xref: /linux-6.15/include/linux/mmzone.h (revision e00a844a)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/bitops.h>
12 #include <linux/cache.h>
13 #include <linux/threads.h>
14 #include <linux/numa.h>
15 #include <linux/init.h>
16 #include <linux/seqlock.h>
17 #include <linux/nodemask.h>
18 #include <linux/pageblock-flags.h>
19 #include <linux/page-flags-layout.h>
20 #include <linux/atomic.h>
21 #include <asm/page.h>
22 
23 /* Free memory management - zoned buddy allocator.  */
24 #ifndef CONFIG_FORCE_MAX_ZONEORDER
25 #define MAX_ORDER 11
26 #else
27 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
28 #endif
29 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
30 
31 /*
32  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
33  * costly to service.  That is between allocation orders which should
34  * coalesce naturally under reasonable reclaim pressure and those which
35  * will not.
36  */
37 #define PAGE_ALLOC_COSTLY_ORDER 3
38 
39 enum migratetype {
40 	MIGRATE_UNMOVABLE,
41 	MIGRATE_MOVABLE,
42 	MIGRATE_RECLAIMABLE,
43 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
44 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
45 #ifdef CONFIG_CMA
46 	/*
47 	 * MIGRATE_CMA migration type is designed to mimic the way
48 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
49 	 * from MIGRATE_CMA pageblocks and page allocator never
50 	 * implicitly change migration type of MIGRATE_CMA pageblock.
51 	 *
52 	 * The way to use it is to change migratetype of a range of
53 	 * pageblocks to MIGRATE_CMA which can be done by
54 	 * __free_pageblock_cma() function.  What is important though
55 	 * is that a range of pageblocks must be aligned to
56 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
57 	 * a single pageblock.
58 	 */
59 	MIGRATE_CMA,
60 #endif
61 #ifdef CONFIG_MEMORY_ISOLATION
62 	MIGRATE_ISOLATE,	/* can't allocate from here */
63 #endif
64 	MIGRATE_TYPES
65 };
66 
67 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
68 extern char * const migratetype_names[MIGRATE_TYPES];
69 
70 #ifdef CONFIG_CMA
71 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
72 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
73 #else
74 #  define is_migrate_cma(migratetype) false
75 #  define is_migrate_cma_page(_page) false
76 #endif
77 
78 static inline bool is_migrate_movable(int mt)
79 {
80 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
81 }
82 
83 #define for_each_migratetype_order(order, type) \
84 	for (order = 0; order < MAX_ORDER; order++) \
85 		for (type = 0; type < MIGRATE_TYPES; type++)
86 
87 extern int page_group_by_mobility_disabled;
88 
89 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
90 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
91 
92 #define get_pageblock_migratetype(page)					\
93 	get_pfnblock_flags_mask(page, page_to_pfn(page),		\
94 			PB_migrate_end, MIGRATETYPE_MASK)
95 
96 struct free_area {
97 	struct list_head	free_list[MIGRATE_TYPES];
98 	unsigned long		nr_free;
99 };
100 
101 struct pglist_data;
102 
103 /*
104  * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
105  * So add a wild amount of padding here to ensure that they fall into separate
106  * cachelines.  There are very few zone structures in the machine, so space
107  * consumption is not a concern here.
108  */
109 #if defined(CONFIG_SMP)
110 struct zone_padding {
111 	char x[0];
112 } ____cacheline_internodealigned_in_smp;
113 #define ZONE_PADDING(name)	struct zone_padding name;
114 #else
115 #define ZONE_PADDING(name)
116 #endif
117 
118 #ifdef CONFIG_NUMA
119 enum numa_stat_item {
120 	NUMA_HIT,		/* allocated in intended node */
121 	NUMA_MISS,		/* allocated in non intended node */
122 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
123 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
124 	NUMA_LOCAL,		/* allocation from local node */
125 	NUMA_OTHER,		/* allocation from other node */
126 	NR_VM_NUMA_STAT_ITEMS
127 };
128 #else
129 #define NR_VM_NUMA_STAT_ITEMS 0
130 #endif
131 
132 enum zone_stat_item {
133 	/* First 128 byte cacheline (assuming 64 bit words) */
134 	NR_FREE_PAGES,
135 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
136 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
137 	NR_ZONE_ACTIVE_ANON,
138 	NR_ZONE_INACTIVE_FILE,
139 	NR_ZONE_ACTIVE_FILE,
140 	NR_ZONE_UNEVICTABLE,
141 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
142 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
143 	NR_PAGETABLE,		/* used for pagetables */
144 	NR_KERNEL_STACK_KB,	/* measured in KiB */
145 	/* Second 128 byte cacheline */
146 	NR_BOUNCE,
147 #if IS_ENABLED(CONFIG_ZSMALLOC)
148 	NR_ZSPAGES,		/* allocated in zsmalloc */
149 #endif
150 	NR_FREE_CMA_PAGES,
151 	NR_VM_ZONE_STAT_ITEMS };
152 
153 enum node_stat_item {
154 	NR_LRU_BASE,
155 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
156 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
157 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
158 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
159 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
160 	NR_SLAB_RECLAIMABLE,
161 	NR_SLAB_UNRECLAIMABLE,
162 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
163 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
164 	WORKINGSET_REFAULT,
165 	WORKINGSET_ACTIVATE,
166 	WORKINGSET_NODERECLAIM,
