allowed nodemask using a cursor as the starting point for the 884 * search. The zoneref returned is a cursor that represents the current zone 885 * being examined. It should be advanced by one before calling 886 * next_zones_zonelist again. 887 */ 888 struct zoneref *next_zones_zonelist(struct zoneref *z, 889 enum zone_type highest_zoneidx, 890 nodemask_t *nodes, 891 struct zone **zone); 892 893 /** 894 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 895 * @zonelist - The zonelist to search for a suitable zone 896 * @highest_zoneidx - The zone index of the highest zone to return 897 * @nodes - An optional nodemask to filter the zonelist with 898 * @zone - The first suitable zone found is returned via this parameter 899 * 900 * This function returns the first zone at or below a given zone index that is 901 * within the allowed nodemask. The zoneref returned is a cursor that can be 902 * used to iterate the zonelist with next_zones_zonelist by advancing it by 903 * one before calling. 904 */ 905 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 906 enum zone_type highest_zoneidx, 907 nodemask_t *nodes, 908 struct zone **zone) 909 { 910 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes, 911 zone); 912 } 913 914 /** 915 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 916 * @zone - The current zone in the iterator 917 * @z - The current pointer within zonelist->zones being iterated 918 * @zlist - The zonelist being iterated 919 * @highidx - The zone index of the highest zone to return 920 * @nodemask - Nodemask allowed by the allocator 921 * 922 * This iterator iterates though all zones at or below a given zone index and 923 * within a given nodemask 924 */ 925 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 926 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \ 927 zone; \ 928 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \ 929 930 /** 931 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 932 * @zone - The current zone in the iterator 933 * @z - The current pointer within zonelist->zones being iterated 934 * @zlist - The zonelist being iterated 935 * @highidx - The zone index of the highest zone to return 936 * 937 * This iterator iterates though all zones at or below a given zone index. 938 */ 939 #define for_each_zone_zonelist(zone, z, zlist, highidx) \ 940 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 941 942 #ifdef CONFIG_SPARSEMEM 943 #include <asm/sparsemem.h> 944 #endif 945 946 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 947 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 948 static inline unsigned long early_pfn_to_nid(unsigned long pfn) 949 { 950 return 0; 951 } 952 #endif 953 954 #ifdef CONFIG_FLATMEM 955 #define pfn_to_nid(pfn) (0) 956 #endif 957 958 #ifdef CONFIG_SPARSEMEM 959 960 /* 961 * SECTION_SHIFT #bits space required to store a section # 962 * 963 * PA_SECTION_SHIFT physical address to/from section number 964 * PFN_SECTION_SHIFT pfn to/from section number 965 */ 966 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS) 967 968 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 969 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 970 971 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 972 973 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 974 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 975 976 #define SECTION_BLOCKFLAGS_BITS \ 977 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 978 979 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 980 #error Allocator MAX_ORDER exceeds SECTION_SIZE 981 #endif 982 983 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 984 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 985 986 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 987 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 988 989 struct page; 990 struct page_cgroup; 991 struct mem_section { 992 /* 993 * This is, logically, a pointer to an array of struct 994 * pages. However, it is stored with some other magic. 995 * (see sparse.c::sparse_init_one_section()) 996 * 997 * Additionally during early boot we encode node id of 998 * the location of the section here to guide allocation. 999 * (see sparse.c::memory_present()) 1000 * 1001 * Making it a UL at least makes someone do a cast 1002 * before using it wrong. 1003 */ 1004 unsigned long section_mem_map; 1005 1006 /* See declaration of similar field in struct zone */ 1007 unsigned long *pageblock_flags; 1008 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 1009 /* 1010 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use 1011 * section. (see memcontrol.h/page_cgroup.h about this.) 1012 */ 1013 struct page_cgroup *page_cgroup; 1014 unsigned long pad; 1015 #endif 1016 }; 1017 1018 #ifdef CONFIG_SPARSEMEM_EXTREME 1019 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1020 #else 1021 #define SECTIONS_PER_ROOT 1 1022 #endif 1023 1024 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1025 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1026 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1027 1028 #ifdef CONFIG_SPARSEMEM_EXTREME 1029 extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 1030 #else 1031 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1032 #endif 1033 1034 static inline struct mem_section *__nr_to_section(unsigned long nr) 1035 { 1036 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1037 return NULL; 1038 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1039 } 1040 extern int __section_nr(struct mem_section* ms); 1041 extern unsigned long usemap_size(void); 1042 1043 /* 1044 * We use the lower bits of the mem_map pointer to store 1045 * a little bit of information. There should be at least 1046 * 3 bits here due to 32-bit alignment. 