xref: /linux-6.15/include/linux/mmzone.h (revision eb2bce7f)
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3 
4 #ifdef __KERNEL__
5 #ifndef __ASSEMBLY__
6 
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/cache.h>
11 #include <linux/threads.h>
12 #include <linux/numa.h>
13 #include <linux/init.h>
14 #include <linux/seqlock.h>
15 #include <linux/nodemask.h>
16 #include <asm/atomic.h>
17 #include <asm/page.h>
18 
19 /* Free memory management - zoned buddy allocator.  */
20 #ifndef CONFIG_FORCE_MAX_ZONEORDER
21 #define MAX_ORDER 11
22 #else
23 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
24 #endif
25 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
26 
27 struct free_area {
28 	struct list_head	free_list;
29 	unsigned long		nr_free;
30 };
31 
32 struct pglist_data;
33 
34 /*
35  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
36  * So add a wild amount of padding here to ensure that they fall into separate
37  * cachelines.  There are very few zone structures in the machine, so space
38  * consumption is not a concern here.
39  */
40 #if defined(CONFIG_SMP)
41 struct zone_padding {
42 	char x[0];
43 } ____cacheline_internodealigned_in_smp;
44 #define ZONE_PADDING(name)	struct zone_padding name;
45 #else
46 #define ZONE_PADDING(name)
47 #endif
48 
49 enum zone_stat_item {
50 	/* First 128 byte cacheline (assuming 64 bit words) */
51 	NR_FREE_PAGES,
52 	NR_INACTIVE,
53 	NR_ACTIVE,
54 	NR_ANON_PAGES,	/* Mapped anonymous pages */
55 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
56 			   only modified from process context */
57 	NR_FILE_PAGES,
58 	NR_FILE_DIRTY,
59 	NR_WRITEBACK,
60 	/* Second 128 byte cacheline */
61 	NR_SLAB_RECLAIMABLE,
62 	NR_SLAB_UNRECLAIMABLE,
63 	NR_PAGETABLE,		/* used for pagetables */
64 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
65 	NR_BOUNCE,
66 	NR_VMSCAN_WRITE,
67 #ifdef CONFIG_NUMA
68 	NUMA_HIT,		/* allocated in intended node */
69 	NUMA_MISS,		/* allocated in non intended node */
70 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
71 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
72 	NUMA_LOCAL,		/* allocation from local node */
73 	NUMA_OTHER,		/* allocation from other node */
74 #endif
75 	NR_VM_ZONE_STAT_ITEMS };
76 
77 struct per_cpu_pages {
78 	int count;		/* number of pages in the list */
79 	int high;		/* high watermark, emptying needed */
80 	int batch;		/* chunk size for buddy add/remove */
81 	struct list_head list;	/* the list of pages */
82 };
83 
84 struct per_cpu_pageset {
85 	struct per_cpu_pages pcp[2];	/* 0: hot.  1: cold */
86 #ifdef CONFIG_SMP
87 	s8 stat_threshold;
88 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
89 #endif
90 } ____cacheline_aligned_in_smp;
91 
92 #ifdef CONFIG_NUMA
93 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
94 #else
95 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
96 #endif
97 
98 enum zone_type {
99 #ifdef CONFIG_ZONE_DMA
100 	/*
101 	 * ZONE_DMA is used when there are devices that are not able
102 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
103 	 * carve out the portion of memory that is needed for these devices.
104 	 * The range is arch specific.
105 	 *
106 	 * Some examples
107 	 *
108 	 * Architecture		Limit
109 	 * ---------------------------
110 	 * parisc, ia64, sparc	<4G
111 	 * s390			<2G
112 	 * arm26		<48M
113 	 * arm			Various
114 	 * alpha		Unlimited or 0-16MB.
115 	 *
116 	 * i386, x86_64 and multiple other arches
117 	 * 			<16M.
118 	 */
119 	ZONE_DMA,
120 #endif
121 #ifdef CONFIG_ZONE_DMA32
122 	/*
123 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
124 	 * only able to do DMA to the lower 16M but also 32 bit devices that
125 	 * can only do DMA areas below 4G.
126 	 */
127 	ZONE_DMA32,
128 #endif
129 	/*
130 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
131 	 * performed on pages in ZONE_NORMAL if the DMA devices support
132 	 * transfers to all addressable memory.