167 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
168 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
169 			   only modified from process context */
170 	NR_FILE_PAGES,
171 	NR_FILE_DIRTY,
172 	NR_WRITEBACK,
173 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
174 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
175 	NR_SHMEM_THPS,
176 	NR_SHMEM_PMDMAPPED,
177 	NR_ANON_THPS,
178 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
179 	NR_VMSCAN_WRITE,
180 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
181 	NR_DIRTIED,		/* page dirtyings since bootup */
182 	NR_WRITTEN,		/* page writings since bootup */
183 	NR_VM_NODE_STAT_ITEMS
184 };
185 
186 /*
187  * We do arithmetic on the LRU lists in various places in the code,
188  * so it is important to keep the active lists LRU_ACTIVE higher in
189  * the array than the corresponding inactive lists, and to keep
190  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
191  *
192  * This has to be kept in sync with the statistics in zone_stat_item
193  * above and the descriptions in vmstat_text in mm/vmstat.c
194  */
195 #define LRU_BASE 0
196 #define LRU_ACTIVE 1
197 #define LRU_FILE 2
198 
199 enum lru_list {
200 	LRU_INACTIVE_ANON = LRU_BASE,
201 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
202 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
203 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
204 	LRU_UNEVICTABLE,
205 	NR_LRU_LISTS
206 };
207 
208 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
209 
210 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
211 
212 static inline int is_file_lru(enum lru_list lru)
213 {
214 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
215 }
216 
217 static inline int is_active_lru(enum lru_list lru)
218 {
219 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
220 }
221 
222 struct zone_reclaim_stat {
223 	/*
224 	 * The pageout code in vmscan.c keeps track of how many of the
225 	 * mem/swap backed and file backed pages are referenced.
226 	 * The higher the rotated/scanned ratio, the more valuable
227 	 * that cache is.
228 	 *
229 	 * The anon LRU stats live in [0], file LRU stats in [1]
230 	 */
231 	unsigned long		recent_rotated[2];
232 	unsigned long		recent_scanned[2];
233 };
234 
235 struct lruvec {
236 	struct list_head		lists[NR_LRU_LISTS];
237 	struct zone_reclaim_stat	reclaim_stat;
238 	/* Evictions & activations on the inactive file list */
239 	atomic_long_t			inactive_age;
240 	/* Refaults at the time of last reclaim cycle */
241 	unsigned long			refaults;
242 #ifdef CONFIG_MEMCG
243 	struct pglist_data *pgdat;
244 #endif
245 };
246 
247 /* Mask used at gathering information at once (see memcontrol.c) */
248 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
249 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
250 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
251 
252 /* Isolate unmapped file */
253 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
254 /* Isolate for asynchronous migration */
255 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
256 /* Isolate unevictable pages */
257 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
258 
259 /* LRU Isolation modes. */
260 typedef unsigned __bitwise isolate_mode_t;
261 
262 enum zone_watermarks {
263 	WMARK_MIN,
264 	WMARK_LOW,
265 	WMARK_HIGH,
266 	NR_WMARK
267 };
268 
269 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
270 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
271 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
272 
273 struct per_cpu_pages {
274 	int count;		/* number of pages in the list */
275 	int high;		/* high watermark, emptying needed */
276 	int batch;		/* chunk size for buddy add/remove */
277 
278 	/* Lists of pages, one per migrate type stored on the pcp-lists */
279 	struct list_head lists[MIGRATE_PCPTYPES];
280 };
281 
282 struct per_cpu_pageset {
283 	struct per_cpu_pages pcp;
284 #ifdef CONFIG_NUMA
285 	s8 expire;
286 	u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
287 #endif
288 #ifdef CONFIG_SMP
289 	s8 stat_threshold;
290 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
291 #endif
292 };
293 
294 struct per_cpu_nodestat {
295 	s8 stat_threshold;
296 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
297 };
298 
299 #endif /* !__GENERATING_BOUNDS.H */
300 
301 enum zone_type {
302 #ifdef CONFIG_ZONE_DMA
303 	/*
304 	 * ZONE_DMA is used when there are devices that are not able
305 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
306 	 * carve out the portion of memory that is needed for these devices.
307 	 * The range is arch specific.
308 	 *
309 	 * Some examples
310 	 *
311 	 * Architecture		Limit
312 	 * ---------------------------
313 	 * parisc, ia64, sparc	<4G
314 	 * s390			<2G
315 	 * arm			Various
316 	 * alpha		Unlimited or 0-16MB.
317 	 *
318 	 * i386, x86_64 and multiple other arches
319 	 * 			<16M.
320 	 */
321 	ZONE_DMA,
322 #endif
323 #ifdef CONFIG_ZONE_DMA32
324 	/*
325 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
326 	 * only able to do DMA to the lower 16M but also 32 bit devices that
327 	 * can only do DMA areas below 4G.
328 	 */
329 	ZONE_DMA32,
330 #endif
331 	/*
332 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
333 	 * performed on pages in ZONE_NORMAL if the DMA devices support
334 	 * transfers to all addressable memory.
