1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MMZONE_H 3 #define _LINUX_MMZONE_H 4 5 #ifndef __ASSEMBLY__ 6 #ifndef __GENERATING_BOUNDS_H 7 8 #include <linux/spinlock.h> 9 #include <linux/list.h> 10 #include <linux/wait.h> 11 #include <linux/bitops.h> 12 #include <linux/cache.h> 13 #include <linux/threads.h> 14 #include <linux/numa.h> 15 #include <linux/init.h> 16 #include <linux/seqlock.h> 17 #include <linux/nodemask.h> 18 #include <linux/pageblock-flags.h> 19 #include <linux/page-flags-layout.h> 20 #include <linux/atomic.h> 21 #include <asm/page.h> 22 23 /* Free memory management - zoned buddy allocator. */ 24 #ifndef CONFIG_FORCE_MAX_ZONEORDER 25 #define MAX_ORDER 11 26 #else 27 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 28 #endif 29 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 30 31 /* 32 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 33 * costly to service. That is between allocation orders which should 34 * coalesce naturally under reasonable reclaim pressure and those which 35 * will not. 36 */ 37 #define PAGE_ALLOC_COSTLY_ORDER 3 38 39 enum migratetype { 40 MIGRATE_UNMOVABLE, 41 MIGRATE_MOVABLE, 42 MIGRATE_RECLAIMABLE, 43 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 44 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 45 #ifdef CONFIG_CMA 46 /* 47 * MIGRATE_CMA migration type is designed to mimic the way 48 * ZONE_MOVABLE works. Only movable pages can be allocated 49 * from MIGRATE_CMA pageblocks and page allocator never 50 * implicitly change migration type of MIGRATE_CMA pageblock. 51 * 52 * The way to use it is to change migratetype of a range of 53 * pageblocks to MIGRATE_CMA which can be done by 54 * __free_pageblock_cma() function. What is important though 55 * is that a range of pageblocks must be aligned to 56 * MAX_ORDER_NR_PAGES should biggest page be bigger then 57 * a single pageblock. 58 */ 59 MIGRATE_CMA, 60 #endif 61 #ifdef CONFIG_MEMORY_ISOLATION 62 MIGRATE_ISOLATE, /* can't allocate from here */ 63 #endif 64 MIGRATE_TYPES 65 }; 66 67 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 68 extern const char * const migratetype_names[MIGRATE_TYPES]; 69 70 #ifdef CONFIG_CMA 71 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 72 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 73 #else 74 # define is_migrate_cma(migratetype) false 75 # define is_migrate_cma_page(_page) false 76 #endif 77 78 static inline bool is_migrate_movable(int mt) 79 { 80 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 81 } 82 83 #define for_each_migratetype_order(order, type) \ 84 for (order = 0; order < MAX_ORDER; order++) \ 85 for (type = 0; type < MIGRATE_TYPES; type++) 86 87 extern int page_group_by_mobility_disabled; 88 89 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1) 90 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1) 91 92 #define get_pageblock_migratetype(page) \ 93 get_pfnblock_flags_mask(page, page_to_pfn(page), \ 94 PB_migrate_end, MIGRATETYPE_MASK) 95 96 struct free_area { 97 struct list_head free_list[MIGRATE_TYPES]; 98 unsigned long nr_free; 99 }; 100 101 struct pglist_data; 102 103 /* 104 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel. 105 * So add a wild amount of padding here to ensure that they fall into separate 106 * cachelines. There are very few zone structures in the machine, so space 107 * consumption is not a concern here. 108 */ 109 #if defined(CONFIG_SMP) 110 struct zone_padding { 111 char x[0]; 112 } ____cacheline_internodealigned_in_smp; 113 #define ZONE_PADDING(name) struct zone_padding name; 114 #else 115 #define ZONE_PADDING(name) 116 #endif 117 118 #ifdef CONFIG_NUMA 119 enum numa_stat_item { 120 NUMA_HIT, /* allocated in intended node */ 121 NUMA_MISS, /* allocated in non intended node */ 122 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 123 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 124 NUMA_LOCAL, /* allocation from local node */ 125 NUMA_OTHER, /* allocation from other node */ 126 NR_VM_NUMA_STAT_ITEMS 127 }; 128 #else 129 #define NR_VM_NUMA_STAT_ITEMS 0 130 #endif 131 132 enum zone_stat_item { 133 /* First 128 byte cacheline (assuming 64 bit words) */ 134 NR_FREE_PAGES, 135 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 136 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 137 NR_ZONE_ACTIVE_ANON, 138 NR_ZONE_INACTIVE_FILE, 139 NR_ZONE_ACTIVE_FILE, 140 NR_ZONE_UNEVICTABLE, 141 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 142 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 143 NR_PAGETABLE, /* used for pagetables */ 144 NR_KERNEL_STACK_KB, /* measured in KiB */ 145 /* Second 128 byte cacheline */ 146 NR_BOUNCE, 147 #if IS_ENABLED(CONFIG_ZSMALLOC) 148 NR_ZSPAGES, /* allocated in zsmalloc */ 149 #endif 150 NR_FREE_CMA_PAGES, 151 NR_VM_ZONE_STAT_ITEMS }; 152 153 enum node_stat_item { 154 NR_LRU_BASE, 155 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 156 NR_ACTIVE_ANON, /* " " " " " */ 157 NR_INACTIVE_FILE, /* " " " " " */ 158 NR_ACTIVE_FILE, /* " " " " " */ 159 NR_UNEVICTABLE, /* " " " " " */ 160 NR_SLAB_RECLAIMABLE, 161 NR_SLAB_UNRECLAIMABLE, 162 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 163 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 164 WORKINGSET_NODES, 165 WORKINGSET_REFAULT, 166 WORKINGSET_ACTIVATE, 167 WORKINGSET_RESTORE, 168 WORKINGSET_NODERECLAIM, 169 NR_ANON_MAPPED, /* Mapped anonymous pages */ 170 