xref: /linux-6.15/include/linux/mmzone.h (revision dfd32cad)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/bitops.h>
12 #include <linux/cache.h>
13 #include <linux/threads.h>
14 #include <linux/numa.h>
15 #include <linux/init.h>
16 #include <linux/seqlock.h>
17 #include <linux/nodemask.h>
18 #include <linux/pageblock-flags.h>
19 #include <linux/page-flags-layout.h>
20 #include <linux/atomic.h>
21 #include <asm/page.h>
22 
23 /* Free memory management - zoned buddy allocator.  */
24 #ifndef CONFIG_FORCE_MAX_ZONEORDER
25 #define MAX_ORDER 11
26 #else
27 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
28 #endif
29 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
30 
31 /*
32  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
33  * costly to service.  That is between allocation orders which should
34  * coalesce naturally under reasonable reclaim pressure and those which
35  * will not.
36  */
37 #define PAGE_ALLOC_COSTLY_ORDER 3
38 
39 enum migratetype {
40 	MIGRATE_UNMOVABLE,
41 	MIGRATE_MOVABLE,
42 	MIGRATE_RECLAIMABLE,
43 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
44 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
45 #ifdef CONFIG_CMA
46 	/*
47 	 * MIGRATE_CMA migration type is designed to mimic the way
48 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
49 	 * from MIGRATE_CMA pageblocks and page allocator never
50 	 * implicitly change migration type of MIGRATE_CMA pageblock.
51 	 *
52 	 * The way to use it is to change migratetype of a range of
53 	 * pageblocks to MIGRATE_CMA which can be done by
54 	 * __free_pageblock_cma() function.  What is important though
55 	 * is that a range of pageblocks must be aligned to
56 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
57 	 * a single pageblock.
58 	 */
59 	MIGRATE_CMA,
60 #endif
61 #ifdef CONFIG_MEMORY_ISOLATION
62 	MIGRATE_ISOLATE,	/* can't allocate from here */
63 #endif
64 	MIGRATE_TYPES
65 };
66 
67 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
68 extern const char * const migratetype_names[MIGRATE_TYPES];
69 
70 #ifdef CONFIG_CMA
71 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
72 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
73 #else
74 #  define is_migrate_cma(migratetype) false
75 #  define is_migrate_cma_page(_page) false
76 #endif
77 
78 static inline bool is_migrate_movable(int mt)
79 {
80 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
81 }
82 
83 #define for_each_migratetype_order(order, type) \
84 	for (order = 0; order < MAX_ORDER; order++) \
85 		for (type = 0; type < MIGRATE_TYPES; type++)
86 
87 extern int page_group_by_mobility_disabled;
88 
89 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
90 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
91 
92 #define get_pageblock_migratetype(page)					\
93 	get_pfnblock_flags_mask(page, page_to_pfn(page),		\
94 			PB_migrate_end, MIGRATETYPE_MASK)
95 
96 struct free_area {
97 	struct list_head	free_list[MIGRATE_TYPES];
98 	unsigned long		nr_free;
99 };
100 
101 struct pglist_data;
102 
103 /*
104  * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
105  * So add a wild amount of padding here to ensure that they fall into separate
106  * cachelines.  There are very few zone structures in the machine, so space
107  * consumption is not a concern here.
108  */
109 #if defined(CONFIG_SMP)
110 struct zone_padding {
111 	char x[0];
112 } ____cacheline_internodealigned_in_smp;
113 #define ZONE_PADDING(name)	struct zone_padding name;
114 #else
115 #define ZONE_PADDING(name)
116 #endif
117 
118 #ifdef CONFIG_NUMA
119 enum numa_stat_item {
120 	NUMA_HIT,		/* allocated in intended node */
121 	NUMA_MISS,		/* allocated in non intended node */
122 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
123 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
124 	NUMA_LOCAL,		/* allocation from local node */
125 	NUMA_OTHER,		/* allocation from other node */
126 	NR_VM_NUMA_STAT_ITEMS
127 };
128 #else
129 #define NR_VM_NUMA_STAT_ITEMS 0
130 #endif
131 
132 enum zone_stat_item {
133 	/* First 128 byte cacheline (assuming 64 bit words) */
134 	NR_FREE_PAGES,
135 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
136 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
137 	NR_ZONE_ACTIVE_ANON,
138 	NR_ZONE_INACTIVE_FILE,
139 	NR_ZONE_ACTIVE_FILE,
140 	NR_ZONE_UNEVICTABLE,
141 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
142 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
143 	NR_PAGETABLE,		/* used for pagetables */
144 	NR_KERNEL_STACK_KB,	/* measured in KiB */
145 	/* Second 128 byte cacheline */
146 	NR_BOUNCE,
147 #if IS_ENABLED(CONFIG_ZSMALLOC)
148 	NR_ZSPAGES,		/* allocated in zsmalloc */
149 #endif
150 	NR_FREE_CMA_PAGES,
151 	NR_VM_ZONE_STAT_ITEMS };
152 
153 enum node_stat_item {
154 	NR_LRU_BASE,
155 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
156 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
157 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
158 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
159 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
160 	NR_SLAB_RECLAIMABLE,
161 	NR_SLAB_UNRECLAIMABLE,
162 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
163 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
164 	WORKINGSET_NODES,
165 	WORKINGSET_REFAULT,
166 	WORKINGSET_ACTIVATE,