335 	 */
336 	ZONE_NORMAL,
337 #ifdef CONFIG_HIGHMEM
338 	/*
339 	 * A memory area that is only addressable by the kernel through
340 	 * mapping portions into its own address space. This is for example
341 	 * used by i386 to allow the kernel to address the memory beyond
342 	 * 900MB. The kernel will set up special mappings (page
343 	 * table entries on i386) for each page that the kernel needs to
344 	 * access.
345 	 */
346 	ZONE_HIGHMEM,
347 #endif
348 	ZONE_MOVABLE,
349 #ifdef CONFIG_ZONE_DEVICE
350 	ZONE_DEVICE,
351 #endif
352 	__MAX_NR_ZONES
353 
354 };
355 
356 #ifndef __GENERATING_BOUNDS_H
357 
358 struct zone {
359 	/* Read-mostly fields */
360 
361 	/* zone watermarks, access with *_wmark_pages(zone) macros */
362 	unsigned long watermark[NR_WMARK];
363 
364 	unsigned long nr_reserved_highatomic;
365 
366 	/*
367 	 * We don't know if the memory that we're going to allocate will be
368 	 * freeable or/and it will be released eventually, so to avoid totally
369 	 * wasting several GB of ram we must reserve some of the lower zone
370 	 * memory (otherwise we risk to run OOM on the lower zones despite
371 	 * there being tons of freeable ram on the higher zones).  This array is
372 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
373 	 * changes.
374 	 */
375 	long lowmem_reserve[MAX_NR_ZONES];
376 
377 #ifdef CONFIG_NUMA
378 	int node;
379 #endif
380 	struct pglist_data	*zone_pgdat;
381 	struct per_cpu_pageset __percpu *pageset;
382 
383 #ifndef CONFIG_SPARSEMEM
384 	/*
385 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
386 	 * In SPARSEMEM, this map is stored in struct mem_section
387 	 */
388 	unsigned long		*pageblock_flags;
389 #endif /* CONFIG_SPARSEMEM */
390 
391 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
392 	unsigned long		zone_start_pfn;
393 
394 	/*
395 	 * spanned_pages is the total pages spanned by the zone, including
396 	 * holes, which is calculated as:
397 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
398 	 *
399 	 * present_pages is physical pages existing within the zone, which
400 	 * is calculated as:
401 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
402 	 *
403 	 * managed_pages is present pages managed by the buddy system, which
404 	 * is calculated as (reserved_pages includes pages allocated by the
405 	 * bootmem allocator):
406 	 *	managed_pages = present_pages - reserved_pages;
407 	 *
408 	 * So present_pages may be used by memory hotplug or memory power
409 	 * management logic to figure out unmanaged pages by checking
410 	 * (present_pages - managed_pages). And managed_pages should be used
411 	 * by page allocator and vm scanner to calculate all kinds of watermarks
412 	 * and thresholds.
413 	 *
414 	 * Locking rules:
415 	 *
416 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
417 	 * It is a seqlock because it has to be read outside of zone->lock,
418 	 * and it is done in the main allocator path.  But, it is written
419 	 * quite infrequently.
420 	 *
421 	 * The span_seq lock is declared along with zone->lock because it is
422 	 * frequently read in proximity to zone->lock.  It's good to
423 	 * give them a chance of being in the same cacheline.
424 	 *
425 	 * Write access to present_pages at runtime should be protected by
426 	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
427 	 * present_pages should get_online_mems() to get a stable value.
428 	 *
429 	 * Read access to managed_pages should be safe because it's unsigned
430 	 * long. Write access to zone->managed_pages and totalram_pages are
431 	 * protected by managed_page_count_lock at runtime. Idealy only
432 	 * adjust_managed_page_count() should be used instead of directly
433 	 * touching zone->managed_pages and totalram_pages.
434 	 */
435 	unsigned long		managed_pages;
436 	unsigned long		spanned_pages;
437 	unsigned long		present_pages;
438 
439 	const char		*name;
440 
441 #ifdef CONFIG_MEMORY_ISOLATION
442 	/*
443 	 * Number of isolated pageblock. It is used to solve incorrect
444 	 * freepage counting problem due to racy retrieving migratetype
445 	 * of pageblock. Protected by zone->lock.
446 	 */
447 	unsigned long		nr_isolate_pageblock;
448 #endif
449 
450 #ifdef CONFIG_MEMORY_HOTPLUG
451 	/* see spanned/present_pages for more description */
452 	seqlock_t		span_seqlock;
453 #endif
454 
455 	int initialized;
456 
457 	/* Write-intensive fields used from the page allocator */
458 	ZONE_PADDING(_pad1_)
459 
460 	/* free areas of different sizes */
461 	struct free_area	free_area[MAX_ORDER];
462 
463 	/* zone flags, see below */
464 	unsigned long		flags;
465 
466 	/* Primarily protects free_area */
467 	spinlock_t		lock;
468 
469 	/* Write-intensive fields used by compaction and vmstats. */
470 	ZONE_PADDING(_pad2_)
471 
472 	/*
473 	 * When free pages are below this point, additional steps are taken
474 	 * when reading the number of free pages to avoid per-cpu counter
475 	 * drift allowing watermarks to be breached
476 	 */
477 	unsigned long percpu_drift_mark;
478 
479 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
480 	/* pfn where compaction free scanner should start */
481 	unsigned long		compact_cached_free_pfn;
482 	/* pfn where async and sync compaction migration scanner should start */
483 	unsigned long		compact_cached_migrate_pfn[2];
484 #endif
485 
486 #ifdef CONFIG_COMPACTION
487 	/*
488 	 * On compaction failure, 1<<compact_defer_shift compactions
489 	 * are skipped before trying again. The number attempted since
490 	 * last failure is tracked with compact_considered.
