1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MMZONE_H 3 #define _LINUX_MMZONE_H 4 5 #ifndef __ASSEMBLY__ 6 #ifndef __GENERATING_BOUNDS_H 7 8 #include <linux/spinlock.h> 9 #include <linux/list.h> 10 #include <linux/list_nulls.h> 11 #include <linux/wait.h> 12 #include <linux/bitops.h> 13 #include <linux/cache.h> 14 #include <linux/threads.h> 15 #include <linux/numa.h> 16 #include <linux/init.h> 17 #include <linux/seqlock.h> 18 #include <linux/nodemask.h> 19 #include <linux/pageblock-flags.h> 20 #include <linux/page-flags-layout.h> 21 #include <linux/atomic.h> 22 #include <linux/mm_types.h> 23 #include <linux/page-flags.h> 24 #include <linux/local_lock.h> 25 #include <linux/zswap.h> 26 #include <asm/page.h> 27 28 /* Free memory management - zoned buddy allocator. */ 29 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER 30 #define MAX_PAGE_ORDER 10 31 #else 32 #define MAX_PAGE_ORDER CONFIG_ARCH_FORCE_MAX_ORDER 33 #endif 34 #define MAX_ORDER_NR_PAGES (1 << MAX_PAGE_ORDER) 35 36 #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES) 37 38 #define NR_PAGE_ORDERS (MAX_PAGE_ORDER + 1) 39 40 /* 41 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 42 * costly to service. That is between allocation orders which should 43 * coalesce naturally under reasonable reclaim pressure and those which 44 * will not. 45 */ 46 #define PAGE_ALLOC_COSTLY_ORDER 3 47 48 enum migratetype { 49 MIGRATE_UNMOVABLE, 50 MIGRATE_MOVABLE, 51 MIGRATE_RECLAIMABLE, 52 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 53 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 54 #ifdef CONFIG_CMA 55 /* 56 * MIGRATE_CMA migration type is designed to mimic the way 57 * ZONE_MOVABLE works. Only movable pages can be allocated 58 * from MIGRATE_CMA pageblocks and page allocator never 59 * implicitly change migration type of MIGRATE_CMA pageblock. 60 * 61 * The way to use it is to change migratetype of a range of 62 * pageblocks to MIGRATE_CMA which can be done by 63 * __free_pageblock_cma() function. 64 */ 65 MIGRATE_CMA, 66 #endif 67 #ifdef CONFIG_MEMORY_ISOLATION 68 MIGRATE_ISOLATE, /* can't allocate from here */ 69 #endif 70 MIGRATE_TYPES 71 }; 72 73 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 74 extern const char * const migratetype_names[MIGRATE_TYPES]; 75 76 #ifdef CONFIG_CMA 77 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 78 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 79 # define is_migrate_cma_folio(folio, pfn) (MIGRATE_CMA == \ 80 get_pfnblock_flags_mask(&folio->page, pfn, MIGRATETYPE_MASK)) 81 #else 82 # define is_migrate_cma(migratetype) false 83 # define is_migrate_cma_page(_page) false 84 # define is_migrate_cma_folio(folio, pfn) false 85 #endif 86 87 static inline bool is_migrate_movable(int mt) 88 { 89 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 90 } 91 92 /* 93 * Check whether a migratetype can be merged with another migratetype. 94 * 95 * It is only mergeable when it can fall back to other migratetypes for 96 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c. 97 */ 98 static inline bool migratetype_is_mergeable(int mt) 99 { 100 return mt < MIGRATE_PCPTYPES; 101 } 102 103 #define for_each_migratetype_order(order, type) \ 104 for (order = 0; order < NR_PAGE_ORDERS; order++) \ 105 for (type = 0; type < MIGRATE_TYPES; type++) 106 107 extern int page_group_by_mobility_disabled; 108 109 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1) 110 111 #define get_pageblock_migratetype(page) \ 112 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK) 113 114 #define folio_migratetype(folio) \ 115 get_pfnblock_flags_mask(&folio->page, folio_pfn(folio), \ 116 MIGRATETYPE_MASK) 117 struct free_area { 118 struct list_head free_list[MIGRATE_TYPES]; 119 unsigned long nr_free; 120 }; 121 122 struct pglist_data; 123 124 #ifdef CONFIG_NUMA 125 enum numa_stat_item { 126 NUMA_HIT, /* allocated in intended node */ 127 NUMA_MISS, /* allocated in non intended node */ 128 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 129 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 130 NUMA_LOCAL, /* allocation from local node */ 131 NUMA_OTHER, /* allocation from other node */ 132 NR_VM_NUMA_EVENT_ITEMS 133 }; 134 #else 135 #define NR_VM_NUMA_EVENT_ITEMS 0 136 #endif 137 138 enum zone_stat_item { 139 /* First 128 byte cacheline (assuming 64 bit words) */ 140 NR_FREE_PAGES, 141 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 142 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 143 NR_ZONE_ACTIVE_ANON, 144 NR_ZONE_INACTIVE_FILE, 145 NR_ZONE_ACTIVE_FILE, 146 NR_ZONE_UNEVICTABLE, 147 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 148 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 149 /* Second 128 byte cacheline */ 150 NR_BOUNCE, 151 #if IS_ENABLED(CONFIG_ZSMALLOC) 152 NR_ZSPAGES, /* allocated in zsmalloc */ 153 #endif 154 NR_FREE_CMA_PAGES, 155 #ifdef CONFIG_UNACCEPTED_MEMORY 156 NR_UNACCEPTED, 157 #endif 158 NR_VM_ZONE_STAT_ITEMS }; 159 160 enum node_stat_item { 161 NR_LRU_BASE, 162 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 163 NR_ACTIVE_ANON, /* " " " " " */ 164 NR_INACTIVE_FILE, /* " " " " " */ 165 NR_ACTIVE_FILE, /* " " " " " */ 166 NR_UNEVICTABLE, /* " " " " " */ 167 NR_SLAB_RECLAIMABLE_B, 168 NR_SLAB_UNRECLAIMABLE_B, 169 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 170 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 171 WORKINGSET_NODES, 172 WORKINGSET_REFAULT_BASE, 173 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE, 174 WORKINGSET_REFAULT_FILE, 175 WORKINGSET_ACTIVATE_BASE, 176 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE, 177 WORKINGSET_ACTIVATE_FILE, 178 WORKINGSET_RESTORE_BASE, 179 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE, 180 WORKINGSET_RESTORE_FILE, 181 WORKINGSET_NODERECLAIM, 182 NR_ANON_MAPPED, /* Mapped anonymous pages */ 183 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 184 only modified from process context */ 185 NR_FILE_PAGES, 186 NR_FILE_DIRTY, 187 NR_WRITEBACK, 188 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 189 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 190 NR_SHMEM_THPS, 191 NR_SHMEM_PMDMAPPED, 192 NR_FILE_THPS, 193 NR_FILE_PMDMAPPED, 194 NR_ANON_THPS, 195 NR_VMSCAN_WRITE, 196 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 197 NR_DIRTIED, /* page dirtyings since bootup */ 198 NR_WRITTEN, /* page writings since bootup */ 199 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */ 200 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ 201 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */ 202 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */ 203 NR_KERNEL_STACK_KB, /* measured in KiB */ 204 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 205 NR_KERNEL_SCS_KB, /* measured in KiB */ 206 #endif 207 NR_PAGETABLE, /* used for pagetables */ 208 NR_SECONDARY_PAGETABLE, /* secondary pagetables, KVM & IOMMU */ 209 #ifdef CONFIG_IOMMU_SUPPORT 210 NR_IOMMU_PAGES, /* # of pages allocated by IOMMU */ 211 #endif 212 #ifdef CONFIG_SWAP 213 NR_SWAPCACHE, 214 #endif 215 #ifdef CONFIG_NUMA_BALANCING 216 PGPROMOTE_SUCCESS, /* promote successfully */ 217 PGPROMOTE_CANDIDATE, /* candidate pages to promote */ 218 #endif 219 /* PGDEMOTE_*: pages demoted */ 220 PGDEMOTE_KSWAPD, 221 PGDEMOTE_DIRECT, 222 PGDEMOTE_KHUGEPAGED, 223 #ifdef CONFIG_HUGETLB_PAGE 224 NR_HUGETLB, 225 #endif 226 NR_VM_NODE_STAT_ITEMS 227 }; 228 229 /* 230 * Returns true if the item should be printed in THPs (/proc/vmstat 231 * currently prints number of anon, file and shmem THPs. But the item 232 * is charged in pages). 233 */ 234 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item) 235 { 236 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 237 return false; 238 239 return item == NR_ANON_THPS || 240 item == NR_FILE_THPS || 241 item == NR_SHMEM_THPS || 242 item == NR_SHMEM_PMDMAPPED || 243 item == NR_FILE_PMDMAPPED; 244 } 245 246 /* 247 * Returns true if the value is measured in bytes (most vmstat values are 248 * measured in pages). This defines the API part, the internal representation 249 * might be different. 250 */ 251 static __always_inline bool vmstat_item_in_bytes(int idx) 252 { 253 /* 254 * Global and per-node slab counters track slab pages. 255 * It's expected that changes are multiples of PAGE_SIZE. 256 * Internally values are stored in pages. 257 * 258 * Per-memcg and per-lruvec counters track memory, consumed 259 * by individual slab objects. These counters are actually 260 * byte-precise. 