167 	WORKINGSET_RESTORE,
168 	WORKINGSET_NODERECLAIM,
169 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
170 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
171 			   only modified from process context */
172 	NR_FILE_PAGES,
173 	NR_FILE_DIRTY,
174 	NR_WRITEBACK,
175 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
176 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
177 	NR_SHMEM_THPS,
178 	NR_SHMEM_PMDMAPPED,
179 	NR_ANON_THPS,
180 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
181 	NR_VMSCAN_WRITE,
182 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
183 	NR_DIRTIED,		/* page dirtyings since bootup */
184 	NR_WRITTEN,		/* page writings since bootup */
185 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
186 	NR_VM_NODE_STAT_ITEMS
187 };
188 
189 /*
190  * We do arithmetic on the LRU lists in various places in the code,
191  * so it is important to keep the active lists LRU_ACTIVE higher in
192  * the array than the corresponding inactive lists, and to keep
193  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
194  *
195  * This has to be kept in sync with the statistics in zone_stat_item
196  * above and the descriptions in vmstat_text in mm/vmstat.c
197  */
198 #define LRU_BASE 0
199 #define LRU_ACTIVE 1
200 #define LRU_FILE 2
201 
202 enum lru_list {
203 	LRU_INACTIVE_ANON = LRU_BASE,
204 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
205 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
206 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
207 	LRU_UNEVICTABLE,
208 	NR_LRU_LISTS
209 };
210 
211 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
212 
213 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
214 
215 static inline int is_file_lru(enum lru_list lru)
216 {
217 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
218 }
219 
220 static inline int is_active_lru(enum lru_list lru)
221 {
222 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
223 }
224 
225 struct zone_reclaim_stat {
226 	/*
227 	 * The pageout code in vmscan.c keeps track of how many of the
228 	 * mem/swap backed and file backed pages are referenced.
229 	 * The higher the rotated/scanned ratio, the more valuable
230 	 * that cache is.
231 	 *
232 	 * The anon LRU stats live in [0], file LRU stats in [1]
233 	 */
234 	unsigned long		recent_rotated[2];
235 	unsigned long		recent_scanned[2];
236 };
237 
238 struct lruvec {
239 	struct list_head		lists[NR_LRU_LISTS];
240 	struct zone_reclaim_stat	reclaim_stat;
241 	/* Evictions & activations on the inactive file list */
242 	atomic_long_t			inactive_age;
243 	/* Refaults at the time of last reclaim cycle */
244 	unsigned long			refaults;
245 #ifdef CONFIG_MEMCG
246 	struct pglist_data *pgdat;
247 #endif
248 };
249 
250 /* Mask used at gathering information at once (see memcontrol.c) */
251 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
252 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
253 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
254 
255 /* Isolate unmapped file */
256 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
257 /* Isolate for asynchronous migration */
258 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
259 /* Isolate unevictable pages */
260 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
261 
262 /* LRU Isolation modes. */
263 typedef unsigned __bitwise isolate_mode_t;
264 
265 enum zone_watermarks {
266 	WMARK_MIN,
267 	WMARK_LOW,
268 	WMARK_HIGH,
269 	NR_WMARK
270 };
271 
272 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
273 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
274 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
275 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
276 
277 struct per_cpu_pages {
278 	int count;		/* number of pages in the list */
279 	int high;		/* high watermark, emptying needed */
280 	int batch;		/* chunk size for buddy add/remove */
281 
282 	/* Lists of pages, one per migrate type stored on the pcp-lists */
283 	struct list_head lists[MIGRATE_PCPTYPES];
284 };
285 
286 struct per_cpu_pageset {
287 	struct per_cpu_pages pcp;
288 #ifdef CONFIG_NUMA
289 	s8 expire;
290 	u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
291 #endif
292 #ifdef CONFIG_SMP
293 	s8 stat_threshold;
294 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
295 #endif
296 };
297 
298 struct per_cpu_nodestat {
299 	s8 stat_threshold;
300 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
301 };
302 
303 #endif /* !__GENERATING_BOUNDS.H */
304 
305 enum zone_type {
306 #ifdef CONFIG_ZONE_DMA
307 	/*
308 	 * ZONE_DMA is used when there are devices that are not able
309 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
310 	 * carve out the portion of memory that is needed for these devices.
311 	 * The range is arch specific.
312 	 *
313 	 * Some examples
314 	 *
315 	 * Architecture		Limit
316 	 * ---------------------------
317 	 * parisc, ia64, sparc	<4G
318 	 * s390, powerpc	<2G
319 	 * arm			Various
320 	 * alpha		Unlimited or 0-16MB.
321 	 *
322 	 * i386, x86_64 and multiple other arches
323 	 * 			<16M.
324 	 */
325 	ZONE_DMA,
326 #endif
327 #ifdef CONFIG_ZONE_DMA32
328 	/*
329 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
330 	 * only able to do DMA to the lower 16M but also 32 bit devices that
331 	 * can only do DMA areas below 4G.
