xref: /linux-6.15/include/linux/mmzone.h (revision eb5ef071)
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3 
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6 
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <generated/bounds.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21 
22 /* Free memory management - zoned buddy allocator.  */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29 
30 /*
31  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32  * costly to service.  That is between allocation orders which should
33  * coelesce naturally under reasonable reclaim pressure and those which
34  * will not.
35  */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37 
38 #define MIGRATE_UNMOVABLE     0
39 #define MIGRATE_RECLAIMABLE   1
40 #define MIGRATE_MOVABLE       2
41 #define MIGRATE_PCPTYPES      3 /* the number of types on the pcp lists */
42 #define MIGRATE_RESERVE       3
43 #define MIGRATE_ISOLATE       4 /* can't allocate from here */
44 #define MIGRATE_TYPES         5
45 
46 #define for_each_migratetype_order(order, type) \
47 	for (order = 0; order < MAX_ORDER; order++) \
48 		for (type = 0; type < MIGRATE_TYPES; type++)
49 
50 extern int page_group_by_mobility_disabled;
51 
52 static inline int get_pageblock_migratetype(struct page *page)
53 {
54 	return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
55 }
56 
57 struct free_area {
58 	struct list_head	free_list[MIGRATE_TYPES];
59 	unsigned long		nr_free;
60 };
61 
62 struct pglist_data;
63 
64 /*
65  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
66  * So add a wild amount of padding here to ensure that they fall into separate
67  * cachelines.  There are very few zone structures in the machine, so space
68  * consumption is not a concern here.
69  */
70 #if defined(CONFIG_SMP)
71 struct zone_padding {
72 	char x[0];
73 } ____cacheline_internodealigned_in_smp;
74 #define ZONE_PADDING(name)	struct zone_padding name;
75 #else
76 #define ZONE_PADDING(name)
77 #endif
78 
79 enum zone_stat_item {
80 	/* First 128 byte cacheline (assuming 64 bit words) */
81 	NR_FREE_PAGES,
82 	NR_LRU_BASE,
83 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
84 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
85 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
86 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
87 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
88 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
89 	NR_ANON_PAGES,	/* Mapped anonymous pages */
90 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
91 			   only modified from process context */
92 	NR_FILE_PAGES,
93 	NR_FILE_DIRTY,
94 	NR_WRITEBACK,
95 	NR_SLAB_RECLAIMABLE,
96 	NR_SLAB_UNRECLAIMABLE,
97 	NR_PAGETABLE,		/* used for pagetables */
98 	NR_KERNEL_STACK,
99 	/* Second 128 byte cacheline */
100 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
101 	NR_BOUNCE,
102 	NR_VMSCAN_WRITE,
103 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
104 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
105 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
106 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
107 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
108 	NR_DIRTIED,		/* page dirtyings since bootup */
109 	NR_WRITTEN,		/* page writings since bootup */
110 #ifdef CONFIG_NUMA
111 	NUMA_HIT,		/* allocated in intended node */
112 	NUMA_MISS,		/* allocated in non intended node */
113 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
114 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
115 	NUMA_LOCAL,		/* allocation from local node */
116 	NUMA_OTHER,		/* allocation from other node */
117 #endif
118 	NR_ANON_TRANSPARENT_HUGEPAGES,
119 	NR_VM_ZONE_STAT_ITEMS };
120 
121 /*
122  * We do arithmetic on the LRU lists in various places in the code,
123  * so it is important to keep the active lists LRU_ACTIVE higher in
124  * the array than the corresponding inactive lists, and to keep
125  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
126  *
127  * This has to be kept in sync with the statistics in zone_stat_item
128  * above and the descriptions in vmstat_text in mm/vmstat.c
129  */
130 #define LRU_BASE 0
131 #define LRU_ACTIVE 1
132 #define LRU_FILE 2
133 
134 enum lru_list {
135 	LRU_INACTIVE_ANON = LRU_BASE,
136 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
137 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
138 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
139 	LRU_UNEVICTABLE,
140 	NR_LRU_LISTS
141 };
142 
143 #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