261 */ 262 return (idx == NR_SLAB_RECLAIMABLE_B || 263 idx == NR_SLAB_UNRECLAIMABLE_B); 264 } 265 266 /* 267 * We do arithmetic on the LRU lists in various places in the code, 268 * so it is important to keep the active lists LRU_ACTIVE higher in 269 * the array than the corresponding inactive lists, and to keep 270 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 271 * 272 * This has to be kept in sync with the statistics in zone_stat_item 273 * above and the descriptions in vmstat_text in mm/vmstat.c 274 */ 275 #define LRU_BASE 0 276 #define LRU_ACTIVE 1 277 #define LRU_FILE 2 278 279 enum lru_list { 280 LRU_INACTIVE_ANON = LRU_BASE, 281 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 282 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 283 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 284 LRU_UNEVICTABLE, 285 NR_LRU_LISTS 286 }; 287 288 enum vmscan_throttle_state { 289 VMSCAN_THROTTLE_WRITEBACK, 290 VMSCAN_THROTTLE_ISOLATED, 291 VMSCAN_THROTTLE_NOPROGRESS, 292 VMSCAN_THROTTLE_CONGESTED, 293 NR_VMSCAN_THROTTLE, 294 }; 295 296 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 297 298 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 299 300 static inline bool is_file_lru(enum lru_list lru) 301 { 302 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 303 } 304 305 static inline bool is_active_lru(enum lru_list lru) 306 { 307 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 308 } 309 310 #define WORKINGSET_ANON 0 311 #define WORKINGSET_FILE 1 312 #define ANON_AND_FILE 2 313 314 enum lruvec_flags { 315 /* 316 * An lruvec has many dirty pages backed by a congested BDI: 317 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim. 318 * It can be cleared by cgroup reclaim or kswapd. 319 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim. 320 * It can only be cleared by kswapd. 321 * 322 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup 323 * reclaim, but not vice versa. This only applies to the root cgroup. 324 * The goal is to prevent cgroup reclaim on the root cgroup (e.g. 325 * memory.reclaim) to unthrottle an unbalanced node (that was throttled 326 * by kswapd). 327 */ 328 LRUVEC_CGROUP_CONGESTED, 329 LRUVEC_NODE_CONGESTED, 330 }; 331 332 #endif /* !__GENERATING_BOUNDS_H */ 333 334 /* 335 * Evictable folios are divided into multiple generations. The youngest and the 336 * oldest generation numbers, max_seq and min_seq, are monotonically increasing. 337 * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An 338 * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the 339 * corresponding generation. The gen counter in folio->flags stores gen+1 while 340 * a folio is on one of lrugen->folios[]. Otherwise it stores 0. 341 * 342 * After a folio is faulted in, the aging needs to check the accessed bit at 343 * least twice before handing this folio over to the eviction. The first check 344 * clears the accessed bit from the initial fault; the second check makes sure 345 * this folio hasn't been used since then. This process, AKA second chance, 346 * requires a minimum of two generations, hence MIN_NR_GENS. And to maintain ABI 347 * compatibility with the active/inactive LRU, e.g., /proc/vmstat, these two 348 * generations are considered active; the rest of generations, if they exist, 349 * are considered inactive. See lru_gen_is_active(). 350 * 351 * PG_active is always cleared while a folio is on one of lrugen->folios[] so 352 * that the sliding window needs not to worry about it. And it's set again when 353 * a folio considered active is isolated for non-reclaiming purposes, e.g., 354 * migration. See lru_gen_add_folio() and lru_gen_del_folio(). 355 * 356 * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the 357 * number of categories of the active/inactive LRU when keeping track of 358 * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits 359 * in folio->flags, masked by LRU_GEN_MASK. 360 */ 361 #define MIN_NR_GENS 2U 362 #define MAX_NR_GENS 4U 363 364 /* 365 * Each generation is divided into multiple tiers. A folio accessed N times 366 * through file descriptors is in tier order_base_2(N). A folio in the first 367 * tier (N=0,1) is marked by PG_referenced unless it was faulted in through page 368 * tables or read ahead. A folio in the last tier (MAX_NR_TIERS-1) is marked by 369 * PG_workingset. A folio in any other tier (1<N<5) between the first and last 370 * is marked by additional bits of LRU_REFS_WIDTH in folio->flags. 371 * 372 * In contrast to moving across generations which requires the LRU lock, moving 373 * across tiers only involves atomic operations on folio->flags and therefore 374 * has a negligible cost in the buffered access path. In the eviction path, 375 * comparisons of refaulted/(evicted+protected) from the first tier and the rest 376 * infer whether folios accessed multiple times through file descriptors are 377 * statistically hot and thus worth protecting. 378 * 379 * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the 380 * number of categories of the active/inactive LRU when keeping track of 381 * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in 382 * folio->flags, masked by LRU_REFS_MASK. 383 */ 384 #define MAX_NR_TIERS 4U 385 386 #ifndef __GENERATING_BOUNDS_H 387 388 #define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF) 389 #define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF) 390 391 /* 392 * For folios accessed multiple times through file descriptors, 393 * lru_gen_inc_refs() sets additional bits of LRU_REFS_WIDTH in folio->flags 394 * after PG_referenced, then PG_workingset after LRU_REFS_WIDTH. After all its 395 * bits are set, i.e., LRU_REFS_FLAGS|BIT(PG_workingset), a folio is lazily 396 * promoted into the second oldest generation in the eviction path. And when 397 * folio_inc_gen() does that, it clears LRU_REFS_FLAGS so that 398 * lru_gen_inc_refs() can start over. Note that for this case, LRU_REFS_MASK is 399 * only valid when PG_referenced is set. 400 * 401 * For folios accessed multiple times through page tables, folio_update_gen() 402 * from a page table walk or lru_gen_set_refs() from a rmap walk sets 403 * PG_referenced after the accessed bit is cleared for the first time. 404 * Thereafter, those two paths set PG_workingset and promote folios to the 405 * youngest generation. Like folio_inc_gen(), folio_update_gen() also clears 406 * PG_referenced. Note that for this case, LRU_REFS_MASK is not used. 407 * 408 * For both cases above, after PG_workingset is set on a folio, it remains until 409 * this folio is either reclaimed, or "deactivated" by lru_gen_clear_refs(). It 410 * can be set again if lru_gen_test_recent() returns true upon a refault. 411 */ 412 #define LRU_REFS_FLAGS (LRU_REFS_MASK | BIT(PG_referenced)) 413 414 struct lruvec; 415 struct page_vma_mapped_walk; 416 417 #ifdef CONFIG_LRU_GEN 418 419 enum { 420 LRU_GEN_ANON, 421 LRU_GEN_FILE, 422 }; 423 424 enum { 425 LRU_GEN_CORE, 426 LRU_GEN_MM_WALK, 427 LRU_GEN_NONLEAF_YOUNG, 428 NR_LRU_GEN_CAPS 429 }; 430 431 #define MIN_LRU_BATCH BITS_PER_LONG 432 #define MAX_LRU_BATCH (MIN_LRU_BATCH * 64) 433 434 /* whether to keep historical stats from evicted generations */ 435 #ifdef CONFIG_LRU_GEN_STATS 436 #define NR_HIST_GENS MAX_NR_GENS 437 #else 438 #define NR_HIST_GENS 1U 439 #endif 440 441 /* 442 * The youngest generation number is stored in max_seq for both anon and file 443 * types as they are aged on an equal footing. The oldest generation numbers are 444 * stored in min_seq[] separately for anon and file types so that they can be 445 * incremented independently. Ideally min_seq[] are kept in sync when both anon 446 * and file types are evictable. However, to adapt to situations like extreme 447 * swappiness, they are allowed to be out of sync by at most 448 * MAX_NR_GENS-MIN_NR_GENS-1. 449 * 450 * The number of pages in each generation is eventually consistent and therefore 451 * can be transiently negative when reset_batch_size() is pending. 452 */ 453 struct lru_gen_folio { 454 /* the aging increments the youngest generation number */ 455 unsigned long max_seq; 456 /* the eviction increments the oldest generation numbers */ 457 unsigned long min_seq[ANON_AND_FILE]; 458 /* the birth time of each generation in jiffies */ 459 unsigned long timestamps[MAX_NR_GENS]; 460 /* the multi-gen LRU lists, lazily sorted on eviction */ 461 struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 462 /* the multi-gen LRU sizes, eventually consistent */ 463 long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 464 /* the exponential moving average of refaulted */ 465 unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS]; 466 /* the exponential moving average of evicted+protected */ 467 unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS]; 468 /* can only be modified under the LRU lock */ 469 unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 470 /* can be modified without holding the LRU lock */ 471 atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 472 atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 473 /* whether the multi-gen LRU is enabled */ 474 bool enabled; 475 /* the memcg generation this lru_gen_folio belongs to */ 476 u8 gen; 477 /* the list segment this lru_gen_folio belongs to */ 478 u8 seg; 479 /* per-node lru_gen_folio list for global reclaim */ 480 struct hlist_nulls_node list; 481 }; 482 483 enum { 484 MM_LEAF_TOTAL, /* total leaf entries */ 485 MM_LEAF_YOUNG, /* young leaf entries */ 486 MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */ 487 MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */ 488 NR_MM_STATS 489 }; 490 491 /* double-buffering Bloom filters */ 492 #define NR_BLOOM_FILTERS 2 493 494 struct lru_gen_mm_state { 495 /* synced with max_seq after each iteration */ 496 unsigned long seq; 497 /* where the current iteration continues after */ 498 struct list_head *head; 499 /* where the last iteration ended before */ 500 struct list_head *tail; 501 /* Bloom filters flip after each iteration */ 502 unsigned long *filters[NR_BLOOM_FILTERS]; 503 /* the mm stats for debugging */ 504 unsigned long stats[NR_HIST_GENS][NR_MM_STATS]; 505 }; 506 507 struct lru_gen_mm_walk { 508 /* the lruvec under reclaim */ 509 struct lruvec *lruvec; 510 /* max_seq from lru_gen_folio: can be out of date */ 511 unsigned long seq; 512 /* the next address within an mm to scan */ 513 unsigned long next_addr; 514 /* to batch promoted pages */ 515 int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 516 /* to batch the mm stats */ 517 int mm_stats[NR_MM_STATS]; 518 /* total batched items */ 519 int batched; 520 int swappiness; 521 bool force_scan; 522 }; 523 524 /* 525 * For each node, memcgs are divided into two generations: the old and the 526 * young. For each generation, memcgs are randomly sharded into multiple bins 527 * to improve scalability. For each bin, the hlist_nulls is virtually divided 528 * into three segments: the head, the tail and the default. 