1 #ifndef _LINUX_MMZONE_H 2 #define _LINUX_MMZONE_H 3 4 #ifndef __ASSEMBLY__ 5 #ifndef __GENERATING_BOUNDS_H 6 7 #include <linux/spinlock.h> 8 #include <linux/list.h> 9 #include <linux/wait.h> 10 #include <linux/bitops.h> 11 #include <linux/cache.h> 12 #include <linux/threads.h> 13 #include <linux/numa.h> 14 #include <linux/init.h> 15 #include <linux/seqlock.h> 16 #include <linux/nodemask.h> 17 #include <linux/pageblock-flags.h> 18 #include <linux/page-flags-layout.h> 19 #include <linux/atomic.h> 20 #include <asm/page.h> 21 22 /* Free memory management - zoned buddy allocator. */ 23 #ifndef CONFIG_FORCE_MAX_ZONEORDER 24 #define MAX_ORDER 11 25 #else 26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 27 #endif 28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 29 30 /* 31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 32 * costly to service. That is between allocation orders which should 33 * coalesce naturally under reasonable reclaim pressure and those which 34 * will not. 35 */ 36 #define PAGE_ALLOC_COSTLY_ORDER 3 37 38 enum { 39 MIGRATE_UNMOVABLE, 40 MIGRATE_RECLAIMABLE, 41 MIGRATE_MOVABLE, 42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 43 MIGRATE_RESERVE = MIGRATE_PCPTYPES, 44 #ifdef CONFIG_CMA 45 /* 46 * MIGRATE_CMA migration type is designed to mimic the way 47 * ZONE_MOVABLE works. Only movable pages can be allocated 48 * from MIGRATE_CMA pageblocks and page allocator never 49 * implicitly change migration type of MIGRATE_CMA pageblock. 50 * 51 * The way to use it is to change migratetype of a range of 52 * pageblocks to MIGRATE_CMA which can be done by 53 * __free_pageblock_cma() function. What is important though 54 * is that a range of pageblocks must be aligned to 55 * MAX_ORDER_NR_PAGES should biggest page be bigger then 56 * a single pageblock. 57 */ 58 MIGRATE_CMA, 59 #endif 60 #ifdef CONFIG_MEMORY_ISOLATION 61 MIGRATE_ISOLATE, /* can't allocate from here */ 62 #endif 63 MIGRATE_TYPES 64 }; 65 66 #ifdef CONFIG_CMA 67 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 68 #else 69 # define is_migrate_cma(migratetype) false 70 #endif 71 72 #define for_each_migratetype_order(order, type) \ 73 for (order = 0; order < MAX_ORDER; order++) \ 74 for (type = 0; type < MIGRATE_TYPES; type++) 75 76 extern int page_group_by_mobility_disabled; 77 78 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1) 79 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1) 80 81 #define get_pageblock_migratetype(page) \ 82 get_pfnblock_flags_mask(page, page_to_pfn(page), \ 83 PB_migrate_end, MIGRATETYPE_MASK) 84 85 static inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 86 { 87 BUILD_BUG_ON(PB_migrate_end - PB_migrate != 2); 88 return get_pfnblock_flags_mask(page, pfn, PB_migrate_end, 89 MIGRATETYPE_MASK); 90 } 91 92 struct free_area { 93 struct list_head free_list[MIGRATE_TYPES]; 94 unsigned long nr_free; 95 }; 96 97 struct pglist_data; 98 99 /* 100 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 101 * So add a wild amount of padding here to ensure that they fall into separate 102 * cachelines. There are very few zone structures in the machine, so space 103 * consumption is not a concern here. 104 */ 105 #if defined(CONFIG_SMP) 106 struct zone_padding { 107 char x[0]; 108 } ____cacheline_internodealigned_in_smp; 109 #define ZONE_PADDING(name) struct zone_padding name; 110 #else 111 #define ZONE_PADDING(name) 112 #endif 113 114 enum zone_stat_item { 115 /* First 128 byte cacheline (assuming 64 bit words) */ 116 NR_FREE_PAGES, 117 NR_ALLOC_BATCH, 118 NR_LRU_BASE, 119 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 120 NR_ACTIVE_ANON, /* " " " " " */ 121 NR_INACTIVE_FILE, /* " " " " " */ 122 NR_ACTIVE_FILE, /* " " " " " */ 123 NR_UNEVICTABLE, /* " " " " " */ 124 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 125 NR_ANON_PAGES, /* Mapped anonymous pages */ 126 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 127 only modified from process context */ 128 NR_FILE_PAGES, 129 NR_FILE_DIRTY, 130 NR_WRITEBACK, 131 NR_SLAB_RECLAIMABLE, 132 NR_SLAB_UNRECLAIMABLE, 133 NR_PAGETABLE, /* used for pagetables */ 134 NR_KERNEL_STACK, 135 /* Second 128 byte cacheline */ 136 NR_UNSTABLE_NFS, /* NFS unstable pages */ 137 NR_BOUNCE, 138 NR_VMSCAN_WRITE, 139 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 140 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 141 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 142 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 143 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 144 NR_DIRTIED, /* page dirtyings since bootup */ 145 NR_WRITTEN, /* page writings since bootup */ 146 NR_PAGES_SCANNED, /* pages scanned since last reclaim */ 147 #ifdef CONFIG_NUMA 148 NUMA_HIT, /* allocated in intended node */ 149 NUMA_MISS, /* allocated in non intended node */ 150 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 151 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 152 NUMA_LOCAL, /* allocation from local node */ 153 NUMA_OTHER, /* allocation from other node */ 154 #endif 155 WORKINGSET_REFAULT, 156 WORKINGSET_ACTIVATE, 157 WORKINGSET_NODERECLAIM, 158 NR_ANON_TRANSPARENT_HUGEPAGES, 159 NR_FREE_CMA_PAGES, 160 NR_VM_ZONE_STAT_ITEMS }; 161 162 /* 163 * We do arithmetic on the LRU lists in various places in the code, 164 * so it is important to keep the active lists