332 	 */
333 	ZONE_DMA32,
334 #endif
335 	/*
336 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
337 	 * performed on pages in ZONE_NORMAL if the DMA devices support
338 	 * transfers to all addressable memory.
339 	 */
340 	ZONE_NORMAL,
341 #ifdef CONFIG_HIGHMEM
342 	/*
343 	 * A memory area that is only addressable by the kernel through
344 	 * mapping portions into its own address space. This is for example
345 	 * used by i386 to allow the kernel to address the memory beyond
346 	 * 900MB. The kernel will set up special mappings (page
347 	 * table entries on i386) for each page that the kernel needs to
348 	 * access.
349 	 */
350 	ZONE_HIGHMEM,
351 #endif
352 	ZONE_MOVABLE,
353 #ifdef CONFIG_ZONE_DEVICE
354 	ZONE_DEVICE,
355 #endif
356 	__MAX_NR_ZONES
357 
358 };
359 
360 #ifndef __GENERATING_BOUNDS_H
361 
362 struct zone {
363 	/* Read-mostly fields */
364 
365 	/* zone watermarks, access with *_wmark_pages(zone) macros */
366 	unsigned long _watermark[NR_WMARK];
367 	unsigned long watermark_boost;
368 
369 	unsigned long nr_reserved_highatomic;
370 
371 	/*
372 	 * We don't know if the memory that we're going to allocate will be
373 	 * freeable or/and it will be released eventually, so to avoid totally
374 	 * wasting several GB of ram we must reserve some of the lower zone
375 	 * memory (otherwise we risk to run OOM on the lower zones despite
376 	 * there being tons of freeable ram on the higher zones).  This array is
377 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
378 	 * changes.
379 	 */
380 	long lowmem_reserve[MAX_NR_ZONES];
381 
382 #ifdef CONFIG_NUMA
383 	int node;
384 #endif
385 	struct pglist_data	*zone_pgdat;
386 	struct per_cpu_pageset __percpu *pageset;
387 
388 #ifndef CONFIG_SPARSEMEM
389 	/*
390 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
391 	 * In SPARSEMEM, this map is stored in struct mem_section
392 	 */
393 	unsigned long		*pageblock_flags;
394 #endif /* CONFIG_SPARSEMEM */
395 
396 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
397 	unsigned long		zone_start_pfn;
398 
399 	/*
400 	 * spanned_pages is the total pages spanned by the zone, including
401 	 * holes, which is calculated as:
402 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
403 	 *
404 	 * present_pages is physical pages existing within the zone, which
405 	 * is calculated as:
406 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
407 	 *
408 	 * managed_pages is present pages managed by the buddy system, which
409 	 * is calculated as (reserved_pages includes pages allocated by the
410 	 * bootmem allocator):
411 	 *	managed_pages = present_pages - reserved_pages;
412 	 *
413 	 * So present_pages may be used by memory hotplug or memory power
414 	 * management logic to figure out unmanaged pages by checking
415 	 * (present_pages - managed_pages). And managed_pages should be used
416 	 * by page allocator and vm scanner to calculate all kinds of watermarks
417 	 * and thresholds.
418 	 *
419 	 * Locking rules:
420 	 *
421 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
422 	 * It is a seqlock because it has to be read outside of zone->lock,
423 	 * and it is done in the main allocator path.  But, it is written
424 	 * quite infrequently.
425 	 *
426 	 * The span_seq lock is declared along with zone->lock because it is
427 	 * frequently read in proximity to zone->lock.  It's good to
428 	 * give them a chance of being in the same cacheline.
429 	 *
430 	 * Write access to present_pages at runtime should be protected by
431 	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
432 	 * present_pages should get_online_mems() to get a stable value.
433 	 */
434 	atomic_long_t		managed_pages;
435 	unsigned long		spanned_pages;
436 	unsigned long		present_pages;
437 
438 	const char		*name;
439 
440 #ifdef CONFIG_MEMORY_ISOLATION
441 	/*
442 	 * Number of isolated pageblock. It is used to solve incorrect
443 	 * freepage counting problem due to racy retrieving migratetype
444 	 * of pageblock. Protected by zone->lock.
445 	 */
446 	unsigned long		nr_isolate_pageblock;
447 #endif
448 
449 #ifdef CONFIG_MEMORY_HOTPLUG
450 	/* see spanned/present_pages for more description */
451 	seqlock_t		span_seqlock;
452 #endif
453 
454 	int initialized;
455 
456 	/* Write-intensive fields used from the page allocator */
457 	ZONE_PADDING(_pad1_)
458 
459 	/* free areas of different sizes */
460 	struct free_area	free_area[MAX_ORDER];
461 
462 	/* zone flags, see below */
463 	unsigned long		flags;
464 
465 	/* Primarily protects free_area */
466 	spinlock_t		lock;
467 
468 	/* Write-intensive fields used by compaction and vmstats. */
469 	ZONE_PADDING(_pad2_)
470 
471 	/*
472 	 * When free pages are below this point, additional steps are taken
473 	 * when reading the number of free pages to avoid per-cpu counter
474 	 * drift allowing watermarks to be breached
475 	 */
476 	unsigned long percpu_drift_mark;
477 
478 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
479 	/* pfn where compaction free scanner should start */
480 	unsigned long		compact_cached_free_pfn;
481 	/* pfn where async and sync compaction migration scanner should start */
482 	unsigned long		compact_cached_migrate_pfn[2];
483 #endif
484 
485 #ifdef CONFIG_COMPACTION
486 	/*
487 	 * On compaction failure, 1<<compact_defer_shift compactions
488 	 * are skipped before trying again. The number attempted since
489 	 * last failure is tracked with compact_considered.
