xref: /linux-6.15/include/linux/mmzone.h (revision e4c694a3)
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3 
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6 
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21 
22 /* Free memory management - zoned buddy allocator.  */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29 
30 /*
31  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32  * costly to service.  That is between allocation orders which should
33  * coalesce naturally under reasonable reclaim pressure and those which
34  * will not.
35  */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37 
38 enum migratetype {
39 	MIGRATE_UNMOVABLE,
40 	MIGRATE_MOVABLE,
41 	MIGRATE_RECLAIMABLE,
42 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
43 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 	/*
46 	 * MIGRATE_CMA migration type is designed to mimic the way
47 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
48 	 * from MIGRATE_CMA pageblocks and page allocator never
49 	 * implicitly change migration type of MIGRATE_CMA pageblock.
50 	 *
51 	 * The way to use it is to change migratetype of a range of
52 	 * pageblocks to MIGRATE_CMA which can be done by
53 	 * __free_pageblock_cma() function.  What is important though
54 	 * is that a range of pageblocks must be aligned to
55 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 	 * a single pageblock.
57 	 */
58 	MIGRATE_CMA,
59 #endif
60 #ifdef CONFIG_MEMORY_ISOLATION
61 	MIGRATE_ISOLATE,	/* can't allocate from here */
62 #endif
63 	MIGRATE_TYPES
64 };
65 
66 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
67 extern char * const migratetype_names[MIGRATE_TYPES];
68 
69 #ifdef CONFIG_CMA
70 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
71 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
72 #else
73 #  define is_migrate_cma(migratetype) false
74 #  define is_migrate_cma_page(_page) false
75 #endif
76 
77 static inline bool is_migrate_movable(int mt)
78 {
79 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
80 }
81 
82 #define for_each_migratetype_order(order, type) \
83 	for (order = 0; order < MAX_ORDER; order++) \
84 		for (type = 0; type < MIGRATE_TYPES; type++)
85 
86 extern int page_group_by_mobility_disabled;
87 
88 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
89 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
90 
91 #define get_pageblock_migratetype(page)					\
92 	get_pfnblock_flags_mask(page, page_to_pfn(page),		\
93 			PB_migrate_end, MIGRATETYPE_MASK)
94 
95 struct free_area {
96 	struct list_head	free_list[MIGRATE_TYPES];
97 	unsigned long		nr_free;
98 };
99 
100 struct pglist_data;
101 
102 /*
103  * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
104  * So add a wild amount of padding here to ensure that they fall into separate
105  * cachelines.  There are very few zone structures in the machine, so space
106  * consumption is not a concern here.
107  */
108 #if defined(CONFIG_SMP)
109 struct zone_padding {
110 	char x[0];
111 } ____cacheline_internodealigned_in_smp;
112 #define ZONE_PADDING(name)	struct zone_padding name;
113 #else
114 #define ZONE_PADDING(name)
115 #endif
116 
117 enum zone_stat_item {
118 	/* First 128 byte cacheline (assuming 64 bit words) */
119 	NR_FREE_PAGES,
120 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
121 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
122 	NR_ZONE_ACTIVE_ANON,
123 	NR_ZONE_INACTIVE_FILE,
124 	NR_ZONE_ACTIVE_FILE,
125 	NR_ZONE_UNEVICTABLE,
126 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
127 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
128 	NR_PAGETABLE,		/* used for pagetables */
129 	NR_KERNEL_STACK_KB,	/* measured in KiB */
130 	/* Second 128 byte cacheline */
131 	NR_BOUNCE,
132 #if IS_ENABLED(CONFIG_ZSMALLOC)
133 	NR_ZSPAGES,		/* allocated in zsmalloc */
134 #endif
135 #ifdef CONFIG_NUMA
136 	NUMA_HIT,		/* allocated in intended node */
137 	NUMA_MISS,		/* allocated in non intended node */
138 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
139 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
140 	NUMA_LOCAL,		/* allocation from local node */
141 	NUMA_OTHER,		/* allocation from other node */
142 #endif
143 	NR_FREE_CMA_PAGES,
144 	NR_VM_ZONE_STAT_ITEMS };
145 
146 enum node_stat_item {
147 	NR_LRU_BASE,
148 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
149 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
150 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
151 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
152 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
153 	NR_SLAB_RECLAIMABLE,
154 	NR_SLAB_UNRECLAIMABLE,
155 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
156 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
157 	WORKINGSET_REFAULT,
158 	WORKINGSET_ACTIVATE,
159 	WORKINGSET_NODERECLAIM,
160 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
161 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
162 			   only modified from process context */
163 	NR_FILE_PAGES,
164 	NR_FILE_DIRTY,
165 	NR_WRITEBACK,
166 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
167 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
168 	NR_SHMEM_THPS,
169 	NR_SHMEM_PMDMAPPED,
170 	NR_ANON_THPS,
171 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
172 	NR_VMSCAN_WRITE,
173 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
174 	NR_DIRTIED,		/* page dirtyings since bootup */
175 	NR_WRITTEN,		/* page writings since bootup */
176 	NR_VM_NODE_STAT_ITEMS
177 };
178 
179 /*
180  * We do arithmetic on the LRU lists in various places in the code,
181  * so it is important to keep the active lists LRU_ACTIVE higher in
182  * the array than the corresponding inactive lists, and to keep
183  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
184  *
185  * This has to be kept in sync with the statistics in zone_stat_item
186  * above and the descriptions in vmstat_text in mm/vmstat.c
187  */
188 #define LRU_BASE 0
189 #define LRU_ACTIVE 1
190 #define LRU_FILE 2
191 
192 enum lru_list {
193 	LRU_INACTIVE_ANON = LRU_BASE,
194 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
195 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
196 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
197 	LRU_UNEVICTABLE,
198 	NR_LRU_LISTS
199 };
200 
201 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
202 
203 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
204 
205 static inline int is_file_lru(enum lru_list lru)
206 {
207 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
208 }
209 
210 static inline int is_active_lru(enum lru_list lru)
211 {
212 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
213 }
214 
215 struct zone_reclaim_stat {
216 	/*
217 	 * The pageout code in vmscan.c keeps track of how many of the
218 	 * mem/swap backed and file backed pages are referenced.