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 171 only modified from process context */ 172 NR_FILE_PAGES, 173 NR_FILE_DIRTY, 174 NR_WRITEBACK, 175 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 176 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 177 NR_SHMEM_THPS, 178 NR_SHMEM_PMDMAPPED, 179 NR_ANON_THPS, 180 NR_UNSTABLE_NFS, /* NFS unstable pages */ 181 NR_VMSCAN_WRITE, 182 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 183 NR_DIRTIED, /* page dirtyings since bootup */ 184 NR_WRITTEN, /* page writings since bootup */ 185 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ 186 NR_VM_NODE_STAT_ITEMS 187 }; 188 189 /* 190 * We do arithmetic on the LRU lists in various places in the code, 191 * so it is important to keep the active lists LRU_ACTIVE higher in 192 * the array than the corresponding inactive lists, and to keep 193 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 194 * 195 * This has to be kept in sync with the statistics in zone_stat_item 196 * above and the descriptions in vmstat_text in mm/vmstat.c 197 */ 198 #define LRU_BASE 0 199 #define LRU_ACTIVE 1 200 #define LRU_FILE 2 201 202 enum lru_list { 203 LRU_INACTIVE_ANON = LRU_BASE, 204 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 205 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 206 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 207 LRU_UNEVICTABLE, 208 NR_LRU_LISTS 209 }; 210 211 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 212 213 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 214 215 static inline int is_file_lru(enum lru_list lru) 216 { 217 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 218 } 219 220 static inline int is_active_lru(enum lru_list lru) 221 { 222 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 223 } 224 225 struct zone_reclaim_stat { 226 /* 227 * The pageout code in vmscan.c keeps track of how many of the 228 * mem/swap backed and file backed pages are referenced. 229 * The higher the rotated/scanned ratio, the more valuable 230 * that cache is. 231 * 232 * The anon LRU stats live in [0], file LRU stats in [1] 233 */ 234 unsigned long recent_rotated[2]; 235 unsigned long recent_scanned[2]; 236 }; 237 238 struct lruvec { 239 struct list_head lists[NR_LRU_LISTS]; 240 struct zone_reclaim_stat reclaim_stat; 241 /* Evictions & activations on the inactive file list */ 242 atomic_long_t inactive_age; 243 /* Refaults at the time of last reclaim cycle */ 244 unsigned long refaults; 245 #ifdef CONFIG_MEMCG 246 struct pglist_data *pgdat; 247 #endif 248 }; 249 250 /* Mask used at gathering information at once (see memcontrol.c) */ 251 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 252 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 253 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 254 255 /* Isolate unmapped file */ 256 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 257 /* Isolate for asynchronous migration */ 258 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 259 /* Isolate unevictable pages */ 260 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 261 262 /* LRU Isolation modes. */ 263 typedef unsigned __bitwise isolate_mode_t; 264 265 enum zone_watermarks { 266 WMARK_MIN, 267 WMARK_LOW, 268 WMARK_HIGH, 269 NR_WMARK 270 }; 271 272 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost) 273 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost) 274 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost) 275 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost) 276 277 struct per_cpu_pages { 278 int count; /* number of pages in the list */ 279 int high; /* high watermark, emptying needed */ 280 int batch; /* chunk size for buddy add/remove */ 281 282 /* Lists of pages, one per migrate type stored on the pcp-lists */ 283 struct list_head lists[MIGRATE_PCPTYPES]; 284 }; 285 286 struct per_cpu_pageset { 287 struct per_cpu_pages pcp; 288 #ifdef CONFIG_NUMA 289 s8 expire; 290 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS]; 291 #endif 292 #ifdef CONFIG_SMP 293 s8 stat_threshold; 294 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 295 #endif 296 }; 297 298 struct per_cpu_nodestat { 299 s8 stat_threshold; 300 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 301 }; 302 303 #endif /* !__GENERATING_BOUNDS.H */ 304 305 enum zone_type { 306 #ifdef CONFIG_ZONE_DMA 307 /* 308 * ZONE_DMA is used when there are devices that are not able 309 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 310 * carve out the portion of memory that is needed for these devices. 311 * The range is arch specific. 312 * 313 * Some examples 314 * 315 * Architecture Limit 316 * --------------------------- 317 * parisc, ia64, sparc <4G 318 * s390, powerpc <2G 319 * arm Various 320 * alpha Unlimited or 0-16MB. 321 * 322 * i386, x86_64 and multiple other arches 323 * <16M. 324 */ 325 ZONE_DMA, 326 #endif 327 #ifdef CONFIG_ZONE_DMA32 328 /* 329 * x86_64 needs two ZONE_DMAs because it supports devices that are 330 * only able to do DMA to the lower 16M but also 32 bit devices that 331 * can only do DMA areas below 4G. 332 */ 333 ZONE_DMA32, 334 #endif 335 /* 336 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 337 * performed on pages in ZONE_NORMAL if the DMA devices support 338 * transfers to all addressable memory. 