xref: /linux-6.15/include/linux/mmzone.h (revision e8fa600e)
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3 
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6 
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <generated/bounds.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21 
22 /* Free memory management - zoned buddy allocator.  */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29 
30 /*
31  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32  * costly to service.  That is between allocation orders which should
33  * coalesce naturally under reasonable reclaim pressure and those which
34  * will not.
35  */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37 
38 enum {
39 	MIGRATE_UNMOVABLE,
40 	MIGRATE_RECLAIMABLE,
41 	MIGRATE_MOVABLE,
42 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
43 	MIGRATE_RESERVE = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 	/*
46 	 * MIGRATE_CMA migration type is designed to mimic the way
47 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
48 	 * from MIGRATE_CMA pageblocks and page allocator never
49 	 * implicitly change migration type of MIGRATE_CMA pageblock.
50 	 *
51 	 * The way to use it is to change migratetype of a range of
52 	 * pageblocks to MIGRATE_CMA which can be done by
53 	 * __free_pageblock_cma() function.  What is important though
54 	 * is that a range of pageblocks must be aligned to
55 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 	 * a single pageblock.
57 	 */
58 	MIGRATE_CMA,
59 #endif
60 	MIGRATE_ISOLATE,	/* can't allocate from here */
61 	MIGRATE_TYPES
62 };
63 
64 #ifdef CONFIG_CMA
65 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
66 #  define cma_wmark_pages(zone)	zone->min_cma_pages
67 #else
68 #  define is_migrate_cma(migratetype) false
69 #  define cma_wmark_pages(zone) 0
70 #endif
71 
72 #define for_each_migratetype_order(order, type) \
73 	for (order = 0; order < MAX_ORDER; order++) \
74 		for (type = 0; type < MIGRATE_TYPES; type++)
75 
76 extern int page_group_by_mobility_disabled;
77 
78 static inline int get_pageblock_migratetype(struct page *page)
79 {
80 	return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
81 }
82 
83 struct free_area {
84 	struct list_head	free_list[MIGRATE_TYPES];
85 	unsigned long		nr_free;
86 };
87 
88 struct pglist_data;
89 
90 /*
91  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
92  * So add a wild amount of padding here to ensure that they fall into separate
93  * cachelines.  There are very few zone structures in the machine, so space
94  * consumption is not a concern here.
95  */
96 #if defined(CONFIG_SMP)
97 struct zone_padding {
98 	char x[0];
99 } ____cacheline_internodealigned_in_smp;
100 #define ZONE_PADDING(name)	struct zone_padding name;
101 #else
102 #define ZONE_PADDING(name)
103 #endif
104 
105 enum zone_stat_item {
106 	/* First 128 byte cacheline (assuming 64 bit words) */
107 	NR_FREE_PAGES,
108 	NR_LRU_BASE,
109 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
110 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
111 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
112 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
113 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
114 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
115 	NR_ANON_PAGES,	/* Mapped anonymous pages */
116 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
117 			   only modified from process context */
118 	NR_FILE_PAGES,
119 	NR_FILE_DIRTY,
120 	NR_WRITEBACK,
121 	NR_SLAB_RECLAIMABLE,
122 	NR_SLAB_UNRECLAIMABLE,
123 	NR_PAGETABLE,		/* used for pagetables */
124 	NR_KERNEL_STACK,
125 	/* Second 128 byte cacheline */
126 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
127 	NR_BOUNCE,
128 	NR_VMSCAN_WRITE,
129 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
130 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
131 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
132 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
133 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
134 	NR_DIRTIED,		/* page dirtyings since bootup */
135 	NR_WRITTEN,		/* page writings since bootup */
136 #ifdef CONFIG_NUMA
137 	NUMA_HIT,		/* allocated in intended node */
138 	NUMA_MISS,		/* allocated in non intended node */
139 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
140 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
141 	NUMA_LOCAL,		/* allocation from local node */
142 	NUMA_OTHER,		/* allocation from other node */
143 #endif
144 	NR_ANON_TRANSPARENT_HUGEPAGES,
145 	NR_VM_ZONE_STAT_ITEMS };
146 
147 /*
148  * We do arithmetic on the LRU lists in various places in the code,
149  * so it is important to keep the active lists LRU_ACTIVE higher in
150  * the array than the corresponding inactive lists, and to keep
151  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
152  *
153  * This has to be kept in sync with the statistics in zone_stat_item
154  * above and the descriptions in vmstat_text in mm/vmstat.c
155  */
156 #define LRU_BASE 0
157 #define LRU_ACTIVE 1
158 #define LRU_FILE 2
159 
160 enum lru_list {
161 	LRU_INACTIVE_ANON = LRU_BASE,
162 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
163 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
164 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
165 	LRU_UNEVICTABLE,
166 	NR_LRU_LISTS
167 };
168 
169 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
170 
171 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
172 
173 static inline int is_file_lru(enum lru_list lru)
174 {
175 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
176 }
177 
178 static inline int is_active_lru(enum lru_list lru)
179 {
180 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
181 }
182 
183 static inline int is_unevictable_lru(enum lru_list lru)
184 {
185 	return (lru == LRU_UNEVICTABLE);
186 }
187 
188 struct zone_reclaim_stat {
189 	/*
190 	 * The pageout code in vmscan.c keeps track of how many of the
191 	 * mem/swap backed and file backed pages are referenced.