133 	 */
134 	ZONE_NORMAL,
135 #ifdef CONFIG_HIGHMEM
136 	/*
137 	 * A memory area that is only addressable by the kernel through
138 	 * mapping portions into its own address space. This is for example
139 	 * used by i386 to allow the kernel to address the memory beyond
140 	 * 900MB. The kernel will set up special mappings (page
141 	 * table entries on i386) for each page that the kernel needs to
142 	 * access.
143 	 */
144 	ZONE_HIGHMEM,
145 #endif
146 	MAX_NR_ZONES
147 };
148 
149 /*
150  * When a memory allocation must conform to specific limitations (such
151  * as being suitable for DMA) the caller will pass in hints to the
152  * allocator in the gfp_mask, in the zone modifier bits.  These bits
153  * are used to select a priority ordered list of memory zones which
154  * match the requested limits. See gfp_zone() in include/linux/gfp.h
155  */
156 
157 /*
158  * Count the active zones.  Note that the use of defined(X) outside
159  * #if and family is not necessarily defined so ensure we cannot use
160  * it later.  Use __ZONE_COUNT to work out how many shift bits we need.
161  */
162 #define __ZONE_COUNT (			\
163 	  defined(CONFIG_ZONE_DMA)	\
164 	+ defined(CONFIG_ZONE_DMA32)	\
165 	+ 1				\
166 	+ defined(CONFIG_HIGHMEM)	\
167 )
168 #if __ZONE_COUNT < 2
169 #define ZONES_SHIFT 0
170 #elif __ZONE_COUNT <= 2
171 #define ZONES_SHIFT 1
172 #elif __ZONE_COUNT <= 4
173 #define ZONES_SHIFT 2
174 #else
175 #error ZONES_SHIFT -- too many zones configured adjust calculation
176 #endif
177 #undef __ZONE_COUNT
178 
179 struct zone {
180 	/* Fields commonly accessed by the page allocator */
181 	unsigned long		pages_min, pages_low, pages_high;
182 	/*
183 	 * We don't know if the memory that we're going to allocate will be freeable
184 	 * or/and it will be released eventually, so to avoid totally wasting several
185 	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
186 	 * to run OOM on the lower zones despite there's tons of freeable ram
187 	 * on the higher zones). This array is recalculated at runtime if the
188 	 * sysctl_lowmem_reserve_ratio sysctl changes.
189 	 */
190 	unsigned long		lowmem_reserve[MAX_NR_ZONES];
191 
192 #ifdef CONFIG_NUMA
193 	int node;
194 	/*
195 	 * zone reclaim becomes active if more unmapped pages exist.
196 	 */
197 	unsigned long		min_unmapped_pages;
198 	unsigned long		min_slab_pages;
199 	struct per_cpu_pageset	*pageset[NR_CPUS];
200 #else
201 	struct per_cpu_pageset	pageset[NR_CPUS];
202 #endif
203 	/*
204 	 * free areas of different sizes
205 	 */
206 	spinlock_t		lock;
207 #ifdef CONFIG_MEMORY_HOTPLUG
208 	/* see spanned/present_pages for more description */
209 	seqlock_t		span_seqlock;
210 #endif
211 	struct free_area	free_area[MAX_ORDER];
212 
213 
214 	ZONE_PADDING(_pad1_)
215 
216 	/* Fields commonly accessed by the page reclaim scanner */
217 	spinlock_t		lru_lock;
218 	struct list_head	active_list;
219 	struct list_head	inactive_list;
220 	unsigned long		nr_scan_active;
221 	unsigned long		nr_scan_inactive;
222 	unsigned long		pages_scanned;	   /* since last reclaim */
223 	int			all_unreclaimable; /* All pages pinned */
224 
225 	/* A count of how many reclaimers are scanning this zone */
226 	atomic_t		reclaim_in_progress;
227 
228 	/* Zone statistics */
229 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
230 
231 	/*
232 	 * prev_priority holds the scanning priority for this zone.  It is
233 	 * defined as the scanning priority at which we achieved our reclaim
234 	 * target at the previous try_to_free_pages() or balance_pgdat()
235 	 * invokation.
236 	 *
237 	 * We use prev_priority as a measure of how much stress page reclaim is
238 	 * under - it drives the swappiness decision: whether to unmap mapped
239 	 * pages.
240 	 *
241 	 * Access to both this field is quite racy even on uniprocessor.  But
242 	 * it is expected to average out OK.