339 */ 340 ZONE_NORMAL, 341 #ifdef CONFIG_HIGHMEM 342 /* 343 * A memory area that is only addressable by the kernel through 344 * mapping portions into its own address space. This is for example 345 * used by i386 to allow the kernel to address the memory beyond 346 * 900MB. The kernel will set up special mappings (page 347 * table entries on i386) for each page that the kernel needs to 348 * access. 349 */ 350 ZONE_HIGHMEM, 351 #endif 352 ZONE_MOVABLE, 353 #ifdef CONFIG_ZONE_DEVICE 354 ZONE_DEVICE, 355 #endif 356 __MAX_NR_ZONES 357 358 }; 359 360 #ifndef __GENERATING_BOUNDS_H 361 362 struct zone { 363 /* Read-mostly fields */ 364 365 /* zone watermarks, access with *_wmark_pages(zone) macros */ 366 unsigned long _watermark[NR_WMARK]; 367 unsigned long watermark_boost; 368 369 unsigned long nr_reserved_highatomic; 370 371 /* 372 * We don't know if the memory that we're going to allocate will be 373 * freeable or/and it will be released eventually, so to avoid totally 374 * wasting several GB of ram we must reserve some of the lower zone 375 * memory (otherwise we risk to run OOM on the lower zones despite 376 * there being tons of freeable ram on the higher zones). This array is 377 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 378 * changes. 379 */ 380 long lowmem_reserve[MAX_NR_ZONES]; 381 382 #ifdef CONFIG_NUMA 383 int node; 384 #endif 385 struct pglist_data *zone_pgdat; 386 struct per_cpu_pageset __percpu *pageset; 387 388 #ifndef CONFIG_SPARSEMEM 389 /* 390 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 391 * In SPARSEMEM, this map is stored in struct mem_section 392 */ 393 unsigned long *pageblock_flags; 394 #endif /* CONFIG_SPARSEMEM */ 395 396 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 397 unsigned long zone_start_pfn; 398 399 /* 400 * spanned_pages is the total pages spanned by the zone, including 401 * holes, which is calculated as: 402 * spanned_pages = zone_end_pfn - zone_start_pfn; 403 * 404 * present_pages is physical pages existing within the zone, which 405 * is calculated as: 406 * present_pages = spanned_pages - absent_pages(pages in holes); 407 * 408 * managed_pages is present pages managed by the buddy system, which 409 * is calculated as (reserved_pages includes pages allocated by the 410 * bootmem allocator): 411 * managed_pages = present_pages - reserved_pages; 412 * 413 * So present_pages may be used by memory hotplug or memory power 414 * management logic to figure out unmanaged pages by checking 415 * (present_pages - managed_pages). And managed_pages should be used 416 * by page allocator and vm scanner to calculate all kinds of watermarks 417 * and thresholds. 418 * 419 * Locking rules: 420 * 421 * zone_start_pfn and spanned_pages are protected by span_seqlock. 422 * It is a seqlock because it has to be read outside of zone->lock, 423 * and it is done in the main allocator path. But, it is written 424 * quite infrequently. 425 * 426 * The span_seq lock is declared along with zone->lock because it is 427 * frequently read in proximity to zone->lock. It's good to 428 * give them a chance of being in the same cacheline. 429 * 430 * Write access to present_pages at runtime should be protected by 431 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of 432 * present_pages should get_online_mems() to get a stable value. 433 */ 434 atomic_long_t managed_pages; 435 unsigned long spanned_pages; 436 unsigned long present_pages; 437 438 const char *name; 439 440 #ifdef CONFIG_MEMORY_ISOLATION 441 /* 442 * Number of isolated pageblock. It is used to solve incorrect 443 * freepage counting problem due to racy retrieving migratetype 444 * of pageblock. Protected by zone->lock. 445 */ 446 unsigned long nr_isolate_pageblock; 447 #endif 448 449 #ifdef CONFIG_MEMORY_HOTPLUG 450 /* see spanned/present_pages for more description */ 451 seqlock_t span_seqlock; 452 #endif 453 454 int initialized; 455 456 /* Write-intensive fields used from the page allocator */ 457 ZONE_PADDING(_pad1_) 458 459 /* free areas of different sizes */ 460 struct free_area free_area[MAX_ORDER]; 461 462 /* zone flags, see below */ 463 unsigned long flags; 464 465 /* Primarily protects free_area */ 466 spinlock_t lock; 467 468 /* Write-intensive fields used by compaction and vmstats. */ 469 ZONE_PADDING(_pad2_) 470 471 /* 472 * When free pages are below this point, additional steps are taken 473 * when reading the number of free pages to avoid per-cpu counter 474 * drift allowing watermarks to be breached 475 */ 476 unsigned long percpu_drift_mark; 477 478 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 479 /* pfn where compaction free scanner should start */ 480 unsigned long compact_cached_free_pfn; 481 /* pfn where async and sync compaction migration scanner should start */ 482 unsigned long compact_cached_migrate_pfn[2]; 483 #endif 484 485 #ifdef CONFIG_COMPACTION 486 /* 487 * On compaction failure, 1<<compact_defer_shift compactions 488 * are skipped before trying again. The number attempted since 489 * last failure is tracked with compact_considered. 