192 	 * The higher the rotated/scanned ratio, the more valuable
193 	 * that cache is.
194 	 *
195 	 * The anon LRU stats live in [0], file LRU stats in [1]
196 	 */
197 	unsigned long		recent_rotated[2];
198 	unsigned long		recent_scanned[2];
199 };
200 
201 struct lruvec {
202 	struct list_head lists[NR_LRU_LISTS];
203 	struct zone_reclaim_stat reclaim_stat;
204 #ifdef CONFIG_MEMCG
205 	struct zone *zone;
206 #endif
207 };
208 
209 /* Mask used at gathering information at once (see memcontrol.c) */
210 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
211 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
212 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
213 
214 /* Isolate clean file */
215 #define ISOLATE_CLEAN		((__force isolate_mode_t)0x1)
216 /* Isolate unmapped file */
217 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
218 /* Isolate for asynchronous migration */
219 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
220 
221 /* LRU Isolation modes. */
222 typedef unsigned __bitwise__ isolate_mode_t;
223 
224 enum zone_watermarks {
225 	WMARK_MIN,
226 	WMARK_LOW,
227 	WMARK_HIGH,
228 	NR_WMARK
229 };
230 
231 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
232 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
233 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
234 
235 struct per_cpu_pages {
236 	int count;		/* number of pages in the list */
237 	int high;		/* high watermark, emptying needed */
238 	int batch;		/* chunk size for buddy add/remove */
239 
240 	/* Lists of pages, one per migrate type stored on the pcp-lists */
241 	struct list_head lists[MIGRATE_PCPTYPES];
242 };
243 
244 struct per_cpu_pageset {
245 	struct per_cpu_pages pcp;
246 #ifdef CONFIG_NUMA
247 	s8 expire;
248 #endif
249 #ifdef CONFIG_SMP
250 	s8 stat_threshold;
251 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
252 #endif
253 };
254 
255 #endif /* !__GENERATING_BOUNDS.H */
256 
257 enum zone_type {
258 #ifdef CONFIG_ZONE_DMA
259 	/*
260 	 * ZONE_DMA is used when there are devices that are not able
261 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
262 	 * carve out the portion of memory that is needed for these devices.
263 	 * The range is arch specific.
264 	 *
265 	 * Some examples
266 	 *
267 	 * Architecture		Limit
268 	 * ---------------------------
269 	 * parisc, ia64, sparc	<4G
270 	 * s390			<2G
271 	 * arm			Various
272 	 * alpha		Unlimited or 0-16MB.
273 	 *
274 	 * i386, x86_64 and multiple other arches
275 	 * 			<16M.
276 	 */
277 	ZONE_DMA,
278 #endif
279 #ifdef CONFIG_ZONE_DMA32
280 	/*
281 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
282 	 * only able to do DMA to the lower 16M but also 32 bit devices that
283 	 * can only do DMA areas below 4G.
284 	 */
285 	ZONE_DMA32,
286 #endif
287 	/*
288 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
289 	 * performed on pages in ZONE_NORMAL if the DMA devices support
290 	 * transfers to all addressable memory.
291 	 */
292 	ZONE_NORMAL,
293 #ifdef CONFIG_HIGHMEM
294 	/*
295 	 * A memory area that is only addressable by the kernel through
296 	 * mapping portions into its own address space. This is for example
297 	 * used by i386 to allow the kernel to address the memory beyond
298 	 * 900MB. The kernel will set up special mappings (page
299 	 * table entries on i386) for each page that the kernel needs to
300 	 * access.
301 	 */
302 	ZONE_HIGHMEM,
303 #endif
304 	ZONE_MOVABLE,
305 	__MAX_NR_ZONES
306 };
307 
308 #ifndef __GENERATING_BOUNDS_H
309 
310 /*
311  * When a memory allocation must conform to specific limitations (such
312  * as being suitable for DMA) the caller will pass in hints to the
313  * allocator in the gfp_mask, in the zone modifier bits.  These bits
314  * are used to select a priority ordered list of memory zones which
315  * match the requested limits. See gfp_zone() in include/linux/gfp.h
316  */
317 
318 #if MAX_NR_ZONES < 2
319 #define ZONES_SHIFT 0
320 #elif MAX_NR_ZONES <= 2
321 #define ZONES_SHIFT 1
322 #elif MAX_NR_ZONES <= 4
323 #define ZONES_SHIFT 2
324 #else
325 #error ZONES_SHIFT -- too many zones configured adjust calculation
326 #endif
327 
328 struct zone {
329 	/* Fields commonly accessed by the page allocator */
330 
331 	/* zone watermarks, access with *_wmark_pages(zone) macros */
332 	unsigned long watermark[NR_WMARK];
333 
334 	/*
335 	 * When free pages are below this point, additional steps are taken
336 	 * when reading the number of free pages to avoid per-cpu counter
337 	 * drift allowing watermarks to be breached
338 	 */
339 	unsigned long percpu_drift_mark;
340 
341 	/*
342 	 * We don't know if the memory that we're going to allocate will be freeable
343 	 * or/and it will be released eventually, so to avoid totally wasting several
344 	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
345 	 * to run OOM on the lower zones despite there's tons of freeable ram
346 	 * on the higher zones). This array is recalculated at runtime if the
347 	 * sysctl_lowmem_reserve_ratio sysctl changes.