LRU_ACTIVE higher in 165 * the array than the corresponding inactive lists, and to keep 166 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 167 * 168 * This has to be kept in sync with the statistics in zone_stat_item 169 * above and the descriptions in vmstat_text in mm/vmstat.c 170 */ 171 #define LRU_BASE 0 172 #define LRU_ACTIVE 1 173 #define LRU_FILE 2 174 175 enum lru_list { 176 LRU_INACTIVE_ANON = LRU_BASE, 177 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 178 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 179 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 180 LRU_UNEVICTABLE, 181 NR_LRU_LISTS 182 }; 183 184 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 185 186 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 187 188 static inline int is_file_lru(enum lru_list lru) 189 { 190 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 191 } 192 193 static inline int is_active_lru(enum lru_list lru) 194 { 195 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 196 } 197 198 static inline int is_unevictable_lru(enum lru_list lru) 199 { 200 return (lru == LRU_UNEVICTABLE); 201 } 202 203 struct zone_reclaim_stat { 204 /* 205 * The pageout code in vmscan.c keeps track of how many of the 206 * mem/swap backed and file backed pages are referenced. 207 * The higher the rotated/scanned ratio, the more valuable 208 * that cache is. 209 * 210 * The anon LRU stats live in [0], file LRU stats in [1] 211 */ 212 unsigned long recent_rotated[2]; 213 unsigned long recent_scanned[2]; 214 }; 215 216 struct lruvec { 217 struct list_head lists[NR_LRU_LISTS]; 218 struct zone_reclaim_stat reclaim_stat; 219 #ifdef CONFIG_MEMCG 220 struct zone *zone; 221 #endif 222 }; 223 224 /* Mask used at gathering information at once (see memcontrol.c) */ 225 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 226 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 227 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 228 229 /* Isolate clean file */ 230 #define ISOLATE_CLEAN ((__force isolate_mode_t)0x1) 231 /* Isolate unmapped file */ 232 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 233 /* Isolate for asynchronous migration */ 234 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 235 /* Isolate unevictable pages */ 236 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 237 238 /* LRU Isolation modes. */ 239 typedef unsigned __bitwise__ isolate_mode_t; 240 241 enum zone_watermarks { 242 WMARK_MIN, 243 WMARK_LOW, 244 WMARK_HIGH, 245 NR_WMARK 246 }; 247 248 #define min_wmark_pages(z) (z->watermark[WMARK_MIN]) 249 #define low_wmark_pages(z) (z->watermark[WMARK_LOW]) 250 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH]) 251 252 struct per_cpu_pages { 253 int count; /* number of pages in the list */ 254 int high; /* high watermark, emptying needed */ 255 int batch; /* chunk size for buddy add/remove */ 256 257 /* Lists of pages, one per migrate type stored on the pcp-lists */ 258 struct list_head lists[MIGRATE_PCPTYPES]; 259 }; 260 261 struct per_cpu_pageset { 262 struct per_cpu_pages pcp; 263 #ifdef CONFIG_NUMA 264 s8 expire; 265 #endif 266 #ifdef CONFIG_SMP 267 s8 stat_threshold; 268 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 269 #endif 270 }; 271 272 #endif /* !__GENERATING_BOUNDS.H */ 273 274 enum zone_type { 275 #ifdef CONFIG_ZONE_DMA 276 /* 277 * ZONE_DMA is used when there are devices that are not able 278 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 279 * carve out the portion of memory that is needed for these devices. 280 * The range is arch specific. 281 * 282 * Some examples 283 * 284 * Architecture Limit 285 * --------------------------- 286 * parisc, ia64, sparc <4G 287 * s390 <2G 288 * arm Various 289 * alpha Unlimited or 0-16MB. 290 * 291 * i386, x86_64 and multiple other arches 292 * <16M. 293 */ 294 ZONE_DMA, 295 #endif 296 #ifdef CONFIG_ZONE_DMA32 297 /* 298 * x86_64 needs two ZONE_DMAs because it supports devices that are 299 * only able to do DMA to the lower 16M but also 32 bit devices that 300 * can only do DMA areas below 4G. 301 */ 302 ZONE_DMA32, 303 #endif 304 /* 305 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 306 * performed on pages in ZONE_NORMAL if the DMA devices support 307 * transfers to all addressable memory. 308 */ 309 ZONE_NORMAL, 310 #ifdef CONFIG_HIGHMEM 311 /* 312 * A memory area that is only addressable by the kernel through 313 * mapping portions into its own address space. This is for example 314 * used by i386 to allow the kernel to address the memory beyond 315 * 900MB. The kernel will set up special mappings (page 316 * table entries on i386) for each page that the kernel needs to 317 * access. 318 */ 319 ZONE_HIGHMEM, 320 #endif 321 ZONE_MOVABLE, 322 __MAX_NR_ZONES 323 }; 324 325 #ifndef __GENERATING_BOUNDS_H 326 327 struct zone { 328 /* Read-mostly fields */ 329 330 /* zone watermarks, access with *_wmark_pages(zone) macros */ 331 unsigned long watermark[NR_WMARK]; 332 333 /* 334 * We don't know if the memory that we're going to allocate will be freeable 335 * or/and it will be released eventually, so to avoid totally wasting several 336 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 337 * to run OOM on the lower zones despite there's tons of freeable ram 338 * on the higher zones). This array is recalculated at runtime if the 339 * sysctl_lowmem_reserve_ratio sysctl changes. 