529 * 530 * An onlining memcg is added to the tail of a random bin in the old generation. 531 * The eviction starts at the head of a random bin in the old generation. The 532 * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes 533 * the old generation, is incremented when all its bins become empty. 534 * 535 * There are four operations: 536 * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its 537 * current generation (old or young) and updates its "seg" to "head"; 538 * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its 539 * current generation (old or young) and updates its "seg" to "tail"; 540 * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old 541 * generation, updates its "gen" to "old" and resets its "seg" to "default"; 542 * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the 543 * young generation, updates its "gen" to "young" and resets its "seg" to 544 * "default". 545 * 546 * The events that trigger the above operations are: 547 * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD; 548 * 2. The first attempt to reclaim a memcg below low, which triggers 549 * MEMCG_LRU_TAIL; 550 * 3. The first attempt to reclaim a memcg offlined or below reclaimable size 551 * threshold, which triggers MEMCG_LRU_TAIL; 552 * 4. The second attempt to reclaim a memcg offlined or below reclaimable size 553 * threshold, which triggers MEMCG_LRU_YOUNG; 554 * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG; 555 * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG; 556 * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD. 557 * 558 * Notes: 559 * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing 560 * of their max_seq counters ensures the eventual fairness to all eligible 561 * memcgs. For memcg reclaim, it still relies on mem_cgroup_iter(). 562 * 2. There are only two valid generations: old (seq) and young (seq+1). 563 * MEMCG_NR_GENS is set to three so that when reading the generation counter 564 * locklessly, a stale value (seq-1) does not wraparound to young. 565 */ 566 #define MEMCG_NR_GENS 3 567 #define MEMCG_NR_BINS 8 568 569 struct lru_gen_memcg { 570 /* the per-node memcg generation counter */ 571 unsigned long seq; 572 /* each memcg has one lru_gen_folio per node */ 573 unsigned long nr_memcgs[MEMCG_NR_GENS]; 574 /* per-node lru_gen_folio list for global reclaim */ 575 struct hlist_nulls_head fifo[MEMCG_NR_GENS][MEMCG_NR_BINS]; 576 /* protects the above */ 577 spinlock_t lock; 578 }; 579 580 void lru_gen_init_pgdat(struct pglist_data *pgdat); 581 void lru_gen_init_lruvec(struct lruvec *lruvec); 582 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw); 583 584 void lru_gen_init_memcg(struct mem_cgroup *memcg); 585 void lru_gen_exit_memcg(struct mem_cgroup *memcg); 586 void lru_gen_online_memcg(struct mem_cgroup *memcg); 587 void lru_gen_offline_memcg(struct mem_cgroup *memcg); 588 void lru_gen_release_memcg(struct mem_cgroup *memcg); 589 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid); 590 591 #else /* !CONFIG_LRU_GEN */ 592 593 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat) 594 { 595 } 596 597 static inline void lru_gen_init_lruvec(struct lruvec *lruvec) 598 { 599 } 600 601 static inline bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 602 { 603 return false; 604 } 605 606 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg) 607 { 608 } 609 610 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg) 611 { 612 } 613 614 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg) 615 { 616 } 617 618 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg) 619 { 620 } 621 622 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg) 623 { 624 } 625 626 static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) 627 { 628 } 629 630 #endif /* CONFIG_LRU_GEN */ 631 632 struct lruvec { 633 struct list_head lists[NR_LRU_LISTS]; 634 /* per lruvec lru_lock for memcg */ 635 spinlock_t lru_lock; 636 /* 637 * These track the cost of reclaiming one LRU - file or anon - 638 * over the other. As the observed cost of reclaiming one LRU 639 * increases, the reclaim scan balance tips toward the other. 640 */ 641 unsigned long anon_cost; 642 unsigned long file_cost; 643 /* Non-resident age, driven by LRU movement */ 644 atomic_long_t nonresident_age; 645 /* Refaults at the time of last reclaim cycle */ 646 unsigned long refaults[ANON_AND_FILE]; 647 /* Various lruvec state flags (enum lruvec_flags) */ 648 unsigned long flags; 649 #ifdef CONFIG_LRU_GEN 650 /* evictable pages divided into generations */ 651 struct lru_gen_folio lrugen; 652 #ifdef CONFIG_LRU_GEN_WALKS_MMU 653 /* to concurrently iterate lru_gen_mm_list */ 654 struct lru_gen_mm_state mm_state; 655 #endif 656 #endif /* CONFIG_LRU_GEN */ 657 #ifdef CONFIG_MEMCG 658 struct pglist_data *pgdat; 659 #endif 660 struct zswap_lruvec_state zswap_lruvec_state; 661 }; 662 663 /* Isolate for asynchronous migration */ 664 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 665 /* Isolate unevictable pages */ 666 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 667 668 /* LRU Isolation modes. */ 669 typedef unsigned __bitwise isolate_mode_t; 670 671 enum zone_watermarks { 672 WMARK_MIN, 673 WMARK_LOW, 674 WMARK_HIGH, 675 WMARK_PROMO, 676 NR_WMARK 677 }; 678 679 /* 680 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. Two additional lists 681 * are added for THP. One PCP list is used by GPF_MOVABLE, and the other PCP list 682 * is used by GFP_UNMOVABLE and GFP_RECLAIMABLE. 683 */ 684 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 685 #define NR_PCP_THP 2 686 #else 687 #define NR_PCP_THP 0 688 #endif 689 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1)) 690 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP) 691 692 /* 693 * Flags used in pcp->flags field. 694 * 695 * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the 696 * previous page freeing. To avoid to drain PCP for an accident 697 * high-order page freeing. 698 * 699 * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before 700 * draining PCP for consecutive high-order pages freeing without 701 * allocation if data cache slice of CPU is large enough. To reduce 702 * zone lock contention and keep cache-hot pages reusing. 703 */ 704 #define PCPF_PREV_FREE_HIGH_ORDER BIT(0) 705 #define PCPF_FREE_HIGH_BATCH BIT(1) 706 707 struct per_cpu_pages { 708 spinlock_t lock; /* Protects lists field */ 709 int count; /* number of pages in the list */ 710 int high; /* high watermark, emptying needed */ 711 int high_min; /* min high watermark */ 712 int high_max; /* max high watermark */ 713 int batch; /* chunk size for buddy add/remove */ 714 u8 flags; /* protected by pcp->lock */ 715 u8 alloc_factor; /* batch scaling factor during allocate */ 716 #ifdef CONFIG_NUMA 717 u8 expire; /* When 0, remote pagesets are drained */ 718 #endif 719 short free_count; /* consecutive free count */ 720 721 /* Lists of pages, one per migrate type stored on the pcp-lists */ 722 struct list_head lists[NR_PCP_LISTS]; 723 } ____cacheline_aligned_in_smp; 724 725 struct per_cpu_zonestat { 726 #ifdef CONFIG_SMP 727 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 728 s8 stat_threshold; 729 #endif 730 #ifdef CONFIG_NUMA 731 /* 732 * Low priority inaccurate counters that are only folded 733 * on demand. Use a large type to avoid the overhead of 734 * folding during refresh_cpu_vm_stats. 735 */ 736 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 737 #endif 738 }; 739 740 struct per_cpu_nodestat { 741 s8 stat_threshold; 742 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 743 }; 744 745 #endif /* !__GENERATING_BOUNDS.H */ 746 747 enum zone_type { 748 /* 749 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able 750 * to DMA to all of the addressable memory (ZONE_NORMAL). 751 * On architectures where this area covers the whole 32 bit address 752 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller 753 * DMA addressing constraints. This distinction is important as a 32bit 754 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit 755 * platforms may need both zones as they support peripherals with 756 * different DMA addressing limitations. 