348 	 */
349 	unsigned long		lowmem_reserve[MAX_NR_ZONES];
350 
351 	/*
352 	 * This is a per-zone reserve of pages that should not be
353 	 * considered dirtyable memory.
354 	 */
355 	unsigned long		dirty_balance_reserve;
356 
357 #ifdef CONFIG_NUMA
358 	int node;
359 	/*
360 	 * zone reclaim becomes active if more unmapped pages exist.
361 	 */
362 	unsigned long		min_unmapped_pages;
363 	unsigned long		min_slab_pages;
364 #endif
365 	struct per_cpu_pageset __percpu *pageset;
366 	/*
367 	 * free areas of different sizes
368 	 */
369 	spinlock_t		lock;
370 	int                     all_unreclaimable; /* All pages pinned */
371 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
372 	/* pfn where the last incremental compaction isolated free pages */
373 	unsigned long		compact_cached_free_pfn;
374 #endif
375 #ifdef CONFIG_MEMORY_HOTPLUG
376 	/* see spanned/present_pages for more description */
377 	seqlock_t		span_seqlock;
378 #endif
379 #ifdef CONFIG_CMA
380 	/*
381 	 * CMA needs to increase watermark levels during the allocation
382 	 * process to make sure that the system is not starved.
383 	 */
384 	unsigned long		min_cma_pages;
385 #endif
386 	struct free_area	free_area[MAX_ORDER];
387 
388 #ifndef CONFIG_SPARSEMEM
389 	/*
390 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
391 	 * In SPARSEMEM, this map is stored in struct mem_section
392 	 */
393 	unsigned long		*pageblock_flags;
394 #endif /* CONFIG_SPARSEMEM */
395 
396 #ifdef CONFIG_COMPACTION
397 	/*
398 	 * On compaction failure, 1<<compact_defer_shift compactions
399 	 * are skipped before trying again. The number attempted since
400 	 * last failure is tracked with compact_considered.
401 	 */
402 	unsigned int		compact_considered;
403 	unsigned int		compact_defer_shift;
404 	int			compact_order_failed;
405 #endif
406 
407 	ZONE_PADDING(_pad1_)
408 
409 	/* Fields commonly accessed by the page reclaim scanner */
410 	spinlock_t		lru_lock;
411 	struct lruvec		lruvec;
412 
413 	unsigned long		pages_scanned;	   /* since last reclaim */
414 	unsigned long		flags;		   /* zone flags, see below */
415 
416 	/* Zone statistics */
417 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
418 
419 	/*
420 	 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
421 	 * this zone's LRU.  Maintained by the pageout code.
422 	 */
423 	unsigned int inactive_ratio;
424 
425 
426 	ZONE_PADDING(_pad2_)
427 	/* Rarely used or read-mostly fields */
428 
429 	/*
430 	 * wait_table		-- the array holding the hash table
431 	 * wait_table_hash_nr_entries	-- the size of the hash table array
432 	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
433 	 *
434 	 * The purpose of all these is to keep track of the people
435 	 * waiting for a page to become available and make them
436 	 * runnable again when possible. The trouble is that this
437 	 * consumes a lot of space, especially when so few things
438 	 * wait on pages at a given time. So instead of using
439 	 * per-page waitqueues, we use a waitqueue hash table.
440 	 *
441 	 * The bucket discipline is to sleep on the same queue when
442 	 * colliding and wake all in that wait queue when removing.
443 	 * When something wakes, it must check to be sure its page is
444 	 * truly available, a la thundering herd. The cost of a
445 	 * collision is great, but given the expected load of the
446 	 * table, they should be so rare as to be outweighed by the
447 	 * benefits from the saved space.
448 	 *
449 	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
450 	 * primary users of these fields, and in mm/page_alloc.c
451 	 * free_area_init_core() performs the initialization of them.
452 	 */
453 	wait_queue_head_t	* wait_table;
454 	unsigned long		wait_table_hash_nr_entries;
455 	unsigned long		wait_table_bits;
456 
457 	/*
458 	 * Discontig memory support fields.