340 */ 341 long lowmem_reserve[MAX_NR_ZONES]; 342 343 #ifdef CONFIG_NUMA 344 int node; 345 #endif 346 347 /* 348 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on 349 * this zone's LRU. Maintained by the pageout code. 350 */ 351 unsigned int inactive_ratio; 352 353 struct pglist_data *zone_pgdat; 354 struct per_cpu_pageset __percpu *pageset; 355 356 /* 357 * This is a per-zone reserve of pages that should not be 358 * considered dirtyable memory. 359 */ 360 unsigned long dirty_balance_reserve; 361 362 #ifndef CONFIG_SPARSEMEM 363 /* 364 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 365 * In SPARSEMEM, this map is stored in struct mem_section 366 */ 367 unsigned long *pageblock_flags; 368 #endif /* CONFIG_SPARSEMEM */ 369 370 #ifdef CONFIG_NUMA 371 /* 372 * zone reclaim becomes active if more unmapped pages exist. 373 */ 374 unsigned long min_unmapped_pages; 375 unsigned long min_slab_pages; 376 #endif /* CONFIG_NUMA */ 377 378 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 379 unsigned long zone_start_pfn; 380 381 /* 382 * spanned_pages is the total pages spanned by the zone, including 383 * holes, which is calculated as: 384 * spanned_pages = zone_end_pfn - zone_start_pfn; 385 * 386 * present_pages is physical pages existing within the zone, which 387 * is calculated as: 388 * present_pages = spanned_pages - absent_pages(pages in holes); 389 * 390 * managed_pages is present pages managed by the buddy system, which 391 * is calculated as (reserved_pages includes pages allocated by the 392 * bootmem allocator): 393 * managed_pages = present_pages - reserved_pages; 394 * 395 * So present_pages may be used by memory hotplug or memory power 396 * management logic to figure out unmanaged pages by checking 397 * (present_pages - managed_pages). And managed_pages should be used 398 * by page allocator and vm scanner to calculate all kinds of watermarks 399 * and thresholds. 400 * 401 * Locking rules: 402 * 403 * zone_start_pfn and spanned_pages are protected by span_seqlock. 404 * It is a seqlock because it has to be read outside of zone->lock, 405 * and it is done in the main allocator path. But, it is written 406 * quite infrequently. 407 * 408 * The span_seq lock is declared along with zone->lock because it is 409 * frequently read in proximity to zone->lock. It's good to 410 * give them a chance of being in the same cacheline. 411 * 412 * Write access to present_pages at runtime should be protected by 413 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of 414 * present_pages should get_online_mems() to get a stable value. 415 * 416 * Read access to managed_pages should be safe because it's unsigned 417 * long. Write access to zone->managed_pages and totalram_pages are 418 * protected by managed_page_count_lock at runtime. Idealy only 419 * adjust_managed_page_count() should be used instead of directly 420 * touching zone->managed_pages and totalram_pages. 421 */ 422 unsigned long managed_pages; 423 unsigned long spanned_pages; 424 unsigned long present_pages; 425 426 const char *name; 427 428 /* 429 * Number of MIGRATE_RESEVE page block. To maintain for just 430 * optimization. Protected by zone->lock. 431 */ 432 int nr_migrate_reserve_block; 433 434 #ifdef CONFIG_MEMORY_HOTPLUG 435 /* see spanned/present_pages for more description */ 436 seqlock_t span_seqlock; 437 #endif 438 439 /* 440 * wait_table -- the array holding the hash table 441 * wait_table_hash_nr_entries -- the size of the hash table array 442 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 443 * 444 * The purpose of all these is to keep track of the people 445 * waiting for a page to become available and make them 446 * runnable again when possible. The trouble is that this 447 * consumes a lot of space, especially when so few things 448 * wait on pages at a given time. So instead of using 449 * per-page waitqueues, we use a waitqueue hash table. 450 * 451 * The bucket discipline is to sleep on the same queue when 452 * colliding and wake all in that wait queue when removing. 453 * When something wakes, it must check to be sure its page is 454 * truly available, a la thundering herd. The cost of a 455 * collision is great, but given the expected load of the 456 * table, they should be so rare as to be outweighed by the 457 * benefits from the saved space. 458 * 459 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 460 * primary users of these fields, and in mm/page_alloc.c 461 * free_area_init_core() performs the initialization of them. 462 */ 463 wait_queue_head_t *wait_table; 464 unsigned long wait_table_hash_nr_entries; 465 unsigned long wait_table_bits; 466 467 ZONE_PADDING(_pad1_) 468 469 /* Write-intensive fields used from the page allocator */ 470 spinlock_t lock; 471 472 /* free areas of different sizes */ 473 struct free_area free_area[MAX_ORDER]; 474 475 /* zone flags, see below */ 476 unsigned long flags; 477 478 ZONE_PADDING(_pad2_) 479 480 /* Write-intensive fields used by page reclaim */ 481 482 /* Fields commonly accessed by the page reclaim scanner */ 483 spinlock_t lru_lock; 484 struct lruvec lruvec; 485 486 /* Evictions & activations on the inactive file list */ 487 atomic_long_t inactive_age; 488 489 /* 490 * When free pages are below this point, additional steps are taken 491 * when reading the number of free pages to avoid per-cpu counter 492 * drift allowing watermarks to be breached 493 */ 494 unsigned long percpu_drift_mark; 495 496 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 497 /* pfn where compaction free scanner should start */ 498 unsigned long compact_cached_free_pfn; 499 /* pfn where async and sync compaction migration scanner should start */ 500 unsigned long compact_cached_migrate_pfn[2]; 501 #endif 502 503 #ifdef CONFIG_COMPACTION 504 /* 505 * On compaction failure, 1<<compact_defer_shift compactions 506 * are skipped before trying again. The number attempted since 507 * last failure is tracked with compact_considered. 