219 	 * The higher the rotated/scanned ratio, the more valuable
220 	 * that cache is.
221 	 *
222 	 * The anon LRU stats live in [0], file LRU stats in [1]
223 	 */
224 	unsigned long		recent_rotated[2];
225 	unsigned long		recent_scanned[2];
226 };
227 
228 struct lruvec {
229 	struct list_head		lists[NR_LRU_LISTS];
230 	struct zone_reclaim_stat	reclaim_stat;
231 	/* Evictions & activations on the inactive file list */
232 	atomic_long_t			inactive_age;
233 	/* Refaults at the time of last reclaim cycle */
234 	unsigned long			refaults;
235 #ifdef CONFIG_MEMCG
236 	struct pglist_data *pgdat;
237 #endif
238 };
239 
240 /* Mask used at gathering information at once (see memcontrol.c) */
241 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
242 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
243 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
244 
245 /* Isolate unmapped file */
246 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
247 /* Isolate for asynchronous migration */
248 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
249 /* Isolate unevictable pages */
250 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
251 
252 /* LRU Isolation modes. */
253 typedef unsigned __bitwise isolate_mode_t;
254 
255 enum zone_watermarks {
256 	WMARK_MIN,
257 	WMARK_LOW,
258 	WMARK_HIGH,
259 	NR_WMARK
260 };
261 
262 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
263 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
264 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
265 
266 struct per_cpu_pages {
267 	int count;		/* number of pages in the list */
268 	int high;		/* high watermark, emptying needed */
269 	int batch;		/* chunk size for buddy add/remove */
270 
271 	/* Lists of pages, one per migrate type stored on the pcp-lists */
272 	struct list_head lists[MIGRATE_PCPTYPES];
273 };
274 
275 struct per_cpu_pageset {
276 	struct per_cpu_pages pcp;
277 #ifdef CONFIG_NUMA
278 	s8 expire;
279 #endif
280 #ifdef CONFIG_SMP
281 	s8 stat_threshold;
282 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
283 #endif
284 };
285 
286 struct per_cpu_nodestat {
287 	s8 stat_threshold;
288 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
289 };
290 
291 #endif /* !__GENERATING_BOUNDS.H */
292 
293 enum zone_type {
294 #ifdef CONFIG_ZONE_DMA
295 	/*
296 	 * ZONE_DMA is used when there are devices that are not able
297 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
298 	 * carve out the portion of memory that is needed for these devices.
299 	 * The range is arch specific.
300 	 *
301 	 * Some examples
302 	 *
303 	 * Architecture		Limit
304 	 * ---------------------------
305 	 * parisc, ia64, sparc	<4G
306 	 * s390			<2G
307 	 * arm			Various
308 	 * alpha		Unlimited or 0-16MB.
309 	 *
310 	 * i386, x86_64 and multiple other arches
311 	 * 			<16M.
312 	 */
313 	ZONE_DMA,
314 #endif
315 #ifdef CONFIG_ZONE_DMA32
316 	/*
317 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
318 	 * only able to do DMA to the lower 16M but also 32 bit devices that
319 	 * can only do DMA areas below 4G.
320 	 */
321 	ZONE_DMA32,
322 #endif
323 	/*
324 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
325 	 * performed on pages in ZONE_NORMAL if the DMA devices support
326 	 * transfers to all addressable memory.
327 	 */
328 	ZONE_NORMAL,
329 #ifdef CONFIG_HIGHMEM
330 	/*
331 	 * A memory area that is only addressable by the kernel through
332 	 * mapping portions into its own address space. This is for example
333 	 * used by i386 to allow the kernel to address the memory beyond
334 	 * 900MB. The kernel will set up special mappings (page
335 	 * table entries on i386) for each page that the kernel needs to
336 	 * access.