459 	 */
460 	struct pglist_data	*zone_pgdat;
461 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
462 	unsigned long		zone_start_pfn;
463 
464 	/*
465 	 * zone_start_pfn, spanned_pages and present_pages are all
466 	 * protected by span_seqlock.  It is a seqlock because it has
467 	 * to be read outside of zone->lock, and it is done in the main
468 	 * allocator path.  But, it is written quite infrequently.
469 	 *
470 	 * The lock is declared along with zone->lock because it is
471 	 * frequently read in proximity to zone->lock.  It's good to
472 	 * give them a chance of being in the same cacheline.
473 	 */
474 	unsigned long		spanned_pages;	/* total size, including holes */
475 	unsigned long		present_pages;	/* amount of memory (excluding holes) */
476 
477 	/*
478 	 * rarely used fields:
479 	 */
480 	const char		*name;
481 #ifdef CONFIG_MEMORY_ISOLATION
482 	/*
483 	 * the number of MIGRATE_ISOLATE *pageblock*.
484 	 * We need this for free page counting. Look at zone_watermark_ok_safe.
485 	 * It's protected by zone->lock
486 	 */
487 	int		nr_pageblock_isolate;
488 #endif
489 } ____cacheline_internodealigned_in_smp;
490 
491 typedef enum {
492 	ZONE_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
493 	ZONE_OOM_LOCKED,		/* zone is in OOM killer zonelist */
494 	ZONE_CONGESTED,			/* zone has many dirty pages backed by
495 					 * a congested BDI
496 					 */
497 } zone_flags_t;
498 
499 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
500 {
501 	set_bit(flag, &zone->flags);
502 }
503 
504 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
505 {
506 	return test_and_set_bit(flag, &zone->flags);
507 }
508 
509 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
510 {
511 	clear_bit(flag, &zone->flags);
512 }
513 
514 static inline int zone_is_reclaim_congested(const struct zone *zone)
515 {
516 	return test_bit(ZONE_CONGESTED, &zone->flags);
517 }
518 
519 static inline int zone_is_reclaim_locked(const struct zone *zone)
520 {
521 	return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
522 }
523 
524 static inline int zone_is_oom_locked(const struct zone *zone)
525 {
526 	return test_bit(ZONE_OOM_LOCKED, &zone->flags);
527 }
528 
529 /*
530  * The "priority" of VM scanning is how much of the queues we will scan in one
531  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
532  * queues ("queue_length >> 12") during an aging round.
533  */
534 #define DEF_PRIORITY 12
535 
536 /* Maximum number of zones on a zonelist */
537 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
538 
539 #ifdef CONFIG_NUMA
540 
541 /*
542  * The NUMA zonelists are doubled because we need zonelists that restrict the
543  * allocations to a single node for GFP_THISNODE.
544  *
545  * [0]	: Zonelist with fallback
546  * [1]	: No fallback (GFP_THISNODE)
547  */
548 #define MAX_ZONELISTS 2
549 
550 
551 /*
552  * We cache key information from each zonelist for smaller cache
553  * footprint when scanning for free pages in get_page_from_freelist().
554  *
555  * 1) The BITMAP fullzones tracks which zones in a zonelist have come
556  *    up short of free memory since the last time (last_fullzone_zap)
557  *    we zero'd fullzones.
558  * 2) The array z_to_n[] maps each zone in the zonelist to its node
559  *    id, so that we can efficiently evaluate whether that node is
560  *    set in the current tasks mems_allowed.
561  *
562  * Both fullzones and z_to_n[] are one-to-one with the zonelist,
563  * indexed by a zones offset in the zonelist zones[] array.
564  *
565  * The get_page_from_freelist() routine does two scans.  During the
566  * first scan, we skip zones whose corresponding bit in 'fullzones'
567  * is set or whose corresponding node in current->mems_allowed (which
568  * comes from cpusets) is not set.  During the second scan, we bypass
569  * this zonelist_cache, to ensure we look methodically at each zone.
570  *
571  * Once per second, we zero out (zap) fullzones, forcing us to
572  * reconsider nodes that might have regained more free memory.
573  * The field last_full_zap is the time we last zapped fullzones.
574  *
575  * This mechanism reduces the amount of time we waste repeatedly
576  * reexaming zones for free memory when they just came up low on
577  * memory momentarilly ago.
578  *
579  * The zonelist_cache struct members logically belong in struct
580  * zonelist.  However, the mempolicy zonelists constructed for
581  * MPOL_BIND are intentionally variable length (and usually much
582  * shorter).  A general purpose mechanism for handling structs with
583  * multiple variable length members is more mechanism than we want
584  * here.  We resort to some special case hackery instead.
585  *
586  * The MPOL_BIND zonelists don't need this zonelist_cache (in good
587  * part because they are shorter), so we put the fixed length stuff
588  * at the front of the zonelist struct, ending in a variable length
589  * zones[], as is needed by MPOL_BIND.