757 */ 758 #ifdef CONFIG_ZONE_DMA 759 ZONE_DMA, 760 #endif 761 #ifdef CONFIG_ZONE_DMA32 762 ZONE_DMA32, 763 #endif 764 /* 765 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 766 * performed on pages in ZONE_NORMAL if the DMA devices support 767 * transfers to all addressable memory. 768 */ 769 ZONE_NORMAL, 770 #ifdef CONFIG_HIGHMEM 771 /* 772 * A memory area that is only addressable by the kernel through 773 * mapping portions into its own address space. This is for example 774 * used by i386 to allow the kernel to address the memory beyond 775 * 900MB. The kernel will set up special mappings (page 776 * table entries on i386) for each page that the kernel needs to 777 * access. 778 */ 779 ZONE_HIGHMEM, 780 #endif 781 /* 782 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains 783 * movable pages with few exceptional cases described below. Main use 784 * cases for ZONE_MOVABLE are to make memory offlining/unplug more 785 * likely to succeed, and to locally limit unmovable allocations - e.g., 786 * to increase the number of THP/huge pages. Notable special cases are: 787 * 788 * 1. Pinned pages: (long-term) pinning of movable pages might 789 * essentially turn such pages unmovable. Therefore, we do not allow 790 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and 791 * faulted, they come from the right zone right away. However, it is 792 * still possible that address space already has pages in 793 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has 794 * touches that memory before pinning). In such case we migrate them 795 * to a different zone. When migration fails - pinning fails. 796 * 2. memblock allocations: kernelcore/movablecore setups might create 797 * situations where ZONE_MOVABLE contains unmovable allocations 798 * after boot. Memory offlining and allocations fail early. 799 * 3. Memory holes: kernelcore/movablecore setups might create very rare 800 * situations where ZONE_MOVABLE contains memory holes after boot, 801 * for example, if we have sections that are only partially 802 * populated. Memory offlining and allocations fail early. 803 * 4. PG_hwpoison pages: while poisoned pages can be skipped during 804 * memory offlining, such pages cannot be allocated. 805 * 5. Unmovable PG_offline pages: in paravirtualized environments, 806 * hotplugged memory blocks might only partially be managed by the 807 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The 808 * parts not manged by the buddy are unmovable PG_offline pages. In 809 * some cases (virtio-mem), such pages can be skipped during 810 * memory offlining, however, cannot be moved/allocated. These 811 * techniques might use alloc_contig_range() to hide previously 812 * exposed pages from the buddy again (e.g., to implement some sort 813 * of memory unplug in virtio-mem). 814 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create 815 * situations where ZERO_PAGE(0) which is allocated differently 816 * on different platforms may end up in a movable zone. ZERO_PAGE(0) 817 * cannot be migrated. 818 * 7. Memory-hotplug: when using memmap_on_memory and onlining the 819 * memory to the MOVABLE zone, the vmemmap pages are also placed in 820 * such zone. Such pages cannot be really moved around as they are 821 * self-stored in the range, but they are treated as movable when 822 * the range they describe is about to be offlined. 823 * 824 * In general, no unmovable allocations that degrade memory offlining 825 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range()) 826 * have to expect that migrating pages in ZONE_MOVABLE can fail (even 827 * if has_unmovable_pages() states that there are no unmovable pages, 828 * there can be false negatives). 829 */ 830 ZONE_MOVABLE, 831 #ifdef CONFIG_ZONE_DEVICE 832 ZONE_DEVICE, 833 #endif 834 __MAX_NR_ZONES 835 836 }; 837 838 #ifndef __GENERATING_BOUNDS_H 839 840 #define ASYNC_AND_SYNC 2 841 842 struct zone { 843 /* Read-mostly fields */ 844 845 /* zone watermarks, access with *_wmark_pages(zone) macros */ 846 unsigned long _watermark[NR_WMARK]; 847 unsigned long watermark_boost; 848 849 unsigned long nr_reserved_highatomic; 850 unsigned long nr_free_highatomic; 851 852 /* 853 * We don't know if the memory that we're going to allocate will be 854 * freeable or/and it will be released eventually, so to avoid totally 855 * wasting several GB of ram we must reserve some of the lower zone 856 * memory (otherwise we risk to run OOM on the lower zones despite 857 * there being tons of freeable ram on the higher zones). This array is 858 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 859 * changes. 860 */ 861 long lowmem_reserve[MAX_NR_ZONES]; 862 863 #ifdef CONFIG_NUMA 864 int node; 865 #endif 866 struct pglist_data *zone_pgdat; 867 struct per_cpu_pages __percpu *per_cpu_pageset; 868 struct per_cpu_zonestat __percpu *per_cpu_zonestats; 869 /* 870 * the high and batch values are copied to individual pagesets for 871 * faster access 872 */ 873 int pageset_high_min; 874 int pageset_high_max; 875 int pageset_batch; 876 877 #ifndef CONFIG_SPARSEMEM 878 /* 879 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 880 * In SPARSEMEM, this map is stored in struct mem_section 881 */ 882 unsigned long *pageblock_flags; 883 #endif /* CONFIG_SPARSEMEM */ 884 885 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 886 unsigned long zone_start_pfn; 887 888 /* 889 * spanned_pages is the total pages spanned by the zone, including 890 * holes, which is calculated as: 891 * spanned_pages = zone_end_pfn - zone_start_pfn; 892 * 893 * present_pages is physical pages existing within the zone, which 894 * is calculated as: 895 * present_pages = spanned_pages - absent_pages(pages in holes); 896 * 897 * present_early_pages is present pages existing within the zone 898 * located on memory available since early boot, excluding hotplugged 899 * memory. 900 * 901 * managed_pages is present pages managed by the buddy system, which 902 * is calculated as (reserved_pages includes pages allocated by the 903 * bootmem allocator): 904 * managed_pages = present_pages - reserved_pages; 905 * 906 * cma pages is present pages that are assigned for CMA use 907 * (MIGRATE_CMA). 908 * 909 * So present_pages may be used by memory hotplug or memory power 910 * management logic to figure out unmanaged pages by checking 911 * (present_pages - managed_pages). And managed_pages should be used 912 * by page allocator and vm scanner to calculate all kinds of watermarks 913 * and thresholds. 914 * 915 * Locking rules: 916 * 917 * zone_start_pfn and spanned_pages are protected by span_seqlock. 918 * It is a seqlock because it has to be read outside of zone->lock, 919 * and it is done in the main allocator path. But, it is written 920 * quite infrequently. 921 * 922 * The span_seq lock is declared along with zone->lock because it is 923 * frequently read in proximity to zone->lock. It's good to 924 * give them a chance of being in the same cacheline. 925 * 926 * Write access to present_pages at runtime should be protected by 927 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of 928 * present_pages should use get_online_mems() to get a stable value. 929 */ 930 atomic_long_t managed_pages; 931 unsigned long spanned_pages; 932 unsigned long present_pages; 933 #if defined(CONFIG_MEMORY_HOTPLUG) 934 unsigned long present_early_pages; 935 #endif 936 #ifdef CONFIG_CMA 937 unsigned long cma_pages; 938 #endif 939 940 const char *name; 941 942 #ifdef CONFIG_MEMORY_ISOLATION 943 /* 944 * Number of isolated pageblock. It is used to solve incorrect 945 * freepage counting problem due to racy retrieving migratetype 946 * of pageblock. Protected by zone->lock. 947 */ 948 unsigned long nr_isolate_pageblock; 949 #endif 950 951 #ifdef CONFIG_MEMORY_HOTPLUG 952 /* see spanned/present_pages for more description */ 953 seqlock_t span_seqlock; 954 #endif 955 956 int initialized; 957 958 /* Write-intensive fields used from the page allocator */ 959 CACHELINE_PADDING(_pad1_); 960 961 /* free areas of different sizes */ 962 struct free_area free_area[NR_PAGE_ORDERS]; 963 964 #ifdef CONFIG_UNACCEPTED_MEMORY 965 /* Pages to be accepted. All pages on the list are MAX_PAGE_ORDER */ 966 struct list_head unaccepted_pages; 967 #endif 968 969 /* zone flags, see below */ 970 unsigned long flags; 971 972 /* Primarily protects free_area */ 973 spinlock_t lock; 974 975 /* Pages to be freed when next trylock succeeds */ 976 struct llist_head trylock_free_pages; 977 978 /* Write-intensive fields used by compaction and vmstats. */ 979 CACHELINE_PADDING(_pad2_); 980 981 /* 982 * When free pages are below this point, additional steps are taken 983 * when reading the number of free pages to avoid per-cpu counter 984 * drift allowing watermarks to be breached 985 */ 986 unsigned long percpu_drift_mark; 987 988 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 989 /* pfn where compaction free scanner should start */ 990 unsigned long compact_cached_free_pfn; 991 /* pfn where compaction migration scanner should start */ 992 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC]; 993 unsigned long compact_init_migrate_pfn; 994 unsigned long compact_init_free_pfn; 995 #endif 996 997 #ifdef CONFIG_COMPACTION 998 /* 999 * On compaction failure, 1<<compact_defer_shift compactions 1000 * are skipped before trying again. The number attempted since 1001 * last failure is tracked with compact_considered. 