144 
145 #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
146 
147 static inline int is_file_lru(enum lru_list l)
148 {
149 	return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
150 }
151 
152 static inline int is_active_lru(enum lru_list l)
153 {
154 	return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
155 }
156 
157 static inline int is_unevictable_lru(enum lru_list l)
158 {
159 	return (l == LRU_UNEVICTABLE);
160 }
161 
162 /* Mask used at gathering information at once (see memcontrol.c) */
163 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
164 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
165 #define LRU_ALL_EVICTABLE (LRU_ALL_FILE | LRU_ALL_ANON)
166 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
167 
168 /* Isolate inactive pages */
169 #define ISOLATE_INACTIVE	((__force isolate_mode_t)0x1)
170 /* Isolate active pages */
171 #define ISOLATE_ACTIVE		((__force isolate_mode_t)0x2)
172 /* Isolate clean file */
173 #define ISOLATE_CLEAN		((__force isolate_mode_t)0x4)
174 /* Isolate unmapped file */
175 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x8)
176 
177 /* LRU Isolation modes. */
178 typedef unsigned __bitwise__ isolate_mode_t;
179 
180 enum zone_watermarks {
181 	WMARK_MIN,
182 	WMARK_LOW,
183 	WMARK_HIGH,
184 	NR_WMARK
185 };
186 
187 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
188 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
189 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
190 
191 struct per_cpu_pages {
192 	int count;		/* number of pages in the list */
193 	int high;		/* high watermark, emptying needed */
194 	int batch;		/* chunk size for buddy add/remove */
195 
196 	/* Lists of pages, one per migrate type stored on the pcp-lists */
197 	struct list_head lists[MIGRATE_PCPTYPES];
198 };
199 
200 struct per_cpu_pageset {
201 	struct per_cpu_pages pcp;
202 #ifdef CONFIG_NUMA
203 	s8 expire;
204 #endif
205 #ifdef CONFIG_SMP
206 	s8 stat_threshold;
207 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
208 #endif
209 };
210 
211 #endif /* !__GENERATING_BOUNDS.H */
212 
213 enum zone_type {
214 #ifdef CONFIG_ZONE_DMA
215 	/*
216 	 * ZONE_DMA is used when there are devices that are not able
217 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
218 	 * carve out the portion of memory that is needed for these devices.
219 	 * The range is arch specific.
220 	 *
221 	 * Some examples
222 	 *
223 	 * Architecture		Limit
224 	 * ---------------------------
225 	 * parisc, ia64, sparc	<4G
226 	 * s390			<2G
227 	 * arm			Various
228 	 * alpha		Unlimited or 0-16MB.
229 	 *
230 	 * i386, x86_64 and multiple other arches
231 	 * 			<16M.
232 	 */
233 	ZONE_DMA,
234 #endif
235 #ifdef CONFIG_ZONE_DMA32
236 	/*
237 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
238 	 * only able to do DMA to the lower 16M but also 32 bit devices that
239 	 * can only do DMA areas below 4G.
240 	 */
241 	ZONE_DMA32,
242 #endif
243 	/*
244 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
245 	 * performed on pages in ZONE_NORMAL if the DMA devices support
246 	 * transfers to all addressable memory.
247 	 */
248 	ZONE_NORMAL,
249 #ifdef CONFIG_HIGHMEM
250 	/*
251 	 * A memory area that is only addressable by the kernel through
252 	 * mapping portions into its own address space. This is for example
253 	 * used by i386 to allow the kernel to address the memory beyond
254 	 * 900MB. The kernel will set up special mappings (page
255 	 * table entries on i386) for each page that the kernel needs to
256 	 * access.
257 	 */
258 	ZONE_HIGHMEM,
259 #endif
260 	ZONE_MOVABLE,
261 	__MAX_NR_ZONES
262 };
263 
264 #ifndef __GENERATING_BOUNDS_H
265 
266 /*
267  * When a memory allocation must conform to specific limitations (such
268  * as being suitable for DMA) the caller will pass in hints to the
269  * allocator in the gfp_mask, in the zone modifier bits.  These bits
270  * are used to select a priority ordered list of memory zones which
271  * match the requested limits. See gfp_zone() in include/linux/gfp.h
272  */
273 
274 #if MAX_NR_ZONES < 2
275 #define ZONES_SHIFT 0
276 #elif MAX_NR_ZONES <= 2
277 #define ZONES_SHIFT 1
278 #elif MAX_NR_ZONES <= 4
279 #define ZONES_SHIFT 2
280 #else
281 #error ZONES_SHIFT -- too many zones configured adjust calculation
282 #endif
283 
284 struct zone_reclaim_stat {
285 	/*
286 	 * The pageout code in vmscan.c keeps track of how many of the
287 	 * mem/swap backed and file backed pages are refeferenced.
288 	 * The higher the rotated/scanned ratio, the more valuable
289 	 * that cache is.