590  *
591  * Then we put the optional zonelist cache on the end of the zonelist
592  * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
593  * the fixed length portion at the front of the struct.  This pointer
594  * both enables us to find the zonelist cache, and in the case of
595  * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
596  * to know that the zonelist cache is not there.
597  *
598  * The end result is that struct zonelists come in two flavors:
599  *  1) The full, fixed length version, shown below, and
600  *  2) The custom zonelists for MPOL_BIND.
601  * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
602  *
603  * Even though there may be multiple CPU cores on a node modifying
604  * fullzones or last_full_zap in the same zonelist_cache at the same
605  * time, we don't lock it.  This is just hint data - if it is wrong now
606  * and then, the allocator will still function, perhaps a bit slower.
607  */
608 
609 
610 struct zonelist_cache {
611 	unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];		/* zone->nid */
612 	DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);	/* zone full? */
613 	unsigned long last_full_zap;		/* when last zap'd (jiffies) */
614 };
615 #else
616 #define MAX_ZONELISTS 1
617 struct zonelist_cache;
618 #endif
619 
620 /*
621  * This struct contains information about a zone in a zonelist. It is stored
622  * here to avoid dereferences into large structures and lookups of tables
623  */
624 struct zoneref {
625 	struct zone *zone;	/* Pointer to actual zone */
626 	int zone_idx;		/* zone_idx(zoneref->zone) */
627 };
628 
629 /*
630  * One allocation request operates on a zonelist. A zonelist
631  * is a list of zones, the first one is the 'goal' of the
632  * allocation, the other zones are fallback zones, in decreasing
633  * priority.
634  *
635  * If zlcache_ptr is not NULL, then it is just the address of zlcache,
636  * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
637  * *
638  * To speed the reading of the zonelist, the zonerefs contain the zone index
639  * of the entry being read. Helper functions to access information given
640  * a struct zoneref are
641  *
642  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
643  * zonelist_zone_idx()	- Return the index of the zone for an entry
644  * zonelist_node_idx()	- Return the index of the node for an entry
645  */
646 struct zonelist {
647 	struct zonelist_cache *zlcache_ptr;		     // NULL or &zlcache
648 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
649 #ifdef CONFIG_NUMA
650 	struct zonelist_cache zlcache;			     // optional ...
651 #endif
652 };
653 
654 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
655 struct node_active_region {
656 	unsigned long start_pfn;
657 	unsigned long end_pfn;
658 	int nid;
659 };
660 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
661 
662 #ifndef CONFIG_DISCONTIGMEM
663 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
664 extern struct page *mem_map;
665 #endif
666 
667 /*
668  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
669  * (mostly NUMA machines?) to denote a higher-level memory zone than the
670  * zone denotes.
671  *
672  * On NUMA machines, each NUMA node would have a pg_data_t to describe
673  * it's memory layout.
674  *
675  * Memory statistics and page replacement data structures are maintained on a
676  * per-zone basis.
677  */
678 struct bootmem_data;
679 typedef struct pglist_data {
680 	struct zone node_zones[MAX_NR_ZONES];
681 	struct zonelist node_zonelists[MAX_ZONELISTS];
682 	int nr_zones;
683 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
684 	struct page *node_mem_map;
685 #ifdef CONFIG_MEMCG
686 	struct page_cgroup *node_page_cgroup;
687 #endif
688 #endif
689 #ifndef CONFIG_NO_BOOTMEM
690 	struct bootmem_data *bdata;
691 #endif
692 #ifdef CONFIG_MEMORY_HOTPLUG
693 	/*
694 	 * Must be held any time you expect node_start_pfn, node_present_pages
695 	 * or node_spanned_pages stay constant.  Holding this will also
696 	 * guarantee that any pfn_valid() stays that way.
697 	 *
698 	 * Nests above zone->lock and zone->size_seqlock.