490 */ 491 unsigned int compact_considered; 492 unsigned int compact_defer_shift; 493 int compact_order_failed; 494 #endif 495 496 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 497 /* Set to true when the PG_migrate_skip bits should be cleared */ 498 bool compact_blockskip_flush; 499 #endif 500 501 bool contiguous; 502 503 ZONE_PADDING(_pad3_) 504 /* Zone statistics */ 505 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 506 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS]; 507 } ____cacheline_internodealigned_in_smp; 508 509 enum pgdat_flags { 510 PGDAT_CONGESTED, /* pgdat has many dirty pages backed by 511 * a congested BDI 512 */ 513 PGDAT_DIRTY, /* reclaim scanning has recently found 514 * many dirty file pages at the tail 515 * of the LRU. 516 */ 517 PGDAT_WRITEBACK, /* reclaim scanning has recently found 518 * many pages under writeback 519 */ 520 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 521 }; 522 523 static inline unsigned long zone_managed_pages(struct zone *zone) 524 { 525 return (unsigned long)atomic_long_read(&zone->managed_pages); 526 } 527 528 static inline unsigned long zone_end_pfn(const struct zone *zone) 529 { 530 return zone->zone_start_pfn + zone->spanned_pages; 531 } 532 533 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 534 { 535 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 536 } 537 538 static inline bool zone_is_initialized(struct zone *zone) 539 { 540 return zone->initialized; 541 } 542 543 static inline bool zone_is_empty(struct zone *zone) 544 { 545 return zone->spanned_pages == 0; 546 } 547 548 /* 549 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 550 * intersection with the given zone 551 */ 552 static inline bool zone_intersects(struct zone *zone, 553 unsigned long start_pfn, unsigned long nr_pages) 554 { 555 if (zone_is_empty(zone)) 556 return false; 557 if (start_pfn >= zone_end_pfn(zone) || 558 start_pfn + nr_pages <= zone->zone_start_pfn) 559 return false; 560 561 return true; 562 } 563 564 /* 565 * The "priority" of VM scanning is how much of the queues we will scan in one 566 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 567 * queues ("queue_length >> 12") during an aging round. 568 */ 569 #define DEF_PRIORITY 12 570 571 /* Maximum number of zones on a zonelist */ 572 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 573 574 enum { 575 ZONELIST_FALLBACK, /* zonelist with fallback */ 576 #ifdef CONFIG_NUMA 577 /* 578 * The NUMA zonelists are doubled because we need zonelists that 579 * restrict the allocations to a single node for __GFP_THISNODE. 580 */ 581 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 582 #endif 583 MAX_ZONELISTS 584 }; 585 586 /* 587 * This struct contains information about a zone in a zonelist. It is stored 588 * here to avoid dereferences into large structures and lookups of tables 589 */ 590 struct zoneref { 591 struct zone *zone; /* Pointer to actual zone */ 592 int zone_idx; /* zone_idx(zoneref->zone) */ 593 }; 594 595 /* 596 * One allocation request operates on a zonelist. A zonelist 597 * is a list of zones, the first one is the 'goal' of the 598 * allocation, the other zones are fallback zones, in decreasing 599 * priority. 600 * 601 * To speed the reading of the zonelist, the zonerefs contain the zone index 602 * of the entry being read. Helper functions to access information given 603 * a struct zoneref are 604 * 605 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 606 * zonelist_zone_idx() - Return the index of the zone for an entry 607 * zonelist_node_idx() - Return the index of the node for an entry 608 */ 609 struct zonelist { 610 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 611 }; 612 613 #ifndef CONFIG_DISCONTIGMEM 614 /* The array of struct pages - for discontigmem use pgdat->lmem_map */ 615 extern struct page *mem_map; 616 #endif 617 618 /* 619 * On NUMA machines, each NUMA node would have a pg_data_t to describe 620 * it's memory layout. On UMA machines there is a single pglist_data which 621 * describes the whole memory. 622 * 623 * Memory statistics and page replacement data structures are maintained on a 624 * per-zone basis. 625 */ 626 struct bootmem_data; 627 typedef struct pglist_data { 628 struct zone node_zones[MAX_NR_ZONES]; 629 struct zonelist node_zonelists[MAX_ZONELISTS]; 630 int nr_zones; 631 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 632 struct page *node_mem_map; 633 #ifdef CONFIG_PAGE_EXTENSION 634 struct page_ext *node_page_ext; 635 #endif 636 #endif 637 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) 638 /* 639 * Must be held any time you expect node_start_pfn, 640 * node_present_pages, node_spanned_pages or nr_zones to stay constant. 641 * 642 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 643 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG 644 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. 645 * 646 * Nests above zone->lock and zone->span_seqlock 647 */ 648 spinlock_t node_size_lock; 649 #endif 650 unsigned long node_start_pfn; 651 unsigned long node_present_pages; /* total number of physical pages */ 652 unsigned long node_spanned_pages; /* total size of physical page 653 range, including holes */ 654 int node_id; 655 wait_queue_head_t kswapd_wait; 656 wait_queue_head_t pfmemalloc_wait; 657 struct task_struct *kswapd; /* Protected by 658 mem_hotplug_begin/end() */ 659 int kswapd_order; 660 enum zone_type kswapd_classzone_idx; 661 662 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 663 664 #ifdef CONFIG_COMPACTION 665 int kcompactd_max_order; 666 enum zone_type kcompactd_classzone_idx; 667 wait_queue_head_t kcompactd_wait; 668 struct task_struct *kcompactd; 669 #endif 670 /* 671 * This is a per-node reserve of pages that are not available 672 * to userspace allocations. 