490 	 */
491 	unsigned int		compact_considered;
492 	unsigned int		compact_defer_shift;
493 	int			compact_order_failed;
494 #endif
495 
496 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
497 	/* Set to true when the PG_migrate_skip bits should be cleared */
498 	bool			compact_blockskip_flush;
499 #endif
500 
501 	bool			contiguous;
502 
503 	ZONE_PADDING(_pad3_)
504 	/* Zone statistics */
505 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
506 	atomic_long_t		vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
507 } ____cacheline_internodealigned_in_smp;
508 
509 enum pgdat_flags {
510 	PGDAT_CONGESTED,		/* pgdat has many dirty pages backed by
511 					 * a congested BDI
512 					 */
513 	PGDAT_DIRTY,			/* reclaim scanning has recently found
514 					 * many dirty file pages at the tail
515 					 * of the LRU.
516 					 */
517 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
518 					 * many pages under writeback
519 					 */
520 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
521 };
522 
523 static inline unsigned long zone_managed_pages(struct zone *zone)
524 {
525 	return (unsigned long)atomic_long_read(&zone->managed_pages);
526 }
527 
528 static inline unsigned long zone_end_pfn(const struct zone *zone)
529 {
530 	return zone->zone_start_pfn + zone->spanned_pages;
531 }
532 
533 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
534 {
535 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
536 }
537 
538 static inline bool zone_is_initialized(struct zone *zone)
539 {
540 	return zone->initialized;
541 }
542 
543 static inline bool zone_is_empty(struct zone *zone)
544 {
545 	return zone->spanned_pages == 0;
546 }
547 
548 /*
549  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
550  * intersection with the given zone
551  */
552 static inline bool zone_intersects(struct zone *zone,
553 		unsigned long start_pfn, unsigned long nr_pages)
554 {
555 	if (zone_is_empty(zone))
556 		return false;
557 	if (start_pfn >= zone_end_pfn(zone) ||
558 	    start_pfn + nr_pages <= zone->zone_start_pfn)
559 		return false;
560 
561 	return true;
562 }
563 
564 /*
565  * The "priority" of VM scanning is how much of the queues we will scan in one
566  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
567  * queues ("queue_length >> 12") during an aging round.
568  */
569 #define DEF_PRIORITY 12
570 
571 /* Maximum number of zones on a zonelist */
572 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
573 
574 enum {
575 	ZONELIST_FALLBACK,	/* zonelist with fallback */
576 #ifdef CONFIG_NUMA
577 	/*
578 	 * The NUMA zonelists are doubled because we need zonelists that
579 	 * restrict the allocations to a single node for __GFP_THISNODE.
580 	 */
581 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
582 #endif
583 	MAX_ZONELISTS
584 };
585 
586 /*
587  * This struct contains information about a zone in a zonelist. It is stored
588  * here to avoid dereferences into large structures and lookups of tables
589  */
590 struct zoneref {
591 	struct zone *zone;	/* Pointer to actual zone */
592 	int zone_idx;		/* zone_idx(zoneref->zone) */
593 };
594 
595 /*
596  * One allocation request operates on a zonelist. A zonelist
597  * is a list of zones, the first one is the 'goal' of the
598  * allocation, the other zones are fallback zones, in decreasing
599  * priority.
600  *
601  * To speed the reading of the zonelist, the zonerefs contain the zone index
602  * of the entry being read. Helper functions to access information given
603  * a struct zoneref are
604  *
605  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
606  * zonelist_zone_idx()	- Return the index of the zone for an entry
607  * zonelist_node_idx()	- Return the index of the node for an entry
608  */
609 struct zonelist {
610 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
611 };
612 
613 #ifndef CONFIG_DISCONTIGMEM
614 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
615 extern struct page *mem_map;
616 #endif
617 
618 /*
619  * On NUMA machines, each NUMA node would have a pg_data_t to describe
620  * it's memory layout. On UMA machines there is a single pglist_data which
621  * describes the whole memory.
622  *
623  * Memory statistics and page replacement data structures are maintained on a
624  * per-zone basis.