290 	 *
291 	 * The anon LRU stats live in [0], file LRU stats in [1]
292 	 */
293 	unsigned long		recent_rotated[2];
294 	unsigned long		recent_scanned[2];
295 };
296 
297 struct zone {
298 	/* Fields commonly accessed by the page allocator */
299 
300 	/* zone watermarks, access with *_wmark_pages(zone) macros */
301 	unsigned long watermark[NR_WMARK];
302 
303 	/*
304 	 * When free pages are below this point, additional steps are taken
305 	 * when reading the number of free pages to avoid per-cpu counter
306 	 * drift allowing watermarks to be breached
307 	 */
308 	unsigned long percpu_drift_mark;
309 
310 	/*
311 	 * We don't know if the memory that we're going to allocate will be freeable
312 	 * or/and it will be released eventually, so to avoid totally wasting several
313 	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
314 	 * to run OOM on the lower zones despite there's tons of freeable ram
315 	 * on the higher zones). This array is recalculated at runtime if the
316 	 * sysctl_lowmem_reserve_ratio sysctl changes.
317 	 */
318 	unsigned long		lowmem_reserve[MAX_NR_ZONES];
319 
320 	/*
321 	 * This is a per-zone reserve of pages that should not be
322 	 * considered dirtyable memory.
323 	 */
324 	unsigned long		dirty_balance_reserve;
325 
326 #ifdef CONFIG_NUMA
327 	int node;
328 	/*
329 	 * zone reclaim becomes active if more unmapped pages exist.
330 	 */
331 	unsigned long		min_unmapped_pages;
332 	unsigned long		min_slab_pages;
333 #endif
334 	struct per_cpu_pageset __percpu *pageset;
335 	/*
336 	 * free areas of different sizes
337 	 */
338 	spinlock_t		lock;
339 	int                     all_unreclaimable; /* All pages pinned */
340 #ifdef CONFIG_MEMORY_HOTPLUG
341 	/* see spanned/present_pages for more description */
342 	seqlock_t		span_seqlock;
343 #endif
344 	struct free_area	free_area[MAX_ORDER];
345 
346 #ifndef CONFIG_SPARSEMEM
347 	/*
348 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
349 	 * In SPARSEMEM, this map is stored in struct mem_section
350 	 */
351 	unsigned long		*pageblock_flags;
352 #endif /* CONFIG_SPARSEMEM */
353 
354 #ifdef CONFIG_COMPACTION
355 	/*
356 	 * On compaction failure, 1<<compact_defer_shift compactions
357 	 * are skipped before trying again. The number attempted since
358 	 * last failure is tracked with compact_considered.
359 	 */
360 	unsigned int		compact_considered;
361 	unsigned int		compact_defer_shift;
362 #endif
363 
364 	ZONE_PADDING(_pad1_)
365 
366 	/* Fields commonly accessed by the page reclaim scanner */
367 	spinlock_t		lru_lock;
368 	struct zone_lru {
369 		struct list_head list;
370 	} lru[NR_LRU_LISTS];
371 
372 	struct zone_reclaim_stat reclaim_stat;
373 
374 	unsigned long		pages_scanned;	   /* since last reclaim */
375 	unsigned long		flags;		   /* zone flags, see below */
376 
377 	/* Zone statistics */
378 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
379 
380 	/*
381 	 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
382 	 * this zone's LRU.  Maintained by the pageout code.
383 	 */
384 	unsigned int inactive_ratio;
385 
386 
387 	ZONE_PADDING(_pad2_)
388 	/* Rarely used or read-mostly fields */
389 
390 	/*
391 	 * wait_table		-- the array holding the hash table
392 	 * wait_table_hash_nr_entries	-- the size of the hash table array
393 	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
394 	 *
395 	 * The purpose of all these is to keep track of the people
396 	 * waiting for a page to become available and make them
397 	 * runnable again when possible. The trouble is that this
398 	 * consumes a lot of space, especially when so few things
399 	 * wait on pages at a given time. So instead of using
400 	 * per-page waitqueues, we use a waitqueue hash table.
401 	 *
402 	 * The bucket discipline is to sleep on the same queue when
403 	 * colliding and wake all in that wait queue when removing.
404 	 * When something wakes, it must check to be sure its page is
405 	 * truly available, a la thundering herd. The cost of a
406 	 * collision is great, but given the expected load of the
407 	 * table, they should be so rare as to be outweighed by the
408 	 * benefits from the saved space.
409 	 *
410 	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
411 	 * primary users of these fields, and in mm/page_alloc.c
412 	 * free_area_init_core() performs the initialization of them.
413 	 */
414 	wait_queue_head_t	* wait_table;
415 	unsigned long		wait_table_hash_nr_entries;
416 	unsigned long		wait_table_bits;
417 
418 	/*
419 	 * Discontig memory support fields.
420 	 */
421 	struct pglist_data	*zone_pgdat;
422 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
423 	unsigned long		zone_start_pfn;
424 
425 	/*
426 	 * zone_start_pfn, spanned_pages and present_pages are all
427 	 * protected by span_seqlock.  It is a seqlock because it has
428 	 * to be read outside of zone->lock, and it is done in the main
429 	 * allocator path.  But, it is written quite infrequently.