673 */ 674 unsigned long totalreserve_pages; 675 676 #ifdef CONFIG_NUMA 677 /* 678 * zone reclaim becomes active if more unmapped pages exist. 679 */ 680 unsigned long min_unmapped_pages; 681 unsigned long min_slab_pages; 682 #endif /* CONFIG_NUMA */ 683 684 /* Write-intensive fields used by page reclaim */ 685 ZONE_PADDING(_pad1_) 686 spinlock_t lru_lock; 687 688 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 689 /* 690 * If memory initialisation on large machines is deferred then this 691 * is the first PFN that needs to be initialised. 692 */ 693 unsigned long first_deferred_pfn; 694 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 695 696 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 697 spinlock_t split_queue_lock; 698 struct list_head split_queue; 699 unsigned long split_queue_len; 700 #endif 701 702 /* Fields commonly accessed by the page reclaim scanner */ 703 struct lruvec lruvec; 704 705 unsigned long flags; 706 707 ZONE_PADDING(_pad2_) 708 709 /* Per-node vmstats */ 710 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 711 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 712 } pg_data_t; 713 714 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 715 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 716 #ifdef CONFIG_FLAT_NODE_MEM_MAP 717 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 718 #else 719 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 720 #endif 721 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 722 723 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 724 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 725 static inline spinlock_t *zone_lru_lock(struct zone *zone) 726 { 727 return &zone->zone_pgdat->lru_lock; 728 } 729 730 static inline struct lruvec *node_lruvec(struct pglist_data *pgdat) 731 { 732 return &pgdat->lruvec; 733 } 734 735 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 736 { 737 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 738 } 739 740 static inline bool pgdat_is_empty(pg_data_t *pgdat) 741 { 742 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; 743 } 744 745 #include <linux/memory_hotplug.h> 746 747 void build_all_zonelists(pg_data_t *pgdat); 748 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, 749 enum zone_type classzone_idx); 750 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 751 int classzone_idx, unsigned int alloc_flags, 752 long free_pages); 753 bool zone_watermark_ok(struct zone *z, unsigned int order, 754 unsigned long mark, int classzone_idx, 755 unsigned int alloc_flags); 756 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 757 unsigned long mark, int classzone_idx); 758 enum memmap_context { 759 MEMMAP_EARLY, 760 MEMMAP_HOTPLUG, 761 }; 762 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 763 unsigned long size); 764 765 extern void lruvec_init(struct lruvec *lruvec); 766 767 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 768 { 769 #ifdef CONFIG_MEMCG 770 return lruvec->pgdat; 771 #else 772 return container_of(lruvec, struct pglist_data, lruvec); 773 #endif 774 } 775 776 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx); 777 778 #ifdef CONFIG_HAVE_MEMORY_PRESENT 779 void memory_present(int nid, unsigned long start, unsigned long end); 780 #else 781 static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 782 #endif 783 784 #if defined(CONFIG_SPARSEMEM) 785 void memblocks_present(void); 786 #else 787 static inline void memblocks_present(void) {} 788 #endif 789 790 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 791 int local_memory_node(int node_id); 792 #else 793 static inline int local_memory_node(int node_id) { return node_id; }; 794 #endif 795 796 /* 797 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 798 */ 799 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 800 801 #ifdef CONFIG_ZONE_DEVICE 802 static inline bool is_dev_zone(const struct zone *zone) 803 { 804 return zone_idx(zone) == ZONE_DEVICE; 805 } 806 #else 807 static inline bool is_dev_zone(const struct zone *zone) 808 { 809 return false; 810 } 811 #endif 812 813 /* 814 * Returns true if a zone has pages managed by the buddy allocator. 815 * All the reclaim decisions have to use this function rather than 816 * populated_zone(). If the whole zone is reserved then we can easily 817 * end up with populated_zone() && !managed_zone(). 818 */ 819 static inline bool managed_zone(struct zone *zone) 820 { 821 return zone_managed_pages(zone); 822 } 823 824 /* Returns true if a zone has memory */ 825 static inline bool populated_zone(struct zone *zone) 826 { 827 return zone->present_pages; 828 } 829 830 #ifdef CONFIG_NUMA 831 static inline int zone_to_nid(struct zone *zone) 832 { 833 return zone->node; 834 } 835 836 static inline void zone_set_nid(struct zone *zone, int nid) 837 { 838 zone->node = nid; 839 } 840 #else 841 static inline int zone_to_nid(struct zone *zone) 842 { 843 return 0; 844 } 845 846 static inline void zone_set_nid(struct zone *zone, int nid) {} 847 #endif 848 849 extern int movable_zone; 850 851 #ifdef CONFIG_HIGHMEM 852 static inline int zone_movable_is_highmem(void) 853 { 854 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 855 return movable_zone == ZONE_HIGHMEM; 856 #else 857 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM; 858 #endif 859 } 860 #endif 861 862 static inline int is_highmem_idx(enum zone_type idx) 863 { 864 #ifdef CONFIG_HIGHMEM 865 return (idx == ZONE_HIGHMEM || 866 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 867 #else 868 return 0; 869 #endif 870 } 871 872 /** 873 * is_highmem - helper function to quickly check if a struct zone is a 874 * highmem zone or not. This is an attempt to keep references 875 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 876 * @zone - pointer to struct zone variable 877 */ 878 static inline int is_highmem(struct zone *zone) 879 { 880 #ifdef CONFIG_HIGHMEM 881 return is_highmem_idx(zone_idx(zone)); 882 #else 883 return 0; 884 #endif 885 } 886 887 /* These two functions are used to setup the per zone pages min values */ 888 struct ctl_table; 889 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 890 void __user *, size_t *, loff_t *); 891 int watermark_boost_factor_sysctl_handler(struct ctl_table *, int, 892 void __user *, size_t *, loff_t *); 893 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, 894 void __user *, size_t *, loff_t *); 895 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES]; 896 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 897 void __user *, size_t *, loff_t *); 898 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 899 void __user *, size_t *, loff_t *); 900 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 901 void __user *, size_t *, loff_t *); 902 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 903 void __user *, size_t *, loff_t *); 904 905 extern int numa_zonelist_order_handler(struct ctl_table *, int, 906 void __user *, size_t *, loff_t *); 907 extern char numa_zonelist_order[]; 908 #define NUMA_ZONELIST_ORDER_LEN 16 909 910 #ifndef CONFIG_NEED_MULTIPLE_NODES 911 912 extern struct pglist_data contig_page_data; 913 #define NODE_DATA(nid) (&contig_page_data) 914 #define NODE_MEM_MAP(nid) mem_map 915 916 #else /* CONFIG_NEED_MULTIPLE_NODES */ 917 918 #include <asm/mmzone.h> 919 920 #endif /* !CONFIG_NEED_MULTIPLE_NODES */ 921 922 extern struct pglist_data *first_online_pgdat(void); 923 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 924 extern struct zone *next_zone(struct zone *zone); 925 926 /** 927 * for_each_online_pgdat - helper macro to iterate over all online nodes 928 * @pgdat - pointer to a pg_data_t variable 929 */ 930 #define for_each_online_pgdat(pgdat) \ 931 for (pgdat = first_online_pgdat(); \ 932 pgdat; \ 933 pgdat = next_online_pgdat(pgdat)) 934 /** 935 * for_each_zone - helper macro to iterate over all memory zones 936 * @zone - pointer to struct zone variable 937 * 938 * The user only needs to declare the zone variable, for_each_zone 939 * fills it in. 940 */ 941 #define for_each_zone(zone) \ 942 for (zone = (first_online_pgdat())->node_zones; \ 943 zone; \ 944 zone = next_zone(zone)) 945 946 #define for_each_populated_zone(zone) \ 947 for (zone = (first_online_pgdat())->node_zones; \ 948 zone; \ 949 zone = next_zone(zone)) \ 950 if (!populated_zone(zone)) \ 951 ; /* do nothing */ \ 952 else 953 954 static inline struct zone *zonelist_zone(struct zoneref *zoneref) 955 { 956 return zoneref->zone; 957 } 958 959 static inline int zonelist_zone_idx(struct zoneref *zoneref) 960 { 961 return zoneref->zone_idx; 962 } 963 964 static inline int zonelist_node_idx(struct zoneref *zoneref) 965 { 966 return zone_to_nid(zoneref->zone); 967 } 968 969 struct zoneref *__next_zones_zonelist(struct zoneref *z, 970 enum zone_type highest_zoneidx, 971 nodemask_t *nodes); 972 973 /** 974 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 975 * @z - The cursor used as a starting point for the search 976 * @highest_zoneidx - The zone index of the highest zone to return 977 * @nodes - An optional nodemask to filter the zonelist with 978 * 979 * This function returns the next zone at or below a given zone index that is 980 * within the allowed nodemask using a cursor as the starting point for the 981 * search. The zoneref returned is a cursor that represents the current zone 982 * being examined. It should be advanced by one before calling 983 * next_zones_zonelist again. 984 */ 985 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 986 enum zone_type highest_zoneidx, 987 nodemask_t *nodes) 988 { 989 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 990 return z; 991 return __next_zones_zonelist(z, highest_zoneidx, nodes); 992 } 993 994 /** 995 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 996 * @zonelist - The zonelist to search for a suitable zone 997 * @highest_zoneidx - The zone index of the highest zone to return 998 * @nodes - An optional nodemask to filter the zonelist with 999 * @return - Zoneref pointer for the first suitable zone found (see below) 1000 * 1001 * This function returns the first zone at or below a given zone index that is 1002 * within the allowed nodemask. The zoneref returned is a cursor that can be 1003 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1004 * one before calling. 1005 * 1006 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1007 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1008 * update due to cpuset modification. 