491 	 */
492 	unsigned int		compact_considered;
493 	unsigned int		compact_defer_shift;
494 	int			compact_order_failed;
495 #endif
496 
497 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
498 	/* Set to true when the PG_migrate_skip bits should be cleared */
499 	bool			compact_blockskip_flush;
500 #endif
501 
502 	bool			contiguous;
503 
504 	ZONE_PADDING(_pad3_)
505 	/* Zone statistics */
506 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
507 	atomic_long_t		vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
508 } ____cacheline_internodealigned_in_smp;
509 
510 enum pgdat_flags {
511 	PGDAT_CONGESTED,		/* pgdat has many dirty pages backed by
512 					 * a congested BDI
513 					 */
514 	PGDAT_DIRTY,			/* reclaim scanning has recently found
515 					 * many dirty file pages at the tail
516 					 * of the LRU.
517 					 */
518 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
519 					 * many pages under writeback
520 					 */
521 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
522 };
523 
524 static inline unsigned long zone_end_pfn(const struct zone *zone)
525 {
526 	return zone->zone_start_pfn + zone->spanned_pages;
527 }
528 
529 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
530 {
531 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
532 }
533 
534 static inline bool zone_is_initialized(struct zone *zone)
535 {
536 	return zone->initialized;
537 }
538 
539 static inline bool zone_is_empty(struct zone *zone)
540 {
541 	return zone->spanned_pages == 0;
542 }
543 
544 /*
545  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
546  * intersection with the given zone
547  */
548 static inline bool zone_intersects(struct zone *zone,
549 		unsigned long start_pfn, unsigned long nr_pages)
550 {
551 	if (zone_is_empty(zone))
552 		return false;
553 	if (start_pfn >= zone_end_pfn(zone) ||
554 	    start_pfn + nr_pages <= zone->zone_start_pfn)
555 		return false;
556 
557 	return true;
558 }
559 
560 /*
561  * The "priority" of VM scanning is how much of the queues we will scan in one
562  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
563  * queues ("queue_length >> 12") during an aging round.
564  */
565 #define DEF_PRIORITY 12
566 
567 /* Maximum number of zones on a zonelist */
568 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
569 
570 enum {
571 	ZONELIST_FALLBACK,	/* zonelist with fallback */
572 #ifdef CONFIG_NUMA
573 	/*
574 	 * The NUMA zonelists are doubled because we need zonelists that
575 	 * restrict the allocations to a single node for __GFP_THISNODE.
576 	 */
577 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
578 #endif
579 	MAX_ZONELISTS
580 };
581 
582 /*
583  * This struct contains information about a zone in a zonelist. It is stored
584  * here to avoid dereferences into large structures and lookups of tables
585  */
586 struct zoneref {
587 	struct zone *zone;	/* Pointer to actual zone */
588 	int zone_idx;		/* zone_idx(zoneref->zone) */
589 };
590 
591 /*
592  * One allocation request operates on a zonelist. A zonelist
593  * is a list of zones, the first one is the 'goal' of the
594  * allocation, the other zones are fallback zones, in decreasing
595  * priority.
596  *
597  * To speed the reading of the zonelist, the zonerefs contain the zone index
598  * of the entry being read. Helper functions to access information given
599  * a struct zoneref are
600  *
601  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
602  * zonelist_zone_idx()	- Return the index of the zone for an entry
603  * zonelist_node_idx()	- Return the index of the node for an entry
604  */
605 struct zonelist {
606 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
607 };
608 
609 #ifndef CONFIG_DISCONTIGMEM
610 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
611 extern struct page *mem_map;
612 #endif
613 
614 /*
615  * On NUMA machines, each NUMA node would have a pg_data_t to describe
616  * it's memory layout. On UMA machines there is a single pglist_data which
617  * describes the whole memory.
618  *
619  * Memory statistics and page replacement data structures are maintained on a
620  * per-zone basis.
621  */
622 struct bootmem_data;
623 typedef struct pglist_data {
624 	struct zone node_zones[MAX_NR_ZONES];
625 	struct zonelist node_zonelists[MAX_ZONELISTS];
626 	int nr_zones;
627 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
628 	struct page *node_mem_map;
629 #ifdef CONFIG_PAGE_EXTENSION
630 	struct page_ext *node_page_ext;
631 #endif
632 #endif
633 #ifndef CONFIG_NO_BOOTMEM
634 	struct bootmem_data *bdata;
635 #endif
636 #ifdef CONFIG_MEMORY_HOTPLUG
637 	/*
638 	 * Must be held any time you expect node_start_pfn, node_present_pages
639 	 * or node_spanned_pages stay constant.  Holding this will also
640 	 * guarantee that any pfn_valid() stays that way.