1047 */ 1048 #define SECTION_MARKED_PRESENT (1UL<<0) 1049 #define SECTION_HAS_MEM_MAP (1UL<<1) 1050 #define SECTION_MAP_LAST_BIT (1UL<<2) 1051 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1052 #define SECTION_NID_SHIFT 2 1053 1054 static inline struct page *__section_mem_map_addr(struct mem_section *section) 1055 { 1056 unsigned long map = section->section_mem_map; 1057 map &= SECTION_MAP_MASK; 1058 return (struct page *)map; 1059 } 1060 1061 static inline int present_section(struct mem_section *section) 1062 { 1063 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1064 } 1065 1066 static inline int present_section_nr(unsigned long nr) 1067 { 1068 return present_section(__nr_to_section(nr)); 1069 } 1070 1071 static inline int valid_section(struct mem_section *section) 1072 { 1073 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1074 } 1075 1076 static inline int valid_section_nr(unsigned long nr) 1077 { 1078 return valid_section(__nr_to_section(nr)); 1079 } 1080 1081 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1082 { 1083 return __nr_to_section(pfn_to_section_nr(pfn)); 1084 } 1085 1086 #ifndef CONFIG_HAVE_ARCH_PFN_VALID 1087 static inline int pfn_valid(unsigned long pfn) 1088 { 1089 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1090 return 0; 1091 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1092 } 1093 #endif 1094 1095 static inline int pfn_present(unsigned long pfn) 1096 { 1097 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1098 return 0; 1099 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1100 } 1101 1102 /* 1103 * These are _only_ used during initialisation, therefore they 1104 * can use __initdata ... They could have names to indicate 1105 * this restriction. 1106 */ 1107 #ifdef CONFIG_NUMA 1108 #define pfn_to_nid(pfn) \ 1109 ({ \ 1110 unsigned long __pfn_to_nid_pfn = (pfn); \ 1111 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1112 }) 1113 #else 1114 #define pfn_to_nid(pfn) (0) 1115 #endif 1116 1117 #define early_pfn_valid(pfn) pfn_valid(pfn) 1118 void sparse_init(void); 1119 #else 1120 #define sparse_init() do {} while (0) 1121 #define sparse_index_init(_sec, _nid) do {} while (0) 1122 #endif /* CONFIG_SPARSEMEM */ 1123 1124 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1125 bool early_pfn_in_nid(unsigned long pfn, int nid); 1126 #else 1127 #define early_pfn_in_nid(pfn, nid) (1) 1128 #endif 1129 1130 #ifndef early_pfn_valid 1131 #define early_pfn_valid(pfn) (1) 1132 #endif 1133 1134 void memory_present(int nid, unsigned long start, unsigned long end); 1135 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 1136 1137 /* 1138 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1139 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 1140 * pfn_valid_within() should be used in this case; we optimise this away 1141 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1142 */ 1143 #ifdef CONFIG_HOLES_IN_ZONE 1144 #define pfn_valid_within(pfn) pfn_valid(pfn) 1145 #else 1146 #define pfn_valid_within(pfn) (1) 1147 #endif 1148 1149 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1150 /* 1151 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1152 * associated with it or not. In FLATMEM, it is expected that holes always 1153 * have valid memmap as long as there is valid PFNs either side of the hole. 1154 * In SPARSEMEM, it is assumed that a valid section has a memmap for the 1155 * entire section. 1156 * 1157 * However, an ARM, and maybe other embedded architectures in the future 1158 * free memmap backing holes to save memory on the assumption the memmap is 1159 * never used. The page_zone linkages are then broken even though pfn_valid() 1160 * returns true. A walker of the full memmap must then do this additional 1161 * check to ensure the memmap they are looking at is sane by making sure 1162 * the zone and PFN linkages are still valid. This is expensive, but walkers 1163 * of the full memmap are extremely rare. 1164 */ 1165 int memmap_valid_within(unsigned long pfn, 1166 struct page *page, struct zone *zone); 1167 #else 1168 static inline int memmap_valid_within(unsigned long pfn, 1169 struct page *page, struct zone *zone) 1170 { 1171 return 1; 1172 } 1173 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1174 1175 #endif /* !__GENERATING_BOUNDS.H */ 1176 #endif /* !__ASSEMBLY__ */ 1177 #endif /* _LINUX_MMZONE_H */ 1178