1009 */ 1010 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1011 enum zone_type highest_zoneidx, 1012 nodemask_t *nodes) 1013 { 1014 return next_zones_zonelist(zonelist->_zonerefs, 1015 highest_zoneidx, nodes); 1016 } 1017 1018 /** 1019 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1020 * @zone - The current zone in the iterator 1021 * @z - The current pointer within zonelist->zones being iterated 1022 * @zlist - The zonelist being iterated 1023 * @highidx - The zone index of the highest zone to return 1024 * @nodemask - Nodemask allowed by the allocator 1025 * 1026 * This iterator iterates though all zones at or below a given zone index and 1027 * within a given nodemask 1028 */ 1029 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1030 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1031 zone; \ 1032 z = next_zones_zonelist(++z, highidx, nodemask), \ 1033 zone = zonelist_zone(z)) 1034 1035 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1036 for (zone = z->zone; \ 1037 zone; \ 1038 z = next_zones_zonelist(++z, highidx, nodemask), \ 1039 zone = zonelist_zone(z)) 1040 1041 1042 /** 1043 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1044 * @zone - The current zone in the iterator 1045 * @z - The current pointer within zonelist->zones being iterated 1046 * @zlist - The zonelist being iterated 1047 * @highidx - The zone index of the highest zone to return 1048 * 1049 * This iterator iterates though all zones at or below a given zone index. 1050 */ 1051 #define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1052 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1053 1054 #ifdef CONFIG_SPARSEMEM 1055 #include <asm/sparsemem.h> 1056 #endif 1057 1058 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 1059 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1060 static inline unsigned long early_pfn_to_nid(unsigned long pfn) 1061 { 1062 BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA)); 1063 return 0; 1064 } 1065 #endif 1066 1067 #ifdef CONFIG_FLATMEM 1068 #define pfn_to_nid(pfn) (0) 1069 #endif 1070 1071 #ifdef CONFIG_SPARSEMEM 1072 1073 /* 1074 * SECTION_SHIFT #bits space required to store a section # 1075 * 1076 * PA_SECTION_SHIFT physical address to/from section number 1077 * PFN_SECTION_SHIFT pfn to/from section number 1078 */ 1079 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1080 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1081 1082 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1083 1084 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1085 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1086 1087 #define SECTION_BLOCKFLAGS_BITS \ 1088 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1089 1090 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1091 #error Allocator MAX_ORDER exceeds SECTION_SIZE 1092 #endif 1093 1094 static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1095 { 1096 return pfn >> PFN_SECTION_SHIFT; 1097 } 1098 static inline unsigned long section_nr_to_pfn(unsigned long sec) 1099 { 1100 return sec << PFN_SECTION_SHIFT; 1101 } 1102 1103 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1104 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1105 1106 struct page; 1107 struct page_ext; 1108 struct mem_section { 1109 /* 1110 * This is, logically, a pointer to an array of struct 1111 * pages. However, it is stored with some other magic. 1112 * (see sparse.c::sparse_init_one_section()) 1113 * 1114 * Additionally during early boot we encode node id of 1115 * the location of the section here to guide allocation. 1116 * (see sparse.c::memory_present()) 1117 * 1118 * Making it a UL at least makes someone do a cast 1119 * before using it wrong. 1120 */ 1121 unsigned long section_mem_map; 1122 1123 /* See declaration of similar field in struct zone */ 1124 unsigned long *pageblock_flags; 1125 #ifdef CONFIG_PAGE_EXTENSION 1126 /* 1127 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1128 * section. (see page_ext.h about this.) 1129 */ 1130 struct page_ext *page_ext; 1131 unsigned long pad; 1132 #endif 1133 /* 1134 * WARNING: mem_section must be a power-of-2 in size for the 1135 * calculation and use of SECTION_ROOT_MASK to make sense. 1136 */ 1137 }; 1138 1139 #ifdef CONFIG_SPARSEMEM_EXTREME 1140 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1141 #else 1142 #define SECTIONS_PER_ROOT 1 1143 #endif 1144 1145 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1146 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1147 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1148 1149 #ifdef CONFIG_SPARSEMEM_EXTREME 1150 extern struct mem_section **mem_section; 1151 #else 1152 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1153 #endif 1154 1155 static inline struct mem_section *__nr_to_section(unsigned long nr) 1156 { 1157 #ifdef CONFIG_SPARSEMEM_EXTREME 1158 if (!mem_section) 1159 return NULL; 1160 #endif 1161 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1162 return NULL; 1163 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1164 } 1165 extern int __section_nr(struct mem_section* ms); 1166 extern unsigned long usemap_size(void); 1167 1168 /* 1169 * We use the lower bits of the mem_map pointer to store 1170 * a little bit of information. The pointer is calculated 1171 * as mem_map - section_nr_to_pfn(pnum). The result is 1172 * aligned to the minimum alignment of the two values: 1173 * 1. All mem_map arrays are page-aligned. 1174 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT 1175 * lowest bits. PFN_SECTION_SHIFT is arch-specific 1176 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the 1177 * worst combination is powerpc with 256k pages, 1178 * which results in PFN_SECTION_SHIFT equal 6. 1179 * To sum it up, at least 6 bits are available. 