430 	 *
431 	 * The lock is declared along with zone->lock because it is
432 	 * frequently read in proximity to zone->lock.  It's good to
433 	 * give them a chance of being in the same cacheline.
434 	 */
435 	unsigned long		spanned_pages;	/* total size, including holes */
436 	unsigned long		present_pages;	/* amount of memory (excluding holes) */
437 
438 	/*
439 	 * rarely used fields:
440 	 */
441 	const char		*name;
442 } ____cacheline_internodealigned_in_smp;
443 
444 typedef enum {
445 	ZONE_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
446 	ZONE_OOM_LOCKED,		/* zone is in OOM killer zonelist */
447 	ZONE_CONGESTED,			/* zone has many dirty pages backed by
448 					 * a congested BDI
449 					 */
450 } zone_flags_t;
451 
452 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
453 {
454 	set_bit(flag, &zone->flags);
455 }
456 
457 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
458 {
459 	return test_and_set_bit(flag, &zone->flags);
460 }
461 
462 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
463 {
464 	clear_bit(flag, &zone->flags);
465 }
466 
467 static inline int zone_is_reclaim_congested(const struct zone *zone)
468 {
469 	return test_bit(ZONE_CONGESTED, &zone->flags);
470 }
471 
472 static inline int zone_is_reclaim_locked(const struct zone *zone)
473 {
474 	return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
475 }
476 
477 static inline int zone_is_oom_locked(const struct zone *zone)
478 {
479 	return test_bit(ZONE_OOM_LOCKED, &zone->flags);
480 }
481 
482 /*
483  * The "priority" of VM scanning is how much of the queues we will scan in one
484  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
485  * queues ("queue_length >> 12") during an aging round.
486  */
487 #define DEF_PRIORITY 12
488 
489 /* Maximum number of zones on a zonelist */
490 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
491 
492 #ifdef CONFIG_NUMA
493 
494 /*
495  * The NUMA zonelists are doubled because we need zonelists that restrict the
496  * allocations to a single node for GFP_THISNODE.
497  *
498  * [0]	: Zonelist with fallback
499  * [1]	: No fallback (GFP_THISNODE)
500  */
501 #define MAX_ZONELISTS 2
502 
503 
504 /*
505  * We cache key information from each zonelist for smaller cache
506  * footprint when scanning for free pages in get_page_from_freelist().
507  *
508  * 1) The BITMAP fullzones tracks which zones in a zonelist have come
509  *    up short of free memory since the last time (last_fullzone_zap)
510  *    we zero'd fullzones.
511  * 2) The array z_to_n[] maps each zone in the zonelist to its node
512  *    id, so that we can efficiently evaluate whether that node is
513  *    set in the current tasks mems_allowed.
514  *
515  * Both fullzones and z_to_n[] are one-to-one with the zonelist,
516  * indexed by a zones offset in the zonelist zones[] array.
517  *
518  * The get_page_from_freelist() routine does two scans.  During the
519  * first scan, we skip zones whose corresponding bit in 'fullzones'
520  * is set or whose corresponding node in current->mems_allowed (which
521  * comes from cpusets) is not set.  During the second scan, we bypass
522  * this zonelist_cache, to ensure we look methodically at each zone.
523  *
524  * Once per second, we zero out (zap) fullzones, forcing us to
525  * reconsider nodes that might have regained more free memory.
526  * The field last_full_zap is the time we last zapped fullzones.
527  *
528  * This mechanism reduces the amount of time we waste repeatedly
529  * reexaming zones for free memory when they just came up low on
530  * memory momentarilly ago.
531  *
532  * The zonelist_cache struct members logically belong in struct
533  * zonelist.  However, the mempolicy zonelists constructed for
534  * MPOL_BIND are intentionally variable length (and usually much
535  * shorter).  A general purpose mechanism for handling structs with
536  * multiple variable length members is more mechanism than we want
537  * here.  We resort to some special case hackery instead.
538  *
539  * The MPOL_BIND zonelists don't need this zonelist_cache (in good
540  * part because they are shorter), so we put the fixed length stuff
541  * at the front of the zonelist struct, ending in a variable length
542  * zones[], as is needed by MPOL_BIND.
543  *
544  * Then we put the optional zonelist cache on the end of the zonelist
545  * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
546  * the fixed length portion at the front of the struct.  This pointer
547  * both enables us to find the zonelist cache, and in the case of
548  * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
549  * to know that the zonelist cache is not there.