337 	 */
338 	ZONE_HIGHMEM,
339 #endif
340 	ZONE_MOVABLE,
341 #ifdef CONFIG_ZONE_DEVICE
342 	ZONE_DEVICE,
343 #endif
344 	__MAX_NR_ZONES
345 
346 };
347 
348 #ifndef __GENERATING_BOUNDS_H
349 
350 struct zone {
351 	/* Read-mostly fields */
352 
353 	/* zone watermarks, access with *_wmark_pages(zone) macros */
354 	unsigned long watermark[NR_WMARK];
355 
356 	unsigned long nr_reserved_highatomic;
357 
358 	/*
359 	 * We don't know if the memory that we're going to allocate will be
360 	 * freeable or/and it will be released eventually, so to avoid totally
361 	 * wasting several GB of ram we must reserve some of the lower zone
362 	 * memory (otherwise we risk to run OOM on the lower zones despite
363 	 * there being tons of freeable ram on the higher zones).  This array is
364 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
365 	 * changes.
366 	 */
367 	long lowmem_reserve[MAX_NR_ZONES];
368 
369 #ifdef CONFIG_NUMA
370 	int node;
371 #endif
372 	struct pglist_data	*zone_pgdat;
373 	struct per_cpu_pageset __percpu *pageset;
374 
375 #ifndef CONFIG_SPARSEMEM
376 	/*
377 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
378 	 * In SPARSEMEM, this map is stored in struct mem_section
379 	 */
380 	unsigned long		*pageblock_flags;
381 #endif /* CONFIG_SPARSEMEM */
382 
383 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
384 	unsigned long		zone_start_pfn;
385 
386 	/*
387 	 * spanned_pages is the total pages spanned by the zone, including
388 	 * holes, which is calculated as:
389 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
390 	 *
391 	 * present_pages is physical pages existing within the zone, which
392 	 * is calculated as:
393 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
394 	 *
395 	 * managed_pages is present pages managed by the buddy system, which
396 	 * is calculated as (reserved_pages includes pages allocated by the
397 	 * bootmem allocator):
398 	 *	managed_pages = present_pages - reserved_pages;
399 	 *
400 	 * So present_pages may be used by memory hotplug or memory power
401 	 * management logic to figure out unmanaged pages by checking
402 	 * (present_pages - managed_pages). And managed_pages should be used
403 	 * by page allocator and vm scanner to calculate all kinds of watermarks
404 	 * and thresholds.
405 	 *
406 	 * Locking rules:
407 	 *
408 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
409 	 * It is a seqlock because it has to be read outside of zone->lock,
410 	 * and it is done in the main allocator path.  But, it is written
411 	 * quite infrequently.
412 	 *
413 	 * The span_seq lock is declared along with zone->lock because it is
414 	 * frequently read in proximity to zone->lock.  It's good to
415 	 * give them a chance of being in the same cacheline.
416 	 *
417 	 * Write access to present_pages at runtime should be protected by
418 	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
419 	 * present_pages should get_online_mems() to get a stable value.
420 	 *
421 	 * Read access to managed_pages should be safe because it's unsigned
422 	 * long. Write access to zone->managed_pages and totalram_pages are
423 	 * protected by managed_page_count_lock at runtime. Idealy only
424 	 * adjust_managed_page_count() should be used instead of directly
425 	 * touching zone->managed_pages and totalram_pages.
426 	 */
427 	unsigned long		managed_pages;
428 	unsigned long		spanned_pages;
429 	unsigned long		present_pages;
430 
431 	const char		*name;
432 
433 #ifdef CONFIG_MEMORY_ISOLATION
434 	/*
435 	 * Number of isolated pageblock. It is used to solve incorrect
436 	 * freepage counting problem due to racy retrieving migratetype
437 	 * of pageblock. Protected by zone->lock.
438 	 */
439 	unsigned long		nr_isolate_pageblock;
440 #endif
441 
442 #ifdef CONFIG_MEMORY_HOTPLUG
443 	/* see spanned/present_pages for more description */
444 	seqlock_t		span_seqlock;
445 #endif
446 
447 	int initialized;
448 
449 	/* Write-intensive fields used from the page allocator */
450 	ZONE_PADDING(_pad1_)
451 
452 	/* free areas of different sizes */
453 	struct free_area	free_area[MAX_ORDER];
454 
455 	/* zone flags, see below */
456 	unsigned long		flags;
457 
458 	/* Primarily protects free_area */
459 	spinlock_t		lock;
460 
461 	/* Write-intensive fields used by compaction and vmstats. */
462 	ZONE_PADDING(_pad2_)
463 
464 	/*
465 	 * When free pages are below this point, additional steps are taken
466 	 * when reading the number of free pages to avoid per-cpu counter
467 	 * drift allowing watermarks to be breached
468 	 */
469 	unsigned long percpu_drift_mark;
470 
471 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
472 	/* pfn where compaction free scanner should start */
473 	unsigned long		compact_cached_free_pfn;
474 	/* pfn where async and sync compaction migration scanner should start */
475 	unsigned long		compact_cached_migrate_pfn[2];
476 #endif
477 
478 #ifdef CONFIG_COMPACTION
479 	/*
480 	 * On compaction failure, 1<<compact_defer_shift compactions
481 	 * are skipped before trying again. The number attempted since
482 	 * last failure is tracked with compact_considered.