625  */
626 struct bootmem_data;
627 typedef struct pglist_data {
628 	struct zone node_zones[MAX_NR_ZONES];
629 	struct zonelist node_zonelists[MAX_ZONELISTS];
630 	int nr_zones;
631 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
632 	struct page *node_mem_map;
633 #ifdef CONFIG_PAGE_EXTENSION
634 	struct page_ext *node_page_ext;
635 #endif
636 #endif
637 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
638 	/*
639 	 * Must be held any time you expect node_start_pfn,
640 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
641 	 *
642 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
643 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
644 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
645 	 *
646 	 * Nests above zone->lock and zone->span_seqlock
647 	 */
648 	spinlock_t node_size_lock;
649 #endif
650 	unsigned long node_start_pfn;
651 	unsigned long node_present_pages; /* total number of physical pages */
652 	unsigned long node_spanned_pages; /* total size of physical page
653 					     range, including holes */
654 	int node_id;
655 	wait_queue_head_t kswapd_wait;
656 	wait_queue_head_t pfmemalloc_wait;
657 	struct task_struct *kswapd;	/* Protected by
658 					   mem_hotplug_begin/end() */
659 	int kswapd_order;
660 	enum zone_type kswapd_classzone_idx;
661 
662 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
663 
664 #ifdef CONFIG_COMPACTION
665 	int kcompactd_max_order;
666 	enum zone_type kcompactd_classzone_idx;
667 	wait_queue_head_t kcompactd_wait;
668 	struct task_struct *kcompactd;
669 #endif
670 	/*
671 	 * This is a per-node reserve of pages that are not available
672 	 * to userspace allocations.
673 	 */
674 	unsigned long		totalreserve_pages;
675 
676 #ifdef CONFIG_NUMA
677 	/*
678 	 * zone reclaim becomes active if more unmapped pages exist.
679 	 */
680 	unsigned long		min_unmapped_pages;
681 	unsigned long		min_slab_pages;
682 #endif /* CONFIG_NUMA */
683 
684 	/* Write-intensive fields used by page reclaim */
685 	ZONE_PADDING(_pad1_)
686 	spinlock_t		lru_lock;
687 
688 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
689 	/*
690 	 * If memory initialisation on large machines is deferred then this
691 	 * is the first PFN that needs to be initialised.
692 	 */
693 	unsigned long first_deferred_pfn;
694 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
695 
696 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
697 	spinlock_t split_queue_lock;
698 	struct list_head split_queue;
699 	unsigned long split_queue_len;
700 #endif
701 
702 	/* Fields commonly accessed by the page reclaim scanner */
703 	struct lruvec		lruvec;
704 
705 	unsigned long		flags;
706 
707 	ZONE_PADDING(_pad2_)
708 
709 	/* Per-node vmstats */
710 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
711 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
712 } pg_data_t;
713 
714 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
715 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
716 #ifdef CONFIG_FLAT_NODE_MEM_MAP
717 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
718 #else
719 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
720 #endif
721 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
722 
723 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
724 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
725 static inline spinlock_t *zone_lru_lock(struct zone *zone)
726 {
727 	return &zone->zone_pgdat->lru_lock;
728 }
729 
730 static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
731 {
732 	return &pgdat->lruvec;
733 }
734 
735 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
736 {
737 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
738 }
739 
740 static inline bool pgdat_is_empty(pg_data_t *pgdat)
741 {
742 	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
743 }
744 
745 #include <linux/memory_hotplug.h>
746 
747 void build_all_zonelists(pg_data_t *pgdat);
748 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
749 		   enum zone_type classzone_idx);
750 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
751 			 int classzone_idx, unsigned int alloc_flags,
752 			 long free_pages);
753 bool zone_watermark_ok(struct zone *z, unsigned int order,
754 		unsigned long mark, int classzone_idx,
755 		unsigned int alloc_flags);
756 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
757 		unsigned long mark, int classzone_idx);
758 enum memmap_context {
759 	MEMMAP_EARLY,
760 	MEMMAP_HOTPLUG,
761 };
762 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
763 				     unsigned long size);
764 
765 extern void lruvec_init(struct lruvec *lruvec);
766 
767 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
768 {
769 #ifdef CONFIG_MEMCG
770 	return lruvec->pgdat;
771 #else
772 	return container_of(lruvec, struct pglist_data, lruvec);
773 #endif
774 }
775 
776 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
777 
778 #ifdef CONFIG_HAVE_MEMORY_PRESENT
779 void memory_present(int nid, unsigned long start, unsigned long end);
780 #else
781 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
782 #endif
783 
784 #if defined(CONFIG_SPARSEMEM)
785 void memblocks_present(void);
786 #else
787 static inline void memblocks_present(void) {}
788 #endif
789 
790 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
791 int local_memory_node(int node_id);
792 #else
793 static inline int local_memory_node(int node_id) { return node_id; };
794 #endif
795 
796 /*
797  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
798  */
799 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
800 
801 #ifdef CONFIG_ZONE_DEVICE
802 static inline bool is_dev_zone(const struct zone *zone)
803 {
804 	return zone_idx(zone) == ZONE_DEVICE;
805 }
806 #else
807 static inline bool is_dev_zone(const struct zone *zone)
808 {
809 	return false;
810 }
811 #endif
812 
813 /*
814  * Returns true if a zone has pages managed by the buddy allocator.
815  * All the reclaim decisions have to use this function rather than
816  * populated_zone(). If the whole zone is reserved then we can easily
817  * end up with populated_zone() && !managed_zone().