243 	 */
244 	int prev_priority;
245 
246 
247 	ZONE_PADDING(_pad2_)
248 	/* Rarely used or read-mostly fields */
249 
250 	/*
251 	 * wait_table		-- the array holding the hash table
252 	 * wait_table_hash_nr_entries	-- the size of the hash table array
253 	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
254 	 *
255 	 * The purpose of all these is to keep track of the people
256 	 * waiting for a page to become available and make them
257 	 * runnable again when possible. The trouble is that this
258 	 * consumes a lot of space, especially when so few things
259 	 * wait on pages at a given time. So instead of using
260 	 * per-page waitqueues, we use a waitqueue hash table.
261 	 *
262 	 * The bucket discipline is to sleep on the same queue when
263 	 * colliding and wake all in that wait queue when removing.
264 	 * When something wakes, it must check to be sure its page is
265 	 * truly available, a la thundering herd. The cost of a
266 	 * collision is great, but given the expected load of the
267 	 * table, they should be so rare as to be outweighed by the
268 	 * benefits from the saved space.
269 	 *
270 	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
271 	 * primary users of these fields, and in mm/page_alloc.c
272 	 * free_area_init_core() performs the initialization of them.
273 	 */
274 	wait_queue_head_t	* wait_table;
275 	unsigned long		wait_table_hash_nr_entries;
276 	unsigned long		wait_table_bits;
277 
278 	/*
279 	 * Discontig memory support fields.
280 	 */
281 	struct pglist_data	*zone_pgdat;
282 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
283 	unsigned long		zone_start_pfn;
284 
285 	/*
286 	 * zone_start_pfn, spanned_pages and present_pages are all
287 	 * protected by span_seqlock.  It is a seqlock because it has
288 	 * to be read outside of zone->lock, and it is done in the main
289 	 * allocator path.  But, it is written quite infrequently.
290 	 *
291 	 * The lock is declared along with zone->lock because it is
292 	 * frequently read in proximity to zone->lock.  It's good to
293 	 * give them a chance of being in the same cacheline.
294 	 */
295 	unsigned long		spanned_pages;	/* total size, including holes */
296 	unsigned long		present_pages;	/* amount of memory (excluding holes) */
297 
298 	/*
299 	 * rarely used fields:
300 	 */
301 	const char		*name;
302 } ____cacheline_internodealigned_in_smp;
303 
304 /*
305  * The "priority" of VM scanning is how much of the queues we will scan in one
306  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
307  * queues ("queue_length >> 12") during an aging round.
308  */
309 #define DEF_PRIORITY 12
310 
311 /* Maximum number of zones on a zonelist */
312 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
313 
314 #ifdef CONFIG_NUMA
315 /*
316  * We cache key information from each zonelist for smaller cache
317  * footprint when scanning for free pages in get_page_from_freelist().
318  *
319  * 1) The BITMAP fullzones tracks which zones in a zonelist have come
320  *    up short of free memory since the last time (last_fullzone_zap)
321  *    we zero'd fullzones.
322  * 2) The array z_to_n[] maps each zone in the zonelist to its node
323  *    id, so that we can efficiently evaluate whether that node is
324  *    set in the current tasks mems_allowed.
325  *
326  * Both fullzones and z_to_n[] are one-to-one with the zonelist,
327  * indexed by a zones offset in the zonelist zones[] array.
328  *
329  * The get_page_from_freelist() routine does two scans.  During the
330  * first scan, we skip zones whose corresponding bit in 'fullzones'
331  * is set or whose corresponding node in current->mems_allowed (which
332  * comes from cpusets) is not set.  During the second scan, we bypass
333  * this zonelist_cache, to ensure we look methodically at each zone.
334  *
335  * Once per second, we zero out (zap) fullzones, forcing us to
336  * reconsider nodes that might have regained more free memory.
337  * The field last_full_zap is the time we last zapped fullzones.
338  *
339  * This mechanism reduces the amount of time we waste repeatedly
340  * reexaming zones for free memory when they just came up low on
341  * memory momentarilly ago.
342  *
343  * The zonelist_cache struct members logically belong in struct
344  * zonelist.  However, the mempolicy zonelists constructed for
345  * MPOL_BIND are intentionally variable length (and usually much
346  * shorter).  A general purpose mechanism for handling structs with
347  * multiple variable length members is more mechanism than we want
348  * here.  We resort to some special case hackery instead.
349  *
350  * The MPOL_BIND zonelists don't need this zonelist_cache (in good
351  * part because they are shorter), so we put the fixed length stuff
352  * at the front of the zonelist struct, ending in a variable length
353  * zones[], as is needed by MPOL_BIND.