483 	 */
484 	unsigned int		compact_considered;
485 	unsigned int		compact_defer_shift;
486 	int			compact_order_failed;
487 #endif
488 
489 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
490 	/* Set to true when the PG_migrate_skip bits should be cleared */
491 	bool			compact_blockskip_flush;
492 #endif
493 
494 	bool			contiguous;
495 
496 	ZONE_PADDING(_pad3_)
497 	/* Zone statistics */
498 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
499 } ____cacheline_internodealigned_in_smp;
500 
501 enum pgdat_flags {
502 	PGDAT_CONGESTED,		/* pgdat has many dirty pages backed by
503 					 * a congested BDI
504 					 */
505 	PGDAT_DIRTY,			/* reclaim scanning has recently found
506 					 * many dirty file pages at the tail
507 					 * of the LRU.
508 					 */
509 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
510 					 * many pages under writeback
511 					 */
512 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
513 };
514 
515 static inline unsigned long zone_end_pfn(const struct zone *zone)
516 {
517 	return zone->zone_start_pfn + zone->spanned_pages;
518 }
519 
520 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
521 {
522 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
523 }
524 
525 static inline bool zone_is_initialized(struct zone *zone)
526 {
527 	return zone->initialized;
528 }
529 
530 static inline bool zone_is_empty(struct zone *zone)
531 {
532 	return zone->spanned_pages == 0;
533 }
534 
535 /*
536  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
537  * intersection with the given zone
538  */
539 static inline bool zone_intersects(struct zone *zone,
540 		unsigned long start_pfn, unsigned long nr_pages)
541 {
542 	if (zone_is_empty(zone))
543 		return false;
544 	if (start_pfn >= zone_end_pfn(zone) ||
545 	    start_pfn + nr_pages <= zone->zone_start_pfn)
546 		return false;
547 
548 	return true;
549 }
550 
551 /*
552  * The "priority" of VM scanning is how much of the queues we will scan in one
553  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
554  * queues ("queue_length >> 12") during an aging round.
555  */
556 #define DEF_PRIORITY 12
557 
558 /* Maximum number of zones on a zonelist */
559 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
560 
561 enum {
562 	ZONELIST_FALLBACK,	/* zonelist with fallback */
563 #ifdef CONFIG_NUMA
564 	/*
565 	 * The NUMA zonelists are doubled because we need zonelists that
566 	 * restrict the allocations to a single node for __GFP_THISNODE.
567 	 */
568 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
569 #endif
570 	MAX_ZONELISTS
571 };
572 
573 /*
574  * This struct contains information about a zone in a zonelist. It is stored
575  * here to avoid dereferences into large structures and lookups of tables
576  */
577 struct zoneref {
578 	struct zone *zone;	/* Pointer to actual zone */
579 	int zone_idx;		/* zone_idx(zoneref->zone) */
580 };
581 
582 /*
583  * One allocation request operates on a zonelist. A zonelist
584  * is a list of zones, the first one is the 'goal' of the
585  * allocation, the other zones are fallback zones, in decreasing
586  * priority.
587  *
588  * To speed the reading of the zonelist, the zonerefs contain the zone index
589  * of the entry being read. Helper functions to access information given
590  * a struct zoneref are
591  *
592  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
593  * zonelist_zone_idx()	- Return the index of the zone for an entry
594  * zonelist_node_idx()	- Return the index of the node for an entry
595  */
596 struct zonelist {
597 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
598 };
599 
600 #ifndef CONFIG_DISCONTIGMEM
601 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
602 extern struct page *mem_map;
603 #endif
604 
605 /*
606  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
607  * (mostly NUMA machines?) to denote a higher-level memory zone than the
608  * zone denotes.
609  *
610  * On NUMA machines, each NUMA node would have a pg_data_t to describe
611  * it's memory layout.
612  *
613  * Memory statistics and page replacement data structures are maintained on a
614  * per-zone basis.
615  */
616 struct bootmem_data;
617 typedef struct pglist_data {
618 	struct zone node_zones[MAX_NR_ZONES];
619 	struct zonelist node_zonelists[MAX_ZONELISTS];
620 	int nr_zones;
621 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
622 	struct page *node_mem_map;
623 #ifdef CONFIG_PAGE_EXTENSION
624 	struct page_ext *node_page_ext;
625 #endif
626 #endif
627 #ifndef CONFIG_NO_BOOTMEM
628 	struct bootmem_data *bdata;
629 #endif
630 #ifdef CONFIG_MEMORY_HOTPLUG
631 	/*
632 	 * Must be held any time you expect node_start_pfn, node_present_pages
633 	 * or node_spanned_pages stay constant.  Holding this will also
634 	 * guarantee that any pfn_valid() stays that way.