818  */
819 static inline bool managed_zone(struct zone *zone)
820 {
821 	return zone_managed_pages(zone);
822 }
823 
824 /* Returns true if a zone has memory */
825 static inline bool populated_zone(struct zone *zone)
826 {
827 	return zone->present_pages;
828 }
829 
830 #ifdef CONFIG_NUMA
831 static inline int zone_to_nid(struct zone *zone)
832 {
833 	return zone->node;
834 }
835 
836 static inline void zone_set_nid(struct zone *zone, int nid)
837 {
838 	zone->node = nid;
839 }
840 #else
841 static inline int zone_to_nid(struct zone *zone)
842 {
843 	return 0;
844 }
845 
846 static inline void zone_set_nid(struct zone *zone, int nid) {}
847 #endif
848 
849 extern int movable_zone;
850 
851 #ifdef CONFIG_HIGHMEM
852 static inline int zone_movable_is_highmem(void)
853 {
854 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
855 	return movable_zone == ZONE_HIGHMEM;
856 #else
857 	return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
858 #endif
859 }
860 #endif
861 
862 static inline int is_highmem_idx(enum zone_type idx)
863 {
864 #ifdef CONFIG_HIGHMEM
865 	return (idx == ZONE_HIGHMEM ||
866 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
867 #else
868 	return 0;
869 #endif
870 }
871 
872 /**
873  * is_highmem - helper function to quickly check if a struct zone is a
874  *              highmem zone or not.  This is an attempt to keep references
875  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
876  * @zone - pointer to struct zone variable
877  */
878 static inline int is_highmem(struct zone *zone)
879 {
880 #ifdef CONFIG_HIGHMEM
881 	return is_highmem_idx(zone_idx(zone));
882 #else
883 	return 0;
884 #endif
885 }
886 
887 /* These two functions are used to setup the per zone pages min values */
888 struct ctl_table;
889 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
890 					void __user *, size_t *, loff_t *);
891 int watermark_boost_factor_sysctl_handler(struct ctl_table *, int,
892 					void __user *, size_t *, loff_t *);
893 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
894 					void __user *, size_t *, loff_t *);
895 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
896 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
897 					void __user *, size_t *, loff_t *);
898 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
899 					void __user *, size_t *, loff_t *);
900 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
901 			void __user *, size_t *, loff_t *);
902 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
903 			void __user *, size_t *, loff_t *);
904 
905 extern int numa_zonelist_order_handler(struct ctl_table *, int,
906 			void __user *, size_t *, loff_t *);
907 extern char numa_zonelist_order[];
908 #define NUMA_ZONELIST_ORDER_LEN	16
909 
910 #ifndef CONFIG_NEED_MULTIPLE_NODES
911 
912 extern struct pglist_data contig_page_data;
913 #define NODE_DATA(nid)		(&contig_page_data)
914 #define NODE_MEM_MAP(nid)	mem_map
915 
916 #else /* CONFIG_NEED_MULTIPLE_NODES */
917 
918 #include <asm/mmzone.h>
919 
920 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
921 
922 extern struct pglist_data *first_online_pgdat(void);
923 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
924 extern struct zone *next_zone(struct zone *zone);
925 
926 /**
927  * for_each_online_pgdat - helper macro to iterate over all online nodes
928  * @pgdat - pointer to a pg_data_t variable
929  */
930 #define for_each_online_pgdat(pgdat)			\
931 	for (pgdat = first_online_pgdat();		\
932 	     pgdat;					\
933 	     pgdat = next_online_pgdat(pgdat))
934 /**
935  * for_each_zone - helper macro to iterate over all memory zones
936  * @zone - pointer to struct zone variable
937  *
938  * The user only needs to declare the zone variable, for_each_zone
939  * fills it in.
940  */
941 #define for_each_zone(zone)			        \
942 	for (zone = (first_online_pgdat())->node_zones; \
943 	     zone;					\
944 	     zone = next_zone(zone))
945 
946 #define for_each_populated_zone(zone)		        \
947 	for (zone = (first_online_pgdat())->node_zones; \
948 	     zone;					\
949 	     zone = next_zone(zone))			\
950 		if (!populated_zone(zone))		\
951 			; /* do nothing */		\
952 		else
953 
954 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
955 {
956 	return zoneref->zone;
957 }
958 
959 static inline int zonelist_zone_idx(struct zoneref *zoneref)
960 {
961 	return zoneref->zone_idx;
962 }
963 
964 static inline int zonelist_node_idx(struct zoneref *zoneref)
965 {
966 	return zone_to_nid(zoneref->zone);
967 }
968 
969 struct zoneref *__next_zones_zonelist(struct zoneref *z,
970 					enum zone_type highest_zoneidx,
971 					nodemask_t *nodes);
972 
973 /**
974  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
975  * @z - The cursor used as a starting point for the search
976  * @highest_zoneidx - The zone index of the highest zone to return
977  * @nodes - An optional nodemask to filter the zonelist with
978  *
979  * This function returns the next zone at or below a given zone index that is
980  * within the allowed nodemask using a cursor as the starting point for the
981  * search. The zoneref returned is a cursor that represents the current zone
982  * being examined. It should be advanced by one before calling
983  * next_zones_zonelist again.