508 */ 509 unsigned int compact_considered; 510 unsigned int compact_defer_shift; 511 int compact_order_failed; 512 #endif 513 514 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 515 /* Set to true when the PG_migrate_skip bits should be cleared */ 516 bool compact_blockskip_flush; 517 #endif 518 519 ZONE_PADDING(_pad3_) 520 /* Zone statistics */ 521 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 522 } ____cacheline_internodealigned_in_smp; 523 524 enum zone_flags { 525 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 526 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ 527 ZONE_CONGESTED, /* zone has many dirty pages backed by 528 * a congested BDI 529 */ 530 ZONE_DIRTY, /* reclaim scanning has recently found 531 * many dirty file pages at the tail 532 * of the LRU. 533 */ 534 ZONE_WRITEBACK, /* reclaim scanning has recently found 535 * many pages under writeback 536 */ 537 ZONE_FAIR_DEPLETED, /* fair zone policy batch depleted */ 538 }; 539 540 static inline unsigned long zone_end_pfn(const struct zone *zone) 541 { 542 return zone->zone_start_pfn + zone->spanned_pages; 543 } 544 545 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 546 { 547 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 548 } 549 550 static inline bool zone_is_initialized(struct zone *zone) 551 { 552 return !!zone->wait_table; 553 } 554 555 static inline bool zone_is_empty(struct zone *zone) 556 { 557 return zone->spanned_pages == 0; 558 } 559 560 /* 561 * The "priority" of VM scanning is how much of the queues we will scan in one 562 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 563 * queues ("queue_length >> 12") during an aging round. 564 */ 565 #define DEF_PRIORITY 12 566 567 /* Maximum number of zones on a zonelist */ 568 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 569 570 #ifdef CONFIG_NUMA 571 572 /* 573 * The NUMA zonelists are doubled because we need zonelists that restrict the 574 * allocations to a single node for __GFP_THISNODE. 575 * 576 * [0] : Zonelist with fallback 577 * [1] : No fallback (__GFP_THISNODE) 578 */ 579 #define MAX_ZONELISTS 2 580 581 582 /* 583 * We cache key information from each zonelist for smaller cache 584 * footprint when scanning for free pages in get_page_from_freelist(). 585 * 586 * 1) The BITMAP fullzones tracks which zones in a zonelist have come 587 * up short of free memory since the last time (last_fullzone_zap) 588 * we zero'd fullzones. 589 * 2) The array z_to_n[] maps each zone in the zonelist to its node 590 * id, so that we can efficiently evaluate whether that node is 591 * set in the current tasks mems_allowed. 592 * 593 * Both fullzones and z_to_n[] are one-to-one with the zonelist, 594 * indexed by a zones offset in the zonelist zones[] array. 595 * 596 * The get_page_from_freelist() routine does two scans. During the 597 * first scan, we skip zones whose corresponding bit in 'fullzones' 598 * is set or whose corresponding node in current->mems_allowed (which 599 * comes from cpusets) is not set. During the second scan, we bypass 600 * this zonelist_cache, to ensure we look methodically at each zone. 601 * 602 * Once per second, we zero out (zap) fullzones, forcing us to 603 * reconsider nodes that might have regained more free memory. 604 * The field last_full_zap is the time we last zapped fullzones. 605 * 606 * This mechanism reduces the amount of time we waste repeatedly 607 * reexaming zones for free memory when they just came up low on 608 * memory momentarilly ago. 609 * 610 * The zonelist_cache struct members logically belong in struct 611 * zonelist. However, the mempolicy zonelists constructed for 612 * MPOL_BIND are intentionally variable length (and usually much 613 * shorter). A general purpose mechanism for handling structs with 614 * multiple variable length members is more mechanism than we want 615 * here. We resort to some special case hackery instead. 616 * 617 * The MPOL_BIND zonelists don't need this zonelist_cache (in good 618 * part because they are shorter), so we put the fixed length stuff 619 * at the front of the zonelist struct, ending in a variable length 620 * zones[], as is needed by MPOL_BIND. 621 * 622 * Then we put the optional zonelist cache on the end of the zonelist 623 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in 624 * the fixed length portion at the front of the struct. This pointer 625 * both enables us to find the zonelist cache, and in the case of 626 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) 627 * to know that the zonelist cache is not there. 628 * 629 * The end result is that struct zonelists come in two flavors: 630 * 1) The full, fixed length version, shown below, and 631 * 2) The custom zonelists for MPOL_BIND. 632 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. 