641 	 *
642 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
643 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
644 	 *
645 	 * Nests above zone->lock and zone->span_seqlock
646 	 */
647 	spinlock_t node_size_lock;
648 #endif
649 	unsigned long node_start_pfn;
650 	unsigned long node_present_pages; /* total number of physical pages */
651 	unsigned long node_spanned_pages; /* total size of physical page
652 					     range, including holes */
653 	int node_id;
654 	wait_queue_head_t kswapd_wait;
655 	wait_queue_head_t pfmemalloc_wait;
656 	struct task_struct *kswapd;	/* Protected by
657 					   mem_hotplug_begin/end() */
658 	int kswapd_order;
659 	enum zone_type kswapd_classzone_idx;
660 
661 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
662 
663 #ifdef CONFIG_COMPACTION
664 	int kcompactd_max_order;
665 	enum zone_type kcompactd_classzone_idx;
666 	wait_queue_head_t kcompactd_wait;
667 	struct task_struct *kcompactd;
668 #endif
669 #ifdef CONFIG_NUMA_BALANCING
670 	/* Lock serializing the migrate rate limiting window */
671 	spinlock_t numabalancing_migrate_lock;
672 
673 	/* Rate limiting time interval */
674 	unsigned long numabalancing_migrate_next_window;
675 
676 	/* Number of pages migrated during the rate limiting time interval */
677 	unsigned long numabalancing_migrate_nr_pages;
678 #endif
679 	/*
680 	 * This is a per-node reserve of pages that are not available
681 	 * to userspace allocations.
682 	 */
683 	unsigned long		totalreserve_pages;
684 
685 #ifdef CONFIG_NUMA
686 	/*
687 	 * zone reclaim becomes active if more unmapped pages exist.
688 	 */
689 	unsigned long		min_unmapped_pages;
690 	unsigned long		min_slab_pages;
691 #endif /* CONFIG_NUMA */
692 
693 	/* Write-intensive fields used by page reclaim */
694 	ZONE_PADDING(_pad1_)
695 	spinlock_t		lru_lock;
696 
697 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
698 	/*
699 	 * If memory initialisation on large machines is deferred then this
700 	 * is the first PFN that needs to be initialised.
701 	 */
702 	unsigned long first_deferred_pfn;
703 	/* Number of non-deferred pages */
704 	unsigned long static_init_pgcnt;
705 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
706 
707 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
708 	spinlock_t split_queue_lock;
709 	struct list_head split_queue;
710 	unsigned long split_queue_len;
711 #endif
712 
713 	/* Fields commonly accessed by the page reclaim scanner */
714 	struct lruvec		lruvec;
715 
716 	unsigned long		flags;
717 
718 	ZONE_PADDING(_pad2_)
719 
720 	/* Per-node vmstats */
721 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
722 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
723 } pg_data_t;
724 
725 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
726 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
727 #ifdef CONFIG_FLAT_NODE_MEM_MAP
728 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
729 #else
730 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
731 #endif
732 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
733 
734 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
735 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
736 static inline spinlock_t *zone_lru_lock(struct zone *zone)
737 {
738 	return &zone->zone_pgdat->lru_lock;
739 }
740 
741 static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
742 {
743 	return &pgdat->lruvec;
744 }
745 
746 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
747 {
748 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
749 }
750 
751 static inline bool pgdat_is_empty(pg_data_t *pgdat)
752 {
753 	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
754 }
755 
756 static inline int zone_id(const struct zone *zone)
757 {
758 	struct pglist_data *pgdat = zone->zone_pgdat;
759 
760 	return zone - pgdat->node_zones;
761 }
762 
763 #ifdef CONFIG_ZONE_DEVICE
764 static inline bool is_dev_zone(const struct zone *zone)
765 {
766 	return zone_id(zone) == ZONE_DEVICE;
767 }
768 #else
769 static inline bool is_dev_zone(const struct zone *zone)
770 {
771 	return false;
772 }
773 #endif
774 
775 #include <linux/memory_hotplug.h>
776 
777 void build_all_zonelists(pg_data_t *pgdat);
778 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
779 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
780 			 int classzone_idx, unsigned int alloc_flags,
781 			 long free_pages);
782 bool zone_watermark_ok(struct zone *z, unsigned int order,
783 		unsigned long mark, int classzone_idx,
784 		unsigned int alloc_flags);
785 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
786 		unsigned long mark, int classzone_idx);
787 enum memmap_context {
788 	MEMMAP_EARLY,
789 	MEMMAP_HOTPLUG,
790 };
791 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
792 				     unsigned long size);
793 
794 extern void lruvec_init(struct lruvec *lruvec);
795 
796 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
797 {
798 #ifdef CONFIG_MEMCG
799 	return lruvec->pgdat;
800 #else
801 	return container_of(lruvec, struct pglist_data, lruvec);
802 #endif
803 }
804 
805 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
806 
807 #ifdef CONFIG_HAVE_MEMORY_PRESENT
808 void memory_present(int nid, unsigned long start, unsigned long end);
809 #else
810 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
811 #endif
812 
813 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
814 int local_memory_node(int node_id);
815 #else
816 static inline int local_memory_node(int node_id) { return node_id; };
817 #endif
818 
819 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
820 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
821 #endif
822 
823 /*
824  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
825  */
826 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
827 
828 /*
829  * Returns true if a zone has pages managed by the buddy allocator.