1002 * compact_order_failed is the minimum compaction failed order. 1003 */ 1004 unsigned int compact_considered; 1005 unsigned int compact_defer_shift; 1006 int compact_order_failed; 1007 #endif 1008 1009 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 1010 /* Set to true when the PG_migrate_skip bits should be cleared */ 1011 bool compact_blockskip_flush; 1012 #endif 1013 1014 bool contiguous; 1015 1016 CACHELINE_PADDING(_pad3_); 1017 /* Zone statistics */ 1018 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 1019 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 1020 } ____cacheline_internodealigned_in_smp; 1021 1022 enum pgdat_flags { 1023 PGDAT_DIRTY, /* reclaim scanning has recently found 1024 * many dirty file pages at the tail 1025 * of the LRU. 1026 */ 1027 PGDAT_WRITEBACK, /* reclaim scanning has recently found 1028 * many pages under writeback 1029 */ 1030 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 1031 }; 1032 1033 enum zone_flags { 1034 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. 1035 * Cleared when kswapd is woken. 1036 */ 1037 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */ 1038 ZONE_BELOW_HIGH, /* zone is below high watermark. */ 1039 }; 1040 1041 static inline unsigned long wmark_pages(const struct zone *z, 1042 enum zone_watermarks w) 1043 { 1044 return z->_watermark[w] + z->watermark_boost; 1045 } 1046 1047 static inline unsigned long min_wmark_pages(const struct zone *z) 1048 { 1049 return wmark_pages(z, WMARK_MIN); 1050 } 1051 1052 static inline unsigned long low_wmark_pages(const struct zone *z) 1053 { 1054 return wmark_pages(z, WMARK_LOW); 1055 } 1056 1057 static inline unsigned long high_wmark_pages(const struct zone *z) 1058 { 1059 return wmark_pages(z, WMARK_HIGH); 1060 } 1061 1062 static inline unsigned long promo_wmark_pages(const struct zone *z) 1063 { 1064 return wmark_pages(z, WMARK_PROMO); 1065 } 1066 1067 static inline unsigned long zone_managed_pages(struct zone *zone) 1068 { 1069 return (unsigned long)atomic_long_read(&zone->managed_pages); 1070 } 1071 1072 static inline unsigned long zone_cma_pages(struct zone *zone) 1073 { 1074 #ifdef CONFIG_CMA 1075 return zone->cma_pages; 1076 #else 1077 return 0; 1078 #endif 1079 } 1080 1081 static inline unsigned long zone_end_pfn(const struct zone *zone) 1082 { 1083 return zone->zone_start_pfn + zone->spanned_pages; 1084 } 1085 1086 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 1087 { 1088 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 1089 } 1090 1091 static inline bool zone_is_initialized(struct zone *zone) 1092 { 1093 return zone->initialized; 1094 } 1095 1096 static inline bool zone_is_empty(struct zone *zone) 1097 { 1098 return zone->spanned_pages == 0; 1099 } 1100 1101 #ifndef BUILD_VDSO32_64 1102 /* 1103 * The zone field is never updated after free_area_init_core() 1104 * sets it, so none of the operations on it need to be atomic. 1105 */ 1106 1107 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1108 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1109 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1110 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1111 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1112 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1113 #define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH) 1114 #define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH) 1115 1116 /* 1117 * Define the bit shifts to access each section. For non-existent 1118 * sections we define the shift as 0; that plus a 0 mask ensures 1119 * the compiler will optimise away reference to them. 1120 */ 1121 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1122 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1123 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1124 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1125 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1126 1127 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1128 #ifdef NODE_NOT_IN_PAGE_FLAGS 1129 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1130 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \ 1131 SECTIONS_PGOFF : ZONES_PGOFF) 1132 #else 1133 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1134 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \ 1135 NODES_PGOFF : ZONES_PGOFF) 1136 #endif 1137 1138 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1139 1140 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1141 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1142 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1143 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1144 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1145 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1146 1147 static inline enum zone_type page_zonenum(const struct page *page) 1148 { 1149 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1150 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1151 } 1152 1153 static inline enum zone_type folio_zonenum(const struct folio *folio) 1154 { 1155 return page_zonenum(&folio->page); 1156 } 1157 1158 #ifdef CONFIG_ZONE_DEVICE 1159 static inline bool is_zone_device_page(const struct page *page) 1160 { 1161 return page_zonenum(page) == ZONE_DEVICE; 1162 } 1163 1164 /* 1165 * Consecutive zone device pages should not be merged into the same sgl 1166 * or bvec segment with other types of pages or if they belong to different 1167 * pgmaps. Otherwise getting the pgmap of a given segment is not possible 1168 * without scanning the entire segment. This helper returns true either if 1169 * both pages are not zone device pages or both pages are zone device pages 1170 * with the same pgmap. 1171 */ 1172 static inline bool zone_device_pages_have_same_pgmap(const struct page *a, 1173 const struct page *b) 1174 { 1175 if (is_zone_device_page(a) != is_zone_device_page(b)) 1176 return false; 1177 if (!is_zone_device_page(a)) 1178 return true; 1179 return a->pgmap == b->pgmap; 1180 } 1181 1182 extern void memmap_init_zone_device(struct zone *, unsigned long, 1183 unsigned long, struct dev_pagemap *); 1184 #else 1185 static inline bool is_zone_device_page(const struct page *page) 1186 { 1187 return false; 1188 } 1189 static inline bool zone_device_pages_have_same_pgmap(const struct page *a, 1190 const struct page *b) 1191 { 1192 return true; 1193 } 1194 #endif 1195 1196 static inline bool folio_is_zone_device(const struct folio *folio) 1197 { 1198 return is_zone_device_page(&folio->page); 1199 } 1200 1201 static inline bool is_zone_movable_page(const struct page *page) 1202 { 1203 return page_zonenum(page) == ZONE_MOVABLE; 1204 } 1205 1206 static inline bool folio_is_zone_movable(const struct folio *folio) 1207 { 1208 return folio_zonenum(folio) == ZONE_MOVABLE; 1209 } 1210 #endif 1211 1212 /* 1213 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 1214 * intersection with the given zone 1215 */ 1216 static inline bool zone_intersects(struct zone *zone, 1217 unsigned long start_pfn, unsigned long nr_pages) 1218 { 1219 if (zone_is_empty(zone)) 1220 return false; 1221 if (start_pfn >= zone_end_pfn(zone) || 1222 start_pfn + nr_pages <= zone->zone_start_pfn) 1223 return false; 1224 1225 return true; 1226 } 1227 1228 /* 1229 * The "priority" of VM scanning is how much of the queues we will scan in one 1230 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 1231 * queues ("queue_length >> 12") during an aging round. 1232 */ 1233 #define DEF_PRIORITY 12 1234 1235 /* Maximum number of zones on a zonelist */ 1236 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 1237 1238 enum { 1239 ZONELIST_FALLBACK, /* zonelist with fallback */ 1240 #ifdef CONFIG_NUMA 1241 /* 1242 * The NUMA zonelists are doubled because we need zonelists that 1243 * restrict the allocations to a single node for __GFP_THISNODE. 1244 */ 1245 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 1246 #endif 1247 MAX_ZONELISTS 1248 }; 1249 1250 /* 1251 * This struct contains information about a zone in a zonelist. It is stored 1252 * here to avoid dereferences into large structures and lookups of tables 1253 */ 1254 struct zoneref { 1255 struct zone *zone; /* Pointer to actual zone */ 1256 int zone_idx; /* zone_idx(zoneref->zone) */ 1257 }; 1258 1259 /* 1260 * One allocation request operates on a zonelist. A zonelist 1261 * is a list of zones, the first one is the 'goal' of the 1262 * allocation, the other zones are fallback zones, in decreasing 1263 * priority. 1264 * 1265 * To speed the reading of the zonelist, the zonerefs contain the zone index 1266 * of the entry being read. Helper functions to access information given 1267 * a struct zoneref are 1268 * 1269 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 1270 * zonelist_zone_idx() - Return the index of the zone for an entry 1271 * zonelist_node_idx() - Return the index of the node for an entry 1272 */ 1273 struct zonelist { 1274 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 1275 }; 1276 1277 /* 1278 * The array of struct pages for flatmem. 