699 	 */
700 	spinlock_t node_size_lock;
701 #endif
702 	unsigned long node_start_pfn;
703 	unsigned long node_present_pages; /* total number of physical pages */
704 	unsigned long node_spanned_pages; /* total size of physical page
705 					     range, including holes */
706 	int node_id;
707 	wait_queue_head_t kswapd_wait;
708 	wait_queue_head_t pfmemalloc_wait;
709 	struct task_struct *kswapd;	/* Protected by lock_memory_hotplug() */
710 	int kswapd_max_order;
711 	enum zone_type classzone_idx;
712 } pg_data_t;
713 
714 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
715 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
716 #ifdef CONFIG_FLAT_NODE_MEM_MAP
717 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
718 #else
719 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
720 #endif
721 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
722 
723 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
724 
725 #define node_end_pfn(nid) ({\
726 	pg_data_t *__pgdat = NODE_DATA(nid);\
727 	__pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
728 })
729 
730 #include <linux/memory_hotplug.h>
731 
732 extern struct mutex zonelists_mutex;
733 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
734 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
735 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
736 		int classzone_idx, int alloc_flags);
737 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
738 		int classzone_idx, int alloc_flags);
739 enum memmap_context {
740 	MEMMAP_EARLY,
741 	MEMMAP_HOTPLUG,
742 };
743 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
744 				     unsigned long size,
745 				     enum memmap_context context);
746 
747 extern void lruvec_init(struct lruvec *lruvec, struct zone *zone);
748 
749 static inline struct zone *lruvec_zone(struct lruvec *lruvec)
750 {
751 #ifdef CONFIG_MEMCG
752 	return lruvec->zone;
753 #else
754 	return container_of(lruvec, struct zone, lruvec);
755 #endif
756 }
757 
758 #ifdef CONFIG_HAVE_MEMORY_PRESENT
759 void memory_present(int nid, unsigned long start, unsigned long end);
760 #else
761 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
762 #endif
763 
764 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
765 int local_memory_node(int node_id);
766 #else
767 static inline int local_memory_node(int node_id) { return node_id; };
768 #endif
769 
770 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
771 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
772 #endif
773 
774 /*
775  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
776  */
777 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
778 
779 static inline int populated_zone(struct zone *zone)
780 {
781 	return (!!zone->present_pages);
782 }
783 
784 extern int movable_zone;
785 
786 static inline int zone_movable_is_highmem(void)
787 {
788 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
789 	return movable_zone == ZONE_HIGHMEM;
790 #else
791 	return 0;
792 #endif
793 }
794 
795 static inline int is_highmem_idx(enum zone_type idx)
796 {
797 #ifdef CONFIG_HIGHMEM
798 	return (idx == ZONE_HIGHMEM ||
799 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
800 #else
801 	return 0;
802 #endif
803 }
804 
805 static inline int is_normal_idx(enum zone_type idx)
806 {
807 	return (idx == ZONE_NORMAL);
808 }
809 
810 /**
811  * is_highmem - helper function to quickly check if a struct zone is a
812  *              highmem zone or not.  This is an attempt to keep references
813  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
814  * @zone - pointer to struct zone variable
815  */
816 static inline int is_highmem(struct zone *zone)
817 {
818 #ifdef CONFIG_HIGHMEM
819 	int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
820 	return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
821 	       (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
822 		zone_movable_is_highmem());
823 #else
824 	return 0;
825 #endif
826 }
827 
828 static inline int is_normal(struct zone *zone)
829 {
830 	return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
831 }
832 
833 static inline int is_dma32(struct zone *zone)
834 {
835 #ifdef CONFIG_ZONE_DMA32
836 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
837 #else
838 	return 0;
839 #endif
840 }
841 
842 static inline int is_dma(struct zone *zone)
843 {
844 #ifdef CONFIG_ZONE_DMA
845 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
846 #else
847 	return 0;
848 #endif
849 }
850 
851 /* These two functions are used to setup the per zone pages min values */
852 struct ctl_table;
853 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
854 					void __user *, size_t *, loff_t *);
855 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
856 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
857 					void __user *, size_t *, loff_t *);
858 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
859 					void __user *, size_t *, loff_t *);
860 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
861 			void __user *, size_t *, loff_t *);
862 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
863 			void __user *, size_t *, loff_t *);
864 
865 extern int numa_zonelist_order_handler(struct ctl_table *, int,
866 			void __user *, size_t *, loff_t *);
867 extern char numa_zonelist_order[];
868 #define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */
869 
870 #ifndef CONFIG_NEED_MULTIPLE_NODES
871 
872 extern struct pglist_data contig_page_data;
873 #define NODE_DATA(nid)		(&contig_page_data)
874 #define NODE_MEM_MAP(nid)	mem_map
875 
876 #else /* CONFIG_NEED_MULTIPLE_NODES */
877 
878 #include <asm/mmzone.h>
879 
880 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
881 
882 extern struct pglist_data *first_online_pgdat(void);
883 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
884 extern struct zone *next_zone(struct zone *zone);
885 
886 /**
887  * for_each_online_pgdat - helper macro to iterate over all online nodes
888  * @pgdat - pointer to a pg_data_t variable
889  */
890 #define for_each_online_pgdat(pgdat)			\
891 	for (pgdat = first_online_pgdat();		\
892 	     pgdat;					\
893 	     pgdat = next_online_pgdat(pgdat))
894 /**
895  * for_each_zone - helper macro to iterate over all memory zones
896  * @zone - pointer to struct zone variable
897  *
898  * The user only needs to declare the zone variable, for_each_zone
899  * fills it in.