633 * 634 * Even though there may be multiple CPU cores on a node modifying 635 * fullzones or last_full_zap in the same zonelist_cache at the same 636 * time, we don't lock it. This is just hint data - if it is wrong now 637 * and then, the allocator will still function, perhaps a bit slower. 638 */ 639 640 641 struct zonelist_cache { 642 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ 643 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ 644 unsigned long last_full_zap; /* when last zap'd (jiffies) */ 645 }; 646 #else 647 #define MAX_ZONELISTS 1 648 struct zonelist_cache; 649 #endif 650 651 /* 652 * This struct contains information about a zone in a zonelist. It is stored 653 * here to avoid dereferences into large structures and lookups of tables 654 */ 655 struct zoneref { 656 struct zone *zone; /* Pointer to actual zone */ 657 int zone_idx; /* zone_idx(zoneref->zone) */ 658 }; 659 660 /* 661 * One allocation request operates on a zonelist. A zonelist 662 * is a list of zones, the first one is the 'goal' of the 663 * allocation, the other zones are fallback zones, in decreasing 664 * priority. 665 * 666 * If zlcache_ptr is not NULL, then it is just the address of zlcache, 667 * as explained above. If zlcache_ptr is NULL, there is no zlcache. 668 * * 669 * To speed the reading of the zonelist, the zonerefs contain the zone index 670 * of the entry being read. Helper functions to access information given 671 * a struct zoneref are 672 * 673 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 674 * zonelist_zone_idx() - Return the index of the zone for an entry 675 * zonelist_node_idx() - Return the index of the node for an entry 676 */ 677 struct zonelist { 678 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache 679 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 680 #ifdef CONFIG_NUMA 681 struct zonelist_cache zlcache; // optional ... 682 #endif 683 }; 684 685 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 686 struct node_active_region { 687 unsigned long start_pfn; 688 unsigned long end_pfn; 689 int nid; 690 }; 691 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 692 693 #ifndef CONFIG_DISCONTIGMEM 694 /* The array of struct pages - for discontigmem use pgdat->lmem_map */ 695 extern struct page *mem_map; 696 #endif 697 698 /* 699 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 700 * (mostly NUMA machines?) to denote a higher-level memory zone than the 701 * zone denotes. 702 * 703 * On NUMA machines, each NUMA node would have a pg_data_t to describe 704 * it's memory layout. 705 * 706 * Memory statistics and page replacement data structures are maintained on a 707 * per-zone basis. 708 */ 709 struct bootmem_data; 710 typedef struct pglist_data { 711 struct zone node_zones[MAX_NR_ZONES]; 712 struct zonelist node_zonelists[MAX_ZONELISTS]; 713 int nr_zones; 714 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 715 struct page *node_mem_map; 716 #ifdef CONFIG_MEMCG 717 struct page_cgroup *node_page_cgroup; 718 #endif 719 #endif 720 #ifndef CONFIG_NO_BOOTMEM 721 struct bootmem_data *bdata; 722 #endif 723 #ifdef CONFIG_MEMORY_HOTPLUG 724 /* 725 * Must be held any time you expect node_start_pfn, node_present_pages 726 * or node_spanned_pages stay constant. Holding this will also 727 * guarantee that any pfn_valid() stays that way. 728 * 729 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 730 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG. 731 * 732 * Nests above zone->lock and zone->span_seqlock 733 */ 734 spinlock_t node_size_lock; 735 #endif 736 unsigned long node_start_pfn; 737 unsigned long node_present_pages; /* total number of physical pages */ 738 unsigned long node_spanned_pages; /* total size of physical page 739 range, including holes */ 740 int node_id; 741 wait_queue_head_t kswapd_wait; 742 wait_queue_head_t pfmemalloc_wait; 743 struct task_struct *kswapd; /* Protected by 744 mem_hotplug_begin/end() */ 745 int kswapd_max_order; 746 enum zone_type classzone_idx; 747 #ifdef CONFIG_NUMA_BALANCING 748 /* Lock serializing the migrate rate limiting window */ 749 spinlock_t numabalancing_migrate_lock; 750 751 /* Rate limiting time interval */ 752 unsigned long numabalancing_migrate_next_window; 753 754 /* Number of pages migrated during the rate limiting time interval */ 755 unsigned long numabalancing_migrate_nr_pages; 756 #endif 757 } pg_data_t; 758 759 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 760 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 761 #ifdef CONFIG_FLAT_NODE_MEM_MAP 762 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 763 #else 764 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 765 #endif 766 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 767 768 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 769 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 770 771 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 772 { 773 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 774 } 775 776 static inline bool pgdat_is_empty(pg_data_t *pgdat) 777 { 778 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; 779 } 780 781 #include <linux/memory_hotplug.h> 782 783 extern struct mutex zonelists_mutex; 784 