984  */
985 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
986 					enum zone_type highest_zoneidx,
987 					nodemask_t *nodes)
988 {
989 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
990 		return z;
991 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
992 }
993 
994 /**
995  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
996  * @zonelist - The zonelist to search for a suitable zone
997  * @highest_zoneidx - The zone index of the highest zone to return
998  * @nodes - An optional nodemask to filter the zonelist with
999  * @return - Zoneref pointer for the first suitable zone found (see below)
1000  *
1001  * This function returns the first zone at or below a given zone index that is
1002  * within the allowed nodemask. The zoneref returned is a cursor that can be
1003  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1004  * one before calling.
1005  *
1006  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1007  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1008  * update due to cpuset modification.
1009  */
1010 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1011 					enum zone_type highest_zoneidx,
1012 					nodemask_t *nodes)
1013 {
1014 	return next_zones_zonelist(zonelist->_zonerefs,
1015 							highest_zoneidx, nodes);
1016 }
1017 
1018 /**
1019  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1020  * @zone - The current zone in the iterator
1021  * @z - The current pointer within zonelist->zones being iterated
1022  * @zlist - The zonelist being iterated
1023  * @highidx - The zone index of the highest zone to return
1024  * @nodemask - Nodemask allowed by the allocator
1025  *
1026  * This iterator iterates though all zones at or below a given zone index and
1027  * within a given nodemask
1028  */
1029 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1030 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1031 		zone;							\
1032 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1033 			zone = zonelist_zone(z))
1034 
1035 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1036 	for (zone = z->zone;	\
1037 		zone;							\
1038 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1039 			zone = zonelist_zone(z))
1040 
1041 
1042 /**
1043  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1044  * @zone - The current zone in the iterator
1045  * @z - The current pointer within zonelist->zones being iterated
1046  * @zlist - The zonelist being iterated
1047  * @highidx - The zone index of the highest zone to return
1048  *
1049  * This iterator iterates though all zones at or below a given zone index.
1050  */
1051 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1052 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1053 
1054 #ifdef CONFIG_SPARSEMEM
1055 #include <asm/sparsemem.h>
1056 #endif
1057 
1058 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1059 	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1060 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1061 {
1062 	BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
1063 	return 0;
1064 }
1065 #endif
1066 
1067 #ifdef CONFIG_FLATMEM
1068 #define pfn_to_nid(pfn)		(0)
1069 #endif
1070 
1071 #ifdef CONFIG_SPARSEMEM
1072 
1073 /*
1074  * SECTION_SHIFT    		#bits space required to store a section #
1075  *
1076  * PA_SECTION_SHIFT		physical address to/from section number
1077  * PFN_SECTION_SHIFT		pfn to/from section number
1078  */
1079 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1080 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1081 
1082 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1083 
1084 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1085 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1086 
1087 #define SECTION_BLOCKFLAGS_BITS \
1088 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1089 
1090 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1091 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1092 #endif
1093 
1094 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1095 {
1096 	return pfn >> PFN_SECTION_SHIFT;
1097 }
1098 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1099 {
1100 	return sec << PFN_SECTION_SHIFT;
1101 }
1102 
1103 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1104 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1105 
1106 struct page;
1107 struct page_ext;
1108 struct mem_section {
1109 	/*
1110 	 * This is, logically, a pointer to an array of struct
1111 	 * pages.  However, it is stored with some other magic.
1112 	 * (see sparse.c::sparse_init_one_section())
1113 	 *
1114 	 * Additionally during early boot we encode node id of
1115 	 * the location of the section here to guide allocation.
1116 	 * (see sparse.c::memory_present())
1117 	 *
1118 	 * Making it a UL at least makes someone do a cast
1119 	 * before using it wrong.
1120 	 */
1121 	unsigned long section_mem_map;
1122 
1123 	/* See declaration of similar field in struct zone */
1124 	unsigned long *pageblock_flags;
1125 #ifdef CONFIG_PAGE_EXTENSION
1126 	/*
1127 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1128 	 * section. (see page_ext.h about this.)
1129 	 */
1130 	struct page_ext *page_ext;
1131 	unsigned long pad;
1132 #endif
1133 	/*
1134 	 * WARNING: mem_section must be a power-of-2 in size for the
1135 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1136 	 */
1137 };
1138 
1139 #ifdef CONFIG_SPARSEMEM_EXTREME
1140 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1141 #else
1142 #define SECTIONS_PER_ROOT	1
1143 #endif
1144 
1145 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1146 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1147 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1148 
1149 #ifdef CONFIG_SPARSEMEM_EXTREME
1150 extern struct mem_section **mem_section;
1151 #else
1152 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1153 #endif
1154 
1155 static inline struct mem_section *__nr_to_section(unsigned long nr)
1156 {
1157 #ifdef CONFIG_SPARSEMEM_EXTREME
1158 	if (!mem_section)
1159 		return NULL;
1160 #endif
1161 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1162 		return NULL;
1163 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1164 }
1165 extern int __section_nr(struct mem_section* ms);
1166 extern unsigned long usemap_size(void);
1167 
1168 /*
1169  * We use the lower bits of the mem_map pointer to store
1170  * a little bit of information.  The pointer is calculated
1171  * as mem_map - section_nr_to_pfn(pnum).  The result is
1172  * aligned to the minimum alignment of the two values:
1173  *   1. All mem_map arrays are page-aligned.