900  */
901 #define for_each_zone(zone)			        \
902 	for (zone = (first_online_pgdat())->node_zones; \
903 	     zone;					\
904 	     zone = next_zone(zone))
905 
906 #define for_each_populated_zone(zone)		        \
907 	for (zone = (first_online_pgdat())->node_zones; \
908 	     zone;					\
909 	     zone = next_zone(zone))			\
910 		if (!populated_zone(zone))		\
911 			; /* do nothing */		\
912 		else
913 
914 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
915 {
916 	return zoneref->zone;
917 }
918 
919 static inline int zonelist_zone_idx(struct zoneref *zoneref)
920 {
921 	return zoneref->zone_idx;
922 }
923 
924 static inline int zonelist_node_idx(struct zoneref *zoneref)
925 {
926 #ifdef CONFIG_NUMA
927 	/* zone_to_nid not available in this context */
928 	return zoneref->zone->node;
929 #else
930 	return 0;
931 #endif /* CONFIG_NUMA */
932 }
933 
934 /**
935  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
936  * @z - The cursor used as a starting point for the search
937  * @highest_zoneidx - The zone index of the highest zone to return
938  * @nodes - An optional nodemask to filter the zonelist with
939  * @zone - The first suitable zone found is returned via this parameter
940  *
941  * This function returns the next zone at or below a given zone index that is
942  * within the allowed nodemask using a cursor as the starting point for the
943  * search. The zoneref returned is a cursor that represents the current zone
944  * being examined. It should be advanced by one before calling
945  * next_zones_zonelist again.
946  */
947 struct zoneref *next_zones_zonelist(struct zoneref *z,
948 					enum zone_type highest_zoneidx,
949 					nodemask_t *nodes,
950 					struct zone **zone);
951 
952 /**
953  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
954  * @zonelist - The zonelist to search for a suitable zone
955  * @highest_zoneidx - The zone index of the highest zone to return
956  * @nodes - An optional nodemask to filter the zonelist with
957  * @zone - The first suitable zone found is returned via this parameter
958  *
959  * This function returns the first zone at or below a given zone index that is
960  * within the allowed nodemask. The zoneref returned is a cursor that can be
961  * used to iterate the zonelist with next_zones_zonelist by advancing it by
962  * one before calling.
963  */
964 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
965 					enum zone_type highest_zoneidx,
966 					nodemask_t *nodes,
967 					struct zone **zone)
968 {
969 	return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
970 								zone);
971 }
972 
973 /**
974  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
975  * @zone - The current zone in the iterator
976  * @z - The current pointer within zonelist->zones being iterated
977  * @zlist - The zonelist being iterated
978  * @highidx - The zone index of the highest zone to return
979  * @nodemask - Nodemask allowed by the allocator
980  *
981  * This iterator iterates though all zones at or below a given zone index and
982  * within a given nodemask
983  */
984 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
985 	for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone);	\
986 		zone;							\
987 		z = next_zones_zonelist(++z, highidx, nodemask, &zone))	\
988 
989 /**
990  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
991  * @zone - The current zone in the iterator
992  * @z - The current pointer within zonelist->zones being iterated
993  * @zlist - The zonelist being iterated
994  * @highidx - The zone index of the highest zone to return
995  *
996  * This iterator iterates though all zones at or below a given zone index.
997  */
998 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
999 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1000 
1001 #ifdef CONFIG_SPARSEMEM
1002 #include <asm/sparsemem.h>
1003 #endif
1004 
1005 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1006 	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1007 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1008 {
1009 	return 0;
1010 }
1011 #endif
1012 
1013 #ifdef CONFIG_FLATMEM
1014 #define pfn_to_nid(pfn)		(0)
1015 #endif
1016 
1017 #ifdef CONFIG_SPARSEMEM
1018 
1019 /*
1020  * SECTION_SHIFT    		#bits space required to store a section #
1021  *
1022  * PA_SECTION_SHIFT		physical address to/from section number
1023  * PFN_SECTION_SHIFT		pfn to/from section number
1024  */
1025 #define SECTIONS_SHIFT		(MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
1026 
1027 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1028 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1029 
1030 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1031 
1032 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1033 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1034 
1035 #define SECTION_BLOCKFLAGS_BITS \
1036 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1037 
1038 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1039 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1040 #endif
1041 
1042 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1043 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1044 
1045 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1046 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1047 
1048 struct page;
1049 struct page_cgroup;
1050 struct mem_section {
1051 	/*
1052 	 * This is, logically, a pointer to an array of struct
1053 	 * pages.  However, it is stored with some other magic.
1054 	 * (see sparse.c::sparse_init_one_section())
1055 	 *
1056 	 * Additionally during early boot we encode node id of
1057 	 * the location of the section here to guide allocation.
1058 	 * (see sparse.c::memory_present())
1059 	 *
1060 	 * Making it a UL at least makes someone do a cast
1061 	 * before using it wrong.
1062 	 */
1063 	unsigned long section_mem_map;
1064 
1065 	/* See declaration of similar field in struct zone */
1066 	unsigned long *pageblock_flags;
1067 #ifdef CONFIG_MEMCG
1068 	/*
1069 	 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1070 	 * section. (see memcontrol.h/page_cgroup.h about this.)