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone); 785 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx); 786 bool zone_watermark_ok(struct zone *z, unsigned int order, 787 unsigned long mark, int classzone_idx, int alloc_flags); 788 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 789 unsigned long mark, int classzone_idx, int alloc_flags); 790 enum memmap_context { 791 MEMMAP_EARLY, 792 MEMMAP_HOTPLUG, 793 }; 794 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 795 unsigned long size, 796 enum memmap_context context); 797 798 extern void lruvec_init(struct lruvec *lruvec); 799 800 static inline struct zone *lruvec_zone(struct lruvec *lruvec) 801 { 802 #ifdef CONFIG_MEMCG 803 return lruvec->zone; 804 #else 805 return container_of(lruvec, struct zone, lruvec); 806 #endif 807 } 808 809 #ifdef CONFIG_HAVE_MEMORY_PRESENT 810 void memory_present(int nid, unsigned long start, unsigned long end); 811 #else 812 static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 813 #endif 814 815 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 816 int local_memory_node(int node_id); 817 #else 818 static inline int local_memory_node(int node_id) { return node_id; }; 819 #endif 820 821 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 822 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 823 #endif 824 825 /* 826 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 827 */ 828 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 829 830 static inline int populated_zone(struct zone *zone) 831 { 832 return (!!zone->present_pages); 833 } 834 835 extern int movable_zone; 836 837 static inline int zone_movable_is_highmem(void) 838 { 839 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 840 return movable_zone == ZONE_HIGHMEM; 841 #elif defined(CONFIG_HIGHMEM) 842 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM; 843 #else 844 return 0; 845 #endif 846 } 847 848 static inline int is_highmem_idx(enum zone_type idx) 849 { 850 #ifdef CONFIG_HIGHMEM 851 return (idx == ZONE_HIGHMEM || 852 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 853 #else 854 return 0; 855 #endif 856 } 857 858 /** 859 * is_highmem - helper function to quickly check if a struct zone is a 860 * highmem zone or not. This is an attempt to keep references 861 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 862 * @zone - pointer to struct zone variable 863 */ 864 static inline int is_highmem(struct zone *zone) 865 { 866 #ifdef CONFIG_HIGHMEM 867 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones; 868 return zone_off == ZONE_HIGHMEM * sizeof(*zone) || 869 (zone_off == ZONE_MOVABLE * sizeof(*zone) && 870 zone_movable_is_highmem()); 871 #else 872 return 0; 873 #endif 874 } 875 876 /* These two functions are used to setup the per zone pages min values */ 877 struct ctl_table; 878 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 879 void __user *, size_t *, loff_t *); 880 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 881 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 882 void __user *, size_t *, loff_t *); 883 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 884 void __user *, size_t *, loff_t *); 885 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 886 void __user *, size_t *, loff_t *); 887 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 888 void __user *, size_t *, loff_t *); 889 890 extern int numa_zonelist_order_handler(struct ctl_table *, int, 891 void __user *, size_t *, loff_t *); 892 extern char numa_zonelist_order[]; 893 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 894 895 #ifndef CONFIG_NEED_MULTIPLE_NODES 896 897 extern struct pglist_data contig_page_data; 898 #define NODE_DATA(nid) (&contig_page_data) 899 #define NODE_MEM_MAP(nid) mem_map 900 901 #else /* CONFIG_NEED_MULTIPLE_NODES */ 902 903 #include <asm/mmzone.h> 904 905 #endif /* !CONFIG_NEED_MULTIPLE_NODES */ 906 907 extern struct pglist_data *first_online_pgdat(void); 908 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 909 extern struct zone *next_zone(struct zone *zone); 910 911 /** 912 * for_each_online_pgdat - helper macro to iterate over all online nodes 913 * @pgdat - pointer to a pg_data_t variable 914 */ 915 #define for_each_online_pgdat(pgdat) \ 916 for (pgdat = first_online_pgdat(); \ 917 pgdat; \ 918 pgdat = next_online_pgdat(pgdat)) 919 /** 920 * for_each_zone - helper macro to iterate over all memory zones 921 * @zone - pointer to struct zone variable 922 * 923 * The user only needs to declare the zone variable, for_each_zone 924 * fills it in. 925 */ 926 #define for_each_zone(zone) \ 927 for (zone = (first_online_pgdat())->node_zones; \ 928 zone; \ 929 zone = next_zone(zone)) 930 931 #define for_each_populated_zone(zone) \ 932 for (zone = (first_online_pgdat())->node_zones; \ 933 zone; \ 934 zone = next_zone(zone)) \ 935 if (!populated_zone(zone)) \ 936 ; /* do nothing */ \ 937 else 938 939 static inline struct zone *zonelist_zone(struct zoneref *zoneref) 940 { 941 return zoneref->zone; 942 } 943 944 static inline int zonelist_zone_idx(struct zoneref *zoneref) 945 { 946 return zoneref->zone_idx; 947 } 948 949 static inline int zonelist_node_idx(struct zoneref *zoneref) 950 { 951 #ifdef CONFIG_NUMA 952 /* zone_to_nid not available in this context */ 953 return zoneref->zone->node; 954 #else 955 return 0; 956 #endif /* CONFIG_NUMA */ 957 } 958 959 /** 960 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 961 * @z - The cursor used as a starting point for the search 962 * @highest_zoneidx - The zone index of the highest zone to return 963 * @nodes - An optional nodemask to filter the zonelist with 964 * @zone - The first suitable zone found is returned via this parameter 965 * 966 * This function returns the next zone at or below a given zone index that is 967 * within the allowed nodemask using a cursor as the starting point for the 968 * search. The zoneref returned is a cursor that represents the current zone 969 * being examined. It should be advanced by one before calling 970 * next_zones_zonelist again. 