1279 * It must be declared for SPARSEMEM as well because there are configurations 1280 * that rely on that. 1281 */ 1282 extern struct page *mem_map; 1283 1284 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1285 struct deferred_split { 1286 spinlock_t split_queue_lock; 1287 struct list_head split_queue; 1288 unsigned long split_queue_len; 1289 }; 1290 #endif 1291 1292 #ifdef CONFIG_MEMORY_FAILURE 1293 /* 1294 * Per NUMA node memory failure handling statistics. 1295 */ 1296 struct memory_failure_stats { 1297 /* 1298 * Number of raw pages poisoned. 1299 * Cases not accounted: memory outside kernel control, offline page, 1300 * arch-specific memory_failure (SGX), hwpoison_filter() filtered 1301 * error events, and unpoison actions from hwpoison_unpoison. 1302 */ 1303 unsigned long total; 1304 /* 1305 * Recovery results of poisoned raw pages handled by memory_failure, 1306 * in sync with mf_result. 1307 * total = ignored + failed + delayed + recovered. 1308 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted. 1309 */ 1310 unsigned long ignored; 1311 unsigned long failed; 1312 unsigned long delayed; 1313 unsigned long recovered; 1314 }; 1315 #endif 1316 1317 /* 1318 * On NUMA machines, each NUMA node would have a pg_data_t to describe 1319 * it's memory layout. On UMA machines there is a single pglist_data which 1320 * describes the whole memory. 1321 * 1322 * Memory statistics and page replacement data structures are maintained on a 1323 * per-zone basis. 1324 */ 1325 typedef struct pglist_data { 1326 /* 1327 * node_zones contains just the zones for THIS node. Not all of the 1328 * zones may be populated, but it is the full list. It is referenced by 1329 * this node's node_zonelists as well as other node's node_zonelists. 1330 */ 1331 struct zone node_zones[MAX_NR_ZONES]; 1332 1333 /* 1334 * node_zonelists contains references to all zones in all nodes. 1335 * Generally the first zones will be references to this node's 1336 * node_zones. 1337 */ 1338 struct zonelist node_zonelists[MAX_ZONELISTS]; 1339 1340 int nr_zones; /* number of populated zones in this node */ 1341 #ifdef CONFIG_FLATMEM /* means !SPARSEMEM */ 1342 struct page *node_mem_map; 1343 #ifdef CONFIG_PAGE_EXTENSION 1344 struct page_ext *node_page_ext; 1345 #endif 1346 #endif 1347 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) 1348 /* 1349 * Must be held any time you expect node_start_pfn, 1350 * node_present_pages, node_spanned_pages or nr_zones to stay constant. 1351 * Also synchronizes pgdat->first_deferred_pfn during deferred page 1352 * init. 1353 * 1354 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 1355 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG 1356 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. 1357 * 1358 * Nests above zone->lock and zone->span_seqlock 1359 */ 1360 spinlock_t node_size_lock; 1361 #endif 1362 unsigned long node_start_pfn; 1363 unsigned long node_present_pages; /* total number of physical pages */ 1364 unsigned long node_spanned_pages; /* total size of physical page 1365 range, including holes */ 1366 int node_id; 1367 wait_queue_head_t kswapd_wait; 1368 wait_queue_head_t pfmemalloc_wait; 1369 1370 /* workqueues for throttling reclaim for different reasons. */ 1371 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE]; 1372 1373 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */ 1374 unsigned long nr_reclaim_start; /* nr pages written while throttled 1375 * when throttling started. */ 1376 #ifdef CONFIG_MEMORY_HOTPLUG 1377 struct mutex kswapd_lock; 1378 #endif 1379 struct task_struct *kswapd; /* Protected by kswapd_lock */ 1380 int kswapd_order; 1381 enum zone_type kswapd_highest_zoneidx; 1382 1383 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 1384 1385 #ifdef CONFIG_COMPACTION 1386 int kcompactd_max_order; 1387 enum zone_type kcompactd_highest_zoneidx; 1388 wait_queue_head_t kcompactd_wait; 1389 struct task_struct *kcompactd; 1390 bool proactive_compact_trigger; 1391 #endif 1392 /* 1393 * This is a per-node reserve of pages that are not available 1394 * to userspace allocations. 1395 */ 1396 unsigned long totalreserve_pages; 1397 1398 #ifdef CONFIG_NUMA 1399 /* 1400 * node reclaim becomes active if more unmapped pages exist. 1401 */ 1402 unsigned long min_unmapped_pages; 1403 unsigned long min_slab_pages; 1404 #endif /* CONFIG_NUMA */ 1405 1406 /* Write-intensive fields used by page reclaim */ 1407 CACHELINE_PADDING(_pad1_); 1408 1409 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1410 /* 1411 * If memory initialisation on large machines is deferred then this 1412 * is the first PFN that needs to be initialised. 1413 */ 1414 unsigned long first_deferred_pfn; 1415 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1416 1417 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1418 struct deferred_split deferred_split_queue; 1419 #endif 1420 1421 #ifdef CONFIG_NUMA_BALANCING 1422 /* start time in ms of current promote rate limit period */ 1423 unsigned int nbp_rl_start; 1424 /* number of promote candidate pages at start time of current rate limit period */ 1425 unsigned long nbp_rl_nr_cand; 1426 /* promote threshold in ms */ 1427 unsigned int nbp_threshold; 1428 /* start time in ms of current promote threshold adjustment period */ 1429 unsigned int nbp_th_start; 1430 /* 1431 * number of promote candidate pages at start time of current promote 1432 * threshold adjustment period 1433 */ 1434 unsigned long nbp_th_nr_cand; 1435 #endif 1436 /* Fields commonly accessed by the page reclaim scanner */ 1437 1438 /* 1439 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. 1440 * 1441 * Use mem_cgroup_lruvec() to look up lruvecs. 1442 */ 1443 struct lruvec __lruvec; 1444 1445 unsigned long flags; 1446 1447 #ifdef CONFIG_LRU_GEN 1448 /* kswap mm walk data */ 1449 struct lru_gen_mm_walk mm_walk; 1450 /* lru_gen_folio list */ 1451 struct lru_gen_memcg memcg_lru; 1452 #endif 1453 1454 CACHELINE_PADDING(_pad2_); 1455 1456 /* Per-node vmstats */ 1457 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 1458 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 1459 #ifdef CONFIG_NUMA 1460 struct memory_tier __rcu *memtier; 1461 #endif 1462 #ifdef CONFIG_MEMORY_FAILURE 1463 struct memory_failure_stats mf_stats; 1464 #endif 1465 } pg_data_t; 1466 1467 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 1468 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 1469 1470 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 1471 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 1472 1473 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 1474 { 1475 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 1476 } 1477 1478 #include <linux/memory_hotplug.h> 1479 1480 void build_all_zonelists(pg_data_t *pgdat); 1481 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, 1482 enum zone_type highest_zoneidx); 1483 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 1484 int highest_zoneidx, unsigned int alloc_flags, 1485 long free_pages); 1486 bool zone_watermark_ok(struct zone *z, unsigned int order, 1487 unsigned long mark, int highest_zoneidx, 1488 unsigned int alloc_flags); 1489 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 1490 unsigned long mark, int highest_zoneidx); 1491 /* 1492 * Memory initialization context, use to differentiate memory added by 1493 * the platform statically or via memory hotplug interface. 1494 */ 1495 enum meminit_context { 1496 MEMINIT_EARLY, 1497 MEMINIT_HOTPLUG, 1498 }; 1499 1500 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 1501 unsigned long size); 1502 1503 extern void lruvec_init(struct lruvec *lruvec); 1504 1505 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 1506 { 1507 #ifdef CONFIG_MEMCG 1508 return lruvec->pgdat; 1509 #else 1510 return container_of(lruvec, struct pglist_data, __lruvec); 1511 #endif 1512 } 1513 1514 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 1515 int local_memory_node(int node_id); 1516 #else 1517 static inline int local_memory_node(int node_id) { return node_id; }; 1518 #endif 1519 1520 /* 1521 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 1522 */ 1523 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 1524 1525 #ifdef CONFIG_ZONE_DEVICE 1526 static inline bool zone_is_zone_device(struct zone *zone) 1527 { 1528 return zone_idx(zone) == ZONE_DEVICE; 1529 } 1530 #else 1531 static inline bool zone_is_zone_device(struct zone *zone) 1532 { 1533 return false; 1534 } 1535 #endif 1536 1537 /* 1538 * Returns true if a zone has pages managed by the buddy allocator. 1539 * All the reclaim decisions have to use this function rather than 1540 * populated_zone(). If the whole zone is reserved then we can easily 1541 * end up with populated_zone() && !managed_zone(). 