1071 	 */
1072 	struct page_cgroup *page_cgroup;
1073 	unsigned long pad;
1074 #endif
1075 };
1076 
1077 #ifdef CONFIG_SPARSEMEM_EXTREME
1078 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1079 #else
1080 #define SECTIONS_PER_ROOT	1
1081 #endif
1082 
1083 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1084 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1085 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1086 
1087 #ifdef CONFIG_SPARSEMEM_EXTREME
1088 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1089 #else
1090 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1091 #endif
1092 
1093 static inline struct mem_section *__nr_to_section(unsigned long nr)
1094 {
1095 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1096 		return NULL;
1097 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1098 }
1099 extern int __section_nr(struct mem_section* ms);
1100 extern unsigned long usemap_size(void);
1101 
1102 /*
1103  * We use the lower bits of the mem_map pointer to store
1104  * a little bit of information.  There should be at least
1105  * 3 bits here due to 32-bit alignment.
1106  */
1107 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1108 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1109 #define SECTION_MAP_LAST_BIT	(1UL<<2)
1110 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1111 #define SECTION_NID_SHIFT	2
1112 
1113 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1114 {
1115 	unsigned long map = section->section_mem_map;
1116 	map &= SECTION_MAP_MASK;
1117 	return (struct page *)map;
1118 }
1119 
1120 static inline int present_section(struct mem_section *section)
1121 {
1122 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1123 }
1124 
1125 static inline int present_section_nr(unsigned long nr)
1126 {
1127 	return present_section(__nr_to_section(nr));
1128 }
1129 
1130 static inline int valid_section(struct mem_section *section)
1131 {
1132 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1133 }
1134 
1135 static inline int valid_section_nr(unsigned long nr)
1136 {
1137 	return valid_section(__nr_to_section(nr));
1138 }
1139 
1140 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1141 {
1142 	return __nr_to_section(pfn_to_section_nr(pfn));
1143 }
1144 
1145 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1146 static inline int pfn_valid(unsigned long pfn)
1147 {
1148 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1149 		return 0;
1150 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1151 }
1152 #endif
1153 
1154 static inline int pfn_present(unsigned long pfn)
1155 {
1156 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1157 		return 0;
1158 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1159 }
1160 
1161 /*
1162  * These are _only_ used during initialisation, therefore they
1163  * can use __initdata ...  They could have names to indicate
1164  * this restriction.
1165  */
1166 #ifdef CONFIG_NUMA
1167 #define pfn_to_nid(pfn)							\
1168 ({									\
1169 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1170 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1171 })
1172 #else
1173 #define pfn_to_nid(pfn)		(0)
1174 #endif
1175 
1176 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1177 void sparse_init(void);
1178 #else
1179 #define sparse_init()	do {} while (0)
1180 #define sparse_index_init(_sec, _nid)  do {} while (0)
1181 #endif /* CONFIG_SPARSEMEM */
1182 
1183 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1184 bool early_pfn_in_nid(unsigned long pfn, int nid);
1185 #else
1186 #define early_pfn_in_nid(pfn, nid)	(1)
1187 #endif
1188 
1189 #ifndef early_pfn_valid
1190 #define early_pfn_valid(pfn)	(1)
1191 #endif
1192 
1193 void memory_present(int nid, unsigned long start, unsigned long end);
1194 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1195 
1196 /*
1197  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1198  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1199  * pfn_valid_within() should be used in this case; we optimise this away
1200  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1201  */
1202 #ifdef CONFIG_HOLES_IN_ZONE
1203 #define pfn_valid_within(pfn) pfn_valid(pfn)
1204 #else
1205 #define pfn_valid_within(pfn) (1)
1206 #endif
1207 
1208 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1209 /*
1210  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1211  * associated with it or not. In FLATMEM, it is expected that holes always
1212  * have valid memmap as long as there is valid PFNs either side of the hole.
1213  * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1214  * entire section.
1215  *
1216  * However, an ARM, and maybe other embedded architectures in the future
1217  * free memmap backing holes to save memory on the assumption the memmap is
1218  * never used. The page_zone linkages are then broken even though pfn_valid()
1219  * returns true. A walker of the full memmap must then do this additional
1220  * check to ensure the memmap they are looking at is sane by making sure
1221  * the zone and PFN linkages are still valid. This is expensive, but walkers
1222  * of the full memmap are extremely rare.
1223  */
1224 int memmap_valid_within(unsigned long pfn,
1225 					struct page *page, struct zone *zone);
1226 #else
1227 static inline int memmap_valid_within(unsigned long pfn,
1228 					struct page *page, struct zone *zone)
1229 {
1230 	return 1;
1231 }
1232 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1233 
1234 #endif /* !__GENERATING_BOUNDS.H */
1235 #endif /* !__ASSEMBLY__ */
1236 #endif /* _LINUX_MMZONE_H */
1237