830  * All the reclaim decisions have to use this function rather than
831  * populated_zone(). If the whole zone is reserved then we can easily
832  * end up with populated_zone() && !managed_zone().
833  */
834 static inline bool managed_zone(struct zone *zone)
835 {
836 	return zone->managed_pages;
837 }
838 
839 /* Returns true if a zone has memory */
840 static inline bool populated_zone(struct zone *zone)
841 {
842 	return zone->present_pages;
843 }
844 
845 extern int movable_zone;
846 
847 #ifdef CONFIG_HIGHMEM
848 static inline int zone_movable_is_highmem(void)
849 {
850 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
851 	return movable_zone == ZONE_HIGHMEM;
852 #else
853 	return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
854 #endif
855 }
856 #endif
857 
858 static inline int is_highmem_idx(enum zone_type idx)
859 {
860 #ifdef CONFIG_HIGHMEM
861 	return (idx == ZONE_HIGHMEM ||
862 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
863 #else
864 	return 0;
865 #endif
866 }
867 
868 /**
869  * is_highmem - helper function to quickly check if a struct zone is a
870  *              highmem zone or not.  This is an attempt to keep references
871  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
872  * @zone - pointer to struct zone variable
873  */
874 static inline int is_highmem(struct zone *zone)
875 {
876 #ifdef CONFIG_HIGHMEM
877 	return is_highmem_idx(zone_idx(zone));
878 #else
879 	return 0;
880 #endif
881 }
882 
883 /* These two functions are used to setup the per zone pages min values */
884 struct ctl_table;
885 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
886 					void __user *, size_t *, loff_t *);
887 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
888 					void __user *, size_t *, loff_t *);
889 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
890 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
891 					void __user *, size_t *, loff_t *);
892 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
893 					void __user *, size_t *, loff_t *);
894 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
895 			void __user *, size_t *, loff_t *);
896 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
897 			void __user *, size_t *, loff_t *);
898 
899 extern int numa_zonelist_order_handler(struct ctl_table *, int,
900 			void __user *, size_t *, loff_t *);
901 extern char numa_zonelist_order[];
902 #define NUMA_ZONELIST_ORDER_LEN	16
903 
904 #ifndef CONFIG_NEED_MULTIPLE_NODES
905 
906 extern struct pglist_data contig_page_data;
907 #define NODE_DATA(nid)		(&contig_page_data)
908 #define NODE_MEM_MAP(nid)	mem_map
909 
910 #else /* CONFIG_NEED_MULTIPLE_NODES */
911 
912 #include <asm/mmzone.h>
913 
914 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
915 
916 extern struct pglist_data *first_online_pgdat(void);
917 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
918 extern struct zone *next_zone(struct zone *zone);
919 
920 /**
921  * for_each_online_pgdat - helper macro to iterate over all online nodes
922  * @pgdat - pointer to a pg_data_t variable
923  */
924 #define for_each_online_pgdat(pgdat)			\
925 	for (pgdat = first_online_pgdat();		\
926 	     pgdat;					\
927 	     pgdat = next_online_pgdat(pgdat))
928 /**
929  * for_each_zone - helper macro to iterate over all memory zones
930  * @zone - pointer to struct zone variable
931  *
932  * The user only needs to declare the zone variable, for_each_zone
933  * fills it in.
934  */
935 #define for_each_zone(zone)			        \
936 	for (zone = (first_online_pgdat())->node_zones; \
937 	     zone;					\
938 	     zone = next_zone(zone))
939 
940 #define for_each_populated_zone(zone)		        \
941 	for (zone = (first_online_pgdat())->node_zones; \
942 	     zone;					\
943 	     zone = next_zone(zone))			\
944 		if (!populated_zone(zone))		\
945 			; /* do nothing */		\
946 		else
947 
948 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
949 {
950 	return zoneref->zone;
951 }
952 
953 static inline int zonelist_zone_idx(struct zoneref *zoneref)
954 {
955 	return zoneref->zone_idx;
956 }
957 
958 static inline int zonelist_node_idx(struct zoneref *zoneref)
959 {
960 #ifdef CONFIG_NUMA
961 	/* zone_to_nid not available in this context */
962 	return zoneref->zone->node;
963 #else
964 	return 0;
965 #endif /* CONFIG_NUMA */
966 }
967 
968 struct zoneref *__next_zones_zonelist(struct zoneref *z,
969 					enum zone_type highest_zoneidx,
970 					nodemask_t *nodes);
971 
972 /**
973  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
974  * @z - The cursor used as a starting point for the search
975  * @highest_zoneidx - The zone index of the highest zone to return
976  * @nodes - An optional nodemask to filter the zonelist with
977  *
978  * This function returns the next zone at or below a given zone index that is
979  * within the allowed nodemask using a cursor as the starting point for the
980  * search. The zoneref returned is a cursor that represents the current zone
981  * being examined. It should be advanced by one before calling
982  * next_zones_zonelist again.