1542 */ 1543 static inline bool managed_zone(struct zone *zone) 1544 { 1545 return zone_managed_pages(zone); 1546 } 1547 1548 /* Returns true if a zone has memory */ 1549 static inline bool populated_zone(struct zone *zone) 1550 { 1551 return zone->present_pages; 1552 } 1553 1554 #ifdef CONFIG_NUMA 1555 static inline int zone_to_nid(struct zone *zone) 1556 { 1557 return zone->node; 1558 } 1559 1560 static inline void zone_set_nid(struct zone *zone, int nid) 1561 { 1562 zone->node = nid; 1563 } 1564 #else 1565 static inline int zone_to_nid(struct zone *zone) 1566 { 1567 return 0; 1568 } 1569 1570 static inline void zone_set_nid(struct zone *zone, int nid) {} 1571 #endif 1572 1573 extern int movable_zone; 1574 1575 static inline int is_highmem_idx(enum zone_type idx) 1576 { 1577 #ifdef CONFIG_HIGHMEM 1578 return (idx == ZONE_HIGHMEM || 1579 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM)); 1580 #else 1581 return 0; 1582 #endif 1583 } 1584 1585 /** 1586 * is_highmem - helper function to quickly check if a struct zone is a 1587 * highmem zone or not. This is an attempt to keep references 1588 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 1589 * @zone: pointer to struct zone variable 1590 * Return: 1 for a highmem zone, 0 otherwise 1591 */ 1592 static inline int is_highmem(struct zone *zone) 1593 { 1594 return is_highmem_idx(zone_idx(zone)); 1595 } 1596 1597 #ifdef CONFIG_ZONE_DMA 1598 bool has_managed_dma(void); 1599 #else 1600 static inline bool has_managed_dma(void) 1601 { 1602 return false; 1603 } 1604 #endif 1605 1606 1607 #ifndef CONFIG_NUMA 1608 1609 extern struct pglist_data contig_page_data; 1610 static inline struct pglist_data *NODE_DATA(int nid) 1611 { 1612 return &contig_page_data; 1613 } 1614 1615 #else /* CONFIG_NUMA */ 1616 1617 #include <asm/mmzone.h> 1618 1619 #endif /* !CONFIG_NUMA */ 1620 1621 extern struct pglist_data *first_online_pgdat(void); 1622 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 1623 extern struct zone *next_zone(struct zone *zone); 1624 1625 /** 1626 * for_each_online_pgdat - helper macro to iterate over all online nodes 1627 * @pgdat: pointer to a pg_data_t variable 1628 */ 1629 #define for_each_online_pgdat(pgdat) \ 1630 for (pgdat = first_online_pgdat(); \ 1631 pgdat; \ 1632 pgdat = next_online_pgdat(pgdat)) 1633 /** 1634 * for_each_zone - helper macro to iterate over all memory zones 1635 * @zone: pointer to struct zone variable 1636 * 1637 * The user only needs to declare the zone variable, for_each_zone 1638 * fills it in. 1639 */ 1640 #define for_each_zone(zone) \ 1641 for (zone = (first_online_pgdat())->node_zones; \ 1642 zone; \ 1643 zone = next_zone(zone)) 1644 1645 #define for_each_populated_zone(zone) \ 1646 for (zone = (first_online_pgdat())->node_zones; \ 1647 zone; \ 1648 zone = next_zone(zone)) \ 1649 if (!populated_zone(zone)) \ 1650 ; /* do nothing */ \ 1651 else 1652 1653 static inline struct zone *zonelist_zone(struct zoneref *zoneref) 1654 { 1655 return zoneref->zone; 1656 } 1657 1658 static inline int zonelist_zone_idx(struct zoneref *zoneref) 1659 { 1660 return zoneref->zone_idx; 1661 } 1662 1663 static inline int zonelist_node_idx(struct zoneref *zoneref) 1664 { 1665 return zone_to_nid(zoneref->zone); 1666 } 1667 1668 struct zoneref *__next_zones_zonelist(struct zoneref *z, 1669 enum zone_type highest_zoneidx, 1670 nodemask_t *nodes); 1671 1672 /** 1673 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 1674 * @z: The cursor used as a starting point for the search 1675 * @highest_zoneidx: The zone index of the highest zone to return 1676 * @nodes: An optional nodemask to filter the zonelist with 1677 * 1678 * This function returns the next zone at or below a given zone index that is 1679 * within the allowed nodemask using a cursor as the starting point for the 1680 * search. The zoneref returned is a cursor that represents the current zone 1681 * being examined. It should be advanced by one before calling 1682 * next_zones_zonelist again. 1683 * 1684 * Return: the next zone at or below highest_zoneidx within the allowed 1685 * nodemask using a cursor within a zonelist as a starting point 1686 */ 1687 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 1688 enum zone_type highest_zoneidx, 1689 nodemask_t *nodes) 1690 { 1691 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 1692 return z; 1693 return __next_zones_zonelist(z, highest_zoneidx, nodes); 1694 } 1695 1696 /** 1697 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1698 * @zonelist: The zonelist to search for a suitable zone 1699 * @highest_zoneidx: The zone index of the highest zone to return 1700 * @nodes: An optional nodemask to filter the zonelist with 1701 * 1702 * This function returns the first zone at or below a given zone index that is 1703 * within the allowed nodemask. The zoneref returned is a cursor that can be 1704 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1705 * one before calling. 1706 * 1707 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1708 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1709 * update due to cpuset modification. 1710 * 1711 * Return: Zoneref pointer for the first suitable zone found 1712 */ 1713 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1714 enum zone_type highest_zoneidx, 1715 nodemask_t *nodes) 1716 { 1717 return next_zones_zonelist(zonelist->_zonerefs, 1718 highest_zoneidx, nodes); 1719 } 1720 1721 /** 1722 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1723 * @zone: The current zone in the iterator 1724 * @z: The current pointer within zonelist->_zonerefs being iterated 1725 * @zlist: The zonelist being iterated 1726 * @highidx: The zone index of the highest zone to return 1727 * @nodemask: Nodemask allowed by the allocator 1728 * 1729 * This iterator iterates though all zones at or below a given zone index and 1730 * within a given nodemask 1731 */ 1732 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1733 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1734 zone; \ 1735 z = next_zones_zonelist(++z, highidx, nodemask), \ 1736 zone = zonelist_zone(z)) 1737 1738 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \ 1739 for (zone = zonelist_zone(z); \ 1740 zone; \ 1741 z = next_zones_zonelist(++z, highidx, nodemask), \ 1742 zone = zonelist_zone(z)) 1743 1744 1745 /** 1746 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1747 * @zone: The current zone in the iterator 1748 * @z: The current pointer within zonelist->zones being iterated 1749 * @zlist: The zonelist being iterated 1750 * @highidx: The zone index of the highest zone to return 1751 * 1752 * This iterator iterates though all zones at or below a given zone index. 1753 */ 1754 #define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1755 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1756 1757 /* Whether the 'nodes' are all movable nodes */ 1758 static inline bool movable_only_nodes(nodemask_t *nodes) 1759 { 1760 struct zonelist *zonelist; 1761 struct zoneref *z; 1762 int nid; 1763 1764 if (nodes_empty(*nodes)) 1765 return false; 1766 1767 /* 1768 * We can chose arbitrary node from the nodemask to get a 1769 * zonelist as they are interlinked. We just need to find 1770 * at least one zone that can satisfy kernel allocations. 1771 */ 1772 nid = first_node(*nodes); 1773 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 1774 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes); 1775 return (!zonelist_zone(z)) ? true : false; 1776 } 1777 1778 1779 #ifdef CONFIG_SPARSEMEM 1780 #include <asm/sparsemem.h> 1781 #endif 1782 1783 #ifdef CONFIG_FLATMEM 1784 #define pfn_to_nid(pfn) (0) 1785 #endif 1786 1787 #ifdef CONFIG_SPARSEMEM 1788 1789 /* 1790 * PA_SECTION_SHIFT physical address to/from section number 1791 * PFN_SECTION_SHIFT pfn to/from section number 1792 */ 1793 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1794 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1795 1796 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1797 1798 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1799 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1800 1801 #define SECTION_BLOCKFLAGS_BITS \ 1802 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1803 1804 #if (MAX_PAGE_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS 1805 #error Allocator MAX_PAGE_ORDER exceeds SECTION_SIZE 1806 #endif 1807 1808 static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1809 { 1810 return pfn >> PFN_SECTION_SHIFT; 1811 } 1812 static inline unsigned long section_nr_to_pfn(unsigned long sec) 1813 { 1814 return sec << PFN_SECTION_SHIFT; 1815 } 1816 1817 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1818 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1819 1820 #define SUBSECTION_SHIFT 21 1821 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT) 1822 1823 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) 1824 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) 1825 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) 1826 1827 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS 1828 #error Subsection size exceeds section size 1829 #else 1830 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) 1831 #endif 1832 1833 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) 1834 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) 1835 1836 struct mem_section_usage { 1837 struct rcu_head rcu; 1838 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1839 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); 1840 #endif 1841 /* See declaration of similar field in struct zone */ 1842 unsigned long pageblock_flags[0]; 1843 }; 1844 1845 void subsection_map_init(unsigned long pfn, unsigned long nr_pages); 1846 1847 struct page; 1848 struct page_ext; 1849 struct mem_section { 1850 /* 1851 * This is, logically, a pointer to an array of struct 1852 * pages. However, it is stored with some other magic. 