550  *
551  * The end result is that struct zonelists come in two flavors:
552  *  1) The full, fixed length version, shown below, and
553  *  2) The custom zonelists for MPOL_BIND.
554  * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
555  *
556  * Even though there may be multiple CPU cores on a node modifying
557  * fullzones or last_full_zap in the same zonelist_cache at the same
558  * time, we don't lock it.  This is just hint data - if it is wrong now
559  * and then, the allocator will still function, perhaps a bit slower.
560  */
561 
562 
563 struct zonelist_cache {
564 	unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];		/* zone->nid */
565 	DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);	/* zone full? */
566 	unsigned long last_full_zap;		/* when last zap'd (jiffies) */
567 };
568 #else
569 #define MAX_ZONELISTS 1
570 struct zonelist_cache;
571 #endif
572 
573 /*
574  * This struct contains information about a zone in a zonelist. It is stored
575  * here to avoid dereferences into large structures and lookups of tables
576  */
577 struct zoneref {
578 	struct zone *zone;	/* Pointer to actual zone */
579 	int zone_idx;		/* zone_idx(zoneref->zone) */
580 };
581 
582 /*
583  * One allocation request operates on a zonelist. A zonelist
584  * is a list of zones, the first one is the 'goal' of the
585  * allocation, the other zones are fallback zones, in decreasing
586  * priority.
587  *
588  * If zlcache_ptr is not NULL, then it is just the address of zlcache,
589  * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
590  * *
591  * To speed the reading of the zonelist, the zonerefs contain the zone index
592  * of the entry being read. Helper functions to access information given
593  * a struct zoneref are
594  *
595  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
596  * zonelist_zone_idx()	- Return the index of the zone for an entry
597  * zonelist_node_idx()	- Return the index of the node for an entry
598  */
599 struct zonelist {
600 	struct zonelist_cache *zlcache_ptr;		     // NULL or &zlcache
601 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
602 #ifdef CONFIG_NUMA
603 	struct zonelist_cache zlcache;			     // optional ...
604 #endif
605 };
606 
607 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
608 struct node_active_region {
609 	unsigned long start_pfn;
610 	unsigned long end_pfn;
611 	int nid;
612 };
613 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
614 
615 #ifndef CONFIG_DISCONTIGMEM
616 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
617 extern struct page *mem_map;
618 #endif
619 
620 /*
621  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
622  * (mostly NUMA machines?) to denote a higher-level memory zone than the
623  * zone denotes.
624  *
625  * On NUMA machines, each NUMA node would have a pg_data_t to describe
626  * it's memory layout.
627  *
628  * Memory statistics and page replacement data structures are maintained on a
629  * per-zone basis.
630  */
631 struct bootmem_data;
632 typedef struct pglist_data {
633 	struct zone node_zones[MAX_NR_ZONES];
634 	struct zonelist node_zonelists[MAX_ZONELISTS];
635 	int nr_zones;
636 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
637 	struct page *node_mem_map;
638 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
639 	struct page_cgroup *node_page_cgroup;
640 #endif
641 #endif
642 #ifndef CONFIG_NO_BOOTMEM
643 	struct bootmem_data *bdata;
644 #endif
645 #ifdef CONFIG_MEMORY_HOTPLUG
646 	/*
647 	 * Must be held any time you expect node_start_pfn, node_present_pages
648 	 * or node_spanned_pages stay constant.  Holding this will also
649 	 * guarantee that any pfn_valid() stays that way.
650 	 *
651 	 * Nests above zone->lock and zone->size_seqlock.