971 */ 972 struct zoneref *next_zones_zonelist(struct zoneref *z, 973 enum zone_type highest_zoneidx, 974 nodemask_t *nodes, 975 struct zone **zone); 976 977 /** 978 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 979 * @zonelist - The zonelist to search for a suitable zone 980 * @highest_zoneidx - The zone index of the highest zone to return 981 * @nodes - An optional nodemask to filter the zonelist with 982 * @zone - The first suitable zone found is returned via this parameter 983 * 984 * This function returns the first zone at or below a given zone index that is 985 * within the allowed nodemask. The zoneref returned is a cursor that can be 986 * used to iterate the zonelist with next_zones_zonelist by advancing it by 987 * one before calling. 988 */ 989 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 990 enum zone_type highest_zoneidx, 991 nodemask_t *nodes, 992 struct zone **zone) 993 { 994 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes, 995 zone); 996 } 997 998 /** 999 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1000 * @zone - The current zone in the iterator 1001 * @z - The current pointer within zonelist->zones being iterated 1002 * @zlist - The zonelist being iterated 1003 * @highidx - The zone index of the highest zone to return 1004 * @nodemask - Nodemask allowed by the allocator 1005 * 1006 * This iterator iterates though all zones at or below a given zone index and 1007 * within a given nodemask 1008 */ 1009 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1010 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \ 1011 zone; \ 1012 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \ 1013 1014 /** 1015 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1016 * @zone - The current zone in the iterator 1017 * @z - The current pointer within zonelist->zones being iterated 1018 * @zlist - The zonelist being iterated 1019 * @highidx - The zone index of the highest zone to return 1020 * 1021 * This iterator iterates though all zones at or below a given zone index. 1022 */ 1023 #define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1024 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1025 1026 #ifdef CONFIG_SPARSEMEM 1027 #include <asm/sparsemem.h> 1028 #endif 1029 1030 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 1031 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1032 static inline unsigned long early_pfn_to_nid(unsigned long pfn) 1033 { 1034 return 0; 1035 } 1036 #endif 1037 1038 #ifdef CONFIG_FLATMEM 1039 #define pfn_to_nid(pfn) (0) 1040 #endif 1041 1042 #ifdef CONFIG_SPARSEMEM 1043 1044 /* 1045 * SECTION_SHIFT #bits space required to store a section # 1046 * 1047 * PA_SECTION_SHIFT physical address to/from section number 1048 * PFN_SECTION_SHIFT pfn to/from section number 1049 */ 1050 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1051 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1052 1053 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1054 1055 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1056 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1057 1058 #define SECTION_BLOCKFLAGS_BITS \ 1059 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1060 1061 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1062 #error Allocator MAX_ORDER exceeds SECTION_SIZE 1063 #endif 1064 1065 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 1066 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 1067 1068 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1069 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1070 1071 struct page; 1072 struct page_cgroup; 1073 struct mem_section { 1074 /* 1075 * This is, logically, a pointer to an array of struct 1076 * pages. However, it is stored with some other magic. 1077 * (see sparse.c::sparse_init_one_section()) 1078 * 1079 * Additionally during early boot we encode node id of 1080 * the location of the section here to guide allocation. 1081 * (see sparse.c::memory_present()) 1082 * 1083 * Making it a UL at least makes someone do a cast 1084 * before using it wrong. 1085 */ 1086 unsigned long section_mem_map; 1087 1088 /* See declaration of similar field in struct zone */ 1089 unsigned long *pageblock_flags; 1090 #ifdef CONFIG_MEMCG 1091 /* 1092 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use 1093 * section. (see memcontrol.h/page_cgroup.h about this.) 1094 */ 1095 struct page_cgroup *page_cgroup; 1096 unsigned long pad; 1097 #endif 1098 /* 1099 * WARNING: mem_section must be a power-of-2 in size for the 1100 * calculation and use of SECTION_ROOT_MASK to make sense. 