354  *
355  * Then we put the optional zonelist cache on the end of the zonelist
356  * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
357  * the fixed length portion at the front of the struct.  This pointer
358  * both enables us to find the zonelist cache, and in the case of
359  * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
360  * to know that the zonelist cache is not there.
361  *
362  * The end result is that struct zonelists come in two flavors:
363  *  1) The full, fixed length version, shown below, and
364  *  2) The custom zonelists for MPOL_BIND.
365  * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
366  *
367  * Even though there may be multiple CPU cores on a node modifying
368  * fullzones or last_full_zap in the same zonelist_cache at the same
369  * time, we don't lock it.  This is just hint data - if it is wrong now
370  * and then, the allocator will still function, perhaps a bit slower.
371  */
372 
373 
374 struct zonelist_cache {
375 	unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];		/* zone->nid */
376 	DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);	/* zone full? */
377 	unsigned long last_full_zap;		/* when last zap'd (jiffies) */
378 };
379 #else
380 struct zonelist_cache;
381 #endif
382 
383 /*
384  * One allocation request operates on a zonelist. A zonelist
385  * is a list of zones, the first one is the 'goal' of the
386  * allocation, the other zones are fallback zones, in decreasing
387  * priority.
388  *
389  * If zlcache_ptr is not NULL, then it is just the address of zlcache,
390  * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
391  */
392 
393 struct zonelist {
394 	struct zonelist_cache *zlcache_ptr;		     // NULL or &zlcache
395 	struct zone *zones[MAX_ZONES_PER_ZONELIST + 1];      // NULL delimited
396 #ifdef CONFIG_NUMA
397 	struct zonelist_cache zlcache;			     // optional ...
398 #endif
399 };
400 
401 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
402 struct node_active_region {
403 	unsigned long start_pfn;
404 	unsigned long end_pfn;
405 	int nid;
406 };
407 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
408 
409 #ifndef CONFIG_DISCONTIGMEM
410 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
411 extern struct page *mem_map;
412 #endif
413 
414 /*
415  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
416  * (mostly NUMA machines?) to denote a higher-level memory zone than the
417  * zone denotes.
418  *
419  * On NUMA machines, each NUMA node would have a pg_data_t to describe
420  * it's memory layout.
421  *
422  * Memory statistics and page replacement data structures are maintained on a
423  * per-zone basis.
424  */
425 struct bootmem_data;
426 typedef struct pglist_data {
427 	struct zone node_zones[MAX_NR_ZONES];
428 	struct zonelist node_zonelists[MAX_NR_ZONES];
429 	int nr_zones;
430 #ifdef CONFIG_FLAT_NODE_MEM_MAP
431 	struct page *node_mem_map;
432 #endif
433 	struct bootmem_data *bdata;
434 #ifdef CONFIG_MEMORY_HOTPLUG
435 	/*
436 	 * Must be held any time you expect node_start_pfn, node_present_pages
437 	 * or node_spanned_pages stay constant.  Holding this will also
438 	 * guarantee that any pfn_valid() stays that way.
439 	 *
440 	 * Nests above zone->lock and zone->size_seqlock.
441 	 */
442 	spinlock_t node_size_lock;
443 #endif
444 	unsigned long node_start_pfn;
445 	unsigned long node_present_pages; /* total number of physical pages */
446 	unsigned long node_spanned_pages; /* total size of physical page
447 					     range, including holes */
448 	int node_id;
449 	wait_queue_head_t kswapd_wait;
450 	struct task_struct *kswapd;
451 	int kswapd_max_order;
452 } pg_data_t;
453 
454 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
455 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
456 #ifdef CONFIG_FLAT_NODE_MEM_MAP
457 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
458 #else
459 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
460 #endif
461 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
462 
463 #include <linux/memory_hotplug.h>
464 
465 void get_zone_counts(unsigned long *active, unsigned long *inactive,
466 			unsigned long *free);
467 void build_all_zonelists(void);
468 void wakeup_kswapd(struct zone *zone, int order);
469 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
470 		int classzone_idx, int alloc_flags);
471 enum memmap_context {
472 	MEMMAP_EARLY,
473 	MEMMAP_HOTPLUG,
474 };
475 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
476 				     unsigned long size,
477 				     enum memmap_context context);
478 
479 #ifdef CONFIG_HAVE_MEMORY_PRESENT
480 void memory_present(int nid, unsigned long start, unsigned long end);
481 #else
482 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
483 #endif
484 
485 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
486 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
487 #endif
488 
489 /*
490  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
491  */
492 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
493 
494 static inline int populated_zone(struct zone *zone)
495 {
496 	return (!!zone->present_pages);
497 }