1180 */ 1181 #define SECTION_MARKED_PRESENT (1UL<<0) 1182 #define SECTION_HAS_MEM_MAP (1UL<<1) 1183 #define SECTION_IS_ONLINE (1UL<<2) 1184 #define SECTION_MAP_LAST_BIT (1UL<<3) 1185 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1186 #define SECTION_NID_SHIFT 3 1187 1188 static inline struct page *__section_mem_map_addr(struct mem_section *section) 1189 { 1190 unsigned long map = section->section_mem_map; 1191 map &= SECTION_MAP_MASK; 1192 return (struct page *)map; 1193 } 1194 1195 static inline int present_section(struct mem_section *section) 1196 { 1197 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1198 } 1199 1200 static inline int present_section_nr(unsigned long nr) 1201 { 1202 return present_section(__nr_to_section(nr)); 1203 } 1204 1205 static inline int valid_section(struct mem_section *section) 1206 { 1207 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1208 } 1209 1210 static inline int valid_section_nr(unsigned long nr) 1211 { 1212 return valid_section(__nr_to_section(nr)); 1213 } 1214 1215 static inline int online_section(struct mem_section *section) 1216 { 1217 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 1218 } 1219 1220 static inline int online_section_nr(unsigned long nr) 1221 { 1222 return online_section(__nr_to_section(nr)); 1223 } 1224 1225 #ifdef CONFIG_MEMORY_HOTPLUG 1226 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1227 #ifdef CONFIG_MEMORY_HOTREMOVE 1228 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1229 #endif 1230 #endif 1231 1232 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1233 { 1234 return __nr_to_section(pfn_to_section_nr(pfn)); 1235 } 1236 1237 extern int __highest_present_section_nr; 1238 1239 #ifndef CONFIG_HAVE_ARCH_PFN_VALID 1240 static inline int pfn_valid(unsigned long pfn) 1241 { 1242 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1243 return 0; 1244 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1245 } 1246 #endif 1247 1248 static inline int pfn_present(unsigned long pfn) 1249 { 1250 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1251 return 0; 1252 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1253 } 1254 1255 /* 1256 * These are _only_ used during initialisation, therefore they 1257 * can use __initdata ... They could have names to indicate 1258 * this restriction. 1259 */ 1260 #ifdef CONFIG_NUMA 1261 #define pfn_to_nid(pfn) \ 1262 ({ \ 1263 unsigned long __pfn_to_nid_pfn = (pfn); \ 1264 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1265 }) 1266 #else 1267 #define pfn_to_nid(pfn) (0) 1268 #endif 1269 1270 #define early_pfn_valid(pfn) pfn_valid(pfn) 1271 void sparse_init(void); 1272 #else 1273 #define sparse_init() do {} while (0) 1274 #define sparse_index_init(_sec, _nid) do {} while (0) 1275 #endif /* CONFIG_SPARSEMEM */ 1276 1277 /* 1278 * During memory init memblocks map pfns to nids. The search is expensive and 1279 * this caches recent lookups. The implementation of __early_pfn_to_nid 1280 * may treat start/end as pfns or sections. 1281 */ 1282 struct mminit_pfnnid_cache { 1283 unsigned long last_start; 1284 unsigned long last_end; 1285 int last_nid; 1286 }; 1287 1288 #ifndef early_pfn_valid 1289 #define early_pfn_valid(pfn) (1) 1290 #endif 1291 1292 void memory_present(int nid, unsigned long start, unsigned long end); 1293 1294 /* 1295 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1296 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 1297 * pfn_valid_within() should be used in this case; we optimise this away 1298 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1299 */ 1300 #ifdef CONFIG_HOLES_IN_ZONE 1301 #define pfn_valid_within(pfn) pfn_valid(pfn) 1302 #else 1303 #define pfn_valid_within(pfn) (1) 1304 #endif 1305 1306 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1307 /* 1308 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1309 * associated with it or not. This means that a struct page exists for this 1310 * pfn. The caller cannot assume the page is fully initialized in general. 1311 * Hotplugable pages might not have been onlined yet. pfn_to_online_page() 1312 * will ensure the struct page is fully online and initialized. Special pages 1313 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly. 1314 * 1315 * In FLATMEM, it is expected that holes always have valid memmap as long as 1316 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed 1317 * that a valid section has a memmap for the entire section. 1318 * 1319 * However, an ARM, and maybe other embedded architectures in the future 1320 * free memmap backing holes to save memory on the assumption the memmap is 1321 * never used. The page_zone linkages are then broken even though pfn_valid() 1322 * returns true. A walker of the full memmap must then do this additional 1323 * check to ensure the memmap they are looking at is sane by making sure 1324 * the zone and PFN linkages are still valid. This is expensive, but walkers 1325 * of the full memmap are extremely rare. 1326 */ 1327 bool memmap_valid_within(unsigned long pfn, 1328 struct page *page, struct zone *zone); 1329 #else 1330 static inline bool memmap_valid_within(unsigned long pfn, 1331 struct page *page, struct zone *zone) 1332 { 1333 return true; 1334 } 1335 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1336 1337 #endif /* !__GENERATING_BOUNDS.H */ 1338 #endif /* !__ASSEMBLY__ */ 1339 #endif /* _LINUX_MMZONE_H */ 1340