983  */
984 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
985 					enum zone_type highest_zoneidx,
986 					nodemask_t *nodes)
987 {
988 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
989 		return z;
990 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
991 }
992 
993 /**
994  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
995  * @zonelist - The zonelist to search for a suitable zone
996  * @highest_zoneidx - The zone index of the highest zone to return
997  * @nodes - An optional nodemask to filter the zonelist with
998  * @return - Zoneref pointer for the first suitable zone found (see below)
999  *
1000  * This function returns the first zone at or below a given zone index that is
1001  * within the allowed nodemask. The zoneref returned is a cursor that can be
1002  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1003  * one before calling.
1004  *
1005  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1006  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1007  * update due to cpuset modification.
1008  */
1009 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1010 					enum zone_type highest_zoneidx,
1011 					nodemask_t *nodes)
1012 {
1013 	return next_zones_zonelist(zonelist->_zonerefs,
1014 							highest_zoneidx, nodes);
1015 }
1016 
1017 /**
1018  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1019  * @zone - The current zone in the iterator
1020  * @z - The current pointer within zonelist->zones being iterated
1021  * @zlist - The zonelist being iterated
1022  * @highidx - The zone index of the highest zone to return
1023  * @nodemask - Nodemask allowed by the allocator
1024  *
1025  * This iterator iterates though all zones at or below a given zone index and
1026  * within a given nodemask
1027  */
1028 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1029 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1030 		zone;							\
1031 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1032 			zone = zonelist_zone(z))
1033 
1034 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1035 	for (zone = z->zone;	\
1036 		zone;							\
1037 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1038 			zone = zonelist_zone(z))
1039 
1040 
1041 /**
1042  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1043  * @zone - The current zone in the iterator
1044  * @z - The current pointer within zonelist->zones being iterated
1045  * @zlist - The zonelist being iterated
1046  * @highidx - The zone index of the highest zone to return
1047  *
1048  * This iterator iterates though all zones at or below a given zone index.
1049  */
1050 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1051 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1052 
1053 #ifdef CONFIG_SPARSEMEM
1054 #include <asm/sparsemem.h>
1055 #endif
1056 
1057 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1058 	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1059 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1060 {
1061 	BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
1062 	return 0;
1063 }
1064 #endif
1065 
1066 #ifdef CONFIG_FLATMEM
1067 #define pfn_to_nid(pfn)		(0)
1068 #endif
1069 
1070 #ifdef CONFIG_SPARSEMEM
1071 
1072 /*
1073  * SECTION_SHIFT    		#bits space required to store a section #
1074  *
1075  * PA_SECTION_SHIFT		physical address to/from section number
1076  * PFN_SECTION_SHIFT		pfn to/from section number
1077  */
1078 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1079 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1080 
1081 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1082 
1083 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1084 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1085 
1086 #define SECTION_BLOCKFLAGS_BITS \
1087 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1088 
1089 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1090 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1091 #endif
1092 
1093 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1094 {
1095 	return pfn >> PFN_SECTION_SHIFT;
1096 }
1097 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1098 {
1099 	return sec << PFN_SECTION_SHIFT;
1100 }
1101 
1102 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1103 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1104 
1105 struct page;
1106 struct page_ext;
1107 struct mem_section {
1108 	/*
1109 	 * This is, logically, a pointer to an array of struct
1110 	 * pages.  However, it is stored with some other magic.
1111 	 * (see sparse.c::sparse_init_one_section())
1112 	 *
1113 	 * Additionally during early boot we encode node id of
1114 	 * the location of the section here to guide allocation.
1115 	 * (see sparse.c::memory_present())
1116 	 *
1117 	 * Making it a UL at least makes someone do a cast
1118 	 * before using it wrong.
1119 	 */
1120 	unsigned long section_mem_map;
1121 
1122 	/* See declaration of similar field in struct zone */
1123 	unsigned long *pageblock_flags;
1124 #ifdef CONFIG_PAGE_EXTENSION
1125 	/*
1126 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1127 	 * section. (see page_ext.h about this.)
1128 	 */
1129 	struct page_ext *page_ext;
1130 	unsigned long pad;
1131 #endif
1132 	/*
1133 	 * WARNING: mem_section must be a power-of-2 in size for the
1134 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1135 	 */
1136 };
1137 
1138 #ifdef CONFIG_SPARSEMEM_EXTREME
1139 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1140 #else
1141 #define SECTIONS_PER_ROOT	1
1142 #endif
1143 
1144 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1145 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1146 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1147 
1148 #ifdef CONFIG_SPARSEMEM_EXTREME
1149 extern struct mem_section **mem_section;
1150 #else
1151 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1152 #endif
1153 
1154 static inline struct mem_section *__nr_to_section(unsigned long nr)
1155 {
1156 #ifdef CONFIG_SPARSEMEM_EXTREME
1157 	if (!mem_section)
1158 		return NULL;
1159 #endif
1160 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1161 		return NULL;
1162 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1163 }
1164 extern int __section_nr(struct mem_section* ms);
1165 extern unsigned long usemap_size(void);
1166 
1167 /*
1168  * We use the lower bits of the mem_map pointer to store
1169  * a little bit of information.  There should be at least
1170  * 3 bits here due to 32-bit alignment.