498 
499 static inline int is_highmem_idx(enum zone_type idx)
500 {
501 #ifdef CONFIG_HIGHMEM
502 	return (idx == ZONE_HIGHMEM);
503 #else
504 	return 0;
505 #endif
506 }
507 
508 static inline int is_normal_idx(enum zone_type idx)
509 {
510 	return (idx == ZONE_NORMAL);
511 }
512 
513 /**
514  * is_highmem - helper function to quickly check if a struct zone is a
515  *              highmem zone or not.  This is an attempt to keep references
516  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
517  * @zone - pointer to struct zone variable
518  */
519 static inline int is_highmem(struct zone *zone)
520 {
521 #ifdef CONFIG_HIGHMEM
522 	return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM;
523 #else
524 	return 0;
525 #endif
526 }
527 
528 static inline int is_normal(struct zone *zone)
529 {
530 	return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
531 }
532 
533 static inline int is_dma32(struct zone *zone)
534 {
535 #ifdef CONFIG_ZONE_DMA32
536 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
537 #else
538 	return 0;
539 #endif
540 }
541 
542 static inline int is_dma(struct zone *zone)
543 {
544 #ifdef CONFIG_ZONE_DMA
545 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
546 #else
547 	return 0;
548 #endif
549 }
550 
551 /* These two functions are used to setup the per zone pages min values */
552 struct ctl_table;
553 struct file;
554 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
555 					void __user *, size_t *, loff_t *);
556 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
557 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
558 					void __user *, size_t *, loff_t *);
559 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
560 					void __user *, size_t *, loff_t *);
561 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
562 			struct file *, void __user *, size_t *, loff_t *);
563 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
564 			struct file *, void __user *, size_t *, loff_t *);
565 
566 #include <linux/topology.h>
567 /* Returns the number of the current Node. */
568 #ifndef numa_node_id
569 #define numa_node_id()		(cpu_to_node(raw_smp_processor_id()))
570 #endif
571 
572 #ifndef CONFIG_NEED_MULTIPLE_NODES
573 
574 extern struct pglist_data contig_page_data;
575 #define NODE_DATA(nid)		(&contig_page_data)
576 #define NODE_MEM_MAP(nid)	mem_map
577 #define MAX_NODES_SHIFT		1
578 
579 #else /* CONFIG_NEED_MULTIPLE_NODES */
580 
581 #include <asm/mmzone.h>
582 
583 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
584 
585 extern struct pglist_data *first_online_pgdat(void);
586 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
587 extern struct zone *next_zone(struct zone *zone);
588 
589 /**
590  * for_each_pgdat - helper macro to iterate over all nodes
591  * @pgdat - pointer to a pg_data_t variable
592  */
593 #define for_each_online_pgdat(pgdat)			\
594 	for (pgdat = first_online_pgdat();		\
595 	     pgdat;					\
596 	     pgdat = next_online_pgdat(pgdat))
597 /**
598  * for_each_zone - helper macro to iterate over all memory zones
599  * @zone - pointer to struct zone variable
600  *
601  * The user only needs to declare the zone variable, for_each_zone
602  * fills it in.
603  */
604 #define for_each_zone(zone)			        \
605 	for (zone = (first_online_pgdat())->node_zones; \
606 	     zone;					\
607 	     zone = next_zone(zone))
608 
609 #ifdef CONFIG_SPARSEMEM
610 #include <asm/sparsemem.h>
611 #endif
612 
613 #if BITS_PER_LONG == 32
614 /*
615  * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
616  * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
617  */
618 #define FLAGS_RESERVED		9
619 
620 #elif BITS_PER_LONG == 64
621 /*
622  * with 64 bit flags field, there's plenty of room.
623  */
624 #define FLAGS_RESERVED		32
625 
626 #else
627 
628 #error BITS_PER_LONG not defined
629 
630 #endif
631 
632 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
633 	!defined(CONFIG_ARCH_POPULATES_NODE_MAP)
634 #define early_pfn_to_nid(nid)  (0UL)
635 #endif
636 
637 #ifdef CONFIG_FLATMEM
638 #define pfn_to_nid(pfn)		(0)
639 #endif
640 
641 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
642 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
643 
644 #ifdef CONFIG_SPARSEMEM
645 
646 /*
647  * SECTION_SHIFT    		#bits space required to store a section #
648  *
649  * PA_SECTION_SHIFT		physical address to/from section number
650  * PFN_SECTION_SHIFT		pfn to/from section number
651  */
652 #define SECTIONS_SHIFT		(MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
653 
654 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
655 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
656 
657 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
658 
659 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
660 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
661 
662 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
663 #error Allocator MAX_ORDER exceeds SECTION_SIZE
664 #endif
665 
666 struct page;
667 struct mem_section {
668 	/*
669 	 * This is, logically, a pointer to an array of struct
670 	 * pages.  However, it is stored with some other magic.