652 	 */
653 	spinlock_t node_size_lock;
654 #endif
655 	unsigned long node_start_pfn;
656 	unsigned long node_present_pages; /* total number of physical pages */
657 	unsigned long node_spanned_pages; /* total size of physical page
658 					     range, including holes */
659 	int node_id;
660 	wait_queue_head_t kswapd_wait;
661 	struct task_struct *kswapd;
662 	int kswapd_max_order;
663 	enum zone_type classzone_idx;
664 } pg_data_t;
665 
666 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
667 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
668 #ifdef CONFIG_FLAT_NODE_MEM_MAP
669 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
670 #else
671 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
672 #endif
673 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
674 
675 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
676 
677 #define node_end_pfn(nid) ({\
678 	pg_data_t *__pgdat = NODE_DATA(nid);\
679 	__pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
680 })
681 
682 #include <linux/memory_hotplug.h>
683 
684 extern struct mutex zonelists_mutex;
685 void build_all_zonelists(void *data);
686 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
687 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
688 		int classzone_idx, int alloc_flags);
689 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
690 		int classzone_idx, int alloc_flags);
691 enum memmap_context {
692 	MEMMAP_EARLY,
693 	MEMMAP_HOTPLUG,
694 };
695 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
696 				     unsigned long size,
697 				     enum memmap_context context);
698 
699 #ifdef CONFIG_HAVE_MEMORY_PRESENT
700 void memory_present(int nid, unsigned long start, unsigned long end);
701 #else
702 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
703 #endif
704 
705 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
706 int local_memory_node(int node_id);
707 #else
708 static inline int local_memory_node(int node_id) { return node_id; };
709 #endif
710 
711 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
712 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
713 #endif
714 
715 /*
716  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
717  */
718 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
719 
720 static inline int populated_zone(struct zone *zone)
721 {
722 	return (!!zone->present_pages);
723 }
724 
725 extern int movable_zone;
726 
727 static inline int zone_movable_is_highmem(void)
728 {
729 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE)
730 	return movable_zone == ZONE_HIGHMEM;
731 #else
732 	return 0;
733 #endif
734 }
735 
736 static inline int is_highmem_idx(enum zone_type idx)
737 {
738 #ifdef CONFIG_HIGHMEM
739 	return (idx == ZONE_HIGHMEM ||
740 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
741 #else
742 	return 0;
743 #endif
744 }
745 
746 static inline int is_normal_idx(enum zone_type idx)
747 {
748 	return (idx == ZONE_NORMAL);
749 }
750 
751 /**
752  * is_highmem - helper function to quickly check if a struct zone is a
753  *              highmem zone or not.  This is an attempt to keep references
754  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
755  * @zone - pointer to struct zone variable
756  */
757 static inline int is_highmem(struct zone *zone)
758 {
759 #ifdef CONFIG_HIGHMEM
760 	int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
761 	return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
762 	       (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
763 		zone_movable_is_highmem());
764 #else
765 	return 0;
766 #endif
767 }
768 
769 static inline int is_normal(struct zone *zone)
770 {
771 	return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
772 }
773 
774 static inline int is_dma32(struct zone *zone)
775 {
776 #ifdef CONFIG_ZONE_DMA32
777 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
778 #else
779 	return 0;
780 #endif
781 }
782 
783 static inline int is_dma(struct zone *zone)
784 {
785 #ifdef CONFIG_ZONE_DMA
786 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
787 #else
788 	return 0;
789 #endif
790 }
791 
792 /* These two functions are used to setup the per zone pages min values */
793 struct ctl_table;
794 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
795 					void __user *, size_t *, loff_t *);
796 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
797 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
798 					void __user *, size_t *, loff_t *);
799 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
800 					void __user *, size_t *, loff_t *);
801 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
802 			void __user *, size_t *, loff_t *);
803 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
804 			void __user *, size_t *, loff_t *);
805 
806 extern int numa_zonelist_order_handler(struct ctl_table *, int,
807 			void __user *, size_t *, loff_t *);
808 extern char numa_zonelist_order[];
809 #define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */
810 
811 #ifndef CONFIG_NEED_MULTIPLE_NODES
812 
813 extern struct pglist_data contig_page_data;
814 #define NODE_DATA(nid)		(&contig_page_data)
815 #define NODE_MEM_MAP(nid)	mem_map
816 
817 #else /* CONFIG_NEED_MULTIPLE_NODES */
818 
819 #include <asm/mmzone.h>
820 
821 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
822 
823 extern struct pglist_data *first_online_pgdat(void);
824 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
825 extern struct zone *next_zone(struct zone *zone);
826 
827 /**
828  * for_each_online_pgdat - helper macro to iterate over all online nodes
829  * @pgdat - pointer to a pg_data_t variable
830  */
831 #define for_each_online_pgdat(pgdat)			\
832 	for (pgdat = first_online_pgdat();		\
833 	     pgdat;					\
834 	     pgdat = next_online_pgdat(pgdat))
835 /**
836  * for_each_zone - helper macro to iterate over all memory zones
837  * @zone - pointer to struct zone variable
838  *
839  * The user only needs to declare the zone variable, for_each_zone
840  * fills it in.