1853 * (see sparse.c::sparse_init_one_section()) 1854 * 1855 * Additionally during early boot we encode node id of 1856 * the location of the section here to guide allocation. 1857 * (see sparse.c::memory_present()) 1858 * 1859 * Making it a UL at least makes someone do a cast 1860 * before using it wrong. 1861 */ 1862 unsigned long section_mem_map; 1863 1864 struct mem_section_usage *usage; 1865 #ifdef CONFIG_PAGE_EXTENSION 1866 /* 1867 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1868 * section. (see page_ext.h about this.) 1869 */ 1870 struct page_ext *page_ext; 1871 unsigned long pad; 1872 #endif 1873 /* 1874 * WARNING: mem_section must be a power-of-2 in size for the 1875 * calculation and use of SECTION_ROOT_MASK to make sense. 1876 */ 1877 }; 1878 1879 #ifdef CONFIG_SPARSEMEM_EXTREME 1880 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1881 #else 1882 #define SECTIONS_PER_ROOT 1 1883 #endif 1884 1885 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1886 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1887 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1888 1889 #ifdef CONFIG_SPARSEMEM_EXTREME 1890 extern struct mem_section **mem_section; 1891 #else 1892 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1893 #endif 1894 1895 static inline unsigned long *section_to_usemap(struct mem_section *ms) 1896 { 1897 return ms->usage->pageblock_flags; 1898 } 1899 1900 static inline struct mem_section *__nr_to_section(unsigned long nr) 1901 { 1902 unsigned long root = SECTION_NR_TO_ROOT(nr); 1903 1904 if (unlikely(root >= NR_SECTION_ROOTS)) 1905 return NULL; 1906 1907 #ifdef CONFIG_SPARSEMEM_EXTREME 1908 if (!mem_section || !mem_section[root]) 1909 return NULL; 1910 #endif 1911 return &mem_section[root][nr & SECTION_ROOT_MASK]; 1912 } 1913 extern size_t mem_section_usage_size(void); 1914 1915 /* 1916 * We use the lower bits of the mem_map pointer to store 1917 * a little bit of information. The pointer is calculated 1918 * as mem_map - section_nr_to_pfn(pnum). The result is 1919 * aligned to the minimum alignment of the two values: 1920 * 1. All mem_map arrays are page-aligned. 1921 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT 1922 * lowest bits. PFN_SECTION_SHIFT is arch-specific 1923 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the 1924 * worst combination is powerpc with 256k pages, 1925 * which results in PFN_SECTION_SHIFT equal 6. 1926 * To sum it up, at least 6 bits are available on all architectures. 1927 * However, we can exceed 6 bits on some other architectures except 1928 * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available 1929 * with the worst case of 64K pages on arm64) if we make sure the 1930 * exceeded bit is not applicable to powerpc. 1931 */ 1932 enum { 1933 SECTION_MARKED_PRESENT_BIT, 1934 SECTION_HAS_MEM_MAP_BIT, 1935 SECTION_IS_ONLINE_BIT, 1936 SECTION_IS_EARLY_BIT, 1937 #ifdef CONFIG_ZONE_DEVICE 1938 SECTION_TAINT_ZONE_DEVICE_BIT, 1939 #endif 1940 SECTION_MAP_LAST_BIT, 1941 }; 1942 1943 #define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT) 1944 #define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT) 1945 #define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT) 1946 #define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT) 1947 #ifdef CONFIG_ZONE_DEVICE 1948 #define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT) 1949 #endif 1950 #define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1)) 1951 #define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT 1952 1953 static inline struct page *__section_mem_map_addr(struct mem_section *section) 1954 { 1955 unsigned long map = section->section_mem_map; 1956 map &= SECTION_MAP_MASK; 1957 return (struct page *)map; 1958 } 1959 1960 static inline int present_section(struct mem_section *section) 1961 { 1962 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1963 } 1964 1965 static inline int present_section_nr(unsigned long nr) 1966 { 1967 return present_section(__nr_to_section(nr)); 1968 } 1969 1970 static inline int valid_section(struct mem_section *section) 1971 { 1972 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1973 } 1974 1975 static inline int early_section(struct mem_section *section) 1976 { 1977 return (section && (section->section_mem_map & SECTION_IS_EARLY)); 1978 } 1979 1980 static inline int valid_section_nr(unsigned long nr) 1981 { 1982 return valid_section(__nr_to_section(nr)); 1983 } 1984 1985 static inline int online_section(struct mem_section *section) 1986 { 1987 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 1988 } 1989 1990 #ifdef CONFIG_ZONE_DEVICE 1991 static inline int online_device_section(struct mem_section *section) 1992 { 1993 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE; 1994 1995 return section && ((section->section_mem_map & flags) == flags); 1996 } 1997 #else 1998 static inline int online_device_section(struct mem_section *section) 1999 { 2000 return 0; 2001 } 2002 #endif 2003 2004 static inline int online_section_nr(unsigned long nr) 2005 { 2006 return online_section(__nr_to_section(nr)); 2007 } 2008 2009 #ifdef CONFIG_MEMORY_HOTPLUG 2010 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 2011 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 2012 #endif 2013 2014 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 2015 { 2016 return __nr_to_section(pfn_to_section_nr(pfn)); 2017 } 2018 2019 extern unsigned long __highest_present_section_nr; 2020 2021 static inline int subsection_map_index(unsigned long pfn) 2022 { 2023 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; 2024 } 2025 2026 #ifdef CONFIG_SPARSEMEM_VMEMMAP 2027 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 2028 { 2029 int idx = subsection_map_index(pfn); 2030 struct mem_section_usage *usage = READ_ONCE(ms->usage); 2031 2032 return usage ? test_bit(idx, usage->subsection_map) : 0; 2033 } 2034 #else 2035 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 2036 { 2037 return 1; 2038 } 2039 #endif 2040 2041 #ifndef CONFIG_HAVE_ARCH_PFN_VALID 2042 /** 2043 * pfn_valid - check if there is a valid memory map entry for a PFN 2044 * @pfn: the page frame number to check 2045 * 2046 * Check if there is a valid memory map entry aka struct page for the @pfn. 2047 * Note, that availability of the memory map entry does not imply that 2048 * there is actual usable memory at that @pfn. The struct page may 2049 * represent a hole or an unusable page frame. 2050 * 2051 * Return: 1 for PFNs that have memory map entries and 0 otherwise 2052 */ 2053 static inline int pfn_valid(unsigned long pfn) 2054 { 2055 struct mem_section *ms; 2056 int ret; 2057 2058 /* 2059 * Ensure the upper PAGE_SHIFT bits are clear in the 2060 * pfn. Else it might lead to false positives when 2061 * some of the upper bits are set, but the lower bits 2062 * match a valid pfn. 2063 */ 2064 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn) 2065 return 0; 2066 2067 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 2068 return 0; 2069 ms = __pfn_to_section(pfn); 2070 rcu_read_lock_sched(); 2071 if (!valid_section(ms)) { 2072 rcu_read_unlock_sched(); 2073 return 0; 2074 } 2075 /* 2076 * Traditionally early sections always returned pfn_valid() for 2077 * the entire section-sized span. 2078 */ 2079 ret = early_section(ms) || pfn_section_valid(ms, pfn); 2080 rcu_read_unlock_sched(); 2081 2082 return ret; 2083 } 2084 #endif 2085 2086 static inline int pfn_in_present_section(unsigned long pfn) 2087 { 2088 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 2089 return 0; 2090 return present_section(__pfn_to_section(pfn)); 2091 } 2092 2093 static inline unsigned long next_present_section_nr(unsigned long section_nr) 2094 { 2095 while (++section_nr <= __highest_present_section_nr) { 2096 if (present_section_nr(section_nr)) 2097 return section_nr; 2098 } 2099 2100 return -1; 2101 } 2102 2103 /* 2104 * These are _only_ used during initialisation, therefore they 2105 * can use __initdata ... They could have names to indicate 2106 * this restriction. 2107 */ 2108 #ifdef CONFIG_NUMA 2109 #define pfn_to_nid(pfn) \ 2110 ({ \ 2111 unsigned long __pfn_to_nid_pfn = (pfn); \ 2112 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 2113 }) 2114 #else 2115 #define pfn_to_nid(pfn) (0) 2116 #endif 2117 2118 void sparse_init(void); 2119 #else 2120 #define sparse_init() do {} while (0) 2121 #define sparse_index_init(_sec, _nid) do {} while (0) 2122 #define pfn_in_present_section pfn_valid 2123 #define subsection_map_init(_pfn, _nr_pages) do {} while (0) 2124 #endif /* CONFIG_SPARSEMEM */ 2125 2126 #endif /* !__GENERATING_BOUNDS.H */ 2127 #endif /* !__ASSEMBLY__ */ 2128 #endif /* _LINUX_MMZONE_H */ 2129