635 	 *
636 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
637 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
638 	 *
639 	 * Nests above zone->lock and zone->span_seqlock
640 	 */
641 	spinlock_t node_size_lock;
642 #endif
643 	unsigned long node_start_pfn;
644 	unsigned long node_present_pages; /* total number of physical pages */
645 	unsigned long node_spanned_pages; /* total size of physical page
646 					     range, including holes */
647 	int node_id;
648 	wait_queue_head_t kswapd_wait;
649 	wait_queue_head_t pfmemalloc_wait;
650 	struct task_struct *kswapd;	/* Protected by
651 					   mem_hotplug_begin/end() */
652 	int kswapd_order;
653 	enum zone_type kswapd_classzone_idx;
654 
655 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
656 
657 #ifdef CONFIG_COMPACTION
658 	int kcompactd_max_order;
659 	enum zone_type kcompactd_classzone_idx;
660 	wait_queue_head_t kcompactd_wait;
661 	struct task_struct *kcompactd;
662 #endif
663 #ifdef CONFIG_NUMA_BALANCING
664 	/* Lock serializing the migrate rate limiting window */
665 	spinlock_t numabalancing_migrate_lock;
666 
667 	/* Rate limiting time interval */
668 	unsigned long numabalancing_migrate_next_window;
669 
670 	/* Number of pages migrated during the rate limiting time interval */
671 	unsigned long numabalancing_migrate_nr_pages;
672 #endif
673 	/*
674 	 * This is a per-node reserve of pages that are not available
675 	 * to userspace allocations.
676 	 */
677 	unsigned long		totalreserve_pages;
678 
679 #ifdef CONFIG_NUMA
680 	/*
681 	 * zone reclaim becomes active if more unmapped pages exist.
682 	 */
683 	unsigned long		min_unmapped_pages;
684 	unsigned long		min_slab_pages;
685 #endif /* CONFIG_NUMA */
686 
687 	/* Write-intensive fields used by page reclaim */
688 	ZONE_PADDING(_pad1_)
689 	spinlock_t		lru_lock;
690 
691 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
692 	/*
693 	 * If memory initialisation on large machines is deferred then this
694 	 * is the first PFN that needs to be initialised.
695 	 */
696 	unsigned long first_deferred_pfn;
697 	unsigned long static_init_size;
698 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
699 
700 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
701 	spinlock_t split_queue_lock;
702 	struct list_head split_queue;
703 	unsigned long split_queue_len;
704 #endif
705 
706 	/* Fields commonly accessed by the page reclaim scanner */
707 	struct lruvec		lruvec;
708 
709 	/*
710 	 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
711 	 * this node's LRU.  Maintained by the pageout code.
712 	 */
713 	unsigned int inactive_ratio;
714 
715 	unsigned long		flags;
716 
717 	ZONE_PADDING(_pad2_)
718 
719 	/* Per-node vmstats */
720 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
721 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
722 } pg_data_t;
723 
724 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
725 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
726 #ifdef CONFIG_FLAT_NODE_MEM_MAP
727 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
728 #else
729 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
730 #endif
731 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
732 
733 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
734 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
735 static inline spinlock_t *zone_lru_lock(struct zone *zone)
736 {
737 	return &zone->zone_pgdat->lru_lock;
738 }
739 
740 static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
741 {
742 	return &pgdat->lruvec;
743 }
744 
745 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
746 {
747 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
748 }
749 
750 static inline bool pgdat_is_empty(pg_data_t *pgdat)
751 {
752 	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
753 }
754 
755 static inline int zone_id(const struct zone *zone)
756 {
757 	struct pglist_data *pgdat = zone->zone_pgdat;
758 
759 	return zone - pgdat->node_zones;
760 }
761 
762 #ifdef CONFIG_ZONE_DEVICE
763 static inline bool is_dev_zone(const struct zone *zone)
764 {
765 	return zone_id(zone) == ZONE_DEVICE;
766 }
767 #else
768 static inline bool is_dev_zone(const struct zone *zone)
769 {
770 	return false;
771 }
772 #endif
773 
774 #include <linux/memory_hotplug.h>
775 
776 extern struct mutex zonelists_mutex;
777 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
778 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
779 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
780 			 int classzone_idx, unsigned int alloc_flags,
781 			 long free_pages);
782 bool zone_watermark_ok(struct zone *z, unsigned int order,
783 		unsigned long mark, int classzone_idx,
784 		unsigned int alloc_flags);
785 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
786 		unsigned long mark, int classzone_idx);
787 enum memmap_context {
788 	MEMMAP_EARLY,
789 	MEMMAP_HOTPLUG,
790 };
791 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
792 				     unsigned long size);
793 
794 extern void lruvec_init(struct lruvec *lruvec);
795 
796 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
797 {
798 #ifdef CONFIG_MEMCG
799 	return lruvec->pgdat;
800 #else
801 	return container_of(lruvec, struct pglist_data, lruvec);
802 #endif
803 }
804 
805 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
806 
807 #ifdef CONFIG_HAVE_MEMORY_PRESENT
808 void memory_present(int nid, unsigned long start, unsigned long end);
809 #else
810 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
811 #endif
812 
813 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
814 int local_memory_node(int node_id);
815 #else
816 static inline int local_memory_node(int node_id) { return node_id; };
817 #endif
818 
819 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
820 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
821 #endif
822 
823 /*
824  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
825  */
826 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
827 
828 /*
829  * Returns true if a zone has pages managed by the buddy allocator.