841  */
842 #define for_each_zone(zone)			        \
843 	for (zone = (first_online_pgdat())->node_zones; \
844 	     zone;					\
845 	     zone = next_zone(zone))
846 
847 #define for_each_populated_zone(zone)		        \
848 	for (zone = (first_online_pgdat())->node_zones; \
849 	     zone;					\
850 	     zone = next_zone(zone))			\
851 		if (!populated_zone(zone))		\
852 			; /* do nothing */		\
853 		else
854 
855 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
856 {
857 	return zoneref->zone;
858 }
859 
860 static inline int zonelist_zone_idx(struct zoneref *zoneref)
861 {
862 	return zoneref->zone_idx;
863 }
864 
865 static inline int zonelist_node_idx(struct zoneref *zoneref)
866 {
867 #ifdef CONFIG_NUMA
868 	/* zone_to_nid not available in this context */
869 	return zoneref->zone->node;
870 #else
871 	return 0;
872 #endif /* CONFIG_NUMA */
873 }
874 
875 /**
876  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
877  * @z - The cursor used as a starting point for the search
878  * @highest_zoneidx - The zone index of the highest zone to return
879  * @nodes - An optional nodemask to filter the zonelist with
880  * @zone - The first suitable zone found is returned via this parameter
881  *
882  * This function returns the next zone at or below a given zone index that is
883  * within the allowed nodemask using a cursor as the starting point for the
884  * search. The zoneref returned is a cursor that represents the current zone
885  * being examined. It should be advanced by one before calling
886  * next_zones_zonelist again.
887  */
888 struct zoneref *next_zones_zonelist(struct zoneref *z,
889 					enum zone_type highest_zoneidx,
890 					nodemask_t *nodes,
891 					struct zone **zone);
892 
893 /**
894  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
895  * @zonelist - The zonelist to search for a suitable zone
896  * @highest_zoneidx - The zone index of the highest zone to return
897  * @nodes - An optional nodemask to filter the zonelist with
898  * @zone - The first suitable zone found is returned via this parameter
899  *
900  * This function returns the first zone at or below a given zone index that is
901  * within the allowed nodemask. The zoneref returned is a cursor that can be
902  * used to iterate the zonelist with next_zones_zonelist by advancing it by
903  * one before calling.
904  */
905 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
906 					enum zone_type highest_zoneidx,
907 					nodemask_t *nodes,
908 					struct zone **zone)
909 {
910 	return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
911 								zone);
912 }
913 
914 /**
915  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
916  * @zone - The current zone in the iterator
917  * @z - The current pointer within zonelist->zones being iterated
918  * @zlist - The zonelist being iterated
919  * @highidx - The zone index of the highest zone to return
920  * @nodemask - Nodemask allowed by the allocator
921  *
922  * This iterator iterates though all zones at or below a given zone index and
923  * within a given nodemask
924  */
925 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
926 	for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone);	\
927 		zone;							\
928 		z = next_zones_zonelist(++z, highidx, nodemask, &zone))	\
929 
930 /**
931  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
932  * @zone - The current zone in the iterator
933  * @z - The current pointer within zonelist->zones being iterated
934  * @zlist - The zonelist being iterated
935  * @highidx - The zone index of the highest zone to return
936  *
937  * This iterator iterates though all zones at or below a given zone index.
938  */
939 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
940 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
941 
942 #ifdef CONFIG_SPARSEMEM
943 #include <asm/sparsemem.h>
944 #endif
945 
946 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
947 	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
948 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
949 {
950 	return 0;
951 }
952 #endif
953 
954 #ifdef CONFIG_FLATMEM
955 #define pfn_to_nid(pfn)		(0)
956 #endif
957 
958 #ifdef CONFIG_SPARSEMEM
959 
960 /*
961  * SECTION_SHIFT    		#bits space required to store a section #
962  *
963  * PA_SECTION_SHIFT		physical address to/from section number
964  * PFN_SECTION_SHIFT		pfn to/from section number
965  */
966 #define SECTIONS_SHIFT		(MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
967 
968 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
969 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
970 
971 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
972 
973 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
974 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
975 
976 #define SECTION_BLOCKFLAGS_BITS \
977 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
978 
979 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
980 #error Allocator MAX_ORDER exceeds SECTION_SIZE
981 #endif
982 
983 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
984 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
985 
986 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
987 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
988 
989 struct page;
990 struct page_cgroup;
991 struct mem_section {
992 	/*
993 	 * This is, logically, a pointer to an array of struct
994 	 * pages.  However, it is stored with some other magic.
995 	 * (see sparse.c::sparse_init_one_section())
996 	 *
997 	 * Additionally during early boot we encode node id of
998 	 * the location of the section here to guide allocation.
999 	 * (see sparse.c::memory_present())
1000 	 *
1001 	 * Making it a UL at least makes someone do a cast
1002 	 * before using it wrong.
1003 	 */
1004 	unsigned long section_mem_map;
1005 
1006 	/* See declaration of similar field in struct zone */
1007 	unsigned long *pageblock_flags;
1008 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1009 	/*
1010 	 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1011 	 * section. (see memcontrol.h/page_cgroup.h about this.)