671 	 * (see sparse.c::sparse_init_one_section())
672 	 *
673 	 * Additionally during early boot we encode node id of
674 	 * the location of the section here to guide allocation.
675 	 * (see sparse.c::memory_present())
676 	 *
677 	 * Making it a UL at least makes someone do a cast
678 	 * before using it wrong.
679 	 */
680 	unsigned long section_mem_map;
681 };
682 
683 #ifdef CONFIG_SPARSEMEM_EXTREME
684 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
685 #else
686 #define SECTIONS_PER_ROOT	1
687 #endif
688 
689 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
690 #define NR_SECTION_ROOTS	(NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
691 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
692 
693 #ifdef CONFIG_SPARSEMEM_EXTREME
694 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
695 #else
696 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
697 #endif
698 
699 static inline struct mem_section *__nr_to_section(unsigned long nr)
700 {
701 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
702 		return NULL;
703 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
704 }
705 extern int __section_nr(struct mem_section* ms);
706 
707 /*
708  * We use the lower bits of the mem_map pointer to store
709  * a little bit of information.  There should be at least
710  * 3 bits here due to 32-bit alignment.
711  */
712 #define	SECTION_MARKED_PRESENT	(1UL<<0)
713 #define SECTION_HAS_MEM_MAP	(1UL<<1)
714 #define SECTION_MAP_LAST_BIT	(1UL<<2)
715 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
716 #define SECTION_NID_SHIFT	2
717 
718 static inline struct page *__section_mem_map_addr(struct mem_section *section)
719 {
720 	unsigned long map = section->section_mem_map;
721 	map &= SECTION_MAP_MASK;
722 	return (struct page *)map;
723 }
724 
725 static inline int valid_section(struct mem_section *section)
726 {
727 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
728 }
729 
730 static inline int section_has_mem_map(struct mem_section *section)
731 {
732 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
733 }
734 
735 static inline int valid_section_nr(unsigned long nr)
736 {
737 	return valid_section(__nr_to_section(nr));
738 }
739 
740 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
741 {
742 	return __nr_to_section(pfn_to_section_nr(pfn));
743 }
744 
745 static inline int pfn_valid(unsigned long pfn)
746 {
747 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
748 		return 0;
749 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
750 }
751 
752 /*
753  * These are _only_ used during initialisation, therefore they
754  * can use __initdata ...  They could have names to indicate
755  * this restriction.
756  */
757 #ifdef CONFIG_NUMA
758 #define pfn_to_nid(pfn)							\
759 ({									\
760 	unsigned long __pfn_to_nid_pfn = (pfn);				\
761 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
762 })
763 #else
764 #define pfn_to_nid(pfn)		(0)
765 #endif
766 
767 #define early_pfn_valid(pfn)	pfn_valid(pfn)
768 void sparse_init(void);
769 #else
770 #define sparse_init()	do {} while (0)
771 #define sparse_index_init(_sec, _nid)  do {} while (0)
772 #endif /* CONFIG_SPARSEMEM */
773 
774 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
775 #define early_pfn_in_nid(pfn, nid)	(early_pfn_to_nid(pfn) == (nid))
776 #else
777 #define early_pfn_in_nid(pfn, nid)	(1)
778 #endif
779 
780 #ifndef early_pfn_valid
781 #define early_pfn_valid(pfn)	(1)
782 #endif
783 
784 void memory_present(int nid, unsigned long start, unsigned long end);
785 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
786 
787 /*
788  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
789  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
790  * pfn_valid_within() should be used in this case; we optimise this away
791  * when we have no holes within a MAX_ORDER_NR_PAGES block.
792  */
793 #ifdef CONFIG_HOLES_IN_ZONE
794 #define pfn_valid_within(pfn) pfn_valid(pfn)
795 #else
796 #define pfn_valid_within(pfn) (1)
797 #endif
798 
799 #endif /* !__ASSEMBLY__ */
800 #endif /* __KERNEL__ */
801 #endif /* _LINUX_MMZONE_H */
802