830  * All the reclaim decisions have to use this function rather than
831  * populated_zone(). If the whole zone is reserved then we can easily
832  * end up with populated_zone() && !managed_zone().
833  */
834 static inline bool managed_zone(struct zone *zone)
835 {
836 	return zone->managed_pages;
837 }
838 
839 /* Returns true if a zone has memory */
840 static inline bool populated_zone(struct zone *zone)
841 {
842 	return zone->present_pages;
843 }
844 
845 extern int movable_zone;
846 
847 #ifdef CONFIG_HIGHMEM
848 static inline int zone_movable_is_highmem(void)
849 {
850 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
851 	return movable_zone == ZONE_HIGHMEM;
852 #else
853 	return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
854 #endif
855 }
856 #endif
857 
858 static inline int is_highmem_idx(enum zone_type idx)
859 {
860 #ifdef CONFIG_HIGHMEM
861 	return (idx == ZONE_HIGHMEM ||
862 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
863 #else
864 	return 0;
865 #endif
866 }
867 
868 /**
869  * is_highmem - helper function to quickly check if a struct zone is a
870  *              highmem zone or not.  This is an attempt to keep references
871  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
872  * @zone - pointer to struct zone variable
873  */
874 static inline int is_highmem(struct zone *zone)
875 {
876 #ifdef CONFIG_HIGHMEM
877 	return is_highmem_idx(zone_idx(zone));
878 #else
879 	return 0;
880 #endif
881 }
882 
883 /* These two functions are used to setup the per zone pages min values */
884 struct ctl_table;
885 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
886 					void __user *, size_t *, loff_t *);
887 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
888 					void __user *, size_t *, loff_t *);
889 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
890 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
891 					void __user *, size_t *, loff_t *);
892 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
893 					void __user *, size_t *, loff_t *);
894 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
895 			void __user *, size_t *, loff_t *);
896 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
897 			void __user *, size_t *, loff_t *);
898 
899 extern int numa_zonelist_order_handler(struct ctl_table *, int,
900 			void __user *, size_t *, loff_t *);
901 extern char numa_zonelist_order[];
902 #define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */
903 
904 #ifndef CONFIG_NEED_MULTIPLE_NODES
905 
906 extern struct pglist_data contig_page_data;
907 #define NODE_DATA(nid)		(&contig_page_data)
908 #define NODE_MEM_MAP(nid)	mem_map
909 
910 #else /* CONFIG_NEED_MULTIPLE_NODES */
911 
912 #include <asm/mmzone.h>
913 
914 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
915 
916 extern struct pglist_data *first_online_pgdat(void);
917 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
918 extern struct zone *next_zone(struct zone *zone);
919 
920 /**
921  * for_each_online_pgdat - helper macro to iterate over all online nodes
922  * @pgdat - pointer to a pg_data_t variable
923  */
924 #define for_each_online_pgdat(pgdat)			\
925 	for (pgdat = first_online_pgdat();		\
926 	     pgdat;					\
927 	     pgdat = next_online_pgdat(pgdat))
928 /**
929  * for_each_zone - helper macro to iterate over all memory zones
930  * @zone - pointer to struct zone variable
931  *
932  * The user only needs to declare the zone variable, for_each_zone
933  * fills it in.
934  */
935 #define for_each_zone(zone)			        \
936 	for (zone = (first_online_pgdat())->node_zones; \
937 	     zone;					\
938 	     zone = next_zone(zone))
939 
940 #define for_each_populated_zone(zone)		        \
941 	for (zone = (first_online_pgdat())->node_zones; \
942 	     zone;					\
943 	     zone = next_zone(zone))			\
944 		if (!populated_zone(zone))		\
945 			; /* do nothing */		\
946 		else
947 
948 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
949 {
950 	return zoneref->zone;
951 }
952 
953 static inline int zonelist_zone_idx(struct zoneref *zoneref)
954 {
955 	return zoneref->zone_idx;
956 }
957 
958 static inline int zonelist_node_idx(struct zoneref *zoneref)
959 {
960 #ifdef CONFIG_NUMA
961 	/* zone_to_nid not available in this context */
962 	return zoneref->zone->node;
963 #else
964 	return 0;
965 #endif /* CONFIG_NUMA */
966 }
967 
968 struct zoneref *__next_zones_zonelist(struct zoneref *z,
969 					enum zone_type highest_zoneidx,
970 					nodemask_t *nodes);
971 
972 /**
973  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
974  * @z - The cursor used as a starting point for the search
975  * @highest_zoneidx - The zone index of the highest zone to return
976  * @nodes - An optional nodemask to filter the zonelist with
977  *
978  * This function returns the next zone at or below a given zone index that is
979  * within the allowed nodemask using a cursor as the starting point for the
980  * search. The zoneref returned is a cursor that represents the current zone
981  * being examined. It should be advanced by one before calling
982  * next_zones_zonelist again.