1012 	 */
1013 	struct page_cgroup *page_cgroup;
1014 	unsigned long pad;
1015 #endif
1016 };
1017 
1018 #ifdef CONFIG_SPARSEMEM_EXTREME
1019 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1020 #else
1021 #define SECTIONS_PER_ROOT	1
1022 #endif
1023 
1024 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1025 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1026 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1027 
1028 #ifdef CONFIG_SPARSEMEM_EXTREME
1029 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1030 #else
1031 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1032 #endif
1033 
1034 static inline struct mem_section *__nr_to_section(unsigned long nr)
1035 {
1036 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1037 		return NULL;
1038 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1039 }
1040 extern int __section_nr(struct mem_section* ms);
1041 extern unsigned long usemap_size(void);
1042 
1043 /*
1044  * We use the lower bits of the mem_map pointer to store
1045  * a little bit of information.  There should be at least
1046  * 3 bits here due to 32-bit alignment.
1047  */
1048 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1049 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1050 #define SECTION_MAP_LAST_BIT	(1UL<<2)
1051 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1052 #define SECTION_NID_SHIFT	2
1053 
1054 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1055 {
1056 	unsigned long map = section->section_mem_map;
1057 	map &= SECTION_MAP_MASK;
1058 	return (struct page *)map;
1059 }
1060 
1061 static inline int present_section(struct mem_section *section)
1062 {
1063 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1064 }
1065 
1066 static inline int present_section_nr(unsigned long nr)
1067 {
1068 	return present_section(__nr_to_section(nr));
1069 }
1070 
1071 static inline int valid_section(struct mem_section *section)
1072 {
1073 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1074 }
1075 
1076 static inline int valid_section_nr(unsigned long nr)
1077 {
1078 	return valid_section(__nr_to_section(nr));
1079 }
1080 
1081 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1082 {
1083 	return __nr_to_section(pfn_to_section_nr(pfn));
1084 }
1085 
1086 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1087 static inline int pfn_valid(unsigned long pfn)
1088 {
1089 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1090 		return 0;
1091 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1092 }
1093 #endif
1094 
1095 static inline int pfn_present(unsigned long pfn)
1096 {
1097 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1098 		return 0;
1099 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1100 }
1101 
1102 /*
1103  * These are _only_ used during initialisation, therefore they
1104  * can use __initdata ...  They could have names to indicate
1105  * this restriction.
1106  */
1107 #ifdef CONFIG_NUMA
1108 #define pfn_to_nid(pfn)							\
1109 ({									\
1110 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1111 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1112 })
1113 #else
1114 #define pfn_to_nid(pfn)		(0)
1115 #endif
1116 
1117 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1118 void sparse_init(void);
1119 #else
1120 #define sparse_init()	do {} while (0)
1121 #define sparse_index_init(_sec, _nid)  do {} while (0)
1122 #endif /* CONFIG_SPARSEMEM */
1123 
1124 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1125 bool early_pfn_in_nid(unsigned long pfn, int nid);
1126 #else
1127 #define early_pfn_in_nid(pfn, nid)	(1)
1128 #endif
1129 
1130 #ifndef early_pfn_valid
1131 #define early_pfn_valid(pfn)	(1)
1132 #endif
1133 
1134 void memory_present(int nid, unsigned long start, unsigned long end);
1135 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1136 
1137 /*
1138  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1139  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1140  * pfn_valid_within() should be used in this case; we optimise this away
1141  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1142  */
1143 #ifdef CONFIG_HOLES_IN_ZONE
1144 #define pfn_valid_within(pfn) pfn_valid(pfn)
1145 #else
1146 #define pfn_valid_within(pfn) (1)
1147 #endif
1148 
1149 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1150 /*
1151  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1152  * associated with it or not. In FLATMEM, it is expected that holes always
1153  * have valid memmap as long as there is valid PFNs either side of the hole.
1154  * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1155  * entire section.
1156  *
1157  * However, an ARM, and maybe other embedded architectures in the future
1158  * free memmap backing holes to save memory on the assumption the memmap is
1159  * never used. The page_zone linkages are then broken even though pfn_valid()
1160  * returns true. A walker of the full memmap must then do this additional
1161  * check to ensure the memmap they are looking at is sane by making sure
1162  * the zone and PFN linkages are still valid. This is expensive, but walkers
1163  * of the full memmap are extremely rare.
1164  */
1165 int memmap_valid_within(unsigned long pfn,
1166 					struct page *page, struct zone *zone);
1167 #else
1168 static inline int memmap_valid_within(unsigned long pfn,
1169 					struct page *page, struct zone *zone)
1170 {
1171 	return 1;
1172 }
1173 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1174 
1175 #endif /* !__GENERATING_BOUNDS.H */
1176 #endif /* !__ASSEMBLY__ */
1177 #endif /* _LINUX_MMZONE_H */
1178