1174  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1175  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1176  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1177  *      worst combination is powerpc with 256k pages,
1178  *      which results in PFN_SECTION_SHIFT equal 6.
1179  * To sum it up, at least 6 bits are available.
1180  */
1181 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1182 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1183 #define SECTION_IS_ONLINE	(1UL<<2)
1184 #define SECTION_MAP_LAST_BIT	(1UL<<3)
1185 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1186 #define SECTION_NID_SHIFT	3
1187 
1188 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1189 {
1190 	unsigned long map = section->section_mem_map;
1191 	map &= SECTION_MAP_MASK;
1192 	return (struct page *)map;
1193 }
1194 
1195 static inline int present_section(struct mem_section *section)
1196 {
1197 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1198 }
1199 
1200 static inline int present_section_nr(unsigned long nr)
1201 {
1202 	return present_section(__nr_to_section(nr));
1203 }
1204 
1205 static inline int valid_section(struct mem_section *section)
1206 {
1207 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1208 }
1209 
1210 static inline int valid_section_nr(unsigned long nr)
1211 {
1212 	return valid_section(__nr_to_section(nr));
1213 }
1214 
1215 static inline int online_section(struct mem_section *section)
1216 {
1217 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1218 }
1219 
1220 static inline int online_section_nr(unsigned long nr)
1221 {
1222 	return online_section(__nr_to_section(nr));
1223 }
1224 
1225 #ifdef CONFIG_MEMORY_HOTPLUG
1226 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1227 #ifdef CONFIG_MEMORY_HOTREMOVE
1228 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1229 #endif
1230 #endif
1231 
1232 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1233 {
1234 	return __nr_to_section(pfn_to_section_nr(pfn));
1235 }
1236 
1237 extern int __highest_present_section_nr;
1238 
1239 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1240 static inline int pfn_valid(unsigned long pfn)
1241 {
1242 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1243 		return 0;
1244 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1245 }
1246 #endif
1247 
1248 static inline int pfn_present(unsigned long pfn)
1249 {
1250 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1251 		return 0;
1252 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1253 }
1254 
1255 /*
1256  * These are _only_ used during initialisation, therefore they
1257  * can use __initdata ...  They could have names to indicate
1258  * this restriction.
1259  */
1260 #ifdef CONFIG_NUMA
1261 #define pfn_to_nid(pfn)							\
1262 ({									\
1263 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1264 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1265 })
1266 #else
1267 #define pfn_to_nid(pfn)		(0)
1268 #endif
1269 
1270 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1271 void sparse_init(void);
1272 #else
1273 #define sparse_init()	do {} while (0)
1274 #define sparse_index_init(_sec, _nid)  do {} while (0)
1275 #endif /* CONFIG_SPARSEMEM */
1276 
1277 /*
1278  * During memory init memblocks map pfns to nids. The search is expensive and
1279  * this caches recent lookups. The implementation of __early_pfn_to_nid
1280  * may treat start/end as pfns or sections.
1281  */
1282 struct mminit_pfnnid_cache {
1283 	unsigned long last_start;
1284 	unsigned long last_end;
1285 	int last_nid;
1286 };
1287 
1288 #ifndef early_pfn_valid
1289 #define early_pfn_valid(pfn)	(1)
1290 #endif
1291 
1292 void memory_present(int nid, unsigned long start, unsigned long end);
1293 
1294 /*
1295  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1296  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1297  * pfn_valid_within() should be used in this case; we optimise this away
1298  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1299  */
1300 #ifdef CONFIG_HOLES_IN_ZONE
1301 #define pfn_valid_within(pfn) pfn_valid(pfn)
1302 #else
1303 #define pfn_valid_within(pfn) (1)
1304 #endif
1305 
1306 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1307 /*
1308  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1309  * associated with it or not. This means that a struct page exists for this
1310  * pfn. The caller cannot assume the page is fully initialized in general.
1311  * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1312  * will ensure the struct page is fully online and initialized. Special pages
1313  * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1314  *
1315  * In FLATMEM, it is expected that holes always have valid memmap as long as
1316  * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1317  * that a valid section has a memmap for the entire section.
1318  *
1319  * However, an ARM, and maybe other embedded architectures in the future
1320  * free memmap backing holes to save memory on the assumption the memmap is
1321  * never used. The page_zone linkages are then broken even though pfn_valid()
1322  * returns true. A walker of the full memmap must then do this additional
1323  * check to ensure the memmap they are looking at is sane by making sure
1324  * the zone and PFN linkages are still valid. This is expensive, but walkers
1325  * of the full memmap are extremely rare.
1326  */
1327 bool memmap_valid_within(unsigned long pfn,
1328 					struct page *page, struct zone *zone);
1329 #else
1330 static inline bool memmap_valid_within(unsigned long pfn,
1331 					struct page *page, struct zone *zone)
1332 {
1333 	return true;
1334 }
1335 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1336 
1337 #endif /* !__GENERATING_BOUNDS.H */
1338 #endif /* !__ASSEMBLY__ */
1339 #endif /* _LINUX_MMZONE_H */
1340