983  */
984 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
985 					enum zone_type highest_zoneidx,
986 					nodemask_t *nodes)
987 {
988 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
989 		return z;
990 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
991 }
992 
993 /**
994  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
995  * @zonelist - The zonelist to search for a suitable zone
996  * @highest_zoneidx - The zone index of the highest zone to return
997  * @nodes - An optional nodemask to filter the zonelist with
998  * @return - Zoneref pointer for the first suitable zone found (see below)
999  *
1000  * This function returns the first zone at or below a given zone index that is
1001  * within the allowed nodemask. The zoneref returned is a cursor that can be
1002  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1003  * one before calling.
1004  *
1005  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1006  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1007  * update due to cpuset modification.
1008  */
1009 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1010 					enum zone_type highest_zoneidx,
1011 					nodemask_t *nodes)
1012 {
1013 	return next_zones_zonelist(zonelist->_zonerefs,
1014 							highest_zoneidx, nodes);
1015 }
1016 
1017 /**
1018  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1019  * @zone - The current zone in the iterator
1020  * @z - The current pointer within zonelist->zones being iterated
1021  * @zlist - The zonelist being iterated
1022  * @highidx - The zone index of the highest zone to return
1023  * @nodemask - Nodemask allowed by the allocator
1024  *
1025  * This iterator iterates though all zones at or below a given zone index and
1026  * within a given nodemask
1027  */
1028 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1029 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1030 		zone;							\
1031 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1032 			zone = zonelist_zone(z))
1033 
1034 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1035 	for (zone = z->zone;	\
1036 		zone;							\
1037 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1038 			zone = zonelist_zone(z))
1039 
1040 
1041 /**
1042  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1043  * @zone - The current zone in the iterator
1044  * @z - The current pointer within zonelist->zones being iterated
1045  * @zlist - The zonelist being iterated
1046  * @highidx - The zone index of the highest zone to return
1047  *
1048  * This iterator iterates though all zones at or below a given zone index.
1049  */
1050 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1051 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1052 
1053 #ifdef CONFIG_SPARSEMEM
1054 #include <asm/sparsemem.h>
1055 #endif
1056 
1057 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1058 	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1059 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1060 {
1061 	return 0;
1062 }
1063 #endif
1064 
1065 #ifdef CONFIG_FLATMEM
1066 #define pfn_to_nid(pfn)		(0)
1067 #endif
1068 
1069 #ifdef CONFIG_SPARSEMEM
1070 
1071 /*
1072  * SECTION_SHIFT    		#bits space required to store a section #
1073  *
1074  * PA_SECTION_SHIFT		physical address to/from section number
1075  * PFN_SECTION_SHIFT		pfn to/from section number
1076  */
1077 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1078 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1079 
1080 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1081 
1082 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1083 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1084 
1085 #define SECTION_BLOCKFLAGS_BITS \
1086 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1087 
1088 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1089 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1090 #endif
1091 
1092 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1093 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1094 
1095 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1096 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1097 
1098 struct page;
1099 struct page_ext;
1100 struct mem_section {
1101 	/*
1102 	 * This is, logically, a pointer to an array of struct
1103 	 * pages.  However, it is stored with some other magic.
1104 	 * (see sparse.c::sparse_init_one_section())
1105 	 *
1106 	 * Additionally during early boot we encode node id of
1107 	 * the location of the section here to guide allocation.
1108 	 * (see sparse.c::memory_present())
1109 	 *
1110 	 * Making it a UL at least makes someone do a cast
1111 	 * before using it wrong.
1112 	 */
1113 	unsigned long section_mem_map;
1114 
1115 	/* See declaration of similar field in struct zone */
1116 	unsigned long *pageblock_flags;
1117 #ifdef CONFIG_PAGE_EXTENSION
1118 	/*
1119 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1120 	 * section. (see page_ext.h about this.)
1121 	 */
1122 	struct page_ext *page_ext;
1123 	unsigned long pad;
1124 #endif
1125 	/*
1126 	 * WARNING: mem_section must be a power-of-2 in size for the
1127 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1128 	 */
1129 };
1130 
1131 #ifdef CONFIG_SPARSEMEM_EXTREME
1132 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1133 #else
1134 #define SECTIONS_PER_ROOT	1
1135 #endif
1136 
1137 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1138 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1139 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1140 
1141 #ifdef CONFIG_SPARSEMEM_EXTREME
1142 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1143 #else
1144 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1145 #endif
1146 
1147 static inline struct mem_section *__nr_to_section(unsigned long nr)
1148 {
1149 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1150 		return NULL;
1151 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1152 }
1153 extern int __section_nr(struct mem_section* ms);
1154 extern unsigned long usemap_size(void);
1155 
1156 /*
1157  * We use the lower bits of the mem_map pointer to store
1158  * a little bit of information.  There should be at least
1159  * 3 bits here due to 32-bit alignment.