1101 */ 1102 }; 1103 1104 #ifdef CONFIG_SPARSEMEM_EXTREME 1105 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1106 #else 1107 #define SECTIONS_PER_ROOT 1 1108 #endif 1109 1110 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1111 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1112 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1113 1114 #ifdef CONFIG_SPARSEMEM_EXTREME 1115 extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 1116 #else 1117 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1118 #endif 1119 1120 static inline struct mem_section *__nr_to_section(unsigned long nr) 1121 { 1122 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1123 return NULL; 1124 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1125 } 1126 extern int __section_nr(struct mem_section* ms); 1127 extern unsigned long usemap_size(void); 1128 1129 /* 1130 * We use the lower bits of the mem_map pointer to store 1131 * a little bit of information. There should be at least 1132 * 3 bits here due to 32-bit alignment. 1133 */ 1134 #define SECTION_MARKED_PRESENT (1UL<<0) 1135 #define SECTION_HAS_MEM_MAP (1UL<<1) 1136 #define SECTION_MAP_LAST_BIT (1UL<<2) 1137 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1138 #define SECTION_NID_SHIFT 2 1139 1140 static inline struct page *__section_mem_map_addr(struct mem_section *section) 1141 { 1142 unsigned long map = section->section_mem_map; 1143 map &= SECTION_MAP_MASK; 1144 return (struct page *)map; 1145 } 1146 1147 static inline int present_section(struct mem_section *section) 1148 { 1149 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1150 } 1151 1152 static inline int present_section_nr(unsigned long nr) 1153 { 1154 return present_section(__nr_to_section(nr)); 1155 } 1156 1157 static inline int valid_section(struct mem_section *section) 1158 { 1159 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1160 } 1161 1162 static inline int valid_section_nr(unsigned long nr) 1163 { 1164 return valid_section(__nr_to_section(nr)); 1165 } 1166 1167 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1168 { 1169 return __nr_to_section(pfn_to_section_nr(pfn)); 1170 } 1171 1172 #ifndef CONFIG_HAVE_ARCH_PFN_VALID 1173 static inline int pfn_valid(unsigned long pfn) 1174 { 1175 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1176 return 0; 1177 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1178 } 1179 #endif 1180 1181 static inline int pfn_present(unsigned long pfn) 1182 { 1183 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1184 return 0; 1185 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1186 } 1187 1188 /* 1189 * These are _only_ used during initialisation, therefore they 1190 * can use __initdata ... They could have names to indicate 1191 * this restriction. 1192 */ 1193 #ifdef CONFIG_NUMA 1194 #define pfn_to_nid(pfn) \ 1195 ({ \ 1196 unsigned long __pfn_to_nid_pfn = (pfn); \ 1197 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1198 }) 1199 #else 1200 #define pfn_to_nid(pfn) (0) 1201 #endif 1202 1203 #define early_pfn_valid(pfn) pfn_valid(pfn) 1204 void sparse_init(void); 1205 #else 1206 #define sparse_init() do {} while (0) 1207 #define sparse_index_init(_sec, _nid) do {} while (0) 1208 #endif /* CONFIG_SPARSEMEM */ 1209 1210 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1211 bool early_pfn_in_nid(unsigned long pfn, int nid); 1212 #else 1213 #define early_pfn_in_nid(pfn, nid) (1) 1214 #endif 1215 1216 #ifndef early_pfn_valid 1217 #define early_pfn_valid(pfn) (1) 1218 #endif 1219 1220 void memory_present(int nid, unsigned long start, unsigned long end); 1221 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 1222 1223 /* 1224 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1225 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 1226 * pfn_valid_within() should be used in this case; we optimise this away 1227 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1228 */ 1229 #ifdef CONFIG_HOLES_IN_ZONE 1230 #define pfn_valid_within(pfn) pfn_valid(pfn) 1231 #else 1232 #define pfn_valid_within(pfn) (1) 1233 #endif 1234 1235 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1236 /* 1237 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1238 * associated with it or not. In FLATMEM, it is expected that holes always 1239 * have valid memmap as long as there is valid PFNs either side of the hole. 1240 * In SPARSEMEM, it is assumed that a valid section has a memmap for the 1241 * entire section. 1242 * 1243 * However, an ARM, and maybe other embedded architectures in the future 1244 * free memmap backing holes to save memory on the assumption the memmap is 1245 * never used. The page_zone linkages are then broken even though pfn_valid() 1246 * returns true. A walker of the full memmap must then do this additional 1247 * check to ensure the memmap they are looking at is sane by making sure 1248 * the zone and PFN linkages are still valid. This is expensive, but walkers 1249 * of the full memmap are extremely rare. 1250 */ 1251 int memmap_valid_within(unsigned long pfn, 1252 struct page *page, struct zone *zone); 1253 #else 1254 static inline int memmap_valid_within(unsigned long pfn, 1255 struct page *page, struct zone *zone) 1256 { 1257 return 1; 1258 } 1259 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1260 1261 #endif /* !__GENERATING_BOUNDS.H */ 1262 #endif /* !__ASSEMBLY__ */ 1263 #endif /* _LINUX_MMZONE_H */ 1264