1171  */
1172 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1173 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1174 #define SECTION_IS_ONLINE	(1UL<<2)
1175 #define SECTION_MAP_LAST_BIT	(1UL<<3)
1176 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1177 #define SECTION_NID_SHIFT	3
1178 
1179 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1180 {
1181 	unsigned long map = section->section_mem_map;
1182 	map &= SECTION_MAP_MASK;
1183 	return (struct page *)map;
1184 }
1185 
1186 static inline int present_section(struct mem_section *section)
1187 {
1188 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1189 }
1190 
1191 static inline int present_section_nr(unsigned long nr)
1192 {
1193 	return present_section(__nr_to_section(nr));
1194 }
1195 
1196 static inline int valid_section(struct mem_section *section)
1197 {
1198 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1199 }
1200 
1201 static inline int valid_section_nr(unsigned long nr)
1202 {
1203 	return valid_section(__nr_to_section(nr));
1204 }
1205 
1206 static inline int online_section(struct mem_section *section)
1207 {
1208 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1209 }
1210 
1211 static inline int online_section_nr(unsigned long nr)
1212 {
1213 	return online_section(__nr_to_section(nr));
1214 }
1215 
1216 #ifdef CONFIG_MEMORY_HOTPLUG
1217 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1218 #ifdef CONFIG_MEMORY_HOTREMOVE
1219 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1220 #endif
1221 #endif
1222 
1223 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1224 {
1225 	return __nr_to_section(pfn_to_section_nr(pfn));
1226 }
1227 
1228 extern int __highest_present_section_nr;
1229 
1230 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1231 static inline int pfn_valid(unsigned long pfn)
1232 {
1233 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1234 		return 0;
1235 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1236 }
1237 #endif
1238 
1239 static inline int pfn_present(unsigned long pfn)
1240 {
1241 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1242 		return 0;
1243 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1244 }
1245 
1246 /*
1247  * These are _only_ used during initialisation, therefore they
1248  * can use __initdata ...  They could have names to indicate
1249  * this restriction.
1250  */
1251 #ifdef CONFIG_NUMA
1252 #define pfn_to_nid(pfn)							\
1253 ({									\
1254 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1255 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1256 })
1257 #else
1258 #define pfn_to_nid(pfn)		(0)
1259 #endif
1260 
1261 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1262 void sparse_init(void);
1263 #else
1264 #define sparse_init()	do {} while (0)
1265 #define sparse_index_init(_sec, _nid)  do {} while (0)
1266 #endif /* CONFIG_SPARSEMEM */
1267 
1268 /*
1269  * During memory init memblocks map pfns to nids. The search is expensive and
1270  * this caches recent lookups. The implementation of __early_pfn_to_nid
1271  * may treat start/end as pfns or sections.
1272  */
1273 struct mminit_pfnnid_cache {
1274 	unsigned long last_start;
1275 	unsigned long last_end;
1276 	int last_nid;
1277 };
1278 
1279 #ifndef early_pfn_valid
1280 #define early_pfn_valid(pfn)	(1)
1281 #endif
1282 
1283 void memory_present(int nid, unsigned long start, unsigned long end);
1284 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1285 
1286 /*
1287  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1288  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1289  * pfn_valid_within() should be used in this case; we optimise this away
1290  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1291  */
1292 #ifdef CONFIG_HOLES_IN_ZONE
1293 #define pfn_valid_within(pfn) pfn_valid(pfn)
1294 #else
1295 #define pfn_valid_within(pfn) (1)
1296 #endif
1297 
1298 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1299 /*
1300  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1301  * associated with it or not. This means that a struct page exists for this
1302  * pfn. The caller cannot assume the page is fully initialized in general.
1303  * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1304  * will ensure the struct page is fully online and initialized. Special pages
1305  * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1306  *
1307  * In FLATMEM, it is expected that holes always have valid memmap as long as
1308  * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1309  * that a valid section has a memmap for the entire section.
1310  *
1311  * However, an ARM, and maybe other embedded architectures in the future
1312  * free memmap backing holes to save memory on the assumption the memmap is
1313  * never used. The page_zone linkages are then broken even though pfn_valid()
1314  * returns true. A walker of the full memmap must then do this additional
1315  * check to ensure the memmap they are looking at is sane by making sure
1316  * the zone and PFN linkages are still valid. This is expensive, but walkers
1317  * of the full memmap are extremely rare.
1318  */
1319 bool memmap_valid_within(unsigned long pfn,
1320 					struct page *page, struct zone *zone);
1321 #else
1322 static inline bool memmap_valid_within(unsigned long pfn,
1323 					struct page *page, struct zone *zone)
1324 {
1325 	return true;
1326 }
1327 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1328 
1329 #endif /* !__GENERATING_BOUNDS.H */
1330 #endif /* !__ASSEMBLY__ */
1331 #endif /* _LINUX_MMZONE_H */
1332