1160  */
1161 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1162 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1163 #define SECTION_IS_ONLINE	(1UL<<2)
1164 #define SECTION_MAP_LAST_BIT	(1UL<<3)
1165 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1166 #define SECTION_NID_SHIFT	3
1167 
1168 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1169 {
1170 	unsigned long map = section->section_mem_map;
1171 	map &= SECTION_MAP_MASK;
1172 	return (struct page *)map;
1173 }
1174 
1175 static inline int present_section(struct mem_section *section)
1176 {
1177 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1178 }
1179 
1180 static inline int present_section_nr(unsigned long nr)
1181 {
1182 	return present_section(__nr_to_section(nr));
1183 }
1184 
1185 static inline int valid_section(struct mem_section *section)
1186 {
1187 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1188 }
1189 
1190 static inline int valid_section_nr(unsigned long nr)
1191 {
1192 	return valid_section(__nr_to_section(nr));
1193 }
1194 
1195 static inline int online_section(struct mem_section *section)
1196 {
1197 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1198 }
1199 
1200 static inline int online_section_nr(unsigned long nr)
1201 {
1202 	return online_section(__nr_to_section(nr));
1203 }
1204 
1205 #ifdef CONFIG_MEMORY_HOTPLUG
1206 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1207 #ifdef CONFIG_MEMORY_HOTREMOVE
1208 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1209 #endif
1210 #endif
1211 
1212 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1213 {
1214 	return __nr_to_section(pfn_to_section_nr(pfn));
1215 }
1216 
1217 extern int __highest_present_section_nr;
1218 
1219 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1220 static inline int pfn_valid(unsigned long pfn)
1221 {
1222 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1223 		return 0;
1224 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1225 }
1226 #endif
1227 
1228 static inline int pfn_present(unsigned long pfn)
1229 {
1230 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1231 		return 0;
1232 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1233 }
1234 
1235 /*
1236  * These are _only_ used during initialisation, therefore they
1237  * can use __initdata ...  They could have names to indicate
1238  * this restriction.
1239  */
1240 #ifdef CONFIG_NUMA
1241 #define pfn_to_nid(pfn)							\
1242 ({									\
1243 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1244 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1245 })
1246 #else
1247 #define pfn_to_nid(pfn)		(0)
1248 #endif
1249 
1250 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1251 void sparse_init(void);
1252 #else
1253 #define sparse_init()	do {} while (0)
1254 #define sparse_index_init(_sec, _nid)  do {} while (0)
1255 #endif /* CONFIG_SPARSEMEM */
1256 
1257 /*
1258  * During memory init memblocks map pfns to nids. The search is expensive and
1259  * this caches recent lookups. The implementation of __early_pfn_to_nid
1260  * may treat start/end as pfns or sections.
1261  */
1262 struct mminit_pfnnid_cache {
1263 	unsigned long last_start;
1264 	unsigned long last_end;
1265 	int last_nid;
1266 };
1267 
1268 #ifndef early_pfn_valid
1269 #define early_pfn_valid(pfn)	(1)
1270 #endif
1271 
1272 void memory_present(int nid, unsigned long start, unsigned long end);
1273 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1274 
1275 /*
1276  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1277  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1278  * pfn_valid_within() should be used in this case; we optimise this away
1279  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1280  */
1281 #ifdef CONFIG_HOLES_IN_ZONE
1282 #define pfn_valid_within(pfn) pfn_valid(pfn)
1283 #else
1284 #define pfn_valid_within(pfn) (1)
1285 #endif
1286 
1287 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1288 /*
1289  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1290  * associated with it or not. This means that a struct page exists for this
1291  * pfn. The caller cannot assume the page is fully initialized in general.
1292  * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1293  * will ensure the struct page is fully online and initialized. Special pages
1294  * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1295  *
1296  * In FLATMEM, it is expected that holes always have valid memmap as long as
1297  * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1298  * that a valid section has a memmap for the entire section.
1299  *
1300  * However, an ARM, and maybe other embedded architectures in the future
1301  * free memmap backing holes to save memory on the assumption the memmap is
1302  * never used. The page_zone linkages are then broken even though pfn_valid()
1303  * returns true. A walker of the full memmap must then do this additional
1304  * check to ensure the memmap they are looking at is sane by making sure
1305  * the zone and PFN linkages are still valid. This is expensive, but walkers
1306  * of the full memmap are extremely rare.
1307  */
1308 bool memmap_valid_within(unsigned long pfn,
1309 					struct page *page, struct zone *zone);
1310 #else
1311 static inline bool memmap_valid_within(unsigned long pfn,
1312 					struct page *page, struct zone *zone)
1313 {
1314 	return true;
1315 }
1316 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1317 
1318 #endif /* !__GENERATING_BOUNDS.H */
1319 #endif /* !__ASSEMBLY__ */
1320 #endif /* _LINUX_MMZONE_H */
1321